

 [image: Hacker Monthly September 2010]

A Coder's Guide To Coffee

Curator's Note - #4, September 2010.

Hacker Monthly finally has its subscription option. You can now
subscribe and receive Hacker Monthly (print or digital) for the
next twelve months.

In the meantime, I have also start charging for digital format.
As I learned from the past 3 months, an advertising-centric revenue
model isn't going to cut it. It seems to me that the only way to
move forward is to charge for digital format.

It was not an easy decision, but I figured it is one that is
better to make sooner rather than later.

If you are reading this, that means you have paid for Hacker
Monthly. I sincerely thank you for supporting, and for helping us
keep going for a very, very long time.

-- Lim Cheng Soon

Hacker Monthly is the print magazine version of Hacker News --
news.ycombinator.com -- a
social news website wildly popular among programmers and startup
founders. The submission guidelines state that content can be
"anything that gratifies one's intellectual curiosity."

Every month, we select from the top voted articles on Hacker
News and print them in magazine format.

For more, visit hackermonthly.com.

Cover Illustration: Jaime G. Wong http://retrazos.pe/

Curator

Lim Cheng Soon

Contributors

Clay Johnson

Tom Moertel

Gabriel Weinberg

Sachin Agarwal

Peter Cooper

Ray Grieselhuber

Jeff Bezos

William Shields

Mark McGranaghan

Mark O'Connor

Jeff Kreeftmeijer

Mike Malone

Proofreader

Ricky de Laveaga

Illustrator

Jaime G. Wong

Printer

MagCloud

E-Book Conversion

Fifobooks.com

Advertising

ads@hackermonthly.com

Contact

contact@hackermonthly.com

Published by

Netizens Media

46, Taylor Road,

11600 Penang,

Malaysia.

How to Focus

By Clay Johnson

Most of the people who click on this article from somewhere
won't finish reading it. So says Nick Carr. The New York Times will
remind you that you'll probably forget reading it in a few minutes.
The idea has gotten so prevalent, even the Onion has started to
take its jabs.

There's some truth to it. Posts like this and search trends
point to what we're after. Many people want the ability to focus
more and feel like they're losing the ability to focus on a
particular task for long periods of time. We feel like we're losing
that ability. Getting Things Done and all the other books out there
tend to give you some rituals to cope with the problem - but only
if you could stick to them. Most of us, just a few weeks after
reading that book, sit next to filing cabinets (virtual or
otherwise) and go about our merry way.

That's because we're focused on the wrong thing. To get a longer
attention span - even a span long enough to read this article -
don't worry about managing the information. Worry about managing
your attention. Paying attention, for long periods of time, is a
form of endurance athleticism. Like running a marathon, it requires
practice and training to get the most out of it. It is as much
Twitter's fault that you have a short attention span as it is your
closet's fault it doesn't have any running shoes in it. If you want
the ability to focus on things for a long period of time, you need
attention fitness.

Neuroplasticity is how your brain changes its organization over
time to deal with new experiences. It involves physical changes
inside of the brain based on the particular tasks the brain is
asked to complete. It's why the hippocampus of a seasoned taxi
driver in London is larger than average, and how a meditating monk
grows grey matter. Your brain isn't a mythological deity but a
physical part of your body that needs to be taken care of just like
the rest of your body. And your body responds to two things really
well - diet and exercise. Let's presume your brain, being a part of
the body, also does.

Things like Inbox Zero or cutting down on meetings may be handy
tricks, but they don't take neuroplasticity into account. The bet
there is that you have a finite amount of attention to spend, and
that attention range isn't changeable. That stuff is handy for
making the best use of your limited attention span, but it's not
going to improve your attention span. It's not going to stop your
brain from being easily distracted or unfocused if you've already
trained it to be that way.

So how do you train to focus? I've been using interval training
with great success. Modeled after how I trained to run my first
marathon using Jeff Galloway's technique, I practice attention
interval training. I got this timer installed on my computer. It's
an excellent interval timer based on a technique called the
Pomodoro technique - but I'm primarily using it based on its
ability to make sound, set good intervals, and support logging. I
started small: 10 minutes of work with two minute breaks. My
strategy has been to keep it so when the timer goes off that tells
me it's time to take a break, I feel like I can keep going. I'm up
to 35 minutes now with 2 minute breaks. Interestingly enough - this
is about as far as I'll get probably while still being able to keep
Instant Messaging on. I've found that about 35 minutes is the max
response time for IM to be useful.

The timer isn't the key part though, that's just a component of
a system like a good watch is a part of running a marathon. Here's
how I set that up:

Ditched the Second Monitor

I've been using a second monitor for nearly ten years, thinking
that vast amounts of space were key to productivity. The second
monitor myth has been around for quite some time. Yet the only
actual scientific study I could find linking multiple monitors to
productivity was done in 2003 by a monitor manufacturer, a video
card manufacturer, and the University of Utah. It's actually kind
of a marketing document, not a study. I've opted for one, large
monitor. Two monitors just allows me to put distractions on one
monitor, and actual work on another.

Set up Spaces in OS X

Spaces is virtual desktop software on OS X. I never thought it
was useful before ditching the second monitor, but now - instead of
having always-on distraction in one monitor on my desk, I can put
my email, twitter, and surfing browser in one "Space" on OS X and
keep it there. When I start my pomodoro timer, I hop into a "space"
that has only the tools I need to do whatever task I am up for on
the screen. In this case, I need limited web browsing and a text
editor to write this blog post. Note the addition of "about:blank"
in my bookmark bar at the top of the browser. While I'm writing and
don't need to use the browser, I tend to blank the screen out so I
don't get too distracted by the browser.

My third space simply has Remember the Milk running in full
screen.

Turned the mouse off during work-time

During the time that I'm working (unless I'm editing) - my 35
minute work intervals - I turn my mouse off. I've found that I can
focus much more on the task at hand if I don't touch or use that
mouse. For me, my mouse is a gateway towards passive browsing and
web surfing. If I don't have access to it, I can't begin the chain
reaction of getting sucked into the web. For me, it'd be like
running a marathon on a road with 26.2 miles of chicken-wing
stores. I might make it a few miles, sure, but around mile 20, I'm
going to succumb to temptation. I've found that Divvy helps me
manage windows without the mouse, and that Vimium helps me use the
web for research without the mouse.

Created a proactive routine

Part of my 2 minute break-time is used to set-up whatever tools
I need to accomplish my next task. I use that time to figure out
exactly what I need for my next task, close-down all the things I
don't need for that task, and set windows up appropriately. There's
rarely a time when I need more than two windows open. The set-up
generally involves closing all tabs in the browser, and starting
the browser fresh with an about:blank page. The key here is, I
don't just hop into doing work. I spend a minute or two setting up
an ideal environment for me to be able to complete whatever my next
task is. When I leave my computer for the day, there are no windows
open. I start with a blank slate to come back to. No need getting
bogged down in yesterday's set-up.

About those tabs

None of my web browsers - surfing or otherwise, are allowed to
have more than 5 tabs per browser window at any time. I do this via
the No More Tabs Chrome extension. This extension is pretty brutal:
if you create a new tab and you're over your tab limit (defaults to
5) it'll close your oldest one. I've been running this extension
for over a month, and not once have I had a serious problem. It's
forced me to pay attention to a particular web page and finish
working with it if I'm going to move on to something else.

The Environment Around Me

While I work primarily from home, I'm still prone to
distractions from my environment. To conquer that, I have a pair of
noise-reducing headphones, and I listen primarily to lyric-free
music. Just a bit of noise to keep me focused. I sit at my desk,
but I suspect that I'll be converting to a standing desk soon
because I don't want to die early. I also tend to keep some snacks
(nuts) and beverages around my desk so that food and water don't
lower my focus threshold. Though there's one big anomaly here: I'm
not working in an office with that many people in it. I don't have
a lot of meetings to take. I'm not managing anyone right now. For
that though, I suggest consolidating all meetings into the
afternoon and make them back to back. That way, you're getting them
out of the way and you have solid, long blocks of time to focus on
getting things done.

Synopsis

Like all exercise, different kinds of workouts work differently
for different people. For me, interval training works wonders -
this blog post, for instance, has taken me 70 minutes to research
and write - ordinarily a blog post like this before I had this
set-up would take me nearly a full day's worth of work. More
importantly though, I'm able to do things like read long articles
or even academic papers - things I never used to "have time for"
which really meant "had attention for."

If you think you're having focus problems - if the concept of
provigil appeals to you, or you've thought "oh if I could only get
my hands on some ritalin," think about setting up an attention
fitness regimen for yourself instead. My general advice:

1. Do slightly less than you think you're capable of

2. Increase your capacity while staying under that bar (#1)

3. You're not going to run the attention fitness equivalent of a
marathon today. Start slow.

Your brain, like your body, is only a result of what you train
it to do. Attention fitness, like any other kind of fitness, takes
time even to get into a routine. But once you make it a habit, it
starts to pay off. §

Clay Johnson is an open government advocate. He is the former
director of Sunlight Labs and under his leadership, Sunlight Labs
became a community of 2000 developers and designers working to open
their government. Prior to Sunlight, Clay was one of the four
founders of Blue State Digital, the organization that provided the
technology and online strategy behind Barack Obama's presidential
campaign. He blogs at infovegan.com.

Reprinted with permission of the original author. First appeared
in http://hn.my/focus/.

A Coder's Guide to Coffee

By Tom Moertel

As most software and creative professionals know, coffee is an
important technology for boosting mental acuity and maintaining
peak on-the-job performance. But did you also know that coffee can
be a damn tasty beverage? It's true. All you need is the
appropriate amount of disrespect for the mainstream coffee industry
and a desire to enjoy a better beverage. So read on, and learn the
secrets to great coffee.

First things first. Mainstream coffee sucks, and specialty
coffee mostly sucks. Mainstream coffee is primarily stale,
low-quality, high-yield beans, many times cheap robustas, foisted
on a largely unknowing public in supermarkets nationwide. Specialty
coffee isn't so much coffee as it is flavorings, sweeteners, and
milk; what coffee is sold is often neither "special" nor properly
prepared - it's usually over-roasted to serve as a background for
sweet flavorings. A few specialty coffee purveyors, however, do
sell good coffee, and I'll show you how to find them, but most are
happy to sell you stale beans whose dead taste is hidden behind
raspberry and caramel syrups. Buyer beware.

Nevertheless, good coffee is good - great even - all by itself.
It's also dirt cheap and easy to make. Therefore, don't settle for
a cup of crappy coffee: make a cup of the good stuff for
yourself.

The coffee quick course

If you follow these three guidelines and do nothing more, you
will enjoy coffee better than you can find in most specialty coffee
shops:

1. Buy only whole-bean coffee roasted within the last few
days.

2. Grind it fresh, just before brewing.

3. Brew it in a French press or a pour-over filter using fresh
water, off the boil.

The first two guidelines strike at the nemesis of good coffee -
staleness. Stale coffee is dead coffee. There is no way to get a
good cup from it.

Sadly, most of the coffee you buy in stores is stale before you
get it home. While green (un-roasted) coffee beans can stay fresh
for 2 years, roasted coffee goes stale in under 2 weeks, and ground
coffee goes stale in a few short hours because of the immense
surface area that grinding exposes to the air. Special "freshness
preserving" packaging doesn't help much either; it's mainly a
marketing gimmick.

The only reliable way to get fresh coffee is to know when it was
roasted. Therefore, when you buy coffee, buy it from a purveyor who
can tell you when it was roasted. If a coffee purveyor can't or
won't tell you when their coffees were roasted, find another
purveyor. And when you buy your coffee, buy it whole bean. Store it
away from heat and light (but not in the refrigerator). Use it
before it goes stale. If it goes stale, throw it away and get fresh
beans.

Also, get a grinder. An inexpensive ($15) blade grinder
("whirly-bird") is sufficient for making drip coffee and lets you
grind just before brewing, which is the key to avoiding staleness.
At this price, there is no reason to suffer stale, pre-ground
coffee. If you want to buy a better grinder, that's fine, but don't
think you have to spend a lot of money to enjoy fresh coffee.

The third guideline addresses another common flavor-denial
attack: Low-temperature brewing. Most drip coffee makers brew at a
temperature too low for proper flavor extraction. The most frequent
explanation that I've heard for this sad yet pervasive flaw is that
"really hot" coffee is a lawsuit waiting to happen, and thus
manufacturers have lowered brewing temperatures accordingly.
Whatever the reason, the effect is a cup of lifeless coffee.

