
Special Issue
November 2010

Cover Illustration: Marc Aspinall

2

Curator
Lim Cheng Soon

Proofreader
Ricky de Laveaga

Illustrator
Marc Aspinall

Printer
MagCloud

E-book Conversion
Fifobooks.com

Contributors
ARTICLES
Antonio Garcia-Martinez
Kelly Sutton
Robert C. Martin
Shaneal Manek
Mike Taylor
Yehuda Katz
Gary Bernhardt

COMMENTARIES
Ben Tilly
Ardit Bajraktari
Miles Egan
Mahmud Mohamed
Peter Norvig
Matt Brubeck
Brandon Smietana
Paul Graham

HACKER MONTHLY is the print magazine version of Hacker
News — news.ycombinator.com, a social news website wildly
popular among programmers and startup founders. The submis-
sion guidelines state that content can be “anything that gratifies
one’s intellectual curiosity.” Every month, we select from the
top voted articles on Hacker News and print them in magazine
format. For more, visit hackermonthly.com.

Advertising
ads@hackermonthly.com

Contact
contact@hackermonthly.com

Published by
Netizens Media
46, Taylor Road,
11600 Penang,
Malaysia.

http://fifobooks.com
http://news.ycombinator.com
http://hackermonthly.com
mailto:ads@hackermonthly.com
mailto:contact@hackermonthly.com

 3

Contents
4 New York Will Always Be a Tech Backwater

By ANTONIO GARCIA-MARTINEZ

8 Choosing New York over San Francisco
By KELLY SUTTON

10 Why Clojure?
By ROBERT C. MARTIN

14 Why I Chose Common Lisp over Python, Ruby, and Clojure
BY SHANEAL MANEK

18 Still Hatin’ on Git
By MIKE TAYLOR

22 My Common Git Workflow
By YEHUDA KATZ

24 Why I Switched to Git From Mercurial
BY GARY BERNHARDT

All articles and comments are printed with permission of their original author.

Back Cover Photo: Tony Hisgett, http://www.flickr.com/photos/hisgett/3919326385/.
Licensed under Creative Commons Attribution 2.0 Generic licence. Full terms available at http://creativecommons.org/licenses/by/2.0/deed.en.

http://www.flickr.com/photos/hisgett/3919326385/
http://creativecommons.org/licenses/by/2.0/deed.en

New York Will Always
Be A Tech Backwater

I don’t care what Chris Dixon or
Ron Conway or Paul Graham say

By ANTONIO GARCIA-MARTINEZ

4

Photo: Matt Clark, http://www.flickr.com/photos/jointhedots/4932770858/.
Licensed under Creative Commons Attribution 2.0 Generic licence. Full terms available at http://creativecommons.org/licenses/by/2.0/deed.en.

http://www.flickr.com/photos/jointhedots/4932770858/
http://creativecommons.org/licenses/by/2.0/deed.en

 5

LAST TUESDAY, LEGENDARY tech
investor Ron Conway addressed
the glop-eating masses at Y

Combinator during our usual Tuesday
illustrious-speaker dinner. The question
was asked about the New York tech
scene, and it’s relative strength vis-à-vis
Silicon Valley. Paul Graham took up the
question with Techcrunch TV recently, as
a follow-on to Conway’s remarks. Chris
Dixon, a respected New York-based VC,
has also chimed in on the tech renais-
sance going on there.

They’re all wrong.
New York will never be more than a

tech sideshow.
Thinking the New York tech scene

will ever equal Silicon Valley is as foolish
as thinking San Francisco’s puny theater
district will one day take on Broadway.
Both Silicon Valley and Broadway
are unique products of the cities that
spawned them, and every attempt to
create a Silicon Alley/Silicon Sentier/
Skolkovo/whatever in various parts of
the world have failed. So far, no one’s
managed to do it, and New York sure as
hell won’t either.

The hero with a couple of faces
As Matt Mireles incisively points out in
his related blog post, the mythology in
New York is all wrong for startups.

Let’s face it, young ambitious men have
two goals in life: getting laid, and impress-
ing other young ambitious men. You do
neither in New York by saying you’re
starting a startup. That slinky young thing
you’re chatting up at Schiller’s turns
around to the investment banker next to
her when you drop that bomb.

In the Bay Area, you drive through
Atherton or Woodside and see the
mansions that Netscape, Apple, and
Oracle built. On the Upper East Side
you see houses built thanks to the
depredations of previous generations,
and owned by the predators of today
(probably their children).

In the Bay Area, new money is better
than old. In New York, it’s precisely the
opposite. The mythology is all wrong.

$2495 for a 500 sq. ft.
one bedroom apartment.
There, that’s how much my first apart-
ment in New York cost (in 2005).

Living in New York, you hemorrhage
money, and don’t see much in return.
My career salary high-water mark is still
working as a quant on Goldman’s credit
desk, and I lived worse, from a quality-of-
life perspective, than I did as a Berkeley
graduate student. ‘Ramen’ money in New
York is enough to support three families,
and then some, elsewhere. If YCombina-
tor existed in New York, they’d have
to dish 5x more than their already slim
initial funding to keep new startups in
Cheetos for three months.

Basically, startups flourish in the Bay
Area the same reason the homeless do:
decent weather, relatively cheap living,
and no stigma attached to your lifestyle.

The cathedral and the brothel
Every yuppie I knew in New York
worked as either a Wall Street guy, a
lawyer, or an agent of some sort. Basi-
cally, there were all subtly screwing
someone else for a living.

As an academic exile, my passport to
this foreign world was my then live-in
girlfriend, an embodiment of her socio-
economic cohort: Bryn Mawr School
for Girls, followed by Harvard, followed
by med school. This was a person who
could open the Sunday Styles weddings
section, instantly identify a half-dozen
couples, and rattle off the juicy gossip
dating back to their time at Eliot House.

At cocktail parties with these people,
the “ambitious ass-kickers” Paul Graham
thinks will save the New York tech
scene, the second question you’re asked
is inevitably what do you do? And so
begins the not-so-subtle binning of you
into your social echelon, more ritualistic
and damning than any Japanese business
card exchange ceremony:

+2 for working at Goldman Sachs
-1 for being a quant rather than a banker
or trader
-1 for living on the Lower East Side
-2 for not being Ivy League
+/- 1 for being Gentile (depends on the
cocktail party).

And you’re socially in the red at that
point. The rest of the conversation is as
vacuous as interstellar space.

These people aren’t builders, they’re
hustlers. And hustlers don’t have the
patience or skill to create the next
Google or Facebook.

Open vs. closed source
New York’s entire economy is based on
monopolies of information. Wall Street
banks make a mint trading because
they have inside information on the
market flows of the products they trade.
Literary agents arbitrage scarce access
to book publishers against a mass of
hopeful authors. Real estate brokers
(and these are brokers on rental proper-
ties, not properties for sale) routinely
make a 15% commission when you sign
a lease, pocketing a good two-months
salary (read, upwards of $5000) for the
privilege of telling you where there’s an
apartment free.

In New York, those monopolies go
unchallenged.

In San Francisco, people don’t pay
two months’ rent to a real estate pimp:
they create Craigslist and make the
pimp obsolete.

6

The intellectual candle-power
isn’t there
Harvard and MIT anchor Boston’s
startup scene, and have midwifed count-
less startups. Berkeley and Stanford were
the birthplaces of everything from BSD
Unix to Google.

New York has no comparable sources
of intellectual firepower. NYU is an arts
school. Their only world class science
is the Courant Institute and its applied
math program, which serves as a feeder
school for Wall Street. Columbia is not
a top-notch engineering school, and
anyhow, it’s way the hell up and gone in
Harlem, and no one who isn’t a student
or faculty ever goes up there.

