

 [image: Hacker Monthly December 2010]

Curator

Lim Cheng Soon

Contributors

ARTICLES

Jake Seliger

Randy Kepple

Dean Rieck

Nathan Marz

Steve Blank

Oliver Reichenstein

Kent Healy

Bradley Wright

Salvatore Sanfilippo

Marijn Haverbeke

Phil Cryer

Paul Querna

Luke Palmer

Fredrik Johansson

COMMENTARIES

Ed Weissman

Catherine Darrow

Sahil Lavingia

Mahmud Mohamed

Patrick McKenzie

Michael F. Booth

Philip Hofstetter

Wes Felter

Juan Pablo

Elben Shira

Leon Paternoster

Proofreader

Ricky de Laveaga

Illustrator

Jaime G. Wong

Printer

MagCloud

E-Book Conversion

Fifobooks.com

Advertising

ads@hackermonthly.com

Contact

contact@hackermonthly.com

Published by

Netizens Media

46, Taylor Road,

11600 Penang,

Malaysia.

HACKER MONTHLY is the print magazine version of Hacker News -
news.ycombinator.com - a
social news website wildly popular among programmers and startup
founders. The submission guidelines state that content can be
"anything that gratifies one's intellectual curiosity."

Every month, we select from the top voted articles on Hacker
News and print them in magazine format.

For more, visit hackermonthly.com.

Cover Photo: Randy
Kepple

[image: How]

Illustration: Jaime G. Wong

How Universities Work

What I Wish I'd Known Freshman Year: A Guide to
American University Life for the Uninitiated

By JAKE SELIGER

Fellow graduate students sometimes express shock at how little
many undergraduates know about the structure and purpose of
universities. It's not astonishing to me: I didn't understand the
basic facts of academic life or the hierarchies and incentives
universities present to faculty and students when I walked into
Clark University at age 18. I learned most of what's expressed here
through osmosis, implication, inference, discussion with
professors, and random reading over seven years. Although most of
it seems obvious now, as a freshman I was like a medieval peasant
who conceived of the earth as the center of the universe;
Copernicus' heliocentric revolution hadn't reached me, and the much
more accurate view of the universe discovered by later thinkers
wasn't even a glimmer to me. Consequently, I'm writing this
document to explain, as clearly and concisely as I can, how
universities work and how you, a freshman or sophomore, can thrive
in them.

The biggest difference between a university and a high school is
that universities are designed to create new knowledge, while high
schools are designed to disseminate existing knowledge. That means
universities give you far greater autonomy and in turn expect far
more from you in terms of intellectual curiosity, personal
interest, and maturity.

Degrees

This section might make your eyes glaze over, but it's important
for understanding how universities work. If you're a freshman in
college, you've probably just received your high school diploma.
Congratulations: you're now probably working toward your B.A.
(bachelor of arts) or B.S. (bachelor of science), which will
probably take four years. If you earn that, you'll have received
your undergraduate degree.

From your B.A./B.S., if you wish to, you'll be able to go on to
professional degrees like law (J.D.), medicine (M.D.), or business
(M.B.A.), or to further academic degrees, which usually come in the
form of an M.A., or Master's Degree. An M.A. usually takes one to
two years after a B.A. After or concurrently with an M.A., one can
pursue a Ph.D., or Doctor of Philosophy degree, which usually takes
four to ten years after a B.A.

The M.A. and Ph.D. are known as research degrees, meaning that
they are conferred for performing original research on a specific
topic (remember: universities exist to create new knowledge).
Professional degrees are designed to give their holder the
knowledge necessary to be a professional: a lawyer, a doctor, or a
business administrator.

Many if not most people who earn Ph.D.s ultimately hope to
become a professor, as described in the next section. The goal of
someone earning a Ph.D. is essentially to become the foremost
expert in a particular and narrow subject.

Professors, Adjuncts, and Graduate Students

There are two to three main groups-one could even call them
species-you'll interact with in a university: professors, adjunct
professors, and graduate students.

Professors almost always have a Ph.D. Many will have written
important books and articles in their field of expertise. They can
be divided into two important classes: those with tenure-a word
you'll increasingly hear as you move through the university
system-and those without. "Tenure," as defined by the New Oxford
American Dictionary that comes with Mac OS X 10.6, is "guaranteed
permanent employment, esp. as a teacher or professor, after a
probationary period." It means that the university can't fire the
professor, who in turn has proven him or herself through the
publication of those aforementioned books and papers along with a
commitment to teaching. This professor will probably spend her
career at the university she's presently at.

Those without tenure but hoping to achieve it are on the "tenure
track," which means that, sometime between three and six years
after they're hired, a committee composed of their peers in the
department will, along with university administrators and others,
decide whether to offer tenure. Many professors on the tenure track
are working feverishly on books and articles meant for publication.
Without those publications, they will be denied tenure and fired
from their position.

Adjuncts, sometimes called adjunct professors, usually have at
least an M.A. and often have a Ph.D. They do not have tenure and
are not on the "tenure track" that could lead to tenure. They
usually teach more classes than tenured or tenure-track professors,
and they also have less job security. Usually, but not always,
adjuncts teach lower-level classes. They are not expected to do
research as a condition of staying at the university.

Graduate Students (like me, as of this writing) have earned a
B.A. or equivalent and are working towards either an M.A. or a
Ph.D. From the time they begin, most graduate students will spend
another two to eight years in school. They take a set number of
small, advanced classes followed by tests and/or the writing of a
dissertation, which is an article or book-length project designed
to show mastery in their field.

Many-also like me-teach or help teach classes as part of their
contract with the university. In my case, I teach two classes most
semesters, usually consisting of English 101, 102, or 109 for the
University of Arizona. As such, I take and teach classes. In
return, the university doesn't charge me tuition and pays me a
small stipend. Most graduate students who teach you ultimately want
to become professors. To get a job as a professor, they need to
show excellence in research-usually by writing articles and/or
books-as well as in teaching.

For all three groups, much of their professional lives revolve
around tenure, which brings additional job security, income, and
prestige.

Two Masters

Most graduate students and non-tenured professors serve two
masters: teaching and research. As an undergraduate, you primarily
see their teaching side, and your instructors might seem like
another version of high school teachers. For some instructors,
however, teaching is not their primary duty and interest; rather,
they primarily want to conduct original research, which usually
takes the form of writing articles (also sometimes called "papers")
and books. The papers you are assigned for many classes in part
help you prepare for more advanced writing and research.

Graduate students and professors feel constant tension between
their teaching and their research/writing responsibilities. Good
ones try to balance the two. For most graduate students and
professors, however, published research leads to career
advancement, better jobs, and, ultimately, tenure. Many of your
instructors will have stronger incentives to work on research than
teaching. This doesn't mean they will shirk teaching, and most
teach creatively and diligently, as they should. But it's
nonetheless wise to understand the two masters most of your
instructors face.

Interacting with Professors, Adjuncts, and Graduate Students

To earn tenure (or work towards earning tenure), many professors
and grad students spend long periods of time intensely studying a
subject, most often through reading. They expect you to read the
assigned material and have some background in reading more
generally; if you don't, expect a difficult time in
universities.

Professors and your other instructors have devoted or are
devoting much of their lives to their subjects. As you might
imagine, having someone say that they find a subject boring,
worthless, or irrelevant often irritates professors, adjuncts, and
graduate students, since if those people found their subject
boring, worthless, or irrelevant, they wouldn't have spent or be
planning to spend their lives studying it. Most make their subject
their lives and vice-versa. They could earn more money in other
professions but choose not to pursue those professions, but they
are often excited by knowledge itself and want to find others who
share that excitement. If you say or imply their classes are
worthless, you've said or implied that their entire lives are
worthless. Most people do not like to think that their lives are
worthless.

Professors can sometimes seem aloof or demanding. This is
partially due to the demands placed on them (see "Two Masters,"
above). Being aloof or demanding doesn't mean a professor doesn't
like you. Most professors are interested in their students to the
extent that students are interested in the subject being taught. In
this sense, professors often try to stir students' interest in a
subject, but actively hostile/uninterested students will often find
their instructors uninterested in them. Motivated and interested
students often inspire the same in their professors.

To be sure, there are exceptions: some professors will be
hostile or uninterested regardless of how much effort a student
shows, and some will be martyrs who try to reach even the most
distant, disgruntled student. But most professors are in the
middle, looking for students who are engaged and focusing on those
students.

Nearly all your instructors have passed through the trials and
tests they're giving you: if they hadn't done so, and excelled,
they wouldn't be teaching you. Thus, few are impressed when you
allocate time poorly, try to cram before tests, appear hungover in
class, and show up late to or miss class repeatedly. On the other
hand, many will cut slack for diligent students who show
promise.

One reason professors don't think much of student excuses is
because many students have different priorities than professors. As
undergraduates, most professors were part of the "academic culture"
on campus, to use Murray Sperber's term; in contrast, many
undergraduates are part of the collegiate (interested in the Greek
system, parties, and football games) or vocational (interested in
job training) cultures. The academic culture, according to Sperber,
"[has a] minimal understanding of, and sympathy for, the majority
of their undergraduate students" at big public schools. I think
he's too harsh, but the principle is accurate: if you aren't in
school to learn and develop your intellect-and most students in
most schools aren't, as Sperber shows-you probably won't understand
your professors and their motivations. But they will understand
yours. Academics are a disproportionately small percentage of the
student population at most schools but an extraordinary large
proportion of grad students and professors.

Requirements for Undergraduates

You can only graduate from a university if you pick a major and
fulfill its requirements. Clark called its undergraduate
requirements "Perspectives," while the University of Arizona calls
them "Gen Eds" or "General Education Requirements." There is no way
to avoid filling requirements, and most requirements demand that
you spend a certain amount of time with your rear end in a seat at
a certain number of classes. Fulfill as many requirements as
possible as soon as you realize those requirements exist, assuming
you want to graduate on time.

You'll often be assigned an "academic advisor," whose job it is
to help keep you on track to graduate and to help you pick courses.
Don't be afraid of this person: he or she will often help you or
point you to people who can help you. At bigger schools, your
advisor will often seem harried or uninterested, but even if that
person is, you should remember that he or she is still a valuable
resource. And if you can't get help from your counselor, find the
requirements of potential majors or all majors and work toward
checking them off, because you won't be able to get out of
them.

I tried and found that there is virtually no negotiating with
requirements, even if some are or seem silly. For example, Clark
required that students take "science perspective." In studying my
schedule and options, I figured that astronomy was the easiest way
out. Considering how useless astronomy looked, I decided to
petition the Dean of Students to be excused from it so I could take
better classes, arguing that I'd taken real science classes in high
school and that I could be more productively engaged elsewhere. The
answer came quickly: "no."

Astronomy consisted of tasks like memorizing the lengths of
planets from the sun, what the Kuiper Belt is, and the like. Tests
asked things like the size of each planet-in other words, to
regurgitate facts that one can find in two seconds on Google, which
is how I found out what the Kuiper Belt is again. The professor
teaching it no longer appeared to have a firm grasp of his mental
faculties. At least it was relatively easy: the only worse thing
would've been having to take, say, chemistry, or a real science
class.

That astronomy class was probably the most useless I took, and
Clark's tuition at that time was something like $22,000. I received
a scholarship toward tuition, room, and board, so my tuition was
probably closer to $16,000, or $8,000 per semester. Undergrads took
four classes, so the useless astronomy class cost around $2,000.
Would I have rather taken another English class, or Computer
Science, or a myriad of other subjects? You bet. But I couldn't,
and if I didn't take some kind of science class, I wouldn't have
been able to graduate, no matter the uselessness of the class.

What should I major in?

I have a theory that virtually everything you learn in
universities and in life is the substance or application of two (or
three, depending on how you wish to count) abilities: math and
reading/writing. Regardless of what you major in, work on building
those two skills.

In the liberal arts, that most often means philosophy, English,
and history; other majors vary by university, but those requiring a
lot of reading and writing are almost always better than those that
don't. In the hard sciences and economics you'll be left to develop
your reading and writing skills on your own. And this does apply to
you, whether you realize it or not. As software company founder and
rich guy Joel Spolsky wrote:

Even on the small scale, when you look at any programming
organization, the programmers with the most power and influence are
the ones who can write and speak in English clearly, convincingly,
and comfortably. Also it helps to be tall, but you can't do
anything about that.

The difference between a tolerable programmer and a great
programmer is not how many programming languages they know, and
it's not whether they prefer Python or Java. It's whether they can
communicate their ideas. By persuading other people, they get
leverage.

So if you want leverage, learn how to write. And if liberal arts
majors don't want to be bamboozled by statistics, they better learn
some math.