So what is the right temperature? Off the boil works well. Put a
kettle of freshly drawn, cold water on the stove. When it boils,
take it off the heat, wait a minute or so, and slowly pour it over
your freshly ground coffee. If you're an experimenter, a $10
instant-read thermometer is all you need to "dial in" the optimal
temperatures for your coffees and your taste-buds.

Since you'll be using a "pour over" technique, you'll need a
pour-over brewing apparatus - either a French press or a $5
pour-over filter holder, found in most supermarkets. Use the French
press if you enjoy the stronger flavors of unfiltered coffee. Use
the filter holder if you prefer the convenience of a filter, which
makes clean-up easy. Both are small enough to take to work, and the
filter holders are cheap enough to leave there.

And that's how you make great coffee. If you think that's too
much effort, at least you can use your new knowledge to find coffee
shops that use fresh beans, grind them just before brewing, and
brew them properly (most commercial brewers do use proper
temperatures, thank goodness).

Oh, there's more

If you follow the advice above, you will drink great coffee for
the rest of your life. For some people, that's enough. For other
folks (like me), that's just the beginning. It's the first step
toward a fun, inexpensive, and gastronomically rewarding hobby.
Even if you don't want to make coffee into your hobby, you do have
the opportunity - right now - to give up bad coffee and start
drinking the good stuff. Why not seize the day?

Home roasting

Roasting your own coffee is simple and provides three major
benefits. First, you can buy your coffee green and store it for
over a year. Second, you can roast your coffee as you need it, so
you'll always have fresh beans. Third, you can experiment with a
wide variety of beans, blends, and roasts to enjoy coffee that you
could never find in a store.

A further benefit is that green coffee is less expensive than
roasted coffee. By home roasting you'll not only have better coffee
and more control but also more money in your pocket.

To roast your own coffee you will need two things: green beans
and a roaster. The beans can be purchased online at places like
Sweet Maria's (where I get most of my beans) and locally from the
better coffee shops in your neighborhood. A roaster can be had for
as little as $5 - buy an old hot-air popcorn popper at a garage
sale. That's what many folks on alt.coffee use for their roasting. If you
prefer a less adventurous solution, there are many home-use
roasting machines now on the market in the $100-$300 price range. I
use a $150 Hearthware Precision roaster, and it works well. Just
drop in a scoop of beans, dial in the desired roast, and press a
button.

Yes, it's that easy. And, yes, the results are better than most
pre-roasted coffees you can buy. Nothing smells as good as freshly
roasted beans. Nothing tastes as good when brewed. Once you try
home roasting for yourself, you will understand.

Espresso

If you want to experience the concentrated essence of coffee,
you must drink espresso. Good espresso. Unfortunately, practically
none of the specialty coffee shops and chains in the United States
knows how to prepare espresso properly. If you want good espresso,
you'll have to make it yourself (or take a trip to Italy).

Unlike the advice I provided earlier, which is simple and just
plain works, making good espresso is difficult. Finding the right
combination of beans, grind, packing, pressure, temperature, and
exposure takes practice. It took me months of gradual refinement to
learn how to make a truly good cup. After years, I'm still seeking
the perfect cup.

Since the perfect cup of espresso is a never-ending quest, I can
only point you in the right direction. The rest is up to you. Here
is what I can tell you:

	Plan on spending > $250 USD on a good pump machine. "Steam
toys" aren't capable of good espresso. Do your homework: Read what
people who own the machines say in the consumer reviews of brewing
equipment on on CoffeeGeek.com.

	Plan on spending that amount again on a good grinder. Many
people buy an expensive espresso machine but skimp on the grinder.
Big mistake. Since grind is probably the single most important
variable under your control, a grinder must be highly adjustable
and produce a consistent grind, and that means high-quality burrs
set in a rigid enclosure. These features don't come cheap. When
shopping for a grinder, again, check out the consumer reviews on
CoffeeGeek before buying.

	Read the alt.coffee wisdom on
espresso, ristretto, crema, and tampers. It's also a good idea in
general to hang out on alt.coffee.
I've learned most of what I know about coffee and espresso
there.

If you want to dig a little deeper, you can read my semi-rant
about espresso on Slashdot.

Brew well and drink well, my friends

Although coffee is commonly considered a utility beverage, it is
an amazing drink when well prepared. Given its ubiquity in software
and creative circles, it's likely that you will be drinking a lot
of it. So why not prepare it as it was meant to be? Why not enjoy a
cup of truly good coffee? If you buy fresh, high-quality beans,
grind them on the spot, and brew with hot water, you can't go
wrong. And if you decide to try home roasting or espresso, you will
enter a whole new world of flavor and nuance. The rewards are worth
the effort.

Whatever else you may do, please don't let the mainstream coffee
industries convince you that bad coffee is all there is. Good
coffee is out there. Insist on the good stuff. §

Tom Moertel designs and codes the core messaging systems at
Smash Technologies www.smashcode.com, a
mobile-messaging startup based in Pittsburgh. To make things go, he
uses Erlang, Haskell, Python, and a whole lot of home-roasted
coffee. You can read his blog at blog.moertel.com.

Originally posted to Kuro5hin.org on Thu Apr 25th, 2002 at
02:29:34 PM EST. Reprinted here with minor corrections as it
appears on http://hn.my/coffee/.

Illustration: Jaime G. Wong http://retrazos.pe/

Photo: GenBug, http://flickr.com/photos/genbug/3153754889/.

Sierra Michels Slettvet, http://flickr.com/photos/sierrams/3437792169/.

Alex, http://flickr.com/photos/eflon/4340500871/.

Licensed under Creative Commons Attribution 2.0 Generic licence.
Full terms available at http://creativecommons.org/licenses/by/2.0/deed.en.

Wannabe entrepreneur symptoms and cures

By Gabriel Weinberg

I was once a wannabe entrepreneur. Fresh out of college and a
summer internship at a VC firm, I thought I knew what I was doing.
Though this was 2000, and all startup & VC blogs we've grown to
love didn't exist yet, I did have mentors available. I should have
leaned on them a lot more, but I didn't, or at least not in the
right ways.

But all the ways I've failed, and there are certainly many, is
not the point. I just want to let you know that I've been there,
and that I hope the rest of this post doesn't come off as
annoyingly condescending.

Since 2000, I've been doing and thinking about startups
constantly. Even though I'm an introvert, I end up meeting or
otherwise crossing paths with a lot of entrepreneurs.
Unfortunately, I'd classify a lot of them as wannabes.

What follows are some symptoms I've seen over and over that
usually (though not always) indicate a wannabe entrepreneur. If any
of these describe you (or someone you know), I'd take it as a sign
to step back and think hard about what you're doing (or have that
conversation with your friend).

There are cures. Usually it means what you (or they) are working
on now will fail. But perhaps it is salvageable with a few tweaks
or a change in direction. And if you/they are really in it for the
long term (as real entrepreneurs are), then there will be other
startups.

Symptom: a year has gone by and you have nothing to show
for it.

Cure: get stuff done. That's what real startup founders do.
Customers don't care about excuses.

Symptom: you haven't really talked to any real
customers/users.

Cure: read Steve Blank's book. Get out of the building. "No
plan survives first contact with customers." A related (non-wannabe
but first-timer problem) is confusing the user with the customer. I
did this on my first startup, and it was one of my primary
problems.

Symptom: you're going around calling yourself a
CEO.

Cure: you're a founder. You're not powerful. No one cares
about what you're doing...yet.

Symptom: you aren't knowledgeable about startups,
especially your own space.

Cure: read stuff & regularly talk with the smartest
startup people you know. At the very least, you should know the
whole history of your space--failures, acquisitions, IPOs, reasons
for such, etc.

Symptom: you just need 10-25K in investment.

Cure: get your own 10-25K. Do consulting. Maybe convince
friends and family. If you can't raise that much from yourself and
your existing circle, you aren't going to be able to raise more
from strangers. I did consulting for a few years, max 4 hours a
day, so I could focus the rest of time on my startups.

Symptom: you have spent months researching the right
architecture to build your site.

Cure: build it already. You seem like someone more
interested in technology than startups.

Symptom: you don't understand your startup's
assumptions.

Cure: make a spreadsheet and try to predict the key metrics
of your business. Yes, the financial projections that come out of
the spreadsheet are probably worthless (or grossly inaccurate), but
not their underlying assumptions. Those are the things you need to
prove and the first step is knowing what they are. As a side note,
this exercise will help you understand how much money you need to
raise, if any.

Symptom: you've written more than a 5 page business plan
(intended for others).

Cure: spend that time talking to real customers or building
your product. If you think it will help you understand your
business, build a spreadsheet with assumptions instead. If you
think investors will read it, know that they won't. Note: I have no
problem with people analyzing their businesses internally through
brief writing; I do that too.

Symptom: you now just need a programmer to code up your
site.

Cure: either convince a real tech co-founder to join you, or
learn how to code yourself. It's not that hard, and if you think of
startups as a career, it's a great skill to have even if you just
manage tech people. You don't have to major in CS in college to be
a programmer, e.g. I was a Physics major. §

Gabriel Weinberg is the founder of Duck Duck Go, a search
engine. He is also an active angel investor, based out of Valley
Forge, PA. More info at his homepage: http://ye.gg/

Reprinted with permission of the original author. First appeared
in http://hn.my/wannabe/.

If you can't buy your investor a beer, don't take their
money

by Sachin Agarwal

We just had our second official board meeting. Posterous has
been around for over two years, but I still count this as number
two. Because in the past, a board meeting just meant Garry and I
were at a bar talking about the future of our company.

But there were new faces at this meeting. Satish Dharmaraj from
Redpoint Ventures, Gus Tai from Trinity Ventures, and our lawyer,
John Bautista from Orrick. There was no beer. And I was presenting
the state of Posterous through a Powerpoint presentation. I had
barely touched Powerpoint before starting Posterous.

The guys around this table have a lot of power over our company.
They are on the board. They have voting rights. They can fire
me.

So how do we know we picked the right people for the job? Some
of the VCs we were pitching to, we met only three or four times. Is
that enough to really get to know someone, to give them power over
your company and future?

Do they know me? Do they know what my goals are, what kind of
company I'm trying to build, what gets me excited?

There are plenty of posts online about valuations, term sheets,
and how to negotiate. I'm not going to get into that stuff here.
This post is about the personal side of finding investors. These
are tips to make sure the people you let invest in your company are
a good fit.

You need to trust your investor, and you only have a short
amount of time to find out if you do. Here are some things
Posterous did to get to know our investors before letting them
invest.

Get to know the VCs early. If you need money, you are too
late.

If you aren't raising money, you have the luxury of time. Use it
to meet and get to know as many VCs as possible.

	Go to startup events and introduce yourself to every VC in the
room.

Don't just do a five second hello. Tell them who you are and what
you're working on. Even if you aren't looking for money, they will
appreciate meeting you.

	Read VC blogs.

What VCs do you look up to? Find out what every VC writes about,
what his beliefs are, and what he's invested in.

	Beware of associates.

We had some bad experiences. If an associate sets up a meeting with
you, make sure a partner will also be there.

	Get introductions to VCs from your angel investors and other
startup friends.

These go a long way. If you have multiple connections to a VC, have
them all plug you. If a VC hears about your company from 5 of his
friends, he will meet with you.

	Don't be shy.

Be proud of what you're building. Your competition will be.
Highlight your strengths, be confident.

	A couple months before you're going to raise, schedule a coffee
meeting with all the VCs.

No pitching, no deck. We did this and it was a great way to meet VC
partners in a more casual setting. If they like you, they will even
help you with your pitch.

	Continue building a relationship with VCs you meet.

Send them updates about your company, news in TechCrunch, and
updated stats.

	Get them to use your product.

If they haven't used it by the time you're pitching them, you're
wasting your time.

Let the pitching begin

You are not cattle. Make the VCs respect you and your time.

	Cram all your meetings in the shortest amount of time
possible.

You want to get this over with quickly. (You also want your term
sheets to come at the same time).

	Refine your pitch everyday.

Figure out what works and what doesn't, then change it.

	Put your least desirable VCs up front.

You will learn a lot as you go. You will figure out which questions
are good, and which are signs of interest.

	Don't read too many posts about what a VC pitch deck should
look like.

You know what it should contain? Whatever you want it to. Because
it should be personal. It should convey what you think it
important. Otherwise you might try to squeeze your pitch into a
mold that isn't right for you.

	Your pitch should be natural.

By the middle of our pitching calendar, I could give our pitch by
heart and it was 90% the same as the last time I gave it. That's
not because it was memorized. It's because it was natural and
automatic.

	Before starting your pitch, make everyone in the room introduce
themselves.

