
Issue 8 January 2011

2

Cover Photo: Marcus Beard [mbphotography.net]

Curator
Lim Cheng Soon

Proofreaders
Lane Rapp
Jordan Greenaway
Millie Patel
D’vorah Elias

Printer
MagCloud

Contributors
ARTICLES
Tony Gebely
Brian Shul
Sahil Lavingia
Jason Cohen
Adrian Tan
J. Kenji Lopez-Alt
Derek Sivers
Hoyt Koepke
Thomas Roth
Gabriel Weinberg
Ben Strong
Greg Grothaus

COMMENTARIES
Jason Fried
Danilo Campos
Patrick McKenzie
Sushaantu
Michael F Booth
SDr
Tom Hughes-Croucher
Jon Pincus
Kliment Yanev

HACKER MONTHLY is the print magazine version of Hacker
News — news.ycombinator.com, a social news website wildly popu-
lar among programmers and startup founders. The submission
guidelines state that content can be “anything that gratifies one’s
intellectual curiosity.” Every month, we select from the top voted
articles on Hacker News and print them in magazine format. For
more, visit hackermonthly.com.

Advertising
ads@hackermonthly.com

Contact
contact@hackermonthly.com

Published by
Netizens Media
46, Taylor Road,
11600 Penang,
Malaysia.

http://mbbphotography.net
http://fifobooks.com
http://news.ycombinator.com
http://hackermonthly.com
mailto:ads@hackermonthly.com
mailto:contact@hackermonthly.com

 3

Contents

STARTUP

10 Faking It
By SAHIL LAVINGIA

11 Why I Feel Like a Fraud
By JASON COHEN

SPECIAL

14 Life and How to Survive It
By ADRIAN TAN

18 The Myth of the Immortal Hamburger
By J. KENJI LOPEZ-ALT

22 Obvious to You. Amazing to Others.
By DEREK SIVERS

PROGRAMMING

24 Why Python Rocks for Research
By HOYT KOEPKE

30 Cracking Password in the Cloud
By THOMAS ROTH

32 Code Iceberg
By GABRIEL WEINBERG

34 Google and Microsoft Cheat on Slow-Start.
Should You?
By BEN STRONG

37 Why You Should Know Just a Little AWK
By GREG GROTHAUS

FEATURES

04 Hacker’s Guide to Tea
By TONY GEBELY

07 SR-71 Blackbird Communication to Tower
By BRIAN SHUL

09 Sled Driver Giveaway Challenge

For links to the posts on Hacker News, visit hackermonthly.com/issue-8. All articles and comments are reprinted with permission of their original author.
Hacker Monthly is published by Netizens Media and not affiliated with Y Combinator in any way.

http://hackermonthly.com/issue-8

4 FEATURES

FEATURES

Hacker’s Guide to Tea
By TONY GEBELY

IN ADDITION TO caffeine, tea contains an amino
acid called L-theanine. “Several studies from
Japan and the UK have shown that consump-
tion of 50mg of L-theanine increases alpha

wave activity in the brain, with the maximum effect
occurring about 80 minutes after consumption. This
amount is equivalent to approximately three cups of tea.
Alpha waves correspond to a relaxed-but-alert mental
state, and are believed to be an important part of selec-
tive attention (the ability to choose to pay attention
to something and avoid distraction by other stimuli)”

[source: teageek.net]. L-theanine in tea produces a
type of “mindful awareness” not evident in coffee. This
is what prevents the 3pm “coffee crash.”

This makes tea an important tool for maintaining
mental perspicacity for hours of coding, late night
performance, or for getting through those bleak morn-
ing hours.

Let’s get this out of the way – tea bags suck. Actu-
ally, most mainstream tea sucks. Mainstream tea is
low quality, blended, and sometimes contains cheap
flavorings. There are countless tea shops out there that
buy directly from small farmers that produce small
crops each season and likely process the tea by hand.

http://www.teageek.net

 5

What You Need to Know
All true tea comes from the camellia sinensis plant (photo above).
White, Green, Oolong, Yellow, Black, and Pu-erh teas all come
from this plant.

Loose tea can be steeped multiple times. Some teas can be
re-steeped 20 or more times. The flavor is gradually extracted
from the leaves with each subsequent steep.

When shopping for tea, look for companies that offer informa-
tion about where the tea is from, how it was processed, who grew
it, and most importantly—when the tea was harvested.

Steep it
When steeping the tea, be sure the tea can flow
freely through the water, this rules out tea bags,
tiny tea infusion baskets, tea balls, etc. Ideally, pour
water directly over the tea leaves and then strain
before drinking. If you must use an infuser, a large
finum strainer works nicely and still allows for proper
water flow.

Depending on the type of tea you are steeping
there are two important variables you must pay
attention to: water temperature, and steeping time.
I’m assuming you are using good water, as tea is 98%

water – using a strong chlorinated water would be a bad idea.
In general, hotter water must be used for highly oxidized teas.
Remember, you are preparing a drink that you should enjoy, so
always take tea instructions with a grain of salt. Experiment often
to discover the “sweet spot” with your teas and remember—a
good tea is a forgiving tea. If your tea is bitter, reduce the steeping
temperature. If your tea is too weak, increase the amount of tea
leaves used or increase the steeping time. Here are some guidelines
I send out with orders for Chicago Tea Garden:

Tea Water
Temperature

1st Steep 2nd Steep 3rd Steep 4th Steep

White 150-160ºF 1 min 1 min 1.5 min 1.75 min

Green 170-180ºF 1 min 1 min 1.5 min 1.75 min

Oolong 190-195ºF 30 sec 30 sec 45 sec 45 sec

Black 212ºF 1 min 1 min 1.5 min 1.5 min

Pu-erh 212ºF 30 sec 30 sec 45 sec 1 min

JS Engineer
GazeHawk (www.gazehawk.com)

Mountain View, CA
We’re a well-funded YCombinator startup making
eye tracking affordable and commonplace. We
have a patent-pending technology that lets you run
eye tracking studies without custom hardware or
software. Now we’re looking to augment our team
of 3 with another web developer. Read more at
www.gazehawk.com/jobs/.
To Apply: Email jobs@gazehawk.com.

Senior Developer
youDevise, Ltd. (https://dev.youdevise.com)

London, England
60-person agile financial software company in
London committed to learning and quality (dojos,
TDD, continuous integration, exploratory test-
ing). Under 10 revenue-affecting production bugs
last year. Release every 2 weeks. Mainly Java, also
Groovy, Scala; no prior knowledge of any language
needed.
To Apply: Send CV to jobs@youdevise.com.

Front-end and Back-end Engineers
Meetup (www.meetup.com)

New York
Meetup thinks the world is a better place when
groups of people meetup locally, in person, around
a common interest. We’re reinventing how this is
done, but we can’t do it alone! We value iterating/
launching quickly, pragmatism, and long walks on
the beach.
To Apply: meetup.com/jobs.

HACKER JOBS

6 FEATURES

It is not necessary to get real serious about the steeping tem-
peratures, for 195, boil water, take it off the stove, and wait about
a minute. For 170, wait longer. Remember, experiment often.

If you want to get serious about steeping your tea, use a yixing
pot, or a gaiwan. If you need energy, consider drinking matcha
— a suspension of powdered tea. You are actually consuming the
leaf so the health benefits and energy received from matcha are
greater than from other teas. If you need peace, study the gongfu
tea ceremony – it is a great way to relax so you can enjoy and
appreciate the tea.

A fresh tea should have a shelf life of approximately two years,
a lightly oxidized tea might become stale quicker. Store your tea
away from light, heat air, and any strong scents.

Read
There is a lot of good tea information out there. I highly recom-
mend James Norwood Pratt’s New Tea Lover’s Treasury and Heiss’
Story of Tea. If you prefer an online resource, Michael J Coffey has
a valuable wiki of his research here [teageek.net/wiki/] and I’ve
assembled a Google Reader bundle of tea blogs [hn.my/teasite].

Tony Gebely is a Chicagoan who has traveled to many tea producing
regions and has been studying tea and tea culture for several years. Tony
teaches tea courses in Chicago and co-owns Chicago Tea Garden. He also
runs World of Tea. If you have any tea related questions he can be found
on twitter @WorldofTea.

Commentary
By JASON FRIED (jasonfried)

A WONDERFUL PLACE TO get high quality greens:
 www.hibiki-an.com.

The best hot water kettle with temperature control I’ve
found is: hn.my/kettle.

I’ve tried every kettle and this one is the best. It’s all stainless
inside too - water never touches plastic.

Reprinted with permission of the original author. First appeared in hn.my/tea.
Photographs by Tony Gebely.

http://www.gazehawk.com
http://www.gazehawk.com/jobs/
mailto:jobs@gazehawk.com
http://www.meetup.com
http://meetup.com/jobs
http://www.teageek.net/wiki
http://twitter.com/WorldofTea
http://www.hibiki-an.com
http://hn.my/kettle
http://hn.my/tea

 7

SR-71 Blackbird
Communication to Tower

By BRIAN SHUL

THERE WERE A lot of things we
couldn’t do in an SR-71, but
we were the fastest guys on

the block and loved reminding our fellow
aviators of this fact. People often asked
us if, because of this fact, it was fun to fly
the jet. Fun would not be the first word I
would use to describe flying this plane—
intense, maybe, even cerebral. But there
was one day in our Sled experience when
we would have to say that it was pure
fun to be the fastest guys out there, at
least for a moment.

It occurred when Walt and I were
flying our final training sortie. We needed
100 hours in the jet to complete our
training and attain Mission Ready status.
Somewhere over Colorado we had
passed the century mark. We had made
the turn in Arizona and the jet was per-
forming flawlessly. My gauges were wired
in the front seat and we were starting
to feel pretty good about ourselves, not
only because we would soon be flying

real missions but because we had gained
a great deal of confidence in the plane in
the past ten months. Ripping across the
barren deserts 80,000 feet below us, I
could already see the coast of California
from the Arizona border. I was, finally,
after many humbling months of simula-
tors and study, ahead of the jet.

I was beginning to feel a bit sorry
for Walter in the back seat. There he
was, with no really good view of the
incredible sights before us, tasked with
monitoring four different radios. This
was good practice for him for when
we began flying real missions, when a
priority transmission from headquarters
could be vital. It had been difficult, too,
for me to relinquish control of the radios,
as during my entire flying career I had
controlled my own transmissions. But
it was part of the division of duties in
this plane and I had adjusted to it. I still
insisted on talking on the radio while we
were on the ground, however. Walt was

so good at many things, but he couldn’t
match my expertise at sounding smooth
on the radios, a skill that had been honed
sharply with years in fighter squadrons
where the slightest radio miscue was
grounds for beheading. He understood
that and allowed me that luxury. Just to
get a sense of what Walt had to contend
with, I pulled the radio toggle switches
and monitored the frequencies along
with him. The predominant radio chatter
was from Los Angeles Center, far below
us, controlling daily traffic in their sector.
While they had us on their scope (albeit
briefly), we were in uncontrolled airspace
and normally would not talk to them
unless we needed to descend into their
airspace.

We listened as the shaky voice of a
lone Cessna pilot asked Center for a
read-out of his ground speed. Center
replied: “November Charlie 175, I’m
showing you at ninety knots on the
ground.” Now the thing to understand

Photographs by Marcus Beard [mbphotography.net]

http://mbbphotography.net

8 FEATURES

about Center controllers, was that
whether they were talking to a rookie
pilot in a Cessna, or to Air Force One,
they always spoke in the exact same,
calm, deep, professional tone that made
one feel important. I referred to it as the
“Houston Center voice.” I have always
felt that after years of seeing documenta-
ries on this country’s space program and
listening to the calm and distinct voice
of the Houston controllers, that all other
controllers since then wanted to sound
like that and that they basically did.
And it didn’t matter what sector of the
country we would be flying in, it always
seemed like the same guy was talking.
Over the years that tone of voice had
become somewhat of a comforting sound
to pilots everywhere. Conversely, over
the years, pilots always wanted to ensure
that, when transmitting, they sounded
like Chuck Yeager, or at least like John
Wayne. Better to die than sound bad on
the radios.