No place for Trotsky to sit down
One of the biggest shocks upon moving
to New York was realizing it had no cafés.
You can’t have startups or revolutionary
political movements without cozy cafés
to dawdle, work, and plot in. Every day I
step into the Red Rock Café in Mountain
View, I see 2-3 startup founders I know,
see about half a dozen hackers working
on something on their Macs, or overhear
some entrepreneur’s pitch to an investor.
Every day. Assuming you teleported all
those people to New York tomorrow, the
system would fall apart, as they’d have
nowhere to meet.

Katz’s pastrami is the only thing
I miss
As a random but illustrative tangent, the
food culture in NY vs. SF explains much
of the attitude toward work and money
as well.

The reality is, the food culture in New
York mostly sucks. Sure, people there
know how to go to Nobu and drop $300
on sushi, and every headliner chef needs
to have some New York outpost, but
most New Yorkers couldn’t fry an egg
if their lives depended on it (plus, most
don’t even have decent-sized kitchens).

In San Francisco just about everyone
I know is an über-foodie. Over plates
of home-cooked and home-grown
asparagus, I’ve had endless, meandering
conversations about heirloom tomato

gardening or where on Twin Peaks to find
the blackberry bushes. My ex-girlfriend
keeps a backyard chicken farm, in posh
Rockridge. People here go abalone diving
in Bodega Bay. There’s a herd of goats in
a vacant lot in West Oakland I drive by,
kept by an urban farming hippie. Most of
the veggies I eat come from our backyard
garden. Even the skeeziest convenience
store in Daly City or Oakland has a
drinkable collection of California wines
on offer.

On the flip side, New Yorkers don’t
know anything about actual food. They
know how to queue for two hours at the
fashionable brunch spot they read about
in New York magazine, and then opine
haughtily about whether the hollandaise
sauce on the Eggs Benedict compares to
Balthazar’s or not. In three years of living
in New York, I never ate someone else’s
home-cooked food even once.

The lesson when it comes to tech is
this: New Yorkers like bling. They like
the establishment. They go Gucci and let
you know it.

San Franciscans are more subversive:
they get obsessed with creme brulée,
quit their jobs, sell their obsession from
a cart, tweet about where the creme
brulée cart will be next (12,000 fol-
lowers and counting), and create a
whole new food paradigm: the socially-
networked food cart.

The latter is a bootstrapped startup
culture at work. It permeates everything
in SF life, including the food. And it’s
why SF will dominate tech for the
foreseeable future.

Happiness is a warm Sawzall
Another tangential but illustrative anec-
dote: Manhattan didn’t get a Home Depot,
or any sort of proper hardware store, until
2004 (!). The boys at Home Depot know
their market though. The place is mostly
indoor gardening supplies and little home
toolkits to tighten that loose door hinge
that keeps popping out. So, if it’s the
18V DeWalt Sawzall that cuts through
quarter-inch steel rods like a warm knife
does butter that you want, well, then, like
the signs on the BQE say, fuhgeddaboutit.

The Bay Area, by contrast, is a hacker’s
paradise. I’m fairly sure that between
the big Oakland Home Depot and the
geek paradise of Fry’s Electronics in
Palo Alto, I and a band of hardy souls
could re-build all of 21st century human
technological life on some barren island
if need be. Good luck doing that with
what you find on Fifth Avenue.

And that’s precisely what’s wrong
with New York: it’s filled with hyper-
stressed, aggressive, social climbers who
are actually kind of effete and helpless at
the end of the day, and probably need to
outsource their software development,
because they’re not, like, technical and all
that. Except there’s one problem….there
aren’t that many hackers in New York,
and the few there are (I know because I
used to be one of them) won’t leave their
$300,000 jobs on Wall Street to work on
your hopelessly risky idea.

Which brings us to the other reason
why New York will never be Silicon
Valley…

Greed is God
While that odd mélange of Las Vegas, the
Mafia and the Marines that we call Wall
Street has taken a bit of a beating of late,
rise again it will. And when it does, the
tech scene in New York will evaporate
like a puddle of water in the desert.

Time for the full disclosure: I spent
three years on Goldman Sachs’ credit
trading desk as a pricing quant, which is
what brought me to New York. The job
paid well. The hours and stress, no worse
than a startup’s. The social vindication of
what I was doing, absolute and immediate.

When the credit markets started look-
ing dicey at the beginning of 2008 and I
told my GS deskmates that I was moving
to California to join a startup, they
looked at me as if I had just proposed
shaving my head and joining a Buddhist
monastery in Burma. It was complete
and total incomprehension. And these
were the quants, most of them Ph.D.’s,
the geekiest Wall Street gets. Most of the
sales and trading guys probably couldn’t
find California on a map.

 7

None of those Goldman Sachs quants, most of
whom were precisely in the Spolskyian “smart/get
things done” category that you’d want in a startup,
really knew about or understood the startup scene,
and how you could get just as wealthy with a
startup, having lots more fun along the way, than
warming a seat on a Wall Street trading floor. You,
potential employer, will have to sell that person not
just on your startup, but on startups in general. And
that is a hard sale indeed. You’ll only do it if that
quant has lost his seat on the trading floor. That’s
been the case for some recently (including your
faithful correspondent), but last I heard, Goldman
is hiring again. So best of luck to you, aspiring New
York entrepreneur.

Money talks, but bullshit walks
Since I suspect this post may get a flame or two
from some diehard New Yorkers, I’ll lay down this
gauntlet in the face of regional jingoism:

I promise to wear one of those ridiculous
“I <heart> NY” shirts you buy for $3 from the
Nigerians in Times Square for an entire month if the
total amount of New York-based startup funding,
as reported in Crunchbase, exceeds that of Bay
Area-based startups in any financial quarter during
the next five years.

So…bring it, New York. ‘Cause I say the hippies
from California will continue to eat your lox.

Antonio is CEO and co-founder of AdGrok, a VC-backed
startup founded with the express purpose of helping small
businesses do online marketing. Before AdGrok, Antonio
was a research scientist at a Bay Area digital marketing
agency, writing bidding algorithms for online advertising
exchanges. Prior to marketing, he was a pricing quant on
Goldman Sachs’ credit and equity trading floors, modeling
credit-default swaps and various other weapons of financial
destruction. He arrived on Wall Street as a young, naive
physics Ph.D. student, and regrets the day he ever read
Liar’s Poker. When not grokking, he tries to play squash and
sail his 26-foot sloop Moksha.

Commentary
By BEN TILLY

THE POINT I consider most important is only alluded
to. In NY people try to maintain monopolies

of information. One place that applies to is a very
restrictive work for hire doctrine. If you have a job
in NYC, by default everything you create belongs to
your employer. Even if it was done at home on your
equipment. In California that particular right is one
that remains yours and cannot be lost (unless what you
do relates to your employer’s business).

The result is that in California it is common for
people to have a day job and work on the side on a
startup. You almost never see the side startup in NY.
Furthermore if you do see it, those startups can be
squashed in an instant when the employer finds out
about it. I’ve seen it happen. Not pretty. (The same
thing can happen, and does from time to time, with
open source projects. However it happens less often
because there are fewer cases where someone wants to
leave their day job for their open source project than
cases where they want to leave their day job for their
startup.)

That nasty little dynamic is a constant hidden drag
on NY. Nobody knows how many good ideas got
squashed and never saw the light of day...

