
Issue 1  June 2010

Launched.

Curator's Note

I would like to give huge thanks to the contributors, who
so generously granted Hacker Monthly the permission
to reprint their articles; to the advertisers, who believe

in us despite it being just the first issue; to Paul Graham,
who thankfully did not oppose this idea and gave me the
go-ahead; and most of all, to the members of Hacker News,
who provided both support and valuable feedback to mate-
rialize the idea.

Creating Hacker Monthly has been both interesting and
educational. Prior to this, I did not have any experience
working with magazines or print. In one month, I've learned
everything I could about printing magazines and spent
countless hours working my way through Adobe InDesign.
I've also exchanged hundreds of emails asking for reprint
permissions and looking for prospective advertisers. The
only downside has been I don't have much time left to
code, which I miss quite a bit.

I remember the day I was sitting at Starbucks, when I
started imagining what the magazine version of Hacker
News would be like. I can finally stop imagining now.
— Lim Cheng Soon

ContentsCurator
Lim Cheng Soon

Contributors
Brian Shul
Carlos Bueno
Jamie Zawinski
Eric Davis
Carter Cleveland
Bradford Cross
Hamilton Ulmer
Adam Kempa
Gary Haran
Walt Kania
Evan Miller
Tawheed Kader
Paul Graham
Jason Cohen
Steve Blank
Dave Rodenbaugh
William A. Wood

Proofreader
Ricky de Laveaga

Printer
MagCloud

Advertising
ads@hackermonthly.com

Rate Card
hackermonthly.com/ratecard

Contact
curator@hackermonthly.com

Published by
Netizens Media
46, Taylor Road,
11600 Penang,
Malaysia.

HACKER MONTHLY is the print magazine version of Hacker
News — news.ycombinator.com — a social news website
wildly popular among hackers and startup founders. The
submission guidelines state that content can be "anything
that gratifies one's intellectual curiosity."
Every month, we select from the top voted articles on
Hacker News and print them in magazine format. For more,
visit hackermonthly.com.

mailto:ads@hackermonthly.com
http://hackermonthly.com/ratecard
mailto:curator@hackermonthly.com
http://news.ycombinator.com/
http://hackermonthly.com/

  3

Contents

Photo credit: Bisecting the Moonrise by Steve Jurvetson (www.flickr.com/photos/jurvetson/2693120417/) in front cover, Dark Clouds With a Touch Sky by Dean Souglass (www.flickr.com/
photos/deansouglass/494131526/) in back cover, SR-71 @ Air And Space Museum by Sh4rp_i (www.flickr.com/photos/85638163@N00/426687730/).
Licensed under Creative Commons Attribution 2.0 Generic licence (creativecommons.org/licenses/by/2.0/deed.en).

PROGRAMMING

14  iPhone Developer: “This is why I sell beer”
By JAMIE ZAWINSKI

16  2 Steps to Becoming a Great Developer
By ERIC DAVIS

18  Top Three Motivators for Developers
By DAVE RODENBAUGH

STARTUP

32  How I Took My Web-App to Market in 3
Days
By TAWHEED KADER

34  Organic Startup Ideas
By PAUL GRAHAM

36  Not Disruptive, and Proud of It
By JASON COHEN

38  Turning on Your Reality Distortion Field
By STEVE BLANK

CAREER

20  What Value do We Create Here?
By CARTER CLEVELAND

22  7 Tips for Successful Self-Learning
By BRAFORD CROSS and HAMILTON ULMER

SPECIAL

25  Adam?...is there a reason your laptop is
in the fridge?
By ADAM KEMPA

26  The Scariest Pricing Idea Ever
By WALT KANIA

29  5 Actions that Made Me Happier
By GARY HARAN

30  How Not to Run an A/B Test
By EVAN MILLER

39  Best Writing Advice for Engineers
By WILLIAM A. WOOD

FEATURES

4  Flying the SR-71 Blackbird
By BRIAN SHUL

10  A Dismal Guide to Concurrency
By CARLOS BUENO

http://www.flickr.com/photos/jurvetson/2693120417/
http://www.flickr.com/photos/deansouglass/494131526/
http://www.flickr.com/photos/85638163@N00/426687730/
http://creativecommons.org/licenses/by/2.0/deed.en

Flying the SR-71
Blackbird

FEATURES

By BRIAN SHUL

http://news.ycombinator.com/item?id=1247709

  5

In April 1986, following an
attack on American soldiers
in a Berlin disco, President
Reagan ordered the bombing

of Muammar Qaddafi’s terrorist camps
in Libya. My duty was to fly over Libya
and take photos recording the damage
our F-111’s had inflicted. Qaddafi had
established a ‘line of death,’ a territo-
rial marking across the Gulf of Sidra,
swearing to shoot down any intruder
that crossed the boundary. On the
morning of April 15, I rocketed past
the line at 2,125 mph.

I was piloting the SR-71 spy plane,
the world’s fastest jet, accompanied
by Maj Walter Watson, the aircraft’s
reconnaissance systems officer (RSO).
We had crossed into Libya and were
approaching our final turn over the
bleak desert landscape when Walter
informed me that he was receiving mis-
sile launch signals. I quickly increased
our speed, calculating the time it
would take for the weapons-most
likely SA-2 and SA-4 surface-to-air
missiles capable of Mach 5 - to reach
our altitude. I estimated that we could
beat the rocket-powered missiles to
the turn and stayed our course, betting
our lives on the plane’s performance.

After several agonizingly long sec-
onds, we made the turn and blasted
toward the Mediterranean ‘You might
want to pull it back,’ Walter suggested.
It was then that I noticed I still had the
throttles full forward. The plane was
flying a mile every 1.6 seconds, well
above our Mach 3.2 limit. It was the
fastest we would ever fly. I pulled the
throttles to idle just south of Sicily, but
we still overran the refueling tanker
awaiting us over Gibraltar.

Scores of significant aircraft have
been produced in the 100 years of
flight, following the achievements of
the Wright brothers, which we cel-
ebrate in December. Aircraft such as
the Boeing 707, the F-86 Sabre Jet,
and the P-51 Mustang are among the

important machines that have flown
our skies. But the SR-71, also known as
the Blackbird, stands alone as a signifi-
cant contributor to Cold War victory
and as the fastest plane ever-and only
93 Air Force pilots ever steered the
‘sled,’ as we called our aircraft.

As inconceivable as it may sound, I
once discarded the plane. Literally. My
first encounter with the SR-71 came
when I was 10 years old in the form
of molded black plastic in a Revell kit.
Cementing together the long fuselage
parts proved tricky, and my finished
product looked less than menacing.
Glue, oozing from the seams, dis-
colored the black plastic. It seemed
ungainly alongside the fighter planes
in my collection, and I threw it away.

Twenty-nine years later, I stood awe-
struck in a Beale Air Force Base hangar,
staring at the very real SR-71 before
me. I had applied to fly the world’s
fastest jet and was receiving my first
walk-around of our nation’s most pres-
tigious aircraft. In my previous 13 years
as an Air Force fighter pilot, I had never
seen an aircraft with such presence. At
107 feet long, it appeared big, but far
from ungainly.

Ironically, the plane was dripping,
much like the misshapen model had
assembled in my youth. Fuel was seep-
ing through the joints, raining down on
the hangar floor. At Mach 3, the plane
would expand several inches because
of the severe temperature, which could
heat the leading edge of the wing to
1,100 degrees. To prevent cracking,
expansion joints had been built into
the plane. Sealant resembling rubber
glue covered the seams, but when the
plane was subsonic, fuel would leak
through the joints.

The SR-71 was the brainchild of
Kelly Johnson, the famed Lockheed
designer who created the P-38, the
F-104 Starfighter, and the U-2. After
the Soviets shot down Gary Powers’
U-2 in 1960, Johnson began to develop

an aircraft that would fly three miles
higher and five times faster than
the spy plane-and still be capable
of photographing your license plate.
However, flying at 2,000 mph would
create intense heat on the aircraft’s
skin. Lockheed engineers used a tita-
nium alloy to construct more than 90
percent of the SR-71, creating special
tools and manufacturing procedures
to hand-build each of the 40 planes.
Special heat-resistant fuel, oil, and
hydraulic fluids that would function
at 85,000 feet and higher also had to
be developed.

In 1962, the first Blackbird success-
fully flew, and in 1966, the same year
I graduated from high school, the Air
Force began flying operational SR-71
missions. I came to the program in
1983 with a sterling record and a rec-
ommendation from my commander,
completing the weeklong interview
and meeting Walter, my partner for
the next four years He would ride four
feet behind me, working all the cam-
eras, radios, and electronic jamming
equipment. I joked that if we were
ever captured, he was the spy and I
was just the driver. He told me to keep
the pointy end forward.

We trained for a year, flying out of
Beale AFB in California, Kadena Air-
base in Okinawa, and RAF Mildenhall
in England. On a typical training mis-
sion, we would take off near Sacra-
mento, refuel over Nevada, accelerate
into Montana, obtain high Mach over
Colorado, turn right over New Mexico,
speed across the Los Angeles Basin, run
up the West Coast, turn right at Seattle,
then return to Beale. Total flight time:
two hours and 40 minutes.

One day, high above Arizona, we
were monitoring the radio traffic of all
the mortal airplanes below us. First, a
Cessna pilot asked the air traffic con-
trollers to check his ground speed.
‘Ninety knots,’ ATC replied. A twin
Bonanza soon made the same request. »

6  FEATURES

‘One-twenty on the ground,’ was the
reply. To our surprise, a navy F-18
came over the radio with a ground
speed check. I knew exactly what he
was doing. Of course, he had a ground
speed indicator in his cockpit, but he
wanted to let all the bug-smashers in
the valley know what real speed was
‘Dusty 52, we show you at 620 on the
ground,’ ATC responded. The situa-
tion was too ripe. I heard the click of
Walter’s mike button in the rear seat.
In his most innocent voice, Walter
startled the controller by asking for a
ground speed check from 81,000 feet,
clearly above controlled airspace. In a
cool, professional voice, the controller
replied, ‘ Aspen 20, I show you at 1,982
knots on the ground.’ We did not hear
another transmission on that frequency
all the way to the coast.

The Blackbird always showed us
something new, each aircraft possess-
ing its own unique personality. In time,
we realized we were flying a national
treasure. When we taxied out of our
revetments for takeoff, people took
notice. Traffic congregated near the air-
field fences, because everyone wanted
to see and hear the mighty SR-71. You
could not be a part of this program and
not come to love the airplane. Slowly,

she revealed her secrets to us as we
earned her trust.

�

One moonless night, while flying
a routine training mission over

the Pacific, I wondered what the sky
would look like from 84,000 feet if the
cockpit lighting were dark. While head-
ing home on a straight course, I slowly
turned down all of the lighting, reduc-
ing the glare and revealing the night sky.
Within seconds, I turned the lights back
up, fearful that the jet would know and
somehow punish me. But my desire
to see the sky overruled my caution,
I dimmed the lighting again. To my
amazement, I saw a bright light outside
my window. As my eyes adjusted to
the view, I realized that the brilliance
was the broad expanse of the Milky
Way, now a gleaming stripe across the
sky. Where dark spaces in the sky had
usually existed, there were now dense
clusters of sparkling stars Shooting
stars flashed across the canvas every
few seconds. It was like a fireworks
display with no sound. I knew I had to
get my eyes back on the instruments,
and reluctantly I brought my atten-
tion back inside. To my surprise, with
the cockpit lighting still off, I could
see every gauge, lit by starlight. In the

plane’s mirrors, I could see the eerie
shine of my gold spacesuit incandes-
cently illuminated in a celestial glow.
I stole one last glance out the window.
Despite our speed, we seemed still
before the heavens, humbled in the
radiance of a much greater power. For
those few moments, I felt a part of
something far more significant than
anything we were doing in the plane.
The sharp sound of Walt’s voice on
the radio brought me back to the tasks
at hand as I prepared for our descent.

The SR-71 was an expensive aircraft
to operate. The most significant cost
was tanker support, and in 1990, con-
fronted with budget cutbacks, the Air
Force retired the SR-71. The Blackbird
had outrun nearly 4,000 missiles, not
once taking a scratch from enemy fire.

On her final flight, the Blackbird,
destined for the Smithsonian National
Air and Space Museum, sped from Los
Angeles to Washington in 64 minutes,
averaging 2,145 mph and setting four
speed records.

The SR-71 served six presidents,
protecting America for a quarter of
a century. Unbeknownst to most of
the country, the plane flew over North
Vietnam, Red China, North Korea,
the Middle East, South Africa, Cuba,

Photo credit: SR-71 Blackbird by Marcin Wichary (www.flickr.com/photos/mwichary/3422253299/),
Museum of Flight by Susie Gallaway (www.flickr.com/photos/susiegallaway/3298500593/),

»

http://www.flickr.com/photos/mwichary/3422253299/
http://www.flickr.com/photos/susiegallaway/3298500593/

  7

Nicaragua , Iran , Libya , and the Falk-
land Islands . On a weekly basis, the
SR-71 kept watch over every Soviet
nuclear submarine and mobile mis-
sile site, and all of their troop move-
ments. It was a key factor in winning
the Cold War.

I am proud to say I flew about 500
hours in this aircraft. I knew her well.
She gave way to no plane, proudly drag-
ging her sonic boom through enemy
backyards with great impunity. She
defeated every missile, outran every
MiG, and always brought us home. In
the first 100 years of manned flight, no
aircraft was more remarkable.