Just moments after the Cessna’s
inquiry, a Twin Beech piped up on
frequency, in a rather superior tone,
asking for his ground speed in Beech. “I
have you at one hundred and twenty-five
knots of ground speed.” Boy, I thought,
the Beechcraft really must think he is
dazzling his Cessna brethren.

Then out of the blue, a navy F-18
pilot out of NAS Lemoore came up on
frequency. You knew right away it was a
Navy jock because he sounded very cool
on the radios. “Center, Dusty 52 ground
speed check.” Before Center could reply,
I was thinking to myself, hey, Dusty 52
has a ground speed indicator in that
million-dollar cockpit, so why wass he

asking Center for a read-out? Then I
got it, ol’ Dusty there was making sure
that every bug smasher from Mount
Whitney to the Mojave knows what true
speed is. He’s the fastest dude in the
valley today, and he just wants everyone
to know how much fun he is having in
his new Hornet. And the reply, always
with that same, calm, voice, with more
distinct alliteration than emotion: “Dusty
52, Center, we have you at 620 on the
ground.” And I thought to myself, is this
a ripe situation, or what? As my hand
instinctively reached for the mic button,
I had to remind myself that Walt was in
control of the radios. Still, I thought, it
must be done—in mere seconds we’ll
be out of the sector and the opportunity
will be lost. That Hornet must die, and
die now. I thought about all of our Sim
training and how important it was that
we developed well as a crew and knew
that to jump in on the radios now would
destroy the integrity of all that we had
worked toward becoming. I was torn.

Somewhere, 13 miles above Arizona,
there was a pilot screaming inside his
space helmet. Then, I heard it—the
click of the mic button from the back
seat. That was the very moment that I
knew Walter and I had become a crew.
Very professionally, and with no emo-
tion, Walter spoke: “Los Angeles Center,
Aspen 20, can you give us a ground
speed check?” There was no hesitation,
and the replay came as if was an every-
day request.

“Aspen 20, I show you at one thousand
eight hundred and forty-two knots,
across the ground.” I think it was the
forty-two knots that I liked the best, so

accurate and proud was Center to deliver
that information without hesitation, and
you just knew he was smiling. But the
precise point at which I knew that Walt
and I were going to be really good friends
for a long time was when he keyed the
mic once again to say, in his most fighter-
pilot-like voice: “Ah, Center, much
thanks, we’re showing closer to nineteen
hundred on the money.”

For a moment Walter was a god. And
we finally heard a little crack in the armor
of the Houston Center voice, when L.A.
came back with, “Roger that Aspen. Your
equipment is probably more accurate
than ours. You boys have a good one.” It
all had lasted for just moments, but in
that short, memorable sprint across the
southwest, the Navy had been flamed, all
mortal airplanes on freq were forced to
bow before the King of Speed, and more
importantly, Walter and I had crossed the
threshold of being a crew. A fine day’s
work. We never heard another transmis-
sion on that frequency all the way to the
coast. For just one day, it truly was fun
being the fastest guys out there.

Brian Shul was an Air Force fighter pilot for 20
years. Shot down in Viet Nam, he spent one year
in hospital and was told he’d never fly again. He
flew for another 15 years, including the world’s
fastest jet, the SR-71. As an avid photographer
Brian accumulated the world’s rarest collection
of SR-71 photographs and used them to create
the two most popular books on that aircraft, Sled
Driver and The Untouchables. Brian today is an
avid nature photographer and in high-demand
nationwide as a motivational speaker.

Reprinted with permission of the original author.
First appeared in the book “Sled Driver”.

Photo: SR-71 Take Off Beale AFB 1985, http://www.flickr.com/photos/stuseeger/3358525219/.

http://www.flickr.com/photos/stuseeger/3358525219/

IN 2003, TO commemorate the Centenary
of the Wright Brothers’ first flight, the

Limited Edition Sled Driver book was
launched. A true collector’s item, this lavish
remake of the original Sled Driver took the
aviation community by storm. Even with
the $427 price tag, this one-of-a-kind book
has sold steadily for the past seven years
and is now on the brink of extinction with
just 42 books left.

Recognized worldwide now as the defini-
tive photo essay on the SR-71 Blackbird,
this treasured edition has been sent to 39
different countries. It was a huge gamble on
our part to print 3800 of these expensive
books and they filled our warehouse to
overflowing in 2004. While we are thrilled
the book has sold so well, it saddens us to
now see only a few boxes of this coveted
classic in a corner of my office. Few large
format aviation books even come close to
the longevity of Sled Driver, a book that
first appeared on the scene in 1991. I am
most proud of the fact that Smithsonian
Magazine mentioned that its “Aviation Book
of the Year” title was more for the writing,
than the prized pictures. The book has now
reached cult classic status and is the most
quoted book on the Blackbird ever, thanks
to the Internet. We added $100 to the price
to slow their exodus, but it has done little
to discourage those true Blackbird fans out
there. We have had the pleasure of meeting
so many Sled Heads out there at the various
air shows we attended with the book in the
past 7 years and have answered countless
emails and phone calls weekly. It has been
quite a ride.

Sometime in 2011, the final Limited
Edition Sled Driver book will depart home-
base, and like the plane itself, will be gone
forever as an operational entity. There will
never be another one quite like it.

Brian Shul
Gallery One
15 Dec 2010

Sled Driver Giveaway Challenge

WE ARE GIVING away a copy of the Limited Edition Sled Driver
to one lucky hacker this month. The Limited Edition (picture

above) includes Centennial Patch, numbered certificate, presentation book
box, and signatures of four prominent Blackbird crew members.

The Challenge
Write a program to show the numerical relationship between “1903”,
“2003” and “Centennial of Flight”.

More Details (and hints!)
1. Submit your code (along with your details) at hn.my/sled before 20th

January 2011.
2. We will accept your answer in any programming language.
3. Winner will be announced on the next issue (Hacker Monthly #9,

February 2011).
4. If there is more than one entry with the correct answer, the winner will

be chosen randomly (using Random.org’s List Randomizer).
5. Open to all paid subscribers and readers who have purchased a print/

digital copy of issue #8.
6. Hint: the answer has nothing to do with 100.
7. No clue yet? Extra hint is hiding somewhere in this issue.
8. Both the latest update and Q&A are available at hn.my/sled.

Reprinted with permission of the original author.
First appeared in the book “Sled Driver”.

Dear Hacker Monthly Readers,

http://hn.my/sled
http://hn.my/sled

10 STARTUP

Faking It

I THINK THAT THE three big areas most
start-ups (I use this word loosely) fit
into are:

Providing a product, like 37signals.
Creating a community, like Pinterest.
Building a useful platform, like Twilio.

Of course, most successful start-ups
end up with many hands in the bucket,
but these identify the three main areas
pretty well.

The secondary problem that all three
encounter, right after building something
useful, is generating some sort of scale.
The chicken-and-egg situation is a central
topic of many, many talks (it certainly
was at Start-up School) and for good
reason: almost everyone has to deal with
it to some extent.

Most of these talks deal with solving
the problem. Airbnb says, “Create the
supply before you create the demand”,
and Groupon/Facebook tackled the
problem by targeting a certain location
and growing. However, I think that the
most effective problem is…faking it!

Fake it!
Of course, this doesn’t mean to put up
false testimonials (“Great app; use daily!”
– Barack Obama), create fake real-time
activity (extremely easy to spot) or fake
your numbers (though I know plenty of
start-ups that do, and it works).

Rather, you can engineer your appear-
ance to give off a sense of size. There are
plenty of ways of doing this; here are a
few I’ve heard of from famous start-ups.

Quora’s staff started off answering as
many questions as they could. This
helped create a site that had activity
on it, which encouraged other users to
participate. Suddenly, they didn’t have
to spend hours answering questions
themselves.
Whenever Reddit’s admin personnel
posted submissions, it would randomly
generate a submitter’s name. This is
similar to what Quora did, but slightly
more cunning.
[REDACTED] takes their real-time
user numbers and multiplies them
by a randomly generated number.
Whereas before, it would say “6 users
online,” it would say “68 users online.”
They don’t fake any activity, but just
that extra magnitude of users gener-
ates a large amount of actual user
activity. Soon, they won’t have to do
that, as their real user activity will gen-
erate enough momentum by itself.
Several communities, including Pinter-
est (one I feel especially fond of), just
need activity to succeed. It’s tough
to generate meaningful activity to a
point of scale with a small number
of employees. To solve this problem,
they start as an invite-only community.
Because they’re invite-only, they have
the time to generate useful content
and gain really passionate users
(when users get invited in when mere
mortals aren’t, they’re more likely to
participate, empirically). Then, once
you reach a point you’re happy with,
you can open it up to the public - and
bam, massive growth follows.

Creating a presence
I think the most useful thing I’ve learned
over time is to create a presence online,
from day one. Create a Facebook account
and a Twitter account. Create a website,
even if all it does is get you indexed in
Google. Have a footer with links to an
“about us” page or a “team” page, policy
pages, and maybe even a jobs page that
says you’re not looking for hires at the
moment (this link alone changes your
project, in my mind, from a side-project
to a full-fledged business). Lastly, create
a CrunchBase entry about you and your
business.

Then, when you want TechCrunch
or Mashable to write about you, their
Google result (they will, no doubt, search
for information about you) will be filled
up with pages about you.

Of course, it would be awesome if you
had the scale, but most people don’t.
Build something useful, and then feign
the users to get the users. Every start-up
starts at 0 users. Every successful start-up
uses some sort of social proof to increase
their conversion rates. Faking it is prob-
ably a harsh term, but it’s pretty true,
and worthy.

And if it ends up leading to real user
activity and a nice valuation, nobody’s
going to care.

Sahil is an 18-year-old USC student soon to be
in San Francisco. He enjoys making (useful) stuff
for fun and profit, but mostly fun. He’s behind
Dayta and Color Stream for iPhone; his latest
project is Let’s Crate.

By SAHIL LAVINGIA

STARTUP

Reprinted with permission of the original author.
First appeared in hn.my/fakeit.

http://hn.my/fakeit

 11

Why I Feel Like a Fraud

“I feel like a fraud. I’ve been at this for
16 years and I still feel like a fraud. I’m
just waiting for the day they see through
the façade, but they keep coming back
every year.” —Jason Young

AH YES, THE awe-inspiring
words of confidence from
the seasoned entrepreneur.

My friend Jason intended this as soothing
words of solace during one of my periods
of personal freak-out when Smart Bear
was in its infancy.

I felt like a fraud every day. Here I was,
selling a wobbly, buggy tool and pawning
myself off as an expert in a field that
didn’t exist. My software was the first
commercial tool for code review. Every
second I felt like I was putting one over
on the world.

I would explain how my tool cut code
review time in half, but was that actually
true or had I just repeated the argument
so many times that I stopped questioning
it? I would instruct customers on “best
practices” for code review, but who am
I to tell other people how to critique
code? I would orchestrate purchases,
but should I be handling large sums of
money with no knowledge of accounting,
cash-flow, invoicing, purchase orders, or
the “enterprise sales” process?

Aren’t I too young? Isn’t the tool
too crappy to charge for? Aren’t I too
inexperienced? Don’t I need an MBA or
at least some sales training?

Is Smart Bear a “real company?” What
does that even mean?

Objectively, and with hindsight, my
feelings were misplaced. The tool really
did save time and headache; customers
said so. As much as I doubted the title
“Code Review Expert,” I had developed
more experience with more teams in
more situations than any one person
could (because everyone else was busy
doing their actual jobs). And doing sales
isn’t as mystical and unknowable as I
feared.

Still, emotions don’t respond to logic.
Jason was telling me that these feelings
don’t go away, even when they ought to.

The other thing he was saying was:
You’re not alone. As it turns out, it’s
not even just business founders. Mike
Meyers said “I still believe that at any
time the No-Talent Police will come and
arrest me.” Jodie Foster said “I thought
it [winning the Oscar] was a fluke. Just
the same way as when I walked in the
campus at Yale. I thought everybody
would find out, and they’d take the
Oscar back.”

It turns out there’s a psycho-babble
name for this: Impostor Syndrome. As
Inc Magazine points out, studies show
that “40% of successful people consider
themselves frauds.” Ask any small busi-
ness coach; they’ll confirm how prevalent
these feelings are. It’s even common with
PhD candidates.

