
Issue 11  April 2011

2  ﻿

Curator
Lim Cheng Soon

Proofreader
Emily Griffin

Printer
MagCloud

Contributors
ARTICLES

Tom Preston-Werner

Adam Cecchetti

Tracy Osborn

Amir Khella

Ruben Berenguel

Joshua Johnson

Abhijit Menon-Sen

John Bartholdi

Edward Z. Yang

COMMENTARIES

Ed Weissman

Jonathan Rockway

Hamlet D’Arcy

Peter Scott

Hacker Monthly is the print magazine version

of Hacker News — news.ycombinator.com, a social news

website wildly popular among programmers and startup

founders. The submission guidelines state that content

can be “anything that gratifies one’s intellectual curiosity.”

Every month, we select from the top voted articles on

Hacker News and print them in magazine format.

For more, visit hackermonthly.com.

Advertising
ads@hackermonthly.com

Contact
contact@hackermonthly.com

Published by
Netizens Media

46, Taylor Road,

11600 Penang,

Malaysia.

Hacker Monthly is published by Netizens Media and not affiliated with Y Combinator in any way.

http://fifobooks.com
http://news.ycombinator.com
http://hackermonthly.com
mailto:ads@hackermonthly.com
mailto:contact@hackermonthly.com

  3

Contents
FEATURES

04  The Git Parable
By Tom Preston-Werner

12  ($=[$=[]][(__=!$+$)[_=-~-~-~$]+({}+$)[_/_]+($$=($_=!''+$)
[_/_]+$_[+$])])()[__[_/_]+__[_+~$]+$_[_]+$$](_/_)

By Adam Cecchetti

STARTUP

16  The Designer Who Learned Django and Launched Her First Web App in 6 Weeks
By Tracy Osborn

20  What I Wish Someone Had Told Me About Startups 4 Years Ago
By Amir Khella

SPECIAL

24  How to Train Your Brain to Flip to a New Language
By Ruben Berenguel

DESIGN

26  Rock Solid Website Layout Examples
By Joshua Johnson

PROGRAMMING

34  Using Git to Manage a Website
By Abhijit Menon-Sen

36  Combinatorial Applications of Spacefilling Curves
By John Bartholdi

39  DP Zoo Tour
By Edward Z. Yang

41  HACKER JOBS

For links to the posts on Hacker News, visit hackermonthly.com/issue-11. All articles and comments are reprinted with permission of their original author.

http://hackermonthly.com/issue-11

4  FEATURES

The Git Parable

Git is a simple,

but extremely

powerful

system. Most

people try to teach Git by demon-

strating a few dozen commands and

then yelling “tadaaaaa.” I believe this

method is flawed. Such a treatment

may leave you with the ability to

use Git to perform simple tasks, but

the Git commands will still feel like

magical incantations. Doing anything

out of the ordinary will be terrifying.

Until you understand the concepts

upon which Git is built, you’ll feel

like a stranger in a foreign land.

The following parable will take

you on a journey through the

creation of a Git-like system from

the ground up. Understanding the

concepts presented here will be the

most valuable thing you can do to

prepare yourself t harness the full

power of Git. The concepts them-

selves are quite simple, but allow for

an amazing wealth of functionality

to spring into existence. Read this

parable all the way through, and

you should have very little trouble

mastering the various Git commands

and wielding the awesome power

that Git makes available to you.

By Tom Preston-Werner

FEATURES

  5

The Parable
Imagine that you have a computer

that has nothing on it but a text

editor and a few file system com-

mands. Now imagine that you have

decided to write a large software

program on this system. Because

you’re a responsible software devel-

oper, you decide that you need to

invent some sort of method for keep-

ing track of versions of your software

so that you can retrieve code that

you previously changed or deleted.

What follows is a story about how

you might design one such version

control system (VCS) and the rea-

soning behind those design choices.

Snapshots
Alfred is a friend of yours that works

down at the mall as a photographer

in one of those “Special Moments”

photo boutiques. All day long he

takes photos of little kids posing

awkwardly in front of jungle or

ocean backdrops. During one of

your frequent lunches at the pretzel

stand, Alfred tells you a story about

a woman named Hazel who brings

her daughter in for a portrait every

year on the same day. “She brings the

photos from all the past years with

her,” Alfred tells you. “She likes to

remember what her daughter was

like at each different stage, as if the

snapshots really let her move back

and forth in time to those saved

memories.”

Like some sort of formulaic plot

device, Alfred’s innocent statement

acts as a catalyst for you to see the

ideal solution to your version control

dilemma. Snapshots, like save points

in a video game, are really what you

care about when you need to interact

with a VCS. What if you could take

snapshots of your codebase at any

time and resurrect that code on

demand? Alfred reads the dawning

realization spreading across your face

and knows you’re about to leave him

without another word to go back and

implement whatever genius idea he

just caused you to have. You do not

disappoint him.

You start your project in a direc-

tory named working. As you code,

you try to write one feature at a

time. When you complete a self-

contained portion of a feature, you

make sure that all your files are saved

and then make a copy of the entire

working directory, giving it the name

snapshot-0. After you perform this

copy operation, you make sure to

never again change the code files in

the new directory. After the next

chunk of work, you perform another

copy, only this time the new direc-

tory gets the name snapshot-1, and

so on.

To make it easy to remember what

changes you made in each snapshot,

you add a special file, named

message, to each snapshot directory

that contains a summary of the work

that you did and the date of comple-

tion. By printing the contents of each

message, it becomes easy to find a

specific change that you made in the

past, in case you need to resurrect

some old code.

Branches
After a bit of time on the project,

a candidate for release begins to

emerge. Late nights at the keyboard

finally yield snapshot-99, the nascent

form of what will become Release

Version 1.0. It comes to pass that

this snapshot is packaged and

distributed to the eagerly awaiting

masses. Stoked by excellent response

to your software, you push forward,

determined to make the next version

an even bigger success.

Your VCS has so far been a

faithful companion. Old versions of

your code are there when you need

them and can be accessed with ease.

But not long after the release, bug

reports start to come in. Nobody’s

perfect, you reassure yourself, and

snapshot-99 is readily retrievable,

glad to be brought back to life for

the purposes of applying bug fixes.

Since the release, you’ve cre-

ated 10 new snapshots. This new

work must not be included in the

1.0.1 bug fix version you now need

to create. To solve this, you copy

snapshot-99 to working so that

your working directory is at exactly

the point where Version 1.0 was

released. A few swift lines of code

and the bug is fixed in the working

directory.

It is here that a problem becomes

apparent. The VCS deals very well

with linear development, but for the

first time ever, you need to create

a new snapshot that is not a direct

descendent of the preceding snap-

shot. If you create a snapshot-110

6  FEATURES

(remember that you created 10

snapshots since the release), then

you’ll be interrupting the linear flow

and will have no way of determining

the ancestry of any given snapshot.

Clearly, you need something more

powerful than a linear system.

Studies show that even short

exposures to nature can help

recharge the mind’s creative poten-

tial. You’ve been sitting behind

the artificially polarized light of

your monitor for days on end. A

walk through the woods in the

brisk autumn air will do you some

good,and, with any luck, will help

you arrive at an ideal solution to

your problem.

The great oaks that line the trail

have always appealed to you. They

seem to stand stark and proud

against the perfectly blue sky. Half

the ruddy leaves have departed from

their branches, leaving an intricate

pattern of branches in their wake.

Fixating on one of the thousands of

branch tips you idly try to follow

it back to the solitary trunk. This

organically produced structure

allows for such great complexity,

but the rules for finding your way

back to the trunk are so simple, and

perfect for keeping track of multiple

lines of development! It turns out

that what they say about nature and

creativity are true.

By looking at your code history as

a tree, solving the problem of ances-

try becomes trivial. All you need to

do is include the name of the parent

snapshot in the message file you

write for each snapshot. Adding just

a single upstream pointer will enable

you to easily and accurately trace the

history of any given snapshot all the

way back to the root.

Branch Names
Your code history is now a tree.

Instead of having a single latest

snapshot, you have two: one for each

branch. With a linear system, your

sequential numbering system let you

easily identify the latest snapshot.

Now, that ability is lost.

Creating new development

branches has become so simple that

you’ll want to take advantage of it all

the time. You’ll be creating branches

for fixes to old releases, for experi-

ments that may not pan out; indeed

it becomes possible to create a new

branch for every feature you begin!

But like everything good in life,

there is a price to be paid. Each time

you create a new snapshot, you must

remember that the new snapshot

becomes the latest on its branch.

Without this information, switching

to a new branch would become a

laborious process indeed.

Every time you create a new

branch you probably give it a name in

your head. “This will be the Version

1.0 Maintenance Branch,” you might

say. Perhaps you refer to the former

linear branch as the master branch.

Think about this a little further,

though. From the perspective of a

tree, what does it mean to name a

branch? Naming every snapshot that

appears in the history of a branch

would do the trick, but requires the

storage of a potentially large amount

of data. Additionally, it still wouldn’t

help you efficiently locate the latest

snapshot on a branch.

The least amount of information

necessary to identify a branch is the

location of the latest snapshot on that

branch. If you need to know the list of

snapshots that are part of the branch

you can easily trace the parentage.

Storing the branch names is trivial.

In a file named branches, stored

outside of any specific snapshot, you

simply list the name/snapshot pairs

that represent the tips of branches. To

switch to a named branch, you need

only look up the snapshot for the

corresponding name from this file.

Because you’re only storing the

latest snapshot on each branch,

creating a new snapshot now con-

tains an additional step. If the new

snapshot is being created as part of

a branch, the branches file must be

updated so that the name of the

branch becomes associated with the

new snapshot. A small price to pay

for the benefit.

Tags
After using branches for a while

you notice that they can serve two

purposes. First, they can act as mov-

able pointers to snapshots so that

you can keep track of the branch

tips. Second, they can be pointed at a

single snapshot and never move.