Reprinted with permission of the original author.
First appeared in http://hn.my/nybackwater/.

http://hn.my/nybackwater/

8

Choosing New York
over San Francisco

I MOVED TO NEW York two months ago
to start full-time at blip.tv. I have
also been fortunate enough to live

in San Francisco and New York before
(along with Seattle, Los Angeles, Düs-
seldorf and Berlin). Given that there’s a
constant surplus of work to be done and
not enough engineers to do it, it’s realistic
to assume that I could have worked in
any city I wanted in just about any indus-
try (as long as I was designing software
or pounding code in some capacity).
Given that the Bay Area is so gung-ho on
everything silicon, why did I choose New
York City over Silicon Valley?

In short, New York City is more
interesting and – I believe – better
suited for the startup and a young guy’s
lifestyle. While I was not one of the first
employees at blip.tv, the startup lifestyle
seems to be pretty standard up until
about 40 people. So when Antonio railed
on my chosen city for 1,000+ words, it’s
difficult to not have a small existential
crisis. Did I make the right choice? What
if he’s right?

San Francisco is fun, don’t get me
wrong. Compared to New York, it’s
boring. I have trouble even thinking

about living in an apartment in Mountain
View, Cupertino or Palo Alto. Those
places are socially dead. Getting out
into the real world is an important thing
to do once in awhile. Talking tech over
microbrews with other startup founders
doesn’t count. Most of the products and
companies coming out of the Bay these
days are… a little too optimistic.

Every once in awhile, you see a Google
emerge from the Valley. But for every
Google emerging from the Valley, there
are ten thousand equally ambitious
startups that fail. Some of them fail
catastrophically. Bay Area startups are
much bigger gambles than many NYC
startups. Given the lifestyle in the City,
products are much closer to the pave-
ment and are a solution to a real-world
problem from Day 1. Not some social
network plaything.

I’ve got plenty of normal friends in
New York. When I’m giddy about an
idea, pitching it to someone that doesn’t
spend 8+ hours per day on a computer
can bring me back down to earth. The
social component of a real city with
museums, clubs, venues, pubs, bars and
barcades is important. Is housing more

expensive? Yes. Am I paying for a car?
No. Am I saving a decent amount of
money by not worrying about car pay-
ments, gas, insurance and maintenance?
Very much so. New York really isn’t that
much more expensive that the Valley, SF
or LA if you compare them correctly.

I’ve never experienced the ibanker
elitism that Antonio spends so much
time lamenting over. That’s Wall Street.
That’s part of New York, but that is not
New York in its entirety. I’ve picked
up that much in the two months I’ve
been here. Many people are genuinely
interested in you when you say that you
work for a startup. And besides, if you’re
expecting to have some sort of social
status because you’re a professional
gambler startup employee, I’m guessing
you’re in it for the wrong reasons. But
what do I know? I’m only 23.

Kelly Sutton is a software engineer at blip.tv.
Currently living in New York, Kelly has lived in
Seattle, San Francisco, Berlin and Los Angeles.
In his spare time he runs the sites HackCollege
and Cult of Less.

By KELLY SUTTON

I THINK ONE MAJOR argument that he didn’t
mention is that NYC beats SF hands

down in the “getting laid” department.
If you are young and your idea of

having a good time is going out, partying
until 4am, and getting laid often, then
you should stay in NYC.

If you a super hipster, social outcast
and/or into weird stuff, then come to SF.
Your friends are already here.

Commentary
By ARDIT BAJRAKTARI

Reprinted with permission of the original author.
First appeared in http://hn.my/nyoversf/.

http://hn.my/nyoversf/

http://breadpig.com

10

Why Clojure?

I HAVE RECENTLY BECOME quite an enthusiast for the language
Clojure. But why? Why would someone who has spent
the last 30 years programming in C, C++, Java, C#, and
Ruby suddenly become enamored with a language that

has roots that go back to 1957, i.e. Lisp?
During my first few decades as a professional programmer,

I never learned Lisp. I had heard of it, of course; though
mostly in derisive terms. People sneered about it with names like
“Lots of InSignificant Parentheses.” So my view was not particularly
favorable.

A few years ago, someone suggested that I learn Lisp by reading
a book entitled: “The Structure and Interpretation of Computer
Programs.” So I went to Amazon and ordered a copy from the
used books section. It arrived a week or so later, and then sat on
my “to read” stack for a couple of years.

I started reading it about two years ago; and it changed every-
thing I had previously felt and believed about Lisp. It also changed
a great deal of what I felt and believed about programming in
general. In short, the book was startling.

SICP is a literary masterpiece. It’s not often that you can say
that a technical book is a page-turner, but that’s just what I found
SICP to be. The book moves from topic to topic with rare ease
and clarity, but more importantly it moves with purpose and

mission. As you read it, you can feel the authors slowly building
a tension towards a climax. The chapters fly by as you read about
data structures, algorithms, message passing, first-class procedures,
and so much else. Each concept leads inevitably to the next. Each
chapter adds to the ever building tension. By time you are half-way
through the book, the sense that something important is about
to change becomes palpable.

And then something important changes! Something you had
not anticipated. Something you should have guessed, but did
not. On page 216 they introduce a concept so familiar that most
programming books start with it. On page 216 they prove to
you that you’ve had some wrong ideas about programming all
along. On page two hundred and sixteen, after talking about
algorithms, data structures, recursion, iteration, trees, high-order
procedures, scoping, local variables, data abstraction, closures,
message-passing, and a plethora of other topics – after all that,
they introduce assignment!

And with that elegant coup-de-grace (which is not the last
in this book!), they vanquish the concept that programming is
about manipulating state. With that one stroke, they force you
to look back on all you had done in the previous pages in a new
and enlightened way – a functional way.

By ROBERT C. MARTIN

“Moving functional programs
to massively parallel system
will be easier than moving
non-functional programs.”

 11

Moore’s Law
Why is functional programming important? Because Moore’s
law has started to falter. Not the part of the law that predicts
that the number of transistors on a chip doubles every two years.
Thankfully, that part of the law seems to still be in effect. The
part that faltered is the part that says the speed of computers
doubles every two years.

What this means is that our computers can still get faster, but
only if we put multiple CPUs on a chip. This is why we’ve seen
all these multi-core processors showing up. And that means that
programs that need greater speed will have to be able to take
advantage of the multiple cores.

If you’ve ever written multi-threaded code, the thought of eight,
sixteen, thirty-two, or even more processors running your program
should fill you with dread. Writing multi-threaded code correctly
is hard! But why is it so hard? Because it is hard to manage the
state of variables when more than one CPU has access to them.

And this is where functional programming comes in. Functional
programming, of the kind shown in SICP, is a way to write code
that does not manage the state of variables, and could therefore be
partitioned to run in parallel on as many processors as you like – at
least in theory. In practice it might not be quite that trivial; but
one thing is certain. Moving functional programs to massively
parallel system will be easier than moving non-functional programs.

12

Why Clojure?
So why is Clojure the best option for a functional language? After
all, there are lots of functional languages out there. Some are old,
like Haskell, and Erlang. Some are new like Scala and F#. Why
is Clojure the language that has everybody so fired up? Here are
just a few reasons.