Although not an official psychological
disorder, and generally not crippling,
if you have these feelings it’s useful
to know that it’s common and there’s
something you can do about it.

See if these sound familiar:

You dismiss compliments, awards, and
positive reinforcement as “no big deal.”
You are crushed by mild, constructive
criticism.
You believe you’re not as smart/
talented/capable as other people think
you are.
You worry others will discover you’re
not as smart/talented/capable as they
think you are.
You think other people with similar
jobs are more “adult” than you are, and
they “have their shit together” while
you flounder around.
You feel your successes are due more
to luck than ability; with your failures
it’s the other way around.
You find it difficult to take credit for
your accomplishments.
You feel that you’re the living embodi-
ment of “fake it until you make it.”

But wait, how can this be? This
overwhelming lack of self-confidence is
the opposite of the traditional entrepre-
neurial stereotype. Don’t founders forge
ahead even when others say success is
impossible? Doesn’t a founder invent a
new product based on her confidence
that others will want it? Doesn’t the
very idea of starting your own company
scream “I’m doing it my way, and my way
is better?”

But it does make sense. Consider what
it means to be a perfectionist. The perfec-
tionist sees flaws in everyone else’s work;
there’s always a way to make it better
- her way. She doesn’t respond well to

By JASON COHEN

Reprinted with permission of the original author.
First appeared in hn.my/fakeit.

http://hn.my/fakeit

12 STARTUP

authority dictating how things must be;
neither is she comfortable delegating
to those who (by her definition) clearly
don’t care as much as she does.

Sounds like the stereotypical attitude
of the arrogant start-up founder, but
wait! At the same time, the perfection-
ist is never happy with her own work
either, seeing (inventing?) a never-
ending stream of flaws that require
attention. No matter how highly others
regard her work, the perfectionist insists
it’s incomplete and unsatisfactory. She
can’t accept the idea that others would
be impressed with her accomplish-
ments, since to her they’re mediocre
works-in-progress. She worries that one
day they’ll realize she’s right.

Our entrepreneurial motivation is
not confidence, it’s an insatiable desire
to improve. It’s not about thinking
your ideas are better than everyone
else’s, but it’s about never accepting
any idea as being best.

Can these feelings be constructive?
Yes, if they’re a sign that you’re striving
to learn and improve. As Andy Wibbels
says, “If I don’t feel like a fraud at least
once a day, then I’m not reaching far
enough.”

If you aren’t scared shitless then
why bother?

Here’s what it looks like when
you’re channelling these self-doubts
into something constructive:

I doubt my title as “expert,” so
every day I read, write, and immerse
myself in my field.
I doubt the quality of my software,
so I fix bugs as fast as possible, I
write unit tests proactively, and
I thank my customers for their
patience.
I doubt I deserve my reputation, so I
work hard to earn it.
I’m not as good as I want to be at
speaking/writing/programming/
designing/managing, but I can see
myself slowly improving.
I’m not a “real company” yet, so I
concentrate on making my custom-
ers successful, so they don’t care
about corporate size or structure.

On the other hand, here’s what
it looks like when these doubts are
harming you:

I doubt my title as “expert,” so
every night I worry about what will
happen when I’m discovered as a
fraud. I’m absent-mindedly looking
for trivially-easy jobs I could take
where this pressure won’t exist.
(Looking for an “escape-hatch” is a
well-documented behaviour.)
I doubt the quality of my software,
so I spend lots of time covering it up
with graphic design and heavy sales
pitches.
I doubt I deserve my reputation, so
I live in constant fear of exposure.
I can’t sleep at night and I loathe
myself for lying.
I’m not as good as I want to be at
speaking/writing/programming/
designing/managing, so I go out of
my way to avoid any of it, and feel
like a trapped animal when I’m
forced to do it.
I’m not a “real company” yet, so I
feel guilty every time someone gives
me money or believes anything I say.

If you’re letting these feelings get to
you too, at least recognize it so you can
deal with it logically. And when logic
fails, maybe this will help:

You believe that Mike Meyers and
Jodie Foster are talented, right? You
might even believe that I’m an expert
in peer code review. Yet we doubt
ourselves every day. And we’re wrong.

You know we’re wrong about
ourselves; that means you’re wrong
about yourself too.

Don’t stop striving to become better,
just stop holding yourself up to an
impossible standard.

Sometimes getting it off your chest
is the best medicine.

Jason is the founder of three companies, all
profitable and two exits. He blogs on start-ups
and marketing at blog.ASmartBear.com.

Commentary
By DANILO CAMPOS (danilocampos)

HOLY SHIT.
I thought this was just me. I

spend a lot of time churning on this.
I’m a little shell-shocked at the

revelation that others feel this way
too. I wish I had something more
compelling to contribute than
catharsis, but... wow, thanks for (re-)
submitting this.

By PATRICK MCKENZIE (patio11)

ME TOO, FOR what it is
worth. At least three

times this year half my brain was
screaming “They’re going to find
out any second now! Flee, flee!”

It all worked out.

By SUSHAANTU (sushi)

I THINK A PARTICULAR quote from
Sh#t my dad says will resonate

here.
“That woman was sexy… Out of

your league? Son. Let women figure
out why they won’t screw you, don’t
do it for them.”

Let customers find out if your
product is shitty. They won’t buy it
if it is.

Reprinted with permission of the original author.
First appeared in hn.my/fraud.

http://blog.ASmartBear.com
http://hn.my/fraud

 13

Reprinted with permission of the original author.
First appeared in hn.my/fraud.

http://wufoo.com
http://hn.my/fraud

14 SPECIAL

Life and How to
Survive It

I MUST CONVEY MY thanks to the faculty and
staff of the Wee Kim Wee School of Com-
munication and Information for inviting me
to give you your Convocation speech. It’s

a wonderful honour and a privilege for me to speak
here for ten minutes without fear of contradiction,
defamation or retaliation. I say this as a Singaporean
and more so, as a husband.

My wife is a wonderful person and perfect
in every way, except one. She is the editor of a
magazine. She corrects people for a living. She has
honed her expert skills over a quarter of a century,
mostly by practicing at home during conversations
between us.

On the other hand, I am a litigator. Essentially, I
spend my day telling people how wrong they are. I
make my living, by being disagreeable.

Nevertheless, there is perfect harmony in our
matrimonial home. That is because when an editor
and a litigator have an argument, the one who
triumphs is always the wife.

And so I want to start by giving one piece of
advice to the men: when you’ve already won her
heart, you don’t need to win every argument.

Marriage is considered to be a great milestone
of life. Some of you may already be married. Some
of you may never be married. Some of you will get
married. Some of you will enjoy the experience of
marriage so much that you will be married many,
many times. Good for you.

By ADRIAN TAN

SPECIAL

 15

The next big milestone in your life
is today: your graduation. The end of
education. You’re done learning.

You’ve probably been told the big lie
that “Learning is a lifelong process” and
that therefore you will continue studying
and taking masters’ degrees and doctor-
ates and professorships and so on. You
know the sort of people who tell you
that? Teachers. Don’t you think there
is some measure of conflict of interest?
They are in the business of learning, after
all. Where would they be without you?
They need you to be their customers.

The good news is that they’re wrong.
The bad news is that you don’t need

further education because your entire
life is over. It is gone. That may come as
a shock to some of you. You’re in your
teens or early twenties. People may
tell you that you will live to be 70, 80,
or even 90 years old. That is your life
expectancy.

I love that term: life expectancy. We
all understand the term to mean the
average life span of a group of people.
But I’m here to talk about a bigger idea,
which is what you expect from your life.

You may be very happy to know that
Singapore is currently ranked as the

country with the third highest life expec-
tancy. We are behind Andorra and Japan,
and tied with San Marino. It seems quite
clear why people in those countries, and
ours, live for so long. We share one thing
in common: our football teams are all
hopeless. There’s very little danger of any
of our citizens having their pulses raised
by watching us play in the World Cup.
Spectators are more likely to be lulled
into a gentle and restful nap.

Singaporeans have a life expectancy
of 81.8 years. Singapore men live to an
average of 79.21 years, while Singapore
women live five years longer than
that, probably to take into account the
additional time they need to spend in the
bathroom.

So here you are, in your twenties,
thinking that you’ll have another 40
years to go. Four decades in which to live
long and prosper.

Bad news. Read the papers. There are
people dropping dead when they’re 50,
40, 30 years old. Or quite possibly just
after finishing their Convocation. They
would be very disappointed that they
didn’t meet their life expectancy.

I’m here to tell you this. Forget about
your life expectancy.

After all, it’s calculated based on an
average. And you never, ever want to be
average.

Revisit those expectations. You might
be looking forward to working, falling in
love, marrying, raising a family. You are
told that, as graduates, you should expect
to find a job paying so much, where your
hours are so much, where your responsi-
bilities are so much.

That is what is expected of you. And
if you live up to it, it will be an awful
waste.

If you expect that, you will be limiting
yourself. You will be living your life
according to boundaries set by average
people. I have nothing against average
people. But no one should aspire to be
average. And you don’t need years of
education by the best minds in Singapore
to prepare you to be average.

What you should prepare for, is a
mess. Life’s a mess. You are not entitled
to expect anything from it. Life is not
fair. Everything does not balance out
in the end. Life happens, and you have
no control over it. Good and bad things
happen to you day by day, hour by hour,
and moment by moment. Your degree is
a poor armour against fate.

!I’m here to tell you this.
Forget about your life expectancy.
After all, it’s calculated based on an
average. And you never, ever want
to expect being average."

16 SPECIAL

Don’t expect anything. Erase all life
expectancies. Just live. Your life is over as
of today. At this point in time, you have
grown as tall as you will ever be, you are
physically the fittest you will ever be
in your entire life and you are probably
looking the best that you will ever look.
This is as good as it gets. It is all downhill
from here. Or up; No one knows.

What does this mean for you? It is
good that your life is over.

Since your life is over, you are free. Let
me tell you the many wonderful things
that you can do when you are free.

The most important is this: do not
work.

Work is anything that you are
compelled to do. By its very nature, it is
undesirable.

Work kills. The Japanese have a term
“Karoshi”, which means death from
overwork. That’s the most dramatic form
of how work can kill. But it can also kill
you in more subtle ways. If you work,
then day by day, bit by bit, your soul is
chipped away, disintegrating until there’s
nothing left. It’s like a rock being ground
into sand and dust.

There’s a common misconception that
work is necessary. You will meet people
working at miserable jobs. They tell you
they are “making a living”. No, they’re
not. They’re dying, frittering away their
fast-extinguishing lives doing things
which are, at best, meaningless and, at
worst, harmful.

People will tell you that work enno-
bles you, and lends you a certain dignity.
Work makes you free. The slogan “Arbeit
macht frei” was placed at the entrances
to a number of Nazi concentration
camps. Utter nonsense.

Do not waste the vast majority of your
life doing something you hate so that
you can spend the small remaining sliver
of your life in modest comfort. You may
never reach to that end anyway.

Resist the temptation to get a job.
Instead, play. Find something you enjoy
doing. Do it. Over and over again. You
will become good at it for two reasons:
you like it, and you do it often. Soon,
that will have value in itself.

I like arguing, and I love language.
So, I became a litigator. I enjoy it and I
would do it for free. If I didn’t do that,
I would’ve been in some other type of
work that still involved writing fiction -
probably a sports journalist.

So what should you do? You will find
your own niche. I don’t imagine you will
need to look very hard. By this time in
your life, you will have a very good idea
of what you want to do. In fact, I’ll go
further and say the ideal situation would
be that you will not be able to stop
yourself from pursuing your passions. By
this time you should know what your
obsessions are. If you enjoy showing off
your knowledge and feeling superior, you
might become a teacher.

Find that pursuit that will energize you,
consume you and become an obsession.
Each day, you must rise with a restless
enthusiasm. If you don’t, you are working.

Most of you will end up in activities
which involve communication. To those
of you I have a second message: be wary
of the truth. I’m not asking you to speak
it, or to write it, for there are times when
it is dangerous or impossible to do those
things. The truth has a great capacity to
offend and injure, and you will find that
the closer you are to someone, the more
care you must take to disguise or even
conceal the truth. Often, there is great
virtue in being evasive, or equivocating.
There is also great skill. Any child can
blurt out the truth, without thought to
the consequences. It takes great maturity
to appreciate the value of silence.