In short, I have no idea what you should major in. But you
probably shouldn't major in business, communication, sociology, or
criminal justice, all of which are worthy subjects that, for most
undergraduates, are sufficiently watered down that you're unlikely
to challenge yourself much. Odds are that you'll even make more
money as a philosophy major than a business management major.

Paul Graham wrote:

Thomas Huxley said "Try to learn something about everything and
everything about something." Most universities aim at this
ideal.

But what's everything? To me it means, all that people learn in
the course of working honestly on hard problems. All such work
tends to be related, in that ideas and techniques from one field
can often be transplanted successfully to others. Even others that
seem quite distant. For example, I write essays the same way I
write software: I sit down and blow out a lame version 1 as fast as
I can type, then spend several weeks rewriting it.

The reality is that your specific major probably doesn't matter
nearly as much as your tenacity, ability to learn, and the
consistent application of that ability to learn to specific
problems. One way people-friends, employers, graduate schools,
colleagues, etc.-measure this is by measuring the way you speak and
write, which together are a proxy for how much and how deeply
you've read.

A great deal of college is about teaching you how to learn, and
reading is probably the fastest way to learn. Once you've mastered
the art of reading, you'll be set for life, provided you keep
exercising the skills you develop at a university. Keep that in
mind as you search for majors: those that assign more reading, more
writing, and more math are probably more worthwhile than those that
don't.

Many people have many opinions about what you should major in,
and most of them are probably wrong, this one included. As I said
previously, it probably doesn't matter in the long run, so don't
worry much about what to major in-worry about finding something
you're passionate about and something you love. In Prelude to
Mathematics, W.W. Sawyer wrote: "An activity engaged in purely for
its consequences, without any pleasure for the activity itself, is
likely to be poorly executed" (16-17). If possible, find something
to major in which you enjoy for itself, or which you can learn to
enjoy for itself.

How do I get an A?

One thing you shouldn't do is say that all you want to do is get
an A: as stated above, most professors are completely and utterly
invested in their subject. When you ask how you get an "A," they're
likely to be annoyed because you're indicating you don't care about
learning, which is the best way to earn an A. Instead, you care
about the badge. It's like asking how you become poet laureate, as
Ebenezer Cooke does in The Sot-Weed Factor: the question itself is
wrong, because the right question is how you become a poet, and the
laureateship will follow (Barth 73). If you ask professors how to
get an A, they'll also tell you what you already know: work hard at
the class, show up, read the book(s) and related materials, form
study groups, and the like.

Another grad student in English said that she's almost relieved
when students say they just want to get an A, because it means she
doesn't have to worry about them or their grade. Paradoxically,
when you say that you just want an A/B/C, you lower the probability
that you'll actually get it.

To get that A/B/C, demonstrate that you're interested in the
material, do all the reading, and show up to class every day. Go to
the professor's office hours to ask intelligent questions-like
whether you're on the right track regarding a paper-or what you
could've done better on a quiz. By doing so, you're showing that
you're interested in doing better, rather than saying you are.
Novelists have a saying: "show, don't tell," which means that you
should show what a character is thinking and why they are acting in
a certain way rather than telling the reader. Readers are smart and
will figure it out for themselves. Your professors will be able to
figure out in a million ways whether you're interested in a
subject, and when you ask how you get an A, they'll know you
aren't.

Oh, and don't fear the library-it's the big place with the
books. If you conduct research with books, your professors will be
impressed. And learn to use the online journals. If you don't know
what this means, ask a librarian, who will assist you. They very
seldom bite and are there to help, and most schools also conduct
library help sessions at the beginning of each year. Indeed, almost
everyone at a university is there to help you learn; you just need
to a) want to learn and b) ask. Many students never get to point a,
and of those who do, more should get to point b.

Reflection

I wrote this now because I'm old enough to, I think, have some
perspective on universities while still being young enough to
remember the shock and bewilderment of the first semester of my
freshmen year. This document reflects my academic training and
preoccupation: it contains allusions and references to other work
and is structured in such a way that you can skip easily from
section to section. As a trade-off for its detail, however, weaker
or uninterested students might lose interest in it before they come
to the end, which is unfortunate because it describes the world
they will largely be inhabiting for somewhere between one week and
six if not more years.

Anecdotes from my own academic experience are included because
discovering facts about the incentives in university life didn't
occur all at once for me. No one gave me a document like this: I
was expected to either already know or understand most of what you
just read, and as a result, I spent years drawing a mental map of
universities. The professors and graduate students had spent long
enough in the university atmosphere that they knew how universities
were structured with the thoroughness you know your native
language. I've written this in the hope that it will better explain
to you (in the plural sense) what I've explained to many
individuals.

My natural impetus is to remember when I have to repeat the same
things over and over again, consider how I might convey all the
things I've said to a large number of people, and then write those
things down so that they might be read, which is a vastly more
efficient information transfer mechanism than speech. Nonetheless,
I realize that this document and my explanations are probably not
perfect, so if you've read this to the best of your ability and
still have questions, don't be afraid to ask them. One thing
universities should inculcate is inquisitiveness, and I hope I do
so as a teacher and as a person.

When you ask questions, you're not only helping yourself
discover something: you're helping the person you're asking better
understand the subject at hand and the nature of what they're
trying to say. By asking me questions about this document, you
might help me ultimately improve it, and ultimately help those who
read it in the future. If there is one cultural advantage
universities should impart more than any other, it is the ability
to ask questions about even the most fundamental things; confusion
and uncertainty are often the sources of new knowledge.

As Paul Krugman, who won the 2008 Nobel Prize for Economics,
said of his own research (which led him to the prize):

The models I wrote down that winter and spring were incomplete,
if one demanded of them that they specify exactly who produced
what. And yet they told meaningful stories. It took me a long time
to express clearly what I was doing, but eventually I realized that
one way to deal with a difficult problem is to change the question
- in particular by shifting levels.

He also has a section called "question the question," in which
he recursively asks himself whether the question he has asked is
the right one. For him, as for many people, questions are at the
center of the learning universe, and if you learn to ask them
promiscuously and then seek the answers, whether from me, your
other professors, or from books, you'll be better equipped to find
the answers, do well in college, and do well in life. One challenge
is often learning enough to be able to formulate the right
questions, and with this in mind, I hope you know how to ask
important questions about the institution you're attending. §

Jake Seliger writes at http://jseliger.com and http://blog.seliger.com. He's a
graduate student in English Literature at the University of Arizona
and works as a consultant at Seliger + Associates Grant
Writing.

[image: Advertisement:]

Bad Habits that Crush Your Creativity and Stifle Your
Success

By RANDY KEPPLE and DEAN RIECK

Standing in front of this massive banyan tree on Maui, I was
inspired to try something new. I had a vision in my mind's eye of
this tree. And Maui will definitely vibrate the imagination of a
creative artist. But such vibrational creativity can be elusive
more often than not.

Artistry and creativity are two words that work hand in hand.
Artistry is defined as an expression of creative skill. Creativity
is defined as the creation of artistic work using the imagination
or original ideas.

As a artist, the hardest block to overcome is the beginning.
Finding inspiration. The imagination can get paralyzed by fear.
Trying to create something original. Something that is authentic,
yet unique enough to be recognized as original.

I was fortunate to attend a fantastic workshop on Maui this year
as a teacher and a participant: The Tropical Island Boot Camp
hosted by Randy Jay Braun on Maui. As someone who primarily
specializes in photographing people, it was inspiring to push
myself to see in new ways and try my hand at expressing my vision
in a different way.

At the end of the workshop exploring creative techniques and
sharing a life changing experience with my new family, it made me
think about the process of creativity, something I actually think
about quite a bit. Why is it so hard to break through the barriers
of creative block? Could I be doing this to myself? In my ongoing
series on the artistic process, I'd like to share with you an
article about breaking through developed habits that crush
creativity.

It's a myth that only highly intelligent people are creative. In
fact, research shows that once you get beyond an I.Q. of about 120,
which is just a little above average, intelligence and creativity
are not at all related.

That means that even if you're no smarter than most people, you
still have the potential to wield amazing creative powers.

So why are so few people highly creative?

Because there are bad habits people learn as they grow up which
crush the creative pathways in the brain. And like all bad habits,
they can be broken if you are willing to work at it.

Here are eight of the very worst bad habits that could be
holding you back every day:

(1) Creating and evaluating at the same time

You can't drive a car in first gear and reverse at the same
time. Likewise, you shouldn't try to use different types of
thinking simultaneously. You'll strip your mental gears.

Creating means generating new ideas, visualizing, looking ahead,
considering the possibilities. Evaluating means analyzing and
judging, picking apart ideas and sorting them into piles of good
and bad, useful and useless.

Most people evaluate too soon and too often, and therefore
create less. In order to create more and better ideas, you must
separate creation from evaluation, coming up with lots of ideas
first, then judging their worth later.

(2) The Expert Syndrome

This a big problem in any field where there are lots of gurus
who tell you their secrets of success. It's wise to listen, but
unwise to follow without question.

Some of the most successful people in the world did what others
told them would never work. They knew something about their own
idea that even the gurus didn't know.

Every path to success is different.

(3) Fear of failure

Most people remember baseball legend Babe Ruth as one of the
great hitters of all time, with a career record of 714 home runs.
However, he was also a master of the strike out. That's because he
always swung for home runs, not singles or doubles. Ruth either
succeeded big or failed spectacularly.

No one wants to make mistakes or fail. But if you try too hard
to avoid failure, you'll also avoid success.

It has been said that to increase your success rate, you should
aim to make more mistakes. In other words, take more chances and
you'll succeed more often. Those few really great ideas you come up
with will more than compensate for all the dumb mistakes you
make.

(4) Fear of ambiguity

Most people like things to make sense.

Unfortunately, life is not neat and tidy. There are some things
you'll never understand and some problems you'll never solve.

I once had a client who sold a product by direct mail. His order
form broke every rule in the book. But it worked better than any
other order form he had ever tried.

Why? I don't know.

What I do know is that most great creative ideas emerge from a
swirl of chaos. You must develop a part of yourself that is
comfortable with mess and confusion. You should become comfortable
with things that work even when you don't understand why.

(5) Lack of confidence

A certain level of uncertainty accompanies every creative act. A
small measure of self-doubt is healthy.

However, you must have confidence in your abilities in order to
create and carry out effective solutions to problems.

Much of this comes from experience, but confidence also comes
from familiarity with how creativity works.

When you understand that ideas often seem crazy at first, that
failure is just a learning experience, and that nothing is
impossible, you are on your way to becoming more confident and more
creative.

Instead of dividing the world into the possible and impossible,
divide it into what you've tried and what you haven't tried. There
are a million pathways to success.

(6) Discouragement from other people

Even if you have a wide-open mind and the ability to see what's
possible, most people around you will not. They will tell you in
various and often subtle ways to conform, be sensible, and not rock
the boat.

Ignore them. The path to every victory is paved with predictions
of failure. And once you have a big win under your belt, all the
naysayers will silence their noise and see you for what you are - a
creative force to be reckoned with.

(7) Being overwhelmed by information

It's called "analysis paralysis," the condition of spending so
much time thinking about a problem and cramming your brain with so
much information that you lose the ability to act.

It's been said that information is to the brain what food is to
the body. True enough. But just as you can overeat, you can also
overthink.

Every successful person I've ever met has the ability to know
when to stop collecting information and start taking action. Many
subscribe to the "ready - fire - aim" philosophy of business
success, knowing that acting on a good plan today is better than
waiting for a perfect plan tomorrow.

(8) Being trapped by false limits

Ask a writer for a great idea, and you'll get a solution that
involves words. Ask a designer for a great idea, and you'll get a
solution that involves visuals. Ask a blogger for a great idea, and
you'll get a solution that involves a blog.

We're all a product of our experience. But the limitations we
have are self-imposed. They are false limits. Only when you force
yourself to look past what you know and feel comfortable with can
you come up with the breakthrough ideas you're looking for.

Be open to anything. Step outside your comfort zone. Consider
how those in unrelated areas do what they do. What seems impossible
today may seem surprisingly doable tomorrow.

If you recognize some of these problems in yourself, don't fret.
In fact, rejoice! Knowing what's holding you back is the first step
toward breaking down the barriers of creativity.

I can tell you from personal experience that this article is
spot on. It's important to let go of old habits of thinking and
doing and place yourself in a situation where you can fail. A
moment of seeing something and deciding that you are going to
challenge yourself to do something different this time.

Creative inspiration came to me standing in front of this
massive banyan tree. The lighting was bright and dark all at the
same time. Randy Jay Braun is a master at creating HDR (High
Dynamic Range) landscape panoramics of Hawaii. Something that was
foreign to me. I was inspired to try the HDR technique with this
tree. A regular exposure would not be able to capture the
incredible dynamic range in this scene. This image is the result of
9 separate exposures combined with HDR Pro in Photoshop CS5.