Clojure is Lisp. And Lisp is a functional, simple, well-known,
elegant language. The syntax is almost laughably terse. This is in
contrast to languages like F# and Scala which have a complexity
and “quirkiness” reminiscent of C++.
Clojure is Java. Clojure sits on top of the Java stack, and has
the ability to inter-operate with Java with extreme ease. Java
programs can call Clojure, and Clojure can call Java. You can
write Clojure code that derives from Java classes and overrides
Java methods. In short, if you can do it in Java, you can do it in
Clojure. What’s more there is a Clojure port for the CLR! So
Clojure may be the only functional language that inter-operates
well with both major VMs.
Clojure implements Software Transactional Memory which
means that any time a Clojure programmer want’s to change
the state of a variable, they must do so using the same kind
of transaction management as they would use for a database.
This enforces the functional paradigm to a degree that few
other functional languages do. The STM facilities of Clojure
are elegant and simple, just like the rest of the language. They
do not intrude where they aren’t needed, and they are simple
to employ where state must be changed.
Clojure is fast. Data structures in functional languages are
immutable. For example, you can’t add an item to a list, instead
you create a copy of the list with the new item added. This copy-
ing could obviously slow things down a lot. Clojure manages
complex immutable data structures using a sharing technique
that eliminates the need to make deep copies of those structures.
This means that Clojure runs very fast.
Clojure is supported. There are tutorials and blogs. There are
IDE plugins. And there are mailing lists and user groups. If you
program in Clojure, you won’t be alone.

Conclusion
The last few decades have seen us migrate from procedures to
objects. Now the physical constraints of our hardware is driving
us to make a similar kind of paradigm shift towards functional
languages. The next few years will see us experiment with many
different projects using those languages as we try to figure out
which functional languages are best. I fully expect Clojure to
be ranked very highly when the results of those experiments
come in.

Robert C. Martin (Uncle Bob) is an international software consultant
guiding companies and programmers to raise the bar of software pro-
fessionalism and craftsmanship.

Commentary
By MILES EGAN

YOU KNOW, I really want to like Clojure,
but so far I’m finding it a bit of a slog,

for the following reasons:
1. stack traces are very hard to decipher
2. ubiquitous laziness can lead to some
really subtle bugs
3. the syntax can be extremely obtuse, more
so than other lisps
4. the basic ADT is just a keyed map, which
provides a lot of flexibility but also can
make data modeling very opaque, even
compared to other dynamic languages
5. immutable and recursive as a default
takes a lot of getting used to. things I could
dash out in minutes in ruby take me hours
sometimes
6. other languages have caught up enough
that Lisp macros are not as game changing
as they might have been ten years ago

I embarked on a project recently to
explore machine learning algorithms, imple-
menting them in both Scala and Clojure
at the same time. I expected this to be an
easy win for Clojure but, to my surprise, I’m
much more productive in Scala, my code
has fewer bugs, and I can refactor it much
more aggressively. I realize that this isn’t an
either/or thing and it may be entirely my
shortcomings at play here, but my instinct
is that although Clojure is a superb lisp, it’s
still a lisp, and it’s going to be a niche that
most programmers won’t choose to occupy.

Reprinted with permission of the original author.
First appeared in http://hn.my/whyclojure/.

http://hn.my/whyclojure/

http://www.catn.com

14

Why I Chose
Common Lisp over

Python, Ruby, and Clojure

A FEW MONTHS AGO, two co-
founders (Stu Wall and John
Buchanan) and I (Shaneal

Manek) started working on a startup
called Postabon.

The idea behind Postabon is simple:
we wanted to create a platform where
users could find and share ‘deals’ at brick
and mortar stores (be they sales, coupons,
happy hours, specials, etc). For example,
if I’m out near a mall and need a pair of
jeans I can pull out my phone and see
which store near me is having the best
sale on pants right now.

I just wanted to talk about a few of
the high level technical decisions that
I’ve made – in the hopes that it could
help other people starting new projects
out (and that I can get some feedback
and learn something myself). This post is
going to be pretty tightly focused on the
language I chose. I have a few other posts
in mind on topics such as the database
(BerkelyDB) and overall architecture
that I’m planning to write up in the next
week or two..

Language
The way I saw it, was that as the sole
programmer I needed a language that
was concise, powerful, and that let me
work quickly. This set of requirements,
in my mind, eliminated Java (and I
don’t know any C# …), which left me
considering Python, Ruby, Clojure, and
Common Lisp. I thought Haskell and
Erlang were promising – but I’m just
too inexperienced with them to commit
to a large project (and, for better or
worse, they aren’t really known as great
languages for web applications).

Python
I am fairly experienced with Python,
there are lots of great libraries/frame-
works for anything I would want to do,
and it would be easy to bring other pro-
grammers on-board later. However there
were a few negatives that, in aggregate,
were enough to get me to move on.

First, and most importantly, the
Python 2 to 3 conversion really scared
me. Most libraries I wanted to use were
still Python 2 only – which meant I
would have had to write Postabon’s back
end in Python 2. But it makes no sense to
me to write a large app, that I may have
to maintain for years, in a language that
has effectively received a death sentence.

Python 2 is fine now – but in the coming
months and years new libraries, features,
and performance improvements are
only going to be introduced in Python
3, and I didn’t want to get left behind or
forced to take on an expensive and time
consuming port in the future.

Second, I know it’s a bit cliche, but I
don’t like the Global Interpreter Lock,
which makes it basically impossible to
write multi-threaded apps that work
on multiple CPUs. Of course, writing a
multi-process app would be a
reasonable work-around, but it is a bit of
an annoyance.

Finally, Guido’s disdain for functional
programming makes it clear that I would
be a second class citizen in Python-land.
As a few small examples see:

The fact that he proposed removing
map, reduce, filter, and lambda from
Python 3.
His refusal to include tail call optimi-
zations in the language, despite the
minimal down side.
The completely broken implementa-
tion of closures.

My mind just works functionally, and
I don’t want to be forced to fight the
language I’m using at every turn.

By SHANEAL MANEK

 15

Ruby
I’ve played with Ruby (mostly in the
context of Rails) some – although I’m
nowhere near as proficient with it as I
am with Python, Lisp, etc. Ruby has a
lot of the same strengths as Python, with
fewer weaknesses. My criticisms about
Python’s GIL apply to it too – but again
simply using processes is an acceptable
work-around.

The biggest reason I chose not to go
this route is that the Ruby community
is just moving too fast for me right now.
Some major component of the develop-
ment/production stack of choice seems
to be changing every 6 months (e.g., I’ve
seen the webserver go from FastCGI/
Apache to Mongrel to Phusion to Uni-
corn). I couldn’t even easily figure out
which version (1.8 or 1.9?) to use – or
even which implementation (Ruby MRI,
Ruby EE, JRuby, etc). Most of the articles
I found online are a few months old and
I am told they are no longer accurate.

Also, much of the Ruby community
is built around Rails, and I’m a bit wary
of using ‘heavy weight’ frameworks
like Rails (or Django) on large custom
projects. In my experience they make
the first 90% of what I’m trying to do
be really easy – but then make the last
10% a living hell since I need to modify

something the framework never intended
me to control. I probably could have
written a “bare-bones” implementation
of the site’s back-end in Rails in a week
instead of two weeks, but I would rather
“waste” that one week up front to have
more flexibility later.

For example, I ended up writing
my own completely stateless session
handling, building a fairly smart geo-
spatial cache (in-memory R* trees that
asynchronously persist to disk using
B-Trees), and using a key-value store and
raw b-trees for persistence (instead of a
relational database). These (and a lot of
other non-standard decisions I’ve made)
are possible within Rails, but I think
they would have cost me more time and
energy than Rails would have saved up
front – especially in light of my lack of
experience with Rails.

In principle, I could see Ruby being
the right choice for someone who was
more experience with it upfront, is
adequately plugged into the community
and willing and able to switch out com-
ponents of their stack. But, personally, I
prefer a bit more stability in things.

Clojure
There are a lot of great things about
Clojure: it runs on the JVM so I get all
the Java libraries and that great JVM
performance, it’s functional from the
ground up, and it even has macros.

However, 6 months ago Clojure
hadn’t even had it’s 1.0 release (and
the language was constantly changing).
When I tried to download it the Slime
integration was completely broken and I
had to manually search through the SVN
repos of several key components to find a
relatively recent working set of tools that
worked together.