With the Libyan coast fast approach-
ing now, Walt asks me for the third
time, if I think the jet will get to the
speed and altitude we want in time. I
tell him yes. I know he is concerned.
He is dealing with the data; that’s
what engineers do, and I am glad he is.
But I have my hands on the stick and
throttles and can feel the heart of a
thoroughbred, running now with the
power and perfection she was designed
to possess. I also talk to her. Like the
combat veteran she is, the jet senses the
target area and seems to prepare herself.

For the first time in two days, the
inlet door closes flush and all vibration

is gone. We’ve become so used to the
constant buzzing that the jet sounds
quiet now in comparison. The Mach
correspondingly increases slightly and
the jet is flying in that confidently
smooth and steady style we have so
often seen at these speeds. We reach
our target altitude and speed, with five
miles to spare. Entering the target area,
in response to the jet’s newfound vital-
ity, Walt says, ‘That’s amazing’ and with
my left hand pushing two throttles
farther forward, I think to myself that
there is much they don’t teach in engi-
neering school.

Out my left window, Libya looks
like one huge sandbox. A featureless
brown terrain stretches all the way to
the horizon. There is no sign of any
activity. Then Walt tells me that he is
getting lots of electronic signals, and
they are not the friendly kind. The jet is
performing perfectly now, flying better
than she has in weeks. She seems to
know where she is. She likes the high
Mach, as we penetrate deeper into
Libyan airspace. Leaving the footprint
of our sonic boom across Benghazi, I
sit motionless, with stilled hands on
throttles and the pitch control, my eyes
glued to the gauges.

Only the Mach indicator is moving,

steadily increasing in hundredths, in
a rhythmic consistency similar to the
long distance runner who has caught
his second wind and picked up the
pace. The jet was made for this kind
of performance and she wasn’t about
to let an errant inlet door make her
miss the show. With the power of forty
locomotives, we puncture the quiet
African sky and continue farther south
across a bleak landscape.

Walt continues to update me with
numerous reactions he sees on the
DEF panel. He is receiving missile-
tracking signals. With each mile we
traverse, every two seconds, I become
more uncomfortable driving deeper
into this barren and hostile land. I am
glad the DEF panel is not in the front
seat. It would be a big distraction now,
seeing the lights flashing. In contrast,
my cockpit is ‘quiet’ as the jet purrs
and relishes her newfound strength,
continuing to slowly accelerate.

The spikes are full aft now, tucked
twenty-six inches deep into the
nacelles. With all inlet doors tightly
shut, at 3.24 Mach, the J-58s are more
like ramjets now, gulping 100,000
cubic feet of air per second. We are
a roaring express now, and as we roll
through the enemy’s backyard, I hope

Lockheed SR-71 (Blackbird) front view by Keith (www.flickr.com/photos/pheanixphotos/4109160435/), SR-71 2 by Andrew Fogg (www.flickr.com/photos/ndrwfgg/55930821/). Licensed under
Creative Commons Attribution 2.0 Generic licence (creativecommons.org/licenses/by/2.0/deed.en).

»

http://www.flickr.com/photos/pheanixphotos/4109160435/
http://www.flickr.com/photos/ndrwfgg/55930821/
http://creativecommons.org/licenses/by/2.0/deed.en

8  FEATURES

our speed continues to defeat the mis-
sile radars below. We are approaching
a turn, and this is good. It will only
make it more difficult for any launched
missile to solve the solution for hitting
our aircraft.

I push the speed up at Walt’s request.
The jet does not skip a beat, nothing
fluctuates, and the cameras have a rock
steady platform. Walt received mis-
sile launch signals. Before he can say
anything else, my left hand instinc-
tively moves the throttles yet farther
forward. My eyes are glued to tem-
perature gauges now, as I know the
jet will willingly go to speeds that can
harm her. The temps are relatively cool
and from all the warm temps we’ve
encountered thus far, this surprises me
but then, it really doesn’t surprise me.
Mach 3.31 and Walt are quiet for the
moment.

I move my gloved finger across the
small silver wheel on the autopilot
panel, which controls the aircraft’s
pitch. With the deft feel known to
Swiss watchmakers, surgeons, and
‘dinosaurs’ (old- time pilots who not
only fly an airplane but ‘feel it’), I
rotate the pitch wheel somewhere
between one-sixteenth and one-eighth
inch location, a position which yields
the 500-foot-per-minute climb I desire.
The jet raises her nose one-sixth of a
degree and knows, I’ll push her higher
as she goes faster. The Mach contin-
ues to rise, but during this segment
of our route, I am in no mood to pull
throttles back.

Walt’s voice pierces the quiet of my
cockpit with the news of more missile
launch signals. The gravity of Walter’s
voice tells me that he believes the
signals to be a more valid threat than
the others. Within seconds he tells me
to ‘push it up’ and I firmly press both
throttles against their stops. For the
next few seconds, I will let the jet go as
fast as she wants. A final turn is coming
up and we both know that if we can hit
that turn at this speed, we most likely

will defeat any missiles. We are not
there yet, though, and I’m wondering
if Walt will call for a defensive turn
off our course.

With no words spoken, I sense Walter
is thinking in concert with me about
maintaining our programmed course.
To keep from worrying, I glance outside,
wondering if I’ll be able to visually pick
up a missile aimed at us. Odd are the
thoughts that wander through one’s
mind in times like these. I found myself
recalling the words of former SR-71
pilots who were fired upon while flying
missions over North Vietnam They
said the few errant missile detonations
they were able to observe from the
cockpit looked like implosions rather
than explosions. This was due to the
great speed at which the jet was hurl-
ing away from the exploding missile.

I see nothing outside except the end-
less expanse of a steel blue sky and
the broad patch of tan earth far below.
I have only had my eyes out of the
cockpit for seconds, but it seems like
many minutes since I have last checked
the gauges inside. Returning my atten-
tion inward, I glance first at the miles
counter telling me how many more to
go, until we can start our turn Then I
note the Mach, and passing beyond
3.45, I realize that Walter and I have
attained new personal records. The
Mach continues to increase. The ride
is incredibly smooth.

There seems to be a confirmed trust
now, between me and the jet; she
will not hesitate to deliver whatever
speed we need, and I can count on no
problems with the inlets. Walt and I
are ultimately depending on the jet
now - more so than normal - and she
seems to know it. The cooler outside
temperatures have awakened the spirit
born into her years ago, when men
dedicated to excellence took the time
and care to build her well. With spikes
and doors as tight as they can get, we
are racing against the time it could take
a missile to reach our altitude.

It is a race this jet will not let us
lose. The Mach eases to 3.5 as we crest
80,000 feet. We are a bullet now -
except faster. We hit the turn, and I feel
some relief as our nose swings away
from a country we have seen quite
enough of. Screaming past Tripoli, our
phenomenal speed continues to rise,
and the screaming Sled pummels the
enemy one more time, laying down
a parting sonic boom. In seconds, we
can see nothing but the expansive blue
of the Mediterranean. I realize that I
still have my left hand full forward
and we’re continuing to rocket along
in maximum afterburner.

The TDI now shows us Mach num-
bers, not only new to our experience
but flat out scary. Walt says the DEF
panel is now quiet, and I know it is
time to reduce our incredible speed.
I pull the throttles to the min ‘burner
range and the jet still doesn’t want to
slow down. Normally the Mach would
be affected immediately, when making
such a large throttle movement. But for
just a few moments old 960 just sat out
there at the high Mach, she seemed to
love and like the proud Sled she was,
only began to slow when we were well
out of danger. I loved that jet. n

Brian Shul was an Air Force fighter pilot
for 20 years. Shot down in Vietnam, he
spent one year in hospitals and was told
he’d never fly again. He flew for another
15 years, including the world’s fastest jet,
the SR-71. As an avid photographer Brian
accumulated the world’s rarest collection
of SR-71 photographs and used them to
create the two most popular books ever
done on that aircraft, Sled Driver, and The
Untouchables. Brian today is an avid nature
photographer and in high demand nation-
wide as a motivational speaker.

Reprinted with permission of the original author. First appeared on the book 'Sled Diver'. For more information, visit www.sleddriver.com.

»

http://news.ycombinator.com/item?id=1247709
http://www.sleddriver.com/
http://www.sleddriver.com/

Reach the hackers and
startup founders who are
building tomorrow's web.

Advertise with Hacker Monthly
Email us at ads@hackermonthly.com. Don't forget to ask us about our
introductory advertising offer.

mailto:ads@hackermonthly.com

10  FEATURES

A Dismal Guide to
Concurrency

Two people can paint
a house faster than
one can. Honeybees
work independently

but pass messages to each other about
conditions in the field. Many forms of
concurrency 0 , so obvious and natural
in the real world, are actually pretty
alien to the way we write programs
today. It’s much easier to write a pro-
gram assuming that there is one pro-
cessor, one memory space, sequential
execution and a God’s-eye view of the
internal state. Language is a tool of
thought as much as a means of expres-
sion, and the mindset embedded in the
languages we use can get in the way.1

We’re going through an inversion of
scale in computing which is making
parallelism and concurrency much

more important. Single computers are
no longer fast enough to handle the
amounts of data we want to process.
Even within one computer the relative
speeds of processors, memory, storage,
and network have diverged so much
that they often spend more time wait-
ing for data than doing things with
it. The processor (and by extension,
any program we write) is no longer a
Wizard of Oz kind of character, sole
arbiter of truth, at the center of every-
thing. It’s only one of many tiny bugs
crawling over mountains of data.

Many hands make light work
A few years ago Tim Bray decided to
find out where things stood. He put a
computer on the Internet, which con-
tained over 200 million lines of text in

one very large file. Then he challenged
programmers to write a program to
do some simple things with this file,
such as finding the ten most common
lines, which matched certain patterns.
To give you a feel for the simplicity
of the task, Bray’s example program
employed one sequential thread of
execution and had 78 lines of code,
something you could hack up over
lunch.

The computer was unusual for the
time: it had 32 independent hardware
threads, which could execute simulta-
neously. The twist of the WideFinder
challenge was that your program had
to use all of those threads at once to
speed up the task, while adding as little
code as possible. The purpose was to
demonstrate how good or bad everyday

By CARLOS BUENO

Photo credit: Tight Spin by Aaron Waagner (www.flickr.com/photos/copilot/62083698).
Licensed under Creative Commons Attribution 2.0 Generic licence (creativecommons.org/licenses/by/2.0/deed.en).

http://news.ycombinator.com/item?id=1260759
http://www.flickr.com/photos/copilot/62083698
http://creativecommons.org/licenses/by/2.0/deed.en

  11

programming is at splitting large jobs
into parallel tracks.

How hard could it be? I thought. Very
hard, as it happened. I got up to 4 par-
allel processes before my program col-
lapsed under its own weight. The crux
of the problem was that the file was
stored on a hard drive. If you’ve never
peeked inside a hard drive, it’s like a
record player with a metal disc and
a magnetic head instead of a needle.
Just like a record it works best when
you “play” it in sequence, and not so
well if you keep moving the needle
around. And of course it can only play
one thing at a time. So I couldn’t just
split the file into 32 chunks and have
each thread read a chunk simultane-
ously. One thread had to read from
the file and then dole out parts of it
to the others. It was like trying to get
31 housepainters to share the same
bucket.

When I looked at other people’s
entries for hints I was struck by how
almost all of them, good and bad,
looked complicated and steampunky.
Part of that was my unfamiliarity with
the techniques, but another part was
the lack of good support for parallel-
ism, which forced people to roll their
own abstractions. (Ask four program-
mers to create a new abstraction and
you’ll get five and a half answers.) The
pithiest entry was 130 lines of OCaml,
a language with good support for “par-
allel I/O” but which is not widely used
outside of academia. Most of the others
were several hundred lines long. Many
people like me were not able to com-
plete the challenge at all. If it’s this
difficult to parallelize a trivial string-
counting program, what makes us think
we’re doing it right in complex ones?

Ideally, concurrency shouldn’t leak
into the logic of programs we’re trying
to write. Some really smart people
would figure out the right way to do
it. They would write papers with lots
of equations in them and fly around
to conferences for a few years until
some other smart people figured out
what the hell they were saying. Those
people would go develop libraries in
our favorite programming languages.
Then we could just put import concur-

rent; at the top of our programs and

be on our way. Concurrency would
be another thing we no longer worry
about unless we want to, like memory
management. Unfortunately there is
evidence that it won’t be this clean
and simple. 2 A lot of things we take
for granted may have to change.

There are at least two concurrency
problems to solve: how to get many
components inside one computer to
cooperate without stepping all over
each other, and how to get many com-
puters to cooperate without drown-
ing in coordination overhead. These
may be special cases of a more general
problem and one solution will work for
all. Or perhaps we’ll have one kind of
programming for the large and another
for the small, just as the mechanics of
life are different inside and outside of
the cell.

At the far end of the spectrum are
large distributed databases,
such as those used by search
engines, online retailers, and
social networks. These things
are enormous networks of
computers that work together
to handle thousands of writes
and hundreds of thousands of
reads every second. More machines in
the system raise the odds that one of
them will fail at any moment. There
is also the chance that a link between
groups of machines will fail, cutting the
brain in half until it is repaired. There
is a tricky balance between being able
to read from such a system consistently
and quickly and writing to it reliably.
The situation is summed up by the
CAP Theorem, which states that large
systems have three desirable but con-
flicting properties: Consistency, Avail-
ability, and Partition-tolerance. You can
only optimize for two at the expense
of the third.