There is much more to share from the Maui workshop. I was even
inspired to really go crazy and create an HDR portrait of Randy Jay
Braun. So tell me, which habit do you relate to most from this
article? What techniques have you developed to break past
self-inflicted barriers to creativity? §

Randy Kepple is a professional photographer and
armchair philosopher based out of the Pacific Northwest. Randy
specializes in the art of photographing people. Visit the Randy
Kepple Photographs website for
more information on the art and business of image making from Randy
Kepple.

Dean Rieck is one of America's top direct marketing
copywriters http://www.directcreative.com
and author of Dazzle Your
Clients and Double Your Income, a free report for writers.

Commentary

By Ed Weissman (edw519)

(9) Fatigue

Self-help guru Tony Robbins starts every one of his programs
covering diet and exercise because he has figured out that if you
don't feel well, you probably won't do well.

Of course, I think football coach Vince Lombardi said it best,
"Fatigue makes cowards of us all."

By Catherine Darrow (Dove)

I clicked through and wound up disappointed. There's merit to
the suggestions, no doubt, but I was hoping for something more like
this:

	Consuming stupid entertainment

	Staying up too late

	Eating crappy food

	Not ever getting fresh air

	Starving your muse

. . .

The self-confidence and intellectual exploration stuff I already
know. If I didn't, I wouldn't be creative in the first place.

(Expanding on 5. Starving your muse...)

I first heard the expression in an article about resolving
writer's block. While that particular article is specific to
role-playing games, the idea has more general application and I've
heard other writers refer to it.

The basic idea is that you can't always be creating. You're
never as original as you think you are; your output depends on your
input. If you are a storywriter, you need to remember to read for
pleasure. Seek new experiences, consume the things that are
innovative or interesting or just plain cool in your field of
choice. If you keep your muse well-fed on interesting ideas, she'll
be ready to provide you with new ideas when you need them.

It applies even in a technical context. Even if you are forced
to work in Java or Ada or on a horrific enterprise application, you
should be playing in Haskell during your free time, reading papers
on interesting algorithms, doing recreational mathematics, that
sort of thing. The ideas that will come to you when facing your
work are much improved by play.

My own creativity-killing bad habit is to starve my muse. Either
to drown myself so completely in the act of creation that I run out
of ideas, or to intellectually consume crap rather than good
stuff.

[image: Advertisement:]

How to Get a Job At a Kick-Ass Startup

By NATHAN MARZ

When I finished college, I was incredibly naive when it came to
finding a great job. I knew that I wanted to work at a small
startup but didn't know how to find that great opportunity. I
didn't know what questions to ask to evaluate a company, and I
didn't know how I should present myself during the recruitment
process.

Now I'm a few years out of college and I have that kick-ass job
I was looking for. My dual experiences of looking for a job and
being on the other side recruiting programmers have taught me quite
a bit about what it takes to get a great job at a kick-ass
startup.

Here are my tips, from preparing for the job search process to
finding great startups to applying and getting the job.

Preparing for the job search

(1) Make a list of the qualities you're looking for in a job. Be
explicit and specific.

What are you looking for? Coworkers that are really smart that
you can learn from? Coworkers that you can socialize with?
Flexibility in how/when you work? Write these qualities down.

(2) Prepare questions that will measure a company against each
item in your list.

Stay away from bullshit questions like "What do you dislike
about working here?" Bullshit questions will get bullshit answers.
Your questions should be specific and help you gauge the company
against the qualities you wrote on your list.

For example, if I was curious about how much flexibility
employees have to work at home, I would ask:

How often do you work at home?

What's the company's policy on working from home?

What would happen if you worked from home for a week?

When I'm interviewing someone, I like it a lot when the
candidate comes prepared with a list of questions. It shows the
candidate is on top of things.

(3) Maximize your personal brand.

Evaluating a programmer's skill is hard. You need to make it
easy for the startup to see that you're a superstar. So make a
website and list your side projects there. Link to your Twitter and
GitHub accounts. Write some blog posts that showcase your technical
ability. You need to develop a personal brand, and you need to do
so long before you ever send in a resume. If you don't already have
a personal website or blog, make one now. Frankly, developing your
personal brand is something you should be doing on a regular basis
anyway.

Finding interesting startups

(1) Look at the portfolio companies of respected investors.

Let investors filter for you! Go to the website of investors to
see their portfolio companies. Looking at the portfolio of seed
stage investors like Y Combinator is a great way to find
early-stage opportunities.

(2) Look at the Hacker News threads that list who's hiring.

This is better than looking at a job board. The companies
advertising on the Hacker News threads at least pay attention to
the hacker community.

(3) Let companies find you. Make a public presence. Interact on
Hacker News and Twitter. Make or contribute to open source
projects. Blog. Make it easy to contact you.

Hiring is one of the biggest problems at startups. Startups use
every channel they can find to source good candidates, including
reaching out directly to interesting people they come across. Most
of the inbound messages you'll get will be from uninteresting
companies, but every now and then an interesting opportunity will
come your way.

(4) Forget recruiters.

Recruiters tend to be annoying. Plus, a ton of high quality
startups refuse to deal with them.

(5) Invest in your network.

Your network will lead to interesting and unexpected
opportunities. Interact with people on Twitter. Send cold emails to
founders of companies and ask if they want to grab coffee. If
you've made even a minimal investment into your personal brand,
founders will be ecstatic to meet you and build a relationship with
you.

Evaluating a startup

(1) The people are much more important than what the company is
working on currently.

An early-stage startup is likely to change the direction of the
company at some point. That's the nature of startups. You should
find what they're working on interesting, but I find that
candidates obsess way too much with the product and market of a
startup when asking questions.

It's much more important to focus on the people in the startup.
Are they a strong team that executes well? Are they creative? How
do they interact with each other? How are decisions made? Would you
like to work with these people?

(2) Observe the working conditions. They reveal a lot about the
company's philosophies towards its employees.

You're looking for top notch monitors, chairs, desks, and
computers. Look at how much space each programmer has and if the
environment is quiet or not.

A top notch work environment is a good investment for maximizing
the productivity of programmers and keeping them happy and healthy.
Anything less than a top notch work environment is an indication
that the company is overly focused on keeping costs low and is
cheap with its employees.

(3) Is the company founded by hackers or business guys?

Hackers are much more likely to understand what it takes to make
a great environment for programmers. Not to say that business guys
can't make a great work environment, it's just less likely.

(4) Are they using pressure tactics on you?

If a company uses pressure tactics on you to get you to accept
an offer, it's a huge red flag. Just imagine how the company will
treat you as an employee if they're willing to manipulate you into
accepting their offer.

(5) Do they move the process forward quickly?

By "moving the process forward quickly," I mean answering emails
within a few hours. Moving the process forward quickly is a sign
that the startup is on top of things.

(6) Is there hierarchy? Do people give themselves titles?

This is a big red flag. It's a sign that the company is filled
with big egos or people who think startups are smaller versions of
big companies. Startups should be very flat and anyone in the
organization should be able to talk to the CEO.

(7) Do your research on the company. Read the company's blog.
Read the blogs of the employees.

Startups are a collection of personalities. Do your research and
try to figure out if you'd like to work with the people there.

Getting the job

(1) Don't describe yourself. Instead, describe amazing things
you've done.

The biggest mistake you can make in a cover letter is using an
empty phrase like "motivated self-starter." Believe it or not,
everyone describes themselves as an amazing person. Even if you're
amazing, describing yourself as such is meaningless.

Instead, you need to describe amazing things you've done. Focus
on problems you've solved as opposed to solutions you've built. You
have to be concise and to the point as people have short attention
spans when reading cover letters.

92) Links, links, links, links, links.

You'll only get the job if the company is convinced that you'll
build amazing things for them. The best way to persuade them of
this is to show them amazing things you've built in the past! Links
are gold. Link to your open source and side projects.

Remember, it's hard for a startup to evaluate the skill of a
programmer. Technical questions can be very inaccurate and
incorrectly filter good programmers. So you need to make it easy
for the startup to see that you're a superstar, and the best way to
do this is to link them to amazing things you've built.

If you don't have any links to show off, you need to remedy
that.

(3) Be yourself.

Stay away from formal, cookie-cutter cover letters. Do not start
off a cover letter with something like "Dear Hiring Manager."
Formal cover letters make you sound like a drone, and startups
don't hire drones. They hire creative people who get things
done.

(4) Examples are your friends in tech questions.

When you're stuck on a tech question, work through a few
examples. More often than not this will guide you much closer to
the solution. I'm shocked at how many people don't use this
technique.

(5) For tech questions, get a correct answer first. Then figure
out how to make it faster or simpler.

A mistake I see a lot of people make is try to get a perfect
answer on the first try. A lot of times they're searching for an
O(1) solution where none exists. It's better to just get something
working first, and then figure out how to optimize or refactor
it.

When you get an offer

You have all the leverage when you get an offer. If a kick-ass
startup gives you an offer, they consider you to be a rare
individual. Negotiate with that in mind.

The best company will give you time to make the best decision
for yourself, because they are confident they are a great place to
work. They will be aggressive in selling you on the opportunity,
but they won't pressure you.

When you accept an offer from that kick-ass startup,
congratulations. Get ready for a fun ride. §

Nathan Marz is a programmer and blogger living in San
Francisco. Nathan is the Lead Engineer at BackType and the author
of Cascalog, an open-source project for processing data on Hadoop
using the Clojure programming language.

Commentary

By Sahil Lavingia (sahillavingia)

Caution: only works if you're a kick-ass programmer.

Strive to be that and getting a job becomes magnitudes easier.
Sweet, successful side projects are the staple of a kick-ass guy.
Glad I got some under my belt.

By Mahmud Mohamed (mahmud)

Not just kick-ass programmers. I have consulted with a lady who
ran a small, posh web-shop; she met me at the door and hushed me to
tip-toe past a bunch of interns fiddling with photoshop and drupal.
Those kids got more respect working for school credit, doing
nothing but theming, than most of us get in higher positions with
other companies. She also made it a point to "take them to the ATM"
on Fridays as well.

OTOH, if you have never seen competent interns with a modicum of
responsibility, well, they're a sight to behold. They subcontract
for bigger shops and get no credit for their work, but their stuff
looks like shrink-wrapped orgasms dipped in pixel-perfect honey.
Really awesome crew.

You Negotiate Commodities, But You Seize Opportunities

By STEVE BLANK

It took losing something important to understand the difference
between a commodity and an opportunity. Along the way I also
learned yet another way entrepreneurs see the world differently
from their investors.

Advisory Board

In the early days of Rocket Science I realized that we needed
high-level advice on multiple fronts; technology, game development,
video game distribution, etc. At one of our initial board meetings
we had agreed on the general principle of an advisory board and put
together an overall stock budget to compensate advisors.

One of the first potential advisors I reached out to was someone
who 10 years earlier tried to hire me as the VP of Marketing of his
new division at Sun Microsystems. For lots of reasons that never
worked out, but I liked him so much that the following year I tried
to hire him as the VP of Engineering of Ardent. (He was having too
much fun at Sun and turned me down.)

Now a decade later, we caught up over lunch and I found that he
was in the middle of taking a new job inside his company and had
some time on his hands. Chatting with him just reinforced my
earlier opinion that he was an extraordinary combination of sheer
technical talent, great business and common sense and a
level-headed decision maker. I knew he would bring immense value to
me and the company.

Over the next week we exchanged emails over advisory board
stock. I made him an offer and he countered with one I thought was
still reasonable (but I didn't tell him that). The timing was
perfect, my board meeting was in two days. I could get him the
stock he asked for approved at my board meeting and then reply.

Death by Spreadsheet

I was so excited to break the news to the board that I put this
new advisor on as the first agenda item. Even back then the advisor
was a well-known name in Silicon Valley. The conversation went
great and everyone agreed he'd teach us a lot - until one of the
board members asked, "How much stock do we have to give him?" I
threw out the number of shares I had offered and he had requested,
naively thinking everyone would see what a no-brainer this was.
Instead what I got was, "Wait a minute. He's asking for one-third
of our advisory board stock budget. We had agreed we were going to
get 5 to 6 advisors with that amount of stock." At first I wasn't
sure I was hearing this correctly. The advisor was a world-class
guy, in my judgment he was worth more than all the other advisors I
was going to get.

Then the other VC's piled on. "You need to live on the budget we
gave you. Go back to him and offer him less stock."

As a first-time CEO getting beaten up my board I thought this
wasn't a fight worth having. (I couldn't have been more wrong.) So
I agreed to go back to my potential advisor and tell him the best I
could do was my first offer.

I was about to get a few lessons that have lasted for a long
time.

Thanks But No Thanks

Putting my best marketing spin on it, I sent our potential
advisor a message that essentially said, "I'm not sure I can meet
your request, but here's another offer." I dressed it up as best as
I could, making some of the other terms more palatable, but it
still wasn't what he asked for.

