
Issue 59  April 2015

Raytracing a Black Hole
Riccardo Antonelli

2  ﻿

Curator
Lim Cheng Soon

Contributors
Riccardo Antonelli
Evan Todd
Vince Buffalo
Stephen Wyatt Bush
Josh Johnson
Rob Conery
Eve Fisher
Matt Welsh

Proofreader
Emily Griffin

Printer
Blurb

Hacker Monthly is the print magazine version
of Hacker News — news.ycombinator.com, a social news
website wildly popular among programmers and startup
founders. The submission guidelines state that content
can be “anything that gratifies one’s intellectual curiosity.”
Every month, we select from the top voted articles on
Hacker News and print them in magazine format.
For more, visit hackermonthly.com

Advertising
ads@hackermonthly.com

Contact
contact@hackermonthly.com

Published by
Netizens Media
46, Taylor Road,
11600 Penang,
Malaysia.

Hacker Monthly is published by Netizens Media and not affiliated with Y Combinator in any way.

http://news.ycombinator.com
http://hackermonthly.com
mailto:ads@hackermonthly.com
mailto:contact@hackermonthly.com

  3

For links to Hacker News dicussions, visit hackermonthly.com/issue-59

Contents
FEATURE

04  Raytracing a Black Hole
By Riccardo Antonelli

PROGRAMMING

12  The Poor Man’s Voxel Engine
By Evan Todd

17  Using Named Pipes and Process Substitution
By Vince Buffalo

20  Dad and the Ten Commandments of Egoless Programming
By Stephen Wyatt Bush

22  DevOps Is Bullshit
By Josh Johnson

27  Embracing SQL In Postgres
By Rob Conery

SPECIAL

32  The $3500 Shirt
By Eve Fisher

34  Day in the Life of a Google Manager
By Matt WelsH

http://hackermonthly.com/issue-59

4  FEATURE

FEATURE

By Riccardo Antonelli

Raytracing a
Black Hole

It’s now clear I’m on a Black
Hole binge (I can stop when I
want, by the way). They’re end-

lessly fascinating. My recent interest
was in particular focused on simu-
lating visualizations of the Schwar-
zschild geometry. I was preoccupied
by the problem of generating a
decent accurate representation of
how the curvature of such a space-
time affects the appearance of the
sky (since photons from distance
sources ride along geodesics bent by
the Black Hole), for the purpose of
creating an interactive simulation.
This was the result (it runs in your
browser). The trick was, of course,
to pre-calculate as much as possible
about the deflection of light rays. It
worked ok-ish, but the simulation
is of course very lacking in features,
since it’s not actually doing any
raytracing (for the laymen: recon-
structing the whereabouts of light
rays incoming in the camera back in
time) on its own.

This project, instead, aims to
shatter these shortcoming by ditch-
ing efficiency/interactivity in the
most naive way: it’s a full CPU ray-
tracer, taking all the time it needs
to render pictures. The image above
was rendered
with this pro-
gram. It took 5
minutes on my
laptop.

This is neither
anything new
nor is it any
better than
how it has been
done before. It’s
just really fun
for me. I’m writing this to share
not only end-results, but also the
process of building these pictures,
with a discussion/explanation of the
physics involved and the imple-
mentation. Ideally, this could be of
inspiration or guidance to people
with a similar intent.

A bit of pseudo-Riemannian
optics

The shadow
If you have already tried my live
applet [hn.my/bhapplet], you
should be familiar with this view:

 You shouldn’t have problems
making out the salient feature of
the image, namely the black disk
and the weird distortion ring.

It’s often pointed out that it’s
incorrect to say that the black disk
is the event horizon. In fact, it’s
incorrect to say that a region of an
image is an object. These are images

http://hn.my/bhapplet

  5

of things. Now, it’s true that there
will be rays that, when backtraced
from your eye, will end up in the
event horizon. These will be black
pixels, since no photon could ever
have followed that path going
forward, from inside the black hole
to your eye. This black disk is thus
very clearly the image of the event
horizon, in the sense that if you
draw (in the far past) something
right above the horizon, outside
observers will be able to see it right
on that black disk (we will actually
perform this experiment later). This
black region is also called “shadow”
of the BH in some publications.

 What’s interesting to note, how-
ever, is that this is at the same time
the image of the photon sphere.
The gnuplot graph above depicts
geodesics of incoming photons from
infinity (looking at the BH from far
away zooming in) along with the
EH (black) and the PS (green). The
photon sphere is 32 times the event
horizon (in Schwarzschild r) and is
the location where circular orbits
of light around the BH are allowed
(though unstable). In the graph,
identify rays that fall to their death
and those who get only scattered
(and thus end up on another point
on the celestial sphere). You see
that absorbed rays are those arriving

with an impact parameter of less
than ~ 2.5 radii. This is the appar-
ent radius of the black disk, and it’s
significantly larger than both the
EH and the PS.

Anyways, the relevant trivia here
is this:

A light ray infalling in the photon
sphere in free fall will also reach
the event horizon.

This implies that the image of
the photon sphere is included in
that of the horizon. However, since
the horizon is very clearly inside
the photon sphere, the image of the
former must also be a subset of that
of the latter. Then the two images
should coincide.

Why should you care that the
black disk is also the image of the
PS? Because it means that the
edge of the black disk is populated
by photons that skim the photon
sphere. A pixel right outside the
black disk corresponds to a photon
that (when tracing backwards) spi-
rals into the photon sphere, getting
closer and closer to the unstable
circular orbit, winding many times
(the closer you look, the more it
winds), then spiraling out (since the
orbit is unstable) and escaping to
infinity.

This behavior will produce an
interesting optical phenomenon
and is basically getting close to a
separatrix in a dynamical system. In
the limit, a ray thrown exactly on
the edge will spiral in forever, get-
ting closer and closer to the photon
sphere circular orbit.

The effect on the celestial sphere
I’m not going to focus a lot on this,
because this was the main goal of
the live applet, and you can get a
much better idea of the distortions
induced on the sky through that
(which also includes a UV grid
option so the distortion is clearer).

Just a couple of things about
the Einstein ring. The Einstein
ring is distinguishable as an optical
feature because it is the image of
a single point, namely that on the
sky directly opposite the observer.
The ring forms at the view angle
where rays from the observer are
bent parallel. Outside of it, rays
are not bent enough and remain
divergent; inside, they are bent too
much and converge and in fact can
go backwards, or even wind around
multiple times, as we’ve seen.

But then, think about this: if
we get close enough to the black
disk, light rays should be able to
wind around once and then walk
away parallel. There we should see
a secondary Einstein ring, and, in
fact, rings of any order (any number
of windings). Also, there should be
“odd” rings in between where light
rays are bent parallel but directed
towards the viewer. This infinite
series of rings is there, but it’s
absolutely invisible in this image (in
fact, in most of them), as they are
very close to the disk edge.

6  FEATURE

The distortion of the Event
Horizon

In this new image, there are a
couple of things that have changed.
First of all, this was rendered at a
higher resolution and with filter-
ing for the background, so as to be
more readable. Then, I’ve zoomed
in on the hole (haven’t gotten
closer, we’re still at ~ 10 radii, just
zoomed in). But most importantly, I
have drawn a grid on the horizon.

The horizon is “just a sphere.”
Technically, it does not work like a
standard Riemannian sphere with a
spatial metric. The horizon is light-
like! A pictorial way of saying this is
that it’s going outwards at the speed
of light. However, in Schwarzschild
coordinates, it’s still a r = 1 surface,
and we can use ϕ and θ as longitude
and latitude. So it’s possible to draw
a coordinate grid in a canonical way.
Then what you’re seeing is how
that grid would look.

The grid allows us to take note of
a peculiar fact we could have also
deduced by analyzing the photon
scattering/absorption graph above:

The whole surface of the horizon is
visible at the same time, from any
point

This is very interesting. When
you look at a stationary sphere in
standard flat spacetime, you can
see at most 50% of its surface at
any given time (less if you’re closer,
because of perspective). The hori-
zon, instead, is all visible simulta-
neously, mapped in the black disk:

notice in particular the North and
South poles. However, while the
surface of the EH is all there, it
doesn’t cover all of the black disk:
if you zoomed in on the edge, you’d
see that this image of the EH ends
before the shadow ends. Namely
you’ll find a ring, very close to the
outside edge, but not equal, which
is an image of the point opposite
the observer and delimits this
“first” image of the EH inside. So
what’s in between this ring and the
actual edge? I haven’t yet both-
ered making a zoom to show this,
but there’s another whole image
of the event horizon squeezed in
there. And then another, and then
another, ad infinitum. There are
infinite concentric images of the
whole horizon, squeezed on the
shadow.

Adding an accretion disk

What modern black hole rendering
would it be without an accretion
disk? While it’s certainly debatable
whether Nolan’s Interstellar was
actually watchable, not to mention
accurate, we can certainly thank
the blockbuster for popularizing
the particular way the image of an
accretion disk is distorted. Here
we have an infinitely thin, flat,
horizontal accretion disk extending
from the photon sphere (this is very
unrealistic, orbits below 3rS are
unstable. More below) to 4 radii,
colored checkered white and blue

on the top and white and green on
the bottom. It is evident, with this
coloring, that we’ve encountered
another case of seeing 100% of
something at the same time.

For this image, I moved the
observer up a bit, so he can take a
better look at the disk. You can see
two main images of the disk, one of
the upper face, and one, inside, of
the lower. The blue image has the
far section of the upper disk dis-
torted to arch above the shadow of
the BH. This happens because a ray
pointing right above the black hole
is bent down to meet the upper
surface of the disk behind the hole,
opposite the observer.

This also explains the very
existence of the green image: rays
going below are bent to meet the
lower surface, still behind the hole.
The green image, if you look closely,
extends all around the shadow,
but it’s much thinner in the upper
section. This corresponds to light
rays that go above the BH, are bent
into an almost full circle around the
hole, and hit the lower surface in
the front section of the disk.

Of course, it’s easy to deduce
that there is an infinite series of
accretion disk images, getting very
quickly thinner and closer to the
edge. The next-order image, in
blue, is already very thin but faintly
visible in the lower portion of the
edge.

  7

Enough science.
Enough with the informative pixelated 90’s uni mainframe renderings with garish colors.
Here are some “pop” renders.

This image was rendered by reddit.com/u/dfzxh with x4 supersampling.

A closer look. Zoom on the ring images.