In order to be wary of the truth, you
must first know it. That requires great
frankness to yourself. Never fool the
person in the mirror.

I have told you that your life is over,
that you should not work, and that you
should avoid telling the truth. I now say
this to you: be hated.

!Do not waste the vast majority of your life
doing something you hate so that you can
spend the small remaining sliver of your
life in modest comfort."

 17

It’s not as easy as it sounds. Do you
know anyone who hates you? Yet every
great figure who has contributed to the
human race has been hated, not just by
one person, but often by a great many.
That hatred is so strong that it has
caused those great figures to be shunned,
abused, murdered and in one famous
instance, nailed to a cross.

One does not have to be evil to be
hated. In fact, it’s often the case that one
is hated precisely because one is trying
to do right by one’s own convictions. It
is far too easy to be liked, one merely has
to be accommodating and hold no strong
convictions. Then one will gravitate
towards the centre and settle into the
average. That cannot be your role. There
are many bad people in the world, and if
you are not offending them, you must be
bad yourself. Popularity is a sure sign that
you are doing something wrong.

The other side of the coin is this: fall
in love.

I didn’t say “be loved”. That requires
too much compromise. If one changes
one’s looks, personality and values, one
can be loved by anyone.

Rather, I exhort you to love another
human being. I know it may seem odd
for me to tell you this. You may expect
it to happen naturally, without delib-
eration. That is false. Modern society is
anti-love. We’ve taken a microscope to
everyone to bring out their flaws and

shortcomings. It is far more easier to find
a reason not to love someone, than other-
wise. Rejection requires only one reason.
Love requires complete acceptance. It is
hard work – the only kind of work that I
find palatable.

Loving someone has great benefits.
There is admiration, learning, attraction
and something which, for want of a
better word, we call happiness. In loving
someone, we become inspired to better
ourselves in every way. We learn the true
worthlessness of material things. We
celebrate being human. Loving is good
for the soul.

Loving someone is therefore very
important, and it is also important to
choose the right person. Despite popular
culture, love doesn’t happen by chance,
at first sight, across a crowded dance
floor. It grows slowly, sinking roots first
before branching and blossoming. It is
not a silly weed, but a mighty tree that
weathers every storm.

You will find that when you have
someone to love, that the face is less
important than the brain, and the body is
less important than the heart.

You will also find that it is no great
tragedy if your love is not reciprocated.
You are not doing it to be loved back. Its
value is to inspire you.

Finally, you will find that there is no
half-measure when it comes to loving
someone. You either don’t, or you do
with every cell in your body, completely
and utterly, without reservation or apol-
ogy. It consumes you, and you are reborn,
all the better for it.

Don’t work. Avoid telling the truth. Be
hated. Love someone.

You’re going to have a busy life. Thank
goodness there’s no life expectancy.

Adrian Tan is a novelist and a lawyer in Drew &
Napier LLC.

!It is far more easier to find a reason not to
love someone, than otherwise. Rejection
requires only one reason. Love requires
complete acceptance. It is hard work."

Reprinted with permission of the original author.
Originally given as a speech to graduating class of 2008 in NTU
convocation ceremony. First appeared in hn.my/life.

http://hn.my/life

18 SPECIAL

The Myth of the
Immortal Hamburger

A FEW WEEKS BACK, I
started an experi-
ment designed to
prove or disprove

whether or not the magic, non-decom-
posing McDonald’s hamburgers that
have been making their way around the
internet are indeed worthy of disgust or
even interest.

By way of introduction, allow myself
to quote myself. This is from my previous
article:

Back in 2008, Karen Hanrahan, of
the blog Best of Mother Earth posted a
picture of a hamburger that she uses as
a prop for a class she teaches on how to
help parents keep their children away
from junk food... The hamburger she’s
been using as a prop is the same plain
McDonald’s hamburger she’s been using
for what’s now going on 14 years. It
looks pretty much identical to how it
did the day she bought it, and she’s not
used any means of preservation. The
burger travels with her, and sits at room
temperature.
Now Karen is neither the first nor last
to document this very same phenom-
enon. Artist Sally Davies photographs
her 137 day-old hamburger every day
for her Happy Meal Art Project. Nonna
Joann has chosen to store her happy

meal for a year on her blog rather than
feed it to her kids. Dozens of other
examples exist, and most of them come
to the same conclusion: McDonald’s
hamburgers don’t rot.

The problem with coming to that
conclusion, of course, is that if you are a
believer in science (and I certainly hope
you are!), in order to make a conclusion,
you must first start with a few observ-
able premises as a starting point with
which you form a theorem, followed by
a reasonably rigorous experiment with
controls built in place to verify the valid-
ity of that theorem.

Thus far, I haven’t located a single
source that treats this McDonald’s
hamburger phenomenon in this fashion.
Instead, most rely on speculation, spe-
cious reasoning, and downright obtuse-
ness to arrive at the conclusion that a
McDonald’s burger “is a chemical food [,
with] absolutely no nutrition.”

As I said before, that kind of conclu-
sion is both sensationalistic and spe-
cious, and has no place in any of the
respectable academic circles in which A
Hamburger Today would like to consider
itself an upstanding member.

The Theory Behind the Burger
Things we know so far:

1. A plain McDonald’s Hamburger, when
left out in the open air, does not mold
or decompose.

2. In order for mold to grow, a few things
need to be present: mold spores, air,
moisture, and a reasonably hospitable
climate.

Given those two facts, there are a
number of theories as to why a McDon-
ald’s burger might not rot:

1. There is some kind of chemical preserva-
tive in the beef and/or bun and/or the
wrapping that is not found in a normal
burger and/or bun that creates an inhos-
pitable environment for mold to grow.

2. The high salt level of a McDonald’s
burger is preventing the burger from
rotting.

3. The small size of a McDonald’s
hamburger is allowing it to dehydrate
fast enough that there is not enough
moisture present for mold to grow.

4. There are no mold spores present on
McDonald’s hamburgers, nor in the air
in and around where the burgers were
stored.

5. There is no air in the environment
where the McDonald’s hamburgers
were stored.

By J. KENJI LOPEZ-ALT

 19

Of these theories, we can immediately
eliminate 5, for reasons too obvious to
enumerate. As for number 4, it’s prob-
ably true that there are no live molds on
a hamburger when you first receive it,
as they are cooked on an extremely hot
griddle from both sides to an internal
temperature of at least 165°F — hot
enough to destroy any mold. But in the
air where they were stored? Most likely
there’s mold present. There’s mold
everywhere.

Theory 1 is the one most often con-
cluded in the various blogs out there, but
there doesn’t seem to be strong evidence
one way or the other. If we are to believe
packaging and nutrition labeling (and I
see no reason not to), there are preserva-
tives in a McDonald’s bun, but no more
than in your average loaf of bread from
the supermarket. A regular loaf of super-
market bread certainly rots, so why not
the McD’s? Their beef is also (according
to them) 100% ground beef, so nothing
funny going on there, is there?

In order for any test to be considered
valid, you need to include a control.
Something in which you already know
whether or not the variable being tested
is present.

In the case of these burgers, that
means testing a McDonald’s burger
against a burger that is absolutely known

not to contain anything but beef. The
only way to do this, of course, is to cook
it myself from natural beef ground at
home.

I decided to design a series of tests in
order to ascertain the likeliness of each
one of these separate scenarios (with the
exception of the no-air theory, which
frankly, doesn’t hold wind—get it?).
Here’s what I had in mind:

Sample 1: A plain McDonald’s ham-
burger stored on a plate in the open
air outside of its wrapper.
Sample 2: A plain burger made
from home-ground fresh all-natural
chuck of the exact dimensions as the
McDonald’s burger, on a standard
store-bought toasted bun.
Sample 3: A plain burger with a
home-ground patty, but a McDonald’s
bun.
Sample 4: A plain burger with a
McDonald’s patty on a store-bought
bun.
Sample 5: A plain McDonald’s burger
stored in its original packaging.
Sample 6: A plain McDonald’s burger
made without any salt, stored in the
open air.
Sample 7: A plain McDonald’s Quar-
ter Pounder, stored in the open air.

Sample 8: A homemade burger the
exact dimension of a McDonald’s
Quarter Pounder.
Sample 9:A plain McDonald’s Angus
Third Pounder, stored in the open air.

You may notice that my protocols
have been slightly expanded since I first
laid them out to you a few weeks ago.
That’s due to several good ideas in the
comments section which I incorporated
into my testing the day after the initial
publication.

Every day, I monitored the progress of
the burgers, weighing each one, and care-
fully checking for spots of mold growth
or other indications of decay. The burgers
were left in the open air, but handled
only with clean kitchen tools or through
clean plastic bags (no direct contact with
my hands until the last day).

At this point, it’s been 25 days, 23
calm, cool, and collected discussions with
my wife about whether that smell in the
apartment is coming from the burgers
or from the dog, and 16 nights spent
sleeping on the couch in the aftermath of
those calm, cool, and collected discus-
sions. Aside from my mother, my wife is
the fiercest discusser I know.

Frankly, I’m glad this damn experi-
ment is over. On to the results.

Photographs by J. Kenji Lopez-Alt.

!93% of the moisture loss in a regular
burger occurs within the first three days."

20 SPECIAL

The Results
Well, well, well. Turns out that not only
did the regular McDonald’s burgers not
rot, but the home-ground burgers did not
rot either. Samples one through five had
shrunk a bit (especially the beef patties),
but they showed no signs of decomposi-
tion. What does this mean?

It means that there’s nothing that
strange about a McDonald’s burger not
rotting. Any burger of the same shape
will act the same way. The real question
is, why?

Well, here’s another piece of evidence:
Burger number 6, made with no salt, did
not rot either, indicating that the salt
level has nothing to do with it.

And then we get to the burgers that
did show some signs of decay.

Take a look at both the homemade and
the McDonald’s Quarter Pounder patties:

Very interesting indeed. Sure, there’s a
slight difference in the actual amount of
mold grown, and the homemade patty
on the right seems to have shrunk more
than the actual Quarter Pounder on the
left (I blame that mostly on the way the
patties were formed), but on the whole,
the results are remarkably similar. That

a Quarter Pounder grows mold but a
regular-sized McDonald’s burger doesn’t
is some pretty strong evidence in support
of Theory 3 from above. Because of
the larger size of a Quarter Pounder, it
simply takes longer to dehydrate, giving
mold more of a chance to grow.

We can prove this by examining the
weight charts between the regular burger
and the Quarter Pounder. Take a look:

This chart
represents
the amount
of weight
lost from the
burgers through
evaporation
every day (both
starting weights
have been
normalized to
1). As you can
see, by the end
of 2 weeks,
both the regular
burgers and the

Quarter Pounders ended up losing about
31% of their total weight and are pretty
much stable. They are essentially burger-
jerky. A completely dehydrated product
that will never rot, as without moisture,
nothing can survive.

Now the interesting part of the charts
is during the first 4 days. As you can see,
the blue line representing the regular
burger dips down much more precipi-
tously than the red line representing the
Quarter Pounder. In fact, 93% of the
moisture loss in a regular burger occurs
within the first three days, which means
that unless mold gets a chance to grow
within that time frame, it’s pretty much

never going to grow.
The Quarter Pounder,

on the other hand, takes
a full 7 days to dehydrate
to the same degree. It’s
during this extra three
day period that the mold
growth began to appear
(and of course, once the
burger had dehydrated
sufficiently, the mold
growth stopped—the

burger looked the same on day 14 as
they did on day 7). For the record, the
Angus Third Pounder also showed a
similar degree of mold growth in the
same time frame.

 21

So Can It Mold?
So we’ve pretty much cleared up all
of the confusion, but a keen scientist
will notice that one question remains
unanswered. We’ve proven that neither
a McDonald’s burger nor a regular
home-made burger will rot given
certain specific conditions, but are there
conditions we can create that will cause
it to rot, and more importantly, will the
McDonald’s burger rot as fast as the
homemade burger?

The final two burgers I tested were
a McDonald’s burger and a regular
homemade burger of the same dimen-
sions placed in plastic zipper-lock bags
side by side. Hopefully the bag would
trap in enough moisture. The question:
Would they rot?

