
Issue 58  March 2015

The Simple Proof of Tetris Lamp
Jack Morris

2  ﻿

Curator
Lim Cheng Soon

Contributors
Jack Morris
Bob Nystrom
Dennis Felsing
Emily St.
Rasmus Borup Hansen
Francesca Krihely
Gabriel Gonzalez

Proofreader
Emily Griffin

Printer
Blurb

Hacker Monthly is the print magazine version
of Hacker News — news.ycombinator.com, a social news
website wildly popular among programmers and startup
founders. The submission guidelines state that content
can be “anything that gratifies one’s intellectual curiosity.”
Every month, we select from the top voted articles on
Hacker News and print them in magazine format.
For more, visit hackermonthly.com

Advertising
ads@hackermonthly.com

Contact
contact@hackermonthly.com

Published by
Netizens Media
46, Taylor Road,
11600 Penang,
Malaysia.

Hacker Monthly is published by Netizens Media and not affiliated with Y Combinator in any way.

http://news.ycombinator.com
http://hackermonthly.com
mailto:ads@hackermonthly.com
mailto:contact@hackermonthly.com

  3

For links to Hacker News dicussions, visit hackermonthly.com/issue-58

Contents
FEATURES

04  The Simple Proof of the Tetris Lamp
By Jack Morris

PROGRAMMING

8  What Color is Your Function?
By Bob Nystrom

14  How I Start: Nim
By Dennis FelSING

24  A Gentle Primer on Reverse Engineering
By Emily St.

30  My Experience With Using cp To Copy 432 Million Files
By Rasmus Borup Hansen

32  From Node.js to Go
By Francesca Krihely

34  Use Haskell for Shell Scripting
By Gabriel Gonzalez

http://hackermonthly.com/issue-58

4  FEATURES

FEATURES

The Simple Proof of the
Tetris Lamp

By Jack Morris

  5

I received a Tetris lamp as a
birthday present last year. It’s a
great little thing. You can move

the individual Tetris pieces around
to form whatever shape you wish,
and once connected they all indi-
vidually light up thanks to conduct-
ing strips around the edges of each
segment.

Leaving the obvious Tetris con-
nection behind for a second though,
one thing that’s always irritated me
is my inability to build the lamp
into a clean rectangle. No matter
how hard I tried I always ended up
with a stray block sticking out of
the side, and another missing on
top, or some other irritating imper-
fect combination.

This irritation extended to many
who have visited my room since
the lamp became a fixture there. A
friend of mine in particular spent
an evening shuffling the pieces
around into various positions, refus-
ing to accept that there was some-
one out there with such a twisted
mind that they’d happily design
the pieces such that they didn’t fit
together in a clean way. Surely not.

He was inevitably unsuccess-
ful in his endeavors, and I’ve since
accepted that the lamp probably
can’t be constructed in such a way
since the pieces just look like they
won’t fit together cleanly. That’s
not a particularly satisfactory con-
clusion however, and it definitely
didn’t quell my compulsive interest
in the task.

However, while having drinks in
my room last night, another friend
(who hadn’t been exposed to the
lamp’s tortuous attraction before)
glanced at the construction on my
desk, thought for a few minutes and
exclaimed that he had a proof that
it couldn’t be formed into a rect-
angle. After hearing the details, the
solution is so simple and elegant
that I thought I’d share it here.

 The lamp itself is composed of 7
individual pieces, containing a total
of 28 squares. Therefore, assuming
we can indeed form it into a rect-
angle, it would have to be 7x4 or
14x2 squares in size. I’m using the
former case here simply because
it’s a more natural shape, however
this proof applies equally as well
to the latter. Now imagine that we
label each of these squares with a
color — either black or white —
such that they form a checkerboard
pattern as shown above. Notice that
the number of black squares must
be equal to the number of white, a
property we’ll exploit.

The lamp itself, in a standard irritating setup

6  FEATURES

So that’s 14 black squares, and 14
white. Looking at each of the pieces
individually, the issue with our
assumption quickly appears.

 As shown above, for pieces 1-6,
the number of black squares within
the piece is equal to the number
of white. Clearly which squares
are black and which are white
depends on the actual placement of
the piece within the rectangle, but
the shapes themselves dictate the
count of each color (since adjacent
squares must be different colors).

However, piece 7 disrupts the
trend. Irrelevant of how it’s located,
it must be comprised of 3 squares
of one color, and 1 of the other, a
property that is purely down to its
shape.

So, taking that into account along
with the other 6 pieces, in total
they’re comprised of 13 squares
of one color, and 15 of the other,
with no assumptions about how
they’re located within the rect-
angle. Ah. We needed 14 of each,
and since we’ve just shown that we

can’t get that, our original assump-
tion is overturned and our proof is
complete.

Conclusion
The proof itself is so simple that
I’m slightly disappointed I didn’t
notice it myself sooner. However
I’m glad that no more time will
be wasted mindlessly moving
around the pieces hoping for a
breakthrough.

Maybe now I can shift my irrita-
tion from the lamp itself to who-
ever designed it to possess such a
property. n

Jack Morris is a 3rd year computer sci-
ence undergraduate at the University of
Cambridge, with an interest in iOS devel-
opment and all things tech. Looking to
move into industry next year he’s currently
seeking software development employ-
ment in London. Follow him on Twitter at
@jack_morris_ to be notified about future
articles.

Reprinted with permission of the original author.
First appeared in hn.my/tlamp (jackm.co.uk)

http://twitter.com/jack_morris_
http://hn.my/tlamp

  7

Join the
DuckDuckGo
Open Source
Community.

Create Instant Answers
or share ideas and help
change the future of search.

Featured IA: Regex Contributor: mintsoft
Get started at duckduckhack.com

http://duckduckhack.com

8  PROGRAMMING

PROGRAMMING

By Bob Nystrom

I don’t know about you, but nothing gets me going
in the morning quite like a good old fashioned
programming language rant. It stirs the blood to

see someone skewer one of those “blub” languages [hn.
my/avg] the plebeians use, muddling through their day
with it between furtive visits to StackOverflow.

(Meanwhile, you and I only use the most enlightened
of languages. Chisel-sharp tools designed for the mani-
cured hands of expert craftspeople such as ourselves.)

Of course, as the author of said screed, I run a risk.
The language I mock could be one you like! Without
realizing it, I could let have the rabble into my blog,
pitchforks and torches at the ready, and my fool-hardy
pamphlet could draw their ire!

To protect myself from the heat of those flames, and
to avoid offending your possibly delicate sensibilities,
instead, I’ll rant about a language I just made up. A
strawman whose sole purpose is to be set aflame.

I know, this seems pointless right? Trust me, by the
end, we’ll see whose face (or faces!) have been painted
on his straw noggin.

A new language
Learning an entire new (crappy) language just for a bog
post is a tall order, so let’s say it’s mostly similar to one
you and I already know. We’ll say it has syntax sort of
like JS. Curly braces and semicolons. if, while, etc. The
lingua franca of the programming grotto.

I’m picking JS not because that’s what this article
is about. It’s just that it’s the language you, statistical
representation of the average reader, are most likely to
be able grok. Voilà:

function thisIsAFunction() {
 return "It's awesome";
}

Because our strawman is a modern (shitty) language,
we also have first-class functions. So you can make
something like:

// Return a list containing all of the elements
// in collection that match predicate.
function filter(collection, predicate) {
 var result = [];
 for (var i = 0; i < collection.length; i++) {
 if (predicate(collection[i])) result.
push(collection[i]);
 }
 return result;
}

What Color is Your
Function?

Photo: Dance of Colors, flickr.com/photos/josefstuefer/5681426

http://hn.my/avg
http://hn.my/avg
http://flickr.com/photos/josefstuefer/5681426

  9

This is one of those higher-order functions, and,
like the name implies, they are classy as all get out
and super useful. You’re probably used to them for
mucking around with collections, but once you inter-
nalize the concept, you start using them damn near
everywhere.

Maybe in your testing framework:

describe("An apple", function() {
 it("ain't no orange", function() {
 expect("Apple").not.toBe("Orange");
 });
});

Or when you need to parse some data:

tokens.match(Token.LEFT_BRACKET, function(token)
{
 // Parse a list literal...
 tokens.consume(Token.RIGHT_BRACKET);
});

So you go to town and write all sorts of awesome
reusable libraries and applications passing around
functions, calling functions, returning functions.
Functapalooza.

What color is your function?
Except wait. Here’s where our language gets screwy. It
has this one peculiar feature:

➊ Every function has a color.
Each function — anonymous callback or regular named
one — is either red or blue. Since my blog’s code high-
lighter can’t handle actual color, we’ll say the syntax is
like:

blue•function doSomethingAzure() {
 // This is a blue function...
}

red•function doSomethingCarnelian() {
 // This is a red function...
}

There are no colorless functions in the language.
Want to make a function? Gotta pick a color. Them’s
the rules. And, actually, there are a couple more rules
you have to follow, too:

➋ The way you call a function depends on its color.
Imagine a “blue call” syntax and a “red call” syntax.
Something like:

doSomethingAzure(...)•blue;
doSomethingCarnelian()•red;

If you get it wrong — call a red function with •blue
after the parentheses or vice versa — it does some-
thing bad. Dredge up some long-forgotten nightmare
from your childhood like a clown with snakes for arms
under your bed. That jumps out of your monitor and
sucks out your vitreous humour.

Annoying rule, right? Oh, and one more:

➌ You can only call a red function from within
another red function.
You can call a blue function from with a red one. This
is kosher:

red•function doSomethingCarnelian() {
 doSomethingAzure()•blue;
}

But you can’t go the other way. If you try to do this:

blue•function doSomethingAzure() {
 doSomethingCarnelian()•red;
}

Well, you’re gonna get a visit from old Spidermouth
the Night Clown.

This makes writing higher-order functions like our
filter() example trickier. We have to pick a color for
it, and that affects the colors of the functions we’re
allowed to pass to it. The obvious solution is to make
filter() red. That way, it can take either red or blue
functions and call them. But then we run into the next
itchy spot in the hairshirt that is this language:

➍ Red functions are more painful to call.
For now, I won’t precisely define “painful,” but just
imagine that the programmer has to jump through
some kind of annoying hoops every time they call a red
function. Maybe it’s really verbose, or maybe you can’t
do it inside certain kinds of statements. Maybe you can
only call them on line numbers that are prime.

What matters is that, if you decide to make a func-
tion red, everyone using your API will want to spit in
your coffee and/or deposit some even less savory fluids
in it.

10  PROGRAMMING

The obvious solution then is to
never use red functions. Just make
everything blue and you’re back
to the sane world where all func-
tions have the same color, which
is equivalent to all of them having
no color, which is equivalent to our
language not being entirely stupid.

Alas, the sadistic language design-
ers — and we all know all program-
ming language designers are sadists,
don’t we? — jabbed one final thorn
in our side:

➎ Some core library functions are
red.
There are some functions built
into the platform, functions that
we need to use, that we are unable
to write ourselves, that only come
in red. At this point, a reasonable
person might think the language
hates us.