Iconic “ring of light” effect when looking from the equatorial plane. If you download the program, this is the current default scene.

http://reddit.com/u/dfzxh

8  FEATURE

 Yeah, they’re nothing special.
Not an artist here. Let’s get back
temporarily to the science: the
“Zoom on the ring” image, the one
that doesn’t seem to make any
sense, is actually very precious. It’s
a zoom on the region between the
upper edge of the black disk and
the main (“first blue”) image of
the accretion disk. The observer
is placed on the outer rim of the
accretion disk itself and zooms
in on this detail. The goal was to
image as many orders of rings as
possible. Three orders are visible:
the lighter zone at the top is just
the lower rim of the first image of
the top-far surface of the disk. The
strip at the bottom, below a calm
sea of outstretched stars, is the
superior part of the second image,
the “first green” one, of the bot-
tom-front of the disk. At the very
bottom is a thin line of light not
more than a pixel wide, glued to
the black disk of the photon sphere.
This is mainly the third image, the
“second blue”: it’s the image again
of the top-far surface, but after the
light has completed an additional
winding around the black hole.
Merged with it, but increasingly
thin, are all subsequent higher-
order images. Ok, this is something
worthy of <blockquote> tags:

There are infinite images of both
the upper and lower surface of the
accretion disk, and they all show
the whole surface simultaneously.
Moreover, except for the very first,
these images don’t pass in front of
the black disk nor each other, and
are thus “concentric.”

Marvelous.

Realistic accretion disc
The accretion disc in the renders
above is cartoony. It’s just a disc
with a stupid texture splattered on
it. What happens when in the visual
appearance of the disc we include
physics-aware information? What
happens when we include redshift
from orbital motion, for example?

A popular model for an accre-
tion disc is an infinitely thin disc
of matter in almost circular orbit,
starting at the ISCO (Innermost
Stable Circular Orbit, 3rs), with
a power law temperature profile
T∼r−a. I’ll use the extremely simple

Which is most definitely not ok
in GR for realistic fluids, but it’ll do.

A free parameter now is the
overall scale for the temperatures,
for example the temperature at the
ISCO. This temperature is immense
for most black holes. We’re talk-
ing hundreds of millions of Kelvin;
it’s difficult to imagine any human
artefact that could survive being
exposed to the light (peaking in
X-rays) of a disc at those tempera-
tures, let alone capture anything
meaningful on a CCD. We then
really have to tone it down. Appar-
ently supermassive black holes are
colder, but not enough. We need to
pull it down to around 10,000 K at
the ISCO for us to be able to see
anything. This is highly inaccurate,
but it’s all I can do.

We need to ask ourselves two
questions. One: what color is a
blackbody at that temperature?
Two: how bright is it? Formally, the
answer to those two questions is in
the scalar product of the functions
describing R,G,B channels with the
black body spectrum. In practice,
one uses some approximations.

For color, this formula by Tanner
Helland [hn.my/tanner] is accurate
and efficient, but it involves numer-
ous conditionals which are not
feasible with my raytracing setup
(see below for details). The fastest
way is to use a lookup texture:

 This texture is one of many
goodies from Mitchell Charity’s
“What color is a blackbody?”. (For
reference, it corresponds to white-
point E).

This runs from 1000 K to 30,000
K, higher temperatures are basi-
cally the same shade of blue. Since
there is an immense difference in
brightness between temperatures,
this texture cannot and does not
encode brightness; rather, the colors
are normalized. It is our duty to
compute relative brightness and
multiply. We can use an analytic
formula for that. If we assume that
the visible spectrum is very narrow,
then the total visible intensity is
proportional to the blackbody spec-
trum itself:

Where I got rid of stupid overall
constants (we’re going to rescale
brightness anyway to see anything).
We can just plug in λ roughly in the
visible spectrum range and we get
that brightness is proportional to:

That’s easy enough. As a check,
we note that relative intensity
quickly drops to zero when T goes
to zero, and is only linear in T as T
goes to infinity.

http://hn.my/tanner

  9

Redshift
I discussed the orbital speeds in
the Schwarzschild geometry in
the explanation for the live applet.
To compute redshift, we use the
special-relativistic redshift formula:

Where cos(θ) is the cosine of
the angle between the ray direction
when it’s emitted by the disc and
the disc local velocity, all computed
in the local inertial frame associated
with the Schwarzschild coordi-
nates. This formula is correct in this
context because of the equivalence
principle.

This is to be multiplied with the
gravitational redshift factor:

This factor does not depend
on the path of the light ray, only
on the emission radius, because
the Schwarzschild geometry is
stationary.

This also means that the con-
tribution to gravitational redshift
due to the position of the observer
is constant over the whole field of
view. All our image gets a constant
overall blueshift because we’re
deep in the hole’s well. This effect
therefore is just applying a tint over
our image, and we ignore it.

We also neglect redshift from
observer motion, because our
observer is Schwarzschild-station-
ary. The final result is this:

 As you can see, most of the
disc is completely white, because
it saturates the color channels. If I
scale down those channels to fit in
the 0.0-1.0 range, the outer parts
of the disk become faint or black.
The growth in brightness is too
large for us to appreciate. I’ve tried
to depict it in post
processing through
a bloom effect to
make really bright
parts bleed instead
of just clip, but it’s
hardly sufficient.

Quite a confus-
ing picture. Here’s
a picture with the
intensity ignored,
so you can appreci-
ate the colors:

These are at a smaller resolution
because they take so long to render
on my laptop (square roots are bad,
kids).

Anyways, it looks thousands of
time less scenographic than the
other renders (mostly because the
inner edge of the disk is already
far away enough from the EH that

lensing looks quite underwhelm-
ing), but at least it’s accurate, if you
managed to find a 10,000 K black
hole and some really good sun-
glasses, that is.

Another shot from a closer dis-
tance. I tweaked saturation unnatu-
rally up so you can tell better:

10  FEATURE

Writing a black hole raytracer
There is very obviously a massive
difference between understand-
ing the qualitative aspects of black
hole optics and building a numeri-
cal integrator that spits out 1080p
ok-ish wallpaper material. Last time
I neglected the aspect of explaining
my thought processes in coding and
I put up a really messy git repo. I
want to go into a little more detail
now and will try to maintain the
code tidier and commented.

I don’t want this raytracer to be
good, solid, fast. I want it to be easy
and hackable, so that people can
be inspired by it, may it be because
they see potential for improvement
or because it’s so sh***y it makes
them want to make their own. So
here’s a quick walkthrough of the
algorithms and implementation.

The “magic” potential
So, General Relativity, right. Easy.
Take the Schwarzschild metric, find
the Christoffel symbols, find their
derivative, write down the geodesic
equation, change to some Carte-
sian coordinates to avoid endless
suffering, get an immense multiline
ODE, and integrate. That’s pretty
much it.

Just kidding. Of course there’s a
trick.

If you remember last time, I
derived the following equation for
the orbit of a massless particle in
its orbital plane in a Schwarzschild
geometry (u = 1/r):

The trick is to recognize that this
is in the form of a Binet equation. If
you have an absolutely massive and
Newtonian particle in a Newtonian
central potential:

Then the particle will obviously
move in its orbital plane and will
satisfy the Binet equation for u(ϕ):

Where the prime is d/dϕ, m
is the mass and h is the angular
momentum per unit mass. This is
an equation for the orbit, not an
equation of motion. It does not tell
you anything about u(t) or ϕ(t), just
the relationship between u and ϕ.

Let’s pause a moment to ponder
what this is actually telling us. It
says that if we were to evolve a
hypothetical mechanical system of
a particle under a certain central
force, its trajectory will be a solu-
tion to the Binet equation. Then the
mechanical system becomes a com-
putational tool to solve the latter.

What I propose here is exactly
this. We put m=1 and take the
(unphysical, whatever) simple
system of a point particle in this
specific force field:

Where h is some constant, and
we integrate that numerically — it’s
very easy. Then the solution ,
where T is the abstract time coor-
dinate for this system, is actually
a parametrization of the unique
solution for the corresponding
Binet equation, which is exactly the
geodesic equation.

So we solve Newton’s equation
in Cartesian coordinates, which
is the easiest thing ever; I use the
leapfrog method instead of RK4
because it’s simple, reversible and
preserves the constants of motion.
(I now switched to Runge-Kutta
to be able to increase step size and
reduce render times, but with the
future possibility of leaving the

choice of integration method to the
user). Then what I obtain is just the
actual light-like geodesic with T a
parameter running along it (distinct
from both Schwarzschild t and
proper time, that doesn’t exist).

This is much better than the
previous method, which worked
with polar coordinates in the
orbital plane. This is very efficient
computationally.

Raytracing in numpy
If you take a look at the source tree,
you’ll find is not much of a tree. It’s
just a Python script. The horror!
Why would anyone write a ray-
tracer in Python? Python loops are
notoriously heavy, which is mostly
(but not completely) a deal breaker.
The point here is that we’re doing
the computations in numpy and
calculating everything in parallel.
This is why this program won’t
show you progressively the parts of
the image it has already rendered:
it’s raytracing them all at the same
time.

One basically starts by creating
an array of initial conditions. For
example, a (numPixel,3) array
with view 3-vector correspond-
ing to every pixel of the image
(numPixel is image width * image
height). Then every computation
one would do for a single ray, one
does in (numPixel, ...)-shaped
arrays. Every quantity is actually an
array. Since operations on numpy
arrays are very fast and everything
is statically typed (hope I’m not
saying anything stupid right now)
this should be fast enough. Maybe
not C, but fast-ish.

  11

At the same time, we have the
versatility and clarity of Python.

This method is basically hor-
rible for standard raytracing, where
objects have diffuse, reflective,
refractive components and illumi-
nation conditions are important.
Selectively reflecting parts of an
array of rays, for example, is a
nightmare; taking track of Booleans
or loop indices requires numerous
masks, and loops cannot be broken
out of. However, this is not our
case: the only objects in our scene
are exclusively emissive: the sky,
the incandescent accretion disk, the
pitch black event horizon, and the
bright dust. These are unaffected
by incoming light on the object,
and light itself passes through them
undisturbed, at most reduced in
intensity. This leads us to our color
determination algorithm:

Color blending
It’s easy: we just need to blend
together all objects between us
and the origin of the ray with their
respective alpha values, stack-
ing them with the farthest at the
bottom. We initialize a color buffer
with alpha to transparent black,
then on intersection with an object,
we update the buffer by blending
the color from the object below
our color buffer. Also every step we
do this for the dust (we use a r−2
density profile). We go on like this
until iterations end. Note that the
alpha channel then also functions as
a z-buffer, as object stop contribut-
ing after the ray has intersected an
opaque object (that thus set the
buffer’s alpha to 1.0).

This technique has the obvious
drawback that you just cannot stop
tracing a ray after you’re done with
it, as it’s part of an array where
other rays are still being traced.
After colliding with the horizon,
for example, rays continue wander-
ing erratically from precision error
after they hit the singularity — you
can see what happens by explicitly
disabling the horizon object. The
alpha blending algorithm ensures
they won’t contribute anymore to
the final image — but they will still
weigh on the CPU. n

Riccardo is 23 years old; He is studying
for his Master’s degree in physics at the
University of Padua, under the SGSS. He
is aiming in the general direction of high-
energy physics and string theory.

Reprinted with permission of the original author.
First appeared in hn.my/starless (rantonels.github.io)

http://hn.my/starless

12  PROGRAMMING

PROGRAMMING

This is not a tutorial. It’s a
story. A Voxel Odyssey.

The story starts with
19-year-old me in a dorm room
next to the Ohio State stadium. I
don’t have the repo from this stage
of development (SVN at the time),
but I remember the process clearly.