The first case allows you to keep

track of ongoing development, things

like “Release Maintenance.” The

second case is useful for labeling

points of interest, like “Version 1.0”

and “Version 1.0.1.”

  7

Mixing both of these uses into a

single file feels messy. Both types are

pointers to snapshots, but one moves

and one doesn’t. For the sake of clar-

ity and elegance, you decide to create

another file called tags to contain

pointers of the second type.

Keeping these two inherently dif-

ferent pointers in separate files will

help you from accidentally treating a

branch as a tag or vice versa.

Distributed
Working on your own gets pretty

lonely. Wouldn’t it be nice if you

could invite a friend to work on your

project with you? Well, you’re in

luck. Your friend Zoe has a computer

setup just like yours and wants

to help with the project. Because

you’ve created such a great version

control system, you tell her all about

it and send her a copy of all your

snapshots, branches, and tags so she

can enjoy the same benefits of the

code history.

It’s great to have Zoe on the team

but she has a habit of taking long

trips to far away places without

internet access. As soon as she has

the source code, she catches a flight

to Patagonia and you don’t hear from

her for a week. In the meantime

you both code up a storm. When

she finally gets back, you discover a

critical flaw in your VCS. Because

you’ve both been using the same

numbering system, you each have

directories named snapshot-114,

snapshot-115, and so on, but with

different contents!

To make matters worse, you

don’t even know who authored the

changes in those new snapshots.

Together, you devise a plan for

dealing with these problems. First,

snapshot messages will henceforth

contain author name and email.

Second, snapshots will no longer be

named with simple numbers. Instead,

you’ll use the contents of the mes-

sage file to produce a hash. This hash

will be guaranteed to be unique to

the snapshot since no two messages

will ever have the same date, mes-

sage, parent, and author. To make

sure everything goes smoothly, you

both agree to use the SHA1 hash

algorithm that takes the contents of

a file and produces a 40-character

hexadecimal string. You both update

your histories with the new tech-

nique, and instead of clashing snap-
shot-114 directories, you now have

distinct directories named 8ba3441b-
6b89cad23387ee875f2ae55069291f4b

and db9ecb5b5a6294a8733503ab-
57577db96ff2249e.

With the updated naming scheme,

it becomes trivial for you to fetch all

the new snapshots from Zoe’s com-

puter and place them next to your

existing snapshots. Because every

snapshot specifies its parent, and

identical messages (and therefore

identical snapshots) have identical

names no matter where they are cre-

ated, the history of the codebase can

still be drawn as a tree. Only now,

the tree is comprised of snapshots

authored by both Zoe and you.

This point is important enough

to warrant repeating. A snapshot is

identified by a SHA1 that uniquely

identifies it (and its parent). These

snapshots can be created and moved

around between computers without

losing their identity or where they

belong in the history tree of a project.

What’s more, snapshots can be shared

or kept private as you see fit. If you

have some experimental snapshots

that you want to keep to yourself,

you can do so quite easily. Just don’t

make them available to Zoe!

“A snapshot is identified by a SHA1 that
uniquely identifies it (and its parent).”

8  FEATURES

Offline
Zoe’s travel habits cause her to spend

countless hours on airplanes and

boats. Most of the places she visits

have no readily available internet

access. At the end of the day, she

spends more time offline than online.

It’s no surprise, then, that Zoe

raves about your VCS. All of the

day to day operations that she needs

to do can be done locally. The only

time she needs a network connec-

tion is when she’s ready to share her

snapshots with you.

Merges
Before Zoe left on her trip, you

had asked her to start working off

of the branch named math and to

implement a function that gener-

ated prime numbers. Meanwhile,

you were also developing off of the

math branch, only you were writing a

function to generate magic numbers.

Now that Zoe has returned, you are

faced with the task of merging these

two separate branches of develop-

ment into a single snapshot. Since

you both worked on separate tasks,

the merge is simple. While construct-

ing the snapshot message for the

merge, you realize that this snapshot

is special. Instead of just a single

parent, this merge snapshot has two

parents! The first parent is your latest

on the math branch and the second

parent is Zoe’s latest on her math

branch. The merge snapshot doesn’t

contain any changes beyond those

necessary to merge the two disparate

parents into a single codebase.

Once you complete the merge,

Zoe fetches all the snapshots that

you have that she does not, which

include your development on the

math branch and your merge snap-

shot. Once she does this, both of

your histories match exactly!

Rewriting History
Like many software developers you

have a compulsion to keep your code

clean and very well organized. This

carries over into a desire to keep

your code history well groomed. Last

night you came home after having

a few too many pints of Guinness

at the local brewpub and started

coding, producing a handful of

snapshots along the way. This morn-

ing, a review of the code you wrote

last night makes you cringe a little

bit. The code is good overall, but you

made a lot of mistakes early on that

you corrected in later snapshots.

Let’s say the branch on which

you did your drunken development

is called drunk and you made three

snapshots after you got home from

the bar. If the name drunk points at

the latest snapshot on that branch,

then you can use a useful notation to

refer to the parent of that snapshot.

The notation drunk^ means the

parent of the snapshot pointed to

by the branch name drunk. Similarly

drunk^^ means the grandparent of

the drunk snapshot. So the three

snapshots in chronological order are

drunk^^, drunk^, and drunk.

You’d really like those three lousy

snapshots to be two clean snap-

shots. One that changes an existing

function, and one that adds a new

file. To accomplish this revision of

history you copy drunk to working

and delete the file that is new in the

series. Now working represents the

correct modifications to the existing

function. You create a new snapshot

from working and write the message

to be appropriate to the changes. For

the parent you specify the SHA1 of

the drunk^^^ snapshot, essentially

creating a new branch off of the

same snapshot as last night. Now

you can copy drunk to working and

roll a snapshot with the new file

addition. As the parent you specify

that snapshot you created just before

this one.

As the last step, you change the

branch name drunk to point to the

last snapshot you just made.

The history of the drunk branch

now represents a nicer version of

what you did last night. The other

snapshots that you’ve replaced are

no longer needed so you can delete

them or just leave them around

for posterity. No branch names are

currently pointing at them so it will

be hard to find them later on, but if

you don’t delete them, they’ll stick

around.

Staging Area
As much as you try to keep your

new modifications related to a

single feature or logical chunk, you

sometimes get sidetracked and start

hacking on something totally unre-

lated. Only half-way into this do you

realize that your working directory

now contains what should really be

separated as two discrete snapshots.

  9

To help you with this annoying

situation, the concept of a staging

directory is useful. This area acts

as an intermediate step between

your working directory and a final

snapshot. Each time you finish a

snapshot, you also copy that to a

staging directory. Now, every time

you finish an edit to a new file, create

a new file, or remove a file, you can

decide whether that change should

be part of your next snapshot. If it

belongs, you mimic the change inside

staging. If it doesn’t, you can leave it

in working and make it part of a later

snapshot. From now on, snapshots

are created directly from the staging

directory.

This separation of coding and

preparing the stage makes it easy to

specify what is and is not included

in the next snapshot. You no longer

have to worry too much about

making an accidental, unrelated

change in your working directory.

You have to be a bit careful,

though. Consider a file named

README. You make an edit to this file

and then mimic that in staging. You

go on about your business, editing

other files. After a bit, you make

another change to README. Now you

have made two changes to that file,

but only one is in the staging area!

Were you to create a snapshot now,

your second change would be absent.

The lesson is this: every new edit

must be added to the staging area if

it is to be part of the next snapshot.

Diffs
With a working directory, a staging

area, and loads of snapshots lying

around, it starts to get confusing as

to what the specific code changes

are between these directories. A

snapshot message only gives you

a summary of what changed, not

exactly what lines were changed

between two files.

Using a “diffing” algorithm, you

can implement a small program that

shows you the differences in two

codebases. As you develop and copy

things from your working directory

to the staging area, you’ll want to

easily see what is different between

the two, so that you can determine

what else needs to be staged. It’s

also important to see how the

staging area is different from the last

snapshot, since these changes are

what will become part of the next

snapshot you produce.

There are many other diffs you

might want to see. The differences

between a specific snapshot and

its parent would show you the

“changeset” that was introduced

by that snapshot. The diff between

two branches would be helpful

for making sure your development

doesn’t wander too far away from

the mainline.

Eliminating Duplication
After a few more trips to Namibia,

Istanbul, and Galapagos, Zoe starts

to complain that her hard drive is

filling up with hundreds of nearly

identical copies of the software. You

too have been feeling like all the file

duplication is wasteful. After a bit of

thinking, you come up with some-

thing very clever.

You remember that the SHA1

hash produces a short string that is

unique for a given file’s contents.

Starting with the very first snapshot

in the project history, you start a

conversion process. First, you create

a directory named objects outside of

the code history. Next, you find the

most deeply nested directory in the

snapshot. Additionally, you open up

a temporary file for writing. For each

file in this directory you perform

three steps.

1.	Calculate the SHA1 of the contents.

2.	Add an entry into the temp file that

contains the word “blob” (binary

large object), the SHA1 from the

first step, and the filename.

3.	Copy the file to the objects direc-

tory and rename it to the SHA1

from step 1. Once finished with

all the files, find the SHA1 of the

temp file contents and use that to

name the temp file, also placing it

in the objects directory.

If at any time the objects direc-

tory already contains a file with a

given name, then you have already

stored that file’s contents and there is

no need to do so again.

10  FEATURES

Now, move up one directory and

start over. Only this time, when you

get to the entry for the directory that

you just processed, enter the word

“tree,” the SHA1 of the temp file

from last time, and the directory’s

name into the new temp file. In this

fashion you can build up a tree of

directory object files that contain the

SHA1s and names of the files and

directory objects that they contain.