I guess I shouldn't have been surprised when he sent me a very
polite note back that said, "Thanks but no thanks. I'm now getting
more involved in my new job as CTO and I'm too busy to go back and
forth negotiating this." But I was crushed. I knew my company had
just lost something important. Something that I couldn't just go
out and replace. And I realized I screwed up in at least two major
ways.

You Negotiate Commodities, But You Seize Opportunities

I hadn't just lost a potential advisor, I had lost an
irreplaceable opportunity. We didn't lose him just over a stock
offer. We lost him because we had treated him as a commodity -
something that was readily available from multiple sources,
something for which you could negotiate a price.

In reality what I had in front of me was an opportunity - a
favorable combination of circumstances that rarely occurs and if
seized upon would have given me an advantage.

You treat commodities and opportunities radically
differently.

Founding CEO's are supposed to search for a repeatable business
model, not just blindly execute their original plan. That requires
you to identify opportunities and seize the day. Opportunities are
not just about sales, marketing or product. In this case it was
about a resource I had in my hands and let go of.

I had acted like an employee, not as a founder and certainly not
as the CEO of a startup. I had let my board tell me that the
opportunity I saw was a commodity that could be managed by a
spreadsheet. And I didn't stand up for what I had believed in.

It would never happen again.

Lessons Learned

	Great entrepreneurs see opportunities before others do.

	Ask, "Is it a commodity or an opportunity?"

	If it's one-of-a-kind that give you an advantage, it's an
opportunity.

	Grab opportunities with both hands and don't let go.

	It's better to beg for forgiveness than ask for
permission.

	Carpe Diem §

Steve Blank is a retired serial entrepreneur and the
author of
Four Steps to the Epiphany. Today he teaches entrepreneurship
to both undergraduate and graduate students at U.C. Berkeley,
Stanford University and the Columbia University/Berkeley Joint
Executive MBA program. He also blogs about entrepreneurship at
www.steveblank.com.

Commentary

By Patrick McKenzie (patio11)

Over and over in business you'll see people avoid decisions they
don't deeply understand (e.g. the average VC knows nothing about
gaming, the average PHB knows nothing about databases, the average
techie knows nothing about your market), and to paper over their
ignorance and demonstrate they are in control and providing value
they'll suggest a change to something they think they understand
(advisor shares, the design of the front page, your pricing
relative to a bowl of ramen).

This rarely works well, particularly when the two decisions are
in fact related. One coping mechanism is being able to ignore
advice (if you haven't taken their money, you can probably ignore
their advice). Another is having a list of knobs people can twirl
which are off the critical path (salaryman survival skill #1:
distract the boss with rearranging a Gantt chart which can't kill
anyone).

[image: Advertisement:]

Web Design is 95% Typography

By OLIVER REICHENSTEIN

95% of the information on the web is written language. It is
only logical to say that a web designer should get good training in
the main discipline of shaping written information, in other words:
Typography.

Information design is typography

Back in 1969, Emil Ruder, a famous Swiss typographer, wrote on
behalf of his contemporary print materials what we could easily say
about our contemporary websites:

Today we are inundated with such an immense flood of printed
matter that the value of the individual work has depreciated, for
our harassed contemporaries simply cannot take everything that is
printed today. It is the typographer's task to divide up and
organize and interpret this mass of printed matter in such a way
that the reader will have a good chance of finding what is of
interest to him.

With some imagination (replace print with online) this sounds
like the job description of an information designer. It is the
information designer's task "to divide up and organize and
interpret this mass of printed matter in such a way that the reader
will have a good chance of finding what is of interest to him."

Macro-typography (overall text-structure) in contrast to micro
typography (detailed aspects of type and spacing) covers many
aspects of what we nowadays call "information design." So to speak,
information designers nowadays do the job that typographers did 30
years ago:

Typography has one plain duty before it and that is to convey
information in writing. No argument or consideration can absolve
typography from this duty. A printed work which cannot be read
becomes a product without purpose.

Optimizing typography is optimizing readability, accessibility,
usability(!), overall graphic balance. Organizing blocks of text
and combining them with pictures, isn't that what graphic
designers, usability specialists, information architects do? So why
is it such a neglected topic?

Too few fonts? Resolution too low?

The main-usually whiny-argument against typographical discipline
online is that there are so few fonts available. The second
argument is that the screen resolution is too low, which makes it
hard to read pixelated or anti-aliased fonts in the first
place.

The argument that we do not have enough fonts at our disposition
is as good as irrelevant: During the Italian renaissance the
typographer had one font to work with, and yet this period produced
some of the most beautiful typographical work:

The typographer shouldn't care too much what kind of fonts he
has at his disposal. Actually the choice of fonts shouldn't be his
major concern. He should use what is available at the time and use
it the best he can.

Choosing a typeface is not typography

The second argument is not much better. In the beginning of
printing the quality of printed letters was way worse than what we
see on the screen nowadays. More importantly, if handled
professionally, screen fonts are pretty readable.

Information design is not about the use of good typefaces, it is
about the use of good typography. Which is a huge difference.
Anyone can use typefaces, some can choose good typefaces, but only
few master typography.

Treat text as a user interface

Yes, it is annoying how different browsers and platforms render
fonts, and yes, the resolution issue makes it hard to stay focused
for more than five minutes. But, well, it is part of a web
designer's job to make sure that texts are easy and nice to read on
all major browsers and platforms. Correct leading, word and letter
spacing, active white space, and dosed use of color help
readability. But that's not quite it. A great web designer knows
how to work with text not just as content, he treats "text as a
user interface." Have a look at Khoi Vinh's website, and you'll
probably understand what that means:

Slightly more famous examples of unornamental websites that
treat text as interface are: Google, eBay, craigslist, YouTube,
Flickr, Digg, reddit, Delicious. Being a hard to dispute necessity,
treating text as a user interface is the only parameter for
success. Successful websites manage to create a simple interface
AND a strong identity at the same time. But that's another subject.
§

Oliver Reichenstein (@iA on Twitter) is an interface
designer and founder of Information Architects Inc. He has lived in
Japan since 2003.

Commentary

By Elben Shira (elbenshira)

What's up with these typophiles? They walk around thinking
they're the most important member of the club.

The truth is, design is complicated because it is not (yet) a
science. Typography is important, but it is not king. What we
really need to do is get inside the user's head and model their
thought process. This is probably impossible, so we should do the
next best thing: learn empathy. Be the user. Not some one-trick
pony.

By Leon Paternoster (leonpaternoster)

The context of this statement is important, I think. Back in
2006 web sites were all about Flash, widgets, fancy graphics etc.
All Oliver was saying is that these things are unimportant if your
text is unreadable.

And by typography he means a lot more than whether it's Georgia
or Helvetica.

Why Most People Don't Succeed

- How You Can Be the Exception

By KENT HEALY

The burn: Psychological burn-out due to overlooking the
immeasurable sources of drive.

The diagnosis: If you ignored the fact that your car required an
oil change, what would happen? (No, this is not a trick
question.)

The vehicle's functions would be utterly undermined leading to
complete engine failure. However, it's not just cars that require
tune-ups. Ultimately, just about everything requires some extra
attention. We wouldn't wash a car once and expect it to be clean
forever. We wouldn't go to the gym for one workout and expect to be
fit for life. And we certainly wouldn't ingest vitamins once and
expect our bodies to be eternally nourished.

This is all common sense.

But why then, are so many people unpleasantly surprised when
they feel unsatisfied or don't perform at their full potential? Not
surprisingly, like a car, our dirty laundry, or our computer, we
too, need tune-ups. But sadly, it seems to be human nature to wait
until something is not working in our lives before we change our
priorities.

Although this concept does not only apply to our physical
health, I thought I would share part of a conversation I had
recently with a doctor who confirmed this idea. "The big problem I
see," he said, "is the number of people who do not consistently
maintain their health and ignore the many amber alerts indicating
that their behavior needs to change."

The doctor continued, "Most patients look at professional help
purely as a last resort; meaning once the pain gets unbearable,
they finally come in. Sometimes I can help, but other times, it's
God's business at that point. People are not very proactive when it
comes to their personal lives. I don't understand it. What wait?
Why risk it?"

On some level, most of us expect our personal life to de-frag
itself, to watch the wrinkles and flaws simply iron themselves out.
We can easily see how this strategy has worked out. It certainly
explains the alarming rate of depression, overload, and chronic
health problems in society today.

Panic is a strategy for fire stations:

Why then, do we operate our lives like fire stations; passively
waiting for disaster to strike before taking reactive measures? Why
experience heartache before taking a step back to consider adapting
our approach? Here is my three-word-theory: Maintenance is boring.
We don't even enjoy taking our car in for a tune-up let alone
consistently confronting our own personal baggage.

It is far more pleasurable to pander to our immediate desires.
There is also a thrill in creating/doing something new. But the
same cannot be said about maintenance.

Maintenance requires discipline, routine, and brutal
self-honesty - not words we commonly associate to pleasure. I will
be the first to admit the challenge of exercising regularly,
adhering to core values, eating healthy, honoring commitments, and
engaging in personal reflection and evaluations. It's difficult -
as are most things worth doing.

The inordinate reward:

But in every challenge there lies an antithetical reward, an
often unintended opportunity. Why? One reason is because the
majority opts to avoid confrontation. Thus the obvious consequence
is fewer people who follow through with acts of maintenance - the
behavior needed to perform at their peak. The not so obvious
consequence is the disproportionate reward for the few who do
master maintenance.

The reason is simple: Most people simply don't stay in the game
long enough to win it. Instead, they run out of steam or choose to
settle. Therefore, the abundance that exists is distributed
generously to those who do what the majority is simply unwilling to
do. I am reminded of a quote from my days in self-help: "Successful
people are successful because they are willing to do what
unsuccessful people are unwilling to do." So simple. So true.

Life is not a zero sum game. But stagnation and lazy habits
certainly create vivid impressions of lack and deprivation that
people mistaken for absolute universal laws. But fortunately, there
is enough [enter your definition of success] to go around. (I can
hear the pessimist reader cringing: "Enough of 'what-exactly' to go
around? Happiness? How do you measure that anyway?" And there in
lies a costly misconception...)

The modern metrics dilemma:

While some outcomes of personal maintenance are clearly visible
(savings account balance, weight, appearance, sales figures, etc.),
many are not. Sometimes to a fault, we place an exorbitant amount
of attention on measurable metrics assuming what is most important
can be measured.

In our dogged pursuit of what is quantifiable we often neglect
what is not. Maintenance loses much of its glory due the numerous
immeasurable, overlooked, and undervalued rewards.

Perhaps, Einstein said it best, "Not everything that matters can
be measured and not everything that can be measured matters."
Without concocting a rigorous study (which most of us will never
organize for ourselves), it is difficult to measure personal
satisfaction, peace of mind, elation, engagement, etc.

"Big deal. Gimme results!" the pessimist exclaims.

Blinded by outcome, we are quick to overlook the root causes of
such outcomes. It's often the immeasurable factors that fuel the
behavior required to produce the measurable results. An absence of
satisfaction and passion begets results only in the interim. If
success is a combination of process, experience, and outcome then
sustenance is imperative. But caught up in the modern allure of
immediate, quantifiable results, we burn out frequently, quit
regularly, and rarely experience notable success.

Long-distance goals cannot be achieved without maintenance (ask
any marathon runner). Daily disciplines enable long-term
performance and uncommon results. In fact, the very nature of the
word "maintenance" embodies a consistent commitment to the
long-term… otherwise each action is merely anomalous - and like
I've always said, the only difference between "luck" and "skill" is
consistency.

Insightful Questions & Actions:

Actions:

	Get honest about your current situation. Rate the following
areas of your life on a scale of 1-10: Physical Health, grades, job
performance, personal happiness, relationships, financial
situation, etc.

	Then follow up with the question: What would it take to make
this area a 10?

	Set reminders in your calendar/on your phone to increase
consistent follow through.

	Form an accountability partnership with a friend or small group
to review and critique progress and process.

	Identify the times you performed at your best and deconstruct
the routine that enabled the result. What form of daily maintenance
aided your performance?

	Schedule time with yourself away from distractions. (If you can
set an appointment with the auto mechanic or your hairdresser, you
can schedule an appointment with yourself.) During this time you
may wish to address the questions below or create your own. Record
your thoughts for future reference.

Questions:

	What top performer/s (athlete, business magnate, etc.) do I
admire most? What routines might they use to maintain their
edge?

	What are the consequences of neglecting maintenance?

	What unforeseen rewards might stem from a commitment to
consistent follow through in the area of ___ [your desired
activity]?

	How have I formed new habits in the past? What process works
best for me?

	What new routines could I instigate that may ease the process
of maintaining constructive behavior?