A Consistent/Available system
means that reading and writing always
works the way you expect, but requires
a majority or quorum of nodes to be
running in order to function. Think
of a parliment that must have
more than half of members
present in order to hold a vote.
If too many can’t make it, say
because a flood washes out the
bridge, a quorum can’t be formed

and business can’t proceed. But when
enough members are in communica-
tion the decision-making process is fast
and unambiguous.

Consistent/Partitionable means that
the system can recover from failures,
but requires so much
extra coordination
that it collapses under
heavy use. Imagine
having to send and
receive a status report
for every decision
made at your company. You’ll always
be current, and when you come back
from vacation you will never miss
a thing, but making actual progress
would be very slow.

Available/Partitionable
means that you can always
read and write values, but
the values you read might

be out of date.
A classic example is gossip:
at any point you might not
know the latest on what
Judy said to Bill but even-
tually word gets around.
When you have new gossip
to share you only have to

tell one or two people and trust that in
time it will reach everyone who cares.
Spreading gossip among computers is
a bit more reliable because they are
endlessly patient and (usually) don’t
garble messages.4

After lots of groping around with
billions of dollars of revenue at stake,
people who build these large systems
are coming to the conclusion that it’s
most important to always be able to
write to a system quickly and read
from it even in the face of temporary
failures. Stale data is a consequence
of looser coupling and greater auton-
omy needed to make that possible. It’s
uncomfortable to accept the idea that
as the computing power of an Avail-
able/Partitionable system scales up, the
fog of war descends on consistency, but
in practice it’s not the end of the world.

This was not a whimsical nor
easy choice. Imagine Ebenezer
Scrooge is making so much
money that Bob Cratchit can’t
keep up. Scrooge needs more
than one employee to receive »

12  FEATURES

“

and count it. To find out the grand total
of his money at any point, he has to
ask each of them for a subtotal. By
the time Scrooge gets all the answers
and adds them up, his employees have
counted more money, and his total is
already out of date. So he tells them to
stop counting while he gathers subto-
tals. But this wastes valuable working
time. And what if Scrooge adds another
counting-house down the street? He’ll
have to pay a street boy, little Sammy
Locke, to a) run to the other house and
tell them to stop counting, b) gather
their subtotals, c) deliver them to
Scrooge, then d) run back to the other
house to tell them to resume count-
ing. What’s worse, his customers can’t
pay him while this is happening. As his
operation gets bigger Scrooge is faced
with a growing tradeoff between stale
information and halting everything

to wait on Locke. If there’s anything
Scrooge likes less than old numbers, it’s
paying people to do nothing.

Scrooge’s dilemma is forced upon
him by basic physics. You can’t avoid
it by using electrons instead of street
urchins. It’s impossible for an event
happening in one place (eg data chang-
ing inside one computer or process) to
affect any other place (eg other com-
puters or processes) until the informa-
tion has had time to travel between
them. Where those delays are small
relative to performance requirements,
Scrooge can get away with various
forms of locking and enjoy the illusion
of a shared, consistent memory space.
But as programs spread out over more
and more independent workers, the
complexity needed to maintain that
illusion begins to overwhelm every-
thing else.3

import concurrent;
Shared memory can be pushed fairly
far, however. Instead of explicit locks,
Clojure and many newer languages use
an interesting technique called software
transactional memory. STM simulates a
sort of post-hoc, fine-grained, implicit
locking. Under this scheme semi-inde-
pendent workers, called threads, read
and write to a shared memory space
as though they were alone. The system
keeps a log of what they have read and
written. When a thread is finished the
system verifies that no data it read was
changed by any other. If so the changes
are committed. If there is a conflict
the transaction is aborted, changes
are rolled back and the thread’s job is
retried. While threads operate on non-
overlapping parts of memory, or even
non-overlapping parts of the same data
structures, they can do whatever they

want without the overhead of lock-
ing. In essence, transactional memory
allows threads to ask for forgiveness
instead of permission.

As you might have guessed from
those jolly hints about conflict and
rollback, STM has its own special
problems, like how to perform those
commit/abort/retry cycles efficiently
on thousands of threads. It’s fun to
imagine pathological conflict scenarios
in which long chains of transactions
unravel like a cheap sweater.5 STM
is also not able to handle actions that
aren’t undoable. You can’t retry most
kinds of I/O for the same reason you
can’t rewind a live concert. This is han-
dled by queueing up any non-reversible
actions, performing them outside of
the transaction, caching the result in a
buffer, and replaying as necessary. Read
that sentence again.

Undeniably awesome and clever as
STM threads are, I’m not convinced
that shared memory makes sense out-
side of the “cell membrane” of a single
computer. Throughput and latency

always have the last laugh. A concur-
rent system is fundamentally limited by
how often processes have to coordinate
and the time it takes them to do so. As
of this writing computer memory can
be accessed in about 100 nanoseconds.
Local network’s latency is measured in
microseconds to milliseconds. Schemes
that work well at local memory speeds
don’t fly over a channel one thousand
times slower. Throughput is a problem
too: memory can have one hundred
times the throughput of network, and
is shared among at most a few dozen
threads. A large distributed database
can have tens of thousands of inde-
pendent threads contending for the
same bandwidth.

If we can’t carry the shared-mem-
ory model outside of the computer, is
there some other model we can bring
inside? Are threads, ie semi-indepen-

dent workers that play inside a shared
memory space, absolutely necessary? In
his “standard lecture” on threads Xavier
Leroy details three reasons people use
them:

•	 Shared-memory parallelism using
locks or transactions. This is explic-
itly disowned in both Erlang and
Leroy’s OCaml in favor of message-
passing. His argument is that it’s too
complex, especially in garbage-col-
lected languages, and doesn’t scale.

•	 Overlapping I/O and computation, ie
while thread A is waiting for data to
be sent or received, threads B-Z can
continue their work. Overlapping
(aka non-blocking I/O) is needed
to solve problems like WideFinder
efficiently. This is often thwarted by
low-level facilities inside the operat-
ing system that were written without
regard to parallelism. Leroy thinks
this should be fixed at the OS level
instead of making every program
solve it again and again.

In essence, transactional memory allows threads
to ask for forgiveness instead of permission.”

»

  13

•	 Coroutines, which allow different
functions to call each other repeat-
edly without generating an infinitely
long stack of references back to the
first call. This looks suspiciously like
message-passing.

Message-passing, which first
appeared in Smalltalk, is the core
abstraction of Joe Armstrong’s pro-
gramming language Erlang. Erlang pro-
grams do things that make program-
mers take notice, like run some of the
busiest telephone switches for years
without fail 6. It approaches concur-
rency with three iron rules: no shared
memory even between processes on
the same computer, a standard format
for messages passed between pro-
cesses, and a guarantee that messages
are read in the order in which they
were received. The first rule is meant
to avoid the heartaches described
above and embraces local knowledge
over global state. The second and third
keep programmers from endlessly
reinventing schemes for passing mes-
sages between processes. Every Erlang
process has sovereign control over its
own memory space and can only affect
others by sending well-formed mes-
sages. It’s an elegant model and hap-
pens to be a cleaned-up version of the
way the Internet itself is constructed.
Message-passing is already one of the
axioms of concurrent distributed com-
putation, and may well be universal.

There are probably more axioms
to discover. Languages become more
powerful as abstractions are made
explicit and standardized. Message-
passing says nothing about optimizing
for locality, ie making sure that pro-
cesses talk with other processes that are
located nearby instead of at random. It
might be cool to have a standard way to
measure the locality of a function call.
Languages become even more power-
ful when abstractions are made first-
class entities. For example, languages
that can pass functions as arguments
to other functions can generate new
types of higher-order functions with-
out the programmer having to code
them by hand. A big part of distributed

computing is designing good proto-
cols. I know of no language that allows
protocols as first-class entities that can
be passed around and manipulated like
functions and objects are. I’m not even
sure what that would look like but it
might be interesting to try out.

There is a lot of sound and fury
around parallelism and concurrency.
I don’t know what the answer will be.
I personally suspect that a relaxed,
shared-memory model will work well
enough within the confines of one
computer, in the way that Newtonian
physics works well enough at certain
scales. A more austere model will be
needed for a small network of comput-
ers, and so on as you grow. Or perhaps
there’s something out there that will
make all this lockwork moot. n

Notes
0. Parallelism is the act of taking a
large job, splitting it up into smaller
ones, and doing them at once. People
often use “parallel” and “concurrent”
interchangably, but there is a subtle
difference. Concurrency is necessary
for parallelism but not the other way
around. If I alternate between cooking
eggs and pancakes I’m doing both con-
currently. If I’m cooking eggs while you
are cooking pancakes, we are cooking
concurrently and in parallel. Techni-
cally if I’m cooking eggs and you are
mowing the lawn we are also working
in parallel, but since no coordination
is needed in that case there’s nothing
to talk about.
1. “The slovenliness of our language
makes it easier for us to have foolish
thoughts. The point is that the process
is reversible.” -- George Orwell, Politics
and the English Language
“That language is an instrument
of human reason, and not merely a
medium for the expression of thought,
is a truth generally admitted.” - George
Boole, The Laws of Thought
2. Neither was the switch to memory
management, come to think of it.
3. This is not about speed-of-light
effects or anything like that. I’m only
talking about reference frames in the

sense of “old news”, such as when you
find out your cousin had gotten mar-
ried last year. Her wedding and your
unawareness are both “true” relative to
your reference frames until you receive
news to the contrary.
4. The categories are not rigidly exclu-
sive. The parliment problem is miti-
gated in real parliments with quorum
rules: say if a majority of members
are in one place, or some minimum
number is present in chambers, they
can act as though they were the full
body. The status report problem is
usually handled by having heirar-
chies of supervisors and employees
aka “reports”. The gossip consistency
problem can be helped by tagging data
with timestamps or version numbers
so you can reconcile conflicting values.
5. There is a recent paper about an
interesting variation on this theme
called HyTM, which appears to do a
copy-on-write instead of performing
writes to shared memory.
6. A lot of writeups repeat a “nine
nines”, ie 99.9999999% reliability
claim for Erlang-based Ericsson tele-
phone switches owned by British Tele-
coms. This works out to 31 milliseconds
of downtime per year, which hovers
near the edge of measurability, not to
say plausibility. I was present at a talk
Armstrong gave in early 2010 during
which he was asked about this. There
was a little foot shuffling as he qualified
it: it was actually 6 or so seconds of
downtime in one device during a code
update. Since BT had X devices over
Y years, they calculated it as 31ms of
average downtime per device per year.
Or something like that. Either way it’s
an impressive feat.

Carlos Bueno is an engineer at Facebook. He
writes occasionally about general program-
ming topics, performance, security, and
internationalization. His long-term project
is to “save the web”: to build a network of
independent, redundant, Internet archives.

Reprinted with permission of the original author. First appeared in www.facebook.com/note.php?note_id=379717628919.

http://www.facebook.com/note.php?note_id=379717628919
http://news.ycombinator.com/item?id=1260759

14  PROGRAMMING

Dali Clock 2.31 is out now, I finally got the
iPhone/iPad port working.

It was ridiculously difficult, because I refused
to fork the MacOS X code base: the desktop and the phone
are both supposedly within spitting distance of being the
same operating system, so it should be a small matter of
ifdefs to have the same app compile as a desktop applica-
tion and an iPhone application, right?

Oh ho ho ho.
I think it’s safe to say that MacOS is more source-code-

compatible with NextStep than the iPhone is with MacOS.
It’s full of all kinds of idiocy like this -- Here’s how it goes
on the desktop:

NSColor fg = [NSColor colorWithCalibratedHue:h saturation:s

brightness:v alpha:a];

[fg getRed:&r green:&g blue:&b alpha:&a];

[fg getHue:&h saturation:&s brightness:&v alpha:&a];

But on the phone:
UIColor fg = [UIColor colorWithHue:h saturation:s brightness:v alpha:a];

const CGFloat *rgba = CGColorGetComponents ([fg CGColor]);

// Oh, you wanted to get HSV? Sorry, write your own.

It’s just full of nonsense like that. Do you think someone
looked at the old code and said, “You know what, to make
this code be efficient enough to run on the iPhone, we’re
going to have to rename all the classes, and also make sure
that the new classes have an arbitrarily different API and
use arbitrarily different arguments in their methods that do
exactly the same thing that the old library did! It’s the only
way to make this platform succeed.”

No, they got some intern who was completely unfamiliar
with the old library to just write a new one from scratch
without looking at what already existed.

It’s 2010, and we’re still innovating on how you pass

color components around. Seriously?
You can work around some of this nonsense with #defines,

but the APIs are randomly disjoint in a bunch of ways too,
so that trick only goes so far. If you have a program that
manipulates colors a lot, you can imagine the world of
#ifdeffy hurt you are in.

Preferences are the usual flying circus as well. I finally
almost understood bindings, and had a vague notion of when
you should use NSUserDefaultsController versus NSUserDefaults,
and now guess what the iPhone doesn’t have? Bindings.
Or NSUserDefaultsController. But it does have NSUserDefaults. I
can’t explain.