Once this has been accomplished

for every directory and file in the

snapshot, you have a single root

directory object file and its cor-

responding SHA1. Since nothing

contains the root directory, you must

record the root tree’s SHA1 some-

where. An ideal place to store it is in

the snapshot message file. This way,

the uniqueness of the SHA1 of the

message also depends on the entire

contents of the snapshot, and you

can guarantee with absolute certainty

that two identical snapshot message

SHA1s contain the same files!

It’s also convenient to create an

object from the snapshot message in

the same way that you do for blobs

and trees. Since you’re maintaining

a list of branch and tag names that

point to message SHA1s, you don’t

have to worry about losing track of

which snapshots are important to you.

With all of this information stored

in the objects directory, you can

safely delete the snapshot directory

that you used as the source of this

operation. If you want to reconsti-

tute the snapshot at a later date it’s

simply a matter of following the

SHA1 of the root tree stored in the

message file and extracting each tree

and blob into their corresponding

directory and file.

For a single snapshot, this

transformation process doesn’t

get you much. You’ve basically

just converted one file system into

another and created a lot of work

in the process. The real benefits of

this system arise from reuse of trees

and blobs across snapshots. Imagine

two sequential snapshots in which

only a single file in the root direc-

tory has changed. If the snapshots

both contain 10 directories and 100

files, the transformation process will

create 10 trees and 100 blobs from

the first snapshot, but only one new

blob and one new tree from the

second snapshot!

By converting every snapshot

directory in the old system to object

files in the new system, you can

drastically reduce the number of files

that are stored on disk. Now, instead

of storing perhaps 50 identical copies

of a rarely changed file, you only

need to keep one.

Compressing Blobs
Eliminating blob and tree duplication

significantly reduces the total storage

size of your project history, but that’s

not the only thing you can do to save

space. Source code is just text. Text

can be very efficiently compressed

using something like the LZW or

DEFLATE compression algorithms.

If you compress every blob before

computing its SHA1 and saving it to

disk, you can reduce the total storage

size of the project history by another

very admirable quantity.

The True Git
The VCS you have constructed is

now a reasonable facsimile of Git.

The main difference is that Git gives

you very nice command line tools to

handle such things as creating new

snapshots and switching to old ones

(Git uses the term “commit” instead

of “snapshot”), tracing history, keep-

ing branch tips up-to-date, fetching

changes from other people, merging

and diffing branches, and hundreds

of other common (and not-so-

common) tasks.

As you continue to learn Git,

keep this parable in mind. Git is

really very simple underneath, and

it is this simplicity that makes it so

flexible and powerful. One last thing

before you run off to learn all the

Git commands: remember that it is

almost impossible to lose work that

has been committed. Even when

you delete a branch, all that’s really

happened is that the pointer to that

commit has been removed. All of

the snapshots are still in the objects

directory, you just need to dig up the

commit SHA. In these cases, look up

git reflog. It contains a history of

what each branch pointed to, and in

times of crisis, it will save the day. n

Tom Preston-Werner lives in San Francisco
and is a cofounder of GitHub and the inven-
tor of Gravatars. He loves giving talks about
entrepreneurship, writing Ruby and Erlang,
and mountain biking through the Bay Area’s
ancient redwood forests.

Reprinted with permission of the original author.
First appeared in hn.my/gitparable.

http://hn.my/gitparable

Reprinted with permission of the original author.
First appeared in hn.my/gitparable.

http://www.paymo.biz
http://hn.my/gitparable

12  FEATURES

By Adam Cecchetti

  13

Care to guess what language that is and what

it does?

How about if it is typed like this?

($=[$=[]][(__=!$+$)[_=-~-~-~$]+({}+$)[_/_]+
($$=($_=!''+$)[_/_]+$_[+$])])()[__[_/_]+__
[_+~$]+$_[_]+$$](document.cookie)

That’s right. This is a JavaScript alert(), and if it lands

anywhere in an executable section of JavaScript/DOM it

pops up the browser cookie.

If you want to test this out make a sample HTML file

and put the first line inside a <script> tag, open it in your

browser, and it will pop up a “1”.

This JavaScript itself is not a new form of Cross Site

Scripting attack but an interesting form of obfuscation.

It also should be the final comment when someone says

they are protecting against Cross Site Scripting attacks by

filtering bad characters or using simple regular expressions

to filter “script” or “document.cookie”.

I started to reverse this JavaScript because it fascinated

me and I wanted to know how it worked.

Firstly, I realized there are really two different lines here.

First,

($ = [$=[]] [(__ = !$ + $)[_ = -~-~-~$] + ({} +
$)[_/_] + ($$ = ($_ = !'' + $)[_/_] + $_[+$])])()

Which becomes a sort() command. And,

[__[_/_]+__[_+~$]+$_[_]+$$](_/_)

Which becomes an alert(1).

So, the entire two lines break down to:

[]["sort"])()["alert"](1)

The execution of which becomes Window.alert(1).

$ = [] is a blank array that gets assigned as an object

to the main Window, so we can think of this as Window.
Array.

[] is our original Array which gets a reference to [[]]
["sort"]().

The browser executes Window.Array["sort"]() which

returns a reference to Window. And this reference is used

to call,

Window["alert"](1)

Which executes as,

Window.alert(1)

Let’s start to tear this apart bit by bit and see how we get

["sort"] and ["alert"] out of the jumble above:

__ = "false" via [(__ = !$ + $)]
__ = [(!Array + Array.ToString())]
__ = false + Array.ToString()
__ = "false"
_ = -~-~-~$

The ~ operator in JavaScript means -(N+1), so operating

'-~' = '+1'. So, '-~-~-~$' = '3'.

And, '_' = '3', and thus '_/_' = '3/3' = '1'.

(__ = !$ + $)[_ = -~-~-~$]
("false")[_]
("false")[3]
"false"[3] = "s"

({} + $)[_/_]

{} + $ = object + Array.ToString()
{} = “[object Object]”

"[object Object]"[_/_]
"[object Object]"[1]
"[object Object]"[1] = "o"

$$ = ($_ = !'' + $)[_/_]
$$ = ("true")[1]
"true"[1] = "r"

$_[+$] =
“true”[+$]
“true”[+[]]

14  FEATURES

+[] calls Array.prototype.toString() for its primitive

value and then converts the empty string to a 0.

"true"[0] = "t"

$_ = "true"
$$ = "rt"

($$ = ($_ = !'' + $)[_/_] + $_[+$]))

($_ = !'' + $)
$_ = true + Array.ToString()
$_ = "true"

$_[_/_] + $_[+$]

"true"[_/_]
"true"
$_[0] = "t"
$$ = "rt"

Thus, the first line becomes sort():

($ = [] ["s" + "o"+ "r"+ "t"])()

The second line is:

[__[_/_]+__[_+~$]+$_[_]+$$](_/_)

$ = 0
_ = 3
__ = "false"
$_ = "true"
$$ = "rt"

[__[_/_]+__[_+~$]+$_[_]+$$](_/_)

Which becomes,

[__[1] + __[3 + -1] + $_[3] + $$)(1);

Which becomes,

["false"[1] + "false"[3 + -1] + "true"[3] + "rt"(1)
["a" + "l" + "e" + "rt"](1)
alert(1)

I’d like to give credit where credit is due in a few places.

I didn’t write or find this JavaScript. I saw it in a slide deck

from BlackHat DC 2011. This line caught my eye in the

middle of the presentation. I learned a lot of strange things

about JavaScript looking at these two lines, and some folks

were nice enough to point out a few errors in assumptions

I had made. n

Adam Cecchetti is a founding partner of Deja Vu Security where he
specialized in hardware penetration testing.

Commentary
By Jonathan rockway (jrockway)

(On the purpose of the script...)

Some people think that they can

secure their sites against XSS by

regexing all the “bad JavaScript” out. If

the “security software” sees “document.

cookie”, then it stops the script from

executing. (Or it just replaces it with

the empty string, etc.)

The problem is, there are a lot of

ways to say document.cookie, and a

blacklist is going to miss one of them.

Moral of the story: if people can

execute scripts on your page, you’re

0wned. Everyone competent knows

this, but sometimes the less competent

are slow to realize this.

So, the script that the article

describes is for their benefit. Good luck

writing a regex to stop this one.

(There are also even simpler

“exploits”, if you regex document.

cookie to the empty string, then “docu-

ment.document.cookiecookie” regexes

to “document.cookie”. Ooops!)

Reprinted with permission of the original author. First appeared in hn.my/javascript.

http://hn.my/javascript

Try it with your team: www.rypple.com/hacker

#badass

Reprinted with permission of the original author. First appeared in hn.my/javascript.

http://www.rypple.com/hacker
http://hn.my/javascript

16  STARTUP

The Designer Who Learned
Django and Launched Her
First Web App in 6 Weeks

I’m a designer and front-end

developer. After being turned

down by Y Combinator, I

decided to launch a simple webapp

to get myself on the path of

development.

 Say hello to the final product:

WeddingInviteLove.com. It’s not too

complex, code-wise. I deliberately

chose something that would be

rather simple to get myself off

the ground. This web app was a

departure from my earlier project,

WeddingType.com, where I launched

my cofounder search on Hacker

News in August, found a cofounder,

started building the product, applied

to Y Combinator for Winter 2011,

got an interview, was turned down,

and decided to part ways from the

cofounder. I’m still planning on

launching WeddingType, but if was

going to learn how to code, I would

have to take baby steps first — thus,

WeddingInviteLove.

Working on a different idea, but
not pivoting
If your idea doesn’t initially work

out, try working on a related project

that’ll enhance your original idea

while keeping your enthusiasm for

the area. Both WeddingType and

WeddingInviteLove are in the same

space — wedding invitations — but

catering to two different types

of customers. WeddingType, the

invitation typography generator, is

for non-designer couples looking to

save some money by creating their

own invitations. WeddingInviteLove

is a directory of boutique wedding

invitation designers, for couples

who are looking to spend more for

a professional, higher quality design.