Sometimes they don't and it's very odd. They should be selling to
you as well.

	Get through your pitch and divert as many questions as you
can.

You should run the show.

	Have one person speak, whoever is the most confident.

It will flow better this way and you won't be repeating yourself as
much.

	When asked a question, have one person ready to answer
it.

Don't look at each other, don't hesitate.

	Ask the VCs questions.

Have these ready beforehand. Ask them about the firm structure,
their funds, and other investments.

	Evaluate the VC's questions.

Are they asking you smart things? You can pretty accurately figure
out if the VC "gets" what you're building and is excited about it
based on their questions. If they don't get it, don't waste your
time.

	If they don't get it, walk out.

Say, "no thanks." I said "no" to a couple VCs when I thought there
was no fit. I don't want to waste their time, and they shouldn't
waste mine. If you ask me about barriers to entry, you don't
understand the internet.

	Follow up with a thank you email, and additional
questions.

This is your chance to ask anything.

So you got a term sheet. But do you want their money?

If you're fortunate enough to get multiple term sheets, here's
when you decide which VC you want on your board. Terms are
important, but your fit with the partner will mean much more at the
end of the day than a higher valuation.

	Hang out with the partner over beer.

The more beer you have, the better. If you are going to work with
this person for years to come, you have to be comfortable around
them.

	Check up on references.

Talk to other companies they have invested in. Ask friends who
might know people at those companies. Try to figure out which
references are honest and which are just siding with the VC by
default.

	Talk to CEOs that have been fired by this VC.

You'll get a good story at least.

	If the VCs are prepping their references for your call, be
afraid.

Our best offer to check references came from Gus when he said,
"Feel free to contact any person I have ever worked with through my
entire career."

Raising series A financing is one of the most stressful, unique,
and exciting things I've done at Posterous. I had the time of my
life. It was a two month long roller coaster of meetings,
negotiations, dinners, and eventually, money.

We couldn't be happier with the ways things turned out. We love
having Satish and Gus invest their money, time, and expertise into
Posterous. In fact, the reason why we have two VCs is because we
wanted them both!

We have a long relationship with Satish, and I trust him like
he's part of my family. We often call him Uncle Satish. The first
time I met Gus, months before we were ready to raise a VC round, I
was instantly impressed by him. Kate met Gus at a Christmas party,
and after just a few minutes, commented about how great of a guy he
is. These things matter.

So what are our board meetings like? We rush through the legal
and finance business as quick as we can, and then we talk product.
We all love talking about Posterous and what we should build next.
I love it. §

Sachin Agarwal is the cofounder and CEO of Posterous.com. Prior to starting
Posterous, Sachin spent 6 years working on Final Cut Pro at Apple,
Inc. Sachin graduated from Stanford University in 2002 with a
degree in Computer Science. You can follow Sachin on twitter at
http://twitter.com/a4agarwal

Reprinted with permission of the original author. First appeared
in http://hn.my/investors/.

Three years ago, I sold my startup because I was an idiot

By Peter Cooper

Three years ago today, I sold the assets forming Feed Digest to
Informer Technologies, Inc. It has since been rebranded to Feed
Informer but is still operating mostly as it was.

I made a nice amount of money from it and I don't regret the
sale, but, ultimately, I was dumb for letting Feed Digest to get to
a position where it was better to sell than not. I need to go into
some background for you to see why.

The genesis of Feed Digest

Feed Digest was a pioneer in "serious" RSS (and Atom!) feed
manipulation and syndication services. It wasn't the first, but it
was the first to seriously try to capitalize on the idea rather
than offer these services as an "extra" on something else.

Users included NASA, the Smithsonian Institute, MIT, and, most
importantly, the Denver Post, one of America's top 10 daily
newspapers, who used Feed Digest widgets all over their site. About
250 million "digests" were being served per month by mid 2007 and
from the outside, it looked like a promising business.

Feed Digest spawned from a side project called RSS Digest whose
main goal was to take my Delicious links and automatically put them
onto my blog. After hundreds of others though it was a great idea,
I started to take donations (several thousand dollars in a few
months - not bad for 2005!) and let people use the tool too. From
this, enough promise was shown that I decided to "go pro" and a
month before launch, Kelly Smith structured a deal for Curious
Office to make an angel investment in my idea (for this gamble on
his part, I will always be grateful).

A popular service, headed by a business dunce

The nascent business had a problem though - me. Though I'd been
working for myself for 7 years before launching Feed Digest, it
would be an understatement to say I was naïve about the concerns of
"running a business." Feed Digest's pricing was ridiculously low
(even the biggest "enterprise" customer was only paying $200 a
month - most users were $25-50 a YEAR) and while it was in profit
from the third week and had a flood of customers throughout, it was
only making several thousand dollars a month after 2 years. Enough
to keep it going as a "job" for me, but not a serious business that
warranted further investment.

As with most webapps, a lot of hope was put into developing an
all-magical "version 2" and I made good progress with it. In 2006 I
got an e-mail from Michael Arrington who wanted to write about Feed
Digest for TechCrunch (yes, one of the biggest and most influential
tech blogs in the world). Being a closet perfectionist, I asked if
I could hold until the magical version 2 was released. A crazy
mistake. Michael has been kind enough to follow me on Twitter and
occasionally throw a comment my way in the years since, I hope I
can make up for my stupidity by giving him a good story one day
;-)

Service was always a massive deal for me. What I lacked in
business acumen, I made up for by delivering the best service I
could. Every e-mail got a response within hours, every criticism
either resolved or accepted gracefully. I forget the exact numbers
but in well over 1000 transactions there were certainly fewer than
5 refunds ever requested (and all were given). Users genuinely
loved the service.

The sale

Service is only one leg of the stool in any business, and
without a serious idea of how to grow the business it was destined
to stay small fry unless someone else took notice. In mid 2007, I
got a terse e-mail from a Russian guy asking if I wanted to sell
Feed Digest and, if I did, his company would be interested in
buying it. Negotiations were quick and my angel investors - who
were supportive, but a little forlorn over my inability to drive it
as a "real" business - gave the thumbs up, since the number
mentioned ensured they'd get a healthy return on their investment.
The deal was sealed by the end of July 2007 (no big story here,
both sides did due diligence on each other and a good escrow was
used) and the money hit my bank account in mid August.

It wasn't a lot of money. Well, it was for me. It wasn't a
million dollar acquisition, but certainly more than most of the
population will earn in a couple of years. A low six figure sale.
For something merely making "a living" and keeping me up all hours
of the night, I think it was a good deal. It turned into some
healthy savings, a wedding, a car, and a chunk of the house we live
in now, so I can't complain.

The contract I signed with the buyer meant that I was
contractually obliged to defend them against any third party claims
over patents, copyrights, and the like, for three years, ending
July 30, 2010. Today, then, is truly the day all ties with the
service are severed. It's the final period on the last page of the
book.

What I've learned since

A benefit of having some savings is that I've been free to do
mostly whatever I like since then. I've tried a lot of crazy ideas,
got into pro blogging (with Ruby Inside), read a ton of books,
worked on open source, and devoted a lot of time to learning and
experimenting with business. I've got to know a lot of people in
business and get a feel for how things really work, if just at a
high level.

One finding is that many people running startups are no smarter
than I was when I started Feed Digest. The difference, though,
between me and the successful founders are that they are good at
delegating responsibilities for areas they're not strong at,
whereas I took a strong DIY approach, building not only the
technology, but keeping books, design, marketing, and so forth. Not
only that, but I wasn't brave enough to charge a sensible rate for
the product and didn't understand that I should define my market
rather than sell $11.99 annual accounts to people adding widgets to
their personal homepages.

I've not become a Donald Trump, but I can now see what I was
doing wrong and how I could have turned Feed Digest into a
"serious" business (where "serious", at my kindergarten level,
means enough revenue and growth to scale to multiple employees and
make serious inroads to enterprise deployments of our
services).

Not quite the end

Despite my Feed Digest story ending, it has caused me to
reflect. I've written about the business side of things here, but
the technical opportunities have changed significantly since early
2005 too. Building a Feed Digest style service now is incredibly
easy.

Making something seriously powerful and sellable at an
enterprise level is no longer prohibitively expensive, just
dependent on having the right know how. Which... I have. I've been
building feed processing and manipulation systems in the background
for other projects (such as coder.io
in the interim. This has only just made me think: am I crazy for
not getting back into the feed processing and manipulation industry
again?

So, I'm investigating it - slowly. I know what I'm doing tech
side. I have enough contacts now to get things rolling. And I have
a lot more grace and life experience to actually ask for help and
be brave in making business decisions than the 23 year old me ever
did. The industry is still small but, importantly, still growing
(Superfeedr is a notable new player) and still considered important
by the right people behind the scenes.

Should I get back to what I know and build a "serious" high
quality product or service on my existing knowledge base? Honestly,
I don't know, but it's going to be interesting trying to find out.
After three years, it no longer feels like an unethical thing to
consider. §

Added: I want to take this opportunity to thank
Marshall Kirkpatrick - now of ReadWriteWeb - who championed Feed
Digest quite a lot in its early days. He is easily the most
RSS-obsessed person I know this side of Dave Winer.

Peter Cooper is a UK-based entrepreneur, author, and founder of
coder.io. His personal homepage and
blog is at peterc.org and you can
follow him on Twitter at @peterc.

Reprinted with permission of the original author. First appeared
in http://hn.my/soldstartup/.

The Royal We: Single Founder Startups

By Ray Grieselhuber

It has become a common wisdom of sorts in the startup world that
if you are running your business without a co-founder or partner,
the odds are stacked against you. I personally don't believe we
have enough data to say whether the odds are any worse as a single
founder, but I do know it comes with its own unique challenges.
More and more, though, I meet people running their businesses,
quite successfully, as solo founders. It is at least partly related
to the shifts we are seeing in startups as a whole. I've learned
quite a bit over the last two years as a solo founder myself, so I
thought I'd share my observations and some techniques that I've
found useful for making it work.

But first, let me provide some background. If you happen to
follow the world of startups, especially web startups, you'll know
that venture capital is undergoing a change and more startups are
being run on less initial investment and that the size of each
investment is getting smaller. At first glance, this may not seem
like a good thing but it is for the following reasons.

First, it creates an environment that selects for do-ers and
makers - people who have the ability to create entirely new
businesses literally with their own hands. In many sectors, the
startup world consisted of all-star executive teams and millions of
dollars in venture capital. We are now discovering that this is a
dangerous model for many reasons (which I won't discuss here.) But
now, as companies raise less money early on, this forces them to
spend more time discovering what works as a business model before
they build out their product.

Second, the earlier a startup raises money, the more risk they
are asking investors to shoulder. As a reward for bearing this
risk, investors generally get more control of the company. By being
able to build an initial product and discover a working business
model with less investment, this shifts the balance of power (and
the risk, of course) back to startup founders.

One of the key enablers for this shift is the dropping cost of
building businesses in the first place. Paul Graham is well-known
for articulating this as being due to open source software and the
cloud. I also think it's fair to say that the tumultuous economy
we've experienced over the last 10 years has contributed to the
creation of a generation of frugal, scrappy entrepreneurs.

If we take everything above into consideration and look honestly
at the difference between single founder startups and startups run
by cofounders, we can see that these forces are relevant to anyone
building a new company, regardless of team size. In fact, one could
probably argue that if startups are going to keep getting cheaper
to build, then it only makes sense that the minimum size of a team
necessary to build a new startup should continue to approach zero.
One is closer to zero than two or three.

Kidding aside, if we can agree that these factors apply for any
company, then there must be a different set of reasons why people
think the odds are better for startups with co-founders.

The three that I think are most relevant are

1) emotional fortitude,

2) having more hands to do the work and

3) a richer source of new ideas.

Working as a solo founder means that you need to get creative
about how to make these three factors work for you, despite your
status. It may be more difficult to do so, but if you can learn to
do this on your own, then you will probably emerge stronger and
better than many other startups, even if they are bigger than
you.

For #1, there is no getting around the fact that running a
startup is hard. It will test everything you know and believe about
yourself. You will feel stupid, under-appreciated, underpaid and
both emotionally and physically drained. And that's just what
happens when things are going well. (If you're not feeling those
things at least some of the time, you're probably not to the stage
of validating your business model.) So, perhaps the best reason for
having a co-founder is for moral support, someone to help you get
through those dark nights of the soul.