Also!
I basically gave up on trying to have any kind

of compatible version of either Cocoa
or Quartz imaging that worked
on both platforms at the
same time — my inter-
mediate attempts
were a loony
maze of #ifdefs
due to arbitrary
API wankery like
the above, scath-
ing examples of
which I have
mercifully forgot-
ten — so finally
I said “Fuck it,
the iPhone runs
OpenGL, right?
I’ll just rewrite
the display layer

iPhone Developer: “This is why I sell beer”
By JAMIE ZAWINSKI

Reprinted with permission of the original author. First appeared in jwz.livejournal.com/1224702.html.

PROGRAMMING

http://news.ycombinator.com/item?id=1274612
http://jwz.livejournal.com/1224702.html

  15

in GL and throw away all this bullshit Quartz code.” (Let’s
keep in mind here the insanely complicated thing I’m doing
in this program: I have a bitmap. I want to put it on the
screen, fast, using two whole colors. And the colors change
some times. This should be fucking trivial, right? Oh, ho
ho ho.)

So I rewrote it in OpenGL, just dumping my bitmap
into a luminance texture, and this is where some of you
are laughing at me already, because I didn’t know that the
iPhone actually runs OpenGLES! Which has, of course, even
less to do with OpenGL than iPhones have to do with Macs.

I expected the usual crazy ifdef-dance around creating the
OpenGL context and requesting color buffers and whatnot,

since OpenGL never specified any of that crap
in a cross-platform way to begin with,

but what I didn’t expect — and
I’m still kind of slack-jawed at

this — is that OpenGLES
removed glBegin() and

glVertex().
No, really, it really

did.
That’s like, the

defining character-
istic of OpenGL.
So OpenGLES is
just a slight variant
of OpenGL, in the
way that

unicycle is a slight variant of a city bus. If you can handle
one, the other should be pretty much the same, right?

Again, what the hell — I can almost understand want-
ing to get rid of display lists for efficiency reasons in an
embedded API (I don’t like it, because my screen savers
tend to use display lists a lot, but I can sort-of understand
it), but given that you could totally implement glBegin() and
glVertex() in terms of glDrawArrays() why the hell did they take
them out! Gaah!

Anyway, where was I?
Oh, yeah. So Dali Clock works on the iPhone and iPad

now, I think. I can’t actually run it on my phone, because
I haven’t gotten over my righteous indignation at the idea
that I’m supposed to tithe $100 to Captain Steve before
I’m allowed to test out the program I wrote on the phone
that I bought. I imagine I could manage it if I jailbroke my
phone first, but the last time I did that it destabilized it a
lot and I had to re-install.

So if one of you who has supplicated at the App Store
troth would like to build it from source and let me know
if it runs on your actual device, that’d be cool.

Oh, PS, I just noticed that since I rewrote it in OpenGL,
it’s now too slow to get a decent frame rate when running
full screen on an 860MHz PPC G4. I mean, that machine
is only 53× faster than a 16MHz Palm Pilot, and only 107×
faster than an 8MHz Mac128k.

This is why I sell beer. n

Jamie Zawinski was one of the founders of Netscape and
Mozilla.org, was the primary developer of Lucid Emacs,

and wrote most of your screen savers. Today he is
the proprietor of DNA Lounge, an all ages dance

club and live music venue in San Francisco.

iPhone Developer: “This is why I sell beer”

http://news.ycombinator.com/item?id=1274612
http://news.ycombinator.com/item?id=1274612

16  PROGRAMMING

I want to share the two steps
that I’m using to walk the path
to becoming a great developer.

Becoming a great developer is a con-
stant work in progress, but it’s a pat-
tern that I’ve seen many other great
developers follow.

Step One: Write More Code
This might sound easy but trust me
- it’s not easy. There are an infinite
number of reasons we developers don’t
write code:

•	 I don’t have the time

•	 I don’t know that code base

•	 I don’t have the right environment
setup

•	 I don’t know what to work on

•	 I’m tired

They all boil down to fear. You’re
afraid of something. Afraid of wast-
ing time, afraid of being embarrassed
publicly, afraid of making a mistake,
afraid of being afraid.

Let me share two stories with you
about my fears:

I’ve been a contributor to Redmine
for a couple of years now, but I haven’t
been very active in the code base. Why?
Redmine is a large complex code base
and I didn’t know how everything
worked. So I stayed in my corner and
only committed minor changes. Yet I
still found a way to break those sec-
tions. Self-fulfilling prophecy?

With my product, SeeProjectRun,

I have to charge users’ credit cards.
Taking actual money is scary. After
hearing all of the horror stories about
companies screwing this up, I became
deathly afraid of this and put off writ-
ing any billing code. Yes, me a devel-
oper who has written four credit card
interfaces for active_merchant was
afraid of writing code to bill his users.
WTF is going on here?

Fear is a mistress that will steal your
life if you let her. So how do you get
over your fear of writing more code?

Write more code
As odd as it sounds, the only way I
found to get through my fear of writ-
ing code was to crank it out like it was
going out of style. The easiest way to
do this? Start new side projects and
contribute simple patches to Open
Source. Every time you write code,
you will learn something about the
code, your tools, or yourself. Did you
really think my 57 plus daily refactor-
ing posts were only about fixing bad
code? Nope, they are my sledgeham-
mers against coder’s block.

Oh and the ending to my stories
about fear:

I just spent last night rewriting a core
component of Redmine and commit-
ted it to the project this morning. It if
breaks, I’ll fix it. If it’s really crap code,
I’ll revert it. No one will care and no
one will remember the mistake.

And for the billing code I strapped
myself down and finished the credit
card billing code for SeeProjectRun in

two days. Throwing two hundred test
cases at it proved to me that it would
work good enough to get over my fear.

Don’t let fear hold you back from
writing code.

Step Two: Work With Great
Developers
Now that you’re creating code, you
need to work with great developers
so you can see how to they write great
code. Just take:

•	 1 passionate developer (you)

•	 1 great developer (them)

•	 a dash of code

Mix well daily and after a short rise
in the over, you’ll have two great devel-
opers. Feel free to add a few nuts (other
great developers) and bake again.

You don’t need to search for the
greatest developers of all time, you
just need developers smarter and fur-
ther along in their skills than yourself.
This can be easy if you work in a com-
pany that has hired great developers.
But what do you do if your company
doesn’t hire any great developers or
you are a solo freelancer like me?

Start reading great developers’
code
I’m making it a habit to start reading
great developer’s code. They put out
so much code, you will find yourself
reading so much of it that you start to
dream about code1.

2 Steps to Becoming a Great
Developer

By ERIC DAVIS

http://news.ycombinator.com/item?id=1278256

  17

Getting Started
Now here’s the call to action, because you will never become
a great developer without taking action.

➊ Write At Least One Line Of Code In A New Code
Base Every Day For A Week. Switch Code Bases

After Each Week.
This can be a new feature, a bugfix, a refactoring, or just
monkeying around with an idea. It doesn’t matter, the act
of thinking through the code and writing is what you are
after. Don’t know one a good code base to start on? Do a
refactoring on Redmine and tell me about it in the com-
ments below.

➋ Find A Way To Learn From A Great Developer
Every Week.

If you are working with a great developer:

•	 do an informal code review their last commit

•	 ask to pair program with them, or

•	 buy them lunch and ask them about their favorite hack

If you are working solo:

•	 download some popular projects and read through a
single class every week

•	 get some API documentation that shows the method’s
source code inline and read the source each time you
look up a method, or

•	 find a mentor and work with them on some real code

So whatever you do, take action today. Unless you’re
afraid of becoming a great developer...But there is plenty
of room at the top. n

Notes
1. Notice that the smart developers are always producing
new code.... they are following step #1.

Eric Davis runs Little Stream Software, where he builds custom
software for businesses using Redmine.

Reprinted with permission of the original author. First appeared in theadmin.org/articles/2010/04/16/two-steps-to-becoming-a-great-developer/.

http://news.ycombinator.com/item?id=1278256
http://theadmin.org/articles/2010/04/16/two-steps-to-becoming-a-great-developer/
http://carbonmade.com/

18  PROGRAMMING

Software has long since lost
its glory-days status. We’re
not the go-to field anymore.

Geeks are no longer revered as gods
amongst humanity for our ability to
manipulate computers. We get crappy
jobs just like everyone else.

So, what is it that still motivates you
to work as a software developer?

Is it your fat salary, great perks, and
end-of-year bonuses? Unless you’ve
been working on Mars for the past two
years, I think Computerworld1 would
disagree with you. We’ve been get-
ting kicked in the nads just as hard as
everyone else. Between budget cut-
backs, layoffs and reductions in ben-
efits or increases in hours, clearly our
paychecks are not our primary source
of satisfaction.

If money were our primary motive,
right now we’d be seeing a mass exodus
from the tech sector. So, if it’s not the
money, then what is it that we hang on
to when we get up each day? Are we
really working for those options? That
salary bonus?

Turns out, we’re kidding ourselves
if we think that’s our real motive as
developers.

The assumption
People perform better when given a
tangible, and even substantial, reward
for completing a task. Think bonuses,
stock options, and huge booze-driven
parties.

The reality
In a narrow2 band of actual cases, this
is true. By and large, the reward-based
incentive actually creates poorer per-
formance in any group of workers for
cognitive tasks, regardless of economic
background or complexity of the task
involved3.

I’m not making this up, nor am I
just drawing on anecdotal experience.
Watch this 18-minute video from
TED4 and I’ll bet you’re convinced too.

Daniel Pink gave this lecture at
the 2009 TED. It’s mind-blowing if
you’re stuck in the carrot-and-stick
mentality. And I’ll just bet, unless you
work for Google, are self-employed, or
extremely worldly, you probably are.

I’m not saying that to be mean or
controversial. I’m saying that because
this mentality has pervasively spread
to every business, industry and country
on the planet over the past 100 years.
It’s not just software development, but
we’re hardly immune from its effect.

While we’re not immune to the
impact, we do have a lot going for us
that gives us an advantage in stepping
outside this mentality:

•	 Developers tend to be social odd-
balls and the normal conventions
seem awkward to us. Social odd-
balls tend to question things. We
don’t like what everyone else likes
because, well, we’re nerds and we
don’t think like sales people. Or
accountants. Or athletes. We’re
willing to try things others find weird
because we’re weird too.

•	 Because we’re odd, we tend to be
forward thinking and revolution-
ary in our approaches to workplace
advancements. Think about the good
aspects of the Dot Com era: pets
in the workplace, recreation rooms
with pool tables and ping pong,
better chairs and desks for people,
free lunches. Those innovations
didn’t come out of Pepsi, Toyota,
or Price Waterhouse Coopers, they
came out of tech companies. Every
one.

•	 In doing so, our weird becomes the
new normal. Witness the output of
the Dot Com era: Aside from the
economic meltdown, how many

Top Three Motivators for
Developers

By DAVE RODENBAUGH

http://news.ycombinator.com/item?id=1262352

  19

companies now regularly practice
some, if not all of those things we did
back in the late 90s? (Albeit with
more restraint, thankfully)

With that in mind, let’s take Daniel’s
idea of the results-oriented work envi-
ronment (ROWE) forward and create
something new for the 21st century.
It focuses on three important ideas,
which developers already love and
embrace: Autonomy, Mastery, Purpose.

Autonomy
What developer out there doesn’t like
to be given the freedom to do their
own thing, on their terms, with their
preferred hours, using their tools,
environment, IDE, language, operat-
ing system and favorite t-shirt? Find
me a single developer anywhere that
doesn’t crave this kind of freedom and
I’ll pay you $10. Seriously. Drop me
a contact above. I’m good for it. Of
course, you’ll search for the rest of your
life and won’t be able to do it.

Mastery
Every developer on the planet wants to
get better at what they do. We crave
new knowledge like some people quaff
coffee after a hangover. Fortunately,
the side effects of getting better at
development are far more benign than
caffeine binging.

Purpose
Nothing is more tedious, horrific, or
uninspiring to developers to work on
projects that lack any real meaning in
the world. Or lack any real direction.
Or lack any substantial need from the
company. In fact, you can probably
point to the brightest points of your
career all stemming from those projects
that had the deepest meaning to you
personally. Maybe the darkest points
are those soul-sucking projects that you
waded through because you were glad
to have a job but desperately waited for
things to improve so you could find a
better job elsewhere. Preferably where
soul-vacuums didn’t exist.

Google gets it: They already advo-
cate the 20% time concept and (near-)
complete workplace freedom. Atlas-
sian gets it: They have the Fedex chal-
lenge where everyone in the company
gets 24 hours to work on something
they are interested in, with the caveat
you have to deliver it at the end of 24
hours and you must present it to the
company. Think those don’t create
passion for the company? How about
the Nine Things Developers Want
More than Money? These points all
touch on the same three basic con-
cepts: autonomy, mastery, and purpose.

Does your company “get it”? If the
answer is NO, what can you do right
now to change your workplace to “get
it”? And if that is too Sisyphean a task
for you, how about starting your own
company instead, that does “get it”?

Tha t ’ s
my challenge
for you in 2010.
“Make software suck
less in the 21st century”. Good luck. n

Notes
1. http://www.computerworld.com/s/
article/347538/The_Big_Squeeze
2. Anything that isn’t a cognitive task,
simple or complex, according to the
research I quote below.
3. Sorry, outsourcers…dangling the
reward under your workers noses
doesn’t help even when your home
country is considerably poorer on
average than Western economies. Yet
another surprising finding of their
research.
4. http://www.youtube.com/watch?v=
rrkrvAUbU9Y

Dave Rodenbaugh is an independent soft-
ware contractor with nearly 2 decades of
enterprise project experience in a variety
of companies and industries. Although
he loves Java, he sometimes drinks a good
black tea when the mood strikes. He’s still
waiting for his first business trip to the
Caribbean.