XNA 4 comes out in September,
2010. I immediately dive in. This
turns out to be a poor life decision.

For some reason, one of the very
first things I implement is motion
blur. I think this is Lemma’s first
screenshot, although at this point,
it’s a cartoony third-person game
called “Parkour Ninja”:

I skip past the initial naive imple-
mentation of spawning a cube for
each voxel cell. My first move is to
iterate over these individual cells
and combine them into larger boxes
using run-length encoding.

Performance is already a problem
even at small scales. I’m re-opti-
mizing the entire scene every time
I make an edit. Obviously, my next
move is to only optimize the parts
I’m editing.

This turns out to be difficult.
Take this example:

 I add a cube at the top of this
stack. To optimize this into a single
box, I have to search all the way to
the bottom of the stack to find the
beginning of the large box, then add
1 to its height and delete my little
cube addition.

To speed this process up, I
allocate a 3D array representing
the entire scene. Each cell stores
a pointer to the box it’s a part of.
Now I can query the cells immedi-
ately adjacent to my new addition
and quickly get a pointer to the
large box next to it.

Removals are the next challenge.
My first idea is to split the box back
into individual cells, then run the
optimizer on them again.

By Evan Todd

The Poor Man’s
Voxel Engine

 Such motion blur

  13

This turns out to be horribly
slow. I soon realize that rather than
splitting the box into individual
cells, I can skip a few steps and split
it into “sub-boxes.” I still run the
optimization algorithm afterward,
but I can make its life easier.

Goodbye Xbox
I quickly run into more issues. The
CLR’s floating point performance
is absolutely abysmal on Xbox 360.
The physics engine breaks down
and cries after spawning 10 boxes
or so. I decide to target PCs instead.

Textures
I render scenes by copying, stretch-
ing, and scaling a single cube model.
Slapping a texture on this cube
turns out to be a horrible idea that
looks something like this:

To avoid texture stretchiness, I

eventually write a shader to gener-
ate UVs based on the position and
normal of each vertex. Here’s the
final version for reference:

float2x2 UVScaleRotation;
float2 UVOffset;
float2 CalculateUVs(float3 pos,
float3 normal)
{
 float diff = length(pos *
normal) * 2;
 float2 uv = float2(diff +
pos.x + (pos.z * normal.x),
diff - pos.y + (pos.z *
normal.y));
 return mul(uv, UVScaleRota-
tion) + UVOffset;
}

Instancing
Next, another per-
formance crisis.
Somehow I realize
that doing a whole
draw call for each and
every box in a scene
is a Bad Idea. So I
take the obvious step
and...use hardware
instancing. Yes.

Improved level format
At this point, I’m saving and load-
ing levels via .NET’s XML serializa-
tion. Apparently XML is still a good
idea in 2010. The voxel format is
simply a 3D array represented as
an XML string of ASCII 1s and 0s.
Every time I load a level, I have to
re-optimize the entire scene. I solve
this by storing the boxes them-
selves in the level data as a base64
encoded int array. Much better.

Per-surface rendering
I start building larger levels and run
into another graphics performance
problem. The engine is simply
pushing too many triangles. In a
complex scene, a significant chunk
of boxes are surrounded on all sides
by other boxes, completely hidden.
But I’m still rendering them.

I solve this problem by breaking
each box into its individual faces.
I actually iterate across the whole
surface to determine what parts
(if any) are visible. Shockingly, this
turns out to be terrifically slow. I
eventually mitigate the issue by
caching surface data in the level file.

I render all these surfaces via...
drum roll... instancing. Yes, really.
I open Blender, create a 1x1 quad,
export it, and instance the heck out
of that thing. These are dark times.
But I’m finally able to render some
larger landscapes:

14  PROGRAMMING

Physics
Time to see some cool physics. I
now have two kinds of voxel enti-
ties: the static voxel, represented
in the physics engine as a series of
static boxes, and the dynamic voxel,
represented as a single physics
entity with a compound collision
volume constructed of multiple
boxes (I should plug the incred-
ible BEPUPhysics for making this
possible). It works surprisingly well.
[hn.my/physics]

Around this time I also switch to
a deferred renderer, which is why I
spawn an unreasonable number of
lights at the end of that video.

Chopping down trees
Now it’s time to take physics to the
next level. My goal is simple: I want
the player to be able to cut down
a tree and actually see it fall over,
unlike Minecraft.

This lofty dream is basically a
graph problem, where each box is
a node connected to its adjacent
neighbors. When I empty out a
voxel cell, I need a fast way to
determine whether I just parti-
tioned the graph or not.

So I add an adjacency list to
the box class. Again, shockingly,
calculating adjacency turns out to
be a huge bottleneck. I later cache
the adjacency data in the level file,
which eventually balloons to several
megabytes.

Now every time the player emp-
ties out a voxel cell, I do a
breadth-first search through
the entire scene, marking
boxes as I go. This allows
me to identify “islands” cre-
ated by the removal of the
voxel cell. I can then spawn
a new physics entity for
that island and break it off
from the main scene.

I eventually come up with the
idea of “permanent” boxes, which
allows me to stop the search when-
ever I encounter a box that cannot
be deleted.

I design a new enemy to show-
case the new physics capabilities. I
also test the limits of awkwardness
and social norms by narrating game-
play footage in a dorm room full of
people studying.

Chunks
Around this time I learn about
broadphase collision detection.
My engine is scattering thousands
of static boxes around the world,
which makes it difficult for BEPU-
Physics’ broadphase to eliminate
collision candidates. At the same
time, it’s becoming obvious that
rendering the entire world in a
single draw call is a bad idea.

I fix both of these issues by split-
ting the world into chunks. Each
chunk has a static triangle mesh for
physics, and a vertex buffer with
basically the same data for render-
ing. Since I have to regenerate both
of these meshes every time a chunk
is modified, the chunk size can’t be
too large. Also, smaller chunks allow
for more accurate frustum culling.

At the same time, the chunks
can’t be too small, or else the draw
call count will explode. After some
careful tuning I eventually settle on
80x80x80 chunks.

Partial vertex buffer updates
This is probably the low point.

By now, I am incredibly proud of
my “loosely coupled” architecture.
I have a Voxel class and a Dynam-
icModel class which know nothing
about each other, and a ListBinding
between the two which magically
transforms a list of Boxes into a
vertex buffer.

Somehow, probably through
questionable use of the .NET Timer
class, I locate a bottleneck: re-send-
ing an entire vertex buffer to the
GPU for every voxel mutation is a
bad idea. Fortunately, XNA lets me
update parts of the vertex buffer
individually.

Unfortunately, with all the sur-
face culling I do, I can’t tell where
to write in the vertex buffer when
updating a random box, nor how to
shoe-horn this solution into my gor-
geous cathedral architecture.

This conundrum occurs during
the “dictionary-happy” phase of my
career. Yes. The ListBinding now
maintains a mapping that indicates
the vertex indices allocated for
each box. Now I can reach into the
vertex buffer and change things
without re-sending the whole
buffer! And the voxel engine proper
still knows nothing about it.

This turned out to never really
work reliably.

Multithreading
I lied earlier, this is probably the
low point.

Voxel mutations cause noticeable
stutters by now. With no perfor-
mance data to speak of, I decide
that multithreading is the answer.
Specifically, the worst kind of
multithreading.

I spawn a worker thread, sprinkle
some locks all over the place, et
voilà! It’s multithreaded. It gains

http://hn.my/physics

  15

perhaps a few milliseconds before
the main thread hits an unforeseen
mystical code path and the menu
somehow manages to acquire a lock
on the physics data.

I am ashamed to admit that I
never got around to correcting this
colossal architectural faux pas.

 Large Object Heap
I’m now building large enough
levels to run into memory issues.
Turns out, the .NET runtime allo-
cates monstrous 80x80x80 arrays
differently than your average object.

Long story short, the garbage col-
lector doesn’t like to clean up large
objects. I end up writing a custom
“allocator” that hands out 3D
arrays from a common pool. Later,
I realize most of the arrays are 90%
empty, so I break each chunk into
10x10x10 “sub-chunks” to further
reduce memory pressure.

This episode is one of many
which explains my present-day
distaste for memory-managed lan-
guages in game development.

Graduation
I graduate and work at a mobile
game studio for the next year.
The engine doesn’t improve much
during this time, but I start to learn
that almost everything I know
about programming is wrong and
incomplete.

I leave my job in February, 2014
and continue hacking the engine.
By now it’s over 30k LOC and I am
morally and spiritually unable to
start over on it.

Goodbye allocations
With my newfound awareness of
the .NET heap, I realize that my
vertex arrays for physics and ren-
dering are also probably landing in
the Large Object Heap. Worse, I am
reallocating arrays every time they
change size, even if only to add a
single vertex.

I genericize my Large Object
Heap allocator and shove the
vertex data in there. Then, rather
than allocating arrays at exactly the
size I need, I round up to the next
power of 2. This cuts the number of
allocations and makes it possible for
my allocator to reuse arrays more
often.

Goodbye cathedral
I finally throw out the “loosely
coupled” ListBinding system and
pull the vertex generation code into
the voxel engine itself. The resulting
speed boost is enough for me to go
back to resending entire vertex buf-
fers rather than faffing about with
partial updates.

Goodbye index buffer
Up to this point, I’ve been main-
taining an index buffer alongside
the vertex buffer. In a much
overdue stroke of “genius,” I realize
that since none of the vertices are
welded, the index buffer is just a
constantly repeating pattern, which
is in fact the same for every voxel.

I replace the individual index
buffers with a single, global buffer
which gets allocated to the nearest
power of 2 whenever more indices
are needed.

Bit packing and compression
Many numbers in the level data
format are guaranteed to fall in the
0-255 range. My friend decides to
pack these numbers more effi-
ciently into the integer array.

I also pull in third party library
#27 (SharpZipLib) and start zip-
ping the level files. These changes
cut the file size to under 30% of the
original.

Goodbye UV optimization
I’ve been storing a huge amount of
surface data like this:

class Box
{
 public struct Surface
 {
 public int MinU, MaxU;
 public int MinV, MaxV;
 }
 public Surface[] Surfaces =
new Surface[]
 {
 new Surface(), // PositiveX
 new Surface(), // NegativeX
 new Surface(), // PositiveY
 new Surface(), // NegativeY
 new Surface(), // PositiveZ
 new Surface(), // NegativeZ
 };
}

I do this so that I can resize
surfaces that are partially hidden,
like this:

16  PROGRAMMING

 At some point in the vertex
buffer overhaul, I realize that
performance-wise, the physics
engine doesn’t care what size the
surface is.

I use this fact to speed up mesh
generation. I generate 8 vertices for
the corners of each box, then copy
them where they need to go in the
vertex buffers.

Really, the graphics engine
doesn’t care much about the size
of the surface either, aside from fill
rate. What matters is whether the
surface is there or not.