It’s functional programming’s
fault!
You might be thinking that the
problem here is we’re trying to
use higher-order functions. If we
just stop flouncing around in all of
that functional frippery and write
normal blue collar first-order func-
tions like God intended, we’d spare
ourselves all the heartache.

If we only call blue functions,
make our function blue. Otherwise,
make it red. As long as we never
make functions that accept func-
tions, we don’t have to worry about
trying to be “polymorphic over
function color” (polychromatic?) or
any nonsense like that.

But, alas, higher order functions
are just one example. This problem
is pervasive any time we want to
break our program down into sepa-
rate functions that get reused.

For example, let’s say we have
a nice little blob of code that, I
don’t know, implements Dijkstra’s
algorithm over a graph represent-
ing how much your social network
are crushing on each other. (I spent
way too long trying to decide what
such a result would even represent.
Transitive undesirability?)

Later, you end up needing to use
this same blob of code somewhere
else. You do the natural thing and
hoist it out into a separate func-
tion. You call it from the old place
and your new code that uses it. But
what color should it be? Obviously,
you’ll make it blue if you can, but
what if it uses one of those nasty
red-only core library functions?

What if the new place you want
to call it is blue? You’ll have to turn
it red. Then you’ll have to turn the
function that calls it red. Ugh. No
matter what, you’ll have to think
about color constantly. It will be the
sand in your swimsuit on the beach
vacation of development.

A colorful allegory
Of course, I’m not really talking
about color here, am I? It’s an alle-
gory, a literary trick. The Sneetches
isn’t about stars on bellies, it’s about
race. By now, you may have an
inkling of what color actually repre-
sents. If not, here’s the big reveal:

Red functions are asynchronous ones.

If you’re programming in JavaScript
on Node.js, everytime you define a
function that “returns” a value by
invoking a callback, you just made a
red function. Look back at that list
of rules and see how my metaphor
stacks up:

1.	 Synchronous functions return
values, async ones do not and
instead invoke callbacks.

2.	 Synchronous functions give their
result as a return value, async
functions give it by invoking a
callback you pass to it.

3.	 You can’t call an async function
from a synchronous one because
you won’t be able to determine
the result until the async one
completes later.

4.	 Async functions don’t compose
in expressions because of the
callbacks, have different error-
handling, and can’t be used
with try/catch or inside a lot of
other control flow statements.

5.	 Node’s whole shtick is that the
core libs are all asynchronous.
(Though they did dial that back
and start adding ___Sync() ver-
sions of a lot of things.)

When people talk about “callback
hell” they’re talking about how
annoying it is to have red functions
in their language. When they create
4089 libraries for doing asynchro-
nous programming, they’re trying
to cope at the library level with a
problem that the language foisted
onto them.

I promise the future is better
People in the Node community
have realized that callbacks are
a pain for a long time and have
looked around for solutions.
One technique that gets a bunch
of people excited is promises,
[hn.my/promise] which you may
also know by their rapper name,
“futures.”

These are sort of a jacked up
wrapper around a callback and
an error handler. If you think
of passing a callback and error-
back to a function as a concept, a
promise is basically a reification
of that idea. It’s a first-class object

http://hn.my/promise

  11

that represents an asynchronous
operation.

I just jammed a bunch of fancy
PL language in that paragraph so it
probably sounds like a sweet deal,
but it’s basically snake oil. Promises
do make async code a little easier to
write. They compose a bit better, so
rule #4 isn’t quite so onerous.

But, honestly, it’s like the differ-
ence between being punched in the
gut versus punched in the privates.
Less painful, yes, but I don’t think
anyone should really get thrilled
about the value proposition.

You still can’t use them with
exception handling or other control
flow statements. You still can’t call a
function that returns a future from
synchronous code. (Well, you can,
but if you do, the person who later
maintains your code will invent a
time machine, travel back in time
to the moment that you did this
and stab you in the face with a #2
pencil.)

You’ve still divided your entire
world into asynchronous and
synchronous halves and all of the
misery that entails. So, even if
your language features promises or
futures, its face looks an awful lot
like the one on my strawman.

(Yes, that means even Dart,
[dartlang.org] the language I work
on. That’s why I’m so excited some
of the team are experimenting with
other concurrency models.)

I’m awaiting a solution
C# programmers are probably
feeling pretty smug right now (a
condition they’ve increasingly fallen
prey to as Hejlsberg and company
have piled sweet feature after sweet
feature into the language). In C#,
you can use the await keyword to
invoke an asynchronous function.

This lets you make asynchronous
calls just as easily as you can syn-
chronous ones, with the tiny addi-
tion of a cute little keyword. You
can nest await calls in expressions,
use them in exception handling
code, stuff them inside control flow.
Go nuts. Make it rain await calls
like they’re dollars in the advance
you got for your new rap album.

Async-await is nice, which is why
we’re adding it to Dart. It makes it
a lot easier to write asynchronous
code. You know a “but” is coming. It
is. But… you still have divided the
world in two. Those async functions
are easier to write, but they’re still
async functions.

You’ve still got two colors. Async-
await solves annoying rule #4: they
make red functions not much worse
to call than blue ones. But all of the
other rules are still there:

1.	 Synchronous functions return
values, async ones return
Task<T> (or Future<T> in Dart)
wrappers around the value.

2.	 Sync functions are just called,
async ones need an await.

3.	 If you call an async function
you’ve got this wrapper object
when you actually want the T.
You can’t unwrap it unless you
make your function async and
await it. (But see below.)

4.	 Aside from a liberal garnish of
await, we did at least fix this.

5.	 C#’s core library is actually older
than async so I guess they never
had this problem.

It is better. I will take async-await
over bare callbacks or futures any
day of the week. But we’re lying
to ourselves if we think all of our
troubles are gone. As soon as you
start trying to write higher-order
functions or reuse code, you’re right
back to realizing color is still there,
bleeding all over your codebase.

What language isn’t colored?
So JS, Dart, C#, and Python have
this problem. CoffeeScript and
most other languages that compile
to JS do, too (which is why Dart
inherited it). I think even Clojure-
Script has this issue even though
they’ve tried really hard to push
against it with their core.async
stuff.

Wanna know one that doesn’t?
Java. I know, right? How often do
you get to say, “Yeah, Java is the
one that really does this right”?
But there you go. In their defense,
they are actively trying to correct
this oversight by moving to futures
and async IO. It’s like a race to the
bottom.

C# also actually can avoid this
problem, too. They opted in to
having color. Before they added
async-await and all of the Task<T>
stuff, you just used regular sync API
calls. Three more languages that
don’t have this problem: Go, Lua,
and Ruby.

Any guess what they have in
common?

http://dartlang.org

12  PROGRAMMING

Threads. Or, more precisely: multiple independent
callstacks that can be switched between. It isn’t strictly
necessary for them to be operating system threads.
Goroutines in Go, coroutines in Lua, and fibers in Ruby
are perfectly adequate.

(That’s why C# has that little caveat. You can avoid
the pain of async in C# by using threads.)

Remembrance of operations past
The fundamental problem is: how do you pick up
where you left off when an operation completes?
You’ve built up some big callstack and then you call
some IO operation. For performance, that operation
uses the operating system’s underlying asynchronous
API. You cannot wait for it to complete because it
won’t. You have to return all the way back to your lan-
guage’s event loop and give the OS some time to spin
before it will be done.

Once it is, you need to resume what you were doing.
The usual way a language “remembers where it is” is
the callstack. That tracks all of the functions that are
currently being invoked and where the instruction
pointer is in each one.

But to do async IO, you have to unwind discard
the entire C callstack. Kind of a Catch-22. You can
do super-fast IO, you just can’t do anything with the
result! Every language that has async IO in its bowels
— or in the case of JS, the browser’s event loop —
copes with this in some way.

Node with its ever-marching-to-the-right callbacks
stuffs all of those callframes in closures. When you do:

function makeSundae(callback) {
 scoopIceCream(function (iceCream) {
 warmUpCaramel(function (caramel) {
 callback(pourOnIceCream(iceCream, caramel));
 });
 });
}

Each of those function expressions closes over all
of its surrounding context. That moves parameters
like iceCream and caramel off the callstack and onto
the heap. When the outer function returns and the
callstack is trashed, it’s cool. That data is still floating
around the heap.

The problem is you have to manually reify every
damn one of these steps. There’s actually a name
for this transformation: continuation-passing style. It
was invented by language hackers in the “70s as an

intermediate representation to use in the guts of their
compilers. It”s a really bizarre way to represent code
that happens to make some compiler optimizations
easier to do.

No one ever for a second thought that a programmer
would write actual code like that. And then Node came
along and all of the sudden here we are pretending to
be compiler back-ends. Where did we go wrong?

Note that promises and futures don’t actually buy
you anything, either. If you’ve used them, you know
you’re still hand-creating giant piles of function literals.
You’re just passing them to .then() instead of to the
asynchronous function itself.

Awaiting a generated solution
Async-await does help. If you peel back your compiler’s
skull and see what it’s doing when it hits an await
call you’d see it actually doing the CPS-transform.
That’s why you need to use await in C#: it’s a clue to
the compiler to say, “break the function in half here.”
Everything after the await gets hoisted into a new
function that it synthesizes on your behalf.

This is why async-await didn’t need any runtime
support in the .NET framework. The compiler com-
piles it away to a series of chained closures that it can
already handle. (Interestingly, closures themselves also
don’t need runtime support. They get compiled to
anonymous classes. In C#, closures really are a poor
man’s objects.)

You might be wondering when I’m going to bring up
generators. Does your language have a yield keyword?
Then it can do something very similar.

(In fact, I believe generators and async-await are
isomorphic. I’ve got a bit of code floating around in
some dark corner of my hard disc that implements a
generator-style game loop using only async-await.)

Where was I? Oh, right. So with callbacks, promises,
async-await, and generators, you ultimately end up
taking your asynchronous function and smearing it out
into a bunch of closures that live over in the heap.

Your function passes the outermost one into the
runtime. When the event loop or IO operation is done,
it invokes that function and you pick up where you left
off. But that means everything above you also has to
return. You still have to unwind the whole stack.

This is where the “red functions can only be called
by red functions” rule comes from. You have to closu-
rify the entire callstack all the way back to main() or
the event handler.

  13

Reified callstacks
But if you have threads (green- or OS-level), you don’t
need to do that. You can just suspend the entire thread
and hop straight back to the OS or event loop without
having to return from all of those functions.

Go is the language that does this most beautifully in
my opinion. As soon as you do any IO operation, it just
parks that goroutine and resumes any other ones that
aren’t blocked on IO.

If you look at the IO operations in the standard
library, they seem synchronous. In other words, they
just do work and then return a result when they are
done. But it’s not that they’re synchronous in the sense
that it would mean in JavaScript. Other Go code can
run while one of these operations is pending. It’s that
Go has eliminated the distinction between synchronous
and asynchronous code.