“Turns out, we’re kidding ourselves if we think that
[money] is our real motive as developers.”

Reprinted with permission of the original author. First appeared in www.lessonsoffailure.com/developers/autonomy-mastery-purpose/.

http://news.ycombinator.com/item?id=1262352
http://www.computerworld.com/s/article/347538/The_Big_Squeeze
http://www.youtube.com/watch?v=rrkrvAUbU9Y
http://www.lessonsoffailure.com/developers/autonomy-mastery-purpose/

20  CAREER

What Value do We Create Here?

One summer I thought I had
the ultimate dream job.
During the day I created
software that accessed

some of the world’s largest financial databases
and provided traders with real-time data and
analysis for trade ideas. At night I worked with
the CTO on a side project that analyzed huge

amounts of transaction data to identify arbitrage
opportunities. We figured that if we could start find-

ing enough of these opportunities, we could present
them as trade ideas to the bosses. So we wrote scripts,

and at night, after everyone else left the office, we installed
them on their computers and ran the scripts in parallel to
try and crunch through the massive amount of data we
had access to. This was fun. Really fun. And even better,
the CTO was an awesome guy who taught me a lot about

programming.
They also paid well. Really well. Even more than my friends

received working 100 hour weeks at I-Banking jobs. In retro-
spect, no college student should ever have been paid that much

(on the bright side, the savings were enough for Art.sy’s initial
funding).
But that summer it meant I could go out to nice dinners with my

girlfriend, and never worry about paying for drinks at expensive clubs.
It meant I could afford fancy clothes, an iPhone, and plane flights to

Asia. Having always worked in labs prior to that job, it redefined how I
thought about money.

Photo credit: Self by Jason Filsinger (www.flickr.com/photos/filsinger/409763398/).
Licensed under Creative Commons Attribution 2.0 Generic licence (creativecommons.org/licenses/by/2.0/deed.en).

CAREER

http://www.flickr.com/photos/filsinger/409763398/
http://creativecommons.org/licenses/by/2.0/deed.en
http://news.ycombinator.com/item?id=1242877

  21

So what is wrong with this picture? I had an
extremely fun and challenging job, working with
awesome people, that let me afford an incredible
lifestyle. It was a dream comes true.

But at the end of the summer, the CTO brought
me into the corner office and closed the door. I
had worked with him all summer and this was
my last day, so I was expecting a performance
evaluation. Instead, after some chit chatting, he
asked me a question:

“Have you ever wondered what value we create
here?”

Value? This wasn’t what I was expecting at all.
“Not really.”
“I’ll tell you. We increase the liquidity of the

secondary bond market. We shave basis points
off of spreads.”

I’ll never forget that question. It turns out that
our CTO was saving every penny and had plans of
leaving as soon as he had enough cash to pursue
his dream.

He didn’t care about the fancy clothes, the
clubs, or being a master of the universe. All he
cared about was how he would add value to the
world. At this point, my story starts to sound
cliché, but it was a cliché I needed to experi-
ence in person because it radically changed my
perspective.

“How am I creating value?”
I realized that the programs I had spent all

summer writing were great, if they could make
people money and save them time. But if all it
resulted in at the end of the day was slightly
more efficient markets, well, what was the point
of that?

I was so caught up in the fun and camaraderie
of my job, so high with the rush of money, I never
considered such a simple question.

This probably won’t change the minds of
people who have already chosen career paths.
But to any students who are thinking about their
futures, I hope my story illustrates how easy it
is to get swept up by short-term pleasures, and
how important it is to always ask this question
when making important decisions. n

Carter Cleveland is the founder of Art.sy, a platform for
connecting artists and galleries with collectors of origi-
nal fine art. He is also the NYC Curator of The Startup
Digest.

What Value do We Create Here?

Reprinted with permission of the original author. First appeared in www.astatespacetraveler.com/have-you-ever-wondered-what-value-we-create-here/.

By CARTER CLEVELAND

http://news.ycombinator.com/item?id=1242877
http://news.ycombinator.com/item?id=1242877
http://www.astatespacetraveler.com/have-you-ever-wondered-what-value-we-create-here/
http://art.sy/

22  CAREER

Self-learning is hard. Regard-
less of where, when or how you
learn - being a good self-learner

will maximize your potential.
In this post, Hamilton Ulmer (an

almost-done Stanford stats masters stu-
dent) and I, will explore seven ways to
become a great self-learner.

➊ The longest path is the
shortest and the shortest

path is the longest
The shortest route to learning the craft
of a field is the one that, at first glance,
appears the longest. To really learn
something, you must understand the
basic concepts of your field. If you
try to skip, you may end up spending

more time figuring out concepts than
if you had started with learning basics.

Have you ever wanted to take up a
new subject, bought a book, only to
make a failed attempt at the first few
chapters before submitting to a lack of
foundation for the material?

Starting at the beginning might
seem daunting, but trying to skip to
the goal directly is likely to fail. If
you are studying and unsure that you
have the background for something,
just stop when you don’t understand
something and go back to acquire that
background.

➋ Avoid isolation
In school you have many effec-

tive feedback loops. If you are con-
fused, you can ask the lecturer for a
clarification. Your homework assign-
ments and exams motivate you to
internalize the content of the class,
whether you want to or not.

Peers can help you smooth over small
rough spots in your understanding.

A decent self-learner must find
others who are familiar with the mate-
rial. Naturally one prefers to find an
expert, but discussing the material with
a peer can also go a long way.

Having a community is vital. Often,
a byproduct of finding or building a
community is finding a mentor. The

7 Tips for
Successful
Self-Learning
By BRADFORD CROSS and HAMILTON ULMER

http://news.ycombinator.com/item?id=1276882

  23

one element of graduate school that is
hardest to replicate is the advisor-advi-
see relationship. They help guide you,
smoothing out the uncertainties you
have about certain topics, and help you
make your own learning more efficient.

As a self-learner, you do not have the
convenience of scheduled class time
and required problem sets. You must
be aggressive about finding people to
help you.

➌ Avoid multitasking
Another reason school is great

for learning is that you
plan your day around
your classes. There are
distractions, of course,
but if you’re concerned
with learning at school,
you prioritize
your classes
over other
things.

You don’t
have to be

in a classroom or library to study, but
notice the relative isolation and focus
those environments afford over read-
ing a book with your laptop on while
writing emails and checking facebook
or twitter with the TV on.

Remove the distractions and allocate
large blocks of time. You might find
that for more difficult material, you
need larger blocks of time to study
because it takes longer to shift into the
context of harder problems.

➍ You don’t read textbooks, you
work through them

Imagine taking a 12-hour flight with
two books, Machiavelli’s “The Prince”
and Shilov’s “Elementary Functional
Analysis.” It would be typical to finish
the 100 pages of Machiavelli in two
hours or so, and spent the rest of the
time working through 10 pages of a
Shilov’s “Elementary Functional Analy-
sis,” minus some breaks for napping
and eating undesirable airplane food.

Reading a technical book is nothing
like reading a novel. You have to slow
down and work carefully if you want
to understand the material. Have you
ever found yourself 10 pages further
in a book and having forgotten what
you’ve just read?

Successful self-learners don’t read,
they toil. If there are proofs, walk
them through, and try proving results
on your own. Work through exer-

cises, and make up your own
examples. Draw various dia-
grams and invent visualisa-
tions to help you develop an
intuition. If there is a real-
world application for the
work, try it out. If there are
algorithms, implement them
with your favorite program-
ming language. If something
remains unclear, hunt down
someone who’s smarter than
you and get them to explain.
Sometimes you just need to
put the material down, step
away, relax, and think deeply
to develop an intuition.

“No matter what, you’re going to have to learn
most everything on your own anyway. ”

Figure 1. The "I'm stuck"
decision tree.

1

»

24  CAREER

➎ Build Eigencourses
Great self-learners spend a lot

of time to find the best resources for
learning. You can find all the textbooks,
papers and other resources you need
on the Internet. Many of the course
materials from among the world’s
best universities are available for free
online2. Check out the great lists of
links to video courses on this Data
Wrangling post3.

You can pick and choose the best
“eigencourse” with lecture slides, video
lectures, textbooks, and other materials.
The best way to find these materials is
on Google. You will often only need to
pay for the book, and sometimes even
the book is free at the course website
in pdf form.

Take the time to triangulate on the
right material. Find the greats in the
field, see what they use and recom-
mend. Find other students and read
the reviews on Amazon. Google is
your friend.

➏ What to do when you don’t
understand

Learning is all about abstractions. We
build up abstractions on top of other
abstractions. If you do not know the
abstractions you are reading about that
are being composed into new higher-
level abstractions, then you aren’t going
to understand the new abstraction. If
you get stuck, the way to get un-stuck
is to follow the I’m stuck decision tree4.

➐ There is nothing so practical
as a good theory. -Kurt Lewin

Sometimes you are several hops away
from something you can code up and
apply to a problem directly. Not all
textbooks can be read with applica-
tion in mind, despite that they serve as
the theoretical foundation for applied
work. This is why you must have a
deep sense of patience and commit-
ment - which is why a prolonged
curiosity and passion for a topic are
so valuable.

Understanding analysis (particu-
larly sets, measures, and spaces) will
serve as your foundation for a deep
understanding of probability theory,
and both will then serve as your foun-
dation for understating inference, and
a deep understanding of inference is
a mainstay of achieving high quality
results on applied problems.

Avoid the dualistic mistakes of
technical execution without intu-
ition, and intuition without technical
execution.n

Notes
1. Keep in mind that you often just
need to build a general foundation in
the field, or mastery of some subset of
a field - you don’t have to master the
entire field.
2. http://www.jimmyr.com/blog/1_
Top_10_Universities_With_Free_
Courses_Online.php
3. http://www.datawrangling.com/
hidden-video-courses-in-math-science-
and-engineering
4. Figure 1.

Bradford Cross has been doing applied
research since 2001. His interests are in
Maths, Statistics, Computer Science, Learn-
ing Theory, Network Theory, Information
Retrieval, Natural Language Processing, and
engineering at scale. Most recently, Brad-
ford is co-founder and head of research for
FlightCaster, where he is responsible for the
statistical learning and supporting architec-
ture that power FlightCaster’s predictive
algorithms.

Hamilton Ulmer is a Master’s student in
Statistics at Stanford. He has a great deal
of experience as a data engineer, having
helped startups of various sizes and shapes
get on their feet with processing and visu-
alizing their data, as well as helping them
make data-driven decisions. In August he
will join the Mozilla analytics team.

“In theory, there is no difference between
theory and practice. But, in practice, there is.

- Jan L. A. van de Snepscheut
”

Reprinted with permission of the original author. First appeared in measuringmeasures.com/blog/2010/4/19/7-tips-for-successful-self-learning.html.

http://news.ycombinator.com/item?id=1276882
http://www.datawrangling.com/hidden-video-courses-in-math-science-and-engineering
http://www.jimmyr.com/blog/1_Top_10_Universities_With_Free_Courses_Online.php
http://measuringmeasures.com/blog/2010/4/19/7-tips-for-successful-self-learning.html

  25

I’d read a few times that bringing the tem-
perature of a failing drive down will increase

its reliability long enough to salvage important
files. When the drive in my trusty Powerbook
decided one day last week to stop booting and
make horrible clicking sounds, I decided to test
the theory.

Not feeling particularly motivated to dissect the
Powerbook, since that would void the warranty I
planned to invoke to get the drive replaced, I set
it on a relatively uncluttered shelf of the fridge
when I got home from work. Ten minutes later, I
took it out, and the drive booted like new. I copied
my iPhoto libraries to an external drive and once
that was successful, begun the copying of the only
other important file on the drive: a giant iMovie
project (~ 30 GB). About halfway through, the
drive had warmed up, the copy progress bar had
stalled and the clicking was back.

Fair enough. Back in the fridge, for 20 minutes
this time. I took it out, booted up (painlessly),
hooked it up to the external drive and started the
copy again. This time it made it to 75% before
the clicking took hold. At this point I consid-
ered going after the video clips that made up
the iMovie project in small batches, but decided
I didn’t feel like doing that if it wasn’t absolutely
necessary. I also didn’t want to play guess and
check to discover the ideal length of time to chill
a powerbook, so I devised a devious plot.

 This plot consisted of cooling the Powerbook
down again, carting my external drive to the
kitchen, booting the laptop in the fridge, begin-
ning the copy, and closing the door. Success! I
share this experience with you, the Internet, in
the hopes that it is useful.n

Adam Kempa works as a web developer in Ann Arbor,
Michigan (Yes, people still live in Michigan). His nerdy
musings intermittently appear at kempa.com.

Adam? …is there a reason
your laptop is in the fridge?

By ADAM KEMPA

Reprinted with permission of the original author. First appeared in www.kemp.com/2006/10/02/
adam-is-there-a-reason-your-laptop-is-in-the-fridge/.

http://news.ycombinator.com/item?id=1274907
http://news.ycombinator.com/item?id=1274907
http://www.kempa.com/2006/10/02/adam-is-there-a-reason-your-laptop-is-in-the-fridge/
http://www.kempa.com/

26  SPECIAL

Here’s a pricing technique
that sounds, at first, like the
dumbest newbie move of

all time.
Call it ‘fill-in-the-blank’ invoicing.