They both increase my prominence

and reach within the wedding invita-

tion industry, but also avoid poaching

customers from each other.

Take advantage of help
Why did I choose Python and

Django over Ruby or any other

programming language? I needed

to take advantage of the resources I

had, mainly, @shazow, my bf, who’s

an expert in Python but specializes

in Pylons, a different framework.

I’ve heard a lot of quality discus-

sions between Pylons and Django,

but for me, Django has a lot more

hand-holding than other frameworks

and a lot of tutorials online. For

nitty-gritty Django questions that

Andrey couldn’t answer, I tweeted

that I needed some help and got two

awesome advisors, @kantrn, who I

met in person several times to work

out problems I was having, and

By Tracy Osborn

STARTUP

http://WeddingInviteLove.com
http://WeddingType.com

  17

@kennethlove, who I’d IM at all

points in the night for help with

specific bugs. I also used @kenneth-

love’s screencast blog tutorial

[hn.my/djangostart], since I could

relate it directly to my project. Pro-

files on WeddingInviteLove are like

blog posts on a blog; I just changed

some names around. All code was

written by me while I took advantage

of the numerous Django applica-

tions, such as django-registration.

Build the web app first, then
design it
It was tempting to build the entire

interface first, but I deliberately

ignored the design until I had

things 90% working. This got me

to constantly work on the code

before working on the “fun stuff.”

Plus, it encouraged me to launch

quickly since as soon as the code was

finished, all I had to do was “skin”

it before getting it live with the

assumption that I would be iterating

on the design after it launches. Also,

if I needed to abandon the project

due to some insurmountable code

problem, the time wasted wouldn’t

include the time spent on design.

Launch as fast as possible
Nothing kills a new idea better than

taking too much time on it. There are

thousands of things more that I could

have done to improve WeddingInvi-

teLove before I launched it, but get-

ting it out and generating feedback

was much, much more important.

I don’t mean you should launch an

incomplete project, but pare down

your features to the very minimum

and get it live as fast as possible.

One problem I faced was convinc-

ing designers to sign up before the

site was live, so I created three fake

profiles and emailed 10+ designers

with screenshots of the homepage

and future profile pages, explaining

that I was building it for fun and it

would be free to list them. It’s a win-

win scenario for the designers and

myself, but emailing out of the blue

can look shady. One designer replied

that my email looked like spam, but

the professional design in the screen-

shot I linked convinced her to sign up

anyways. My design meant the differ-

ence between someone ignoring my

email versus taking it more seriously.

Once the website received its first

3 profiles, I got it live (onDotcloud),

but continued to email designers

directly, now pointing to the live

site. Overall, I emailed 67 designers

directly (see screenshot), with an

approximate 50% response rate and

slightly less sign-up rate.

“Nothing kills a new idea better
than taking too much time on it.”

http://hn.my/djangostart

18  STARTUP

The “real” launch — landing a
major blog post
I was up to about 20 designers (not

that big of a deal to any potential

customer looking for a full fledged

directory), when I traveled to New

York and decided to chat up one of

my favorite design bloggers, Tina

Roth Eisenberg (Swiss Miss). The

tactic of traveling and emailing

someone “famous” randomly in that

area and inviting them to lunch has

worked well in the past (I landed

a guest spot on The Big Web Show

after inviting Jeffery Zeldman for

lunch). After the lunch I was able to

show her WeddingInviteLove and

got some great feedback, all I was

expecting and hoping from the visit.

Awesomely, after I left, WeddingIn-

viteLove was blogged about on Swiss

Miss. Getting profiled on one of the

best design blogs out there was the

best beginner boost that I could ask

for, launching a trend of blog posts

and tweets, and landing Wedding-

InviteLove another 60 designers to

a total of 83, a week after the Swiss

Miss blog post.

Future monetization
I get asked a lot on how I’ll mon-

etize. I have no intention of ever

taking away free profiles, charging

customers to search, or acting as

a middleman and taking commis-

sion. My current plan is to launch

pro profiles, with support for more

portfolio images and other features

for every upgraded profile. Before I

can launch this, however, I have to

get more links and traffic to ensure a

pro profile is “worth it” to designers,

so I’ve been focusing on promotion

for the last few weeks.

Conclusion
•	 If you’re a designer, picking up

development looks really tough,

but stick it out for a couple of

months — being enabled with the

ability of creating your vision is

worth it.

•	 If you’re learning a new language,

don’t do tutorials verbatim — take

what they’re teaching, apply it to

a different product, and you will

learn a lot faster.

•	 Launch as fast as possible, since

feedback on the product is the

most important.

•	 Don’t be afraid of asking “big wigs”

for their advice — buying some-

one’s lunch is a small price to pay

for knowledgeable feedback.

•	 Ask for help as much as possible

and wherever you can find it. n

Tracy Osborn is a designer, front-end devel-
oper, and future superhero, currently work-
ing on WeddingInviteLove.com, an online
directory of wedding invitation designers.
Her portfolio and articles are located at
Limedaring.com, and she tweets odd and
curious things at @limedaring.

“If you’re learning a new language,
don’t do tutorials verbatim.”

Reprinted with permission of the original author.
First appeared in hn.my/wedding.

http://WeddingInviteLove.com
http://twitter.com/limedaring

Reprinted with permission of the original author. First appeared in hn.my/codelearn.

Reprinted with permission of the original author.
First appeared in hn.my/wedding.

http://cloudkick.com

20  STARTUP

What I Wish Someone
Had Told Me About

Startups 4 Years Ago

The year is 2007,

and I had just left

Microsoft to dive

into the startup

world. Like many first-time entrepre-

neurs, I was very excited about the

adventure. And like many first-time

entrepreneurs, I didn’t know where

to start.

So I attended events, meetups,

conferences, and mingled with the

local startup community in Seattle.

When time came to move to the

Bay Area, I found even more events,

more meetups, and more confer-

ences. The startup ecosystem was so

busy and alive, and I found a wealth

of knowledge and experience being

shared, which I consumed eagerly.

There were also blogs, videos,

interviews, and books that I

ingested with passion. They made

great conversation topics during

the events, the meetups, and the

conferences.

I even joined a startup incubator!

It wasn’t until I decided to launch

my own startup that I realized

that nothing I’ve read, watched, or

attended really prepared me for it.

And I mean it. Absolutely nothing.

I had forgotten most of what I’ve

learned, and what I remembered

didn’t apply much to my situation.

I’ve been snacking on other people’s

experiences and successes, and like

good junk food, it made me feel

bloated and satisfied.

Sorry to be a party pooper, but

that’s reality.

In the beginning, I tried apply-

ing the things I’ve learned to my

situation. That didn’t work. The

magic moment really happened

when I made peace with the fact

that I’d just wasted a good deal of

time learning things I didn’t really

need, believing there was a magic

word someone would utter that

would launch me into action. Every

event, every conference, and every

blog post was just another excuse

to postpone action one more day. I

made peace with it and moved on

with a beginner’s mindset, believing

that I will figure out what I need

along the way.

And that made all the difference.

There is a part in each one of us

that wants to create, deliver, and

launch into an entrepreneurial adven-

ture with all the uncertainty and

risk that it brings. But there is also

the other part, the one that wants to

feel certain and confident that we’re

making the right decision, and we’re

By Amir Khella

  21

not going to fail and hurt ourselves

along the way. And that’s where most

of the friction comes from.

But these blogs, these events, and

these interviews didn’t really remove

that friction. For a while, it just gave

me some comfort knowing there

were enough people doing the same

things. Going into entrepreneurship

was outside of my comfort zone, and

I’d just I moved from one comfort

zone into another. And you know

what? I was in good company!

One day I had my reality check

and saw that I was busy doing

many things, except working on my

product. A couple of months later, I

can say with full confidence: the only

thing that counted was to actually sit

down and do the work.

Don’t get me wrong. I think some

blogs and conferences are valuable.

But unless you’re already working

on something that provides the

framework for your learning and

networking, you’d be wasting some

valuable time.

Here are some action steps that

helped me overcome the “startup

friction syndrome”:

•	 I stopped reading startup news and

blogs for a few weeks, and I real-

ized I didn’t miss anything related

to my products. It didn’t matter

who got funded, who got acquired,

or why Internet Explorer was

losing market share against Google

Chrome. The only “who”s I care

about are the customers, and the

only “what”s I focus on are their

needs and desires, and how to best

deliver value to them.

•	 I stopped going to startup events

for a couple of months, and started

catching up with friends over

coffee or drinks instead. I still go

to one or two events each month,

but I do it for fun. I no longer

confuse going to entrepreneurship

events with being an entrepreneur.

•	 I taught myself through small

projects. I broke down ideas into

small manageable chunks, and gave

myself deadlines to finish each of

them. Projects and experiments

are amazing teaching devices,

because you learn as needed, and

you learn first-hand. Keynotopia

has helped tremendously in

getting ideas out of my head and

into a format that I can quickly

see, interact with, and show to

potential customers — that’s why

I created it in the first place!

“The only thing that counted was to
actually sit down and do the work.”

22  STARTUP

•	 In each step, I came up with a list

of questions that would help me

move to the next step. Whether it

was getting more traffic, improv-

ing the product, or increasing

revenue without increasing traffic,

I came up with the best questions

I could, then I did research, asked

people, and I put the answers into

action immediately. Every piece

of information not acted on takes

too much space in my biological

memory stick.

•	 This is my favorite: I created more

fear of not starting than the fear of

starting. I realized that every day I

waited a customer was not getting

my solution, and a competitor

was getting closer to that solution

before I did. I even imagined my

worst nightmare if I’d failed to

take action: I was Milton from

Office Space, tucked in the corner

cubicle of Innotech, staring at my

red stapler, and waiting for my

next paycheck. That was the magic

kick-in-the-butt I was looking for.