Concurrency in Go is a facet of how you choose to
model your program, and not a color seared into each
function in the standard library. This means all of the
pain of the five rules I mentioned above is completely
and totally eliminated.

So, the next time you start telling me about some
new hot language and how awesome its concurrency
story is because it has asynchronous APIs, now you’ll
know why I start grinding my teeth. Because it means
you’re right back to red functions and blue ones. n

Robert Nystrom has programmed professionally for twenty years.
He’s worked on games, music applications, the web, and program-
ming languages. The common thread, if there is one, is that he’s
most excited by making software that magnifies the creativity of
others, whether that’s other programmers using his code, or end
users using his apps. Robert lives with his wife and two daughters
in Seattle where you are most likely to find him cooking for his
friends and plying them with good beer.

Reprinted with permission of the original author.
First appeared in hn.my/colorf (stuffwithstuff.com)

http://hn.my/colorf

14  PROGRAMMING

By Dennis FelSING

Nim is a young and exciting imperative pro-
gramming language that is nearing its 1.0
release. My main motivation for using Nim

[nim-lang.org] is its performance-to-productivity ratio
and the joy of programming in Nim. In this guide I’m
going to show you how I start a Nim project.

For this purpose we will write a small interpreter for
the brainfuck language. [hn.my/brainfuck] While Nim
is a practical language with many interesting features,
brainfuck is the opposite: It’s impractical to write in
and its features consist of 8 single-character commands.
Still, brainfuck is great for us, since its extreme simplic-
ity makes it easy to write an interpreter for it. Later
we will even write a high-performance compiler that
transforms brainfuck programs into Nim at compile
time. We will put all of this into a nimble package
[hn.my/nimble] and publish it online. [hn.my/nimbf]

Installation
Installing Nim is straightforward, you can follow the
official instructions. Binaries for Windows are provided.
On other operating systems you can run the build.sh
script to compile the generated C code, which should
take less than a minute on a modern system.

This brings us to the first interesting fact about Nim:
It compiles to C primarily (C++, ObjectiveC, and even
JavaScript as well) and then uses the highly optimizing
C compiler of your choice to generate the actual pro-
gram. You get to benefit from the mature C ecosystem
for free.

If you opt for bootstrapping the Nim compiler,
[hn.my/nimc] which is written exclusively in Nim
itself, you get to witness the compiler build itself with a
few simple steps (in less than 2 minutes):

$ git clone https://github.com/Araq/Nim
$ cd Nim
$ git clone --depth 1
https://github.com/nim-lang/csources
$ cd csources && sh build.sh
$ cd ..
$ bin/nim c koch
$./koch boot -d:release

After you’ve finished the installation, you should
add the nim binary to your path. If you use bash, this is
what to do:

$ export PATH=$PATH:$your_install_dir/bin >>
~/.profile
$ source ~/.profile
$ nim
Nim Compiler Version 0.10.2 (2014-12-29) [Linux:
amd64]
Copyright (c) 2006-2014 by Andreas Rumpf
::

 nim command [options] [projectfile] [arguments]

Command:
 compile, c compile project with default code
generator (C)
 doc generate the documentation for
inputfile
 doc2 generate the documentation for the
whole project
 i start Nim in interactive mode
(limited)
...

How I Start: Nim

http://nim-lang.org
http://hn.my/brainfuck
http://hn.my/nimble
http://hn.my/nimbf
http://hn.my/nimc

  15

If nim reports its version and usage, we’re good to
continue. Now the modules from Nim’s standard
library are just an import away. All other packages can
be retrieved with nimble, Nim’s package manager. Let’s
follow the simple installation instructions. Again, for
Windows a prebuilt archive is available, while building
from source is quite comfortable as well:

$ git clone https://github.com/nim-lang/nimble
$ cd nimble
$ nim c -r src/nimble install

Nimble’s binary directory wants to be added to your
path as well:

$ export PATH=$PATH:$HOME/.nimble/bin >> ~/.pro-
file
$ source ~/.profile
$ nimble update
Downloading package list from https://github.
com/nim-lang/packages/raw/master/packages.json

Done.
Now we can browse the available nimble packages

or search for them on the command line:

$ nimble search docopt
docopt:
 url: git://github.com/docopt/docopt.nim
(git)
 tags: commandline, arguments, parsing,
library
 description: Command-line args parser based on
Usage message
 license: MIT
 website: https://github.com/docopt/docopt.nim

Let’s install this nice docopt library we found, maybe
we’ll need it later:

$ nimble install docopt
...
docopt installed successfully.

Notice how quickly the library is installed (less
than 1 second for me). This is another nice effect of
Nim. Basically the source code of the library is just
downloaded, nothing resembling a shared library is
compiled. Instead the library will simply be compiled
statically into our program once we use it.

Project Setup
Now we’re ready to get our project started:

$ mkdir brainfuck
$ cd brainfuck

First step: To get Hello World on the terminal, we
create a hello.nim with the following content:

echo "Hello World"

We compile the code and run it, first in two separate
steps:

$ nim c hello
$./hello
Hello World

Then in a single step, by instructing the Nim com-
piler to conveniently run the resulting binary immedi-
ately after creating it:

$ nim c -r hello
Hello World

Let’s make our code do something slightly more
complicated that should take a bit longer to run:

var x = 0
for i in 1 .. 100_000_000:
 inc x # increase x, this is a comment btw

echo "Hello World ", x

Now we’re initializing the variable x to 0 and
increasing it by 1 a whole 100 million times. Try to
compile and run it again. Notice how long it takes
to run now. Is Nim’s performance that abysmal? Of
course not, quite the opposite! We’re just currently
building the binary in full debug mode, adding checks
for integer overflows, array out of bounds and much
more, as well as not optimizing the binary at all. The
-d:release option allows us to switch into release
mode, giving us full speed:

$ nim c hello
$ time ./hello
Hello World 100000000
./hello 2.01s system 99% cpu 2.013 total
$ nim -d:release c hello
$ time ./hello
Hello World 100000000
./hello 0.00s system 74% cpu 0.002 total

16  PROGRAMMING

That’s a bit too fast, actually. The C compiler opti-
mized away the entire for loop. Oops.

To start a new project nimble init can generate a
basic package config file:

$ nimble init brainfuck

The newly created brainfuck.nimble should look
like this:

[Package]
name = "brainfuck"
version = "0.1.0"
author = "Anonymous"
description = "New Nimble project for Nim"
license = "BSD"

[Deps]
Requires: "nim >= 0.10.0"

Let’s add the actual author, a description, as well as
the requirement for docopt, as described in nimble’s
developers info. Most importantly, let’s set the binary
we want to create:

[Package]
name = "brainfuck"
version = "0.1.0"
author = "The 'How I Start Nim' Team"
description = "A brainfuck interpreter"
license = "MIT"

bin = "brainfuck"

[Deps]
Requires: "nim >= 0.10.0, docopt >= 0.1.0"

Since we have git installed already, we’ll want to
keep revisions of our source code and may want to
publish them online at some point, let’s initialize a git
repository:

$ git init
$ git add hello.nim brainfuck.nimble .gitignore

Where I just initialized the .gitignore file to this:

nimcache/
*.swp

We tell git to ignore vim’s swap files, as well as
nimcache directories that contain the generated C code
for our project. Check it out if you’re curious how Nim
compiles to C.

To see what nimble can do, let’s initialize
brainfuck.nim, our main program:

echo "Welcome to brainfuck"

We could compile it as we did before for hello.nim,
but since we already set our package up to include the
brainfuck binary, let’s make nimble do the work:

$ nimble build
Looking for docopt (>= 0.1.0)...
Dependency already satisfied.
Building brainfuck/brainfuck using c backend...
...
$./brainfuck
Welcome to brainfuck

nimble install can be used to install the binary on
our system, so that we can run it from anywhere:

$ nimble install
...
brainfuck installed successfully.
$ brainfuck
Welcome to brainfuck

This is great for when the program works, but nimble
build actually does a release build for us. That takes a
bit longer than a debug build, and leaves out the checks
which are so important during development, so nim c
-r brainfuck will be a better fit for now. Feel free to
execute our program quite often during development
to get a feeling for how everything works.

Coding
While programming, Nim’s documentation comes
in handy. If you don’t know where to find what yet,
there’s a documentation index, in which you can
search.

Let’s start developing our interpreter by changing
the brainfuck.nim file:

import os

First we import the os module, so that we can read
command line arguments.

let code = if paramCount() > 0: readFile
paramStr(1)
 else: readAll stdin

paramCount() tells us about the number of command
line arguments passed to the application. If we get a
command line argument, we assume it’s a filename,

  17

and read it in directly with readFile paramStr(1).
Otherwise we read everything from the standard input.
In both cases, the result is stored in the code variable,
which has been declared immutable with the let
keyword.

To see if this works, we can echo the code:

echo code

And try it out:

$ nim c -r brainfuck
...
Welcome to brainfuck
I'm entering something here and it is printed
back later!
I'm entering something here and it is printed
back later!

After you’ve entered your "code" finish up with a
new line and ctrl-d. Or you can pass in a filename,
everything after nim c -r brainfuck is passed as com-
mand line arguments to the resulting binary:

$ nim c -r brainfuck .gitignore
...
Welcome to brainfuck
nimcache/
*.swp
On we go:
var
 tape = newSeq[char]()
 codePos = 0
 tapePos = 0

We declare a few variables that we’ll need. We have
to remember our current position in the code string
(codePos) as well as on the tape (tapePos). Brainfuck
works on an infinitely growing tape, which we repre-
sent as a seq of chars. Sequences are Nim’s dynamic
length arrays, other than with newSeq they can also be
initialized using var x = @[1, 2, 3].

Let’s take a moment to appreciate that we don’t
have to specify the type of our variables, it is automati-
cally inferred. If we wanted to be more explicit, we
could do so:

var
 tape: seq[char] = newSeq[char]()
 codePos: int = 0
 tapePos: int = 0

Next we write a small procedure and call it immedi-
ately afterwards:

proc run(skip = false): bool =
 echo "codePos: ", codePos, " tapePos: ", tapePos

discard run()

There are a few things to note here:

■■ We pass a skip parameter, initialized to false.

■■ Obviously the parameter must be of type bool, then.

■■ The return type is bool as well, but we return noth-
ing? Every result is initialized to binary 0 by default,
meaning we return false.

■■ We can use the implicit result variable in every
proc with a result and set result = true.

■■ Control flow can be changed by using return true
to return immediately.

■■ We have to explicitly discard the returned bool
value when calling run(). Otherwise the compiler
complains with brainfuck.nim(16, 3) Error:
value of type 'bool' has to be discarded. This
is to prevent us from forgetting to handle the result.