My feeling is that things are better
now (Clojure is 2 years old!) and if I
were making this decision again today, I
would give much more serious consider-
ation to Clojure.

Common Lisp
Finally, that brings me to Common Lisp.
I have plenty of experience writing web
apps in Lisp, so the high barrier to entry
wasn’t a deterrent in my case. Although,
make no mistake, that learning curve
for writing a good CL web app is steep
enough that I would warn most program-
mers to shy away from Lisp for writing a
production app on a tight schedule.

“As the sole programmer
I needed a language that
was concise, powerful, and
that let me work quickly.”

16

Commentary
By MAHMUD MOHAMED

DID YOU REALLY choose Lisp over alternatives?
Before learning CL I was a fairly decent, C,

C++ and Perl programmer. Did assembly, Pascal,
TCL and Awk. Up to that point, I always had to
pause a for a minute when starting a new project/
script, think about its scope, and choose a language
based on the necessary performance, development
speed, expressiveness, available libraries, etc. (and
whether whoever was going to read the code
afterward knew the language; C was often a natural
choice for code shared with others on Unix, C++ for
MFC/COM, Perl for sysadmin stuff, and TCL and
Awk for my own tools.)

I learned Lisp in over a month, to spite someone (I
dared a notorious troll I would write an AI bot of his
choice if he stopped spamming us, youthful bravado
for sure, and I lost the bet) While researching “AI” I
came across Winston and Horn’s “Common Lisp,”
then the hyperspec, then a few more books over the
course of a month. I sat down with SICP and did
the exercises on my break, while I was in school and
waiting tables.

After I learned it however, specially with CLOS,
there was no contest. Three months after buying
Sonya Keene’s CLOS book it was fair to say I forgot
all other programming languages. There were no
more “projects”; I no longer had to sketch out designs
on paper or do “requirement analysis” (something I
was told in school was necessary for all software.) For
once, the great ideas in my head were a new emacs
buffer away. I could write code faster than I would
in Perl, Awk or TCL, it ran as fast as C++, and it was
more expressive than the English in my head. I could
type “commands” into a shell get a dialog embedded
in my window, a few more commands and it would
move to the upper right corner, I could change its
name property and add text to it, then I could fold
that dialog box into a menu-item named “Help”
in the menu bar and call that dialog box “About.”
Amazing.

I went on hacking like this for about year when
I realized I was doing the “wrong thing.” You see, I
had been using CMUCL with its built-in editor and
writing GUI applications in Motif (it was 2001 and
Motif wasn’t open source yet, so I got the hang of
Lesstif and learned its quirks.) Right around this time,
Linux GUIs were maturing and people were being

I like that the language stabilized 15 years ago,
that the kinks have been worked out, and that it
has stood the test of time. I know the traditional
complaint is the dearth of libraries, and there
obviously aren’t as many options as they may be for
other languages. While I have been fortunate to find
several great options for everything I’ve needed to
do so far (JSON/XML parsing, HTTP servers and
clients, ORMs, etc) – more obscure libraries like
Thrift and OpenID support may be an issue in the
future. The lack of libraries is, without a doubt, the
biggest disadvantage of CL and one of the reasons
Clojure is so appealing to me. I can usually just
write my own foreign function interface into a C
library – but that’s really time consuming compared
to downloading an egg/gem/jar.

The ability to use dynamic typing for most of my
code but optionally give the compiler type-hints
and get all the performance of a statically typed
language for critical portions is a killer features that
I still haven’t found elsewhere.

On balance, I think that Common Lisp was the
best choice for me given my background and the
needs of this project.

Shaneal is a Harvard dropout with a long time interest
in functional programming. After a stint at Charles River
Analytics, an AI/ML focused defense contractor, he wrote
Postabon in Common Lisp and raised a Series A round
lead by Spark Capital. He recently left that position to join
Allston Trading, where he uses functional programming in
the world of high frequency trading.

Reprinted with permission of the original author.
First appeared in http://hn.my/commonlisp/.

http://hn.my/commonlisp/

 17

snobs about their Enlightenment themes and dissing
each other over their choice of Window Manager.
So I was peer-pressured into learning DHTML and
Web Design. I read comp.lang.lisp and those too were
snobbish condescending idiots who flamed everyone,
especially competent programmers whose work I
admired (including Scott McKay and Robert Fahl-
man (the very people who gave me my CMUCL.))

It was really hard to be a Lisper for a while,
especially a young impressionable one who read cll
uncritically; news of corporate giants coming with
new tools and programming languages to enslave
humanity were abound. First C++, then Java, then
XML, and finally .NET. You literally had to pick
your battles and choose a corporate sponsor or you
would have no future in computing! (you think I am
kidding?) cll is all doom and gloom, and of course,
there are the obligatory stabs at Lisp vendors by
Open Source proponents, and stabs at Open Source
from people alleging it’s killing our beloved vendors.
Every once in a while there was news of a Lisp
dialect that’s going to kill Common Lisp (Smalltalk,
Dylan, and the ancient religions of Mesopotamia.)

Fuck, that was painful.
All the while I was following this 4-year long

intellectual funeral, becoming ever more “hardcore”
and learning mathematics, there was a small group
of “Yobos” silently kicking ass and churning out
great software. CMUCL got forked to SBCL, added
unicode support and threads, not to mention easy
building, SLIME was a new Emacs mode better than
anything before and since, Cliki was launched, C-L.
net, and the #lisp IRC channel was born and hit
puberty overnight. Perfect ecosystem.

Today, Lisp is nothing like what it was 8,7,6, even
2 years ago. It’s not just “good” in the well-explored
text book fashion; no, it’s _good shit_. Get work
done good. Think, hack, ship, bill for it good. 2-3
products per month good. You still have to know
where things are, who is working on what, what’s
maintained and what’s obsoleted by what. Sure. But
there is absolutely no lack of libraries.

Special Commentary
By PETER NORVIG

I CAME TO PYTHON not because I thought it was a
better/acceptable/pragmatic Lisp, but because

it was better pseudocode. Several students claimed
that they had a hard time mapping from the
pseudocode in my AI textbook to the Lisp code
that Russell and I had online. So I looked for the
language that was most like our pseudocode, and
found that Python was the best match. Then I had
to teach myself enough Python to implement the
examples from the textbook. I found that Python
was very nice for certain types of small problems,
and had the libraries I needed to integrate with lots
of other stuff, at Google and elsewhere on the net.

I think Lisp still has an edge for larger projects
and for applications where the speed of the com-
piled code is important. But Python has the edge
(with a large number of students) when the main
goal is communication, not programming per se.

In terms of programming-in-the-large, at Google
and elsewhere, I think that language choice is not as
important as all the other choices: if you have the
right overall architecture, the right team of program-
mers, the right development process that allows for
rapid development with continuous improvement,
then many languages will work for you; if you don’t
have those things you’re in trouble regardless of
your language choice.

18

MONDAY’S LITTLE DIATRIBE
on git seemed to stir
up quite a bit of strong

opinion, both agreeing with me and
disagreeing. As is often the case, they
two camps seem to be split about 50-50,
which makes me happy. I means I can be
confident that I’m not talking complete
arse-gravy, but I have a good chance of
actually learning something.

For anyone who wasn’t around on
Monday, the substance of my post was
“git is bad because I don’t understand it.”
Or to paint myself in a slightly less bad
light, “git is bad for me because it makes
assumptions about how I work that don’t
match how I actually work.” Or, to sum-
marise the summary, “git is the work of
Sauron Gorthaur, the Abhorred, servant
of Morgoth Bauglir, the Dark Lord that
was called Melkor, destroyer and despiser,
the corrupt Ainu and corrupter of Arda.”