As a single founder, I can't argue that having the right
co-founder would not make this much easier. But there are ways of
making it work, even if you are alone. The key is to not be alone
in other, even more important areas of your life. In my case, my
wife helps me get through. In many ways, although she is not
technically a co-founder, she helps with a ton of admin work and,
more importantly, has helped me stay positive. She has been as much
a part of this startup as I have, and has suffered through the same
things. If you're not with somebody, it might be harder or easier,
depending on where you are in life. I know lots of single people in
their 20s building successful companies on their own.

At the end of the day, it comes down to how you answer two
questions: are you ever going to quit and can you adapt? You may
not know this before starting, but if you do it long enough, you
will have to figure out the answer. I've had to do this over the
last year myself, and I've found the answer. (Hint: I'm still
here.)

I could probably simplify this even further. The degree to which
you are successful is a function of your ability to mold reality to
your needs. This is something I learn a little more about the
longer I'm in the game, because the work involved in developing
that ability is significant.

In my opinion, #2 (having more hands to do the work) is the
least important, although it is probably the one that most people
think of as being hardest when they hear about people doing
startups on their own. You could have 20 people on your team and
there will always be more work than you can handle at any time. In
many early stage startups, having too many people can be a kiss of
death (not that 2-4 is too many, necessarily.)

Any capable person on a small team wants to contribute to its
success and it's very easy for people to create busy work (or
worse, spend money) far too early. When a company is trying to
figure out what customers will pay for, it can be a handicap to
build too much without knowing the answer to that question. We've
learned from people like DHH the value of constraints and, from
this perspective, there are few more constrained environments than
a single person team trying to bootstrap a company into
profitability.

Finally, #3 (a richer source of new ideas) may be even more
important than #1 (emotional support). It is possible to engage in
a variety of human relationships in order to get the support you
need. But ideas (aside from leads) are the lifeblood of the
entrepreneur. I know that it is fashionable these days to say that
ideas are worth nothing and that it's all about the execution. I
don't agree with that statement because it puts the focus on the
wrong part of the idea. It may be true that each individual idea is
worth less than the execution of that idea (although they are never
worthless), what is really valuable is the ability to generate
ideas. A surprising number of people just draw blanks when faced
with challenges and those people who can deliver creative, new
ideas about any given situation are pure gold.

In general, as the saying goes, two (or more) heads are better
than one. So how does a solo founder get better at coming up with
new ideas? I personally do it by trying learn about as many
businesses as I can. I am fascinated by business models. I've done
quite a bit of B2B sales over the last few years, selling the
earliest versions of Ginzametrics. In my sales meetings, I always
try to understand the intricacies of the customer's business, down
to the small details of what makes it tick. Almost always, I walk
out of those meetings with more ideas of my own than I ever would
have otherwise (and the sales process tends to go better to the
degree that I understand their businesses.) There are many ways of
getting new ideas. Talk to other startups. Read more books. Do
little side projects that are completely unrelated to your product.
I personally never feel at a loss for ideas (and have more than I
know what to do with).

The last thing I want to write about is an observation I've
made. Think about all of the successful companies we know. Isn't it
true in many cases (though not all, of course) that even in
companies that were started by co-founders, there is usually The
One?

The One is that person who really makes the company work. The
other founders no doubt contribute a great deal, but if it really
came down to it, the company would survive and flourish in much the
same way as long as The One was running it. In some cases, this
actually happens. Evan Williams, when he was working on Blogger,
was reduced to being a single founder for awhile when his
co-founders split. He is the reason that company worked. In the
case of Mint.com, I believe Aaron
Patzer actually was a solo founder and he is certainly the person
that everyone in the Valley talks about as the one who made
Mint.com work. Whenever I meet other
startups, I'm always trying to figure out how they work. Is there
one person in the company who really makes it work, or are they
really a symbiotic team? In my own experience, it turns out to be
half and half. Many of the startups I meet would work just fine
with just The One, because they have that right mixture of
charisma, determination and product vision.

This is important to note because, even if you start out on your
own, it doesn't mean you won't someday be able to hire employees
and recruit strong players for your executive team. Being a single
founder is just a starting place. If you decide to raise money or
achieve profitability on your own, you can hire the people you need
to come up with new ideas and do more work. You've already
demonstrated to yourself that you have or can find the emotional
fortitude to survive. So what else do you need? It's not for
everyone, but if you have an idea and want to do a startup but find
yourself alone, just start doing it. You'll know soon enough if
you're cut out for it, and if you are, it won't matter how many
people you have on your team. §

Ray Grieselhuber is the founder of Ginzametrics, which provides
an easy way for companies to manage and improve their search engine
optimization (SEO) campaigns. He blogs about his experiences and
observations as an analytics startup at http://ginzametrics.com/blog.html.

Reprinted with permission of the original author. First appeared
in http://hn.my/singlefounder/.

"We are What We Choose"

Remarks by Jeff Bezos, as delivered to the Princeton Class of
2010 May 30, 2010

As a kid, I spent my summers with my grandparents on their ranch
in Texas. I helped fix windmills, vaccinate cattle, and do other
chores. We also watched soap operas every afternoon, especially
"Days of our Lives." My grandparents belonged to a Caravan Club, a
group of Airstream trailer owners who travel together around the
U.S. and Canada. And every few summers, we'd join the caravan. We'd
hitch up the Airstream trailer to my grandfather's car, and off
we'd go, in a line with 300 other Airstream adventurers. I loved
and worshipped my grandparents and I really looked forward to these
trips. On one particular trip, I was about 10 years old. I was
rolling around in the big bench seat in the back of the car. My
grandfather was driving. And my grandmother had the passenger seat.
She smoked throughout these trips, and I hated the smell.

At that age, I'd take any excuse to make estimates and do minor
arithmetic. I'd calculate our gas mileage -- figure out useless
statistics on things like grocery spending. I'd been hearing an ad
campaign about smoking. I can't remember the details, but basically
the ad said, every puff of a cigarette takes some number of minutes
off of your life: I think it might have been two minutes per puff.
At any rate, I decided to do the math for my grandmother. I
estimated the number of cigarettes per days, estimated the number
of puffs per cigarette and so on. When I was satisfied that I'd
come up with a reasonable number, I poked my head into the front of
the car, tapped my grandmother on the shoulder, and proudly
proclaimed, "At two minutes per puff, you've taken nine years off
your life!"

I have a vivid memory of what happened, and it was not what I
expected. I expected to be applauded for my cleverness and
arithmetic skills. "Jeff, you're so smart. You had to have made
some tricky estimates, figure out the number of minutes in a year
and do some division." That's not what happened. Instead, my
grandmother burst into tears. I sat in the backseat and did not
know what to do. While my grandmother sat crying, my grandfather,
who had been driving in silence, pulled over onto the shoulder of
the highway. He got out of the car and came around and opened my
door and waited for me to follow. Was I in trouble? My grandfather
was a highly intelligent, quiet man. He had never said a harsh word
to me, and maybe this was to be the first time? Or maybe he would
ask that I get back in the car and apologize to my grandmother. I
had no experience in this realm with my grandparents and no way to
gauge what the consequences might be. We stopped beside the
trailer. My grandfather looked at me, and after a bit of silence,
he gently and calmly said, "Jeff, one day you'll understand that
it's harder to be kind than clever."

What I want to talk to you about today is the difference between
gifts and choices. Cleverness is a gift, kindness is a choice.
Gifts are easy -- they're given after all. Choices can be hard. You
can seduce yourself with your gifts if you're not careful, and if
you do, it'll probably be to the detriment of your choices.

This is a group with many gifts. I'm sure one of your gifts is
the gift of a smart and capable brain. I'm confident that's the
case because admission is competitive and if there weren't some
signs that you're clever, the dean of admission wouldn't have let
you in.

Your smarts will come in handy because you will travel in a land
of marvels. We humans -- plodding as we are -- will astonish
ourselves. We'll invent ways to generate clean energy and a lot of
it. Atom by atom, we'll assemble tiny machines that will enter cell
walls and make repairs. This month comes the extraordinary but also
inevitable news that we've synthesized life. In the coming years,
we'll not only synthesize it, but we'll engineer it to
specifications. I believe you'll even see us understand the human
brain. Jules Verne, Mark Twain, Galileo, Newton -- all the curious
from the ages would have wanted to be alive most of all right now.
As a civilization, we will have so many gifts, just as you as
individuals have so many individual gifts as you sit before me.

How will you use these gifts? And will you take pride in your
gifts or pride in your choices?

I got the idea to start Amazon 16 years ago. I came across the
fact that Web usage was growing at 2,300 percent per year. I'd
never seen or heard of anything that grew that fast, and the idea
of building an online bookstore with millions of titles --
something that simply couldn't exist in the physical world -- was
very exciting to me. I had just turned 30 years old, and I'd been
married for a year. I told my wife MacKenzie that I wanted to quit
my job and go do this crazy thing that probably wouldn't work since
most startups don't, and I wasn't sure what would happen after
that. MacKenzie (also a Princeton grad and sitting here in the
second row) told me I should go for it. As a young boy, I'd been a
garage inventor. I'd invented an automatic gate closer out of
cement-filled tires, a solar cooker that didn't work very well out
of an umbrella and tinfoil, baking-pan alarms to entrap my
siblings. I'd always wanted to be an inventor, and she wanted me to
follow my passion.

I was working at a financial firm in New York City with a bunch
of very smart people, and I had a brilliant boss that I much
admired. I went to my boss and told him I wanted to start a company
selling books on the Internet. He took me on a long walk in Central
Park, listened carefully to me, and finally said, "That sounds like
a really good idea, but it would be an even better idea for someone
who didn't already have a good job." That logic made some sense to
me, and he convinced me to think about it for 48 hours before
making a final decision. Seen in that light, it really was a
difficult choice, but ultimately, I decided I had to give it a
shot. I didn't think I'd regret trying and failing. And I suspected
I would always be haunted by a decision to not try at all. After
much consideration, I took the less safe path to follow my passion,
and I'm proud of that choice.

Tomorrow, in a very real sense, your life -- the life you author
from scratch on your own -- begins.

How will you use your gifts? What choices will you make?

Will inertia be your guide, or will you follow your
passions?

Will you follow dogma, or will you be original?

Will you choose a life of ease, or a life of service and
adventure?

Will you wilt under criticism, or will you follow your
convictions?

Will you bluff it out when you're wrong, or will you
apologize?

Will you guard your heart against rejection, or will you act
when you fall in love?

Will you play it safe, or will you be a little bit
swashbuckling?

When it's tough, will you give up, or will you be
relentless?

Will you be a cynic, or will you be a builder?

Will you be clever at the expense of others, or will you be
kind?

I will hazard a prediction. When you are 80 years old, and in a
quiet moment of reflection narrating for only yourself the most
personal version of your life story, the telling that will be most
compact and meaningful will be the series of choices you have made.
In the end, we are our choices. Build yourself a great story. Thank
you and good luck! §

Reprinted with permission. First appeared in:
http://www.princeton.edu/main/news/archive/S27/52/51O99/index.xml.

Photo: Princeton University, Office of
Communications, Denise Applewhite

Plain English Explanation of Big O Notation

by William Shields

I recently read A Beginners' Guide to Big O Notation and while I
appreciate such efforts I don't think it went far enough. I'm a
huge fan of "plain English" explanations to, well, anything. Just
look at the formal definition of Big O. The only people who can
understand that already know what it means (and probably have a
higher degree in mathematics and/or computer science).

On StackOverflow you often get comments like "you should do X
because it's O(2n) and Y is O(3n)". Such statements originate from
a basic misunderstanding of what Big O is and how to apply it. The
material in this post is basically a rehash and expansion of what
I've previously written on the subject.

What is Big O?

Big O notation seeks to describe the relative complexity of an
algorithm by reducing the growth rate to the key factors when the
key factor tends towards infinity. For this reason, you will often
hear the phrase asymptotic complexity. In doing so, all other
factors are ignored. It is a relative representation of
complexity.

What Isn't Big O?

Big O isn't a performance test of an algorithm. It is also
notional or abstract in that it tends to ignore other factors.
Sorting algorithm complexity is typically reduced to the number of
elements being sorted as being the key factor. This is fine but it
doesn't take into account issues such as:

	Memory Usage: one algorithm might use much more memory than
another. Depending on the situation this could be anything from
completely irrelevant to critical;

	Cost of Comparison: It may be that comparing elements is really
expensive, which will potentially change any real-world comparison
between algorithms;

	Cost of Moving Elements: copying elements is typically cheap
but this isn't necessarily the case;

	etc.

Arithmetic

The best example of Big-O I can think of is doing arithmetic.
Take two numbers (123456 and 789012). The basic arithmetic
operations we learnt in school were:

addition;

subtraction;

multiplication; and

division.