Before we continue, let’s think about the way
brainfuck works. Some of this may look familiar if
you’ve encountered Turing machines before. We have
an input string code and a tape of chars that can grow
infinitely in one direction. These are the 8 commands
that can occur in the input string, every other character
is ignored:

Op Meaning			 Nim equivalent
> move right on tape		 inc tapePos
< move left on tape		 dec tapePos
+ increment value on tape	 inc tape[tapePos]
- decrement value on tape	 dec tape[tapePos]
. output value on tape	 stdout.write
				 tape[tapePos]
, input value to tape		 tape[tapePos] =
				 stdin.readChar
[if value on tape is \0, jump forward to command
 after matching]	
] if value on tape is not \0, jump back to command
 after matching [

With this alone, brainfuck is one of the simplest Turing
complete programming languages.

18  PROGRAMMING

The first 6 commands can easily be converted into a
case distinction in Nim:

proc run(skip = false): bool =
 case code[codePos]
 of '+': inc tape[tapePos]
 of '-': dec tape[tapePos]
 of '>': inc tapePos
 of '<': dec tapePos
 of '.': stdout.write tape[tapePos]
 of ',': tape[tapePos] = stdin.readChar
 else: discard

We are handling a single character from the input so
far, let’s make this a loop to handle them all:

proc run(skip = false): bool =
 while tapePos >= 0 and codePos < code.len:
 case code[codePos]
 of '+': inc tape[tapePos]
 of '-': dec tape[tapePos]
 of '>': inc tapePos
 of '<': dec tapePos
 of '.': stdout.write tape[tapePos]
 of ',': tape[tapePos] = stdin.readChar
 else: discard

 inc codePos

Let’s try a simple program, like this:

$ echo ">+" | nim -r c brainfuck
Welcome to brainfuck
Traceback (most recent call last)
brainfuck.nim(26) brainfuck
brainfuck.nim(16) run
Error: unhandled exception: index out of bounds
[IndexError]
Error: execution of an external program failed

What a shocking result, our code crashes! What did
we do wrong? The tape is supposed to grow infinitely,
but we haven’t increased its size at all! That’s an easy
fix right above the case:

 if tapePos >= tape.len:
 tape.add '\0'

The last 2 commands, [and] form a simple loop.
We can encode them into our code as well:

proc run(skip = false): bool =
 while tapePos >= 0 and codePos < code.len:

 if tapePos >= tape.len:
 tape.add '\0'

 if code[codePos] == '[':
 inc codePos
 let oldPos = codePos
 while run(tape[tapePos] == '\0'):
 codePos = oldPos
 elif code[codePos] == ']':
 return tape[tapePos] != '\0'
 elif not skip:
 case code[codePos]
 of '+': inc tape[tapePos]
 of '-': dec tape[tapePos]
 of '>': inc tapePos
 of '<': dec tapePos
 of '.': stdout.write tape[tapePos]
 of ',': tape[tapePos] = stdin.readChar
 else: discard

 inc codePos

If we encounter a [we recursively call the run func-
tion itself, looping until the corresponding] lands on a
tapePos that doesn’t have \0 on the tape.

And that’s it. We have a working brainfuck inter-
preter now. To test it, we create an examples directory
containing these 3 files: helloworld.b, rot13.b, and
mandelbrot.b.

$ nim -r c brainfuck examples/helloworld.b
Welcome to brainfuck
Hello World!
$./brainfuck examples/rot13.b
Welcome to brainfuck
You can enter anything here!
Lbh pna ragre nalguvat urer!
ctrl-d
$./brainfuck examples/mandelbrot.b

  19

 With the last one you will notice how slow our
interpreter is. Compiling with -d:release gives a
nice speedup, but still takes about 90 seconds on my
machine to draw the Mandelbrot set. To achieve a great
speedup, later on we will compile brainfuck to Nim
instead of interpreting it. Nim’s metaprogramming
capabilities are perfect for this.

But let’s keep it simple for now. Our interpreter is
working, now we can turn our work into a reusable
library. All we have to do is surround our code with a
big proc:

proc interpret*(code: string) =
 var
 tape = newSeq[char]()
 codePos = 0
 tapePos = 0

 proc run(skip = false): bool =
 ...

 discard run()

when isMainModule:
 import os

 echo "Welcome to brainfuck"

 let code = if paramCount() > 0: readFile
paramStr(1)
 else: readAll stdin

 interpret code

Note that we also added a * to the proc, which
indicates that it is exported and can be accessed from
outside of our module. Everything else is hidden.

At the end of the file we still kept the code for our
binary. when isMainModule ensures that this code is
only compiled when this module is the main one. After
a quick nimble install our brainfuck library can be
used from anywhere on your system, just like this:

import brainfuck
interpret "++++++++[>++++[>++>+++>+++>+<<<<-
]>+>+>->>+[<]<-]>>.>---.+++++++..+++.>>.<-
.<.+++.------.--------.>>+.>++."

Looking good! At this point we could share the code
with others already, but let’s add some documentation
first:

proc interpret*(code: string) =
 ## Interprets the brainfuck `code` string,
reading from stdin and writing to
 ## stdout.
 ...

nim doc brainfuck builds the documentation, which
you can see online in its full glory. [hn.my/bfdoc]

Metaprogramming
As I said before, our interpreter is still pretty slow for
the Mandelbrot program. Let’s write a procedure that
creates Nim code AST at compile time instead:

import macros

proc compile(code: string): PNimrodNode {.compi-
letime.} =
 var stmts = @[newStmtList()]

 template addStmt(text): stmt =
 stmts[stmts.high].add parseStmt(text)

 addStmt "var tape: array[1_000_000, char]"
 addStmt "var tapePos = 0"

 for c in code:
 case c
 of '+': addStmt "inc tape[tapePos]"
 of '-': addStmt "dec tape[tapePos]"
 of '>': addStmt "inc tapePos"
 of '<': addStmt "dec tapePos"
 of '.': addStmt "stdout.write tape[tapePos]"
 of ',': addStmt "tape[tapePos] = stdin.read-
Char"
 of '[': stmts.add newStmtList()
 of ']':
 var loop = newNimNode(nnkWhileStmt)
 loop.add parseExpr("tape[tapePos] !=
'\\0'")
 loop.add stmts.pop
 stmts[stmts.high].add loop
 else: discard

 result = stmts[0]
 echo result.repr

The template addStmt is just there to reduce boiler-
plate. We could also explicitly write the same opera-
tion at each position that currently uses addStmt. (And

http://hn.my/bfdoc

20  PROGRAMMING

that’s exactly what a template does!) parseStmt turns a
piece of Nim code from a string into its corresponding
AST, which we store in a list.

Most of the code is similar to the interpreter, except
we’re not executing the code now, but generating it,
and adding it to a list of statements. [and] are more
complicated: They get translated into a while loop sur-
rounding the code in-between.

We’re cheating a bit here, because we use a fixed
size tape now and don’t check for under- and over-
flows anymore. This is mainly for the sake of simplicity.
To see what this code does, the last line, namely echo
result.repr prints the Nim code we generated.

Try it out by calling it inside a static block, which
forces execution at compile time:

static:
 discard compile "+>+[-]>,."

During compilation the generated code is printed:

var tape: array[1000000, char]
var codePos = 0
var tapePos = 0
inc tape[tapePos]
inc tapePos
inc tape[tapePos]
while tape[tapePos] != '\0':
 dec tape[tapePos]
inc tapePos
tape[tapePos] = stdin.readChar
stdout.write tape[tapePos]

Generally useful for writing macros is the dumpTree
macro, which prints the AST of a piece of code (actual
one, not as a string), for example:

import macros

dumpTree:
 while tape[tapePos] != '\0':
 inc tapePos
This shows us the following Tree:
StmtList
 WhileStmt
 Infix
 Ident !"!="
 BracketExpr
 Ident !"tape"
 Ident !"tapePos"
 CharLit 0

 StmtList
 Command
 Ident !"inc"
 Ident !"tapePos"

That’s how I knew that we would need a StmtList,
for example. When you do metaprogramming in Nim,
it’s generally a good idea to use dumpTree and print out
the AST of the code you want to generate.

Macros can be used to insert the generated code into
a program directly:

macro compileString*(code: string): stmt =
 ## Compiles the brainfuck `code` string into
 ## Nim code that reads from stdin
 ## and writes to stdout.
 compile code.strval

macro compileFile*(filename: string): stmt =
 ## Compiles the brainfuck code read from `file
 ## name` at compile time into Nim code that
 ## reads from stdin and writes to stdout.
 compile staticRead(filename.strval)

We can now compile the Mandelbrot program into
Nim easily:

proc mandelbrot = compileFile "examples/
mandelbrot.b"

mandelbrot()

Compiling with full optimizations takes quite long
now (about 4 seconds), because the Mandelbrot pro-
gram is huge and GCC needs some time to optimize it.
In return the program runs in just 1 second:

$ nim -d:release c brainfuck
$./brainfuck

Compiler settings
By default Nim compiles its intermediate C code
with GCC, but clang usually compiles faster and may
even yield more efficient code. It’s always worth a
try. To compile once with clang, use nim -d:release
--cc:clang c hello. If you want to keep compiling
hello.nim with clang, create a hello.nim.cfg file with
the content cc = clang. To change the default backend
compiler, edit config/nim.cfg in Nim’s directory.

While we’re talking about changing default com-
piler options: the Nim compiler is quite talky at times,

  21

which can be disabled by setting hints = off in the
Nim compiler’s config/nim.cfg. One of the more
unexpected compiler warnings even warns you if you
use l (lowercase L) as an identifier, because it may look
similar to 1 (one):

a.nim(1, 4) Warning: 'l' should not be used
as an identifier; may look like '1' (one)
[SmallLshouldNotBeUsed]

If you’re not a fan of this, a simple
warning[SmallLshouldNotBeUsed] = off suffices to
make the compiler shut up.

Another advantage of Nim is that we can use debug-
gers with C support, like GDB. Simply compile your
program with nim c --linedir:on --debuginfo c
hello and gdb ./hello can be used to debug your
program.

Command line argument parsing
So far we’ve been parsing the command line argument
by hand. Since we already installed the docopt.nim
library before, we can use it now:

when isMainModule:
 import docopt, tables, strutils

 proc mandelbrot = compileFile("examples/
mandelbrot.b")

 let doc = """
brainfuck

Usage:
 brainfuck mandelbrot
 brainfuck interpret [<file.b>]
 brainfuck (-h | --help)
 brainfuck (-v | --version)

Options:
 -h --help Show this screen.
 -v --version Show version.
"""

 let args = docopt(doc, version = "brainfuck
1.0")

 if args["mandelbrot"]:
 mandelbrot()

 elif args["interpret"]:
 let code = if args["<file.b>"]:
readFile($args["<file.b>"])
 else: readAll stdin

 interpret(code)

The nice thing about docopt is that the documenta-
tion functions as the specification. Pretty simple to use:

$ nimble install
...
brainfuck installed successfully.
$ brainfuck -h
brainfuck

Usage:
 brainfuck mandelbrot
 brainfuck interpret [<file.b>]
 brainfuck (-h | --help)
 brainfuck (-v | --version)

Options:
 -h --help Show this screen.
 -v --version Show version.
$ brainfuck interpret examples/helloworld.b
Hello World!