With this in mind, I kill the UV
optimization code and store the
surfaces in memory and in the level
file like this:

class Box
{
 public int Surfaces;
}

The bits of the int are Boolean
flags for each surface. Yes, I could
do it in a byte. Actually, maybe I
should do that. Anyway, this simpli-
fies my level loading and saving
code, cuts my file sizes down to
about 512kb on average, and drasti-
cally reduces memory usage. Axing
the UV optimization routine also
speeds up mutations.

Conclusion
Clearly, this article is mostly useless
if you’re interested in writing your
own voxel engine. The final result
is far from perfect. I just want to
share the petty drama of my past
four and a half years. I for one thor-
oughly enjoy reading about other
people’s struggles. Maybe that’s
weird.

Lemma [lemmagame.com] is set
to release May 2015. The entire
game engine is on GitHub.
[hn.my/lemma] n

Evan Todd is a solo independent game
developer based in Columbus, Ohio. An
avid runner, Vim user, and Pythonista, Evan
has developed games since childhood.

Reprinted with permission of the original author.
First appeared in hn.my/voxel (et1337.com)

http://hn.my/lemma
http://hn.my/voxel

17  PROGRAMMING

By Vince Buffalo

It’s hard not to fall in love with
UNIX as a bioinformatician.
In a past post [hn.my/xpipe] I

mentioned how UNIX pipes are an
extremely elegant way to interface
bioinformatics programs (and do
inter-process communication in
general). In exploring other ways of
interfacing programs in UNIX, I’ve
discovered two great but over-
looked ways of interfacing pro-
grams: the named pipe and process
substitution.

Why We Love Pipes and UNIX
A few weeks ago I stumbled across
a great talk by Gary Bernhardt
entitled The UNIX Chainsaw.
[hn.my/chainsaw] Bernhardt’s
“chainsaw” analogy is great: people
sometimes fear doing work in
UNIX because it’s a powerful tool,
and it’s easy to screw up with pow-
erful tools. I think in the process of
grokking UNIX, it’s not uncommon
to ask “is this clever and elegant? Or
completely fucking stupid?” This is
normal, especially if you come from
a language like Lisp or Python (or
even C really). UNIX is a get-shit-
done system. I’ve used a chainsaw,
and you’re simultaneously amazed

at (1) how easily it slices through
a tree, and (2) that you’re dumb
enough to use this thing three feet
away from your vital organs. This is
UNIX.

Bernhardt also has this great slide,
and I’m convinced there’s no better
way to describe how most UNIX
users feel about pipes (especially
bioinformaticians):

 Pipes are fantastic. Any two
(well-written) programs can talk
to each other in UNIX. All of the
nastiness and the difficulty of inter-
process communication is solved
with one character, |. Thanks, Doug
McIlroy and others. The stream
is usually plaintext, the universal
interface, but it doesn’t have to
be. With pipes, it doesn’t matter if
your pipe is tab delimited market-
ing data, random email text, or 100

million SNPs. Pipes are a tremen-
dous, beautiful, elegant component
of the UNIX chainsaw.

But elegance alone won’t earn
a software abstraction the hearts
of thousands of sysadmins, soft-
ware engineers, and scientists:
pipes are fast. There’s little over-
heard between pipes, and they are
certainly a lot more efficient than
writing and reading from the disk.
In a past article [hn.my/xpipe] I
included the classic Samtools pipe
for SNP calling. It’s no coincidence
that other excellent SNP callers like
FreeBayes make use of pipes: pipes
scale well to moderately large data
and they’re just plumbing. Interfac-
ing programs this way allows us
to check intermediate output for
issues, easily rework entire work-
flows, and even split off a stream
with the aptly named program tee.

Using Named Pipes and
Process Substitution

http://hn.my/xpipe
http://hn.my/chainsaw

18  PROGRAMMING

Where Pipes Don’t Work
UNIX pipes are great, but they don’t work in all situa-
tions. The classic problem is in a situation like this:

program --in1 in1.txt --in2 in2.txt --out1 \	
 out1.txt --out2 out2.txt > stats.txt 2> \
 diagnostics.stderr

My past colleagues at the UC Davis Bioinformatics
Core and I wrote a set of tools for processing next-
generation sequencing data and ran into this situation.
In keeping with the UNIX traditional, each tool was
separate. In practice, this was a crucial design because
we saw such differences in data quality due to different
sequencing library preparation. Having separate tools
working together, in addition to being more UNIX-y,
led to more power to spot problems.

However, one step of our workflow has two input
files and three output files due to the nature of our
data (paired-end sequencing data). Additionally, both
in1.txt and in2.txt were the results of another pro-
gram, and these could be run in parallel (so interleaving
the pairs makes this harder to run in parallel). The clas-
sic UNIX pipe wouldn’t work, as we had more than
one input and output into a file: our pipe abstraction
breaks down. Hacky solutions like using standard error
are way too unpalatable. What to do?

Named Pipes
One solution to this problem is to use named pipes. A
named pipe, also known as a FIFO (after First In First
Out, a concept in computer science), is a special sort of
file we can create with mkfifo:

$ mkfifo fqin
$ prw-r--r-- 1 vinceb staff 0 Aug 5 22:50 fqin

You’ll notice that this is indeed a special type of file:
p for pipe. You interface with these as if they were
files (i.e., with UNIX redirection, not pipes), but they
behave like pipes:

$ echo "hello, named pipes" > fqin &
[1] 16430
$ cat < fqin
[1] + 16430 done echo "hello, named
pipes" > fqin
hello, named pipes

Hopefully you can see the power despite the simple
example. Even though the syntax is similar to shell
redirection to a file, we’re not actually writing anything

to our disk. Note, too, that the [1] + 16430 done line
is printed because we ran the first line as a background
process (to free up a prompt). We could also run the
same command in a different terminal window. To
remove the named pipe, we just use rm.

Creating and using two named pipes would prevent
IO bottlenecks and allow us to interface the program
creating in1.txt and in2.txt directly with program,
but I wanted something cleaner. For quick inter-process
communication tasks, I really don’t want to use mkfifo
a bunch of times and have to remove each of these
named pipes. Luckily UNIX offers an even more
elegant way: process substitution.

Process Substitution
Process substitution uses the same mechanism as
named pipes, but does so without the need to actually
create a lasting named pipe through clever shell syntax.
These are also appropriately called “anonymous named
pipes.” Process substitution is implemented in most
modern shells and can be used through the syntax
<(command arg1 arg2). The shell runs these commands
and passes their output to a file descriptor, which on
UNIX systems will be something like /dev/fd/11.
This file descriptor will then be substituted by your
shell where the call to <() was. Running a command in
parenthesis in a shell invokes a separate subprocess, so
multiple uses of <() are run in parallel automatically
(scheduling is handled by your OS here, so you may
want to use this cautiously on shared systems where
more explicitly setting the number of processes may
be preferable). Additionally, as a subshell, each <()
can include its own pipes, so crazy stuff like <(command
arg1 | othercommand arg2) is possible and sometimes
wise.

In our simple fake example above, this would look
like:

program --in1 <(makein raw1.txt) --in2 \
<(makein raw2.txt) --out1 out1.txt --out2 \
out2.txt > stats.txt 2> diagnostics.stderr

where makein is some program that creates in1.txt
and in2.txt in the original example (from raw1.txt
and raw2.txt) and outputs it to standard out. It’s that
simple: you’re running a process in a subshell, and its
standard out is going to a file descriptor (the /dev/
fd/11 or whatever number it is on your system), and
program is taking input from that. In fact, if we see this
process in htop or with ps, it looks like:

  19

$ ps aux | grep program
vince [...] program --in1 /dev/fd/63 --in2 /
dev/fd/62 --out1 out1.txt --out2 out2.txt >
stats.txt 2> diagnostics.stderr

But suppose you wanted to pass out1.txt and out2.
txt to gzip to compress them? Clearly we don’t want
to write them to disk and then compress them, as this
is slow and a waste of system resources. Luckily process
substitution works the other way, too, through >(). So
we could compress in place with:

program --in1 <(makein raw1.txt) --in2 \
<(makein raw2.txt) --out1 >(gzip > \
out.txt.gz) --out2 >(gzip > out2.txt.gz) \
> stats.txt 2> diagnostics.stderr

UNIX never ceases to amaze me in its power. The
chainsaw is out and you’re cutting through a giant tree.
But power comes with a cost here: clarity. Debugging
this can be difficult. This level of complexity is like
Marmite: I recommend not layering it on too thick at
first. You’ll hate it and want to vomit. Admittedly, the
nested inter-process communication syntax is neat but
awkward — it’s not the simple, clearly understandable |
that we’re used to.

Speed
So, is this really faster? Yes, quite. Writing and
reading to the disk comes at a big price — see
latency numbers every programmer should know.
[hn.my/latency] Unfortunately I am too busy to do
extensive benchmarks, but I wrote a slightly insane
read trimming script [hn.my/trim] that makes use of
process substitution. Use at your own risk, but we’re
using it over simple Sickle/Scythe/Seqqs combinations.
One test uses trim.sh, the other is a simple shell script
that just runs Scythe in
the background (in paral-
lel, combined with Bash’s
wait), writes files to disk,
and Sickle processes these.
The benchmark is biased
against process substitution,
because I also compress the
files via >(gzip >) in those
tests, but don’t compress the
others. Despite my conserva-
tive benchmark, the differ-
ence is striking:

 Additionally, with the >(gzip >) bit, our sequences
had a compression ratio of about 3.46% — not bad.
With most good tools handling gzip compression
natively (that is, without requiring prior decompres-
sion), and easy in-place compression via process substi-
tution, there’s really no reason to not keep large data
sets compressed. This is especially the case in bioinfor-
matics where we get decent compression ratios, and
our friends less, cat, and grep have their zless, gzcat,
and zgrep analogs.

Once again, I’m astonished at the beauty and power
of UNIX. As far as I know, process substitution is not
well known — I asked a few sysadmin friends, and
they’d seen named pipes but not process substitution.
But given UNIX’s abstraction of files, it’s no surprise.
Actually Brian Kernighan waxed poetically about both
pipes and UNIX files in this classic AT&T 1980s video
on UNIX. [hn.my/1980] Hopefully younger generations
of programmers will continue to discover the beauty
of UNIX (and stop re-inventing the wheel, something
we’ve all been guilty of). Tools that are designed to work
in the UNIX environment can leverage UNIX’s power
and end up with emergent powers. n

Vince Buffalo is a graduate student in the Population Biology
Graduate Group at UC Davis studying evolutionary genetics and
statistics. Before starting his PhD, Vince worked as a bioinformati-
cian at the UC Davis Genome Center and Department of Plant
Sciences. Vince is author of the O’Reilly book Bioinformatics Data
Skills to be published in May 2015.

Reprinted with permission of the original author.
First appeared in hn.my/npipe (vincebuffalo.com)

http://hn.my/latency
http://hn.my/trim
http://hn.my/1980
http://hn.my/npipe

20  PROGRAMMING

By Stephen Wyatt Bush

Dad and I got to talk
about programming for
two weeks before he

died.
I was 22, a senior in college

completing a BFA in graphic design.
Dad was 62, an older dad than
most. When he started program-
ming at Tennessee Tech back in
the ‘60s, he wrote FORTRAN on
punch cards. He was a wealth of
knowledge.