•	 I first got things done, then I got

them done right. I learned (the

hard way) that momentum mat-

tered most. If I can’t take action

right away on my idea, chances

are I never will. Whenever I get an

idea nowadays, I do something to

pin it to my reality, and to make it

tangible. I do it in a quick and ugly

way, then figure out how to do it

better, and learn only what I need

for that.

•	 I faced reality: nothing was going

to happen until I went out of my

comfort zone and did it. Many

wait, but a few act.

I want to leave you with a quote

that changed my life: “successful

people aren’t necessarily smarter or

luckier than others. They just try so

many things and fail until something

works out.”

Don’t be an entrepreneur by

association. Be an entrepreneur by

action and results. n

Amir is an entrepreneur, hacker, designer,
and artist. He enjoys simplifying complex
problems and launching small profitable
products. His latest venture, Keynotopia.com,
was launched in 3 hours, with a $47.50
budget, and had its first paying customer
within 10 minutes of launch.

AFAIC, Success = (BuildingStuff) * (TheValueOfEverythingElse)

If you’re not building stuff, it doesn’t matter how much value you get out of everything else. Zero is still zero.

Sorry it took you 4 years to learn that lesson. It took me a while, too. I don’t really know how long because I don’t look

back. I suspect none of us should.

Commentary
By ed weissman (edw519)

“Don’t be an entrepreneur by association.
Be an entrepreneur by action and results.”

Reprinted with permission of the original author.
First appeared in hn.my/action.

http://Keynotopia.com
http://hn.my/action

Reprinted with permission of the original author.
First appeared in hn.my/action.

http://sendgrid.com/hacker
http://hn.my/action

24  SPECIAL

How to Train Your Brain to
Flip to a New Language

When you start learn-

ing a new language,

common wisdom

suggests that you have two possible

goals (not mutually exclusive). One

is passing an exam. Maybe you took

French while in High School with no

other goal than getting a good grade,

not giving a damn about the country,

the language, or the people. The other

common goal is the dreaded F-word:

fluency. Forget common wisdom —

there is something more important

than the vague notion of fluency.

The term “fluency” is very ambigu-

ous, because there is no scale in

measuring fluency. Personally, I can

get by in most situations with the

English language, but I only consider

myself fluent when talking about

mathematics, where my vocabulary

is almost complete and the grammar

I know is enough for all possible

themes that can occur.

When I am starting with a new

language, I don’t set my views in

some abstract fluency. I want what

may be called “working fluency,” or

as I put in a post in my blog,

“getting to the language switch

[hn.my/switch].” What is the

language switch?

It’s like feeling that, unexpect-

edly, you have a button in your

brain. When you push it you can

get thoughts straight to your target

language. This is not the same as

being fluent, because you can get to

the point of being able to push the

switch way before you are fluent.

You can be happily talking (or

writing) in Irish and suddenly one of

the words you want to say just isn’t

there. You have a small short-circuit

in your switch, easily repaired by

learning (or relearning) the trouble-

some word.

Once you are there and have a nice

switch inside you, you can be pretty

sure of at least being able to interact

with locals and stop feeling out of

place. Maybe you will have to stop

in the middle of a phrase and look

at your dictionary, or ask in some

common language, or just point your

finger to the moon. The million-dol-

lar question is then, how do you get

there? More to the point: how do you

get there when your target language

does not have a lot of speakers?

The language switch is not built.

It is trained. As Vince Lombardi said,

“Perfect practice makes perfect.”

Keep on drilling standard phrases.

For example, something I usually

do is say to myself, komdu sæll og

blessaður! when I pass a man by the

street, and komdu sæl og blessuð!

when I pass a woman. These are two

common greetings in Icelandic, and

you need to get used to the correct

By Ruben Berenguel

SPECIAL

http://hn.my/switch

  25

form for men and women. The best

way to make it part of you is just to

drill it in some funny way like this,

until it is as natural as saying “hello!”

You can also use old business cards

(or here in Spain, train tickets, which

are credit card sized) to practice

verb conjugation. Write in the blank

side of one the conjugation of “to

be” (in Icelandic, að vera, in Irish bí)

and put it in your pocket. Whenever

you have a few spare seconds, like

waiting in queue to pay at the store

or waiting for the streetlight to turn

green (as a pedestrian), take a look at

it and repeat them to yourself. You

will be amazed how easily this hard-

wires constructs into your brain.

You can extend these “cheap 'n

easy” drilling techniques to harder

stuff like conditional forms, future,

colors, numbers, and whatever, just

by sheer persistence and a constant,

playful spirit. Throw a few dice and

say the number they spell. Count

your pocket money in Irish. Plan

your weekend in Icelandic. Be cre-

ative! If what you really want is to be

able to communicate, being playful is

a must. This is especially important if

you’re trying to pass an exam!

Keep in mind that perfect practice

makes perfect. You should try to

pronounce words correctly and (if

necessary) have a clear idea of how

they are written. And mixing differ-

ent kind of drills will also help: keep

a stack of verbs by your door and

pick one different each morning!

Do a little of this each day, and

without even realizing it, you will

be able to generate phrases without

effort, whether speaking or writing.

Read a little daily, and the future

with your language could not be

any brighter. n

Ruben Berenguel is a mathematician fin-
ishing his PhD about invariant manifolds
in infinite dimensional dynamical systems.
A lifelong language geek, he is currently
trying to learn Irish and Icelandic, and set-
ting sights on Norwegian and Swedish. He
blogs in mostlymaths.net and tweets as
@berenguel.

I moved to a German-speaking

country about a year ago. I’m not

brilliant at languages, but I’ve made

great progress, and most people

are surprised to find out how little

German I spoke a year ago. Here are

some of my tips:

1.	Use Mnemosyne every day. It is

computerized flash cards based on

the SuperMemo algorithm. Do not

skip days. At around 2,000 words

memorized (9 months) the “switch

flipped”. At 2,000 words you can

have conversations with about

anyone. Business is still hard, but

small talk is easy.

2.	Read trashy literature — People, In

Touch, Celebrity Rags — these are

all written so 10-year-olds can read

it. Newspapers use bigger words

and don’t have pictures. Reading

about celebrities is a hassle, but it

helps and it’s an appropriate level.

3.	Got kids? Turn the Wii and

Cartoons to the foreign language.

This makes your play time also a

learning process.

4.	Do not turn your computer to a

foreign language. This will cripple

your productivity. I am forced to

work in German on a Windows

box now and it is really awful and

frustrating. Not recommended at

all. Not one bit.

5.	German Tuesday - Deutsche

Dienstag - Every Tuesday was

German Tuesday. Anyone caught

speaking English to me had to

pay a Franc into a Jar. If I spoke

English then I paid. This makes my

German a fun game in the office.

Plus we had Bier Freitag at the end

of the week. I stole this idea from

an outsourcing company I worked

with where Tues and Thur were

English-only days.

Commentary
By Hamlet D’Arcy (hamletdrc2)

Reprinted with permission of the original author.
First appeared in hn.my/flip.

http://mostlymaths.net
http://twitter.com/berenguel
http://hn.my/flip

26  DESIGN

Rock Solid Website
Layout Examples

Layout can be both one of the easiest and one of

the trickiest facets of web design. Sometimes a

designer can bust out an amazing layout in min-

utes, and sometimes that same designer can struggle for the

better part of day with the same task.

Each project is unique and calls for a unique solution, but

I’ve found it helpful to keep a few rock solid and incredibly

versatile alignments in mind that I can bust out when I get

stuck. The ten layouts below should be enough to get you

through even the worst cases of designer’s block when

you can’t figure out the best way to arrange the content

on your page.

Keeping It Simple
Page layout is equal parts art and science. Creating some-

thing that’s visually attractive and unique takes an artist’s

eye. However, there are several very easy-to-follow guide-

lines that you can use to create solid layouts that work for

any number of cases. These principles include choosing

and sticking to an alignment, structuring your whitespace

properly, and highlighting important elements through

size, positioning, etc.

Designers often stress out far too much about the layout

process. We have a tendency to approach a project while

thinking that it needs to be completely unique in every

respect to be worth our time and the client’s money. How-

ever, if you have a good look around the web you’ll see

that this isn’t necessarily the case. Great looking websites

often use layouts that are fairly simple and not the least

bit unique. It’s true that the pages we designers marvel at

the most are often from the peculiar sites that break the

mold, but your average client just wants something usable,

clean, and professional.

In this article we’re going to take a look at ten very

common layouts that you can find on countless sites across

the web. Notice that the way these sites are styled — mean-

ing the colors, graphics and fonts — is unique, but the basic

structure of the sites themselves are based on tried and true

methods for laying out a webpage. We’ll emphasize this by

first showing you a simple silhouette of the layout so that

you can project your own thoughts and designs onto it.

Then we’ll follow it up with one or two examples of real

sites that use the layout.

By Joshua Johnson

DESIGN

  27

Three Boxes
This is probably the simplest layout on the list. In fact,

you’ll be tempted to think that it’s far too simple to ever

fit your own needs. If this is the case, you’ll be surprised if

you really put some thought into how versatile the arrange-

ment really is.

The three-box layout features one main graphic area

followed by two smaller boxes underneath. Each of these

can be filled with a graphic, a block of text, or a mixture of

both. The main box in this layout is often a jQuery slider,

capable of showcasing as much content as you want!

The silhouetted shapes along the top are areas that can

be used for logos, company names, navigation, search bars

and any other informational and functional content typically

on a website.

 This design is ideal for a portfolio page or anything

that needs to show off a few sample graphics. Each of the

images could be a link that leads to a larger, more complex

gallery page. Later in the article we’ll see how to mix this

idea up even further.