Refactoring
Since our project is growing, we move the main source
code into a src directory and add a tests directory,
which we will soon need, resulting in a final directory
structure like this:

$ tree
.
├── brainfuck.nimble
├── examples
│ ├── helloworld.b
│ ├── mandelbrot.b
│ └── rot13.b
├── license.txt
├── readme.md
├── src
│ └── brainfuck.nim
└── tests
 ├── all.nim
 ├── compile.nim
 ├── interpret.nim
 └── nim.cfg

22  PROGRAMMING

This also requires us to change the nimble file:

srcDir = "src"
bin = "brainfuck"

To improve reusability of our code, we turn to refac-
toring it. The main concern is that we always read from
stdin and write to stdout.

Instead of accepting just a code: string as its
parameter, we extend the interpret procedure to
also receive an input and output stream. This uses
the streams module that provides FileStreams and
StringStreams:

:Author: Dennis Felsing

This module implements an interpreter for the
brainfuck programming language as well as a
compiler of brainfuck into efficient Nim code.

Example:

.. code:: nim
import brainfuck, streams

interpret("++++++++[>++++[>++>+++>+++>+<
<<<-]>+>+>->>+[<]<-]>>.>--.+++++++..+++.>>.<-
.<.+++.------.--------.>>+.>++.")
Prints "Hello World!"

proc mandelbrot = compileFile("examples/
mandelbrot.b")
mandelbrot() # Draws a mandelbrot set

import streams

proc interpret*(code: string; input, output:
Stream) =
 ## Interprets the brainfuck `code` string,
 ## reading from `input` and writing
 ## to `output`.
 ##
 ## Example:
 ##
 ## .. code:: nim
 ## var inpStream = newStringStream("Hello
 ## World!\n")
 ## var outStream = newFileStream(stdout)
 ## interpret(readFile("examples/rot13.b"),
 ## inpStream, outStream)

I’ve also added some module wide documentation,
including example code for how our library can be
used. Take a look at the resulting documentation.

Most of the code stays the same, except the handling
of brainfuck operations . and ,, which now use output
instead of stdout andinput instead of stdin:

 of '.': output.write tape[tapePos]
 of ',': tape[tapePos] = input.readCharEOF

What is this strange readCharEOF doing there instead
of readChar? On many systems EOF (end of file) means
-1. Our brainfuck programs actively use this. This
means our brainfuck programs might actually not run
on all systems. Meanwhile the streams module strives
to be platform independent, so it returns a 0 if we have
reached EOF. We use readCharEOF to convert this into a
-1 for brainfuck explicitly:

proc readCharEOF*(input: Stream): char =
 result = input.readChar
 if result == '\0': # Streams return 0 for EOF
 result = 255.chr # BF assumes EOF to be -1

At this point you may notice that the order of iden-
tifier declarations matters in Nim. If you declare read-
CharEOF below interpret, you cannot use it in inter-
pret. I personally try to adhere to this, as it creates a
hierarchy from simple code to more complex code in
each module. If you still want to circumvent this, split
declaration and definition of readCharEOF by adding
this declaration above interpret:

proc readCharEOF*(input: Stream): char

The code to use the interpreter as conveniently as
before is pretty simple:

proc interpret*(code, input: string): string =
 ## Interprets the brainfuck `code` string,
 ## reading from `input` and returning
 ## the result directly.
 var outStream = newStringStream()
 interpret(code, input.newStringStream, out-
Stream)
 result = outStream.data

proc interpret*(code: string) =
 ## Interprets the brainfuck `code` string,
 ## reading from stdin and writing to stdout.
 interpret(code, stdin.newFileStream, stdout.
newFileStream)

  23

Now the interpret procedure can be used to return
a string. This will be important for testing later:

let res = interpret(readFile("examples/
rot13.b"), "Hello World!\n")
interpret(readFile("examples/rot13.b")) # with
stdout

For the compiler, the cleanup is a bit more compli-
cated. First we have to take the input and output as
strings, so that the user of this proc can use any stream
they want:

proc compile(code, input, output: string): PNim-
rodNode {.compiletime.} =

Two additional statements are necessary to initialize
the input and output streams to the passed strings:

 addStmt "var inpStream = " & input
 addStmt "var outStream = " & output

Of course now we have to use outStream and
inpStream instead of stdout and stdin, as well as read-
CharEOF instead of readChar. Note that we can directly
reuse the readCharEOF procedure from the interpreter,
no need to duplicate code:

 of '.': addStmt "outStream.write tape[tapePos]"
 of ',': addStmt "tape[tapePos] = inpStream.
readCharEOF"

We also add a statement that will abort compilation
with a nice error message if the user of our library uses
it wrongly:

 addStmt """
 when not compiles(newStringStream()):
 static:
 quit("Error: Import the streams module
to compile brainfuck code", 1)
 """

To connect the new compile procedure to a com-
pileFile macro that uses stdout and stdin again, we
can write:

macro compileFile*(filename: string): stmt =
 compile(staticRead(filename.strval),
 "stdin.newFileStream", "stdout.new-
FileStream")
To read from an input string and write back to
an output string:
macro compileFile*(filename: string; input,
output: expr): stmt =
 result = compile(staticRead(filename.strval),
 "newStringStream(" & $input & ")", "newS-
tringStream()")
 result.add parseStmt($output & " = outStream.
data")

This unwieldy code allows us to write a compiled
rot13 procedure like this, connecting input string and
result to the compiled program:

proc rot13(input: string): string =
 compileFile("../examples/rot13.b", input,
result)
echo rot13("Hello World!\n")

I did the same for compileString for convenience.
You can check out the full code of brainfuck.nim on
Github.

Conclusion
This is the end of our tour through the Nim ecosystem,
I hope you enjoyed it and found it as interesting as it
was for me to write it. n

Dennis is an active contributor to the Nim language while work-
ing on his Master’s thesis at KIT. There he worked on research
developing a new method for Regression Verification and teach-
ing programming paradigms (Haskell, lambda calculus, type
inference, Prolog, Scala, etc.). He also develops and runs DDNet,
a unique cooperative 2D game.

Reprinted with permission of the original author.
First appeared in hn.my/nim (howistart.org)

http://hn.my/nim

24  PROGRAMMING

By Emily St.

Over the weekend at Women Who Hack,
[womenwhohack.org] I gave a short dem-
onstration on reverse engineering. I wanted

to show how “cracking” works, to give a better under-
standing of how programs work once they’re compiled.
It also serves my abiding interest in processors and
other low-level stuff from the ‘80s.

My goal was to write a program which accepts a
password and outputs whether the password is correct
or not. Then I would compile the program to binary
form (the way in which most programs are distributed)
and attempt to alter the compiled program to accept
any password. I did the demonstration on OS X, but
the entire process uses open source tools from begin-
ning to end, so you can easily do this on Windows (in
a shell like Cygwin) or on Linux. If you want to follow
along at home, I’m assuming an audience familiar with
programming, in some form or another, but not much
else.

Building a Program
I opened a terminal window and fired up my text
editor (Vim) to create a new file called program.c.
I wanted to write something that would be easy to
understand and edit, and yet still could be compiled, so
C seemed like a fine choice. My program wasn’t doing
anything that would’ve been strange in the year 1972.

First, I wrote a function for validating a password.

int is_valid(const char* password)
{
 if (strcmp(password, "poop") == 0) {

 return 1;
 } else {
 return 0;
 }
}

This function accepts a string and returns a 1 if the
string is “poop” and 0 otherwise. I’ve chosen to call it
is_valid to make it easier to find later. You’ll under-
stand what I mean a few sections down.

Now we need a bit of code to accept a string as input
and call is_valid on it.

int main()
{
 char* input = malloc(256);3
 printf("Please input a word: ");
 scanf("%s", input);

 if (is_valid(input)) {
 printf("That's correct!\n");
 } else {
 printf("That's not correct!\n");
 }

 free(input);
 return 0;
}

This source code is likewise pretty standard. It
prompts the user to type in a string and reads it in
to a variable called input. Once that’s done, it calls
is_valid with that string. Depending on the result, it

A Gentle Primer on
Reverse Engineering

  25

either prints “That’s correct!” or “That’s not correct!”
and exits, returning control to the operating system.
With a couple of “include” directives at the top, this is a
fully functioning program.

Let’s build it! I saved the file program.c and used the
command gcc program.c -o program to build it.

This outputs a file in the current directory called
program which can be executed directly. Let’s run
our program by typing ./program. It’ll ask us to put
in a word to check. We already know what to put in
(“poop”), so let’s do that and make sure we see the
result we expect.

Please input a word: poop
That's correct!

And if we run it again and type in the wrong word,
we get the other possible result.

Please input a word: butts
That's not correct!

So far, so good.

A Deeper Look
There’s nothing special about this program that makes
it different from your web browser or photo editor; it’s
just a lot simpler. I can demonstrate this on my system
with the file command. Trying it first on the program I
just built, with the command file program, I see:

program: Mach-O 64-bit executable x86_64

This is the file format OS X uses to store programs.
If this kind of file seems unfamiliar, the reason is that
most applications are distributed as app bundles which
are essentially folders holding the executable program
itself and some ancillary resources. Again, with file, we
can see this directly by running file /Applications/
Safari.app/Contents/MacOS/Safari:

/Applications/Safari.app/Contents/MacOS/Safari:
Mach-O 64-bit executable x86_64

Let’s learn a little more about the binary we just
built. We can’t open it in a text editor, or else we get
garbage. Using a program called hexdump we can see
the raw binary information (translated to hexadecimal)
contained in the file. Let’s get a glimpse with hexdump
-C program | head -n 20.