I had just been introduced to
code that semester, and it was
already consuming my thoughts. It
felt magical and powerful, in many
ways a more fulfilling creative prac-
tice than visual design (but that’s
for another post).

When I came home for the
holidays, Dad shared The Ten
Commandments of Egoless Pro-
gramming with me. He printed
them and we discussed each point.
It was one of the few program-
ming related things we were able
to discuss before he unexpectedly

passed; perhaps that’s why it sticks
with me.

From The Psychology of Com-
puter Programming, written in
1971 by Jerry Weinberg, here are
The Ten Commandments of Egoless
Programming:

➊ Understand and accept that
you will make mistakes.

The point is to find them early,
before they make it into produc-
tion. Fortunately, except for the few
of us developing rocket guidance
software at JPL, mistakes are rarely
fatal in our industry. We can, and
should, learn, laugh, and move on.

➋ You are not your code.
Remember that the entire

point of a review is to find prob-
lems, and problems will be found.
Don’t take it personally when one
is uncovered.

➌ No matter how much
“karate” you know, someone

else will always know more. Such
an individual can teach you some
new moves if you ask. Seek and
accept input from others, especially
when you think it’s not needed.

➍ Don’t rewrite code with-
out consultation. There’s a

fine line between “fixing code” and
“rewriting code.” Know the differ-
ence, and pursue stylistic changes
within the framework of a code
review, not as a lone enforcer.

➎ Treat people who know less
than you with respect, def-

erence, and patience. Non-technical
people who deal with developers
on a regular basis almost universally
hold the opinion that we are prima
donnas at best and crybabies at
worst. Don’t reinforce this stereo-
type with anger and impatience.

Dad and the Ten
Commandments of

Egoless Programming

  21

➏ The only constant in the
world is change. Be open to

it and accept it with a smile. Look
at each change to your require-
ments, platform, or tool as a new
challenge, rather than some serious
inconvenience to be fought.

➐ The only true authority
stems from knowledge,

not from position. Knowledge
engenders authority, and authority
engenders respect — so if you want
respect in an egoless environment,
cultivate knowledge.

➑ Fight for what you believe,
but gracefully accept defeat.

Understand that sometimes your
ideas will be overruled. Even if you
are right, don’t take revenge or say
“I told you so.” Never make your
dearly departed idea a martyr or
rallying cry.

➒ Don’t be “the coder in the
corner.” Don’t be the person

in the dark office emerging only for
soda. The coder in the corner is out
of sight, out of touch, and out of
control. This person has no voice in
an open, collaborative environment.
Get involved in conversations,
and be a participant in your office
community.

➓ Critique code instead of
people. Be kind to the coder,

not to the code. As much as pos-
sible, make all of your comments
positive and oriented to improving
the code. Relate comments to local
standards, program specs, increased
performance, etc.

I keep this list around even today.
It has already helped me be a better
programmer. Sometimes I imagine
what other bits of advice he’d give
me were he still around. While I
cannot know, I feel sure he’d be
proud so long as I keep these in
mind.

For more on Dad, read Frank
Bush’s Contributions to the
Computing Profession, com-
piled by his coworkers at TTU.
[hn.my/frankbush] n

Stephen Wyatt Bush is an artist and soft-
ware engineer living in San Francisco. He
works at Airbnb.

“The only true authority stems from
knowledge, not from position.”

Reprinted with permission of the original author.
First appeared in hn.my/dad (stephenwyattbush.com)

http://hn.my/dad

22  PROGRAMMING

By Josh Johnson

I’ve always been handy with
hardware. I was one of “those
kids” you hear about that keeps

taking things apart just to see how
they work — and driving their par-
ents nuts in the process. When I was
a teenager, I toyed with program-
ming but didn’t get serious with it
until I decided I wanted to get into
graphic design. I found out that you
don’t have to write HTML yourself,
you can use programming to do it
for you!

But I never stopped tinkering
with hardware and systems. I used
Linux and BSD on my desktop for
years, built my LAMP stacks from
source, and simulated the server
environment when I couldn’t —
when I used Windows for work, and
when I eventually adopted Apple as
my primary platform, I first started
with cross-compiled versions of the
components, and eventually got
into virtualization.

In the early days (maybe 10
years ago), there seemed to be few
programmers who were like me,
or if they were, they never took
“operations” or “sysadmin” jobs, and
neither did I. So there was always a

natural divide. Aside from being a
really nice guy who everyone likes,
I had a particular rapport with my
cohorts who specialized in systems.

I’m not sure exactly what it was.
It may have been that I was always
interested in the finer details of
how a system works. It may have
been my tendency to document
things meticulously, or my interest
in automation and risk reduction.
It could have just been that I was
willing to take the time to cross the
divide and talk to them, even when
I didn’t need something. It may
have just boiled down to the fact
that when they were busy, I could
do things myself, and I wanted to
follow their standards and get their
guidance. It’s hard to tell, even
today, as my systems skills have
developed beyond what they ever
were before, but the rapport has
continued on.

And then something happened.
As my career progressed, I took
on more responsibilities and did
more and more systems work. This
was partly because of the divide
widening to some extent at one
particular job, but mostly because,

I could. Right around this time
the “DevOps Revolution” was
beginning.

Much like when I was a teenager
and everyone needed a web site,
suddenly everyone needed DevOps.

I didn’t really know what it was.
I was aware of the term, but being
a smart person, I tend to ignore
radical claims of great cultural
shifts, especially in technology. In
this stance, I find myself feeling a
step or two behind at times, but it
helps keep things in perspective.
Over time, technology changes,
but true radicalism is rare. Most
often, a reinvention or revisiting of
past ideas forms the basis for such
claims. This “DevOps” thing was no
different. Honestly, at the time it
seemed like a smoke screen; a flashy
way to save money for startups.

I got sick of tending systems —
when you’re doing it properly, it
can be a daunting task. Dealing
with storage, access control, back-
ups, networking, high availability,
maintenance, security, and all of the
domain-specific aspects can easily
become overwhelming. But worse,
I was doing too much front-line

DevOps Is Bullshit
Why One Programmer Doesn’t Do It Anymore

  23

support, which honestly, at the
time was more important than the
programming it was distracting
me from. I love my users, and I see
their success as my success. I didn’t
mind it, but the bigger problems I
wanted to solve were consistently
being held above my head, just
out of my grasp. I could ignore my
users or ignore my passion, and that
was a saddening conundrum. I felt
like all of the creativity I craved
was gone, and I was being paid
too much (or too little depending
on if you think I was an over paid
junior sysadmin or an under paid IT
manager with no authority) to work
under such tedium. So I changed
jobs.

I made the mistake of letting my
new employer decide where they
wanted me to go in the engineering
organization.

What I didn’t know about this
new company was that it had been
under some cultural transition just
prior to bringing me on board. Part
of that culture shift was incorpo-
rating so-called “DevOps” into the
mix. By fiat or force.

Because of my systems experi-
ence, I landed on the front line of
that fight: the “DevOps Team.” I
wasn’t happy.

But as I dug in, I saw some poten-
tial. We had the chance to really
shore up the development prac-
tices, reduce risk in deployments,
make the company more agile, and
ultimately make more money.

We had edicts to make things
happen, under the assumption that
if we built it, the developers would
embrace it. These things included
continuous integration, migrating
from subversion to git, building
and maintaining code review tools,
and maintaining the issue tracking
system. We had other, less explicit

responsibilities that became central
to our work later on, including
developer support, release man-
agement, and interfacing with the
separate, segregated infrastructure
department. This interaction was
especially important, since we had
no systems of our own, and we
weren’t allowed to administer any
machines. We didn’t have privileged
access to any of the systems we
needed to maintain for a long time.

With all the hand wringing and
flashing of this “DevOps” term, I
dug in and read about it and what
all the hubbub was about. I then
realized something. What we were
doing wasn’t DevOps.

Then I realized something else.
I was DevOps. I always had been.
The culture was baked into the
kind of developer I was. Putting me
and other devs with similar culture
on a separate team, whether that
was the “DevOps” team or the
infrastructure team was a funda-
mental mistake.

The developers didn’t come
around. At one point someone
told a teammate of mine that they
thought we were “IT support.” What
needed to happen was the develop-
ers had to embrace the concept that
they were capable of doing at least
some systems things themselves,
in safe and secure manner, and the
infrastructure team had to let them
do it. But my team just sat there in
the middle, doing what we could to
keep the lights on and get the code
out, but ultimately just wasting
our time. Some developers starting
using AWS, with the promise of it
being a temporary solution, but in
a vacuum nonetheless. We were not
having the impact that management
wanted us to have.

My time at this particular com-
pany ended in a coup of sorts. This

story is worthy of a separate blog
post some day when it hurts a little
less to think about. But let’s just
say I was on the wrong side of the
revolution and left as quickly as I
could when it was over.

In my haste, I took another
“DevOps” job. My manager there
assured me that it would be a
programming job first and a systems
job second. “We need more “dev” in
our “devops,”” he told me.

What happened was very similar
to my previous “DevOps” experi-
ence, but more acute. Code, and
often requirements, were thrown
over the wall at the last minute. As
it fell in our laps, we scrambled to
make it work properly, as it seemed
no one would think of things like
fail over or backups or protecting
private information when they were
making their plans. Plans made long
ago, far away, and without our help.

This particular team was more
automation focused. We had two
people who were more “dev” than
“ops,” and the operations people
were no slouches when it came to
scripting or coding in their own
right.

It was a perfect blend, and as a
team we got along great and pulled
off some miracles.

But ultimately, we were still
isolated. We and our managers
tried to bridge the gap, to no avail.
Developers, frustrated with our siz-
able backlog, went over our heads
to get access to our infrastructure
and started doing it for themselves,
often with little or no regard for
our policies or practice. We would
be tasked with cleaning up their
mess when it was time for produc-
tion deployment — typically in a
major hurry after the deadline had
passed.

24  PROGRAMMING

The original team eventually
evaporated. I was one of the last to
leave, as new folks were brought
into a remote office. I stuck it out
for a lot of reasons: I was prom-
ised transfer to NYC, I had good
healthcare, and I loved my team.
But ultimately what made me stick
around was the hope that kept get-
ting rebuilt and dashed as manage-
ment rotated in and out above me:
that we could make it work.

I took the avenue of providing
automated tools to let the devel-
opers have freedom to do as they
pleased, yet we could ensure they
were complying with company
security guidelines and adhering to
sane operations practices.

Sadly, politics and priorities kept
my vision from coming to reality.
It’s OK, in hindsight, because so
much more was broken about so-
called “DevOps” at this particular
company. I honestly don’t think
that it could have made that much
of a difference.

Near the end of my tenure there,
I tried to help some of the devel-
opers help themselves by sitting
with them and working out how to
deploy their code properly side-by-
side. It was a great collaboration,

but it fell short. It represented a
tiny fraction of the developers we
supported. Even with those really
great developers finally interfacing
with my team, it was too little, too
late.