Next we see a beautiful implementation of the three

box layout in Peter Verkuilen’s portfolio. As suggested

above, the primary graphic rotates and displays a number

of Peter’s recent projects. Clicking on one of the boxes will

bring you to that project’s dedicated page where you can

find out more information.

Simple, effective, and attractive. You can probably pull

off a full, live web page with this layout in under an hour!

3D Screenshots
As developers continue to create an endless collection of

web apps, the 3D screenshots layout seen below, or some

variant of it, is becoming more and more popular. The basic

idea is to top your page with a headline and then toss in

some stylized previews of your application. These often

come with reflections, heavy shadows, big background

graphics, or even complex adornments such as vines crawling

all over the screenshots, but the core idea is always really

simple.

 Another place I see this trick used a lot is in pre-built

themes. In these cases, a designer is selling a stock layout

and really needs his/her placeholder graphics to shine, and

nothing says cool and modern like some fancy 3D effects!

http://www.peterverkuilen.com/

28  DESIGN

Pixelworkshop uses this technique, not as a stock theme,

but to actually showcase stock themes! Here the 3D screen-

shots swap out in a slideshow and come up in a number of

different arrangements. Stop by and take a look to see all

the various ways the designer presents the images.

Advanced Grid
Many of the layouts that you’ll see in this article adhere to

a pretty strict grid alignment. However, for the most part,

they don’t simply suggest a page full of uniform thumbnails.

For instance, the layout below mixes up the size of the

images to avoid redundancy.

As with the three boxes example, there’s one primary

graphic heading up the page. This is followed by a simple

twist on the idea of a uniform grid of thumbnails. The

space would allow for a span of four squares horizontally,

but instead we’ve combined the first two areas so that the

left half of the page differs from the right.

 As we mentioned with the first layout, the blocks don’t

have to be images. For example, you can imagine this as

blocks of text on the left flanking square images on the right.

In the gorgeous example below, this layout is used for a

children’s clothing website. Notice that near the bottom

of the alignment, they’ve switched things up even further

so that the left side features an almost oddly-sized image

followed by a paragraph, neither of which perfectly line up

with the content on the right side.

Again, once you’ve got your basic layout in mind, you

can make subtle changes like this while maintaining the

integrity of the underlying structure. Another interesting

trick they used was to split up the main graphic into two

areas. It’s actually all one JPG, but it has been divided into

two images to show off even more content.

http://pixelworkshop.fr/
http://www.neveinspired.com/

  29

Featured Graphic
Sometimes you don’t have enough content for a page full of

images. So what do you do if you want to showcase one icon,

photo, or perhaps even a symbol such as an ampersand? The

layout below is a super easy solution that is quite popular

and reads very well due to the lack of distractions.

 The result is a page that is bold, yet minimal and clean.

The statement it makes is strong and impossible to miss,

just make sure your graphic is good enough to be featured

so prominently!

Just how common is this layout? A lot more common than

you might think! With minimal effort, I was immediately

able to come up with two sites that use some close variant

of this technique. Notice that you have options for how you

want to format the text and even where you want to place

the navigation. The second site rearranges the secondary

elements quite a bit, but it’s instantly recognizable as the

same basic layout.

 Five Boxes
The five-box layout is simply an evolution of the three-box

layout. All of the same logic applies, it’s just been modified

to hold even more content. It could easily be four boxes as

well, it just depends on what you want to showcase. It also

makes it look like you put a little more effort into the design!

Obviously, as you add to the layout, the secondary items

become smaller and smaller so for most uses, five boxes is

probably going to approach the limit.

 Just as with the three box layout, this one is so versatile

that it can literally be used on just about any type of site.

Ideas for switching it up include adding a large background

graphic, rounding the corners, adding shadows and/or reflec-

tions, or perhaps even adding an interactive element to the

smaller thumbnails. You could easily add in buttons that

cause them to scroll horizontally.

Here again we have two examples of this layout being

used in slightly different ways. The big thing to notice here

is that despite having similar layouts, these two sites almost

couldn’t appear more different from each other if they

tried. One uses a hand drawn illustration style, the other

photographs and gradients. The first one uses muted colors

and script fonts, the second bright colors and modern fonts.

This drives home the argument that using one of the

layouts in this article won’t kill your creativity. Once you’ve

arranged the content, there’s still plenty to be done in the

area of aesthetics. This is what will really define the site’s

personality and often make or break a client proposal.

http://www.bloomfirst.com/
http://patdryburgh.com/

30  DESIGN

Fixed Sidebar
Thus far all the sites that we’ve seen have had a top-side

horizontal navigation. The other popular option is of course

a vertical navigation, which lends itself to creating a strong

vertical column on the left side of the page. Often this is

a fixed element that stays where it is while the rest of the

page scrolls. The reason for this is so the navigation can stay

easily accessible from any point in the site.

The rest of the content can borrow from one of the

other layouts on this list. Notice that I’ve again modified

the three-box layout, this time in a four-box arrangement.

Once you’re done reading this article, look at all the layouts

again and think about how you can mix and match the ideas

to create new layouts.

As with the previous example, the two sites below actu-

ally look very different, even from a layout standpoint.

However, if you look again you’ll notice that they both

use a left-side vertical sidebar and the four-box layout. The

second example has simply moved the smaller boxes to the

top of the page! Yet another interesting idea that you should

keep in mind when creating a site based on these examples.

http://www.truetea.cz/
http://www.erikiggmark.se/
http://www.h3ostudio.com/
http://www.ghosthorses.co.uk/

  31

Headline & Gallery
Everyone loves a good gallery page. From a layout per-

spective, what could be simpler? All you need is a solid,

uniform grid of images and some room for a headline with

an optional sub-head. The key here is to make your headline

big and bold. Feel free to use this as a point of creativity

and include a script or some crazy typeface.

This example uses squished rectangles to mirror the

real site below, but this can and should be modified to

fit whatever you’re showing off. The point here is to get

you to think outside the box and not default to a square,

maybe you could use vertical rectangles or even circles in

your own gallery!

The developer below used this design to create a gallery

of the logos for clients that he has worked with. Notice that

he’s not suggesting that he created the logos, but is simply

showing off his client base in a very visual fashion. This

goes to show that even if you’re not a designer, a thumbnail

gallery might be a great way to showcase an otherwise plain

and boring list of items.

Featured Photo
The layout below is extremely common, especially among

the photography community. The basic idea here is to have

a large image displaying either your design or photogra-

phy (anything really), accompanied by a left-side vertical

navigation.

The navigation might be the strongest in a left alignment,

but feel free to experiment with a center or even right

alignment to compliment the straight edge of the photo.

The site below really makes the most of this layout by

turning the one featured image into a horizontal slider.

One image is featured at a time but you can see the next

one peaking onto the right side of the page. When you

hover over this, an arrow appears that allows you to slide

through the photos.

As an alternative, why not try to make a site that utilizes

this same layout but with a vertically sliding image gallery?

The space almost seems more suited for this as you won’t

have to include an awkward cutoff area to protect the

navigation.

http://blackantmedia.com/
http://www.barbaragallardo.com/

32  DESIGN

Power Grid
The power grid is the most complex layout in this article,

but it is one of the most effective layouts I’ve seen for pages

that need to contain all kinds of various related content.

From images and music players to text and videos, you can

cram just about anything into this layout and it stays strong.

The key lies in the bottom half of the preview above.

Notice that there’s actually a large container that holds a

series of rectangles. This container provides you with the

boundaries for your space, and all the content you place

inside should be formatted in a strong but varied grid, not

unlike the advanced grid layout near the beginning of this

article.

This one can be really hard to wrap your mind around

until you see some live examples. The first is a showcase

of art and culture. That description alone tells us that the

content is going to be all over the board, and indeed we

see that the page is filled with Twitter feeds, photos, lists,

images and more.

However, it all fits tightly inside the grid that the designer

has established. This layout is easily extendable so that no

matter how much you throw at it, the overall appearance

should remain fairly logical and uncluttered as long as you

format and arrange your content properly.

This layout above heavily reminded me of a tutorial I

wrote a while back on designing a website for a rock band.

Here we have a very different looking page, but a nearly

identical arrangement of content, especially in the lower

half. The real trick to pulling this layout off right is to start

with a few really big boxes, which are then broken up into

smaller areas of content as needed.

http://www.proxart.org/

  33

Full Screen Photo
The final layout on the list is another that is ideally suited

for photographers, but will work on any site with a big,

attractive background graphic to display and a limited

amount of content.

It can be really hard to read content when it is laid over

a background image, so the basic idea here is to create an

opaque (or nearly opaque) horizontal bar that sits on top

of the image and serves as a container for links, copy, logos

and other content.

Rather than using the bar as one really wide content area,

try splitting it into a few different sections. This can be

done by varying the background color, adding some subtle

vertical lines as dividers, or even breaking the big box into

smaller disconnected boxes as I’ve done above.

This layout might feel incredibly restrictive, but below

we get a glimpse into just how much it can hold. This

photography site fills the bar with navigation, an “About”

block of text, a few recent photos with descriptions, and a

large logo! Not bad for such a small space, and it pulls all

this off in a very clean and non-cluttered way.

Conclusion
There were a few key points made above that I want to

reiterate in closing. First, even though page layout definitely

isn’t necessarily a “one size fits all” practice, there is a science

to it that can be quickly and easily applied in an incredibly

vast number of circumstances.

Next, the layout ideas presented above need not result

in cookie cutter websites that all look the same, but instead

merely provide you with a basic canvas on which to build

a notably unique, finished design.

Finally, the key to successfully implementing these ideas

is to remember that they’re not set in stone. Each should be

changed to fit your specific project and can even be mixed

and matched to create new ideas! n

Josh Johnson is a freelance designer and writer from Phoenix,
Arizona. He’s currently the editor of both DesignShack.co.uk and
iPhone.AppStorm.net and regularly contributes to a number of other
online publications including Smashing Magazine and Six Revisions.