00000000 cf fa ed fe 07 00 00 01 03 00 00 80 02 00 00 00 |................|
00000010 10 00 00 00 10 05 00 00 85 00 20 00 00 00 00 00 |..........|
00000020 19 00 00 00 48 00 00 00 5f 5f 50 41 47 45 5a 45 |....H...__PAGEZE|
00000030 52 4f 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |RO..............|
00000040 00 00 00 00 01 00 00 00 00 00 00 00 00 00 00 00 |................|
00000050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000060 00 00 00 00 00 00 00 00 19 00 00 00 28 02 00 00 |............(...|
00000070 5f 5f 54 45 58 54 00 00 00 00 00 00 00 00 00 00 |__TEXT..........|
00000080 00 00 00 00 01 00 00 00 00 10 00 00 00 00 00 00 |................|
00000090 00 00 00 00 00 00 00 00 00 10 00 00 00 00 00 00 |................|
000000a0 07 00 00 00 05 00 00 00 06 00 00 00 00 00 00 00 |................|
000000b0 5f 5f 74 65 78 74 00 00 00 00 00 00 00 00 00 00 |__text..........|
000000c0 5f 5f 54 45 58 54 00 00 00 00 00 00 00 00 00 00 |__TEXT..........|
000000d0 10 0e 00 00 01 00 00 00 e7 00 00 00 00 00 00 00 |................|
000000e0 10 0e 00 00 04 00 00 00 00 00 00 00 00 00 00 00 |................|
000000f0 00 04 00 80 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000100 5f 5f 73 74 75 62 73 00 00 00 00 00 00 00 00 00 |__stubs.........|
00000110 5f 5f 54 45 58 54 00 00 00 00 00 00 00 00 00 00 |__TEXT..........|
00000120 f8 0e 00 00 01 00 00 00 1e 00 00 00 00 00 00 00 |................|
00000130 f8 0e 00 00 01 00 00 00 00 00 00 00 00 00 00 00 |................|

26  PROGRAMMING

The left column is the “offset,”
in hexadecimal (like line number-
ing, it tells us how many bytes into
the file we are on a particular line).
The middle two columns are the
actual contents of the file itself,
again in hexadecimal. The right
column shows an ASCII equivalent
for the file’s contents, where pos-
sible. If you pipe the file’s contents
to less you can scan through and
see mostly a lot of garbage and
also a few familiar strings. If you’re
interested in knowing what pieces
of text are embedded in a file, the
program strings speeds this pro-
cess up a great deal. In our case, it
tells us:

poop
Please input a word:
That's correct!
That's not correct!

So clearly those strings are still
floating around in the file. What’s
the rest of this stuff? Volumes of
documentation exist out there on
the Mach-O file format, but I don’t
want to bog down in the details.
I have to level with you here — I
honestly don’t actually know much
about it. Analogizing from other
executable formats I’ve seen before,
I know there’s probably a header
of some kind that helps the operat-
ing system know what kind of file
this is and points out how the rest
of the file is laid out. The rest of
the file, incidentally, is made up of
sections which may contain any of
a number of things, including data
(the strings in this case) built into
the program; information on how
to find code called from elsewhere
in the system (imports, like our
printf and strcmp functions,
among others); and executable
machine code.

Disassembling the Program
It’s the machine code we’re inter-
ested in now. This is the interesting
part! Machine code is binary data,
a long string of numbers which cor-
respond to instructions the proces-
sor understands. When we run our
program, the operating system looks
at the file, lays it out in memory,
finds the entry point, and starts
feeding those instructions directly
to the processor.

If you’re used to scripted pro-
gramming languages, this concept
might seem a little odd, but it bears
on what we’re about to do to our
binary. There’s no interpreter going
over things, checking stuff, making
sure it makes sense, throwing
exceptions for errors and ensuring
they get handled. These instruc-
tions go right into the processor,
and being a physical machine, it has
no choice but to accept them and
execute each one. This knowledge
is very empowering because we
have the final say over what these
instructions are.

As you may know, the compiler
gcc translated my source code I
wrote earlier into machine lan-
guage (and packaged it nicely in
an executable file). This allows
the operating system to execute it
directly, but as another important
consequence of this process, we also
no longer need the source code.
Most of the programs you run likely
came as binary executables without
source code at all. Others may have
source code available, but they’re
distributed in binary form.

Whatever the case, let’s imagine I
lost the source code to program up
above and can’t remember it. Let’s
also imagine I can’t even remember
the password, and now my program
holds hostage important secrets.

You might think I could run
the binary through the strings
utility, hoping the password gets
printed out, and in this case, you’d
be on the right track. Imagine if
the program didn’t have a single
password built in and only accepted
passwords whose letters were in
alphabetical order or added up (in
binary) a specific way. Without the
source code, I couldn’t scan to see
which strings seem interesting, and
I wouldn’t have a clue what to type
in.

But we don’t need to lose heart
because we already know that the
program contains machine code,
and since this machine code is
meant to be fed directly to the pro-
cessor, there’s no chance it’s been
obfuscated or otherwise hidden. It’s
there, and it can’t hide. If we knew
how to read the machine code,
there would be no need for the
source code.

Machine code is hard for a
human to read. There’s a nice GNU
utility called objdump which helps
enormously in this respect. We’ll
use it to disassemble the binary.
This process is called “disassem-
bly” instead of “decompilation”
because we can’t get back the
original source code; instead we can
recover the names of the instruc-
tions encoded in machine code. It’s
not ideal, but we’ll have to do our
best. (Many people use a debugger
to do this job, and there’s a ton of
benefits to doing so, like being able
to watch instructions execute step
by step, inspect values in memory,
and so on, but a disassembly listing
is simpler and less abstract.)

  27

I looked up the documentation for gobjdump (as it’s
called on my system) and picked out some options that
made sense for my purposes. I ended up running gob-
jdump -S -l -C -F -t -w program | less to get the
disassembly. This is probably more than we’d care to
know about our program’s binary, much of it mysteri-
ous to me, but there’s some very useful information
here, too.

The Disassembly
I’ll share at least what I can make of the disassembly.
At the top of the listing is some general information.
This symbol table is interesting. We can see the names
of the functions I defined. If I had truly never seen
the source code, I would at this point take an espe-
cial amount of interest in a function called is_valid,
wouldn’t I?

Immediately below this is a “Disassembly of section
.text”. I happen to know from past experience that
the “.text” bit is a bit misleading for historical reasons;
a “.text” section actually contains machine code! The
leftmost column contains offsets (the place in the file
where each instruction begins). The next column is the
binary instructions themselves, represented in hexadec-
imal. After that are the names and parameters of each
instruction (sometimes with a helpful little annotation
left by objdump).

Of course, the very first thing I see is the instructions
of the is_valid function.

Disassembly of section .text:

0000000100000e10 (File Offset: 0xe10):
 100000e10: 55 push %rbp
 100000e11: 48 89 e5 mov %rsp,%rbp
 100000e14: 48 83 ec 10 sub $0x10,%rsp
 100000e18: 48 89 7d f0 mov %rdi,-0x10(%rbp)
 100000e1c: 48 8b 7d f0 mov -0x10(%rbp),%rdi
 100000e20: 48 8d 35 33 01 00 00 lea 0x133(%rip),%rsi # 100000f5a
(File Offset: 0xf5a)
 100000e27: e8 e4 00 00 00 callq 100000f10 (File Offset: 0xf10)
 100000e2c: 3d 00 00 00 00 cmp $0x0,%eax
 100000e31: 0f 85 0c 00 00 00 jne 100000e43 (File Offset: 0xe43)
 100000e37: c7 45 fc 01 00 00 00 movl $0x1,-0x4(%rbp)
 100000e3e: e9 07 00 00 00 jmpq 100000e4a (File Offset: 0xe4a)
 100000e43: c7 45 fc 00 00 00 00 movl $0x0,-0x4(%rbp)
 100000e4a: 8b 45 fc mov -0x4(%rbp),%eax
 100000e4d: 48 83 c4 10 add $0x10,%rsp
 100000e51: 5d pop %rbp
 100000e52: c3 retq
 100000e53: 66 66 66 66 2e 0f 1f 84 00 00 00 00 00 data16 data16 data16
nopw %cs:0x0(%rax,%rax,1)

28  PROGRAMMING

This is super exciting because
we’re about to read assembly lan-
guage. There are lots of books and
sites on this subject, and my own
understanding of assembly language
is a bit rusty from years of disuse,
but I know enough to get the gist.
Let’s break it down.

■■ The first three instructions (the
first three lines, starting with
100000e10) are a preamble that
begin most functions in assembly
language generated by a compiler.
They’re not important for us. (It
saves the old frame pointer, gets
a new frame pointer, and clears
space on the stack for locals.)

■■ The next two instructions set
up for our strcmp function.
This looks a bit odd in assembly
language compared to what we’re
used to. The mov instructions
are shifting data from a loca-
tion in memory to a register and
vice versa. Because registers are
involved, the disassembly wasn’t
able to hint very well what
these values may be, but we can
guess it’s moving the strings to
compare into place. I know this
because of the calling convention
for the function call (basically, set
up the data and then make the
call, which will know where to
find the data); because the %rbp
is the base register, which usu-
ally points to data; and because
-0x10(%rbp) is a way of saying
“look sixteen bytes earlier in
memory than the address in the
%rbp register.”

■■ The lea and callq instructions
load and call the strcmp func-
tion using the parameters we just
moved in place. That function
lives elsewhere in the system,
so some magic happens here to

transfer control of our program to
that function.

■■ By the time we reach the cmp
instruction, strcmp has done its
thing and stored its result in the
accumulator register %eax. By
convention, return values usually
live in %eax, so given that we’re
using a cmp (“compare”), and it’s
acting on %eax and $0x0 (a zero),
it’s a safe bet we’re checking
to make sure strcmp returned
zero. This instruction has the
side effect of setting a flag in the
processor called ZF to either 1
or 0, depending on whether the
comparison is true or not.

■■ The next instruction is jne which
is short for “jump if not equal.”
It checks the ZF flag, and if it’s
zero, skips ahead twelve bytes
(bypassing any instructions in the
intervening space).

■■ That’s followed by a movl and a
jmpq. These instructions move a
1 into a location in memory and
skip ahead another seven bytes.
Look at the two-digit hexadeci-
mal numbers to the left of these
two instructions. They add up to
twelve!

■■ Likewise, after these instructions,
one other instruction moves
the value 0 into the same loca-
tion of memory and continues
ahead. This instruction is exactly
seven bytes long. So these jumps
accomplish one of either two
things: either the memory loca-
tion -0x4(%rbp) is going to hold
a 1 or a 0 by the time we get to
the final mov. This is how assem-
bly language does an if — a very
interesting detail we’ll return to.

■■ That last mov puts the value at
-0x4(%rbp) (we just saw it’s

either a 1 or a 0) into %eax, which
we know is going to be the return
value.

■■ Finally, the function undoes the
work from the preamble and
returns. (After that is some junk
that’s never executed.)

That was a lengthy explanation,
so to sum up, we learned that the
binary executable has a function
called is_valid, and this function
calls strcmp with some values and
returns either a 1 or a 0 based on
its return value. That’s a pretty
accurate picture based on what we
know of the source code, so I’m
pleased as punch!

Directly below the definition
for this function is the main func-
tion. It’s longer, but it’s no more
complex. It does the same basic
tasks of moving values around,
calling functions, inspecting the
values, and branching based on this.
Again, the values are difficult to get
insight into because many registers
are used, and there’s a bit more
setup. For the sake of brevity, I’ll
leave analyzing this function as an
exercise for the reader (I promise it
won’t be on the test).

Breaking the Program
Remember, we don’t have the
slightest idea what the password is,
and there’s no good indication from
the disassembly what it might be.
Now that we have a good under-
standing of how the program works,
we stand a good chance of modify-
ing the program so that it believes
any password is correct, which is
the next best thing.