Another lesson learned: you can’t
force cultural change. It has to start
from the bottom up, and it needs
breathing room to grow.

I had one final “DevOps” experi-
ence before I put my foot down and
made the personal declaration that
“DevOps is bullshit,” and I wasn’t
going to do it anymore.

Due to the titles I had taken, and
the experiences of the last couple
of years, I found myself in a pre-
dicament. I was seen by recruiters
as a “DevOps guy” and not as a
programmer. It didn’t matter that
I had 15 years of programming
experience in several languages, or
that I had focused on programming
even in these so-called “DevOps”
jobs. All that mattered was that,
as a “DevOps Engineer” I could be
easily packaged for a high-demand
market.

I went along with the type cast-
ing for a couple of reasons. First,
as I came to realize, I am DevOps
— if anyone was going to come
into a company and bridge the gap
between operations and engineer-
ing, it’d be me. Even if the company
had a divide, which every company
I interviewed with had, I might be
able to come on board and change
things.

But there was a problem. At least
at the companies I interviewed at, it
seemed that “DevOps” really meant
“operations and automation” (or
more literally “AWS and configura-
tion management”). The effect this
had was devastating. The somewhat
superficial nature of parts of my
systems experience got in the way
of landing some jobs I would have
been great at. I was asked ques-
tions about things that had never
been a problem for me in 15 years
of building software and systems
to support it, and being unable to
answer, but happy to talk through
the problem, would always end in a
net loss.

“At the companies I interviewed at, it seemed
that “DevOps” really meant “operations and
automation”, or more literally “AWS and
configuration management”. ”

  25

When I would interview at the
few programming jobs I could find
or the recruiters would give me,
they were never for languages I
knew well. And even when they
were, my lack of computer sci-
ence jargon bit me — hard. I am an
extremely capable software engi-
neer, someone who learns quickly
and hones skills with great agility.
My expertise is practical, however,
and it seemed that the questions
that needed to be asked, that would
have illustrated my skill, weren’t. I
think to them, I looked like a guy
who was sick of systems that was
playing up their past dabbling in
software to change careers.

So it seemed “DevOps,” this great
revolution, and something that was
baked into my very identity as a
programmer, had left me in the dust.

I took one final “DevOps” job
before I gave up. I was optimistic,
since the company was growing fast
and I liked everyone I met there.
Sadly, it had the same separa-
tions and was subject to the same
problems. The developers, whom
I deeply respected, were doing
their own thing in a vacuum. My
team was unnecessarily complicat-
ing everything and wasting huge

amounts of time. Again, it was just
“ops with automation” and nothing
more.

So now let’s get to the point of
all of this. We understand why I
might think “DevOps is bullshit,”
and why I might not want to do
it anymore. But what does that
really mean? How can my experi-
ences help you, as a developer, as an
operations person, or as a company
with issues they feel “DevOps”
could address?

Don’t do DevOps. It’s that
simple. Apply the practices and
technology that comprise what
DevOps is to your development
process, and stop putting up walls
between different specialties.

A very wise man once said “If
you have a DevOps team, you’re
doing it wrong.” If you start doing
that, stop it.

There is some nuance here, and
my experience can help save you
some trouble by identifying some
of the common mistakes:

■■ DevOps doesn’t make specialists
obsolete.

■■ Developers can learn systems
and operations, but nothing beats
experience.

■■ Operations people can learn
development, too, but again,
nothing beats experience.

■■ Operations and development
have historically be separated
for a reason — there are com-
promises you must make if you
integrate the two.

■■ Tools and automation are not
enough.

■■ Developers have to want
DevOps. Operations have to
want DevOps. At the same time.

■■ Using “DevOps” to save money
by reducing staff will blow up in
your face.

■■ You can’t have DevOps and still
have separate operations and
development teams. Period.

Let me stop for one moment and
share another lesson I’ve learned: if
it ain’t broke, don’t fix it.

If you have a working organiza-
tion that seems old fashioned, leave
it alone. It’s possible to incorporate
the tech, and even some of the
cultural aspects of DevOps without
radically changing how things work
— it’s just not DevOps anymore, so
don’t call it that. Be critical of your

“Apply the practices and technology
that comprise what DevOps is to your
development process, and stop putting
up walls between different specialties.”

26  PROGRAMMING

process and practices, kaizen and all
that, but don’t sacrifice what works
just to join the cargo cult. You will
waste money, and you will destroy
morale. The pragmatic operations
approach is the happiest one.

Beware of geeks bearing gifts.
So let’s say you know why you

want DevOps, and you’re certain
that the cultural shift is what’s right
for your organization. Everyone
is excited about it. What might a
proper “DevOps” team look like?

I can speak to this, because I cur-
rently work in one.

First, never call it “DevOps.” It’s
just what you do as part of your
job. Some days you’re writing code,
other days you’re doing a deploy-
ment or maintenance. Everyone
shares all of those responsibilities
equally.

People still have areas of expe-
rience and expertise. This isn’t
pushing people into a lukewarm,
mediocre dilution of their skills —
this is passionate people doing what
they love. It’s just that part of that
is launching a server or writing a
chef recipe or debugging a produc-
tion issue.

As such you get a truly cross-
functional team. Where expertise
differs, there’s a level of respect and
trust. So if someone knows more
about a topic than someone else,
they will likely be the authority
on it. The rest of the team trusts
them to steer the group in the right
direction.

This means that you can hire
operations people to join your
team. Just don’t give them exclu-
sive responsibility for what they’re
best at — integrate them. The same
goes for any “non developer” skill-
set, be that design, project manage-
ment, or whatever.

Beyond that, everyone on the
team has a thirst to develop new
skills and look at their work in
different ways. This is when the
difference in expertise provides
an opportunity to teach. Teaching
brings us closer together and helps
us all gain better understanding of
what we’re doing.

So that’s what DevOps really is.
You take a bunch of really skilled,
passionate, talented people who
don’t have their heads shoved so
far up their own asses that they can
take the time to learn new things.
People who see the success of the
business as a combined responsibil-
ity that is equally shared. “That’s
not my job” is not something they
are prone to saying, but they’re
happy to delegate or share a task if
need be. You give them the infra-
structure, and time (and encourage-
ment doesn’t hurt), to build things
in a way that makes the most sense
for their productivity and the busi-
ness, embracing that equal, shared
sense of responsibility. Things like
continuous integration and zero-
downtime deployments just happen
as a function of smart, passionate
people working toward a shared
goal.

It’s an organic, culture-driven
process. We may start doing con-
tinuous deployment, or utilize
“the cloud” or treat our “code as
infrastructure,” but only if it makes
sense. The developers are the opera-
tions people and the operations
people are the developers. An appli-
cation system is seen in a holistic
manner and developed as a single
unit. No one is compromising, we
all get better as we all just fucking
do it.

DevOps is indeed bullshit. What
matters is good people working
together without artificial boundar-
ies. Tech is tech. It’s not possible
for everyone to share like this, but
when it works, it’s amazing — but
is it really DevOps? I don’t know, I
don’t do that anymore. n

Josh Johnson is a engineer of alltheth-
ings, with a passion for problem solving.
He dislikes magic, and prefers unicorns
to roam free.

Reprinted with permission of the original author.
First appeared in hn.my/devops
(lionfacelemonface.wordpress.com)

http:// hn.my/devops
http:// hn.my/devops

27  PROGRAMMING

By Rob Conery

One thing that drives me absolutely over
the cliff is how ORMs try so hard (and fail)
to abstract the power and expressiveness

of SQL. Before I write further let me say that Frans
Bouma reminded me yesterday there’s a difference
between ORMs and the people that use them. They’re
just tools (the ORMs) — and I agree with that in the
same way I agree that crappy fast food doesn’t make
people fat — it’s the people that eat too much of it.

Instead of ripping ORMs apart again — I’d like
to be positive and tell you just why I have stopped
using their whack-ass OO abstraction on top of my
databases. In short: it’s because SQL can expertly help
you express the value of your application in terms of the
data. That’s really the only way you’re going to know
whether your app is any good: by the data it generates.

So give it a little of your time — it’s fun once you
get rolling with the basics and how your favorite DB
engine accentuates the SQL standard. Let’s see some
examples. (By the way all of what I’m using below is
detailed here in the Postgres docs. [hn.my/psqldocs]
Have a read, there’s a lot of stuff you can learn. My
examples below barely even scratch the surface.)

Postgres Built-in Fun
Right from the start: Postgres sugary SQL syntax is
really, really fun. SQL is an ANSI standardized language
— this means you can roughly expect to have the same
rules from one system to the next (which means you
can’t expect it at all).

Postgres follows the standards almost to the letter —
but it goes beyond with some very fun additions. Let’s
take a look!

Regex
At some point you might need to run a rather com-
plicated string matching algorithm. Many databases
(including SQL Server) allow you to use Regex pat-
terning through a function or some other construct.
With Postgres it works in a lovely, simple way (using
PSQL for this with the old Tekpub database):

select sku,title from products where title ~*
'master';
 sku | title
------------+---------------------------------
 aspnet4 | Mastering ASP.NET 4.0
 wp7 | Mastering Windows Phone 7
 hg | Mastering Mercurial
 linq | Mastering Linq
 git | Mastering Git
 ef | Mastering Entity Framework 4.0
 ag | Mastering Silverlight 4.0
 jquery | Mastering jQuery
 csharp4 | Mastering C# 4.0 with Jon Skeet
 nhibernate | Mastering NHibernate 2
(10 rows)

The ~* operator says “here comes a POSIX regex
pattern that’s case insensitive.” You can make it case
sensitive by omitting the *.

Regex can be a pain to work with but if you wanted
to, you could ramp this query up by using Postgres’
built-in Full Text indexing:

select products.sku,
products.title
from products
where to_tsvector(title) @@ to_tsquery('Mastering');

Embracing SQL In Postgres

Reprinted with permission of the original author.
First appeared in hn.my/devops
(lionfacelemonface.wordpress.com)

http://hn.my/psqldocs
http:// hn.my/devops
http:// hn.my/devops

28  PROGRAMMING

 sku | title
------------+---------------------------------
 aspnet4 | Mastering ASP.NET 4.0
 wp7 | Mastering Windows Phone 7
 hg | Mastering Mercurial
 linq | Mastering Linq
 git | Mastering Git
 ef | Mastering Entity Framework 4.0
 ag | Mastering Silverlight 4.0
 jquery | Mastering jQuery
 csharp4 | Mastering C# 4.0 with Jon Skeet
 nhibernate | Mastering NHibernate 2
(10 rows)

This is a bit more complicated. Postgres has a built-
in data type specifically for the use of Full Text index-
ing — tsvector. You can even have this as a column
on a table if you like, which is great as it’s not hidden
away in some binary index somewhere.

I’m converting my title on the fly to tsvector
using the to_tsvector() function. This tokenizes and
prepares the string for searching. I’m then shoving this
into the to_tsquery() function. This is a query built
from the term “Mastering”. The @@ bits simply say
“return true if the tsvector field matches the tsquery”.
The syntax is a bit wonky, but it works really well and
is quite fast.