I’ll admit that yesterday’s post was
more a howl of anguish than a reasoned
argument (although I still like the
Harrier analogy). Having now calmed
down a little, I thought it might be
worth explaining myself a bit more, and
addressing some of the comments, both
here and at Hacker News.

Explain yourself, Taylor!
First, I was a bit shocked at the number
of people (mostly at HN) who seemed
to think that my whole problem with git
is the need to specify -a when doing a git
commit of all changed files. Folks, that
was what is known as an example of how
its model isn’t a good fit for how a lot of
us work. There are many more of these
— for example, the fact that if you run
git tag and subsequently push your repo,
the tag doesn’t get pushed.

Here is a more serious problem that I
run into all the time (including once this
very day):

I make a one-line change to a single
file.
I commit my change.
I git push, only to be told “! [rejected]
 master -> master (non-fast forward)”
(This is git’s cuddly way of telling you
to do a pull first.)
I git pull, only to be told “CONFLICT
(content): Merge conflict in filename.
Automatic merge failed; fix conflicts
and then commit the result.”

So far, so good — someone else edited
the same region of the same file as I did
(among their other edits): of course its a

conflict, there’s nothing git could do dif-
ferently here but notify me and ask me
to fix it. So I edit the file, fix the trivial
conflict, and .

Nuh-uh. “fatal: cannot do a partial
commit during a merge.”

Well, darn. So, OK, no problem, I
already fixed the conflict, so now I’ll
just again to get it to make
its world consistent, right? Nope: “fatal:
You have not concluded your merge.
(MERGE_HEAD exists)” Well, duh! I
was telling you to merge, you stupid git.
You’re the branches-and-merges-are-easy
version-control system around here.

All right, so I will just again,
and this time the merge will work OK.
Gotta work, yes? No. “You are in the
middle of a conflicted merge.” Well I
knew that! That’s why I am trying to
resolve it. In fact, that’s why I have
resolved it! All I am asking you to do is
accept my resolution. Please? Is that so
much to ask?

But wait — it’s worse than that! Not
only can I not commit the file that had
the conflict: I can’t commit any other file.
My whole repo is stuffed until I satisfy
the hungry god.

Still Hatin’ on Git
Now with Added Actual Reasons!

By MIKE TAYLOR

 19

But wait — it’s worse than that! git
 shows that there are many, many

modified files even though I know full
well that I only edited the one line of the
one file. Because all the other changes
that my colleague made have been
splunged across my tree and suddenly,
what the heck, they’re my responsibility!

The solution turns out to be that I
have to use , i.e. commit all
my changes in one go. But, dammit, git,
that’s not what I wanted to do! If I like
to commit on a file-by-file basis, what
business is it of yours to forbid me? And:
much, much worse: my re-
commits all the changes my buddy had
already made and commited! Seriously,
git: what the hell?

Something is rotten.

A handy household hint: how
to abandon your changes when
dealing with a conflicted merge
Of course, in the merge-conflict scenario
above, you may sometimes see that your
friend’s changes are correct and leave
yours irrelevant, so that you just want to
throw your own changes away and use
the version you pulled. Should be pretty
simple, huh? Well, according to the top-
voted answer to this question on Stack
Overflow, the correct thing to do is:

Talk about intuitive.
Here’s another one that I hate.
I needed to get back an older version

of a binary file, , so I could
compare it with the current version and
see what had changed. (is no
use in this situation, because it works on
text: I needed to get hold of the earlier
revision so I could pull it into OpenOf-
fice, which knows how to compare
documents.)

The command that does this is
git show, which writes the old ver-
sion on standard output so you can

redirect it into the file of your choice.
In general, the command is git show

. revision can
be to mean “the one before the
current one.” But when I did git show

, I got back a more than
usually incomprehensible error message.

It turns out that this is because the
file in question isn’t at the top level of
the git module: when I said pathToFile
earlier, I really meant it — you have to
give the whole path relative to the root
of the module. (The bit of the error
message about using ‘–’ turns out to be
complete red herring.) So I have to use

,
even though I am already in the directory
dino/epub.

You can’t tell me that’s right.

“You start out believing what you’re
told, that you can just use clone, pull,
add, commit and push, and ignore the
other 139 git commands. But you can’t.”

20

What makes it much, much worse
I just know that someone — probably
several someones — are going to reply to
this article saying: “you are mistaken; git
is correct.” These people, most of them
kindly and gently, will talk me through
my misconceptions about what a version
is, what a commit is, how it affects the
index, what a merge means, why it has to
be this way and why I am sadly mistaken
in thinking it should be otherwise. If we
were discussing this in a pub rather than
over the Internet, they would probably
find a scrap of paper and draw a nice
state-transition diagram for me, showing
how the various change-sets propagate
between the various checkouts, branches,
indexes and repositories. Nine times
out of the ten, this will be done with
patience and tact, with a side of burning
evangelistic fervour.

Here is my rebuttal:

I. Do. Not. Care.

This is what I meant last time about
git not degrading gracefully. It’s great
that it handles multiple local and remote
branches and merges and all the other
stuff, but you can’t Just Not Know about
that stuff. You start out believing what
you’re told, that you can just use ,

, , commit and push, and ignore the
other 139 git commands. But you can’t.
You have to keep learning more of them,
and learning new and baroque ways of
invoking them; and, more importantly,
learning more of the concepts. Any day
now, I expect to learn that before git
moves files into the index, it first keeps
them in a top-secret pre-index stash-
cache area.

Who is the user around here?
Is it terribly old-fashioned of me to
believe that when a user uses a tool, he
should be the one who determines how
it’s used?

The bottom line for me with git is
that I am sick of being pushed around. It
swans about as though it owns the place.
It make arbitrary demands. It tells me
what to do. It’s as though ext2fs insisted
on particular file-naming conventions,

or vi mandated a specific indentation
regime for your C code.

Unless of course …
Unless git is a hammer and I am trying

to use it as a screwdriver. Or perhaps
more appositely, it’s a bandsaw and I’m
trying to use it as a bread-knife. Or
indeed, it’s a Harrier and I’m trying to
use it as a bicycle.

Which I suspect is the case, and why I
think the move back to CVS/Subversion
might be the way to go.

The conclusion of the matter
One of the more thought-provoking
comments on the last article was this one
from teh:

I disagree with “Git’s just version
control. I resent the idea of investing a
month of evenings and weekends just to
be able to check my freakin’ files in.”

Version control is not “just” version
control, it’s a first class tool for every
programmer, up there with recursion
and all that jazz. A programmers work
is transforming code from one state to
another. Git treats these transformations
as first class objects, allowing you to
rewrite or reorder them, have alterna-
tive transformation branches, send them
around etc.

I still, frankly, resent the idea of spend-
ing the amount of time that I know will
be necessary to become a git wizard. But
I am increasingly reconciled to the idea
that it will be time invested rather than
time wasted.

I don’t intend to be graceful about this
— I plan to mutter and groan and whine
incessantly — but I have a horrible feel-
ing the the outcome of this article and its
predecessor is that I’m going to end up
Deeply Learning git. I don’t want to — I
hate the idea of ending up as one of the
Git Advocates that I was complaining
about earlier — but I think I’m going to
have to. And if I do it, I’m going to do
it properly, which means *sigh* another
book, and probably another Long Over-
due Serious Attempt At series.

As Xiong Chiamiov wrote in a
comment:

I use it because the benefits outweigh all
of the things that you mentioned.

Dammit all, he’s right, isn’t he?