Each of these is an operation or a problem. A method of solving
these is called an algorithm.

Addition is the simplest. You line the numbers up (to the right)
and add the digits in a column writing the last number of that
addition in the result. The 'tens' part of that number is carried
over to the next column. Let's assume that the addition of these
numbers is the most expensive operation in this algorithm. It
stands to reason that to add these two numbers together we have to
add together 6 digits (and possibly carry a 7th). If we add two 100
digit numbers together we have to do 100 additions. If we add two
10,000 digit numbers we have to do 10,000 additions.

See the pattern? The complexity (being the number of operations)
is directly proportional to the number of digits. We call this O(n)
or linear complexity. Some argue that this is in fact O(log n) or
logarithmic complexity. Why? Because adding 10,000,000 to itself
takes twice as long as adding 1,000 to itself as there are 8 digits
instead of 4. But 10,000,000 is 10,000 times as large so depending
on your application it may be appropriate to define the problem in
terms of number of digits (ie order of magnitude) of the input. In
others, the number itself may be appropriate.

Subtraction is similar (except you may need to borrow instead of
carry).

Multiplication is different. You line the numbers up, take the
first digit in the bottom number and multiply it in turn against
each digit in the top number and so on through each digit. So to
multiply our two 6 digit numbers we must do 36 multiplications. We
may need to do as many as 10 or 11 column adds to get the end
result too.

If we have 2 100 digit numbers we need to do 10,000
multiplications and 200 adds. For two one million digit numbers we
need to do one trillion (1012) multiplications and two
million adds.

As the algorithm scales with n-squared, this is O(n2)
or quadratic complexity. This is a good time to introduce another
important concept:

We only care about the most significant portion of
complexity.

The astute may have realized that we could express the number of
operations as: n2 + 2n. But as you saw from our example with two
numbers of a million digits apiece, the second term (2n) becomes
insignificant (accounting for 0.00002% of the total operations by
that stage).

The Telephone Book

The next best example I can think of is the telephone book,
normally called the White Pages or similar but it'll vary from
country to country. But I'm talking about the one that lists people
by surname and then initials or first name, possibly address and
then telephone numbers.

Now if you were instructing a computer to look up the phone
number for "John Smith", what would you do? Ignoring the fact that
you could guess how far in the S's started (let's assume you
can't), what would you do?

A typical implementation might be to open up to the middle, take
the 500,000th and compare it to "Smith". If it happens to be
"Smith, John", we just got real lucky. Far more likely is that
"John Smith" will be before or after that name. If it's after we
then divide the last half of the phone book in half and repeat. If
it's before then we divide the first half of the phone book in half
and repeat. And so on.

This is called a bisection search and is used every day in
programming whether you realize it or not.

So if you want to find a name in a phone book of a million names
you can actually find any name by doing this at most 21 or so times
(I might be off by 1). In comparing search algorithms we decide
that this comparison is our 'n'.

For a phone book of 3 names it takes 2 comparisons (at
most).

For 7 it takes at most 3.

For 15 it takes 4.

...

For 1,000,000 it takes 21 or so.

That is staggeringly good isn't it?

In Big-O terms this is O(log n) or logarithmic complexity. Now
the logarithm in question could be ln (base e), log10,
log2 or some other base. It doesn't matter it's still
O(log n) just like O(2n2) and O(100n2) are
still both O(n2).

It's worthwhile at this point to explain that Big O can be used
to determine three cases with an algorithm:

	Best Case: In the telephone book search, the best case is that
we find the name in one comparison. This is O(1) or constant
complexity;

	Expected Case: As discussed above this is O(log n); and

	Worst Case: This is also O(log n).

Normally we don't care about the best case. We're interested in
the expected and worst case. Sometimes one or the other of these
will be more important.

Back to the telephone book.

What if you have a phone number and want to find a name? The
police have a reverse phone book but such lookups are denied to the
general public. Or are they? Technically you can reverse lookup a
number in an ordinary phone book. How?

You start at the first name and compare the number. If it's a
match, great, if not, you move on to the next. You have to do it
this way because the phone book is unordered (by phone number
anyway).

So to find a name:

	Best Case: O(1);

	Expected Case: O(n) (for 500,000); and

	Worst Case: O(n) (for 1,000,000).

The Travelling Salesman

This is quite a famous problem in computer science and deserves
a mention. In this problem you have N towns. Each of those towns is
linked to 1 or more other towns by a road of a certain distance.
The Travelling Salesman problem is to find the shortest tour that
visits every town.

Sounds simple? Think again.

If you have 3 towns A, B and C with roads between all pairs then
you could go:

A -> B -> C

A -> C -> B

B -> C -> A

B -> A -> C

C -> A -> B

C -> B -> A

Well actually there's less than that because some of these are
equivalent (A -> B -> C and C -> B -> A are equivalent,
for example, because they use the same roads, just in reverse).

In actuality there are 3 possibilities.

Take this to 4 towns and you have (iirc) 12 possibilities. With
5 it's 60. 6 becomes 360.

This is a function of a mathematical operation called a
factorial. Basically:

5! = 5 * 4 * 3 * 2 * 1 - 120

6! = 6 * 5 * 4 * 3 * 2 * 1 = 720

7! = 7 * 6 * 5 * 4 * 3 * 2 * 1 = 5040

...

25! = 25 * 24 * ... * 2 * 1 =
15,511,210,043,330,985,984,000,000

...

50! = 50 * 49 * ... * 2 * 1 = 3.04140932 ... x
1064

So far, the only way known of solving the Travelling Salesman
problem is by brute force. Unfortunately, such a technique has
O(n!) complexity to solve.

By the time you get to 200 towns there isn't enough time left in
the universe to solve the problem with traditional computers.

Something to think about.

Polynomial Time

Another point I wanted to make quick mention of is that any
algorithm that has a complexity of O(nk) for any constant k is said
to have polynomial complexity or is solvable in polynomial
time.

Traditional computers can solve problems in polynomial time.
Certain things are used in the world because of this. Public Key
Cryptography is a prime example. It is computationally hard to find
two prime factors of a very large number. If it wasn't, we couldn't
use the public key systems we use.

Big Greek Letters

Big O is often misused. Big O or Big Oh is actually short for
Big Omicron. It represents the upper bound of asymptotic
complexity. So if an algorithm is O(n log n) there exists a
constant c such that the upper bound is cn log n.

Θ(n log n) (Big Theta) is more tightly bound than that. Such an
algorithm means there exists two constants c1 and
c2 such that c1n log n < ƒ(n) < c2n log
n.

Ω(n log n) (Big Omega) says that the algorithm has a lower bound
of cn log n. There are others but these are the most common and Big
O is the most common of all. Such a distinction is typically
unimportant but it is worth noting. The correct notation is the
correct notation, after all.

Determinism

Algorithms can also be classified as being either deterministic
or probabilistic. It's important to understand the difference.
Sometimes requirements or constraints may dictate the choice of one
over the other even if the expected case is worse. You should be
able to classify an algorithm as one or the other.

A good example of this is comparing files. Say you have two
files A and B and you want to determine if they are the same. The
simple implementation for this is:

If the sizes are different, the files are different; else

Compare each file byte-for-byte. If two different bytes are found,
the files are different; else

The files are the same.

This is a deterministic algorithm because the probability of a
false positive (the algorithm saying the files are the same when
they aren't) and a false negative (saying they are different when
they aren't) is 0 in both cases.

For various reasons however it might be impractical or
undesirable to implement the algorithm this way. Many file
comparisons may be required making the operation potentially very
expensive on large files. Also the files might be remote to each
other and it might be impractical to send a complete copy just so
the remote system can see if its changed.

A more common approach is to use a hash function. A hash
function basically just converts a large piece of data into a
smaller piece of data (called a hash), usually a 32-128 bit
integer. A good hash function will distribute values in the new
(smaller) data range as evenly as possible.

A common hash function is an MD5 hash, which generates a 128-bit
hash. Let's say files A and B were on different servers. One could
send an MD5 hash of the file to the other, which could compare it
to its own MD5 hash. If they're different, the files are different.
If they're the same, the files are highly likely to be the
same.

An MD5 hash comparison is a probabilistic comparison algorithm
for this reason.

And before you say that the chance is so remote it'll never
happen, think again. A malicious exploit has been demonstrated of
generating two files with the same MD5 hash.

Algorithms such as this that only have brute force approaches
age relatively quickly. Where once MD5 was considered safe,
creating two messages with the same MD5 hash is now feasible (in a
matter of days with not unreasonable hardware) such that the more
secure SHA-1 algorithm has largely replaced it's usage.

Conclusion

Anyway, that's it for my (hopefully plain English) explanation
of Big O. I intend to follow this up with applications to some
common scenarios in weeks to come. §

William Shields is a software developer from Perth, Western
Australia who has been programming for over 20 years in Java,
C/C++, Python, JavaScript and may things in between for financial
trading and Web-based applications. He is a regular contributor to
StackOverflow as cletus and blogs at http://www.cforcoding.com.

Reprinted with permission of the original author. First appeared
in http://hn.my/bigo/.

Developing and Deploying a Simple Clojure Web Application

by Mark McGranaghan

The post walks through the process of developing and deploying a
simple web application in Clojure. After reading this you should be
able to build your own app and deploy it to a production
server.

Our sample app performs addition for the user. The user enters a
value in each of two text fields, the values are submitted to the
app, and the app returns the corresponding sum. Eventually it will
look like this:

Before beginning on the app, make sure that you have Leiningen
installed.

We'll start with a minimal first version of the app. In a new
directory adder, create a file project.clj with the following
contents:

(defproject adder "0.0.1"
 :description "Add two numbers."
 :dependencies
 [[org.clojure/clojure "1.2.0-beta1"]
 [org.clojure/clojure-contrib "1.2.0-beta1"]
 [ring/ring-core "0.2.5"]
 [ring/ring-devel "0.2.5"]
 [ring/ring-jetty-adapter "0.2.5"]
 [compojure "0.4.0"]
 [hiccup "0.2.6"]]
 :dev-dependencies
 [[lein-run "1.0.0-SNAPSHOT"]])

We'll put the main app logic in the namespace adder.core. Create
a file at src/adder/core.clj with this code:

(ns adder.core
 (:use compojure.core)
 (:use hiccup.core)
 (:use hiccup.page-helpers))

(defn view-layout [& content]
 (html
 (doctype :xhtml-strict)
 (xhtml-tag "en"
 [:head
 [:meta {:http-equiv "Content-type"
 :content "text/html; charset=utf-8"}]
 [:title "adder"]]
 [:body content])))

(defn view-input []
 (view-layout
 [:h2 "add two numbers"]
 [:form {:method "post" :action "/"}
 [:input.math {:type "text" :name "a"}] [:span.math " + "]
 [:input.math {:type "text" :name "b"}] [:br]
 [:input.action {:type "submit" :value "add"}]]))

(defn view-output [a b sum]
 (view-layout
 [:h2 "two numbers added"]
 [:p.math a " + " b " = " sum]
 [:a.action {:href "/"} "add more numbers"]))

(defn parse-input [a b]
 [(Integer/parseInt a) (Integer/parseInt b)])

(defroutes app
 (GET "/" []
 (view-input))

 (POST "/" [a b]
 (let [[a b] (parse-input a b)
 sum (+ a b)]
 (view-output a b sum))))

Also, put the following in script/run.clj:

(use 'ring.adapter.jetty)
(require 'adder.core)

(run-jetty #'adder.core/app {:port 8080})

Now you're ready to test the first version of the app:

lein deps
lein run script/run.clj
open http://localhost:8080/

Check out your app in the browser. You should be to perform the
simple addition described above.

As you use the app you'll probably notice changes that you'd
like to make. You might also notice that errors like giving foo as
an input are not handled well. To fix this let's apply some
reloading and stacktrace middleware.