You can use the concat function to push strings
together for use on additional fields, too:

select products.sku,
products.title
from products
where to_tsvector(concat(title,' ',description))
@@ to_tsquery('Mastering');
 sku | title
------------+---------------------------------
 aspnet4 | Mastering ASP.NET 4.0
 wp7 | Mastering Windows Phone 7
 hg | Mastering Mercurial
 linq | Mastering Linq
 git | Mastering Git
 ef | Mastering Entity Framework 4.0
 ag | Mastering Silverlight 4.0
 jquery | Mastering jQuery
 csharp4 | Mastering C# 4.0 with Jon Skeet
 nhibernate | Mastering NHibernate 2
(10 rows)

This combines title and description into one field
and allows you to search them both at the same time
using the power of a kick-ass full text search engine.
I could spend multiple posts on this — for now just
know you can do it inline.

Generating a Series
One really fun function that’s built in is generate_
series() — it outputs a sequence that you can use in
your queries for any reason:

select * from generate_series(1,10);
 generate_series

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

If sequential things aren’t what you want, you can
order by another great function — random():

select * from generate_series(1,10,2)
order by random();
 generate_series

 3
 5
 7
 1
 9
(5 rows)

Here I’ve added an additional argument to tell it to
skip by 2.

  29

It also works with dates:

select * from generate_series(
 '2014-01-01'::timestamp,
 '2014-12-01'::timestamp,
 '42 days');

 generate_series

 2014-01-01 00:00:00
 2014-02-12 00:00:00
 2014-03-26 00:00:00
 2014-05-07 00:00:00
 2014-06-18 00:00:00
 2014-07-30 00:00:00
 2014-09-10 00:00:00
 2014-10-22 00:00:00
(8 rows)

Here I’m telling it to output the dates in 2014 in 42
day intervals. You can do this backwards, too; you just
have to use a negative interval.

Why is this useful? You can alias this function and
plug in the number from the series generation into
whatever calculation you want:

select x as first_of_the_month from
generate_series('2014-01-01'::timestamp,'2014-
12-01'::timestamp,'1 month') as f(x);
first_of_the_month

 2014-01-01 00:00:00
 2014-02-01 00:00:00
 2014-03-01 00:00:00
 2014-04-01 00:00:00
 2014-05-01 00:00:00
 2014-06-01 00:00:00
 2014-07-01 00:00:00
 2014-08-01 00:00:00
 2014-09-01 00:00:00
 2014-10-01 00:00:00
 2014-11-01 00:00:00
 2014-12-01 00:00:00
(12 rows)

Aliasing functions like this allows you to use the
resulting row inline with your SQL call. This kind of
thing is nice for analytics and spot-checks on your data.
Also, notice the month specification? That’s an interval
in Postgres — something you’ll use a lot with data stuff.
Speaking of dates…

Date Math Fun
Intervals are brilliant shortcuts for working with dates
in Postgres. For instance, if you want to know the date
1 week from today…

select '1 week' + now() as a_week_from_now;
 a_week_from_now

 2015-03-03 10:08:12.156656+01
(1 row)

Postgres sees now() as a timestamp and uses the +
operator to infer the string “1 week” as an interval.
Brilliant. But do you notice the result 2015-03-03
10:08:12.156656+01? This is a very interesting thing!

It’s telling me the current date and time all the way
down to milliseconds… and also the timezone (+1 as
I’m currently in Italy).

If you’ve ever had to wrestle with dates and UTC
— well, it’s a major pain. Postgres has a built-in time-
stamptz data type — timestamp with time zone — that
will account for this when doing date calculations.

This is really fun to play with. For instance I can ask
Postgres what time it is in California:

SELECT now() AT TIME ZONE 'PDT' as cali_time;
 cali_time

 2015-02-24 02:16:57.884518
(1 row)

2am — best not to call Jon Galloway and tell him his
SQL Server is on fire. This returns an interval — the
difference between two timestamps.

How many hours behind me is Jon? Let’s see…

select now() - now() at time zone 'PDT' as cali_
diff;
 cali_diff

 08:00:00
(1 row)

Notice the return value is a timestamp of 8 hours,
not an integer. Why is this important? Time is a relative
thing and it’s incredibly important to know which time
zone your server is in when you calculate things based
on time.

For instance — in my Tekpub database I recorded
when orders were placed. If 20 orders came in during
that “End of the Year Sale,” my accountant would very
much like to know if they came in before, or after,

30  PROGRAMMING

midnight on January 1, 2013. My server is in New
York, but my business is registered in Hawaii.

This is important stuff, and Postgres handles this and
many other date functions quite nicely.

Aggregates
Working with rollups and aggregates in Postgres can be
tedious precisely because it’s so very, very standards-
compliant. This always leads to having to be sure that
whatever you GROUP BY is in your SELECT clause.

Meaning, if I want to look at sales for the month,
grouped by week I’d need to run a query like this:

select sku, sum(price),
date_part('month',created_at) from invoice_items
group by sku,date_part('month',created_at)
having date_part('month',created_at) = 9

That’s a bit extreme and a bit of a PITA to write
(and remember the syntax!). Let’s use a better SQL
feature in Postgres: windowing functions:

select distinct sku, sum(price) OVER (PARTITION
BY sku)
from invoice_items
where date_part('month',created_at) = 9

Same data, less noise (windowing functions are also
available in SQL Server). Here I’m doing set-based
calculations by specifying I want to run a SUM over a
partition of data for a given row. If I didn’t specify DIS-
TINCT here, the query would have spit out all sales as if
it we just a normal SELECT query.

The nice thing about using windowing functions is
that I can pair aggregates together:

select distinct sku, sum(price) OVER (PARTITION
BY sku) as revenue,
count(1) OVER (PARTITION BY sku) as sales_count
from invoice_items
where date_part('month',created_at) = 9

This gives me a monthly sales count per sku as well
as revenue. I can also output total sales for the month
in the very next column:

select distinct sku,
sum(price) OVER (PARTITION BY sku) as revenue,
count(1) OVER (PARTITION BY sku) as sales_count,
sum(price) OVER (PARTITION by 0) as sales_total
from invoice_items
where date_part('month',created_at) = 9

I’m using PARTITION BY 0 here as a way of saying
“just use the entire set as the partition” — this will
rollup all sales for September.

Combine this with the power of a Common Table
Expression, and I can run some interesting calcs:

with september_sales as (
 select distinct sku,
 sum(price) OVER (PARTITION BY sku) as rev-
enue,
 count(1) OVER (PARTITION BY sku) as sales_
count,
 sum(price) OVER (PARTITION by 0) as sales_
total
 from invoice_items
 where date_part('month',created_at) = 9
)

select sku,
 revenue::money,
 sales_count,
 sales_total::money,
 trunc((revenue/sales_total * 100),4) as per-
centage
from september_sales

In the final select I’m casting revenue and sales_
total as money — which means it will be formatted
nicely with a currency symbol.

A pretty comprehensive sales query — I get a total
per sku, a sales count and a percentage of monthly sales
with (what I promise becomes) fairly straightforward
SQL.

I’m using trunc in the CTE here to round to 4 sig-
nificant digits as the percentages can be quite long.

Strings
I showed you some fun with Regex above, but there
is more you can do with strings in Postgres. Consider
this query, which I used quite often (again, the Tekpub
database):

select products.sku,
 products.title,
 downloads.list_order,
 downloads.title as episode
from products
inner join downloads on downloads.product_id =
products.id
order by products.sku, downloads.list_order;

  31

This fetched all of my videos and their individual
episodes (I called them downloads). I would use this
query on display pages, which worked fine.

But what if I just wanted an episode summary? I
could use some aggregate functions to this. The sim-
plest first — just a comma-separated string of titles:

select products.sku,
 products.title,
 string_agg(downloads.title, ', ') as down-
loads
from products
inner join downloads on downloads.product_id =
products.id
group by products.sku, products.title
order by products.sku

string_agg works like String.join() in your favor-
ite language. But we can do one better: let’s concat-
enate and send things down in an array for the client:

select products.sku,
 products.title,
 array_agg(concat(downloads.list_order,')
',downloads.title)) as downloads
from products
inner join downloads on downloads.product_id =
products.id
group by products.sku, products.title
order by products.sku

Here I’m using array_agg to pull in the list_order
and title from the joined downloads table and output
them inline as an array. I’m using the concat function
to concatenate a pretty title using the list_order as
well.

If you’re using Node, this will come back to you as
an array you can iterate over.

If you’re using Node, you’ll probably want to have
this JSON’d out, however:

select products.sku,
 products.title,
 json_agg(downloads) as downloads
from products
inner join downloads on downloads.product_id =
products.id
group by products.sku, products.title
order by products.sku

Here I’m shoving the related downloads bits (aka the
“Child” records) into a field that I can easily consume
on the client — an array of JSON.

Summary
If you don’t know SQL very well — particularly
how your favorite database engine implements and
enhances it — take this week to get to know it better.
It’s so very powerful for working the gold of your
application: your data. n

Rob Conery co-founded Tekpub. He used to work at Microsoft
on the ASP.NET team and have led a number of Open Source
projects in the Microsoft realm.

Reprinted with permission of the original author.
First appeared in hn.my/sql (conery.io)

http://hn.my/sql

32  SPECIAL

SPECIAL

One of the great advantages of
being a historian is that you don’t
get your knickers in as much of
a twist over how bad things are
today. If you think this year is bad,
try 1347, when the Black Death
covered most of Europe, one third
of the world had died, and (to add
insult to injury) there was also
(in Europe) the little matter of
the Hundred Years’ War and the
Babylonian Captivity of the Church
(where the pope had moved to
Avignon, France, and basically the
Church was being transformed into
a subsidiary of the French regime).
Things are looking up already,
aren’t they?

Another thing is economics.
Everyone complains about taxes,
prices, and how expensive it is to
live anymore. I’m not going to go
into taxes — that way lies mad-
ness. But I can tell you that living
has never been cheaper. We live in
a country awash in stuff — food,
clothing, appliances, machines,
cheap crap from China — but it’s
never enough. $4 t-shirts? Please.
We want five for $10, and even
then, can we get them on sale? And
yet, compared to a world where

everything is made by hand —
we’re talking barely 200 years ag—
everything is cheap and plentiful,
and we are appallingly ungrateful.

 Let’s talk clothing. When the
Industrial Revolution began, it
started with factories making cloth.
Why? Because clothing used to be
frighteningly expensive. Back in
my teaching days I gave a standard
lecture, which is about to follow, on
the $3,500 shirt, or why peasants
owned so little clothing. Here’s the
way it worked:

See this guy below, front left
dancing? He’s wearing a standard
medieval shirt. It has a yoke, a bit
of smocking and gathering around
the neck, armholes, and the wrists
would be banded, so he could tie or
button them closed.