Or ‘pay what you want’ pricing.
The notion is, you do the work first,

then let the client decide how much
to pay for it.

I know, that sounds like a sure way
to end up working for nickels and pea-
nuts. I once thought that way, too.

But it’s actually an ingenious tactic

that should be in every freelancer’s
arsenal, ready to wheel out when the
wind is right. (Notice I said when the
wind is right. We’ll come back to that.)

It goes like this.
Instead of quoting a fee or negoti-

ating a price in advance, you tell the
client:

“Here’s what I suggest. Let me jump
in and do the work as we discussed.
I’ll hit this as hard as I know how, and
make it as good as can be done.”

“When we’re finished, just pay

whatever you feel the work was worth,
based on what it contributed to your
overall project.”

“I’ll accept whatever you decide, no
questions asked. Provided it is more
than a buck sixty-five.”

Scary? Absolutely.
Risky? Maybe a little.
Foolhardy and stupid? Not at all.
I had dabbled with this tactic before,

but only on those small, oddball proj-
ects a client would send me now and
then.

The Scariest Pricing Idea Ever
By WALT KANIA

SPECIAL

http://news.ycombinator.com/item?id=1279660

  27

“I have no idea what to bill for this,”
I’d say. “Just send me whatever seems
right to you.” Sometimes they would
send a hundred or two more than I
anticipated, sometimes less. But it was
always intriguing to see how the client
perceived what I had done. And a little
humbling, too, on occasion.

But over the past year or so I finally
got the guts to try this on large proj-
ects for big clients. (Partly because,
while developing “Talking Money,” I
was thinking/obsessing about pricing
issues pretty much all day long. I was
itching to see how this worked.)

I can tell you this: the ‘pay what
you want’ idea can be surprisingly and
dumbfoundingly profitable.

Better still, I can guarantee you that
it will shake up your thinking about
fees and pricing. It will un-stick some
old notions. And heaven knows we
need that; most of us are way too
myopic, constipated and chickenshit
about fees.

As an added bonus, you will most
likely do the best work of your life, and
deliver obscenely wonderful service to
your clients at the same time. (Mainly
because you’ll be too scared not to.)

Making it pay. More.
Naturally, the sole reason for using fill-
in-the-blank invoicing is to net more
from a project than you could with
“traditional” pricing.

The idea is to get paid for the value
the client derives from the work, rather
than for the number of hours it took.
Or how hard it was. Or how many
shots you had to take. Or what some-
body else charged some other client
somewhere.

And by value, I don’t mean only hard
economic value, like sales or savings or
new business. (Which in most cases is
hard to quantify anyway.)

As I’ve discovered, clients are also
willing to pay lavishly to get a nose-
bleed project done and off the desk,
to look like geniuses in front of their
bosses, to have presentations that their
sales people rave about. To finally get
the bosses sold on videos for user train-
ing. To untangle a project that some-
body else screwed up.

That kind of value has no relation
to how long it took you to do the job.
It’s irrelevant, immaterial. And it is
difficult to guess what that value might
be from our side of the glass. So it can
pay to let the client set that value.

Example.
A client of mine was knee-deep in

redoing all her company’s web site con-
tent. She was getting raw material from
the various divisions that was ugly,
undecipherable and unusable. The
go-live date was looming. She called
me in to figure out how to fix it all.

But she had no idea how many sec-
tions we’d be doing, how many pages,
nor how bad the raw material would
be, so it was impossible to estimate
any sort of fee.

I said, “Let me just concentrate on
getting this done for you, and we’ll
settle up later. I trust you to be fair.”
She agreed.

I did the work as it came in over a
couple of weeks, revising, re-writing,
re-building the content. We came up
with a neat and tight format, a solid
voice, sharp messaging. Everybody
loved it.

I then told the client to let me know
what she felt was a reasonable fee for
the project. It was entirely her call.

Meanwhile, I went back and parsed
out the work based purely on hours
spent. Had I been pricing conven-
tionally, it would have come to 3800
to 4200 bucks, depending on how I
counted.

Next day, I get an email from the
client. She says, “I’m thinking $9,500.
How does that sound?”

I wrote her back and said “Fine.
Sold.”

Now, lest you think I’m just handing
you rosy stories, here’s another.

“Let me just concentrate on
getting this done for you, and
we’ll settle up later. I trust you
to be fair.”

»

28  SPECIAL

A designer friend is working on a
web site for a financial firm, two part-
ners. He refers them to me for the
writing. We have a few phone conver-
sations. Seems simple enough. Not a
ton of content, straightforward mission.
The clients don’t know much about
marketing or web stuff.

I say, “Tell you what. I’ll write every-
thing for you, and when you’re happy
with it, send me a check for what you
think is reasonable.”

Ordinarily, I would have quoted
about $2500 for the project, although
I don’t say that.

I do some drafts. There are some
comments, some revisions. Slam-dunk.
Site goes live. Time to settle up. And
I’m thinking the Wall Street guys are
seeing a fee with a lot of zeros.

They send a check for $1200. And
say, ‘Thanks for the great work.”

Ouch and a half.

What works, what doesn’t
After a few painful scorchings, and sev-
eral delightfully lucrative wins, here is
the bottom line.

This technique works only when:

•	 You have a long-term relationship
with the client. You’ve done work
for them before, at your usual rates.
They trust you. They know your
work. And mostly likely they need
to work with you again.

•	 Don’t try this with one-time clients,
clients who don’t use this work
often, or clients who didn’t seek you
out. Been there, done that, lost shirt.

•	 The client has a big personal stake
in the project. They have skin in
the game. They stand to look grand
if all goes well, score some points,
be a hero, win some kudos. This
does not work for low-level back-
burner projects that no one cares
about. (Like my Wall Street clients;
to them, their website was just some
bullshit thing they needed to have.
They didn’t perceive it as critical.)

•	 The project looks hard, impossible,
and indecipherable. (My Wall Street
clients thought it was a cinch to bang
out a few pages of drivel, and there-
fore paid accordingly. My technol-
ogy client tried untangling her web
content herself, and got scared. To
her, it seemed insurmountable.)

How do clients react? Do clients
like this idea?

A few will balk. They don’t want
the responsibility of figuring out a fee.
They don’t want the anguish. That’s
okay. Give them a quote.

Most will be astonished that you
offer the option. It shows you trust
them. That you value their judgment.
That you even thought to ask. Huge
karma points translate to more dollars.

Sometimes (as one client confessed
to me) they’ll reflexively crank up the
fee when filling in the blank.

Sort of like the way we reflexively
and fearfully crank down the price
when the client says ‘How much will
it cost?”

Just so you know I’m not the only
crackpot using this idea, Matt

Homann of LexThink, a consultant
who works with law firms, offers this
‘you decide’ option to all of his clients.
His experience with the technique mir-
rors mine exactly. There’s more about
his approach here too, in The Non-
Billable Hour. (It’s for lawyers, but the
ideas apply to us, I think.)

Oh, and see the classic Little Rascals
episode from 1936, “Pay as You Exit.”
As the story goes, the gang was put-
ting on a show in the barn, but the
neighborhood kids were reluctant to
pay the penny admission, fearing that
the show might be lame.

Over Spanky’s objections, Alfalfa
decided to let everyone in for free, and
allow them to pay on the way out if
they liked the show.

As it turned out, the gang botched
the show horribly, but the result was
so hilarious that the kids filed out
laughing.

Leaving Alfalfa with cigar box full
of pennies. n

Walt Kania is a freelance writer who runs
The Freelancery site (thefreelancery.com),
and develops marketing content (waltkania.
com) for B2B and technology companies. He
has plied his trade independently his entire
adult life, due to a congenital inability to
tolerate conventional employment for more
than three to five days.

“Don’t try this with one-time clients...Been there,
done that, lost shirt.”

Reprinted with permission of the original author. First appeared in thefreelancery.com/2010/04/the-scariest-pricing-idea-ever-that-works/.

»

http://news.ycombinator.com/item?id=1279660
http://thefreelancery.com/2010/04/the-scariest-pricing-idea-ever-that-works/
http://thefreelancery.com/
http://waltkania.com/

  29

Happiness is not universally quantifiable but
money is. At some point in my life I raced
towards money because I could measure it.

When I noticed it wasn’t making me happier I set out to
make happiness my main goal. Here is a list of actions I took.

➊ Reduced Commute Time
Commuting is a side effect of many jobs and sadly the

higher the salary the more commute time we’re willing to
do. Finding ways to shave off commute time has a proven
benefit as measured by this study1.

When changing jobs wasn’t a possibility I used public
transportation and got an Internet capable cell phone so I
could deal with paperwork related annoyances during the
commute. Instead of trying to find time at home I’d deal
with them while in traffic. I also borrowed and bought a
few books.

Today my job allows me to work from home and my
commute takes about 38 seconds. I still need to commute
a few days a week but I can choose to take the car and
avoid rush hour traffic.

➋ Removed Small Frustrations
I start every day by making some tea. I had this cheap

kettle that would randomly turn off on me. One day after
pouring cold water over tealeaves I decided to drive to
the store. Now every morning I look at the testament of a
foregone frustration with a smile from ear to ear.

Removing frustrations can be as simple as moving the
furniture or spending a few bucks.

➌ Played Sports
A Harvard University study started in 1937 that

spanned 72 years determined that healthy play could relieve
daily frustrations making us happier overall.

A few years ago I joined a volleyball team and now I play
a minimum of once a week.

➍ Attended Regular Meetups
Would doubling your income make you happier?

Well it turns out that seeing a group of people that meets
just once a month provided the same benefit as doubling
your salary.

Once I started digging I found out that Montreal was
vibrant and full of user groups and programming language
enthusiasts that meet regularly. I’ve met some really interest-
ing people through these groups and some of the contacts
even helped me professionally.

➎ Drank Socially With Co-Workers
When work sucks your life sucks. A good team feels

comfortable cracking a joke to the CEO. Imagine how many
valid concerns are not expressed if a team has to worry
about everything they say.

Good communication is perhaps the reason why those
who occasionally have a single drink after work with col-
leagues make significantly more money on average than
those who do not drink at all. Team members who do drink
are probably made aware of problems and can resolve situ-
ations before they occur. It’s a different setting and we all
know that a little alcohol can make shyness go away.

So it’s perhaps a stretch to make this point but seriously
having a drink has some beneficial effect on the time you
spend at work and that can’t all be bad since you’re there
a good portion of your day. n

Notes
1. http://www.cces.ethz.ch/agsam2009/panels/AGSAM20
09_panel_mobility_Stutzer.pdf

Gary is a programmer and entrepreneur in Montreal, Canada. He is
a father and entrepreneur currently working at SocialGrapes.com.
You can follow him on twitter @xutopia.

5 Actions that Made Me
Happier

By GARY HARAN

Reprinted with permission of the original author. First appeared in www.garyharan.com/2010/04/04/5-actions-that-made-me-happier.html.

http://news.ycombinator.com/item?id=1244504
http://news.ycombinator.com/item?id=1244504
http://socialgrapes.com/
http://www.garyharan.com/2010/04/04/5-actions-that-made-me-happier.html
http://twitter.com/garyharan
http://www.cces.ethz.ch/agsam2009/panels/AGSAM2009_panel_mobility_Stutzer.pdf

Scenario 1 Scenario 2 Scenario 3 Scenario 4
After 200 observations Insignificant Insignificant Significant! Significant!
After 500 observations Insignificant Significant! Insignificant Significant!
End of experiment Insignificant Significant! Insignificant Significant!

Scenario 1 Scenario 2 Scenario 3 Scenario 4
After 200 observations Insignificant Insignificant Significant! Significant!
After 500 observations Insignificant Significant! trial stopped trial stopped
End of experiment Insignificant Significant! Significant! Significant!

30  SPECIAL

If you run A/B tests on your website and regularly check
ongoing experiments for significant results, you might
be falling prey to what statisticians call repeated signifi-

cance testing errors. As a result, even
though your dashboard says a result
is statistically significant, there’s a
good chance that it’s actually insig-
nificant. This note explains why.

Background
When an A/B testing dashboard says there is a “95% chance
of beating original” or “90% probability of statistical signifi-
cance,” it’s asking the following question: Assuming there is
no underlying difference between A and B, how often will
we see a difference like we do in the data just by chance?
The answer to that question is called the significance level,
and “statistically significant results”
mean that the significance level is
low, e.g. 5% or 1%. Dashboards usu-
ally take the complement of this
(e.g. 95% or 99%) and report it as
a “chance of beating the original” or
something like that.

However, the significance calculation makes a critical
assumption that you have probably violated without even
realizing it: that the sample size was fixed in advance. If
instead of deciding ahead of time, “this experiment will
collect exactly 1,000 observations,” you say, “we’ll run it
until we see a significant difference,” all the reported signifi-
cance levels become meaningless. This result is completely
counterintuitive and all the A/B testing packages out there
ignore it, but I’ll try to explain the source of the problem
with a simple example.

Example
Suppose you analyze an experiment after 200 and 500
observations. There are four things that could happen:

Assuming treatments A and B are the same and the
significance level is 5%, then at the end of the experiment,
we’ll have a significant result 5% of the time.

But suppose we stop the experiment as soon as there is
a significant result. Now look at the four things that could
happen:

The first row is the same as before, and the reported
significance levels after 200 observations are perfectly fine.
But now look at the third row. At the end of the experiment,
assuming A and B are actually the same, we’ve increased the
ratio of significant relative to insignificant results. Therefore,
the reported significance level – the “percent of the time the
observed difference is due to chance” – will be wrong.