We can’t modify this disassembly
listing itself. It’s output from obj-
dump meant to help us understand
the machine code (the stuff in the
second column). We have to modify

  29

the program file itself by finding and
changing those hexadecimal num-
bers somewhere in the file.

After looking over how both
is_valid and main work, there
are lots of opportunities to change
the flow of the program to get the
result we want, but we have to stay
within a few rules. Notice how a lot
of the instructions specify where
other parts of the program are in
terms of relative counts of bytes?
That means that we can’t change
the number of bytes anywhere,
or else we’d break all the symbol
references, section locations, jumps,
offsets, and so on. We also need to
put in numbers which are valid
processor instructions so that the
program doesn’t crash.

If this were your first program, I’d
be forced to assume you wouldn’t
know what numbers mean what to
the processor. Luckily, the disas-
sembly gives us hints on how to
attack it. Let’s confine our possibili-
ties (such as changing jump logic
or overwriting instructions with
dummy instructions) to only those
we can exploit by using looking at
this disassembly itself. There isn’t a
lot of variety here.

To me, one neat thing about
is_valid stands out. Two of the
lines are extremely similar: movl
$0x0,-0x4(%rbp) and movl $0x1,-
0x4(%rbp). They do complement-
ing things with the same memory
location, use the same number of
bytes (seven), involve the same
setup, are near one another, and
directly set up the return value
for is_valid. This says to me the
machine code for each instruction
would be interchangeable, and by
changing one or the other, we can
directly change the return value for
is_valid to whatever we want. It’s
a safe bet, with a function named

that, we want it to return a 1, but if
we weren’t sure, I could look ahead
to the main function and see how
its return value gets used later on.

In other words, we want to
change movl $0x0,-0x4(%rbp) to
be movl $0x1,-0x4(%rbp) so that
no matter what, is_valid returns
a one. The machine code for the
instruction we have is c7 45 fc
00 00 00 00. Conveniently, the
machine code for that precise
instruction we want is just two lines
above: c7 45 fc 01 00 00 00. The
last challenge ahead is to find these
bytes in the actual file and change
them.

Where in the file are these bytes?
Note that the listing says “File
Offset: 0xe10” for the function is_
valid. That’s actually the count of
bytes into the file we’d find the first
instruction for this function (3648
bytes, in decimal), and the offset in
the left column for the first instruc-
tion is “100000e10”, so those offsets
in the left column look like they tell
where in the file each instruction’s
machine code is. The instruction
we care about is at “100000e43”, so
it must be 3651 bytes into the file.
We only need to change the fourth
byte of the instruction, so we can
add four to that count to get 3655
bytes.

Using hexdump -C program |
less and scrolling ahead a bit, I find
a line like this one:

00000e40 00 00 00 c7 45 fc 00
00 00 00 8b 45 fc 48 83 c4
|....E......E.H..|

Sure enough, there’s the instruc-
tion, and the seventh byte on this
line is the one we want to change.
Patching a binary file from the com-
mand line is sort of difficult, but
this command should do the trick:

printf '\x01' | dd of=program
bs=1 seek=3654 count=1
conv=notrunc

dd is writing to the file program
(of=program), seeking by one byte
at a time (bs=1), skipping ahead
3654 bytes past the first one to
land on 3655 (seek=3654), chang-
ing only one byte (count=1), and
not truncating the rest of the file
(conv=notrunc).

Now I’ll run the program the
same way we did before (./pro-
gram) and see if this worked.

Please input a word: butts
That's correct!

Success!

Conclusions
That’s about it. It’s a contrived
example, and I knew it would work
out before the end, but this is a
great way to start learning how pro-
grams are compiled, how processors
work, and how software cracking
happens. The concepts here also
apply themselves to understanding
how many security exploits work
on a mechanistic level. n

Emily is a programmer for Simple living in
Portland, Oregon, USA. She writes about
tech, writing, and social justice on her
personal site.

Reprinted with permission of the original author.
First appeared in hn.my/reverse (emily.st)

http://hn.my/reverse

30  PROGRAMMING

By Rasmus Borup Hansen

I recently had to copy a lot
of files. Even though I have
20 years of experience with

various Unix variants, I was still
surprised by the behavior of cp, and
I think my observations should be
shared with the community.

The setup: An old Dell server (2
cores, 2 GB initially, 10 GB later,
running Ubuntu Trusty) with a new
Dell storage enclosure (MD 1200)
containing 12 4 TB disks configured
with RAID 6 for a total of 40 TB
capacity allowing two drives to fail
simultaneously. The server is used
for our off-site backup, and the only
thing it does is write stuff to the
disks. We use rsnapshot for that, so
most of the files have a high link
count (30+).

One morning I was notified that
a disk had failed. No big deal, this
happens now and then. I called
Dell and next day I had a replace-
ment disk. While rebuilding, the
replacement disk failed, and in the
meantime another disk had also
failed. Now Dell’s support wisely
suggested that I did not just replace
the failed disks as the array may
have been punctured. Apparently,
and as I understand it, disks are only

reported as failed when they have
many bad blocks. If you’re unlucky,
you can lose data if 3 corresponding
blocks on different disks become
bad within a short time, so that the
RAID controller does not have a
chance to detect the failures, recal-
culate the data from the parity, and
store it somewhere else. So even
though only two drives flashed red,
data might have been lost.

Having almost used up the
capacity, we decided to order
another storage enclosure, copy
the files from the old one to the
new one, and then get the old one
into a trustworthy state and use it
to extend the total capacity. Nor-
mally I’d have copied/moved the
files at block-level (e.g., using dd or
pvmove), but suspecting bad blocks,
I went for a file-level copy because
then I’d know which files contained
the bad blocks. I browsed the net
for other peoples’ experience with
copying many files and quickly
decided that cp would do the job
nicely.

Knowing that preserving the
hardlinks would require bookkeep-
ing of which files have already been
copied, I also ordered 8 GB more

RAM for the server and configured
more swap space.

When the new hardware had
arrived I started the copying, and at
first it proceeded nicely at around
300 – 400 MB/s as measured with
iotop. After a while the speed
decreased considerably, because
most of the time was spent creat-
ing hardlinks, and it takes time to
ensure that the filesystem is always
in a consistent state. We use XFS,
and we were probably suffering for
not disabling write barriers (which
can be done when the RAID
controller has a write cache with
a trustworthy battery backup). As
expected, the memory usage of the
cp command increased steadily and
was soon in the gigabytes.

After some days of copying, the
first real surprise came: I noticed
that the copying had stopped, and
cp did not make any system calls
at all according to strace. Reading
the source code revealed that cp
keeps track of which files have been
copied in a hash table that now and
then has to be resized to avoid too
many collisions. When the RAM
has been used up, this becomes a
slow operation.

My Experience With Using
cp To Copy 432 Million Files

  31

Trusting that resizing the hash
table would eventually finish, the
cp command was allowed to con-
tinue, and after a while it started
copying again. It stopped again and
resized the hash table a couple of
times, each taking more and more
time. Finally, after 10 days of copy-
ing and hash table resizing, the new
file system used as many blocks
and inodes as the old one accord-
ing to df, but to my surprise the
cp command didn’t exit. Looking
at the source again, I found that
cp disassembles its hash table data
structures nicely after copying (the
“forget_all” call). Since the virtual
size of the cp process was now
more than 17 GB and the server
only had 10 GB of RAM, it did a
lot of swapping.

I had started cp with the "-v"
option and piped its output (both
stdout and stderr) to a tee com-
mand to capture the output in
a (big!) logfile. This meant that
somewhere the output from cp was
buffered because my logfile ended
in the middle of a line. Wanting the
buffers to be flushed so that I had
a complete logfile, I gave cp more
than a day to finish disassembling
its hash table, before giving up and
killing the process.

As I write this, I’m running an
"ls -laR" on both file systems to
be sure that everything is copied.
But unless the last missing part of
the output from cp contained more
error messages, it appears that only
a single file had i/o errors (luckily
we had another copy of it).

I know this is not going to
happen right away, but it would
be nice if cp somehow used a data
structure where the bookkeeping
could be done while waiting for i/o
instead of piling up the bookkeep-
ing. And unless old systems without

working memory management
must be supported, I don’t see any
harm in simply removing the call
to the forget_all function towards
the end of cp.c.

To summarize the lessons I
learned:

■■ If you trust that your hardware
and your filesystem are ok, use
block level copying if you’re
copying an entire filesystem. It’ll
be faster, unless you have lots of
free space on it. In any case it will
require less memory.

■■ If you copy many files and want
to preserve hardlinks, make sure
you have enough memory if you
copy at file level.

■■ Disassembling data structures
nicely can take much more time
than just tearing them down bru-
tally when the process exits.

■■ The number of hard drives flash-
ing red is not the same as the
number of hard drives with bad
blocks. With RAID 6 you don’t
need three drives flashing red
to loose data, if you’re unlucky.
Fewer can do. The same will be
true for RAID 5, where you can
loose data with only one or no
drive flashing red, if you’re really
unlucky. n

Rasmus Borup Hansen lives in Copen-
hagen, Denmark. He works at Intomics,
a company specialised in analysing bio-
logical big data for the pharmaceutical
industry. He has degrees in Mathematics
and Computer Science from the University
of Copenhagen where he has previously
worked at the Faculty of Science and the
Department of Mathematical Sciences.

Reprinted with permission of the original author.
First appeared in hn.my/cp (gnu.org)

http://hn.my/cp

32  PROGRAMMING

By Francesca Krihely

In looking back on the past
year, the biggest difference
we made in our tech stack

was moving from Node.js to Go.
After building the first iteration of
Bowery in Node.js, we made the
switch to Go in February 2014, and
it has helped us speed up develop-
ment and deployment.

Since then, our entire team has
become dedicated Gophers. We’ve
enjoyed using Go for its clear-cut
standards and simpler workflow. To
give you a peek into our Gopher
hole, here’s a few reasons we love
working with Go.

Easy to write cross-platform
code
One of the biggest reasons we
switched to Go was because of how
simple it is to compile code for dif-
ferent systems.

At Bowery, [bowery.io] we’re
building an app to help you and
your team manage your develop-
ment environments, and we need to
efficiently support all operating sys-
tems: Linux, Windows, and OSX.
In Go, you can define different files
for different operating systems that
implement functionality depending
on the operating system. A good

example came up when our team-
mate Larz was building Prompt,
[hn.my/bprompt] a library for read-
ing user input from the command
line. Larz wanted to create a Go
package that would implement a
cross platform line-editing prompt.
This was simple in Go: by creat-
ing different files for each OS, the
Go compiler would build the file
depending on the operating system.

Compiling code for other sys-
tems is also simple: all you have to
do is set an environment variable
and you suddenly have a Windows
binary that you built on a Linux
system.