Reprinted with permission of the original author. First appeared in hn.my/layout.

http://DesignShack.co.uk
http://iPhone.AppStorm.net
http://www.jochemgugelot.nl/
http://hn.my/layout

34  PROGRAMMING

Using Git to
Manage a Web Site

The HTML source for my web site lives in a Git

repository on my local workstation. This article

describes how I set things up so that I can make

changes live by running just git push web.

The one-line summary: push into a remote repository

that has a detached work tree, and a post-receive hook that

runs git checkout -f.

The Local Repository
It doesn’t really matter how the local repository is set up,

but for the sake of argument, let’s suppose you’re starting

one from scratch.

$ mkdir website && cd website
$ git init
Initialized empty Git repository in /home/ams/web-
site/.git/
$ echo 'Hello, world!' > index.html
$ git add index.html
$ git commit -q -m "The beginnings of my web site."

Anyway, however you got there, you have a repository

whose contents you want to turn into a web site.

The Remote Repository
I assume that the web site will live on a server to which

you have ssh access, and that things are set up so that you

can ssh to it without having to type a password (i.e., that

your public key is in ~/.ssh/authorized_keys and you are

running ssh-agent locally).

On the server, we create a new repository to mirror the

local one.

$ mkdir website.git && cd website.git
$ git init --bare
Initialized empty Git repository in /home/ams/web-
site.git/

Then we define and enable a post-receive hook that

checks out the latest tree into the web server’s Documen-

tRoot (this directory must exist; Git will not create it for

you):

$ mkdir /var/www/www.example.org
$ cat > hooks/post-receive
#!/bin/sh
GIT_WORK_TREE=/var/www/www.example.org
git checkout -f
$ chmod +x hooks/post-receive

By Abhijit Menon-Sen

PROGRAMMING

  35

Back on the workstation, we define a name for the remote

mirror, and then mirror to it, creating a new master branch

there.

$ git remote add web ssh://server.example.org/home/
ams/website.git
$ git push web +master:refs/heads/master

On the server, /var/www/www.example.org should now

contain a copy of your files, independent of any .git

metadata.

The Update Process
Nothing could be simpler. In the local repository, just run:

$ git push web

This will transfer any new commits to the remote reposi-

tory, where the post-receive hook will immediately update

the DocumentRoot for you.

(This is more convenient than defining your workstation

as a remote on the server, and running git pull by hand

or from a cron job, and it doesn’t require your workstation

to be accessible by ssh.)

Notes
First, the work tree (/var/www/www.example.org above) must

be writable by the user who runs the hook (or the user needs

sudo access to run git checkout -f, or something similar).

Also, the work tree does not need to correspond exactly

to your DocumentRoot. Your repository may represent only

a subdirectory of it, or even contain it as a subdirectory.

In the work tree, you will need to set the environment

variable GIT_DIR to the path to website.git before you can

run any git commands (e.g. git status).

Setting receive.denycurrentbranch to “ignore” on the

server eliminates a warning issued by recent versions of

git when you push an update to a checked-out branch on

the server.

You can push to more than one remote repository by

adding more URLs under the [remote "web"] section in

your .git/config.

[remote "web"]
url = ssh://server.example.org/home/ams/website.git
url = ssh://other.example.org/home/foo/website.git

There are also other hooks. See githooks(5) [hn.my/

githooks] for details. For example, you could use pre-receive

to accept or deny a push based on the results of an HTML

validator. Or you could do more work in the post-receive
hook (such as send email to co-maintainers; see contrib/
hooks/post-receive-email).

I wrote this after reading Daniel Miessler’s piece, “Using

Git to Maintain Your Website [hn.my/gitmaintain].” His

setup is straightforward: push to a bare repository on the

server and pull the changes into a second clone that is used

as the DocumentRoot. My implementation has the same

effect, but there are fewer moving parts, and .git is far

from the DocumentRoot. n

Abhijit Menon-Sen is a freelance Unix programmer in New Delhi,
India. He switched from Perforce to Git some years ago, and enjoys
helping people to understand Git better.

Reprinted with permission of the original author. First appeared in hn.my/gitman.

http://hn.my/githooks
http://hn.my/githooks
http://hn.my/gitmaintain
http://hn.my/gitman

36  PROGRAMMING

Combinatorial Applications
of Spacefilling Curves

A spacefilling curve is a continuous

mapping from a lower-dimensional

space into a higher-dimensional one.

A famous spacefilling curve is that due

to Sierpinski, which is formed by repeatedly copying and

shrinking a simple pattern (the convoluted tour in Figure 1).

A useful property of a spacefilling curve is that it tends

to visit all the points in a region once it has entered that

region. Thus, points that are close together in the plane will

tend to be close together in appearance along the curve.

This forms the basis of the heuristic, invented by L.

Platzman and me, to produce a reasonably short tour of n

given locations (the so-called Traveling Salesman’s Tour).

Simply visit them in the same sequence as does the spacefill-

ing curve. For example, a short tour of the points marked

in red is indicated by the green lines, which connect the

points in the same sequence as their appearance on the

spacefilling curve.

By John Bartholdi

Figure 1: A heuristic solution to the Traveling Salesman
Problem is to visit the points in the same sequence as the Sierpinski
spacefilling curve.

  37

The spacefilling curve heuristic (SFC) has many advan-

tages, if you are willing to accept solutions that are about

25% longer than optimum (expected, for random point

sets). These advantages include:

•	 The SFC algorithm is fast. It is essentially sorting, and so

it requires only O(n log n) effort to construct a tour of

n points and only O(log n) effort to update the solution

by adding or removing points.

•	 The SFC heuristic does not need explicit distances

between points and so there is no need to compute or

measure these, as most other heuristics must.

•	 The algorithm is parallelizable. In comparison, the com-

parable algorithm, Nearest Neighbor, is apparently not

parallelizable.

•	 The length of links in the SFC tour of random points

is expected to be small and of small variance, so that

(1/k)-th of the stops account for about (1/k)-th of the

travel time. This means that an SFC tour can easily be

converted to tours for k vehicles simply by partitioning

the SFC route into k contiguous pieces.

The spacefilling curve heuristic has been used in many

applications, including:

•	 To build a routing system for Meals-on-Wheels in Fulton

County (Atlanta, GA), which delivers hundreds of meals

daily to those too ill or old to shop for themselves. We

built this on two rolodex card files.

•	 To route blood delivery by the American Red Cross to

hospitals in the Atlanta metropolitan area.

•	 To target a space-based laser for the Strategic Defense

Initiative (commonly known as the “Star Wars” program).

This application was communicated to us by scientists

from TRW Systems, an SDI contractor, who chose the

spacefilling curve heuristic over alternatives because it

was well-analyzed, parallelizable, and could run on a

computer that was boostable to orbit.

•	 To control a pen-plotter for the drawing of maps. (M.

Iri and co-workers at the University of Tokyo showed

how it could be used to reduce drawing time for large

road maps by routing the pen efficiently. They gave an

example in which drawing time was reduced from 10

hours to 1/2 hour.)

Figure 2: A TSP tour of 15,112 cities in Germany. This tour was
induced by the Sierpinski spacefilling curve in less than a second
and is about 1/3 again as long as the shortest possible.

Figure 3: All the points of a triangulated irregular network can be
indexed continuously by finding a Hamiltonian path or circuit of
the triangles and filling each with a suitably-oriented spacefilling
curve.

38  PROGRAMMING

The idea of routing by spacefilling curve has subsequently

been incorporated into the ARC/Info Geographical Informa-

tion System, the CAPS Logistics Toolkit of Baan Systems,

and other commercial systems managing 2-dimensional data.

A summary of the ideas, minus technical details but

with pointers to technical literature, may be found in my

class notes, A routing system based on spacefilling curves

[hn.my/mow, pdf format, 22 pages]. To accompany this is

a table of Sierpinski indices of the points of a 100 x 100

grid [hn.my/tbl, pdf format, 22 pages], with which you can

set up your own routing system in an afternoon. Techni-

cal details about algorithm performance, along with cita-

tions to related work, may be found in “Spacefilling curves

and the planar travelling salesman problem” with L. K.

Platzman, Journal of the Association for Computing Machinery

36(4):719-737 (1989).

It is interesting to compare this lightweight heuristic

with a heavy-duty optimization package, such as the one

developed by D. Applegate, R. Bixby, V. Chvatal, and W.

Cook. Their TSP package is a tour-de-force of mathematical

optimization technology and it has been used to solve a trav-

eling salesman problem for 15,112 cities in Germany. This is

the largest non-trivial problem for which a proven optimal

solution has been generated. Applegate et al. describe the

computational resources used:

The computation was carried out on a network of 110
processors located at Rice University and at Princeton Uni-
versity. The total computer time used in the computation
was 22.6 years, scaled to a Compaq EV6 Alpha proces-
sor running at 500 MHz. The optimal tour has length
1,573,084 in the units used in TSPLIB; this translates to a
trip of approximately 66,000 kilometers through Germany.

 For comparison, Paul Goldsman used the spacefilling

curve heuristic to solve the same instance. Our solution

was about 34% longer (Figure 2). At a leisurely 600 km

of travel per day this means the time to drive our solution

would be about 147 days versus 110 days for the solution

of Bixby, Chvatal, and Cook. But our computation took less

than a second on a cheap laptop, so here is the tradeoff:

use our heuristic and get a reasonable route immediately.

Alternatively, configure a network of 110 processors, then

spend two months computing the shortest route to save a

month of driving.