	At what time should I schedule my next personal tune-up? §

Kent Healy is an author, speaker, columnist, real
estate investor, entrepreneur, a student of life, graphic designer,
and an advocate of applied sciences in the realm of personal
lifestyle. He blogs at http://dontgetburnedblog.com/.

Commentary

By Ed Weissman (edw519)

"Maintenance is boring."

Just a few things I don't think are boring:

	sinking my teeth into some fresh sweet melon

	a late afternoon jog in the woods

	hanging out with friends and family

	an ice cold beer at the football game

	an all-you-can-eat salad bar

	curling up with SO (even if it is a chick flick)

	a hot shower, freshly brushed teeth, and a warm bathrobe

	a happy dance after a new program runs the first time

If you think of the things you need to do to live well as
"maintenance," they would seem boring, and you won't want to do
them.

But if you think of them as "living," you'll embrace them and
never give the concept of "maintenance" a second thought.

How to Set Up Your Own Private Git Server on Linux

By BRADLEY WRIGHT

One of the things I'm attempting to achieve this year is
simplifying my life somewhat. Given how much of my life revolves
around technology, a large part of this will be consolidating the
various services I consume (and often pay for). The mention of
payment is important, as up until now I've been paying the awesome
GitHub for their basic plan.

I don't have many private repositories with them, and all of
them are strictly private code (this blog: Amanda's blog templates
and styles; and some other bits) which don't require collaborators.
For this reason, paying money to GitHub (awesome though they may
be) seemed wasteful.

So I decided to move all my private repositories to my own
server. This is how I did it.

Set up the server

These instructions were performed on a Debian 5 "Lenny" box, so
assume them to be the same on Ubuntu. Substitute the package
installation commands as required if you're on an alternative
distribution.

First, if you haven't done so already, add your public key to
the server:

ssh myuser@server.com mkdir .ssh
scp ~/.ssh/id_rsa.pub myuser@server.com:.ssh/authorized_keys

Now we can SSH into our server and install Git:

ssh myserver.com
sudo apt-get update
sudo apt-get install git-core

... and that's it.

Adding a user

If you intend to share these repositories with any
collaborators, at this point you'll either:

	Want to install something like Gitosis (outside the scope of
this article); or

	Add a "shared" Git user.

We'll be following the latter option. So, add a Git user:

sudo adduser git

Now you'll need to add your public key to the Git user's
authorized_keys:

sudo mkdir /home/git/.ssh
sudo cp ~/.ssh/authorized_keys /home/git/.ssh/
sudo chown -R git:git /home/git/.ssh
sudo chmod 700 !$
sudo chmod 600 /home/git/.ssh/*

Now you'll be able to authenticate as the Git user via SSH. Test
it out:

ssh git@myserver.com

Add your repositories

If you're to not share the repositories, and just want to access
them for yourself (like I did, since I have no collaborators),
you'd do the following as yourself. Otherwise, do it as the Git
user we added above.

If using the Git user, log in as them:

login git

Now we can create our repositories:

mkdir myrepo.git
cd !$
git --bare init

The last steps creates an empty repository. We're assuming you
already have a local repository that you just want to push to a
remote server.

Repeat that last step for each remote Git repository you
want.

Log out of the server as the remaining operations will be
completed on your local machine.

Configure your development machine

First, we add the remotes to your local machine. If you've
already defined a remote named origin (for example, if you followed
GitHub's instructions), you'll want to delete the remote first:

git remote rm origin

Now we can add our new remote:

git remote add origin git@server.com:myrepo.git
git push origin master

And that's it. You'll probably also want to make sure you add a
default merge and remote:

git config branch.master.remote origin && git config branch.master.merge refs/heads/master

And that's all. Now you can push/pull from origin as much as you
like, and it'll be stored remotely on your own myserver.com remote
repository.

Bonus points: Make SSH more secure

This has been extensively covered by the excellent Slicehost
tutorial, but just to recap:

Edit the SSH config:

sudo vi /etc/ssh/sshd_config

And change the following values:

Port 2207

...

PermitRootLogin no

...

AllowUsers myuser git

...

PasswordAuthentication no

Where 2207 is a port of your choosing. Make sure to add
this to your Git remote:

git remote add origin ssh://git@myserver.com:2207/~/myrepo.git

Based in London, Brad is a front end developer and
Python hacker at social betting startup Smarkets.

Commentary

By Michael F Booth (mechanical_fish)

"I decided to move all my private repositories to my own
server."

When you do this, make sure that the server has continuous
backups. Also, make sure you still have an offsite backup.

Once you figure out what these things are worth, you may realize
that you should probably just keep paying GitHub.

By Philip Hofstetter (pilif)

The backups aren't as important as each git repo is a full blown
clone. If your local repo is destroyed, you still have the server
copy. If your server blows up, you still have the local copy.

There are many other good reasons for a service like GitHub,
like the excellent collaboration features, the really good
repository and history browser or the good bugtracker.

If you don't need those (small team, working alone) but are
concerned about uploading your intellectual property to a third
party server in a potentially foreign country (depending on your
location), then quickly setting up Gitosis / Gitweb / Redmine might
be enough for you.

In my personal case, I would really love to use GitHub even for
my small team, but I'm too concerned about the legal issues to go
ahead with that (and the local installation is plain too
expensive).

What's Wrong With 2006 Programming?

By SALVATORE SANFILIPPO

Redis 2.0 introduced a new feature called Virtual Memory. The
idea is that some applications using Redis may not access the whole
dataset with the same frequency. In extreme cases only a little
percentage of hot spot data is used often, while the rest is mostly
idle and touched very rarely. For instance imagine a Redis instance
holding User objects: the most active users will hit this subset of
records continuously, while a large percentage of users will access
the site a few times a month, and another large subset of users
completely forgot about this web service at all.

Since Redis is memory backed the idea was to transfer rarely
accessed data on disk, to reload swapped data when needed (that is
when a client will try to access it). The actual implementation of
Redis Virtual Memory is completely done in user space: we try to
approximate an LRU algorithm, encode data that should be swapped,
write it on disk, and reload if needed, decode, managing pages in
the swap file, and so forth. It's a non trivial piece of code but
it is working well.

Still almost every week I receive a mail, a blog message, a
tweet, or I happen to read an article pointing me to this article
written by the Varnish guy (edit: that is, the well known developer
Poul-Henning Kamp). The article will tell you how silly is to
implement your caching layer on top of the one already provided by
the operating system. The idea is that you should just write things
into an mmap()ed file or alike, and let the OS swap/load things for
you.

If you know Redis you already know that we actually try hard to
use the operating system smartness to do complex things in a
simpler ways. For instance our persistence engine is completely
based on fork() copy-on-write semantics of modern kernels, but for
Redis Virtual Memory using the OS is not a good solution, and it's
time to explain in details why it is not.

OS paging is blocking as hell

The first huge problem with this approach is how badly blocking
it is. What happens is that when you try accessing a memory page
that is swap on disk the CPU will raise an exception, asking the
kernel to retrieve the page from the swap file and transfer it in a
physical memory page. In the meantime the process is completely
blocked.

What this means? That if we have two clients, C1 and C2,
and...

C1 is trying to access a key that was stored into a page that
the OS transferred on disk.

C2 is trying to access a key that is fully in memory. A recently
used one.

C1 sends the query one millisecond before C2.

Because C1 will touch a page that is swapped on disk, the
process will be halted, and will wait the disk I/O needed to bring
the page back into memory.

In the meanwhile everything is stopped. Even if C2 was going to
read something in memory it gets serialized and will be served
after C1.

One very important goal in Redis VM (and I guess this should be
a primary goal of every system with a low latency semantics) is to
be able to serve keys that are in memory as fast as usually.
Clients performing a query against a rarely used page will instead
pay the latency penalty, without effects for other clients.

This is already a show stopper and just because of this it
should not be worth continuing with the rest of the article, but
well, while I'm at it it's a good exercise I guess.

The granularity is 4k pages

The kernel is able to swap/load 4k pages. For a page to be idle
from the point of view of the kernel and its LRU algorithm, what is
needed is that there are no memory accesses in the whole page for
some time.

Redis is an in-memory data structures server, this means that
our values are often things like lists, hash tables, balanced
trees, and so forth. This data structures are created incrementally
with commands, often in a long time. For instance a Redis list may
be composed of 10k elements storing the timeline of a twitter user,
accumulated in the course of six months. So every element of the
list is a Redis object. Redis objects gets shared, cached, and so
forth: there is no good locality in such a data structure
obviously.

Multiply this for all the keys you have in memory and try
visualizing it in your mind: These are a lot of small objects. What
happens is simple to explain, every single page of 4k will have a
mix of many different values. For a page to be swapped on disk by
the OS it requires that all contained objects should belong to
rarely used keys. In practical terms the OS will not be able to
swap a single page at all even if just 10% of the dataset is
used.

Oh but this is since you are lame! Store related objects
nearby...

The whole Redis semantics of being single threaded, fast, and
very versatile in the data structures provided, is up to the fact
that we use the good and old data structures implemented with
something that is able to provide good performances even with bad
locality (compared to a disk) that is: memory.

Handling this data structures with very good locality is as hard
as implementing well this data structures on disk. If we could do
this, it would be a much better strategy to use the inverse design:
store everything on disk and use the kernel disk cache to take the
hot spot in memory. Persistence and VM solved in a single pass, a
no brainer.

Actually in Redis 2.2 we try to "compact" our data in memory,
and in this way we obtained huge space savings. Many datasets in
Redis 2.2 takes just 20% of the space that was required in 2.0.
This is five times more space efficient than before. But where is
the trick? That we can do this only for small lists, sets, and
hashes, where O(N) algorithms are as fast as O(1) algorithms
because of cache locality.

I think I already showed my point, but there are more good
reasons to implement paging at application level, especially in the
case of Redis.

Optimal representation on disk and on memory are very
different

Many data structures are designed to be able to provide specific
time complexity performances. For instance an hash table provides
an element lookup time of O(1) in the average case. In a similar
way a balanced tree is designed so that it's possible to update a
Redis sorted set score in O(log(N)).

For this to be possible, there is to waste memory because you
have meta data of many kinds: pointers, allocations overheads,
informations per every node for augmented data structures (like our
skip list implementation), and so forth. The representation of data
is optimized for interacting with this data.

On the other side when values are swapped they are idle. For
storage the best representation can be completely different. For
instance an hash table holding name of fruits in memory can be
represented on disk as a trivial comma separated string of values:
"orange,apple,...."

The OS has zero knowledge of what's written in a page. Instead
with application level paging we know what we are doing, and can
serialize the data in the VM in the smarter way. This means from 5
to 10 times less disk I/O compared to the work performed by the
kernel in the same conditions!

Aging algorithm can't be changed

And finally... what value to swap on disk? What value to take in
memory?

Again, the kernel will use a simple LRU algorithm, where the
granularity is the page. Redis can do much better, for instance LRU
is not always the best algorithm when accessing data in a
"circular" way, one record after the other and then again. Also the
current Redis algorithm takes into account the size of a given
value. If it's small it's not worth transferring if the age is
exactly like another value that is bigger, and things like this. In
Redis 2.2 we plan to provide different swapping algorithms so that
people can pick what can work better for a given dataset.

I think the Varnish article is not bad at all, the real problem
is that an article is not enough to provide a deep understanding of
the specific implementation of a different system. I hope this
article provided a counter-case for the Varnish approach that can
be used when it is sensible to use it. And the other way around.
§

Salvatore Sanfilippo aka antirez is an
Italian computer programmer. He is currently the lead developer of
Redis and works for VMware. In the past he focused on security and
programming languages.

Commentary

By Wes Felter (wmf)

Just to amplify his point, if you want your program to take page
faults as PHK suggests, it has to be multithreaded. If you choose
event-driven concurrency you can't afford to take page faults in
mmap() or read(). When you make the threads vs. events decision
you're implicitly making a bunch of related decisions about I/O and
scheduling as well; a hybrid approach (like using events and mmap)
won't work well.

Bouncing Beholder

By MARIJN HAVERBEKE

My winning JS1K entry - http://marijnhaverbeke.nl/js1k/
a JavaScript platform game that fits in 1024 bytes.