How big of a problem is this?
Suppose your conversion rate is 50% and you want to test
to see if a new logo gives you a conversion rate of more than
50% (or less). You stop the experiment as soon as there is
5% significance, or you call off the experiment after 150
observations. Now suppose your new logo actually does
nothing. What percent of the time will your experiment
wrongly find a significant result? No more than five percent,
right? Maybe six percent, in light of the preceding analysis?

How Not to Run an A/B Test
By EVAN MILLER

http://news.ycombinator.com/item?id=1277004

You peeked... To get 5% actual significance you need...
1 time 2.9% reported significance
2 times 2.2% reported significance
3 times 1.8% reported significance
5 times 1.4% reported significance
10 times 1.0% reported significance

  31

Try 26.1% – more than five times what you probably thought
the significance level was. This is sort of a worst-case sce-
nario, since we’re running a significance test after every
observation, but it’s not unheard-of. At least one A/B test-
ing framework out there actually provides code for auto-
matically stopping experiments after there is a significant
result. That sounds like a neat trick until you realize it’s a
statistical abomination.

Repeated significance testing always increases the rate
of false positives, that is, you’ll think many insignificant
results are significant (but not the other way around). The
problem will be present if you ever find yourself “peeking”
at the data and stopping an experiment that seems to be
giving a significant result. The more you peek, the more
your significance levels will be off. For example, if you peek
at an ongoing experiment ten times, then what you think
is 1% significance is actually just 5% significance. Here are
other reported significance values you need to see just to
get an actual significance of 5%:

Decide for yourself how big a problem you have, but if
you run your business by constantly checking the results
of ongoing A/B tests and making quick decisions, then this
table should give you goosebumps.

What can be done?
If you run experiments: the best way to avoid repeated sig-
nificance testing errors is to not test significance repeatedly.
Decide on a sample size in advance and wait until the
experiment is over before you start believing the “chance of
beating original” figures that the A/B testing software gives
you. “Peeking” at the data is OK as long as you can restrain
yourself from stopping an experiment before it has run its
course. I know this goes against something in human nature,
so perhaps the best advice is: no peeking!

Since you are going to fix the sample size in advance,
what sample size should you use? This formula is a good
rule of thumb:

Where δ is the minimum effect you wish to detect and
σ2 is the sample variance you expect. Of course you might
not know the variance, but if it’s just a binomial propor-
tion you’re calculating (e.g. a percent conversion rate) the

variance is given by:

Committing to a sample size completely mitigates the
problem described here.

If you write A/B testing software: Don’t report significance
levels until an experiment is over, and stop using signifi-
cance levels to decide whether an experiment should stop
or continue. Instead of reporting significance of ongoing
experiments, report how large of an effect can be detected
given the current sample size. That can be calculated with:

Where the two t’s are the t-statistics for a given signifi-
cance level α/2 and power (1-β).

Painful as it sounds, you may even consider excluding the
“current estimate” of the treatment effect until the experi-
ment is over. If that information is used to stop experiments,
then your reported significance levels are garbage.

If you really want to do this stuff right: Fixing a sample
size in advance can be frustrating. What if your change is
a runaway hit, shouldn’t you deploy it immediately? This
problem has haunted the medical world for a long time,
since medical researchers often want to stop clinical trials as
soon as a new treatment looks effective, but they also need
to make valid statistical inferences on their data. Here are
a couple of approaches used in medical experiment design
that someone really ought to adapt to the web:

•	 Sequential experiment design: Sequential experiment
design lets you set up checkpoints in advance where you
will decide whether or not to continue the experiment,
and it gives you the correct significance levels.

•	 Bayesian experiment design: With Bayesian experiment
design you can stop your experiment at any time and
make perfectly valid inferences. Given the real-time
nature of web experiments, Bayesian design seems like
the way forward.

Conclusion
Although they seem powerful and convenient, dashboard
views of ongoing A/B experiments invite misuse. Any time
they are used in conjunction with a manual or automatic
“stopping rule”, the resulting significance tests are simply
invalid. Until sequential or Bayesian experiment designs are
implemented in software, anyone running web experiments
should only run experiments where the sample size has
been fixed in advance, and stick to that sample size with
near-religious discipline. n

Evan Miller is a graduate student in Economics at the University
of Chicago, and the author of the Chicago Boss web framework.

Reprinted with permission of the original author. First appeared in www.evanmiller.org/how-not-to-run-an-ab-test.html.

http://news.ycombinator.com/item?id=1277004
http://www.evanmiller.org/how-not-to-run-an-ab-test.html

32  STARTUP

I’m a huge fan of the 37Signals
mantra of “scratch your own itch.”
Inspired by their book for “Getting

Real” which I’ve read at least twice,
and “Rework” which I’m reading now,
I decided to write a small web applica-
tion to scratch an itch around customer
development emails.

Do note though, 37Signals mantra
here probably roots back to a saying my
Dad, also an entrepreneur, has always
said to me: “Necessity is the mother
of invention”.

Either way, here’s the problem I
solved with Tout: as I’ve been ramping
up customer development for Brain-
trust, I realized that typing, copying,
pasting, re-typing all these emails was
becoming a huge pain. Even worse, it
became even harder to keep track of
all these emails.

“There had to be a better way!” —
and while there are tons of CRMs out
there, the simple “get in, get out” type
of solution didn’t exist. So, I decided
to create one.

Introducing Tout – the simplest way
to templatize and track (like you do for
websites) your customer development
emails. It helps me create e-mail tem-
plates, send emails quickly, and track
when someone’s viewed my email, and
whether they clicked on my link. It also
let me track whether my overall email
was a “success” or not.

It took me about 1 day to get the

app working to fit my own need. After
realizing this could probably help other
people, it took me another 2 days to
get it production ready. WOW!

I think we’re at amazing times right
now. With all the different “common
services” startups cropping up, building,
releasing and opening up shop for a
web application has never been easier.

Here are the common services/tech-
nologies I leveraged to take Tout to
market in 3 days:

Heroku
All of my development is on Rails, and
Heroku puts Rails on steroids. Thanks
to their amazing cloud infrastructure,
I had to do ZERO sysadmin stuff and
was able to get my app online in liter-
ally 3 commands. More importantly,
setting up DNS, E-Mailing, and SSl was
all done through the web UI as well.
I highly recommend them for starter
applications, especially ones that are
still testing out the market.

The only downside for Heroku is
that they have no way to support real-
time applications (i.e. run an XMPP or
NodeJS server to push out real-time
updates) — can you guys start work-
ing on this?

Sendgrid
Even though the biggest “feature” of
my web-app is sending emails, I had
to write next to no code for actually

sending out emails or even configuring
e-mail servers. All of this got taken care
of by Sendgrid.

They were also very diligent about
validating my site and making sure I
was compliant with CAN-SPAM laws
and ensuring this doesn’t turn into
another spamming machine.

Chargify
Tout has a premium feature, and
charges credit cards, handles recurring
billing and even sends out invoices.
However, I didn’t have to write more
than about 50 lines of billing code.
Chargify takes care of all of this — all
I have to do is build out hooks to keep
the subscription level of the customer
up to date.

The reality is, it has become so ridic-
ulous easy to take web applications to
market now that I don’t have to spend
time working on plumbing — instead,
all of my time and energy goes toward
the creative aspect of the product —
which is the way it should be. n

TK is the Founder and CEO of Braintrust
(http://braintrusthq.com), a webapp that
helps organize your team's conversations.
He also blogs bout his journey as a single
founder for a bootstrapped company at
http://tawheedkader.com. Prior to Brain-
trust, TK co-founded HipCal,which was sold
to Plaxo in 2006.

How I Took My Web-App to
Market in 3 Days

STARTUP

By TAWHEED KADER

Reprinted with permission of the original author.
First appeared in www.tawheedkader.com/2010/04/how-i-used-heroku-chargify-and-sendgrid-to-take-my-web-app-to-market-in-3-days/.

http://news.ycombinator.com/item?id=1275371
http://news.ycombinator.com/item?id=1275371
http://braintrust.io/
http://www.tawheedkader.com/
http://www.tawheedkader.com/2010/04/how-i-used-heroku-chargify-and-sendgrid-to-take-my-web-app-to-market-in-3-days/

Forget Servers. Forget Deployment. Build Apps.

heroku.com

  33

http://heroku.com/
http://heroku.com/

34  STARTUP

The best way to come up with startup
ideas is to ask yourself the question:
what do you wish someone would make

for you?
There are two types of startup ideas: those that

grow organically out of your own life, and those
that you decide, from afar, are going to be neces-
sary to some class of users other than you. Apple
was the first type. Apple happened because Steve
Wozniak wanted a computer. Unlike most people
who wanted computers, he could design one, so
he did. And since lots of other people wanted
the same thing, Apple was able to sell enough of
them to get the company rolling. They still rely
on this principle today, incidentally. The iPhone
is the phone Steve Jobs wants. 1

Our own startup, Viaweb, was of the second
type. We made software for building online
stores. We didn’t need this software ourselves.
We weren’t direct marketers. We didn’t even
know when we started that our users were called
“direct marketers.” But we were comparatively
old when we started the company (I was 30 and
Robert Morris was 29), so we’d seen enough to
know users would need this type of software. 2

There is no sharp line between the two types
of ideas, but the most successful startups seem to
be closer to the Apple type than the Viaweb type.
When he was writing that first Basic interpreter
for the Altair, Bill Gates was writing something
he would use, as were Larry and Sergey when

they wrote the first versions of Google.
Organic ideas are generally preferable to the

made up kind, but particularly so when the
founders are young. It takes experience to predict
what other people will want. The worst ideas we
see at Y Combinator are from young founders
making things they think other people will want.

So if you want to start a startup and don’t know
yet what you’re going to do, I’d encourage you to
focus initially on organic ideas. What’s missing or
broken in your daily life? Sometimes if you just
ask that question you’ll get immediate answers.
It must have seemed obviously broken to Bill
Gates that you could only program the Altair in
machine language.

You may need to stand outside yourself a bit to
see brokenness, because you tend to get used to it
and take it for granted. You can be sure it’s there,
though. There are always great ideas sitting right
under our noses. In 2004 it was ridiculous that
Harvard undergrads were still using a Facebook
printed on paper. Surely that sort of thing should
have been online.

There are ideas that obvious lying around now.
The reason you’re overlooking them is the same
reason you’d have overlooked the idea of building
Facebook in 2004: organic startup ideas usually
don’t seem like startup ideas at first. We know
now that Facebook was very successful, but put
yourself back in 2004. Putting undergraduates’
profiles online wouldn’t have seemed like much

Organic Startup Ideas
By PAUL GRAHAM

http://news.ycombinator.com/item?id=1266627

  35

of a startup idea. And in fact, it wasn’t initially a
startup idea. When Mark spoke at a YC dinner
this winter he said he wasn’t trying to start a
company when he wrote the first version of Face-
book. It was just a project. So was the Apple I
when Woz first started working on it. He didn’t
think he was starting a company. If these guys
had thought they were starting companies, they
might have been tempted to do something more
“serious,” and that would have been a mistake.

So if you want to come up with organic startup
ideas, I’d encourage you to focus more on the

idea part and less on the startup part. Just fix
things that seem broken, regardless of whether
it seems like the problem is important enough to
build a company on. If you keep pursuing such
threads it would be hard not to end up making
something of value to a lot of people, and when
you do, surprise, you’ve got a company. 3

Don’t be discouraged if what you produce
initially is something other people dismiss as a
toy. In fact, that’s a good sign. That’s probably
why everyone else has been overlooking the idea.
The first microcomputers were dismissed as toys.
And the first planes, and the first cars. At this
point, when someone comes to us with something
that users like but that we could envision forum
trolls dismissing as a toy, it makes us especially
likely to invest.

While young founders are at a disadvantage
when coming up with made-up ideas, they’re
the best source of organic ones, because they’re
at the forefront of technology. They use the latest
stuff. They only just decided what to use, so why
wouldn’t they? And because they use the latest

stuff, they’re in a position to discover valuable
types of fixable brokenness first.

There’s nothing more valuable than an unmet
need that is just becoming fixable. If you find
something broken that you can fix for a lot of
people, you’ve found a gold mine. As with an
actual gold mine, you still have to work hard to
get the gold out of it. But at least you know where
the seam is, and that’s the hard part. n

Notes
1. This suggests a way to predict areas where
Apple will be weak: things Steve Jobs doesn’t
use. E.g. I doubt he is much into gaming.
2. In retrospect, we should have become direct
marketers. If I were doing Viaweb again, I’d open
our own online store. If we had, we’d have under-
stood users a lot better. I’d encourage anyone
starting a startup to become one of its users,
however unnatural it seems.
3. Possible exception: It’s hard to compete directly
with open source software. You can build things
for programmers, but there has to be some part
you can charge for.

Paul Graham is an essayist, programmer, and pro-
gramming language designer. In 1995 he developed
with Robert Morris the first web-based application,
Viaweb, which was acquired by Yahoo in 1998. In 2002
he described a simple statistical spam filter that inspired
a new generation of filters. He’s currently working on
a new programming language called Arc, a new book
on startups, and is one of the partners in Y Combinator.

“Just fix things that seem broken, regardless of
whether it seems like the problem is important
enough to build a company on.”