Faster deployment
Go is a compiled language, so
distributing applications for use on
multiple platforms is just easier. For
us, this is important for deployment
and testing, but also is an asset
for our end users. With Go, build
servers that run tests could easily
just move on to production serv-
ers when they are ready. Go does
not need any system dependencies,
making it really simple to distribute.
When it comes time to distribute
out command line tools or other
applications, our users don’t need to

worry about having Java, RVM, or
NPM installed to run Bowery.

Concurrency primitives
When switching to Go, we real-
ized the Node.js event loop wasn’t
everything. Node.js doesn’t provide
many concurrency primitives. The
only thing running concurrently are
I/O routines, timers, etc. You can’t
communicate across those routines,
so it’s challenging to build respon-
sive systems on Node.js. With Go,
you can run anything concurrently,
and it provides channels to signal
routines to do something or sends
values across them to share data.
Go also provides low level con-
currency primitives like mutexes,
wait groups, etc., which you could
probably find on NPM. However,
we find channels to be the deciding
factor when dealing with concur-
rency and parallelization.

From Node.js to Go

http://bowery.io
http://hn.my/bprompt

  33

Integrated testing framework
With Node.js we had our choice
of testing frameworks, but some
worked better for front end, like
Jasmine, and others were better
for the backend, like Mocha. There
are also other options like JSUnit
and PhantomJS, and if you look on
StackOverflow there are dozens
of other frameworks suggested by
users. In some worlds, choice is a
good thing, but with Go, we liked
the standardization of the testing
framework. With Go, all the testing
packages are built-in. If you need to
write a new test suite, all you have
to do is add the _test.go file to the
same package as the software you
are testing and it will run each time
you execute go test.

Standard library
We love how you can write most
software using only Go’s standard
library. With Node.js, we almost
always had to include an external
library; which increased deploy-
ment time and increased the poten-
tial instability that comes with
using third party software. Being
able to use just the standard library
has enabled us to write code faster
and safer.

Developer workflow tools are
more powerful
With Node.js there’s no real stan-
dardized workflow other than using
NPM for packaging and script con-
trol. Other than that, the tooling is
built by the community, which is
great, but there are so many choices
that the end result is everyone
doing things differently.

A great example of workflow
standardization in Go is the work-
spaces layout. You give up a lot
of development freedom because
you have to follow the workspaces
layout, but it provides a lot of
structure: you can keep all your Go
source code and dependencies in
one place. Within your workspace
you have three root directories:
src which holds source code for
packages, pkg which holds the
compiled packages, and bin which
contains executable commands. It’s
a best practice to keep all of your
source code and dependencies in a
single workspace, making it stan-
dard across everyone’s machine.
The predictability is ideal when
working on a team. We can go on
anyone’s machine to help and know
for a fact our code is going to be in
$GOPATH/src/github.com/Bowery
rather than something like $HOME/
some/path/to/Bowery. Similarly,
gofmt formats everyone’s code the
same way. It’s a huge relief that
the superficial issues such as code
organization and differences in code
style just don’t matter in Go. You
can focus on fixing your problem
and everything else is taken care of.

There’s a ton of other reasons
to like Go, and we’re seeing more
companies adopt it internally to
power large, distributed applica-
tions. But overall, the Go team has
discovered that developers can be
more productive if you create stan-
dards and a set paradigm and others
agree. For example, at MongoDB,
the management applications team
loves using Go for the “sensible,
uniform development experience.”
At Soundcloud, they loved Go’s
strict formatting rules and “only
one way to do things” philosophy.
This means you spend less time in
code review arguing about style and
formatting and more time trying to
solve your root problem. n

Francesca is the CMO at Bowery. She’s a big
fan of open source technology and reads
Hacker News for the articles.

Bowery is the Terminal that keeps your
team in sync. With Bowery, your entire
team can keep their runtimes up-to-date
in the same way Github houses your
code – by committing to a central loca-
tion. Bowery hosts your environment and
helps you share it with others so you can
spend time focusing on what you do best,
building your application.

Reprinted with permission of the original author.
First appeared in hn.my/nodego (bowery.io)

http://hn.my/nodego

34  PROGRAMMING

By Gabriel Gonzalez

Right now dynamic languages are popular in
the scripting world, to the dismay of people
who prefer statically typed languages for ease

of maintenance.
Fortunately, Haskell is an excellent candidate for

statically typed scripting for a few reasons:

■■ Haskell has lightweight syntax and very little
boilerplate

■■ Haskell has global type inference, so all type annota-
tions are optional

■■ You can type-check and interpret Haskell scripts
very rapidly

■■ Haskell’s function application syntax greatly resem-
bles Bash

■■ However, Haskell has had a poor “out-of-the-box”
experience for a while, mainly due to:

■■ Poor default types in the Prelude (specifically String
and FilePath)

■■ Useful scripting utilities being spread over a large
number of libraries

■■ Insufficient polish or attention to user experience (in
my subjective opinion)

To solve this, I’m releasing the turtle library,
[hn.my/turtle] which provides a slick and comprehen-
sive interface for writing shell-like scripts in Haskell.
I’ve also written a beginner-friendly tutorial targeted at
people who don’t know any Haskell.

Overview
turtle is a reimplementation of the Unix command
line environment in Haskell. The best way to explain
this is to show what a simple "turtle script" looks like:

#!/usr/bin/env runhaskell

{-# LANGUAGE OverloadedStrings #-}

import Turtle

main = do
 cd "/tmp"
 mkdir "test"
 output "test/foo" "Hello, world!"
-- Write "Hello, world!" to "test/foo"
 stdout (input "test/foo")
-- Stream "test/foo" to stdout
 rm "test/foo"
 rmdir "test"
 sleep 1
 die "Urk!"

Use Haskell for
Shell Scripting

  35

If you make the above file executable, you can then
run the program directly as a script:

$ chmod u+x example.hs
$./example.hs
Hello, world!
example.hs: user error (Urk!)

The turtle library renames a lot of existing Haskell
utilities to match their Unix counterparts and places
them under one import. This lets you reuse your shell
scripting knowledge to get up and going quickly.

Shell compatibility
You can easily invoke an external process or shell com-
mand using proc or shell:

#!/usr/bin/env runhaskell

{-# LANGUAGE OverloadedStrings #-}

import Turtle

main = do
 mkdir "test"
 output "test/file.txt" "Hello!"
 proc "tar" ["czf", "test.tar.gz", "test"]
empty

-- or: shell "tar czf test.tar.gz test" empty

Even people unfamiliar with Haskell will probably
understand what the above program does.

Portability
"turtle scripts" run on Windows, OS X and Linux.
You can either compile scripts as native executables or
interpret the scripts if you have the Haskell compiler
installed.

Streaming
You can build or consume streaming sources. For
example, here’s how you print all descendants of the /
usr/lib directory in constant memory:

#!/usr/bin/env runhaskell

{-# LANGUAGE OverloadedStrings #-}

import Turtle

main = view (lstree "/usr/lib")
... and here's how you count the number of
descendants:
#!/usr/bin/env runhaskell

{-# LANGUAGE OverloadedStrings #-}

import qualified Control.Foldl as Fold
import Turtle

main = do
 n <- fold (lstree "/usr/lib") Fold.length
 print n

... and here’s how you count the number of lines in all
descendant files:

#!/usr/bin/env runhaskell

{-# LANGUAGE OverloadedStrings #-}

import qualified Control.Foldl as Fold
import Turtle

descendantLines = do
 file <- lstree "/usr/lib"
 True <- liftIO (testfile file)
 input file

main = do
 n <- fold descendantLines Fold.length
 print n

Exception Safety
turtle ensures that all acquired resources are safely
released in the face of exceptions. For example, if
you acquire a temporary directory or file, turtle will
ensure that it’s safely deleted afterwards:

example = do
 dir <- using (mktempdir "/tmp" "test")
 liftIO (die "The temporary directory will
still be deleted!")

However, exception safety comes at a price. turtle
forces you to consume all streams in their entirety so
you can’t lazily consume just the initial portion of a
stream. This was a tradeoff I chose in order to keep the
API as simple as possible.

36  PROGRAMMING

Patterns
turtle supports Patterns, which are like improved regular
expressions. Use Patterns as lightweight parsers to extract typed
values from unstructured text:

$ ghci
>>> :set -XOverloadedStrings
>>> import Turtle
>>> data Pet = Cat | Dog deriving (Show)
>>> let pet = ("cat" *> return Cat) <|> ("dog" *> return
Dog) :: Pattern Pet
>>> match pet "dog"
>>> [Dog]
>>> match (pet `sepBy` ",") "cat,dog,cat"
[[Cat,Dog,Cat]]

You can also use Patterns as arguments to commands like sed,
grep, or find, and they do the right thing:

>>> stdout (grep (prefix "c") "cat")
-- grep '^c'
cat
>>> stdout (grep (has ("c" <|> "d")) "dog")
-- grep 'cat\|dog'
dog
>>> stdout (sed (digit *> return "!") "ABC123")
-- sed 's/[[:digit:]]/!/g'
ABC!!!

Unlike many Haskell parsers, Patterns are fully backtracking,
no exceptions.

Formatting
turtle supports typed printf-style string formatting:

>>> format ("I take "%d%" "%s%" arguments") 2 "typed"
"I take 2 typed arguments"

turtle even infers the number and types of arguments from
the format string:

>>> :type format ("I take "%d%" "%s%" arguments")
format ("I take "%d%" "%s%" arguments") :: Text -> Int ->
Text

This uses a simplified version of the Format type from the for-
matting library. Credit to Chris Done for the great idea.

The reason I didn’t reuse the formatting library was that I
spent a lot of effort keeping the types as simple as possible to
improve error messages and inferred types.

Learn more
turtle doesn’t try to ambitiously reinvent
shell scripting. Instead, turtle just strives to
be a “better Bash.” Embedding shell scripts
in Haskell gives you the benefits of easy
refactoring and basic sanity checking for your
scripts.

You can find the turtle library on Hackage
[hn.my/turtle] or Github. [hn.my/ghturtle]
Also, turtle provides an extensive beginner-
friendly tutorial targeted at people who don’t
know any Haskell at all. [hn.my/turtletut] n

Gabriel Gonzalez builds analytics tools at Twitter and
in his free time he does open source Haskell program-
ming. He blogs about his work on haskellforall.com and
you can reach him at Gabriel439@gmail.com

Reprinted with permission of the original author.
First appeared in hn.my/haskellshell (haskellforall.com)

http://hn.my/turtle
http://hn.my/ghturtle
http://hn.my/turtletut
http://haskellforall.com
http://hn.my/haskellshell

  37

http://www.hostedgraphite.com

http://pivotaltracker.com

	FEATURES
	The Simple Proof of the Tetris Lamp
	By Jack Morris

	PROGRAMMING
	What Color is Your Function?
	How I Start: Nim
	A Gentle Primer on
Reverse Engineering
	My Experience With Using cp To Copy 432 Million Files
	From Node.js to Go
	Use Haskell for
Shell Scripting