This is the code (newlines added):

c=document.body.children[0];h=t=150;L=w=c.width=800;u=D=50;H=[];R=Math.random;for($ in C=
c.getContext('2d'))C[$[J=X=Y=0]+($[6]||'')]=C[$];setInterval("if(D)for(x=405,i=y=I=0;i<1e4;)L=\
H[i++]=i<9|L<w&R()<.3?w:R()*u+80|0;$=++t%99-u;$=$*$/8+20;y+=Y;x+=y-H[(x+X)/u|0]&get;9?0:X;j=H[o=\
x/u|0];Y=y<j|Y<0?Y+1:(y=j,J?-10:0);with(C){A=function(c,x,y,r){r&&a(x,y,r,0,7,0);fillStyle=c.P\
?c:'#'+'ceff99ff78f86eeaaffffd45333'.substr(c*3,3);f();ba()};for(D=Z=0;Z<21;Z++){Z<7&&A(Z%6,w/\
2,235,Z?250-15*Z:w);i=o-5+Z;S=x-i*u;B=S&get;9&S<41;ta(u-S,0);G=cL(0,T=H[i],0,T+9);T%6||(A(2,25,T-7\
,5),y^j||B&&(H[i]-=.1,I++));G.P=G.addColorStop;G.P(0,i%7?'#7e3':(i^o||y^T||(y=H[i]+=$/99),\
'#c7a'\));G.P(1,'#ca6');i%4&&A(6,t/2%200,9,i%2?27:33);m(-6,h);qt(-6,T,3,T);l(47,T);qt(56,T,56,\
h);A(G);i%3?0:T<w?(A(G,33,T-15,10),fc(31,T-7,4,9)):(A(7,25,$,9),A(G,25,$,5),fc(24,$,2,h),D=B&y\
&get;$-9?1:D);ta(S-u,0)}A(6,u,y-9,11);A(5,M=u+X*.7,Q=y-9+Y/5,8);A(8,M,Q,5);fx(I+'¢',5,15)}D=y&get;h?1:D"
,u);onkeydown=onkeyup=function(e){E=e.type[5]?4:0;e=e.keyCode;J=e^38?J:E;X=e^37?e^39?X:E:-E}

Why?

I've heard people wax poetic about programming old,
limited-memory machines. I wouldn't know anything about those - at
the time they were current, I was writing rudimentary
number-guessing games in BASIC. But doing this competition entry
gave me a taste of what they might be talking about.

In typical 21st-century programming, the machine limits one has
to deal with are wide and fuzzy. Program size is rarely an issue,
so like painters working on an infinite canvas, we often don't know
when to stop. When a program has to fit in a tightly limited space,
the experience is different. You program by carefully refining
every single expression, chipping away at your code until it
reflects your vision as well as it can.

In terms of productivity, this is an awful way of coding. But it
certainly is fun. Not to mention that it gives me an excuse to use
every kind of weird hack I can think of.

How?

For a start, of course, there are the tiny local tricks that
save a few bytes here and there, which adds up to at least a
hundred bytes on the whole program. |0 truncates, && or ?:
can replace if (sometimes), & can replace &&
(sometimes), you can reuse initializers (J=X=Y=0), a with statement
can shorten object access, etc.

Compression algorithms, such as Google's Closure Compiler and
UglifyJS, and various eval/replace hacks suggested for the JS1K
contest, don't really do much on properly hand-compressed code. In
fact, they all ended up making the code bigger...

The tiny size required me to design the program in a "holistic,"
highly un-modular way, meaning every single aspect of the program
could influence every other one. There was an issue causing the
clouds to be drawn incorrectly for negative X coordinates. To work
around this would have required quite a few extra characters (I was
using x|0 where I actually needed Math.floor(x)). Instead, I made
the playing field start at 400 and put empty space at the start to
prevent the player from seeing any negative X coordinates. Problem
solved.

Mechanized Abbreviation

The coolest hack in this program is probably the mechanized
abbreviation of the canvas context methods. Method names like
quadraticCurveTo, createLinearGradient are nice and explicit, but
those two taken together already eat 3.5% of the bytes available -
when only referenced once! I needed to use them, but I wanted to
avoid spelling them.

Turns out I can get away with that. At the start of the program
there is a for/in loop that goes over the properties of the canvas
context, and adds a new property, with a shorter name, for each of
them. It took some experimenting to find an abbreviation algorithm
that doesn't have clashes on any of the methods we use - I ended up
using the first letter of the name plus the the 7th letter, if any.
So lineTo becomes l, and quadraticCurveTo becomes qt. I can then
use these short names to actually access the methods - without ever
having written out the full name.

This does, of course, not work for properties like fillStyle.
You can copy those, but the copies won't do anything.

Functions As a Scarce Resource

Functions are hugely useful for factoring out pieces of shared
functionality, and thus shortening code. Unfortunately, the word
"function" is 8 characters, and the minimal overhead for a function
definition something like 14 bytes, 20 if you actually want to
return something.

Thus, a function has to be really, really useful before it pays
off to define it.

The program started off with five functions, which has since
been reduced to two. In one of these places, I have little choice -
window.onkeydown only takes function values. I'm using the same
function for onkeydown and onkeyup, which turned out to be more
efficient anyway. The checks for which key is pressed or released
are also repeated in both. To check whether an event is a keydown
or a keyup, I used e.type[5], where e is the event object. If this
is a keyup event, the type of the event does not have a 6th
character, so that this evaluates to a falsy value.

The other function used is the one called A. This rolls three
pieces of functionality into one (saving me two function keywords).
It takes a fillstyle as its first argument, and an optional x, y,
and radius after that. If the optional arguments are provided, it
starts by drawing a circle. Then it sets the fillStyle of the
canvas context to the provided style, or - if the style is not a
gradient - it uses it as an index into a string of colors. After
this, it calls (the abbreviated versions of) fill() and beginPath()
on the canvas context. Note that, because a canvas context is
specified to start with an empty path, it is safe to start drawing
before the first call to beginPath, and thus beginPath, though it
is usually done before one starts drawing, can be made part of our
"after-drawing routine."

This function is used in three different ways. Obviously, it is
used to draw colored circles (the game contains a lot of circles).
But code that has drawn a path in some other way (the ground
blocks) can also call it to just assign a fillStyle and fill the
path. Finally, code that just wants to set the fillStyle can use it
for that - as long as no path is in the process of being drawn. Now
that's reusability. The program uses this function in ten different
places.

The World

The game world is divided (along the x axis) into 50-pixel-wide
units. When starting a game (or at game-over time), an array is
initialized containing a randomized height-map. The gaps work
mostly the same as the other positions, their height is just off
the bottom of the canvas. The generating algorithm takes some care
to not introduce gaps of more than one unit, since those would be
unjumpable. This heightmap array (plus the player's position,
speed, and a time counter for animation) represents pretty much the
whole game state.

So how does the game know where the coins are, if it is not
explicitly keeping state for them? Every block whose random height
is divisible by 6 gets a coin, and when the player collects the
coin, .1 is subtracted from the height, and the coin no longer
shows up.

Apart from block height, block's x-coordinates can also be used
to add distinctive features. Every third block gets a decorative
tree, if it is visible. If it is invisible, it gets a (stylized)
Piranha Plant. Every seventh block is purple/sinky. This produces a
relatively nice random world, without requiring involved data
structures or lots of code.

Physics

The "physics" in this game are coded in an entirely ad-hoc and
special-cased way. Player movement needs to be restricted in two
ways - you can't walk through the sides of blocks, and you
shouldn't fall through the top. The first is handled by simply
cancelling horizontal movement whenever it would take the player
more than nine (the higher 1-byte number...) pixels below the
ground, and the second is simply a direct check against the height
array. If the player is below or on the ground, his y position is
set to ground level, and his vertical speed is set to zero, unless
the up arrow is pressed, in which case it is set to minus ten
(minus is up). In the other case, where the player is above the
ground, one is added to the vertical speed, creating a gravity
effect.

Collision detection is also handled case-by-case. The most
involved case is collision with the plants, which takes some 20
characters. The "is the player near the middle of this block" part
of the test is reused to determine whether a coin is being picked
up.

Code

Below follows a somewhat expanded, formatted, lightly commented
version of the code. The interval code was made a function (it is a
string the compressed version) to conveniently allow newlines
inside of it.

canvas=document.body.children[0];
screen_height=time=150;
last_height=screen_width=canvas.width=800;
unit=dead=50;
heights=[];

// The abbreviation loop, initializing the variabled needed by the key-handlers on the side.
for(prop in context=canvas.getContext('2d'))
 context[prop[jump=speed_x=speed_y=0]+(prop[6]||'')]=context[prop];

setInterval(function(){
 if(dead)
 // initialize the player position, score, and heightmap
 for(x=405,i=y=score=0;i<1e4;)
 // (screen_width is reused as the off-the-screen height of gap blocks)

 // a block can be a gap if its index is <9, or if the last block was no gap. after this test,
 // a random number is compared to .3 to determine whether an actual gap is generated, or a
 // regular random height.
 last_height=heights[i++]=
 i<9|last_height<screen_width&Math.random()<.3?screen_width:Math.random()*unit+80|0;

 // silly formula to create parabolic movement based on the time
 plant_pos=++time%99-unit;plant_pos=plant_pos*plant_pos/8+20;

 y+=speed_y;
 // only move horizontally if that doesn't take us deep underground (x/unit|0 fetches the index of
 // the block below an x coordinate)
 x+=y-heights[(x+speed_x)/unit|0]>9?0:speed_x;
 // compute final player height index, and ground level under it
 ground=heights[player_index=x/unit|0];
 // adjust y and speed_y based on whether we are on the ground or not
 speed_y=y<ground|speed_y<0?speed_y+1:(y=ground,jump?-10:0);

 // we'll need the context a lot
 with(context){
 A=function(color,x,y,radius){
 // a is the abbreviated form of arc
 radius&&a(x,y,radius,0,7,0);
 // if color is not a gradient object (we set a P property in gradient objects), it is an index
 // into a set of colors
 fillStyle=color.P?color:'#'+'ceff99ff78f86eeaaffffd45333'.substr(color*3,3);
 // f for fill, ba for beginPath
 f(); ba();
 };

 // now loop over visible, or close to visible, blocks, and draw them and their clouds
 for(dead=i=0;i<21;i++){
 // this loop is reused for drawing the background/rainbow, which consists of seven concentric
 // circles. there's no good reason why interleaving clearing the screen with drawing the
 // screen's contents should work, but in this case it does
 i<7&&A(i%6,screen_width/2,235,i?250-15*i:screen_width);

 // we start drawing 5 units in front of the player (first four will be off-screen, needed just
 // for clouds)
 height_index=player_index-5+i;

 scroll_pos=x-height_index*unit;
 // since player screen position is fixed, we can use scroll position for collision detection.
 // this variable indicates whether the player is in the 'middle' of the current block
 player_in_middle=scroll_pos>9&scroll_pos<41;

 // ta for translate. move to start of block to make other drawing commands shorter
 ta(unit-scroll_pos,0);
 // cL for createLinearGradient, for the ground/grass gradient
 gradient=cL(0,height=heights[height_index],0,height+9);
 // if height is divisible by 6, there's a coin here. draw it. if the player is standing on the
 // ground, in the middle of this unit, pick up the coin
 height%6||(A(2,25,height-7,5),y^ground||player_in_middle&&(heights[height_index]-=.1,score++));

 // abbreviate, since we need this twice (and use it again to test whether a value passed to A
 // is a gradient)
 gradient.P=gradient.addColorStop;
 // this implements sinky terrain---when the index is divisible by 7, we use a different color,
 // and do the sinking if the player is standing here
 gradient.P(0,height_index%7?'#5e1':(height_index^player_index||y^height||
 (y=heights[height_index]+=plant_pos/99),'#a59'));
 // brown earth color for the bottom of the gradient
 gradient.P(1,'#b93');

 // this draws the clouds
 height_index%4&&A(6,time/2%200,9,height_index%2?27:33);

 // draws the terrain block. m is moveTo, qt is quadraticCurveTo, l is lineTo
 m(-6,screen_height);qt(-6,height,3,height);l(47,height);qt(56,height,56,screen_height);A(gradient);

 // draw deco trees or piranha plant (height==screen_width for gap blocks), check for collision
 // with plant
 height_index%3?0:height<screen_width
 ?(A(gradient,33,height-15,10),fc(31,height-7,4,9))
 :(A(7,25,plant_pos,9),A(3,25,plant_pos,5),fc(24,plant_pos,2,screen_height),
 dead=player_in_middle&y>plant_pos-9?1:dead);

 // undo block-local translation
 ta(scroll_pos-unit,0)
 }

 // draws the player, using the speed to adjust the position of the iris
 A(6,unit,y-9,11);
 A(5,iris_x=unit+speed_x*.7,iris_y=y-9+speed_y/5,8);
 A(8,iris_x,iris_y,5);

 // color is already dark from eye pupil, draw score with this color
 fx(score+'¢',5,15)
 }

 // check whether the player has fallen off the screen
 dead=y>screen_height?1:dead
},unit);

onkeydown=onkeyup=function(e){
 // if this is a keydown event, new_val gets the value 4, otherwise 0
 new_val=e.type[5]?4:0;
 e=e.keyCode;

 // give jump a truthy value if up was pressed, falsy if up was released
 jump=e^38?jump:new_val;

 // similar for speed_x, inverting new_val if left is pressed
 speed_x=e^37?e^39?speed_x:new_val:-new_val
}

§
Marijn Haverbeke is a programming language enthusiast
and polyglot. He's worked his way from trivial BASIC games on the
Commodore, through a C++ phase, to the present where he mostly
hacks on database systems and web APIs in dynamic languages. He's
about to publish his first book - Eloquent JavaScript: A Modern
Introduction To Programming.

