
Issue 10 March 2011

Understanding Pac-man Ghost Behaviour

© Dainippon Type Organization, PAC-MAN:(D)NBGI

2

Cover Art Work: Dainippon Type Organization

Curator
Lim Cheng Soon

Proofreader
Jordan Greenaway

Printer
MagCloud

Contributors
ARTICLES

Daniel Tenner
Chad Birch
Martin Kleppmann
Rahul Vohra
Gabriel Weinberg
Evan Miller
Mike Saunders
Kenneth Ballenegger
James Hague
Cody Brocious

COMMENTARIES

Ed Weissman
Michael Melanson
Jacques Mattheij

HACKER MONTHLY is the print magazine version
of Hacker News — news.ycombinator.com, a social news
website wildly popular among programmers and startup
founders. The submission guidelines state that content
can be “anything that gratifies one’s intellectual curiosity.”
Every month, we select from the top voted articles on
Hacker News and print them in magazine format. For
more, visit hackermonthly.com.

Advertising
ads@hackermonthly.com

Contact
contact@hackermonthly.com

Published by
Netizens Media
46, Taylor Road,
11600 Penang,
Malaysia.

http://fifobooks.com
http://news.ycombinator.com
http://hackermonthly.com
mailto:ads@hackermonthly.com
mailto:contact@hackermonthly.com

 3

Contents
FEATURES

04 How To Get Your Startup On Hacker News
By DANIEL TENNER

06 Understanding Pac-Man Ghost Behaviour
By CHAD BIRCH

STARTUP

14 Will Freemium Work For You?
By MARTIN KLEPPMANN and RAHUL VOHRA

18 On Not Hiring
By GABRIEL WEINBERG

SPECIAL

20 How To Become An Open-Source Contractor
By EVAN MILLER

PROGRAMMING

24 How To Write A Simple Operating System
By MIKE SAUNDERS

32 I Can Crack Your App With just A Shell
By KENNETH BALLENEGGER

36 Write Code Like You Just Learned How To Program
By JAMES HAGUE

38 How Do Emulators Work And How Are They Written
By CODY BROCIOUS

39 HACKER JOBS

For links to the posts on Hacker News, visit hackermonthly.com/issue-10. All articles and comments are reprinted with permission of their original author.
Hacker Monthly is published by Netizens Media and not affiliated with Y Combinator in any way.

http://hackermonthly.com/issue-10

4 FEATURES

IN NETWORKING EVENTS, surpris-
ingly often I get asked about
how to get a startup to be

discussed, somehow, on Hacker
News [news.ycombinator.com].

Why get on Hacker News?
Getting your startup on Hacker
News (HN) is useful:

HN is a thriving community of
entrepreneurs — probably the big-
gest on the web — and their feed-
back is valuable. It’s often thorough,
honest, qualified, and sometimes
unpleasant. It can help you improve
your early startup significantly:
better define your offering, tune
your landing page, etc.

There are many early tech adopt-
ers on HN, so if the app is useful
to them, you can get some early
users.

Because HN is made of entre-
preneurs, they’re not allergic to
commercial offerings like many
other popular forums on the web.
They won’t get offended if you’re

trying to make money from your
hard work. In fact, they’ll probably
suggest better business models for
extracting money from your users.

Finally, coverage on HN can
sometimes lead to being picked
up by other tech websites. I know
a few editors of major tech news
sites who browse HN regularly.

So, on the whole, I think getting your
early stage startup reviewed by the
HN community is a no-brainer. You
can only gain from it.

How should you go about it?
The best thing to do is surprisingly
simple: post an “Ask HN: Review my
startup, xyz.com” post.

To do this, submit a post with no
URL following the pattern above.
Then, connect to the #startups chan-
nel on the Freenode IRC network and
ask people for their opinion. If your
request for feedback seems legitimate,
you will probably get some com-
ments and some upvotes, and that
will lead, eventually, to more atten-
tion from the wider HN community.

Some tips about this process:

Do this when you’re genuinely
looking for feedback. Posting an
“Ask HN: Review my startup, xyz.
com” when your company has
been going for 5 years and has 20
employees would be disingenuous
(and probably useless because, by
then, you probably know more
about how to run your business
than we do).

The number of actual comments
can vary greatly depending on the
time of day, the day of the week,
the other stories in the community,
the startup that you present, etc.
The number of responses will
easily vary from a handful to over
a hundred. Don’t take it personally.

Be open and responsive. When
people post feedback, don’t get
defensive, or they won’t provide any
more feedback. Accept it, and try
to respond constructively, maybe
asking a few questions for clarifica-
tion. Never tell the person provid-
ing feedback that they’re wrong.

How To Get Your Startup
On Hacker News

By DANIEL TENNER

FEATURES

http://news.ycombinator.com

 5

Ask for specific feedback on
areas where you have concerns
(e.g., “I’m particularly looking for
feedback about the UI.”).

Include the link in the body of
your post. It won’t be hotlinked,
but don’t worry about that. Do
not include it as the “URL” part of
your post, some people consider
that bad form.

Don’t ask HN to review your
startup several times within a short
span of time. It’s okay to ask for
more feedback a few months later,
but refer back to your earlier post
and mention how you addressed
the earlier feedback.