Start by including the appropriate Ring middlewares into the
adder.core namespace definition:

(:use ring.middleware.reload)
(:use ring.middleware.stacktrace)

We'll want to separate out the main app logic that we wrote
earlier from the full, middleware wrapped application, so change
(defroutes app to (defroutes handler and add the following at the
bottom of the file:

(def app
 (-> #'handler
 (wrap-reload '[adder.core])
 (wrap-stacktrace)))

After stopping your running server and restarting it with lein
run script/run.clj, you should be able to see changes to your code
in adder.core reflected immediately in the web interface. Also, if
your application encounters any errors you will see a stacktrace
indicating what went wrong:

Speaking of errors, we may want to address some of those in our
application. If a user enters something other than a number into
one of the fields, we should respond with a useful error message.
Update the view-input function to:

(defn view-input [& [a b]]
 (view-layout
 [:h2 "add two numbers"]
 [:form {:method "post" :action "/"}
 (if (and a b)
 [:p "those are not both numbers!"])
 [:input.math {:type "text" :name "a" :value a}] [:span.math " + "]
 [:input.math {:type "text" :name "b" :value b}] [:br]
 [:input.action {:type "submit" :value "add"}]]))

and update the POST route to:

(POST "/" [a b]
 (try
 (let [[a b] (parse-input a b)
 sum (+ a b)]
 (view-output a b sum))
 (catch NumberFormatException e
 (view-input a b))))

You can immediately verify that your changes worked by trying
some invalid input:

We should also handle the case where the user enters an
unrecognized URL. To do that, require the Ring response middleware
with:

(:use ring.util.response)

and then add a catchall route to the bottom of the routes
list:

(ANY "/*" [path]
 (redirect "/"))

Now when you visit e.g. /foo, you should be redirected back to
the app's main page at /.

Our app is starting to shape up, but we're missing some
necessary application infrastructure. For one, the application is
not doing any logging, which makes it hard to understand what it is
doing. Lets fix that with some request logging middleware. Create a
new file src/adder/middleware.clj with these contents:

(ns adder.middleware)

(defn- log [msg & vals]
 (let [line (apply format msg vals)]
 (locking System/out (println line))))

(defn wrap-request-logging [handler]
 (fn [{:keys [request-method uri] :as req}]
 (let [start (System/currentTimeMillis)
 resp (handler req)
 finish (System/currentTimeMillis)
 total (- finish start)]
 (log "request %s %s (%dms)" request-method uri total)
 resp)))

Then pull this middleware into core with:

(:use adder.middleware)

and add it to the app by updating the middleware stack to look
like:

(def app
 (-> #'handler
 (wrap-request-logging)
 (wrap-reload '[adder.middleware adder.core])
 (wrap-stacktrace)))

Now each request will be noted in the app's logs, along with the
time it takes.

As soon as you try out the logging you'll probably notice
requests to /favicon.ico. Since our simple app doesn't have a
favicon, let's let the browser know with a 404 response. Add a
wrap-bounce-favicon function to the adder.middleware namespace:

(defn wrap-bounce-favicon [handler]
 (fn [req]
 (if (= [:get "/favicon.ico"] [(:request-method req) (:uri req)])
 {:status 404
 :headers {}
 :body ""}
 (handler req))))

and then include it in the middleware stack by adding
(wrap-bounce-favicon) immediately above (wrap-stacktrace).

Now let's add a bit of styling to our utilitarian app. To do
this we'll create and apply a CSS file that is served statically by
the application. Put the following in public/adder.css:

.math {
 font-family: Monaco, monospace; }

.action {
 margin-top: 2em; }

and update the :head markup in view-layout to look like:

[:head
 [:meta {:http-equiv "Content-type"
 :content "text/html; charset=utf-8"}]
 [:title "adder"]
 [:link {:href "/adder.css" :rel "stylesheet" :type "text/css"}]]

Next, include the necessary Ring middleware:

(:use ring.middleware.file)
(:use ring.middleware.file-info)

and update the middleware stack to look like:

(def app
 (-> #'handler
 (wrap-file "public")
 (wrap-file-info)
 (wrap-request-logging)
 (wrap-reload '[adder.middleware adder.core])
 (wrap-bounce-favicon)
 (wrap-stacktrace)))

We should also write a few tests for our newly developed
application. Create a file at test/adder/core_test.clj with the
following contents:

(ns adder.core-test
 (:use clojure.test)
 (:use adder.core))

(deftest parse-input-valid
 (is (= [1 2] (parse-input "1" "2"))))

(deftest parse-input-invalid
 (is (thrown? NumberFormatException
 (parse-input "foo" "bar"))))

(deftest view-output-valid
 (let [html (view-output 1 2 3)]
 (is (re-find #"two numbers added" html))))

(deftest handle-input-valid
 (let [resp (handler {:uri "/" :request-method :get})]
 (is (= 200 (:status resp)))
 (is (re-find #"add two numbers" (:body resp)))))

(deftest handle-add-valid
 (let [resp (handler {:uri "/" :request-method :post
 :params {"a" "1" "b" "2"}})]
 (is (= 200 (:status resp)))
 (is (re-find #"1 \+ 2 = 3" (:body resp)))))

(deftest handle-add-invalid
 (let [resp (handler {:uri "/" :request-method :post
 :params {"a" "foo" "b" "bar"}})]
 (is (= 200 (:status resp)))
 (is (re-find #"those are not both numbers" (:body resp)))))

(deftest handle-catchall
 (let [resp (handler {:uri "/foo" :request-method :get})]
 (is (= 302 (:status resp)))
 (is (= "/" (get-in resp [:headers "Location"])))))

You can verify that they all pass by running lein test.

Now that we have some tests we're ready to start thinking about
deploying this app to production. We'll want the app to behave
slightly differently in production and development, so we'll need a
way to differentiate between the two environments. I'll use the
environment variable APP_ENV to define production? and development?
vars in the adder.core namespace:

(def production?
 (= "production" (get (System/getenv) "APP_ENV")))

(def development?
 (not production?))

Use this var to update the middleware stack to look like:

(def app
 (-> #'handler
 (wrap-file "public")
 (wrap-file-info)
 (wrap-request-logging)
 (wrap-if development? wrap-reload '[adder.middleware adder.core])
 (wrap-bounce-favicon)
 (wrap-exception-logging)
 (wrap-if production? wrap-failsafe)
 (wrap-if development? wrap-stacktrace)))

This code will enable a public-facing failsafe middleware in
production while keeping the stacktrace middleware in development.
We'll also limit code reloading to development. Finally, we'll add
exception logging in both cases for additional visibility. This
updated stack relies on several new functions in adder.middleware.
Add the following to the adder.middleware namespace
declaration:

(:require [clj-stacktrace.repl :as strp])

and to the adder.middleware body:

(defn wrap-if [handler pred wrapper & args]
 (if pred
 (apply wrapper handler args)
 handler))

(defn wrap-exception-logging [handler]
 (fn [req]
 (try
 (handler req)
 (catch Exception e
 (log "Exception:\n%s" (strp/pst-str e))
 (throw e)))))

(defn wrap-failsafe [handler]
 (fn [req]
 (try
 (handler req)
 (catch Exception e
 {:status 500
 :headers {"Content-Type" "text/plain"}
 :body "We're sorry, something went wrong."}))))

The site will not run on port 8080 in production, so we'll need
a way to specify the port to the run script. We'll use the PORT
environment variable. Update the body of script/run.clj to the
following:

(let [port (Integer/parseInt (get (System/getenv) "PORT" "8080"))]
 (run-jetty #'adder.core/app {:port port}))

Now we're ready to put this app into production. I'll walk
through the steps needed for to deploying to EC2 using the standard
EC2 command line tools, but the process would be similar for other
hosting providers.

Start be allocating by setting up a security group and SSH
keypair for the application:

ec2-add-group adder -d "adder deployment"
ec2-authorize adder -P tcp -p 22
ec2-authorize adder -P tcp -p 80

mkdir -p dev
ec2-add-keypair adder | tail -n +2 > dev/adder.pem
chmod 600 dev/adder.pem

Then allocate a server based on a public Ubunut AMI and wait for
it to come up:

ec2-run-instances ami-2d4aa444 -g adder -k adder \
 -n 1 -t m1.small -z us-east-1a
watch ec2-describe-instances

Set some local environment variables to make subsequent commands
easier:

export ADDER_PEM=dev/adder.pem
export ADDER_HOST=<ec2-public-ip>

To set up the server, SSH in

ssh -i $ADDER_PEM ubuntu@$ADDER_HOST

and run a few commands to install Java and set up the directory
structure:

sudo su root
curl -L -o install-java.sh http://bit.ly/b5lesP
bash install-java.sh
mkdir -p /var/log/adder /var/adder
chown -R ubuntu:ubuntu /var/adder

We'll control the server process using Ubuntu's upstart. Put the
following upstart configuration file in deploy/adder.conf:

script
 export PORT=80
 export APP_ENV=production
 cd /var/adder
 java -cp "lib/*:src/" clojure.main script/run.clj \
 >> /var/log/adder/adder.log 2>&1
end script

and then place it in the appropriate spot on the server
with:

scp -i $ADDER_PEM deploy/adder.conf \
 ubuntu@$ADDER_HOST:/tmp/adder.conf
ssh -i $ADDER_PEM ubuntu@$ADDER_HOST \
 "sudo mv /tmp/adder.conf /etc/init/adder.conf"

Create a list in deploy/exclude.txt of files that should not be
deployed to the production server:

.git
.gitignore
deploy
test
classes

Now install the app's files on the server with:

rsync --rsh='ssh -i '$ADDER_PEM \
 -vr --delete --exclude-from deploy/exclude.txt \
 ./ ubuntu@$ADDER_HOST:/var/adder/

After the first rsync completes, start the server with:

ssh -i $ADDER_PEM ubuntu@$ADDER_HOST "sudo start adder"

and check that it works by opening the production site from your
local machine:

open http://$ADDER_HOST/

If you want to deploy a change, rsync up your code and then
run:

ssh -i $ADDER_PEM ubuntu@$ADDER_HOST "sudo restart adder"

I hope this post helps you develop and deploy your own Clojure
web applications. If you have any questions about this post or
about Clojure web development in general, feel feel to leave them
in the comments. I'm also interested in hearing how others have
approached the end-to-end Clojure web development and deployment
process; please let me know what you think in in the comments as
well.

The source code for this app is available on http://github.com/mmcgrana/adder.

Mark McGranaghan is an engineer at Heroku, where he works on web
application infrastructure. He maintains several open source
Clojure projects at http://github.com/mmcgrana.

Reprinted with permission of the original author. First appeared
in http://hn.my/clojure/.

Advertisement

writing a tech book?

(map 'sell globally)

Kindle iPad Android Blackberry iPhone

Fifobooks.com

Criminal Overengineering

By Mark O'Connor

As programmers we're continually accused of doing a sloppy job.
There are countless programs in the wild, crashing, locking up and
accidentally writing "I am a fish" a million times over someone's
mid-term essay. The effect? Something like this:

This damn computer and excel r fuckin my life
up!

Hatin life right now

- MissAlauren (and everyone else at one time or another)

It's experiences like this that cause people to rant about
Microsoft and curse the anonymous programmers who suddenly (yet
inevitably) betrayed them. We all know this; it's burned into our
very souls by countless hours of tech support provided to family
and friends. Time after time we see that programmers who do quick,
sloppy work make other people suffer. And so we try, we try so damn
hard not to be like that. We try to be the good programmer who
checks every return value and handles every exception.

If we stopped at competent error handling and sufficient
testing, all would be well. In truth, we actually go too far and,
it has to be said, largely in the wrong direction.

A vast proportion of software at work today is horribly
over-engineered for its task. And I'm not talking about the
interfaces, about having too many controls or options for the
users. These are, indeed, terrible sins but they are the visible
ones. The worst of the overengineering goes on under the surface,
in the code itself.

You're Doing It Wrong

Have you ever seen someone using the strategy pattern when they
should've used a 5 line switch statement? There are a million ways
to turn something like this:

switch(operation)
{
case OP_ADD: return a + b;
case OP_SUBTRACT: return a - b;
case OP_MULTIPLY: return a * b;
default: throw new UnknownOperationException(operation, a, b);
}

... into a hideous, malformed mutant beast like this one [
http://en.wikipedia.org/wiki/Strategy_pattern#Java
], which I haven't inlined because it's far too long.

The most insidious cause of overengineering is
over-generalizing. We will over-generalize anything given half a
chance. Writing code to work with a list of students? Well, we
might want to work with teachers and the general public someday,
better add a base People class and subclass Student from that. Or
Person and then EducationPerson and then Student. Yes, that's
better, right?

Only, now we have three classes to maintain each with their own
virtual methods and interfaces and probably split across three
different files plus the one we were working in when a one-line
dictionary would have been fine.

Perhaps we do it because it's relaxing to rattle off three
classes worth of code without needing to pause and think. It feels
productive. It looks solid, bulletproof, professional. We look back
on it with a comforting little glow of self-satisfaction - we're a
good programmer, no messy hacks in our code.

Except, this doesn't make us good programmers. Overengineering
like this isn't making anyone's lives better; it's just making our
code longer, more difficult to read and work with and more likely
to contain or develop bugs. We just made the world a slightly worse
place. It lies somewhere between tossing an empty drinks bottle on
the street and grand theft auto.