Build an Open Source Dropbox Clone

By PHIL CRYER

First off, if you haven't tried Dropbox, you should check it
out; sync all of your computers via the Dropbox servers, their
basic free service gives you 2Gigs of space and works
cross-platform (Windows, Mac and Linux). I use it daily at home and
work, just having a live backup of my main data for my work system,
my home netbook, and any other computer I need to login to is a
huge win. Plus, I have various 'shared' folders that distribute
certain data to specific users and co-workers to whom I've granted
access. This means work details can be updated and automatically
distributed to the folks I want to review or use the data
immediately. I recommend everyone try it out to see how useful it
is, as it's turned into a game changer for me. So when Dropbox made
headlines that they were supporting Linux, and releasing the client
as open source, it got hopes up that users would be able to run
their own, private Dropbox systems. In the end, it was only the
client that was open source; the server would remain proprietary.
While slightly disappointing, this is fine because it's a company
trying to make money. I don't fault Dropbox for this, it's just
that a free, portable service like that would be a killer app.

Meanwhile at work I'm working on a solution to sync large data
clusters online and the project manager described it as the need
for 'Dropbox on steroids'. Before I had thought it was more
complicated, but after thinking about it, I realized he was right.
Look, Dropbox is a great idea, but it obviously is just a melding
of something similar to rsync, with something watching for file
changes to initiate the sync, along with an easy-to-use front end.
From there I just started looking at ways this could work, and
there are more than a few; here's how I made it work.

Linux now includes inotify, which is a kernel subsystem that
provides file system event notification. From there all it took was
to find an application that listens to inotify and then kicks off a
command when it hears of a change. I tried a few different
applications like inocron, inosync and iwatch, before going with
lsyncd. While all of them could work, lsyncd seemed to be the most
mature, simple to configure and fast. Lsyncd uses inotify to watch
a specified directory for any new, edited or removed files or
directories, and then calls rsync to take care of business. So
let's get started in making our own open source Dropbox clone with
Debian GNU/Linux (Squeeze)

Ladies and gentlemen, start your engines servers!

First, you need two servers: one being the server and the other
the client. (You could do this on one host if you wanted to see how
it works for a proof of concept).

Install OpenSSH client and server

First you'll need to install OpenSSH on both the Client and
Server. On the remote system:

apt-get install openssh-server

On the local box it's more than likely that the client is
installed, but just in case:

apt-get install openssh-client

Configure SSH for Password-less Logins

You'll need to configure SSH to use password-less logins between
the two hosts you want to use, as this is how rsync will pass the
files back and forth. I've previously written a HOWTO on this
topic, so we'll crib from there.

First, generate an SSH public key:

ssh-keygen -N '' -f ~/.ssh/id_dsa

You shouldn't have a key stored there yet, but if you do it will
prompt you and ask if you want to overwrite it; make sure you
overwrite it.

Enter passphrase (empty for no passphrase):
<Enter>

Enter same passphrase again:
<Enter>

We're not using pass phrases so the logins between the systems
can be automated. This should only be done for scripts or
applications that need this functionality, it is not for logging
into servers lazily, and it should never be done as root!

Now, replace REMOTE_SERVER with the hostname or IP that you're
going to call when you SSH to it, and copy the key over to the
server:

ssh-copy-id REMOTE_SERVER

Note that if you have an older system you may not have
ssh-copy-id installed, so you can do it the old way by piping the
output of your key over SSH (which is good to know how to do
anyway):

cat ~/.ssh/id_rsa.pub | ssh REMOTE_SERVER 'cat - >> ~/.ssh/ authorized_keys2'

Lastly, we need to set the permissions on the key file to a sane
level:

ssh REMOTE_SERVER 'chmod 700 .ssh'

Now, give it a go to see if it worked:

ssh REMOTE_SERVER

You should be dropped to a prompt on the remote server without
being prompted for a password. If not you may need to redo your
.ssh directory, so on both servers:

mv ~/.ssh ~/.ssh-old

and goto 10

Install rsync and lsyncd

Next up is to install rsync and lsyncd. rsync is a basic command
and should already be installed (you don't need to run it on the
server, just the client on both systems), but to make sure you have
it, and install lsyncd at the same time:

apt-get install rsync lsyncd

Note that before Squeeze there was no official Debian package,
but it's simple to build from source and install if you need to.
First off, if you don't have build essentials you'll need them, as
well as libxml2-dev to build the lsyncd source. Installing those is
as simple as:

apt-get install libxml2-dev build-essential

Now we'll download the lsyncd code, uncompress it and build
it:

wget http://lsyncd.googlecode.com/files/lsyncd-1.39.tar.gz tar -zxf lsyncd-1.39.tar.gz
cd lsyncd-1.39
./configure
make; make install

This install does not install the configuration file, so we'll
do that manually now:

cp lsyncd.conf.xml /etc/

Configure lsyncd

Next we need to edit the configuration file now located in /etc
The file is a simple, well-documented XML file, and mine ended up
like so - just be sure to change the source and target hosts and
paths to work with your systems:

<lsyncd version="1.39">
 <settings>
 <logfile filename="/var/log/lsyncd"/>
 <!--Specify the rsync (or other) binary to call-->
 <binary filename="/usr/bin/rsync"/>
 <pidfile filename="/var/run/lsyncd.pid"/>
 <callopts>
 <option text="-lt%r"/>
 <option text="--delete"/>
 <exclude -file/>
 <source />
 <destination />
 </callopts>
 </settings>
 <directory>
 <source path="/var/www/sync_test"/>
 <target path="desthost::module/"/> </directory>
</lsyncd>

Launch lsyncd in debug for testing

We're ready to give it a go, may as well run it in debug for fun
and to learn how lsyncd does what it does:

lsyncd --conf /etc/lsyncd.conf.xml --debug

Watch for errors, if none are found, continue.

Add files and watch them sync

Now we just need to copy some files into this directory on the
source box:

/var/www/sync_test

And again, watch for any errors on the screen, if these come
back as a failed connection it'll be an SSH/key issue; common, and
not too difficult to solve. From here add some directories and
watch how they're queued up, and then take a look at them on the
remote box: from this point out it "just works." Now give it more
to do by adding files and directories, and then the logging for
errors while they sync. As it stands the system uses the source
system as the preferred environment, so any files that change, or
are added or removed, will be processed on the remote system. This
is analogous to how Dropbox works, you can use multiple sources
(your laptop, your desktop, etc) and their server serves as the
remote system, keeping all the clients in line.

Conclusion

You should now have a basic, working Dropbox style setup for
your own personal use. I had this running and used it to sync my
netbook back to my home server, and then have my work desktop sync
to my home server, so both the netbook and the desktop would stay
in sync without me doing anything besides putting files in the
specified folder. For my week long test I ran a directory alongside
my Dropbox directory just to see how they both acted, and I didn't
have any failures along the way.

Epilogue

This article is an updated version of one that originally
appeared on http://fak3r.com/ in
September 2009 under the title "HOWTO build your own Dropbox
clone." In the year since it's publication I've received a great
deal of interest in my idea, and have continuously thought of ways
to improve upon it. In the configuration file for lsyncd it has a
line that reads, "Specify the rsync (or other) binary to call," and
this is the kind of flexibility I needed. Today I'm utilizing
Unison to handle the syncing for the project, and besides having
many attractive features, it's the right solution to do true
two-way syncing. This fits the one-to-many Dropbox model better
than rsync does. The project has now been released as open source
under the name lipsync, and is available here: https://github.com/philcryer/lipsync
Take it, try it out and improve upon it. If you have troubles ping
me on my blog, contact me via GitHub or email; I'm happy to help.
Thanks. §

Phil Cryer is a husband, father, artist, music lover,
hacker, open source technologist and civil liberties activist. He
currently works as a senior systems engineer currently building a
global, distributed, storage network. He hold a bachelor's degree
in fine arts, and believes that imagination is more important than
knowledge. He can be reached at http://philcryer.com.

[image: Advertisement:]

Java Trap, 2010 Edition

By PAUL QUERNA

As a member of the Apache Software Foundation, my views on open
source tend to gravitate towards more liberal licenses, like the
Apache License (v2.0), BSD, or MIT licenses. I strongly believe in
enabling companies to take open source software and do whatever
they wish to do with it, placing as little restrictions as feasible
under current laws. I believe that better communities for software
development are enabled by these liberal licensing situations.
Rather than creating a single power with significantly more rights,
as seen in the "open core" movement, liberal open source
development encourages real, dedicated and sustainable
contributions, made by companies with business models other than
selling support and 'enterprise features'.

I have to be honest - I am not a huge fan of Java the language -
I would rather write code in Python, Javascript, C, C++, or heck
maybe even PHP, but I find myself surrounded by Java everywhere.
Java and the JVM today are core to many components we are using to
build Cloudkick, and there are no viable alternatives.

Today IBM announced they are shifting their focus, and will be
developing on top of the OpenJDK. This comes in addition to the
Oracle lawsuit against Google over Android. Oracle is good at big
company politics, and at extracting value - I'm sure they will
extract every penny out of Sun's husk.

While Sun, now Oracle, has licensed the OpenJDK itself under the
GPL, the licensing of the TCK has been a problem for more than 5
years. Other blog posts go into far more detail about this
[1]
[2]
[3],
and I encourage you to understand all the details about the story
of the TCK, Apache, and Sun - but it isn't what I want to focus
on.

I consider myself an open source advocate, though in a far
different manner than someone like Richard Stallman, creator of the
GNU Project. Richard's views and my own don't often align around
many topics, but the increasing turmoil in the Java world has
changed some beliefs I have about software platforms and
licensing.

More than 6 years ago, "Free but Shackled - The Java Trap" was
published by Richard. While I don't agree with the moral arguments
about the freedom of software, I now believe that the Java platform
is a trap.

Richard speaks about the Free World, and many other GNU
priorities in this excerpt, but I believe the core point is the
most important. If your code depends on a platform, you are at the
mercy of that platforms licensing and development:

This problem can occur in any kind of software, in
any language. For instance, a free program that only runs on
Microsoft Windows is clearly useless in the Free World. But
software that runs on GNU/Linux can also be useless if it depends
on other nonfree software. In the past, Motif (before we had
LessTif) and Qt (before its developers made it free software) were
major causes of this problem. Most 3D video cards work fully only
with nonfree drivers, which also cause this problem. But the major
source of this problem today is Java, because people who write free
software often feel Java is sexy. Blinded by their attraction to
the language, they overlook the issue of dependencies and fall into
the Java Trap.

When you build software in Java and the JVM, you are being
locked into only running it on a platform controlled by a single
company - Oracle. Oracle is working to maintain this platform
control by refusing to remove the field of use clauses in the TCK,
effectively preventing Apache Harmony from ever being able to ship
a real release. The lawsuit against Google also confirms the fear
of Oracle using their control of the platform aggressively.

The problem is not so much about Oracle controlling their code.
As I said above, I believe in the rights of a company to do as
these choose - but at the same time, if they choose to be bad
stewards of this, I will choose not to use their platform. Most
importantly in the Java world, is that stranglehold being placed
upon 3rd party implementations. Oracle could close source the
OpenJDK for all I care, but what offends me most is their desire to
squash alternatives implementations.

Consider some alternatives to Java, which all have multiple
implementations now:

	Python: CPython, but also has PyPy, IronPython, and
Jython.

	Ruby: MRI, but also JRuby, MacRuby,

	Javascript: v8 (node.js), Spidermonkey,
whatever-safari-is-calling-their-JS-engine-now.

	C/C++: Clang and GCC

	C#: CLI and Mono

These multiple implementations of the languages are creating
innovation on their respective platforms. They are all for the most
part driven by diverse communities, mostly under liberal licenses.
Communities built around common goals and beliefs, rather than
arcane licensing policies trying to protect a company's mobile
market. In Java you will only be given one choice, the choice that
Larry and Oracle give you. Any attempts to build an alternative
implementation will be made exceedingly difficult.

When I am picking a platform to build upon, I want to know it
will be around regardless of the whims of a single company. I want
to know there is a diverse community behind it. I want people to be
experimenting with new ways to build a VM to make the platform even
better.