Indeed they do. Within a week, both
burgers were nearly covered in little
white spots of mold, eventually turning
into the green and black spotted beast
you see above.

The Conclusion
So there we have it! Pretty strong
evidence in favor of Theory 3: the burger
doesn’t rot because its small size and
relatively large surface area help it to lose
moisture very fast. Without moisture,
there’s no mold or bacterial growth. Of
course, that the meat is pretty much
sterile to begin with due to the high
cooking temperature helps things along
as well. It’s not really surprising. Humans
have known about this phenomenon for
thousands of years. After all, how do you
think beef jerky is made?

Now don’t get me wrong — I don’t
have a dog in this fight either way. I
really couldn’t care less whether or
not the McDonald’s burger rotted or
didn’t. I don’t often eat their burgers,

and will continue
to not often eat
their burgers. My
problem is not
with McDonald’s.
My problem is
with bad science.

For all of you
McDonald’s haters
out there: Don’t
worry. There are
still plenty of
reasons to dislike
the company! But
for now, I hope
you’ll have it my

way and put aside your beef with their
beef.

J. Kenji Lopez-Alt [www.goodeater.org/authors/]
is a food writer and recipe developer living in
New York. He currently resides in Harlem with
his wife where he pens the “Food Lab” column
for Serious Eats.com [www.seriouseats.com],
dedicated to unraveling the mysteries of home
cooking with science, soon to be a full-length
book published by W. W. Norton. He’s the manag-
ing editor of Serious Eats, a website dedicated
to bringing deliciousness to the world and was
recently named one of “40 Big Thinkers Under
40” by Food and Wine magazine.

Commentary
By MICHAEL F BOOTH
(mechanical_fish)

I’M UPVOTING THIS partly
because it’s by J. Kenji

(Lopez-)Alt, whom I have
regarded as a sort of culinary god
ever since I first encountered
his awesome piecrust recipe in
Cooks Illustrated a few years ago.

(The piecrust is made by
substituting vodka for much
of the water, which allows the
dough to be rolled out without
encouraging too much gluten
formation and thereby making
the crust tough. It is perhaps a
shade too much on the crumbly
side but makes up for that by
being outstandingly tasty, it has
now utterly spoiled my taste
for the majority of store-bought
pies, and it has convinced my
friends that I, in turn, am some
sort of culinary god, even though
this piecrust recipe is idiotically
simple, actually simpler than
regular piecrust, if such a thing
is possible. The lesson here is:
Subscribe to Cooks Illustrated
and make your loved ones’ lives
better.)

Reprinted with permission of the original author.
First appeared in hn.my/burger.

http://www.goodeater.org/authors/
http://www.seriouseats.com
http://hn.my/burger

22 SPECIAL

Obvious to You.
Amazing to Others.

ANY CREATOR OF anything knows this feeling:
You experience someone else’s innovative work. It’s beautiful,

brilliant and breath-taking. You’re stunned.
Their ideas are unexpected and surprising, but perfect.
You think, “I never would have thought of that. How do they even come up

with that? It’s genius!”
Afterward, you think, “My ideas are so obvious. I’ll never be as inventive as that.”
I get this feeling often. Amazing books, music, movies, or even amazing

conversations. I’m in awe at how the creator thinks like that. I’m humbled.
But I continue to do my work. I tell my little tales. I share my point of view.

Nothing spectacular; just my ordinary thoughts.
One day someone emailed me and said, “I never would have thought of that.

How did you even come up with that? It’s genius!”
Of course I disagreed, and explained why it was nothing special.
But afterward, I realized something surprisingly profound:

Everybody’s ideas seem obvious to them.

I’ll bet even John Coltrane or Richard Feynman felt that everything they were
playing or saying was pretty obvious.

So maybe what’s obvious to me is amazing to someone else?
Hit songwriters, in interviews, often admit that their most successful hit song

was one they thought was just stupid, even not worth recording.
We’re clearly bad judges of our own creations. We should just put it out and

let the world decide.
Are you holding back something that seems too obvious to share?

Derek Sivers founded a music distribution company, CD Baby, in 1997, a web hosting com-
pany, Hostbaby, in 2000, and sold both in 2008. Since then he’s been a popular speaker at
the TED Conferences, and writing short essays at sivers.org. He’s now setting up a few new
companies to help musicians.

By DEREK SIVERS

Reprinted with permission of the original author. First appeared in sivers.org/obvious.

http://sivers.org
http://sivers.org/obvious

http://www.catn.com

24 PROGRAMMING

THE FOLLOWING IS an account of my own experi-
ence with Python. Because that experience
was so positive, this is an unabashed attempt
to promote the use of Python for general sci-

entific research and development. About four years ago, I dropped
MATLAB in favor of Python as my primary language for coding
research projects. This article is a personal account of how reward-
ing I found that experience to be.

As I describe in the next sections, the variety and quality
of Python’s features have spoiled me. Even in small scripts, I
now rely on Python’s numerous data structures, classes, nested
functions, iterators, the flexible function calling syntax, an extensive
kitchen-sink-included standard library, great scientific libraries,
and outstanding documentation.

To clarify, I am not advocating just Python as the perfect scientific
programming environment; I am advocating Python plus a handful
of mature 3rd-party open source libraries, namely Numpy/Scipy
for numerical operations, Cython for low-level optimization,
IPython for interactive work, and MatPlotLib for plotting. Later,
I describe these and others in more detail, but I introduce these
four here so I can weave discussion of them throughout this article.

Given these libraries, many features in MATLAB that enable
one to quickly write code for machine learning and artificial
intelligence – my primary area of research – are essentially a small
subset of those found in Python. After a day learning Python, I
was able to still use most of the matrix tricks I had learned in
MATLAB, but also utilize more powerful data structures and
design patterns when needed.

Holistic Language Design
I once believed that the perfect language for research was one
that allowed concise and direct translation from notepad scrib-
blings to code. On the surface, this is reasonable. The more barriers
between generating ideas and trying them out, the slower research
progresses. In other words, the less one has to think about the

actual coding, the better. I now believe, however, that this attitude
is misguided.

MATLAB’s language design is focused on matrix and linear
algebra operations; for turning such equations into one-liners, it is
pretty much unsurpassed. However, move beyond these operations
and it often becomes an exercise in frustration. R is beautiful for
interactive data analysis, and its open library of statistical pack-
ages is amazing. However, the language design can be unnatural,
and even maddening, for larger development projects. While
Mathematica is perfect for interactive work with pure math, it is
not intended for general purpose coding.

The problem with the “perfect match” approach is that you
lose generalizability very quickly. When the criteria for language
design is too narrow, you inevitably choose excellence for one
application over greatness for many. This is why universities have
graduate programs in computer language design — navigating the
pros and cons of various design decisions is extremely difficult
to get right. The extensive use of Python in everything from
system administration and website design to numerical number-
crunching shows that it has, indeed, hit the sweet spot. In fact,
I’ve anecdotally observed that becoming better at R leads to skill
at interacting with data, becoming better at MATLAB leads to
skill at quick-and-dirty scripting, but becoming better at Python
leads to genuine programming skill.

Practically, in my line of work, the downside is that some
matrix operators that are expressable using syntactical constructs
in MATLAB become function calls (e.g. !"#"$%&'()*+",- instead
of !"#"*".",). In exchange for this extra verbosity — which I
have not found problematic — one gains incredible flexibility
and a language that is natural for everything from automating
system processes to scientific research. The coder doesn’t have
to switch to another language when writing non-scientific code,
and allows one to easily leverage other libraries (e.g. databases)
for scientific research.

Why Python Rocks
for Research

By HOYT KOEPKE

PROGRAMMING

 25

Furthermore, Python allows one to easily leverage object ori-
ented and functional design patterns. Just as different problems
call for different ways of thinking, so also different problems call
for different programming paradigms. There is no doubt that a
linear, procedural style is natural for many scientific problems.
However, an object oriented style that builds on classes having
internal functionality and external behavior is a perfect design
pattern for others. For this, classes in Python are full-featured and
practical. Functional programming, which builds on the power
of iterators and functions-as-variables, makes many programming
solutions concise and intuitive. Brilliantly, in Python, everything
can be passed around as an object, including functions, class
definitions, and modules. Iterators are a key language component
and Python comes with a full-featured iterator library. While it
doesn’t go as far in any of these categories as flagship paradigm
languages such as Java or Haskell, it does allow one to use some
very practical tools from these paradigms. These features combine
to make the language very flexible for problem solving, one key
reason for its popularity.

Readability
To reiterate a recurrent point, Python’s syntax is very well
thought out. Unlike many scripting languages (e.g. Perl), readability
was a primary consideration when Python’s syntax was designed.
In fact, the joke is that turning pseudocode into correct Python
code is a matter of correct indentation.

This readability has a number of beneficial effects. Guido
van Rossum, Python’s original author, writes:

 This emphasis on readability is no accident. As an object-oriented
language, Python aims to encourage the creation of reusable code.
Even if we all wrote perfect documentation all of the time, code
can hardly be considered reusable if it’s not readable. Many of
Python’s features, in addition to its use of indentation, conspire
to make Python code highly readable.

In addition, I’ve found it encourages collaboration, and not just
by lowering the barrier to contributing to an open source Python
project. If you can easily discuss your code with others in your
office, the result can be better code and better coders.

As two examples of this, consider the following code snippet:

/(0"1&2$$30,)'2&4($+"5%46/27,#8-9""

2"5%46/27,:;""

'2&4($<

=">2&&"?@("25%'("0461?3%6""
1&2$$30,)A,B'2&4($+"5%46/27,#8:C-

Let me list three aspects of this code. First, it is a small, self-
contained function that only requires three lines to define, includ-
ing documentation (the string following the function). Second,
a default argument for the boundary is specified in a way that
is instantly readable (and yes, that does show up when using Sphinx

for automatic documentation). Third, the list processing syntax
is designed to be readable. Even if you are not used to reading
Python code, it is easy to parse this code — a new list is defined
and returned from the list '2&4($ using if a particular value '
is above 5%46/27, and otherwise. Finally, when calling func-
tions, Python allows named arguments — this universally promotes
clarity and reduces stupid bookkeeping bugs, particularly with
functions requiring more than one or two arguments.

Permit me to contrast these features with MATLAB. With
MATLAB, globally available functions are put in separate files,
discouraging the use of smaller functions and — in practice — often
promotes cut-and-paste programming, the bane of debugging.
Default arguments are a pain, requiring conditional coding to set
unspecified arguments. Finally, specifying arguments by name
when calling is not an option, though one popular but artificial
construct — alternating names and values in an argument list —
allows this to some extent.

Balance of High Level and Low Level Programming
The ease of balancing high-level programming with low-level opti-
mization is a particular strong point of Python code. Python
code is meant to be as high level as reasonable — I’ve heard
that in writing similar algorithms, on average you would write
six lines of C/C++ code for every line of Python. However, as
with most high-level languages, you often sacrifice code speed
for programming speed.

One sensible approach around this is to deal with higher level
objects — such as matrices and arrays — and optimize operations
on these objects to make the program acceptably fast. This is
MATLAB’s approach and is one of the keys to its success; it is
also natural with Python. In this context, speeding code up means
vectorizing your algorithm to work with arrays of numbers instead
of with single numbers, thus reducing the overhead of the language
when array operations are optimized.

Abstractions such as these are absolutely essential for good
scientific coding. Focusing on higher-level operations over higher-
level data types generally leads to massive gains in coding speed
and coding accuracy. Python’s extension type system seamlessly
allows libraries to be designed around this idea. Numpy’s array
type is a great example.

However, existing abstractions are not always enough when
you’re developing new algorithms or coding up new ideas. For
example, vectorizing code through the use of arrays is powerful but
limited. In many cases, operations really need loops, recursion, or
other coding structures that are extremely efficient in optimized,
compiled machine code but are not in most interpreted languages.
As variables in many interpreted languages are not statically typed,
the code can’t easily be compiled into optimized machine code.
In the scientific context, Cython provides the perfect balance
between the two by allowing either.