 Oh, and in the Middle Ages, it
would be expected that all of the
inside sleeves would be finished.
This was all done by hand. A
practiced seamstress could prob-
ably sew it in 7 hours. But that’s
not all that would go into the
making. There’s the cloth. A shirt
like this would take about 4 yards
of cloth, and it would be a fine
weave: the Knoxville Museum of
Art estimates 2 inches an hour. So
4(yards)*36(inches)/2 = 72 hours.
(I’m a weaver — or at least I used
to be — so this sounds accurate to
me.) Okay, so hand weaving and
hand sewing would take 79 hours.
Now the estimate for spinning has
always been complex, so stick with
me for a minute: Yardage of thread
for 4 yards of cloth, 1 yard wide
(although old looms often only
wove about 24" wide cloth), and
requires 12 threads per inch, so:

12 threads * 36“ wide * (4 yards
+ 2 yards for tie-up = 6 yards, or
72”) * 72 = 31,004 inches, or 864
yards of thread for the warp. And
you’d need about the same for a
weft, or a total of about 1600 yards
of thread for one shirt.

By Eve Fisher

The $3500 Shirt
A History Lesson in Economics

  33

1600 yards would take a while
to spin. At a Dark Ages recreation
site, they figured out a good spinner
could do 4 yards in an hour, so that
would be 400 hours to make the
thread for the weaving.

So, 7 hours for sewing, 72 for
weaving, 400 for spinning, or 479
hours total to make one shirt. At
minimum wage ($7.25/hour) that
shirt would cost $3,472.75.

And that’s just a standard shirt.
And that’s not counting the

work that goes into raising sheep
or growing cotton and then making
the fiber fit for weaving. Or making
the thread for the sewing.

And you’d still need pants (tights
or breeches) or a skirt, a bodice or
vest, a jacket or cloak, stockings,
and, if at all possible, but a rare
luxury, shoes.

Back in the pre-industrial days,
the making of thread, cloth, and
clothing ate up all the time that
a woman wasn’t spending cook-
ing and cleaning and raising the
children. That’s why single women
were called “spinsters” — spinning
thread was their primary job. “I
somehow or somewhere got the
idea,” wrote Lucy Larcom in the
18th century, “when I was a small
child, that the chief end of woman
was to make clothing for mankind.”
Ellen Rollins: “The moaning of
the big [spinning] wheel was the
saddest sound of my childhood.
It was like a low wail from out of
the lengthened monotony of the
spinner’s life.” (Jack Larkin, The
Reshaping of Everyday Life, p. 26)

Anyway, with clothing that
expensive and hard to make, every
item was something you wore until
it literally disintegrated. Even in
1800, a farm woman would be
lucky to own three dresses: one for
best and the other two for daily

living. Heck, my mother, in 1930,
went to college with that exact
number of dresses to her name. This
is why old clothing is rare: even the
wealthy passed their old clothes on
to the next generation or the poorer
classes. The poor wore theirs until
it could be worn no more, and then
it was cut down for their children,
and then used for rags of all kinds,
and then, finally, sold to the rag and
bone man who would transport it
off to be made into (among other
things) paper.

 And speaking of paper, that
was another thing that had to be
invented for our society to exist:
cheap paper. Good rag paper
(made literally with expensive
cloth rag) was always pricey, just
not as pricey as parchment which
was goat, sheep, or calf skin. (This
is why medieval manuscripts were
so few and why they were often
kept chained up for fear of theft.
It took at least a whole herd of
animals to make the Book of Kells,
for example. On the other hand,
well-kept parchment can last
thousands of years.) In fact, paper
remained expensive long after
clothing got cheaper, because it

took a long time to figure out how
to make paper out of nothing but
wood pulp, without all that expen-
sive rag content. It wasn’t until the
production of wood pulp paper was
perfected in the mid-1800’s that
books (schoolbooks, fiction, non-
fiction), magazines, and newspapers
became available to the general
public. Including pulp fiction — the
first was Argosy Magazine in 1896
— a genre that was named for the
cheapest of cheap fiber paper that
it was published on. And without
that pulp paper, where would our
entire genre be? n

Note: Check out the subsequent
article “Is Time Money or is Money
Time?” [hn.my/timemoney] which
the author re-explained the idea of
hours/time = money, with a couple of
updates.

Eve Fisher is a retired history professor who
still writes history articles, mystery stories,
and the occasional rant. She lives in small
town South Dakota with her husband and
5,000 books.

Reprinted with permission of the original author.
First appeared in hn.my/3500 (sleuthsayers.org)

http://hn.my/3500

34  SPECIAL

By Matt Welsh

Not long after joining
Google back in 2010,
I wrote this cheeky

piece [hn.my/googler] contrasting
my daily schedule at Google with
my previous career as an academic.
Looking back on that, it’s remark-
able how much my schedule has
changed in four years, in no small
part because I’m now managing a
team and as a result end up doing a
lot less coding than I used to.

So, now seems like a good time
to update that post. It will also help
to shed some light on the differ-
ences between a pure “individual
contributor” role and the more
management-focused role that I
have now.

By way of context: My role at
Google is what we call a “tech lead
manager” (or TLM), which means
I’m responsible both for the techni-
cal leadership of my team as well
as the people-management side of
things. Our team has various proj-
ects, the largest and most impor-
tant of which is the Chrome data
compression proxy service. We’re
generally interested in making
Chrome work better on mobile

devices, especially for users in slow,
expensive networks in emerging
markets.

The best part of my job is how
varied it is. Every day is different,
and I usually have a lot of balls in
the air. The below is meant to rep-
resent a “typical” day, although take
that with a grain of salt given the
substantial inter-day variation:

■■ 6:45am Wake up. Get the kids up,
get them ready, and make them
breakfast. Shower.

■■ 8:30am Jump on my bike and ride
to work (which takes about 10
minutes), grab breakfast and head
to my desk.

■■ 8:45am Check half a dozen dash-
boards showing various metrics
for how our services are doing:
traffic is up, latency and compres-
sion are stable, datacenters are
happily churning along.

■■ 9:00am Catch up on email. This
is a continuous struggle and a
constant drain on my attention,
but lately I’ve been using Inbox
which has helped me to stay
afloat. Barely.

■■ 9:30am Work on a slide deck
describing a new feature we’re
developing for Chrome, incor-
porating comments from one of
the PMs. The plan is to share the
deck with some other PM and
Engineering leads to get buy-in
and then start building the fea-
ture later this quarter.

■■ 10:00am Chat with one of my
teammates about a bug report
we’re chasing down, which gets
me thinking about a possible root
cause. Spend the next half hour
running queries against our logs
to confirm my suspicions. Update
the bug report with the findings.

■■ 10:30am I somehow find my morn-
ing has not been fully booked with
meetings, so I have a luxurious
hour to do some coding. Try to
make some headway on rewriting
one of our MapReduce pipelines
in Go, with the goal of making it
easier to maintain as well as adding
some new features. It’s close to
getting done, but by the time my
hour is up, one of the tests is still
failing, so I will spend the rest of
the day quietly fuming over it.

Day in the Life of a
Google Manager

http://hn.my/googler

  35

■■ 11:30am Meet with one of my
colleagues in Mountain View by
video hangout about a new proj-
ect we are starting up. I am super
excited to get this project going.

■■ 12:00pm Swing by the cafe to
grab lunch. I am terrible about
eating lunch at my desk while
reading sites like Hacker News
— some habits die hard. Despite
this, I still do not have the faint-
est clue how Bitcoin works.

■■ 12:30pm Quick sync with a team
by VC to plan out the agenda
for an internal summit we’re
organizing.

■■ 1:00pm Hiring committee meet-
ing. We review packets for candi-
dates that have completed their
interview loops and try to decide
whether they should get a job
offer. This is sometimes easy, but
often very difficult and conten-
tious, especially with candidates
who have mixed results on the
interview loop (which is almost
everyone). I leave the meeting
bewildered how I ever got a job
here.

■■ 2:00pm Weekly team meeting.
This usually takes the form of
one or more people presenting to
the rest of the team something
they have been working on with
the goal of getting feedback or
just sharing results. At other
times we also use the meeting to
set our quarterly goals and track
how we’re doing. Or, we skip it.

■■ 3:00pm One-on-one meeting with
a couple of my direct reports. I
use these meetings to check in on
how each member of the team
is doing, make sure I understand
their latest status, discuss any
technical issues with their work,

and also talk about things like
career development, setting pri-
orities, and performance reviews.

■■ 4:00pm Three days a week I leave
work early to get in an hour-long
bike ride. I usually find that I’m
pretty fried by 4pm anyway,
and this is a great way to get out
and enjoy the beautiful views in
Seattle while working up a sweat.

■■ 5:00pm Get home, shower, cook
dinner for my family, do some
kind of weird coloring or elec-
tronics project with my five-year-
old. This is my favorite time of
day.

■■ 7:00pm Get the kids ready for
bed and read lots of stories.

■■ 8:00pm Freedom! I usually
spend some time in the evenings
catching up on email (especially
after having skipped out of work
early), but try to avoid doing
“real work” at home. Afterwards,
depending on my mood, might
watch an episode of Top Chef
with my wife or read for a while
(I am currently working on
Murakami’s 1Q84).

Compared to my earlier days at
Google, I clearly have a lot more
meetings now, but I’m also involved
in many more projects. Most of the
interesting technical work is done
by the engineers on my team, and
I envy them; they get to go deep
and do some really cool stuff. At
the same time I enjoy having my
fingers in lots of pies and being able
to coordinate across multiple active
projects, and chart out new ones. So
it’s a tradeoff.

Despite the increased responsi-
bilities, my work-life balance still
feels much better than when I was
an academic. Apart from time-
shifting some of my email handling
to the evening (in order to get the
bike rides in), I almost never deal
with work-related things after
hours or on the weekends. I have
a lot more time to spend with my
family and generally manage to
avoid having work creep into family
time. The exception is when I’m on
pager duty, which is another story
entirely: getting woken up at 3 am
to deal with a crash bug in our ser-
vice is always, um, exciting. n

Matt Welsh is a software engineer at
Google, where he works on mobile web
performance. He was previously a pro-
fessor of Computer Science at Harvard
University. His research interests include
distributed systems and networks.

Reprinted with permission of the original author.
First appeared in hn.my/gman (matt-welsh.blogspot.com)

http://hn.my/gman

36  SPECIAL

Join the
DuckDuckGo
Open Source
Community.

Create Instant Answers
or share ideas and help
change the future of search.

Featured IA: Regex Contributor: mintsoft
Get started at duckduckhack.com

http://duckduckhack.com

  37

Join the
DuckDuckGo
Open Source
Community.

Create Instant Answers
or share ideas and help
change the future of search.

Featured IA: Regex Contributor: mintsoft
Get started at duckduckhack.com

http://duckduckhack.com
http://www.hostedgraphite.com

http://pivotaltracker.com

	FEATURE
	Raytracing a Black Hole

	PROGRAMMING
	The Poor Man's Voxel Engine
	Using Named Pipes and Process Substitution
	Dad and the Ten Commandments of Egoless Programming
	DevOps Is Bullshit: Why One Programmer Doesn’t Do It Anymore
	Embracing SQL In Postgres

	SPECIAL
	The $3500 Shirt
	Day in the Life of a Google Manager