This is why I must ask, how can anyone pick Java and the JVM on
which to build their company's future? I know Oracle and IBM - they
will pump millions into the continued development of the platform,
but it's not a platform I want to be using. Big companies throwing
around development like this don't create the values I find
essential in picking a platform. Oracle is going to control the
future of Java. I don't know what will happen to the Java Community
Process, but I lack any faith in it continuing.

Take a hard look at your development, why are you using Java?
Are you building upon a platform where open experimentation is
encouraged, and not feared? It is impossible for a business to
pivot and abandon Java in a day, but after the events of the last
few months, I will seek to use alternatives wherever possible.

Is your platform free, or is it a trap? §

Paul Querna is the Chief Architect at Cloudkick, a
Y-Combinator funded start-up. Cloudkick specializes in portability
and openness between cloud providers. 1,000s of companies use
Cloudkick to manage their infrastructure on Amazon EC2, Rackspace
Cloud, GoGrid, etc. Paul has participated in many open source
projects and is a committer to the Apache HTTP Server and Apache
Libcloud, the open source library for developers to build portable
cloud applications. Paul also previously served as VP of
Infrastructure for the Apache Software Foundation.

IDEWTF

By LUKE PALMER

Photoshop, Premiere, Maya, AutoCAD, ProTools, Finale, Reason,
InDesign. These are the state-of-the art tools for creators. They
are all rich, powerful, versatile programs that strive to work at
the artist's level of thought.

And the people who write this amazing software get to use...
Visual Studio? Eclipse? Emacs? At least I've heard IntelliJ IDEA is
great, I've never used it. But when contrasting these to the tools
above something seems missing. Like a library full of features that
bring programs to the coder's level of abstraction. Languages are
attempting this now, but languages are written in text and IDEs are
basically text editors with a few extra features. Photographers
have clone (a tool that lets them erase sections of images
replacing it with something that looks convincingly the background
in that area), we have refactor-rename that doesn't even respect
alpha conversion (avoiding name conflicts with your new name).

Why do we even have to worry about alpha conversion? That's like
a composer worrying about MIDI patch numbers! We still denote
identity with a string? Premiere wouldn't have that - it would link
directly to the clip in question. Who cares if you have named
something else the same thing? My friends have no trouble
distinguishing me from another Luke who walked in the room.

And files? We have libraries, namespaces, modules, classes, and
functions to organize our code. Files are almost entirely
orthogonal and not-almost entirely meaningless. Kudos to
CodeBubbles for noticing and removing that tumor. But, that's just
a guy at a university, so naturally we won't get to use that for
real for quite some time.

What's up with import statements? That's just some junk that
comes with representing programs as text. Eclipse has surpassed
those... sort of... but we're not all Java programmers. Why can't I
just type the class name and then pick the one I want from a
list?

All the state-of-the-art creative programs have multiple views:
more than one way to see your creation to get a better handle on
it. Maya has isometric, wireframe, flat-shaded, full light... We
have the class hierarchy view. Oh boy. Why can't I look at

while (!queue.empty()) {
 Production p = queue.pop();
 predict(p);
 if (p.star.is_terminal) { scan(p); }
 complete(p);
}

click a little [+] next to predict(p) and see it right there
inline, with its argument replaced by p? Oh, that's how that works,
cool, [-]. Instead we go to its definition, where we see it next to
the functions we happened to define near it, about which we care
nothing. Then we substitute the arguments in our heads, fathom loop
invariants and fail to see how they are violated, and spend the
next 5 minutes wondering if p is mutated in this call chain.

How come I can still have syntax errors? How come it is ever
possible to have a syntax error in a program? Shouldn't the IDE at
least be helping me to have a valid program all the time? Finale
doesn't let you write a measure with the wrong number of beats and
then complain when you push play. It just fixes it for you - "oh
look, you need a rest there."

"My indentation's wrong. Oops, rename missed that one. Oh right,
need to import Data.List. Ugh, namespace pollution. Fine, looks
like I need to copy and paste again because abstracting will be a
pain. I hate how you can only have one class per file and how it
discourages small classes. Shit, that mFoo/foo accessor pattern
again... weren't get/set supposed to do away with the need for
accessors? Fuck, looks like this virtual method needs another
parameter - give me fifteen minutes."

Do we not hear ourselves?! Software developers, the masters that
create the masters' tools, are touching up Avatar with MS Paint.
Shouldn't we be sculpting effortlessly a masterpiece with a
beautiful dynamic interface while robots bring us platters of
Mountain Dew? We're wasting our time with spelling errors while the
3D artist in the back is putting finishing touches on his city.

W. T. F. §

Luke Palmer is an indie game developer for Hubris
Arts by day, a Haskell fanatic by night. He is best known for his
research in functional reactive programming - a way to write games
and other interactive applications in purely functional style. He
is currently researching ways to automatically extract safely
reusable code, in order to build a search engine for code
snippets.

The Duct Tape Architect

By FREDRIK JOHANSSON

I have been doing software architectural work for a long time
now, and as it turns out, the 'right way' of solving things may not
always be the best way. Below are two anecdotes from life in the
trenches.

The Case of the Database Bottleneck

I was visiting a company where we discussed their current system
design and what problems they were experiencing. Their system had a
respectful peak of 7,000 concurrent users and it turns out that at
those peak times they started to hit the limit of their database
which was running as a single entity.

We discussed the regular slew of database scaling solutions such
as sharding, dedicated reader nodes etc. and some pros and cons
with each solution.

As it turned out however, they solved it in their own way.
"Yeah, we solved it, " they came back to me when I asked them about
it. "We bought an SSD drive which replaced the old hard-drive. It
is much faster now." they said matter-of-factly.

Naturally I scoffed at this and thought for myself that they
have only bought themselves a little bit of time and, in at best,
they could grow by 50-100% but then it would be the same issues all
over! Rookies! Surely they did not understand the beauty of
unlimited, linear scaling with sharding?

Within less than a year, they had grown about 20% and was then
bought up by a bigger player in the industry. As is custom, their
system was erased from the face of the earth in favor of the larger
one. They never hit the limit of the SSD.

Later on I also did some calculations, if they had grown by
100%, they would have become one of the top5 actors in the market
and their profits would have been through the roof. Their
development budget would have been completely different by
then.

So when looking back, in this case, it actually seems like the
SSD solution was the right thing to do. They only needed to buy
some more time for the deal to come through.

The Case of the Missing Scheduler

Another case occurred when I was reviewing a large gaming
network that was running cash games as well as tournaments. There
where many tournaments running on a daily basis and most of them
were re-occurring events, such as The Daily Lunch Tournament etc.
Almost every gaming network I know has a scheduling option for
tournaments. An administrator would enter a tournament template and
then say something like 'run every day at 12 AM' for instance. You
would also be able to create a future tournament and say 'start
this tournament on October 10 at 18 AM'. Then the system would then
create and start the tournament as specified.

This network did not have that.

Instead, they had about 10 employees in Indonesia who would work
in shift and manually create each tournament and then manually
click 'start' to start them. Nuts! This must surely be fixed!

So we started a discussion and I don't remember my exact word,
but they were something like: "This is insane! Surely we should be
able to implement a simple scheduler in the system?"

To which they replied something like: "Sure. But we have made an
estimate on the time it would take us, and the cost of the
developers on US salaries to implement this corresponds to about 7
years of the Indonesian guys doing this manually."

Yikes.

"Besides, do you want to be the guy who calls them up and tell
them and their families that they are losing their jobs? And for
what? Saving a buck after 7 years? We have a choke-full backlog to
work on anyway."

Hmmm. Maybe it would not be worth cutting other features out in
order to prioritize a feature that would cause 10 people their jobs
and not save any money for a long time. Could this be? What kind of
socialist development company was this?

As you might have guessed by now, by being able to dedicate
their developers to other things rather than make the Indonesians
redundant they were able to dish out new feature that actually
attracted new players. Which turned out to be very successful for
the owners in the end.

Summary

Am I advocating that you shouldn't care about scalability (just
buy SSD's!) or never automate tasks because there are cheap labour
to be found? Am I advocating quick hacks and avoiding solid
engineering principles? Of course not.

But sometimes it is good to try and raise the view a bit and try
to see what actually needs to be solved. As engineers we do
sometimes get stuck on implementing the 'right thing' and lose
sight of reality as it comes. I know I do. §

Fredrik Johansson is the founder and CEO of Cubeia
Ltd, a premium software provider providing scalable and robust
solutions for the online gaming industry. Fredrik has experience
from working with architectural challenges on multiple high volume
multiplayer installations. Additional information about Fredrik and
Cubeia can be found at www.cubeia.com.

Commentary

By juan pablo (jpablo)

I would choose the SSD every time over a method that requires
doing a lot of consulting and engineering of the current system
like Sharding.

Why spend a lot of time and work when a simple hardware upgrade
will work ?

And you are deluding yourself if you think that the sharding
model you are going to implement is not "only buying you time" and
you will have to do additional engineering over time if you keep
growing.

HACKER JOBS

Backend DB Hacker

Stealth Company

San Diego

Need a backend db rockstar who knows about affiliate programs and
loves capturing a ton of data/emails. This is for an amazing
company founded by an ex-Googler and which the idea was crafted by
Mark Zuckerberg.

To Apply: Email jason@tinycomb.com.

Senior Developer

youDevise, Ltd. https://dev.youdevise.com

London, England

60-person agile financial software company in London committed to
learning and quality (dojos, TDD, continuous integration,
exploratory testing). Under 10 revenue-affecting production bugs
last year. Release every 2 weeks. Mainly Java, also Groovy, Scala;
no prior knowledge of any language needed.

To Apply: Send CV to jobs@youdevise.com.

Front-end and Back-end Engineers

Meetup http://www.meetup.com

New York

Meetup thinks the world is a better place when groups of people
meetup locally, in person, around a common interest. We're
reinventing how this is done, but we can't do it alone! We value
iterating/launching quickly, pragmatism, and long walks on the
beach.

To Apply: http://meetup.com/jobs

Staff Writer

Android Police http://www.androidpolice.com

Your Home

AndroidPolice.com, a popular Android blog, is looking for quality
contributors and regular staff writers. If you are passionate about
all things Android, and your passion is matched by your writing and
creative skills, we encourage you to apply. Joining the team will
give you access to blogging tools, millions of readers and per-post
compensation.

To Apply: Send your application to jobs@androidpolice.com.

Advertisement

Dream. Design. Print.

MagCloud, the revolutionary new self-publishing web service by
HP, is changing the way ideas, stories, and images find their way
into peoples' hands in a printed magazine format.

HP MagCloud capitalizes on the digital revolution, creating a
web-based marketplace where traditional media companies, upstart
magazine publishers, students, photographers, design- ers, and
businesses can affordably turn their targeted content into print
and digital magazine formats.

Simply upload a PDF of your content, set your selling price, and
HP MagCloud takes care of the rest--processing payments, printing
magazines on demand, and shipping orders to loca- tions around the
world. All magazine formatted publications are printed to order
using HP Indigo technology, so they not only look fantastic but
there's no waste or overruns, reducing the impact on the
environment.

Become part of the future of magazine publishing today at
www.magcloud.com.

25% Off the First Issue You Publish Enter promo code HACKER when
you set your magazine price during the publishing process.

Coupon code valid through February 28, 2011. Please contact
promo@magcloud.com with any
questions.

 OEBPS/images/img0007c40354d2157d80d385f919c830c9723781c862856be4a3b8d5ae23919388.jpeg
Troun fvard |

e

eV 007

B
plcsirs
12 il st s
hou

~Dovstas win
Tuoralbon

p——

OEBPS/images/img7fcf865ba9a097e81839f252db19fe4cb10136aca3a9aab161a3724cf31fe921.png

OEBPS/images/imgfd892344ed7f2f22d546b470c7db8823709c7301f13d7398e00bbac1e1feec30.png
o < 1
cat

Scalable PHP Hosting, made easy
with the CatN Platform.

Instantly deploy your apps on our super cluster.
No code changes necessary. SSH Access, Cron
jobs, Git & SVN support all s standard.

from £5 per month

OEBPS/images/img638e89206b2928c8c427913640b213a24f568ad36b802c8924b2aa5fa8e531e2.png
These are your servers

These are your servers on Cloudkick

Any questions?

cloudkick.com
415.779.5425

susportfor 8 clouts + dedicated harduare

cloudkite

the best way to manage the cloud

OEBPS/images/img0ea3a8434520fea81582db59464fe20025759cbf6aeedec52764d1c924842df8.png
Google tracks you. We don't.

OEBPS/images/cover.png

OEBPS/images/imgf1f1ce491b1bec0e86d177effb2d85e78f62bd10f3b9382b5f911156fb0ae8cd.png
notifo®

Mobile Notifications for Everything

Impossibly quick push notifications

for your web app, service or weekend project.

Cheaper than SMS. Painless integration. No mobile app coding!

Check out our APl and start building today!
https://apinotifo.com