Reprinted with permission of the original author. First appeared in www.paulgraham.com/organic.html.

http://news.ycombinator.com/item?id=1266627
http://www.paulgraham.com/organic.html

36  STARTUP

I remember “disruptive” when it was
called “paradigm shift.” That phrase
died during the tech-bubble along

with “portal” and “think outside the
box,” yet the concept has returned.
Don’t follow along.

When I get pitched — usually by
someone raising money — that they
“have something disruptive,” a little
part of me dies. You should be wor-
rying about making something useful,
not how disruptive you can be.

“Disruptive” is the in-vogue word for
the opposite of “incremental improve-
ment.” A disruptive product causes
such a large market shift that entire
companies collapse (the ones who
don’t “get it”) and new markets appear.

Disruptive is fascinating, disruptive
changes the world, disruptive makes
us think. Disruptive also sometimes
generates billions of dollars, which is
why venture capitalists have always
loved it and always will.

But disruptive is rare and usually
expensive. It’s hard to think of dis-
ruptive technologies or products that
didn’t take many millions of dollars
to implement. Most of us don’t have
access to those resources, and many
of us don’t care, because we’d rather
work on an idea we actually under-
stand and can build ourselves, an idea
that might make us a living and be
useful to people.

There’s nothing wrong with incre-
mental improvement. What’s wrong
with doing something interesting,
useful, new, but not transcendental?
What’s wrong with taking a known

problem with a known market and just
doing it better or with a fresh perspec-
tive or with a modern approach? Do
you have you create a new market and
turn everyone’s assumptions upside
down to be successful? Should you?

I’m not so sure. Here’s my argument:

➊ It’s hard to explain the
benefits of disruption.

Have you tried to explain Twitter
someone? Not the “140 characters”
part — the part about why it’s a fun-
damental shift in how you meet and
interact with people?

Hasn’t the listener always responded
by saying, “I don’t need to know what
everyone had for lunch. Who cares?
What’s next, ‘I’m taking a dump?’”
They don’t get it, right? But it’s hard
to explain.

There are ways to elucidate the util-
ity of Twitter, but even the good ones
are lengthy and require listeners with
patience and open minds — two attri-
butes in short supply.

“It’s hard to explain” should not be a
standard part of your sales pitch. “You
just need to try it” and “trust me” don’t
cut it. That may be OK for Twitter —
today — but what about the 100 other
social-networking-slash-link-sharing
networks that didn’t survive? Ask them
about selling intangible benefits.

➋ It’s hard to sell disruption,
because people don’t want

to be disrupted.
If you’re reading this you’re prob-
ably more open to new ideas and new

products than most, because you’re
inventing a new product, starting a
company, or you’re just ruffled because
I’m pissing on “disruptive” and you’re
looking for nit-picky things to argue
with me about.

But most people are creatures of
habit. They don’t want their lives
turned upside down. They launch into
a tirade of obscenities if you just rear-
range their toolbar. When they hear
about a new social media craze they
cringe in agony, desperately hoping it’s
a passing fad and not another new god-
damn thing they’ll be aimlessly pad-
dling around in for the next decade.

Change is hard, so a person has
to be experiencing real pain to want
change. Selling a point-solution for a
point-problem is easier than getting
people to change how they live their
lives. Identifying specific pain points
and explaining how your software
addresses those is easier than trying to
tap into a general malaise and promis-
ing a better world.

➌ Most technology we now
consider “disruptive” wasn’t

conceived that way.
Google was the 11th major search
engine, not the first. Their technology
proved superior, but “a better search
engine” was hardly a new idea. In
retrospect we say that Google trans-
formed how people find information,
and further, how advertising works on
the Internet.

Disruptive in hindsight, sure, but the
genesis was just “incrementally better”

Not Disruptive,
and Proud of It

By JASON COHEN

http://news.ycombinator.com/item?id=1259272

  37

than the 10 search engines that came
before. (Or 18.)

Scott Berkun gives several other
examples in a recent BusinessWeek
article. He highlights the iPod — an
awesome device, but not the first of
its kind. Rather, there were a bunch of
crappy devices that sold well enough to
prove there were a market, but no clear
winners. Here an innovation in design
alone was enough to win the market.
Not inventing new markets, not inno-
vative features, not even improving
on existing features like sound quality
or battery life — just a better design,
unconcerned about “disrupting” any-
thing else.

Setting your sights on being dis-
ruptive isn’t how quality, sustainable
companies are built. Disruption, like
expertise, is a side effect of great suc-
cess, not a goal unto itself.

➍ The disruptors often don’t
make the money.

The construction of high-speed Inter-
net fiber backbones and extravagant
data centers fundamentally changed
how business is conducted world-wide
both between businesses and consum-
ers, but many of the companies who
built that system went bankrupt during
the 2000 tech bubble, and those who
managed to survive have still not recov-
ered the cost of that infrastructure.
They were the disruptors, but they
didn’t profit from the disruption.

Disruptive technology often comes
from research groups commissioned to
produce innovative ideas but unable
to capitalize on them. Xerox PARC
invented the fax machine, the mouse,
Ethernet, laser printers, and the con-
cept of a “windowing” user interface,
but made no money on the inventions.
AT&T Bell Labs invented Unix, the C
programming language, wireless Ether-
net, and the laser, but made no money
on the inventions.

Is it because disruptors are “before

their time,” able to create but not able
to hold out long enough for others to
appreciate the innovation? Is it because
innovation and business sense are
decoupled? Is it because “version 1”
of anything is inferior to “version 3,”
and by the time the innovator makes
it to version 2 there are new competi-
tors — competitors who don’t bear the
expense of having invented version 1,
who have silently observed the failures
of version 1, and can now jump right
to version 3?

“Why” is an interesting question, but
the bottom line is clear: Disruption is
rarely profitable.

➎ Simple, modest goals are
most likely to succeed, and

most likely to make us happy.
It’s not “aiming low” to attempt modest
success.

It’s not failure if you “just” make a
nice living for yourself. Changing the
world is noble, but you’re more likely

to change it if you don’t try to change
everything at once.

I made millions of dollars at Smart
Bear with a product that took an exist-
ing practice (peer code review) and
solved five specific pain points (annoy-
ances and time-wasters). Sure it wasn’t
worth a hundred million dollars, and
it didn’t turn anyone’s world inside
out, but it enjoys a nice place in the
world and it is incredibly fulfilling to
see people happier to do their jobs
with our product than without it.

Had I tried to fundamentally change
how everyone writes software, I’m sure

I would have failed.
I made less money personally at

ITWatchDogs, but the company was
profitable and sold for millions of dol-
lars. We took a simple problem (when
server rooms get hot, the gear fails)
and provided a simple solution (ther-
mometer with a web page that emails/
pages you if it’s too hot). There were
many competitors, both huge (APC
with $1.5 billion market cap), mid-
sized (NetBotz with millions in rev-
enue and funding), and small (sub-$1m
operations like us). We had something
unique — an inexpensive product that
still had 80% of the features of the big
boys — but nothing disruptive.

Had we tried to fundamentally
change how IT departments monitor
server rooms, I’m sure we would have
failed.

There’s nothing wrong with mod-
esty. Modest in what you consider “suc-
cess,” and modest in what you’re trying
to achieve every day:

Of course it’s wonderful that disrup-
tive products exist, improving life in
quantum leaps. And it’s not wrong to
pursue such things! But neither is it
wrong to have more modest goals, and
modest goals are much more likely to
be achieved. n

Jason is the founder of three companies,
all profitable and two exits. He blogs on
startups and marketing at http://blog.
ASmartBear.com.

Reprinted with permission of the original author. First appeared in blog.asmartbear.com/not-disruptive.html.

“My daughter convinced me that insisting
something be Deeply Meaningful With
Purpose could sometimes suck the joy from it.

- Kathy Sierra
”

http://news.ycombinator.com/item?id=1259272
http://blog.asmartbear.com/
http://blog.asmartbear.com/not-disruptive.html

38  STARTUP

I was catching up over coffee and a muffin
with a student I hadn’t seen for years who’s
now CEO of his own struggling startup. As I

listened to him present the problems of matching
lithium-ion battery packs to EV powertrains and
direct drive motors, I realized that he had a built
a product for a segment of the electric vehicle
market that possibly could put his company on
the right side of a major industry discontinuity.

But he was explaining it like it was his PhD
dissertation defense.

Our product is really complicated
After hearing more details about the features of
the product (I think he was heading to the level
of Quantum electrodynamics) I asked if he could
explain to me why I should care. His response
was to describe even more features. When I called
for a time-out the reaction was one I hear a lot.
“Our product is really complicated I need to tell
you all about it so you get it.”

I told him I disagreed and pointed out that
anyone can make a complicated idea sound
complicated. The art is making it sound simple,
compelling and inevitable.

Turning on your Reality Distortion Field
The ability to deliver a persuasive elevator pitch
and follow it up with a substantive presentation
is the difference between a funded entrepreneur
and those having coffee complaining that they’re
out of cash. It’s a litmus test of how you will
behave in front of customers, employees and
investors.

30-seconds
The common wisdom is that you need to be able
to describe your product/company in 30-seconds.
The 30 second elevator pitch is such a common
euphemism that people forget its not about the
time, it’s about the impact and the objective. The
goal is not to pack in every technical detail about
the product. You don’t even need to mention the
product. The objective is to get the listener to
stop whatever they had planned to do next and
instead say, “Tell me more.”

How do you put together a 30-second pitch?
Envision how the world will be different

five years after people started using your product.
Tell me. Explain to me why it’s a logical conclu-
sion. Quickly show me that it’s possible. And do
this in less than 100 words.

The CEOs reaction over his half- finished
muffin was, “An elevator pitch is hype. I’m not a
sales guy I’m an engineer.”

The reality is that if you are going to be a
founding CEO, investors want to understand
that you have a vision big enough to address a
major opportunity and an investment. Potential
employees need to understand your vision of the
future to decide whether against all other choices
they will join you. Customers need to stop being
satisfied with the status quo and queue up for
whatever you are going to deliver. Your elevator
pitch is a proxy for all of these things.

While my ex student had been describing the
detailed architecture of middleware of electric

Turning On Your
Reality Distortion Field

By STEVE BLANK

Photo credit: Campfire Blackhole by Aaron Wagner (www.flickr.com/photos/copilot/63224608/).
Licensed under Creative Commons Attribution 2.0 Generic licence (creativecommons.org/licenses/by/2.0/deed.en).

http://news.ycombinator.com/item?id=1285288
http://www.flickr.com/photos/copilot/63224608/
http://creativecommons.org/licenses/by/2.0/deed.en

  39

vehicles I realized what I wanted to understand
was how this company was going to change the
world.

All he had to say was, “The electric vehicle
business is like the automobile business in 1898.
We’re on the cusp of a major transformation. If
you believe electric vehicles are going to have a
significant share of the truck business in 10 years,
we are going to be on the right side of the fault
zone. The heart of these vehicles will be a pow-
ertrain controller and propulsion system. We’ve
designed, built and installed them. Every electric
truck will have to have a product like ours.”

75 words.
That would have been enough to have me say,

“Tell me more.” n

Lessons Learned

•	 Complex products need a simple summary

•	 Tell me why I should quit my job to join you

•	 Tell me why I should invest in you rather than
the line outside my door

•	 Tell me why I should buy from you rather than
the existing suppliers

•	 Do it in 100 words or less.

Steve Blank is a retired serial entrepreneur and the
author of Customer Development model for startups.
Today he teaches entrepreneurship to both undergradu-
ate and graduate students at U.C. Berkeley, Stanford
University and the Columbia University/Berkeley Joint
Executive MBA program.

How to make engineers write con-
cisely with sentences? By combining
journalism with the technical report

format. In a newspaper article, the paragraphs
are ordered by importance, so that the reader can
stop reading the article at whatever point they
lose interest, knowing that the part they have read
was more important than the part left unread.

State your message in one sentence. That is
your title. Write one paragraph justifying the
message. That is your abstract. Circle each phrase
in the abstract that needs clarification or more

contexts. Write a paragraph or two for each such
phrase. That is the body of your report. Identify
each sentence in the body that needs clarification
and write a paragraph or two in the appendix.
Include your contact information for readers who
require further detail. n

William A. Wood works for NASA at Langley Research
Center. He has a Ph.D. in Aerospace Engineering from
Virginia Tech, and he has published in IEEE Software
(Digital Object Identifier: 10.1109/MS.2003.1196317).

Best Writing Advice for Engineers
By WILLIAM A. WOOD

“Envision how the world will be different
five years after people started using your
product. ”

Reprinted with permission of the original author. First appeared in steveblank.com/2010/04/22/turning-on-your-reality-distortion-field/.

Reprinted with permission of the original author. First appeared in www.edwardtufte.com/.bboard/q-and-a-fetch-msg?msg_id=0001yB.

http://news.ycombinator.com/item?id=1285288
http://steveblank.com/2010/04/22/turning-on-your-reality-distortion-field/
http://www.edwardtufte.com/bboard/q-and-a-fetch-msg?msg_id=0001yB
http://news.ycombinator.com/item?id=1244397
http://news.ycombinator.com/item?id=1244397

Tell us what you think
It's our first release, and we want feedback. Let us know what you
liked, and what we need to work on. Please share your thoughts so
we can improve the coming issues.

hackermonthly.com/feedback/

Hacker Monthly is an independent project by Netizens Media and not affiliated with Y Combinator in any way.

http://hackermonthly.com/feedback/