The extra effort caused by our overengineering carries a hefty
opportunity cost:

	Less time spent refining the user experience

	Less time spent thinking about the meaningful implications of
the feature we're working on

	Less time available to look for bugs and - with harder-to-read
code - more time spent debugging them

Yes, by overengineering the Student class you indirectly ruined
MissAlauren's day.

We have to stop championing each ridiculous feat of
overengineering and call it what it is. It's not 'future-proof',
because we can't see the future. It's not robust, it's hard to
read. Applying a generic solution to a single case isn't good
programming, it's criminal overengineering because like it or not
somebody, somewhere will pay for it.

Don't Worry, Be Happy

I suspect all the best programmers have already realized this,
but they're not shouting about it loudly enough for everyone else
to hear. Paul Graham is completely right when he suggests that
succinctness is valuable:

Use the length of the program as an approximation for how much
work it is to write. Not the length in characters, of course, but
the length in distinct syntactic elements - basically, the size of
the parse tree. It may not be quite true that the shortest program
is the least work to write, but it's close enough... look at a
program and ask, is there any way to write this that's shorter? -
Paul Graham, The Hundred Year Language

He's actually talking about language design here; indeed, in
Succinctness is Power he's careful to note that it's clearly
possible to write a program that's too succinct. This is because,
these days, Paul Graham is more a language designer than a working
programmer. Otherwise he might have said:

If you're about to take a hundred lines to write what you could
in ten, stop and ask yourself this: what the fuck? - Mark, Criminal
Overengineering

When I feel tempted to over-generalize or over-engineer a bit of
code, it's often because of fear. Fear that someone will find a
really good reason I shouldn't have done it the easy way. Fear that
I'll have to rewrite the code again. Fear of finding myself on the
wrong side of an argument about the merits of the visitor pattern.
But fear does not naturally lead us to the most elegant
solutions.

Next time you feel the compulsion to write a nice, general
solution to a simple case, stop and ask yourself what's stopping
you just writing it the simple, specific, succinct way:

	Am I worried I'll have to rewrite it?

	Am I worried someone will criticize it or that I'll look
bad?

	Am I worried that it's not professional enough?

Are any of these true? Then relax. Don't worry. You worry, you
call me, I make you happy.

Just write the code the simple, specific way and then add a
short comment, something like: Replace with the Strategy pattern if
this gets any bigger.

This is the perfect solution. It's a great reminder to you next
time you come here about what you wanted to do. It shows other
programmers on your team that you considered the 'correct' way to
do it and have a good reason not to do it just yet. It's very hard
to argue with a comment like that, because you're not arguing about
the strategy pattern vs the switch statement, you're arguing about
whether to use the strategy pattern after 3 cases or after 4 cases
- not a discussion that can reflect badly on you, in any case.

A few months later you can go back and look at how many of your
comments eventually turn into more complicated, engineering code.
I'll bet you it's not very many. That's how much time and effort
you've saved, right there. That's setting yourself free to pursue
the solution and that's making the world a slightly better place.
§

Mark O'Connor is a programmer, occasional writer and part-time
startup founder. Since 2008 he's been living in Munich with his
wife and children. He believes in dynamic typing, first-class
functions and the immortal essence of the human soul. He also likes
tea.

Reprinted with permission of the original author. First appeared
in http://hn.my/overengineering/.

Experimenting with Node.js

By Jeff Kreeftmeijer

This is an experiment I did to play around with Node.js and web
sockets. I've put everything in a Gist in case you want to try it
out yourself. I'll explain how it works in this article. Web socket
server

Using @miksago's
node-websocket-server made it extremely easy to send and receive
messages from a web socket. Here's the code that runs the
server:

var ws = require(__dirname + '/lib/ws'),
 server = ws.createServer();

server.addListener("connection", function(conn){
 conn.addListener("message", function(message){
 message = JSON.parse(message);
 message['id'] = conn.id
 conn.broadcast(JSON.stringify(message));
 });
});

server.addListener("close", function(conn){
 conn.broadcast(JSON.stringify({'id': conn.id, 'action': 'close'}));
});

server.listen(8000);

After including the node-websocket-server library and creating
the server, I add some listeners to know when clients disconnect or
send a message and make sure messages get sent to the other
clients. Whenever it receives a JSON message, it includes the
connection's id before broadcasting it to the clients to make it
possible to find out which cursor we need to move.

I saved it as server.js, so starting the server is as simple as
running node server.js. To make sure it keeps running, I daemonized
it with God, using the same config file I used in the "Daemonizing
Navvy with God" article. Receiving messages

Now, in a regular javascript file - with some jQuery - I
included into this page, I connect to the web socket like this:

var conn;
var connect = function() {
 if (window["WebSocket"]) {
 conn = new WebSocket("ws://jeffkreeftmeijer.com:8000");
 conn.onmessage = function(evt) {
 data = JSON.parse(evt.data);
 if(data['action'] == 'close'){
 $('#mouse_'+data['id']).remove();
 } else if(data['action'] == 'move'){
 move(data);
 };
 };
 }
};

window.onload = connect;

As you can see, this connects to the server we just started.
When a message is received, it checks the action it's supposed to
perform. If the action is "move", it'll move a mouse cursor on the
screen using the move() function I'll show you later. If it's
"close", it means that the client disconnected and his cursor has
to be removed from the screen.

Sending messages

Now we're able to receive messages, move and delete cursors. The
last thing we need is the client to be able to send out
messages:

var conn;
var connect = function() {
 if (window["WebSocket"]) {
 conn = new WebSocket("ws://jeffkreeftmeijer.com:8000");
 conn.onmessage = function(evt) {
 data = JSON.parse(evt.data);
 if(data['action'] == 'close'){
 $('#mouse_'+data['id']).remove();
 } else if(data['action'] == 'move'){
 move(data);
 };
 };
 }
};

window.onload = connect;

Whenever you move your mouse, the .mousemouse() function gets
triggered that sends some JSON with the mouse position and screen
size to the socket. The ratelimit method makes sure that there's a
forty millisecond interval between messages.

Moving the cursors

So, when the other clients receive a "move" message, it calls
the move() function, like I showed you before. It looks like
this:

function move(mouse){
 if($('#mouse_'+mouse['id']).length == 0) {
 $('body').append(
 '

'
);
 }

 $('#mouse_'+mouse['id']).css({
 'left' : (($(window).width() - mouse['w']) / 2 + mouse['x']) + 'px',
 'top' : mouse['y'] + 'px'
 })

It creates a div for the new mouse if it doesn't exist yet and
moves it to the right position. Also, the x-position of the mouse
gets calculated while keeping the difference in screen size in
mind. This way it gets calculated from the center of the page,
instead of from the left.

Blew your mind?

Tracking mouse movement and showing cursors to other clients is
cool, but not useful in any way (although you could think of some
cool use-cases for this). What this example does show is that you
can do pretty impressive things using web sockets and Node.js. And
it was a great excuse to play around with it.

This was the first thing I did using Node.js, so the code is
probably far from perfect. If you know a way to improve it, please
fork the Gist and show me how it should be done. I'll update the
article.

I'm excited about Node.js and I'll probably write and play
around with it some more in the future, so stay tuned. §

Notes:

1. Gist at http://gist.github.com/488562

2. Live demo - http://hn.my/nodejs/ If you see extra
mouse cursors moving around: don't worry, they're part of the demo.
You can always disable them if you want. These are actually other
people also looking at the page right now, live, as we speak. If
you don't see anything, try to open up this page in another browser
window and move your mouse in it.

3. I've written a follow-up on this article, in which I improved
a lot of the code. Be sure to read that one too! http://hn.my/nodejs2/

Jeff Kreeftmeijer is an open source enthusiast and Ruby (on
Rails) programmer at 80beans in Amsterdam. He publishes weekly
programming articles on jeffkreeftmeijer.com, writing
about Ruby or anything else that seems interesting. As of late,
that has mostly been JavaScript and Node.js.

Reprinted with permission of the original author. First appeared
in http://hn.my/nodejs/.

The absolute bare minimum every programmer should know about
regular expressions

By Mike Malone

Regular expressions are strings formatted using a special
pattern notation that allow you to describe and parse text. Many
programmers (even some good ones) disregard regular expressions as
line noise, and it's a damned shame because they come in handy so
often. Once you've gotten the hang of them, regular expressions can
be used to solve countless real world problems.

Regular expressions work a lot like the filename "globs" in
Windows or *nix that allow you to specify a number of files by
using the special * or ? characters (oops, did I just use a glob
while defining a glob?). But with regular expressions the special
characters, or metacharacters, are far more expressive.

Like globs, regular expressions treat most characters as literal
text. The regular expression mike, for example, will only match the
letters m - i - k - e, in that order. But regular expressions sport
an extensive set of metacharacters that make the simple glob look
downright primitive.

Meet the metacharacters: ^[](){}.*?\|+$ and sometimes -

I know, they look intimidating, but they're really nice
characters once you get to know them.

The Line Anchors: '^' and '$'

The '^' (caret) and '$' (dollar) metacharacters represent the
start and end of a line of text, respectively. As I mentioned
earlier, the regular expression mike will match the letters m - i -
k - e, but it will match anywhere in a line (e.g. it would match
"I'm mike", or even "carmike"). The '^' character is used to anchor
the match to the start of the line, so ^mike would only find words
that start with mike. Similarly, the expression mike$ would only
find m - i - k - e at the end of a line (but would still match
'carmike').

If we combine the two line anchor characters we can search for
lines of text that contain a specific sequence of characters. The
expression ^mike$ will only match the word mike on a line by itself
- nothing more, nothing less. Similarly the expression ^$ is useful
for finding empty lines, where the beginning of the line is
promptly followed by the end.

The Character Class: '[]'

Square brackets, called a character class, let you match any one
of several characters. Suppose you want to match the word 'gray',
but also want to find it if it was spelled 'grey'. A character
class will allow you to match either. The regular expression
gr[ea]y is interpreted as "g, followed by r, followed by either an
e or an a, followed by y."

If you use [^ ...] instead of [...], the class matches any
character that isn't listed. The leading ^ "negates" the list.
Instead of listing all of the characters you want to included in
the class, you list the characters you don't want included. Note
that the ^ (caret) character used here has a different meaning when
it's used outside of a character class, where it is used to match
the beginning of a line.

The Character Class Metacharacter: '-'

Within a character-class, the character-class metacharacter '-'
(dash) indicates a range of characters. Instead of
[01234567890abcdefABCDEF] we can write [0-9a-fA-F]. How convenient.
The dash is a metacharacter only within a character class,
elsewhere it simply matches the normal dash character.

But wait, there's a catch. If a dash is the first character in a
character class it is not considered a metacharacter (it can't
possibly represent a range, since a range requires a beginning and
an end), and will match a normal dash character. Similarly, the
question mark and period are usually regex metacharacters, but not
when they're inside a class (in the class [-0-9.?] the only special
character is the dash between the 0 and 9).

Matching Any Character With a Dot: '.'

The '.' metacharacter (called a dot or point) is shorthand for a
character class that matches any character. It's very convenient
when you want to match any character at a particular position in a
string. Once again, the dot metacharacter is not a metacharacter
when it's inside of a character class. Are you beginning to see a
pattern? The list of metacharacters is different inside and outside
of a character class.

The Alternation Metacharacter: '|'

The '|' metacharacter, (pipe) means "or." It allows you to
combine multiple expressions into a single expression that matches
any of the individual ones. The subexpressions are called
alternatives.

For example, Mike and Michael are separate expressions, but
Mike|Michael is one expression that matches either.

Parenthesis can be used to limit the scope of the alternatives.
I could shorten our previous expression that matched Mike or
Michael with creative use of parenthesis. The expression
Mi(ke|chael) matches the same thing. I probably would use the first
expression in practice, however, as it is more legible and
therefore more maintainable.

Matching Optional Items: '?'

The '?' metacharacter (question mark) means optional. It is
placed after a character that is allowed, but not required, at a
certain point in an expression. The question mark attaches only to
the immediately preceding character.

If I wanted to match the english or american versions of the
word 'flavor' I could use the regex flavou?r, which is interpreted
as "f, followed by l, followed by a, followed by v, followed by o,
followed by an optional u, followed by r."

The Other Quantifiers: '+' and '*'

Like the question mark, the '+' (plus) and '*' (star)
metacharacters affect the number of times the preceding character
can appear in the expression (with '?' the preceding character
could appear 0 or 1 times). The metacharacter '+' matches one or
more of the immediately preceding item, while '*' matches any
number of the preceding item, including 0.