Loren Platzman, Bill Nulty, Paul Goldsman, and I have

extended some of these ideas in several directions:

•	 The vertex adjancency dual of a triangulated irregular

network has a Hamiltonian cycle [hn.my/hamiltonian]

by J. Bartholdi and P. Goldsman. This appeared in slightly

revised form in Operations.Research Letters 32: 304-308

(2004). The ideas here have been very nicely summarized

and illustrated with a Java applet [hn.my/perouz] by

Perouz Taslakian.

•	 Multiresolution indexing of triangulated irregular net-

works [hn.my/tins] by J. Bartholdi and P. Goldsman,

IEEE Transactions on Visualization and Computer Graphics
10(3):1-12 (May/June 2004)

•	 Continuous indexing of hierarchical subdivisions of the

globe [hn.my/hglobec] by J. Bartholdi and P. Goldsman.

This appeared in slightly revised form in Int. J. Geographi-
cal Information Science 15(6):489-522 (2001).

•	 Vertex-labelling algorithms for the Hilbert spacefilling

curve [hn.my/hilbert] by J. Bartholdi and P. Goldsman.

This appeared in slightly revised form in Software —

Practice and Experience 31:395-408 (2000). A clever

adaptation for use in wavelet image compression appears

here [hn.my/wavelet].

•	 Robust Multidimensional Searching with Spacefilling

Curves by J. Bartholdi and W. Nulty, Proceedings of the
Sixth International Symposium on Spatial Data Handling,
Edinburgh, Scotland, September 1994.

•	 Design of efficient bin-numbering schemes for warehouses

[hn.my/binscheme] by J. Bartholdi and L. Platzman,

Material Flow 4:247-254 (1988). Shows how to create

short order-picking routes by numbering bins according

to a spacefilling curve. n

John Bartholdi is a professor in the School of Industrial and Systems
Engineering at Georgia Tech.

Reprinted with permission of the original author. First appeared in hn.my/space.

http://hn.my/mow
http://hn.my/tbl
http://hn.my/hamiltonian
http://hn.my/perouz
http://hn.my/tins
http://hn.my/hglobec
http://hn.my/hilbert
http://hn.my/wavelet
http://hn.my/binscheme
http://hn.my/space

  39

DP Zoo Tour

I’ve always thought dynamic programming was a

pretty crummy name for the practice of storing sub-

calculations to be used later. Why not call it table-filling
algorithms, because indeed, thinking of a dynamic program-

ming algorithm as one that fills in a table is quite a good

way of thinking about it.

In fact, you can almost completely characterize a dynamic

programming algorithm by the shape of its table and how

the data flows from one cell to another. And if you know

what this looks like, you can often just read off the complex-

ity without knowing anything about the problem.

So what I did was collect a bunch of dynamic program-

ming problems from Introduction to Algorithms and draw

up the tables and data flows. Here’s an easy one to start off

with, which solves the Assembly-Line problem:

 The blue indicates the cells we can fill in “for free”,

since they have no dependencies on other cells. The red

indicates cells that we want to figure out, in order to pick

the optimal solution from them. And the grey indicates a

representative cell along the way and its data dependency.

In this case, the optimal path for a machine to a given cell

only depends on the optimal paths to the two cells before it.

(Because, if there was a more optimal route, then it would

have shown in my previous two cells!) We also see there is

a constant number of arrows out of any cell and O(n) cells

in this table, so the algorithm clearly takes O(n) time total.

 Here’s the next introduction example, optimal paren-

thesization of matrix multiplication.

 Each cell contains the optimal parenthesization of the

subset i to j of matrices. To figure out the value for a cell,

we have to consider all of the possible combos of exist-

ing parentheticals that could have lead to this (thus the

multiple arrows). There are O(n2) boxes, and O(n) arrows,

for O(n3) overall.

By Edward Z. Yang

Someone told me it’s all happening at the zoo...

Reprinted with permission of the original author. First appeared in hn.my/space.

http://hn.my/space

40  PROGRAMMING

 Here’s a nice boxy one for finding the longest shared

subsequence of two strings. Each cell represents the longest

shared subsequence of the first string up to x and the second

string up to y. I’ll let the reader count the cells and arrows

and verify the complexity is correct.

There aren’t that many ways to set up dynamic program-

ming tables! Constructing optimal binary search trees is a

lot like optimal matrix parenthesization. But the indexes

are a bit fiddly. (Oh, by the way, Introduction to Algorithms
is 1-indexed; I’ve switched to 0-indexing here for my

examples.)

 Here we get into exercise land! The bitonic Euclidean

traveling salesman problem is pretty well-known on the

web, and its tricky recurrence relation has to do with the

bottom edge. Each cell represents the optimal open bitonic

route between i and j.

The lovely word wrapping problem, a variant of which

lies at the heart of the Knuth TeX word wrapping algorithm,

takes advantage of some extra information to bound the

number of cells one has to look back at. (The TeX algorithm

does a global optimization, so the complexity would be O(n2)

instead.) Each cell represents the optimal word wrapping

of all the words up to that point.

Finally, the edit problem, which seems like the authors

decided to pile on as much complexity as they could muster,

falls out nicely when you realize each string operation they

order you to design corresponds to a single arrow to some

earlier cell. Useful! Each cell is the optimal edit chain from

that prefix of the source to that prefix of the destination. n

Edward Z. Yang is an undergraduate currently studying computer
science at MIT/University of Cambridge. He is interested in topics
related to functional programming, and he plays the oboe.

Reprinted with permission of the original author. First appeared in hn.my/zoo.

http://hn.my/zoo

For the people who’ve always wondered why it was

called “dynamic programming”, there’s a funny story

there. I’ll quote Richard Bellman, who coined the term:

“I spent the Fall quarter (of 1950) at RAND. My first
task was to find a name for multistage decision processes.
An interesting question is, “Where did the name, “dynamic
programming” come from?” The 1950s were not good years
for mathematical research. We had a very interesting gentle-
man in Washington named Wilson. He was Secretary of
Defense, and he actually had a pathological fear and hatred
of the word “research.” I’m not using the term lightly; I’m
using it precisely. His face would suffuse, he would turn red,
and he would get violent if people used the term “research”
in his presence. You can imagine how he felt, then, about
the term “mathematical.” The RAND Corporation was
employed by the Air Force, and the Air Force had Wilson
as its boss, essentially. Hence, I felt I had to do something
to shield Wilson and the Air Force from the fact that I was
really doing mathematics inside the RAND Corporation.

What title, what name could I choose? In the first place, I
was interested in planning, in decision making, in thinking.
But “planning” is not a good word for various reasons. I
decided therefore to use the word “programming.” I wanted
to get across the idea that this was dynamic, this was multi-
stage, this was time-varying — I thought, let’s kill two birds
with one stone. Let’s take a word that has an absolutely
precise meaning, namely “dynamic,” in the classical, physical
sense. It also has a very interesting property as an adjective.
And that is: it’s impossible to use the word “dynamic” in
a pejorative sense. Try thinking of some combination that
will possibly give it a pejorative meaning. It’s impossible.
Thus, I thought dynamic programming was a good name.
It was something not even a Congressman could object to.
So I used it as an umbrella for my activities.”

So there you go: it was supposed to sound cool — and

dynamic — and like something that any self-respecting

congressman would want to fund. I’d always vaguely

suspected.

Commentary
By Peter scott (pjscott)

Senior Developer
youDevise, Ltd. (https://dev.youdevise.com)

London, England

60-person agile financial software company in London committed to learning and quality (dojos, TDD, continuous

integration, exploratory testing). Under 10 revenue-affecting production bugs last year. Release every 2 weeks. Mainly

Java, also Groovy, Scala; no prior knowledge of any language needed.

To Apply: Send CV to jobs@youdevise.com.

Front-end and Back-end Engineers
Meetup (http://www.meetup.com)

New York

Meetup thinks the world is a better place when groups of people meetup locally, in person, around a common inter-

est. We’re reinventing how this is done, but we can’t do it alone! We value iterating/launching quickly, pragmatism,

and long walks on the beach.

To Apply: http://meetup.com/jobs.

HACKER JOBS

  41

Reprinted with permission of the original author. First appeared in hn.my/zoo.

http://www.meetup.com
http://meetup.com/jobs
http://hn.my/zoo

Dream. Design. Print.
MagCloud, the revolutionary new self-publishing web service
by HP, is changing the way ideas, stories, and images find
their way into peoples’ hands in a printed magazine format.

HP MagCloud capitalizes on the digital revolution, creating a
web-based marketplace where traditional media companies,
upstart magazine publishers, students, photographers, design-
ers, and businesses can affordably turn their targeted content
into print and digital magazine formats.

Simply upload a PDF of your content, set your selling price, and
HP MagCloud takes care of the rest—processing payments,
printing magazines on demand, and shipping orders to loca-
tions around the world. All magazine formatted publications
are printed to order using HP Indigo technology, so they not
only look fantastic but there’s no waste or overruns, reducing
the impact on the environment.

Become part of the future of magazine publishing today at
www.magcloud.com.

25% Off the First Issue You Publish
Enter promo code HACKER when you set your
magazine price during the publishing process.

Coupon code valid through February 28, 2011.
Please contact promo@magcloud.com with any questions.

42  HACKER JOBS

http://www.magcloud.com

	Contents
	FEATURES
	The Git Parable
	($=[$=[]][(__=!$+$)[_=-~-~-~$]+({}+$)[_/_]+($$=($_=!''+$) [_/_]+$_[+$])])()[__[_/_]+__[_+~$]+$_[_

	STARTUP
	The Designer Who Learned Django and Launched Her First Web App in 6 Weeks
	What I Wish Someone Had Told Me About Startups 4 Years Ago

	SPECIAL
	How to Train Your Brain to Flip to a New Language

	DESIGN
	Rock Solid Website Layout Examples

	PROGRAMMING
	Using Git to Manage a Web Site
	Combinatorial Applications of Spacefilling Curves
	DP Zoo Tour

	HACKER JOBS