Cython works by first translating Python code into equivalent C
code that runs the Python interpreted through the Python C API.
It then uses a C compiler to create a shared library that can be
loaded as a Python module. Generally, this module is functionally

26 PROGRAMMING

equivalent to the original Python module and usually runs mar-
ginally faster. The advantage, however, is that Cython allows one
to statically type variables — e.g. 1/(0"36?"3 declares 3 to be an
integer. This gives massive speedups, as typed variables are now
treated using low-level types rather than Python variables. With
these annotations, your “Python” code can be as fast as C — while
requiring very little actual knowledge of C.

Practically, a few type declarations can give you incredible
speedups. For example, suppose you have the following code:

/(0"0%%)*-9""
"

"
""""""*D3+E<"F#"3GE

where * is a 2d NumPy array. This code uses interpreted loops
and thus runs fairly slowly. However, add type information and
use Cython:

/(0"1,0%%)6/2772,D/%45&(+"6/3A#H<"*-9""
""1/(0"$3I(B?"3+"E""
"

"
"

""""""*D3+E<"F#"3GE

Cython translates necessary Python operations into calls to the
Python C-API, but the looping and array indexing operations are
turned into low level C code. For a 1000 x 1000 array, on my 2.4
GHz laptop, the Python version takes 1.67 seconds, while the
Cython version takes only 3.67 milliseconds (a vectorized version
of the above using an outer product took 15.1 ms).

A general rule of thumb is that your program spends 80% of its
time running 20% of the code. Thus a good strategy for efficient
coding is to write everything, profile your code, and optimize the
parts that need it. Python’s profilers are great, and Cython allows
you to do the latter step with minimal effort.

Language Interoperability
As a side affect of its universality, Python excels at gluing
other languages together. One can call MATLAB functions from
Python (through the MATLAB engine) using MLabWrap, easing
transitions from MATLAB to Python. Need to use that linear
regression package in R? RPy puts it at your fingertips. Have fast
FORTRAN code for a particular numerical algorithm? F2py will
effortless generate a wrapper. Have general C or C++ libraries you
want to call? Ctypes, Cython, or SWIG are three ways to easily
interface to it (my favorite is Cython). Now, if only all these were
two way streets...

Documentation System
Brilliantly, Python incorporates module, class, function, and
method documentation directly into the language itself. In essence,
there are two levels of comments — programming level comments
(start with =) that are ignored by the compiler, and documentation
comments that are specified by a doc string after the function

or method name. These documentation strings add tags to the
methods which are accessible by anyone using an interactive
Python shell or by automatic documentation generators.

The beauty of Python’s system becomes apparent when using
Sphinx, a documentation generation system originally built for
Python language documentation. To allow sufficient presentation
flexibility, it allows reStructuredText directives, a simple, readable
markup language that is becoming widely used in code documen-
tation. Sphinx works easily with embedded doc-strings, but it is
useful beyond documentation — for example, my personal website,
my course webpages when I teach, my code documentation sites,
and, of course, Python’s main website are generated using Sphinx.

One helpful feature for scientific programming is the ability to
put LaTeX equations and plots directly in code documentation.
For example, if you write:

in the doc string, it is rendered in the webpage as

Including plots is easy. The following doc-string code:

"
"

"
"

"

"
"

"
"

"

gives

In essence, this enables not only comments about the code,
but also comments about the science and research behind your
code, to be interwoven into the coding file.

 27

Hierarchical Module System
Python uses modular programming, a popular system that
naturally organizes functions and classes into hierarchical
namespaces. Each Python file defines a module. Classes,
functions, or variables that are defined in or imported into that
file show up in that module’s namespace. Importing a module
either creates a local dictionary holding that module’s objects,
pulls some of the module’s objects into the local namespace.
For example, binds @2$@&35:A/C to hashlib’s
md5 checksum function; alternately,
binds A/C to this function. This helps programming namespaces
to follow a hierarchical organization.

On the coding end, a Python file defines a module. Similarly,
a directory containing an Python file is treated
the same way, files in that directory can define submodules, and
so on. Thus the code is arranged in a hierarchical structure for
both the programmer and the user.

Permit me a short rant about MATLAB to help illustrate why
this is a great feature. In MATLAB, all functions are declared in
the global namespace, with names determined by filenames in the
current path variable. However, this discourages code reusability
by making the programmer do extra work keeping disparate
program components separate. In other words, without a hierar-
chical structure to the program, it’s difficult to extract and reuse
specific functionality. Second, programmers must either give their
functions long names, essentially doing what a decent hierarchical
system inherently does, or risk namespace conflicts which can be
difficult to resolve and result in subtle errors. While this may help
one to throw something together quickly, it is a horrible system
from a programming language perspective.

Data Structures
Good programming requires having and using the correct data
structures for your algorithm. This is almost universally under-
emphasized in research-oriented coding. While proof-of-concept
code often doesn’t need optimal data structures, such code causes
problems when used in production. This often — though it’s
rarely stated or known explicitly — limits the scalability of a lot
of existing code. Furthermore, when such features are not natural
in a language’s design, coders often avoid them and fail to learn
and use good design patterns.

Python has lists, tuples, sets, dictionaries, strings, thread-
safe queues, and many other types built-in. Lists hold arbitrary
data objects and can be sliced, indexed, joined, split, and used as
stacks. Sets hold unordered, unique items. Dictionaries map from
a unique key to anything and form the real basis of the language.
Heaps are available as operations on top of lists (similar to the
C++ STL heaps). Add in NumPy, and one has an n-dimensional
array structure that supports optimized and flexible broadcasting
and matrix operations. Add in SciPy, and you have sparse matrices,
kd-trees, image objects, time-series, and more.

Available Libraries
Python has an impressive standard library packaged with the
program. Its philosophy is “batteries-included”, and a standard
Python distribution comes with built-in database functionality, a
variety of data persistence features, routines for interfacing with the
operating system, website interfacing, email and networking tools,
data compression support, cryptography, xml support, regular
expressions, unit testing, multithreading, and much more. In short,
if I want to take a break from writing a bunch of matrix manipula-
tion code and automate an operating system task, I don’t have to
switch languages.

Numerous libraries provide the needed functionality for sci-
entific . The following is a list of the ones I use regularly and find
to be well-tested and mature:

NumPy/SciPy: This pair of libraries provide array and matrix
structures, linear algebra routines, numerical optimization,
random number generation, statistics routines, differential equa-
tion modeling, Fourier transforms and signal processing, image
processing, sparse and masked arrays, spatial computation, and
numerous other mathematical routines. Together, they cover
most of MATLAB’s basic functionality and parts of many of the
toolkits, and include support for reading and writing MATLAB
files. Additionally, they now have great documentation (vastly
improved from a few years ago) and a very active community.
IPython: One of the best things in Python is IPython, an
enhanced interactive Python shell that makes debugging, pro-
filing code, interactive plotting. It supports tab completion on
objects, integrated debugging, module finding, and more —
essentially, it does almost everything you’d expect a command
line programming interface to do. Additionally,
Cython: Referenced earlier, Cython is a painless way of embed-
ding compiled, optimized bits of code in a larger Python
program.
SQLAlchemy: SQLAlchemy makes leveraging the power of a
database incredibly simple and intuitive. It is essentially a wrap-
per around an SQL database. You build queries using intuitive
operators, then it generates the SQL, queries the database,
and returns an iterator over the results. Combining it with
sqlite — embedded in Python’s standard library — allows one
to leverage databases for scientific work with impressive ease.
And, if you tell sqlite to build its database in memory, you’ve
got another powerful data structure. To slightly plagiarize xkcd,
SQLAlchemy makes databases fun again.
PyTables: PyTables is a great way of managing large amounts of
data in an organized, reliable, and efficient fashion. It optimizes
resources, automatically transferring data between disk and
memory as needed. It also supports on-the-fly (DE)compression
and works seamlessly with NumPy arrays.
PyQt: For writing user interfaces in C++, I recommend it is,
in my experience, difficult to beat QT. PyQt brings the ease of
QT to Python. And I do mean ease — using the interactive QT
designer, I’ve build a reasonably complex GUI-driven scientific
application with only a few dozen lines of custom GUI code. The

28 PROGRAMMING

entire thing was done in a few days. The code is cross-platform
over Linux, Mac OS X, and Windows. If you need to develop a
front end to your data framework, and don’t mind the license
(GPL for PyQT, LGPL for QT), this is, in my experience, the
easiest way to do so.
TreeDict: Without proper foresight and planning, larger research
projects are particularly prone to the second law of thermody-
namics: over time, the organization of parameters, options, data,
and results becomes increasingly random. TreeDict is a Python
data structure I designed to fight this. It stores hierarchical
collections of parameters, variables, or data, and supports splic-
ing, joining, copying, hashing, and other operations over tree
structures. The hierarchical structure promotes organization that
naturally tracks the conceptual divisions in the program — for
example, a single file can define all parameters while reflecting
the structure of the rest of the code.
Sage: Sage doesn’t really fit on this list as it packages many of
the above packages into a single framework for mathematical
research. It aims to be a complete solution to scientific program-
ming, and it incorporates over a hundred open source scientific
libraries. It builds on these with a great notebook concept that
can really streamline the thought process and help organize
general research. As an added bonus, it has an online interface for
trying it out. As a complete package, I recommend newcomers
to scientific Python programming try Sage first; it does a great
job of unifying available tools in a consistent presentation.
Enthought Python Distribution: Also packaging these many
libraries into a complete package for scientific computing, the
Enthought Python Distribution is distributed by a company
that contributes heavily to developing and maintaining these
libraries. While there are commercial support options, it is free
for academic use.

Testing Framework
I do not feel comfortable releasing code without an accompanying
suite of tests. This attitude, of course, reflects practical program-
mer wisdom; code that is guaranteed to function a certain way
— as encapsulated in these unit tests — is reusable and dependable.
While packaging test code without does not always equate with code
quality, there is a strong correlation. Unfortunately, the research com-
munity does not often emphasize writing proper test code, due partly
to that emphasis being directed, understandably, towards technique,
theory, and publication. But this is exactly why a no-boilerplate,
practical and solid testing framework and simple testing constructs
like assert statements are so important. Python provides a built-in,
low barrier-to-entry testing framework that encourages good test
coverage by making the fastest workflow, including debugging time,
involve writing test cases. In this way, Python again distinguishes
itself from its competitors for scientific code.

Downsides
No persuasive essay is complete without an honest presentation
of the counterpoints, and indeed several can be made here. In fact,
many of my arguments invite a counterargument — with so many
options available at every corner, where does one start? Having
to make decisions at each turn could paralyze productivity. For
most applications, wouldn’t a language with a rigid but usually
adequate style — like MATLAB — be better?

While one can certainly use a no-flair scripting style in Python,
I agree with this argument, at least to a certain extent. However,
the situation is not uniformly bad — rather, it’s a bit like learning
to ski versus learning to snowboard. The first day or two learn-
ing to snowboard is always horrid, while one can pick up basic
skiing quite quickly. However, fast-forward a few weeks, and
while the snowboarder is perfecting impressive tricks, the skier
is still working on not doing the splits. An exaggerated analogy,
perhaps, but the principle still holds: investment in Python yields
impressive rewards, but be prepared for a small investment in
learning to leverage its power.

The other downside with using Python for general scientific
coding is the current landscape of conventions and available
resources. Since MATLAB is so common in many fields, it is often
conventional to publish open research code in MATLAB (except
in some areas of mathematics, where Python is more common
on account of Sage; or in statistics, where R is the lingua franca).
While MLabWrap makes this fairly workable, it does means that
a Python programmer may need to work with both languages
and possess a MATLAB license. Anyone considering a switch
should be aware of this potential inconvenience; however, there
seems to be a strong movement within scientific research towards
Python — largely for the reasons outlined here.

A Complete Programming Solution
In summary, and reiterating my point that Python is a com-
plete programming solution, I mention three additional points,
each of which would make a great final thought. First, it is open
source and completely free, even for commercial use, as are many
of the key scientific libraries. Second, it runs natively on Windows,
Mac OS, linux, and others, as does its standard library and the third
party libraries I’ve mentioned here. Third, it fits quick scripting and
large development projects equally well. A quick perusal of some
success stories on Python’s website showcases the diversity of envi-
ronments in which Python provides a scalable, well-supported, and
complete programming solution for research and scientific coding.
However, the best closing thought is due to Randall Monroe, the
author of xkcd: “Programming is fun again!”