Mike Taylor is a computer programmer by day
and a dinosaur palaeontologist by night, twin
obsessions reflected in his two blogs,
http://reprog.wordpress.com/ and
http://svpow.wordpress.com/. He started
programming in 1980, on a Commodore
PET 2001 and a Video Genie, and has hardly
stopped since.

Reprinted with permission of the original author.
First appeared in http://hn.my/hatingit/.

http://reprog.wordpress.com/
http://svpow.wordpress.com/
http://hn.my/hatingit/

http://cloudkick.com

22

A RECENT POST THAT was highly
ranked on Hacker News
complained about common

git workflows causing him serious pain.
While I won’t get into the merit of his
user experience complaints, I do want to
talk about his specific use-case and how I
personally work with it in git.

Best I can tell, Mike Taylor (the guy
in the post) either tried to figure out a
standard git workflow on his own, or he
followed poor instructions that tried to
bootstrap someone from an svn back-
ground while intentionally leaving out
important information. In any event, I’ll
step through my personal workflow for
his scenario, contrasting with subversion
as I go.

Cloning the Repository
The very first step when working with
a repository is to clone it. In subversion,
this is accomplished via

. This retrieves
the most recent revision of the trunk
branch of the repository.

In git, this is accomplished via git
 (the http

protocol is also possible). This retrieves
the entire repository, including other
branches and tags.

Making the Change
In both git and subversion, you make the
change using a normal text editor.

After Making the Change
In git, you make a local commit, marking
the difference between the most recent
pulled version (master) and the changes
you made. In subversion, the normal
workflow does not involve making a
change, but apparently some people
make manual diffs in order to have a
local copy of the changes before updat-
ing from the remote. Here’s an example
comment from the Hacker News post:

I’ll tell you what happens when I use
svn and there’s been an upstream
change: I never update my local tree
with local modifications. Instead, I
extract all my local changes into a diff,
then I update my local tree, and then I
merge my diff back into the updated tree
and commit.

When I need three-way merging, which
isn’t often – usually patch can resync
simple things like line offsets – it’s
handled by a file comparison tool. I
have a simple script which handles this.

My personal process for making the
commit in git almost always involves the
gitx GUI, which lets me see the changes
for each individual file, select the files
(or chunks in the files) to commit, and
then commit the whole thing. I some-
times break up the changes into several
granular commits, if appropriate.

Updating from the remote
Now that we have our local changes,
the next step is to update from the
remote. In subversion, you would run
svn up. Here, subversion will apply a
merge strategy to attempt to merge the
remote changes with the local ones that
you made. If a merge was unsuccessful,
subversion will tell you that a conflict
has occurred. If you did not manually
save off a diff file, there is no way to get
back to the status from before you made
the change.

In git, you would run . By
default, git applies the “recursive” strat-
egy, which tries to merge your current
files with the remote files at the most
recent revision. As with subversion, this
can result in a conflict. You can also pass
the flag to pull, which is how I
usually work. This tells git to stash away
your commits, pull the remote changes,

My Common Git Workflow
By YEHUDA KATZ

 23

and then reapply your changes on top
one at a time.

If you use , you may get a
conflict for each of your local commits,
which is usually easier to handle than a
bunch of conflicts all at once.

I definitely recommend using
which also provides instructions for deal-
ing with conflicts as they arise.

In either case, in my experience, git’s
merging capabilities are more advanced
than subversion’s. This will result in
many fewer cases where conflicts occur.

Resolving Conflicts
From here on, I am assuming you followed
my advice and used .

If a conflict has occurred, you will
find that if you run git status, all of the
non-conflicting files are already listed
as “staged,” while the conflicting files
are listed outside the staging area. This
means that the non-conflicting files are
already considered “added” to the current
commit.

To resolve the conflicts, fix up the files
listed outside the staging area and

 them. Again, I normally use
gitx to move the resolved files into the
staging area.

Once you have resolved the conflict,
run . This tells
git to use the fixed up changes you just
made instead of the original commit it
was trying to put on top of the changes
you got from the remote.

In subversion, if you got a conflict,
subversion will create three files for you:

, , and . You are
responsible for fixing up the conflicts and
getting back a working file. Once you are
done, you run svn resolved.

NOTE: If you had not used
 but instead did raw ,

you would fix up the files, add the files
using or gitx, and the run git
commit to seal the deal

Yikes! Something went wrong!
In git, if something goes wrong, you just
run , which will bring
you back to your last local commit.

In subversion, it’s not always possible
unless you manually stored off a diff
before you started.

Pushing
Now that you’re in sync with the remote
server, you push your changes. In git, you
run git push. In subversion, you run
commit.

One Glossed-Over Difference
Subversion allows you to commit
changes even if you haven’t ed and
there have been changes to the remote,
as long as there are no conflicts between
your local files and the remote files.

Git never allows you to push changes
to the remote if there have been remote
changes. I personally prefer the git

behavior, but I could see why someone
might prefer the subversion behavior.
However, I glossed over this difference
because every subversion reference I’ve
found advises running before a
commit, and I personally always did that
in my years using subversion.

Note that I am not attempting to
provide an exhaustive guide to git here;
there are many more git features that are
quite useful. Additionally, I personally do
a lot of local branching, and prefer to be
able to think about git in terms of cheap
branches, but the original poster explic-
itly said that he’d rather not. As a result, I
didn’t address that here.

I also don’t believe that thinking of
git in terms of subversion is a good idea.
That said, the point of this post (and the
point of the original poster) is that there
are a set of high-level version control
operations that you’d expect git to be
able to handle in simple cases without a
lot of fuss.

Yehuda Katz (wycats) is a programmer at
Engine Yard, with a background in account-
ing, journalism, and twelve other things that
would surprise you. He grew up in New York,
and now lives in sunny California. He’s been
working with Rails since before 1.0, is a Core
Team Member on the jQuery project, and was
the lead developer on the Merb project. In
the time not spent working on open source,
he writes about open source, and talks about
open source. Go figure.

Operation git svn

Clone a repository

Preparing changes nothing or create a manual diff

Update from the remote

Resolving conflicts without –rebase N/A

Yikes! Rolling back then apply diff (only if you manu-
ally made a diff first)

Pushing git push

Workflow comparison between git and subversion.

Reprinted with permission of the original author. First appeared in http://hn.my/gitworkflow/.

http://hn.my/gitworkflow/

24

I USED MERCURIAL FOR three years, but started
switching to Git about a year ago. I now grudg-
ingly recommend Git to anyone who intends to

be a full-time programmer. Git’s interface is bad in
many ways, which is the main complaint about it, and
it’s a legitimate one. It’s just an interface, though, and
this is a tool you’re going to use all day, every day, in
a wide variety of situations.

Here are all of the ways that Mercurial has harmed
me, or that I’ve seen it harm others, and the ways in
which Git does good where Mercurial does evil:

 Mercurial is bad at handling large amounts of data.
A friend accidentally committed a couple GB of data
into a Mercurial repository. It became completely
broken, to the point where most commands would die
because they ran out of memory. Git has no problem
with large data. It’s awesome to be able to put, say, an
entire home directory or ports install under version
control without fear. (I recently put a multi-gigabyte
MacPorts install under version control with Git without
even thinking about it.)

	 Mercurial’s repository model is clunky and stays
hidden in the background (this is a bad thing; don’t
let anyone tell you otherwise). If you have a Mercurial
repository whose size is dominated by a single, 20 MB
directory, and you then rename that directory, your
repository just doubled to 40 MB. This has limited
my ability to manage real-life Mercurial repositories.
Git’s repository model is so good that I only hesitate
slightly when calling it perfect. It allows me to think
about what’s going on in the repository with an ease
that I never had with Mercurial, despite using it much
more than Git.