If I was trying to determine the score of a soccer match by
counting the number of times the announcer said the word 'goal' in
a transcript, I might use the regular expression go+al, which would
match 'goal', as well as 'gooooooooooooooooal' (but not 'gal').

The three metacharacters, question mark, plus, and star are
called quantifiers because they influence the quantity of the item
they're attached to.

The Interval Quantifier: '{}'

The '{min, max}' metasequence allows you to specify the number
of times a particular item can match by providing your own minimum
and maximum. The regex go{1,5}al would limit our previous example
to matching between one and five o's. The sequence {0,1} is
identical to a question mark.

The Escape Character: '\'

The '\' metacharacter (backslash) is used to escape
metacharacters that have special meaning so you can match them in
patterns. For example, if you would like to match the '?' or '\'
characters, you can precede them with a backslash, which removes
their meaning: '\?' or '\\'.

When used before a non-metacharacter a backslash can have a
different meaning depending on the flavor of regular expression
you're using. For perl compatible regular expressions (PCREs) you
can check out the perldoc page for perl regular expressions. PCREs
are extremely common, this flavor of regexes can be used in PHP,
Ruby, and ECMAScript/Javascript, and many other languages.

Using Parenthesis for Matching: '()'

Most regular expression tools will allow you to capture a
particular subset of an expression with parenthesis. I could match
the domain portion of a URL by using an expression like
http://([^/]+). Let's break this expression down into it's
components to see how it works.

The beginning of the expression is fairly straightforward: it
matches the sequence "h - t - t - p - : - / - /". This initial
sequence is followed by parenthesis, which are used to capture the
characters that match the subexpression they surround. In this case
the subexpression is '[^/]+', which matches any character except
for '/' one or more times. For a URL like
http://immike.net/blog/Some-blog-post, 'immike.net' will be
captured by the parenthesis.

Want to know more?

I've only touched the surface on what can be done with regular
expressions. If want to learn more, check out Jeffrey Friedl's book
Mastering Regular Expressions. Friedl did an outstanding job with
this book, it's accessible and a surprisingly fun and interesting
read, considering the dry subject matter. §

Mike Malone is an infrastructure engineer at SimpleGeo where he
works on building and integrating scalable systems that power the
company's location platform. In his spare time Mike enjoys
tinkering with new technologies. When he's not on the computer, you
can probably find him hanging out with his girlfriend, Katie, and
their friends at a good bar.

Reprinted with permission of the original author. First appeared
in http://hn.my/regex/.

On: Developing and Deploying a Simple Clojure Web
Application

by Mahmud Mohamed (mahmud)

In Common Lisp (without cheating or handwaving; this is it):

(defpackage :add-nums
 (:use :cl :hunchentoot :cl-who))

(in-package :add-nums)

(defmacro with-html (&body body)
 `(with-html-output-to-string (*standard-output* nil :prologue t :indent t)
 ,@body))

(define-easy-handler (add-nums :uri "/add-nums")
 ((a :parameter-type 'integer)
 (b :parameter-type 'integer))
 (with-html
 (:html
 (:head (:title "Add two numbers"))
 (:body
 (if (and a b)
 (htm (:p (str (+ a b)))))
 (:form :method :get
 (:input :type :text :name "a")
 (:input :type :text :name "b")
 (:input :type :submit))))))

(defparameter *site* (make-instance 'acceptor :port 8080))

(start *site*)

On: Criminal Overengineering

by Peter Aronoff (telemachos)

Argh.

Apparently there are two very popular types of article in the
software blog world:

Type 1: YAGNI (like this example): Do less now. Refactor later
as needed. It won't be needed, most likely. Chill out. (All driven
by the question, "Dude, wtf? 100 lines of boilerplate for a 5 line
case statement? Snap out of it.")

Type 2: Architect astronautics: Do more now. Build for the next
version. You will need more then, so why not prepare now? Decouple
that code. Use more patterns. Hoist that jib. (All driven by the
question, "What will your code/software/app do if...?")

I read type 1, and it (often) sounds convincing. I read type 2,
and it (often) sounds convincing. I get a fucking headache from the
cognitive dissonance. I make more coffee and get back to work, no
wiser than before.

On: If you can't buy your investor a beer, don't take their
money

by Mark Maunder (mmaunder)

"If you need money, you are too late."

really means

"If you appear to need money, you are too late."

and restated the way one of my investors once put it

"If you have the stench of death about you it's impossible to
raise."

If you don't need money, don't raise.

On: A Coder's Guide to Coffee

by John Forysthe (chaosmachine)

If you find "mainstream" coffee enjoyable, is it really in your
best interest to raise your expectations? If you suddenly find
normal coffee lacking, have you really improved your life?

On: How to Focus

by Doug Tolton (NyxWulf)

I used to use techniques like this to maintain my focus. Let me
toss something out though that might be a bit controversial.
Perhaps having to do this is a sign of ADHD. For me it was. There
are many signs and symptoms, and unfortunately many people have
heard that people are over medicated on things like Ritalin and
Adderral. However, the thing to consider is that people with strong
ADHD actually have a different brain structure. It turns out that
the focus benefits of being on the medication only works for people
who genuinely do have ADHD, and does not work for "regular" people
(if there even is such a thing).

Let me just say, that Adderral changed my life. I used to have
what I termed "Reddit seeking behavior". I could work on tasks that
were interesting, but if it got a little rough or boring - what's
happening on Reddit, or HN or Digg? However when I got on Adderral
that entirely changed. I still check HN, but much less frequently
because I'm busy getting things done. I don't have to resort to
extreme changes in my environment to resist distractions. It comes
naturally now.

I don't discount or disagree that focus can be improved. I know
it first hand, but I would also argue that people with ADHD have
some additional things going on that are much harder to train. If
you are one of those people, getting on the appropriate medication
could well change your life. I know it changed mine. That's a big
statement, and often over-used, but for me, it changed the way I
experience every day life in substantial and dramatic ways.

Take it for what it's worth, YMMV.

On: The Royal We: Single Founder Startups

by Patrick McKenzie (patio11)

I think that the (increasing but by no means new) viability of
single-founder startups is an inevitable consequence of the
environment for all startups continuing to get radically better. If
two guys could make non-trivial web services back when making a web
service started with, quite literally, programming your own HTTP
server since you didn't have a hundred thousand to buy one, that
implies very good things for a "team" which has a decade and change
of OSS to lean on.

In addition to OSS, the huge existing distribution channels like
organic SEO, AdWords, and all those things you cool people use are
also a major draw. Infrastructure has improved by orders of
magnitude. APIs and snap-in services are getting better all the
time -- ten years ago, payment processing was a multi-week
endeavor, now you can do voice calls in about ten minutes of work.
Scaling is... is solved too strong a word? There has been huge
diffusion of the black magic of how to setup and architect things,
both in the n-tier server architecture sense of the word and in the
"here's how you get capital without slicing open chicken entrails"
and "here's how you get users" senses of the word.

It is a great time to be alive.

On: Three years ago, I sold my startup because I was an
idiot

by Jacques Mattheij (jacquesm)

I'm going to take the contrary view here and I'll say that you
did fine.

Starting a business, operating it for a while and a successful
exit are the whole meal, if you had continued to run it you might
have crashed it or you might have been in debt now.

There is no way to know what would have happened in an
alternative universe, and it's a pretty good thing on your resume
to say that you ran a startup that made you and your investors
money. That puts you in the < 5% bracket of the
entrepreneurs.

Now you simply need to do that all again, with the lessons
learned and your newfound energy, capital and the success story
behind you.

You'll do very well indeed if you play your cards right.

Don't be so hard on yourself, don't compare with the 'could have
been' from the perspective of it could have been more, it could
have been a whole lot less too!

TECH JOBS

Backend Engineer

Dropbox http://www.dropbox.com

San Francisco

Dropbox is looking for an engineer to scale our increasingly
complicated backend. We're a multipetabyte distributed filesystem
with tens of billions of files serving millions. You will design
and maintain core software components - using C/C++. You will have
expertise navigating shell environments and significant experience
with databases.

To Apply: http://hn.my/dropbox1/

Ruby/Rails Engineer

Dropbox http://www.dropbox.com

San Francisco

Supporting dropbox requires crazy technical kung-fu. You'll need
a working knowledge of almost all operating systems, mobile
devices, and the web. You'll be tasked with not only knowing the
product inside and out, but escalating good suggestions and
critical bugs straight to the product team. Most of our support is
via email, forums and phone.

To Apply: http://hn.my/dropbox2/

Senior Developer

youDevise, Ltd. https://dev.youdevise.com

London, England

60-person agile financial software company in London committed
to learning and quality (Dojos, TDD, continuous integration,
exploratory testing). Under 10 revenue-affecting production bugs
last year. Release every 2 weeks. Mainly Java, also Groovy, Scala;
no prior knowledge of any language needed.

To Apply: Send CV to jobs@youdevise.com.

Advertisement

Dream. Design. Print.

MagCloud, the revolutionary new self-publishing web service by
HP, is changing the way ideas, stories, and images find their way
into peoples' hands in a printed magazine format.

HP MagCloud capitalizes on the digital revolution, creating a
web-based marketplace where traditional media companies, upstart
magazine publishers, students, photographers, design- ers, and
businesses can affordably turn their targeted content into print
and digital magazine formats.

Simply upload a PDF of your content, set your selling price, and
HP MagCloud takes care of the rest--processing payments, printing
magazines on demand, and shipping orders to loca- tions around the
world. All magazine formatted publications are printed to order
using HP Indigo technology, so they not only look fantastic but
there's no waste or overruns, reducing the impact on the
environment.

Become part of the future of magazine publishing today at
www.magcloud.com.

25% Off the First Issue You Publish Enter promo code HACKER when
you set your magazine price during the publishing process.

Coupon code valid through February 28, 2011. Please contact
promo@magcloud.com with any
questions.

 OEBPS/images/8d4ccac29c06f23e067be1dcd75633b508156f9a4983f3d0ae8019b7fe938d43.png

OEBPS/images/081bbdeefde66aa034bda2a01c197658e96bee6a71df72a616c31c8bde053f2d.png
[+ @ hup focanosesos0) ¢

OEBPS/images/1053f17af010ac0392e8ea552e8549f0732b597e690545dd8947ebf7a9ef6edb.png

OEBPS/images/450abd880cb5541aba469b8fc211300ed120d2d05b97315dd2ce4851f5440727.png
' "-“. Vanr off &L 0%
S .‘Ll\\‘t\ ‘l/k: }_f‘\' 3
y [Yo# > ay

[N

OEBPS/images/41ee46bad5872246db548e5991c591b44b5a2332ea513cdf1a25cf0b0be6c32d.png

OEBPS/images/61fc49cb216c026c0873519440951ac8d945207c27b7444f19eb67867bfed5dd.png
600 adder

@ http://localhost:8080/ ¢ J(Q- Google

add two numbers

those are not both numbers!

foo + [bar

OEBPS/images/34bcf1dce44c9522826171b42df53ac4fff62a4ca8637f98643cd868e0a02e83.png
800 Ring: Stacktrace

22 L+ [6 hup. /iocainost 8080/ ¢ o

java.lang NumberFormatException: For input string: "foo"

OEBPS/images/cf9a0b03be0f25ec70550ca6ee989a4e17f22905e763b9b43f51a35d4e8b39c9.png

OEBPS/images/5a75d74ffcaa0b63306cdbbb73eb8b3270e76746c51ff85f0c125d9bd43fb2e4.png

OEBPS/images/49273c3fda5a12155d53ca1ab7e3cc7ded797ef946bfd4eb4037dfe07ac50446.png

OEBPS/images/cover.png
L X3

A Coders Guu&mee

HACKER

OEBPS/images/679a586afbf42a8bb986854324a0412690cecf52e311739d664740fc4bdba250.png
600 adder

+ |@ hup://localhost:8080/ ¢ Q- Coogle

two numbers added

3+4-=7
‘add more numbers

OEBPS/images/86dee67469ab65e3cf9d4b35f78eead0a597d0058d27a6e4fefbc0a9e778e314.png
[+ [@mpiraizon7ass G

OEBPS/images/a317db7af9860c42fcae12edd7d6785933d7381f50a42b103ffafae582c9ee67.png

OEBPS/images/44298f1841b0f49fc4c6ccc3765e5dbcc65a0cd3c4a01c5df0f2fa0d81f6ff0f.png
coderilo is a simple way for developers
to stay ahead and stay informed.

coderilo http://coder.io/