Hoyt Koepke is a PhD student in the Statistics Department at the Univer-
sity of Washington studying optimization, ranking models, probability
theory, and machine learning/artificial intelligence. As a teen, he learned
to program when his parents would only let him play computer games he
wrote himself, and subsequently got a MSc in computer science from the
University of British Columbia following a BA in physics at the University
of Colorado. He can be contacted at hoytak@stat.washington.edu or visited
online at www.stat.washington.edu/~hoytak.

Reprinted with permission of the original author. First appeared in hn.my/python.

mailto:hoytak@stat.washington.edu
http://www.stat.washington.edu/~hoytak
http://hn.my/python
http://javascriptweekly.com

 29

Reprinted with permission of the original author. First appeared in hn.my/python.

http://hn.my/python
http://javascriptweekly.com
http://rubyweekly.com

30 PROGRAMMING30 PROGRAMMING

AS OF TODAY, Amazon EC2 is providing what they
call “Cluster GPU Instances”: An instance is the
Amazon cloud that provides you with the power of

two NVIDIA Tesla “Fermi” M2050 GPUs. The exact specifications
are as follows:

22 GB of memory
33.5 EC2 Compute Units (2 x Intel Xeon X5570, quad-core
“Nehalem” architecture)
2 x NVIDIA Tesla “Fermi” M2050 GPUs
1690 GB of instance storage
64-bit platform
I/O Performance: Very High (10 Gigabit Ethernet)
API name: cg1.4xlarge

GPUs are known to be the best hardware accelerators for crack-
ing passwords, so I decided to give it a try and try to find out how
fast this instance type can be used to crack SHA1 hashes. Using
the CUDA-Multiforcer, I was able to crack all hashes from a file
with a password length of 1-6 characters in only 49 minutes (1
hour costs $2.10, by the way).

"
"

"

One more time, this just shows that SHA1 for password hashing
is deprecated - You really don’t want to use it anymore! It would
be better to use something like scrypt or PBKDF2! Just imagine
a whole cluster of these machines cracking passwords for you,
which is now easy for anybody to do, thanks to Amazon! They’re
providing a pretty comfortable and large scale password cracking
facility for everybody!

Installation Instructions
I used the “Cluster Instances HVM CentOS 5.5 (AMI Id: ami-
aa30c7c3)” machine image provided by Amazon , since it was
the only one with built-in CUDA support, and selected “Cluster
GPU (cg1.4xlarge, 22GB)” as the instance type. After launching
the instance and SSHing into it, you can continue by installing
the cracker:

I decided to install the “CUDA-Multiforcer” version 0.7 as
it’s the latest version, and the source code is also available. To
compile it, you first need to download the “GPU Computing
SDK code samples”.

"
"

"

Now we need to install the g++ compiler:

Cracking Passwords
in the Cloud

By THOMAS ROTH

Amazon’s New EC2 GPU Instances

 31 31

The next step is compiling the libraries of the SDK samples:

"
"

Now it’s time to download and compile the CUDA-Multiforcer:

"

"
"

"
"

"

As the Makefile of the CUDA-Multiforcer doesn’t work out of
the box, just open it up and find the line:

Replace “CCFILES” with “LINKFLAGS” so that the line looks
like this:

And type make. If everything worked out, you should have a
file: “~/NVIDIA_GPU_Computing_SDK/C/bin/linux/release/
CUDA-Multiforcer” now. You can try the Multiforcer by doing
something like this:

"

"

"

Congratulations, you now have a fully working CUDA-based
hash-cracker running on an Amazon EC2 instance.

Getting the Facts Straight
At this point, I have to get some facts straight: What I did was
benchmark the speed of the new instance type for cracking SHA1
hashes. My first result was that it took 49 minutes to do a “95
characters, 6 digit long” brute force attack on a list of 14 hashes.
The thing that was new is that due to the new Amazon offering,
everyone is able to spawn a 100 or mode node cluster in the cloud
and distribute the task of cracking passwords onto these nodes,
especially since cracking hashes is perfectly suitable for massive
parallelization! An attacker would be able to spawn a gigantic
cluster of nodes using some stolen credit card information and
it would be no problem for him to crack an 8 character long
password within a nice time frame.

The reason I said that SHA1 is deprecated for storing passwords
is easy to explain: SHA1 was never made to store passwords. SHA1
is a hash algorithm; it was made for verifying data. It was made to
be as fast and as collision free as possible, and that’s the problem
when using it for storing passwords: It’s too fast! The speed of
computers is increasing incredibly fast, and so brute forcing will get
faster and faster, and the new cloud offerings make parallelization
of such use tasks easy and affordable. Instead of hash algorithms,
one should use Key Derivation Functions like PBKDF2 or scrypt.
Some of these functions hash passwords thousands of times and
make brute forcing them a lot harder.

I hope that this article helps people to understand the real
impact of using the cloud for cracking passwords.

Thomas Roth is a consultant for security and software engineering from
Germany whose main interests are exploiting techniques, low-level pro-
gramming languages and cryptographic algorithms. He started implement-
ing and optimizing hash algorithms like MD5 and SHA1 on GPUs, using the
CUDA and the OpenCL framework recently. Some of his private work can
be found on his blog [stacksmashing.net] or on Twitter @stacksmashing.

Reprinted with permission of the original author. First appeared in hn.my/crack.

http://stacksmashing.net
http://twitter.com/stacksmashing
http://hn.my/crack

32 PROGRAMMING

A LOT OF GOOD products have features that appear
somewhat trivial to replicate, but in reality would
be quite complex to do so. I call these features

code icebergs because they expose what a casual observer or
competitor imagines is a weekend hackathon, but underneath
there is a humongous mass of necessarily complicated code that
makes everything work as seamlessly as it appears.

In my experience, the iceberg part of a code iceberg often
involves handling of a lot edge cases. These edge cases are
sometimes actually created by making the user interface
simpler, e.g. less or free-form input fields.

At my current startup, DuckDuckGo, a good example is the
seemingly straightforward task of taking Wikipedia and turning
it into good Zero-click Info to display against queries. At first
blush it’s trivial — I mean come on, the Wikipedia dumps output
something called abstract.xml with a description of “extracted
abstracts for Yahoo.”

Yet when you get into it and start exposing it to real users, you
surface all those edge cases. That dump in particular is actually
completely unusable IMHO and I ended up discarding it within
a few days of discovering it. It chokes on lots of things.

Wikipedia has templates, disambiguation pages, initial warnings
and infoboxes, redirects, malformed/complicated sentences, etc.
etc., all of which you want to deal with if you don’t want glaring
errors. And then once you’re in there, you might as well start
capturing more good stuff like related topics, categories, the right
images, good external links, etc. etc. And what about updating it
in real time? It starts to really add up.

I like code icebergs. They’re really a marvel to look at when
you can see the whole picture. They also lure competitors in, who
often get sunk (at least initially) not understanding the scope of
the problem. They’re good barriers to entry, fuel in build vs buy
decisions, and the underpinnings of good UX.

Gabriel Weinberg is the founder of Duck Duck Go, a search engine. He is
also an active angel investor, based out of Valley Forge, PA. More info at
his homepage: ye.gg.

Code Iceberg
By GABRIEL WEINBERG

Commentary

CODE ICEBERG IS in the eye of the beholder. Recently started
bizdev-people consistently underestimate the time require-

ments for certain well-exercised tasks.
Some of the most common icebergs are:

Form validation (seriously -one of the most highly exercised
user-interaction paths; it’s all over the place, and scales semi-
exponentially with the number of fields).
Search (“how hard could it be? you just put an input form
there, then figure out what the user thought, then display it”
-exact quote).

Anything that has to process natural language. I mean every-
thing. Wanna split up a text into sentences? How do you differ-
entiate between dr. mr., 2004. jun. , and valid sentence-enders?
Generating a definite article (“a”, “an”) before a noun? Keep in
mind that 1,2,@,$,=, and other characters might also be valid
noun first-letters :) etc.

In my experience, the best anti-iceberg pattern is to follow a
portfolio approach, and for each requirements which smells like
iceberg, have a fallback plan in place -ie. after N hours of sunken
investment, execution shifts to plan B. Usually works out much
better, than banging away on the same problem for days.

By SDR (sdrinf)

Reprinted with permission of the original author. First appeared in hn.my/iceberg.
Photo: Danmark O, Fohn Fjord, Renodde.70°N/26°W,
http://www.flickr.com/photos/rietje/76566707/.

http://ye.gg
http://hn.my/iceberg
http://www.flickr.com/photos/rietje/76566707/

 33

http://cloudkick.com

34 PROGRAMMING

A Quest for Speed
I decided a couple of weeks ago that I wanted to build an app,
most likely a web app. Being a premature optimizer by nature,
my first order of business (after deciding I needed to learn to
draw) was to find the absolute fastest way to serve up a web page.
The Google home page is the fastest loading page I know of, so
I thought a good place to start would be to figure out how they
do it and then replicate their strategy.

The full story of my search is below, but the short version is that
to match Google’s page load times you have to cheat on the TCP
Slow-Start algorithm. It appears that stretching the parameters
a little bit is fairly common, but Google and Microsoft push it a
lot further than most. This may well be common knowledge in
web development circles, but it was news to me.

Some Sleuthing
My first step was to measure the load time of www.google.com
over my home cable-modem connection. As a first pass, I timed
the download with curl:

"

"
"

Holy smokes, that was fast! We were able to open a TCP connec-
tion, make an HTTP request, receive an 8KB response, and close
the connection, all in 85ms! That’s even faster than I expected,
and demonstrates that it should be possible to build an app with
a page-load time below the threshold that humans perceive as
instantaneous (about 150ms, according to one study). Sign me up.

Curious about how they pulled that off (did someone sneak

into my house and install a GGC node in the attic?), I fired up
tcpdump to take a closer look. What I saw surprised me:

"
"

"
"

"
"

"

"
"

"
"
"

"
D:::<"

"
"

"

On the performance front, this is really exciting. They actually
managed to deliver the whole response in just 70ms, 30ms of
which was spent generating the response (come on Google, you
can do better than 30ms). That means that a load time under
50ms should be possible.

Google and Microsoft Cheat
on Slow-Start. Should You?

By BEN STRONG

 35

How they accomplished that is what surprised me. The rate
at which a server can send data over a new connection is limited
by the TCP Slow-Start algorithm, which works as follows: The
server maintains a congestion window which controls how many
TCP segments it can send before receiving ACKs from the client.
The server starts with a small initial window (IW), and then for
each ACK received from the client increases the window size by
one segment until it either reaches the client’s receive window
size or encounters congestion. This allows the server to discover
the true bandwidth of the path in a way that’s fair to other flows
and minimizes congestion.

If you look at the trace, though, you’ll notice that the server
is actually sending the entire 8 segment response before there’s
time for the first client ACK to reach it. This is a clear violation of
RFC-3390, which defines the following algorithm for determining
the max IW:

J

www.google.com is indeed advertising an MSS of 1460, allowing
it an IW of 3 segments according to the RFC. In our trace, they
appear to be using an IW of at least 8, which allows them to
shave off 2 round trips (~50ms) over an IW of 3 for this request.
This raises the question: just how far will they go? Let’s request
a larger file and see what happens:

"
"

"

"
"

"
"

"
"
"

"
D:::<"

"
"
"

"
"

"
"

"

Interestingly, the server waits for ~1 RTT after sending 9 segments,
indicating an IW of 9. This suggests that the value was tuned for
the home page (or for the similarly-sized search results page).

How Common is This?
So, is this common practice that I’ve just never noticed before, or
is Google the only one doing it? I thought I’d run traces against a
few more sites and try to deduce their IWs. Here’s what I found:

Akamai: 4
Amazon: 3
Cisco: 2
Facebook: 4
Limelight Networks: 4
Yahoo: 3

It looks like goosing the IW to 4 is pretty common practice,
but I was about to give up on finding anyone pushing as far as
Google until, almost as an afterthought, I tried www.microsoft.
com. You have to see it to believe it:

"
"
"

"
"
"

"

"
"
"
"

D:::<"

"
"
"

D:::<

Microsoft appears to be skipping Slow-Start altogether and
setting the IW to the full client receive buffer size. Crazy!