 Mercurial is not safe. Both systems ship with
many commands that change history, but Git’s data
model is such that even a “delete” isn’t really a delete.
Destructive commands just create new nodes in the
history graph, then adjust the branch to point at them.
Whenever this happens, the old branch HEAD is still
accessible using the reflog. That’s awesome, and it alone
would bring me to Git.

Mercurial’s answer to this is weak: destructive com-
mands shove a bundle file into a subdirectory of the
Mercurial repository; you have to manually manipulate
it if you want to get the data back. Except some of the
destructive commands don’t dump the bundle files,
which has made me lose actual data in the past. Even
for the commands that do dump the files, keeping
track of them, and which applies where, becomes
difficult fast.

tl;dr:
Mercurial made my repositories huge for no reason.
Mercurial broke when my friend put lots of data
in it.
Mercurial lost my data when I did a destructive
command.
In a year of Git, it’s never done anything nearly
as bad.

I’m sorry for recommending software with a confus-
ing interface. But you’ll be spending a lot of time with
it; it’s worth getting over the initial hurdle of confusion.

...until something better comes along, of course.

Gary Bernhardt is a creator and destroyer of software
compelled to understand both sides of heated software
debates: Vim and Emacs; Python and Ruby; Git and Mercu-
rial. He blogs about software at extracheese.org.

Why I Switched to Git
From Mercurial

By GARY BERNHARDT

Reprinted with permission of the original author.
First appeared in http://hn.my/gitmer/.

http://extracheese.org
http://hn.my/gitmer/

w

I’VE USED GIT for three years, at two different companies and
various personal and community projects. I sync my home

directory between hosts using git, I have administered multi-
user git repos using gitosis, and I have been a GitHub user since
early 2008.

I started using Mercurial two months ago when I joined
the Mozilla corporation, and now use it every day on one of
the biggest and best-supported installations in the world. I
also started using BitBucket for some of my Mozilla-related
personal projects.

It might be that I don’t fully “get” Mercurial yet, but I still
find myself frequently missing Git. My first impression is that
Git has a simple flexible model that supports a complex front-
end, while Mercurial has a simple extensible front-end that
ends up creating a somewhat more complicated model.

Any time I need to step outside the standard commit-merge-
push workflow, I find the higher level of abstraction between
Mercurial’s user commands and its database makes it harder to

understand what I’m doing, and sometimes prevents me from
doing what I want. Things like rewriting history (e.g. for rebas-
ing), or combining changes from multiple remote repos with
different sets of branches, are still possible in Mercurial - but
they usually require plugins to do well, there are more different
incompatible ways to do them, and there are more opportuni-
ties to mess up your repo.

More concretely, I find that MQ is the best way to do many
tasks in Mercurial that I would do in git with plain old branches
and commits, and for many of these uses MQ is both more
complicated and less flexible than the equivalent git commands.
(But there are other uses where MQ is really better than
the alternatives.) I also find that it’s much more annoying to
manage short-lived throwaway or topic branches in Mercurial,
so much that I simply avoid using them much of the time.

But perhaps I’m just brainwashed (or brain-damaged) from
too many years with Git. :)

Commentary
By MATT BRUBECK

http://www.padpressed.com

26

LARRY PAGE’S BROTHER Carl Page had
experience with venture capitalists,

having sold eGroups to Yahoo for $432
million. Because of Carl Page’s experi-
ence with venture capitalists Page and
Brin were extremely unwilling to cede
control over their company to investors.

Learning the lessons of Carl Page, Page
and Brin delayed venture capital financing
until they were almost profitable, resulting
in a higher valuation and
less loss of control over
their company; Google’s
VC round valuation
was extremely high
by historical standards
and this reflected their
bargaining position at
the time. They played
two prominent separate
venture capitalist firms
against each other to minimize their loss
of control and to maximize valuation and
double the number of social connections the
company had access to. Page and Brin issued
themselves special Class-B shares which
held 10 votes per share compared to the 1
vote per share of the Class-A and common
stock. This effectively eliminated the pos-
sibility of investor take-over of the company
by shareholder vote, as each founder had
more votes than all the outstanding shares
of Class-A and common stock. Sergey and
Larry were also extremely careful about
choosing their board members and put an
emphasis on retaining control of the board.

The one concession Page and Brin made
was an agreement to bring on an outside
CEO. However they delayed doing this for
years and antagonized all prospective CEO
candidates, merely meeting with them to
placate their VC investors. Under pressure
from the VC, Page and Brin took on Eric
Schmidt as CEO, but only after examining
a large number of candidates. Page and Brin
put an unusual amount of time into CEO

selection and chose to delay taking on a CEO
until they found one who was compatible
with and would not adversely affect their
company culture. Eric Schmidt was probably
a particularly good fit with Google’s culture
because of his tenure at Sun.

Retaining control over the company
proved to be crucial to Google’s success.
Most of the early company revenues came
from enterprise search, and the investors
and Eric Schmidt pressured the company
to drop consumer facing search and to
focus on the enterprise market. However
Page and Brin disregarded this advice as
they anticipated the growth of a market
for online advertisement. At the time this
decision was being made, the New York
Times was quoting experts as saying “No
one will ever make $250 million dollars a

year from online advertising.” It has also
been said that Page and Brin disregarded
pressure from investors to copy Yahoo! and
diversify Google into a portal site, deciding
instead to focus on the core search and
advertising market.

Another key decision Google made was
to keep their financials absolutely secret.
Page and Brin learned something from the
Internet Explorer and Netscape browser

wars and had a healthy
fear of Microsoft coming
in and crushing them.
They therefore kept
their financials abso-
lutely secret, did no
marketing, did not evan-
gelize their product and
hid the fact that they
were making money at
all. Not even employees

in the company had access to the financial
information due to the fear that knowledge
about the profitability of search could spur
competition with Microsoft.

Another key decision in the company’s
history was achieving early profitability,
and going for an IPO, using the funds to
acquire and build an advertising network.
Google would not have been as successful
as it is today if it had chosen to be acquired
instead of achieving profitability and doing
an IPO. It has been suggested that Google’s
hand was forced in the decision to IPO
rather than undergoing acquisition because
it was unable to find a company interested
in purchasing them.

What were the key decisions that
Larry Page and Sergey Brin made
in the early days of Google?
By BRANDON SMIETANA

MANAGING VCS WELL was not what
made Google successful – or

what makes any startup successful.
The real key decisions were things like
realizing search itself was important, at
a time when all the other search engines
thought it was unsexy, and were trying to
get people to start calling them “portals”
instead; designing the architecture to
work on large numbers of unreliable,

cheap computers; understanding how
important speed was; making the site
uncluttered; deciding to hire only very
smart people; etc. That’s what made the
company valuable, and if it hadn’t been
valuable it wouldn’t have mattered how
well they’d avoided dilution.

Commentary
By PAUL GRAHAM

Get HACKERMONTHLY delivered to you every month.
Visit hackermonthly.com/subscribe

http://hackermonthly.com/subscribe
http://hackermonthly.com/subscribe

Hacker Monthly is an independent project by
Netizens Media and not affiliated with Y Combinator

in any way.

Tell us what you think
Let us know what you liked, and what we need to work on.
Please share your thoughts so we can improve the coming issues.

hackermonthly.com/feedback/

http://hackermonthly.com/feedback/

	Contents
	New York Will Always Be A Tech Backwater
	Choosing New York over San Francisco
	Why Clojure?
	Why I Chose Common Lisp over Python, Ruby, and Clojure
	Still Hatin' on Git
	My Common Git Workflow
	Why I Switched to Git From Mercurial