36 PROGRAMMING

Some Discussion
A search for “google TCP initial window” turns up a Google-
authored research paper and Internet-Draft proposing a change
to the Slow-Start algorithm to allow an IW of up to 10 segments
(IW10). Interesting.

There’s also a lively ongoing discussion on the IETF TMRG
mailing list. I haven’t read every post (there have been hundreds
over the last few months), but it seems that most of the participants
are approaching this as a theoretical problem, not as an issue
that is actually occurring in the wild and needs to be addressed.
The Google engineers on the mailing list have taken on a more
frustrated tone recently, so it’s possible that they decided the
best way to make forward progress was to just turn it on and see
whether the Internet actually melts down. It’s also possible that
I happen to be part of an ongoing test that they’re running.

I wasn’t able to find any discussion relevant to what I saw in
my Microsoft trace.

Conclusions
Fast is good. I’m excited to see that sub-100ms page loads are
possible, and it’s a shame to not be able to take full advantage of
modern networks because of protocol limitations (http being the
limiting protocol, btw).

Being non-standards-compliant in a way that privileges their
flows relative to others seems more than a little hypocritical from
a company that’s making such a fuss about network neutrality.

I’m not really qualified to render judgment on whether IW10
is a net positive, but after reading the discussion (and considering
that the internet hasn’t actually melted down), I’m inclined to
think that it is.

I’m pretty confident that turning off slow-start entirely, as
Microsoft seems to be doing in my trace, is a very bad thing
(maybe even a bug).

So, this leaves the question, what should I do in my app (and
what should you do in yours)? Join the arms race or sit on the
sidelines and let Google have all the page-load glory? I’ll let you
know what I decide1.

Notes
1. Read the follow-up here: hn.my/slowstart2.

Ben Strong is a software architect and entrepreneur living in Austin, TX. He
founded Bluelark Systems and SugarSync, and was most recently Principal
Architect at Palm. He is currently starting a new venture.

Commentary
By TOM HUGHES-CROUCHER (sh1mmer)

THIS ISN’T MUCH of a secret. As it says in the
article Google are lobbying to change the

initial window size in the RFC. A lot of people here
at Yahoo! want to see that too, and personally I
think we should be more aggressive with our initial
window, RFC be damned.

This topic was covered really well by Amazon’s
John Rauser at Velocity Conf.

To address the points in the conclusion:

1. Fast is good. Fast is also profit.
2. The net-neutrality argument here is totally bogus,

anyone that knows how can up their slow-start
window today if they choose to. There doesn’t
really have anything to do with traffic shaping.

3. Google have been using their usual data driven
approach to support their proposal for IETF. We
need a lot more of that. It’s great. The only way
we can really find out how the Internet in general
will react to changes like this is to test them in
some real world environment.

4. I agree, slow-start is a good algorithm with a very
valid purpose. The real problem here is that the
magic numbers powering it aren’t being kept
inline with changes to connectivity technol-
ogy and increases in consumer/commercial
bandwidth.

Reprinted with permission of the original author. First appeared in hn.my/slowstart.

http://hn.my/slowstart2
http://hn.my/slowstart

 37

Why You Should Know
Just A Little AWK

IN GRAD SCHOOL, I once saw a professor I was working
with grab a text file and in seconds manipulate it into
little pieces so deftly it blew my mind. I immediately
decided it was time for me to learn AWK, which he had

so clearly mastered.
To this day, 90% of the programmers I talk to have never used

AWK. Knowing 10% of AWK’s already small syntax, which you
can pick up in just a few minutes, will dramatically increase your
ability to quickly manipulate data in text files. Below I’ll teach
you the most useful stuff - not the “fundamentals”, but 5 minutes
worth of practical information that will get you the most of what
I think is interesting in this little language.

AWK is a fun little programming language.
It is designed for processing input

strings. A (different) professor
once asked my networking
class to implement code that

would take a spec for an RPC
service and generate stubs for the client
and the server. This professor made the
mistake of telling us we could imple-
ment this in any language. I decided to
write the generator in AWK, mostly
as an excuse to learn more AWK.
It surprised me because the code
ended up much shorter and much
simpler than it would have been in
any other language I’ve ever used
(Python, C++, Java, ...). There is
enough to learn about AWK to

fill half a book, and I’ve read that book, but you’re unlikely to be
writing a full-fledged spec parser in AWK. Instead, you just want to
do things like find all of your log lines that come from ip addresses
whose components sum up to 666, for kicks and grins. Read on!

For our examples, assume we have a little file () that
looks like the one below. If it wraps in your browser, this is just
2 lines of logs each staring with an ip address.

"

These are just two log records generated by Apache, slightly
simplified, showing Bing and Baidu wandering around on my
site yesterday.

AWK works like anything else (ie:) on the command line.
It reads from stdin and writes to stdout. It’s easy to pipe stuff in
and out of it. The command line syntax you care about is just the
command AWK followed by a string that contains your program.

Most AWK programs will start with a “K” and end with a “ ”.
Everything in between there gets run once on each line of input.
Most AWK programs will print something. The program above
will print the entire line that it just read, appends a newline
for free. is the entire line. So this program is an identity
operation - it copies the input to the output without changing it.

By GREG GROTHAUS

Photo: Pingouin, http://www.flickr.com/photos/52345210@N08/4816336371/.

http://www.flickr.com/photos/52345210@N08/4816336371/

38 PROGRAMMING

AWK parses the line in to fields for you automatically, using
any whitespace (space, tab) as a delimiter, merging consecutive
delimiters. Those fields are available to you as the variables $1,
$2, $3, etc.

"

Output:

"

Easy so far, and already useful. Sometimes I need to print from
the end of the string though instead. The special variable, ,
contains the number of fields in the current line. I can print the
last field by printing the field or I can just manipulate that value
to identify a field based on it’s position from the last. I can also
print multiple values simultaneously in the same statement.

"

Output:

"

More progress - you can see how, in moments, you could strip
this log file to just the fields you are interested in.

Another cool variable is , which is the row number being
currently processed. While demonstrating , let me also show
you how to format a little bit of output using . Commas
between arguments in a statement put spaces between
them, but I can leave out the comma and no spaces are inserted.

Output:

"

Powerful, but nothing hard yet, I hope. By the way, there is
also a function that works much the way you’d expect if
you prefer that form of formatting. Now, not all files have fields
that are separated with whitespace. Let’s look at the date field:

Output:

"

The date field is separated by “/” and “:” characters. I can do
the following within one AWK program, but I want to teach you
simple things that you can string together using more familiar
unix piping because it’s quicker to pick up a small syntax. What
I’m going to do is pipe the output of the above command through

another AWK program that splits on the colon. To do this, my
second program needs two {} components. I don’t want to go into
what these mean, just to show you how to use them for splitting
on a different delimiter.

Output:

"

I just specified that I wanted a different FS (field separator) of
“:” and that I wanted to then print the first field. No more time,
just dates! The simplest way to get rid of that prefix [character
is with sed, which you are likely already familiar with:

Output:

"

I can further split this on the “/” character if I want to by using
the exact same trick, but I think you get the point. Next, lets
learn just a tiny bit of logic. If I want to return only the 200 status
lines, I could use grep, but I might end up with an ip address that
contains 200, or a date from year 2000. I could first grab the 200
field with AWK and then grep, but then I lose the whole line’s
context. AWK supports basic if statements. Lets see how I might
use one:

Output:

There we go, returning only the lines (in this case only one) with
a 200 status. The 30 syntax should be very familiar and require no
explanation. Let me finish up by showing you one simple example
of AWK code that maintains state across multiple lines. Lets say I
want to sum up all of the status fields in this file. I can’t think of a
reason I’d want to do this for statuses in a log file, but it makes a
lot of sense in other cases like summing up the total bytes returned
across all of the logs in a day or something. To do this, I just create
a variable which automatically will persist across multiple lines:

Output:

"

 39

Nothing doing. Obviously in most cases, I’m not interested in
cumulative values but only the final value. I can, of course, just
use , but I can also print stuff after processing the final
line using an END clause:

Output:

If you want to read more about AWK, there are several good
books and plenty of online references. You can learn just about
everything there is to know about AWK in a day with some time
to spare. Getting used to it is a bit more of a challenge as it really
is a little bit different way to code - you are essentially writing
only the inner part of a for loop. Come to think of it, this is a lot
like how MapReduce feels, which is also initially disorienting.

Greg Grothaus is a software engineer at Google working on Search Quality,
where he is responsible for maintaining the quality of the search results
in Google’s main search index. Prior to Google, he studied Bioinformatics
at Virginia Tech. Visit his blog at gregable.com.

Front-end Developer
Adioso (adioso.com)

Global (Company based in Australia & SF)
Join our quest to redefine travel search. Code your
way around the world! We’re seeking passionate
travellers who also happen to be masters of HTML,
CSS, JavaScript and jQuery, ideally with some
knowledge of Python/Django & PostgreSQL.
For more info visit: blog.adioso.com/workadioso-front-
end-developer.
To Apply: Email work@adioso.com.

Front-end and Backend Hackers
BackType (www.backtype.com)
San Francisco
“Fantastic opportunity to join a fast growing startup
with a great team” — Y Combinator (Investor)
“The @backtype guys are killing it. Join them and
change the world while getting rich” — Chris Sacca
(Investor)
“@backtype is one of the few startups that reminds
me of Palantir early-stage” — Stephen Cohen
(Founder of Palantir Technologies)
To Apply: www.backtype.com/jobs.

Web Engineer
Ginzamarkets, Inc. (ginzametrics.com)
Mountain View, CA
Ginzamarkets, Inc. produces Ginzametrics, a new
kind of marketing platform for advertisers and agen-
cies. We focus on SEO with plans to expand into
a $40B+ market. You’ll have the chance to build a
platform that solves big problems for almost every
company doing serious marketing online.
To Apply: Email hackers@ginzametrics.com.

HACKER JOBS

Commentary
By JON PINCUS (jdp23)

BACK IN THE 80s I wrote a 500-line program analysis tool in
AWK. One day the woman I was going out with handed

me a printout I had left at her place, saying something along the
lines of “here’s your AWK code”. She wasn’t a programmer so I
was stunned that she knew it was AWK, and very impressed too.

Years later I ran into Brian Kernighan at a conference and told
him the story, ending it with “and that’s when I knew she was the
woman for me.” He looked at me like I was nuts.

By KLIMENT YANEV (Kliment)

AWK IS A great and oft-forgotten tool. Not only is it useful,
the AWK way of thinking about stream processing

generalizes nicely to a bunch of other areas. You have a block
that runs before anything else happens, a block run just before
the program exits, and a block run for every piece of input. In
AWK, the input is a line of text, but nothing stops you from
generalizing this to say a frame from a video (split into chan-
nels in various colorspaces, fed through a processing pipeline,
returning another, processed image), a sound frame, a sensor
measurement...

Reprinted with permission of the original author. First appeared in hn.my/awk.

Sled Driver Giveaway Challenge Extra Hint: “If you add up the individual numbers
in the years 1903 and 2003, it equals 18, the number of letters needed to write
Centennial of Flight.” (source: www.sleddriver.com/patch.html)

http://gregable.com
http://adioso.com
http://blog.adioso.com/workadioso-front-end-developer
http://blog.adioso.com/workadioso-front-end-developer
mailto:work@adioso.com
http://www.backtype.com
http://www.backtype.com/jobs
http://ginzametrics.com
mailto:hackers@ginzametrics.com
http://hn.my/awk
http://www.sleddriver.com/patch.html

Dream. Design. Print.

25% O! the First Issue You Publish
HACKER

http://www.magcloud.com

	Contents
	FEATURES
	Hacker’s Guide to Tea
	SR-71 Blackbird Communication to Tower
	Sled Driver Giveaway Challenge

	STARTUP
	Faking It
	Why I Feel Like a Fraud

	SPECIAL
	Life and How to Survive It
	The Myth of the Immortal Hamburger
	Obvious to You. Amazing to Others.

	PROGRAMMING
	Why Python Rocks for Research
	Cracking Passwords in the Cloud
	Code Iceberg
	Google and Microsoft Cheat on Slow-Start. Should You?
	Why You Should Know Just A Little AWK