If you don’t get any upvotes
within the first half hour or so, it
may well happen that no-one sees
your post, and particularly if you
submitted it at a very active time
(e.g., midday Eastern Standard
Time). Make sure you get some
people, such as the IRC channel,
to have a look within the first half
an hour.

You don’t strictly have to follow
these rules. In fact, the top “Ask
HN: Review ...” posts on SearchYC
[searchyc.com] have no post-body
and have a URL, but those tend
to be exceptions. If you want to
maximise your chances of getting
feedback, even if your startup is
not yet great, try to do something
like these examples: hn.my/review1,
hn.my/review2.

Also, Paul Graham mentioned that
“Review my startup” posts submit-
ted by brand new users will often
be deleted as spam. If you want to

submit this kind of post, it’s a good
idea to create a user some time
before then, and be reasonably active
for at least a few weeks before post-
ing about your startup.

What if you’re not looking for
feedback?
Some startups are past the initial
feedback stage. That’s fine. They can
still get on HN, but the approach is
different. If you want to get some
hackers’s attention at a later stage in
your startup, the best way, in my expe-
rience, is to share something valuable
with the community. For example:

A post detailing how you
addressed a certain technological
challenge with plenty of meaty
details. For example, “How we
scaled our video encoding from
10 daily users to 10,000 without
buying more hardware.”

A post with an original viewpoint
about some aspect of starting
and running a startup. Unoriginal
points tend not to get upvoted,
so try to find a unique slant. For
example, “Why we chose to have
no permanent employees.”

A post that “opens the kimono” —
talking about how your sales have
gone, what worked, what didn’t,
and so on. All in a way that readers
can learn from. For example, “Our
sales for the first 12 months.”

A post that tells a very personal
story about some aspect of your
startup of the kind that people
normally don’t hear about. For
example, “How we dealt with a co-
founder dropping out in the first 6
months of the startup.”

There are many other types of
posts that work. If you read HN
with some regularity, you’ll start to
recognize them.

Daniel Tenner is the founder of Woobius
[www.woobius.com] and GrantTree [www.
granttree.co.uk]. Known as “swombat” on
Hacker News and Twitter, he has been blog-
ging about startups for three years now,
since he started his first company, and
is now producing swombat.com a daily
updated resource for people who like to
read startup articles like this one.

Commentary
By ED WEISSMAN

 (edw519)

THE MOST CRITICAL words
are genuinely and dis-

ingenuous. You may be able
to get something over on us
every once in a while, but for
the most part, this is a crowd
that doesn’t respond too well
to posers and B.S. Be sincere
and we’ll tell you the truth.
Be phony and we’ll probably
send you packing.

Reprinted with permission of the original author.
First appeared in hn.my/startuphn.

http://searchyc.com
http://hn.my/review1
http://hn.my/review2
http://www.woobius.com
http://www.granttree.co.uk
http://www.granttree.co.uk
http://swombat.com
http://hn.my/startuphn

6 FEATURES

Understanding Pac-Man
Ghost Behavior
By CHAD BIRCH

© Dainippon Type Organization, PAC-MAN:(D)NBGI

 7

IT ONLY SEEMS right for me to begin this article with the
topic that inspired me to start it in the first place. Not
too long ago, I came across Jamey Pittman’s “Pac-Man

Dossier [hn.my/dossier],” which is a ridiculously detailed
explanation of the mechanics of Pac-Man. I found it abso-
lutely fascinating, so this site is my attempt to discover and
aggregate similarly detailed information about other games.
But, as a bit of a tribute, I’m going to start with Pac-Man as
well, specifically the ghost AI. It’s an interesting topic, and
hopefully my explanation will be a bit more accessible than
Jamey’s due to focusing on only the information relevant
to ghost behavior.

About the Game

“All the computer games available at the time were of the
violent type — war games and space invader types. There
were no games that everyone could enjoy, and especially
none for women. I wanted to come up with a “comical”
game women could enjoy.”
– Toru Iwatani, Pac-Man creator

Pac-Man is one of the most iconic video games of all time,
and most people (even non-gamers) have at least a passing
familiarity with it. The purpose of the game is very simple:
the player is placed in a maze filled with food (depicted
as pellets or dots) and needs to eat all of it to advance to
the next level. This task is made difficult by four ghosts
that pursue Pac-Man through the maze. If Pac-Man makes
contact with any of the ghosts, the player loses a life and the
positions of Pac-Man and the ghosts are reset, although any
dots that were eaten remain so. Other than simply avoiding
them, Pac-Man’s only defense against the ghosts are the four
larger “energizer” pellets located at the corners of the maze.
Eating one causes the ghosts to become frightened and
retreat for a short time, and in the early levels of the game
Pac-Man can even eat the ghosts for bonus points during
this period. An eaten ghost is not completely eliminated,
but is returned to its starting position before resuming its
pursuit. Other than eating dots and ghosts, the only other
source of points are the two pieces of fruit which appear
during each level near the middle of the maze. The first
fruit appears when Pac-Man has eaten seventy of the dots
in the maze, and the second when 170 have been eaten.

Every level of Pac-Man uses the same maze layout, con-
taining 240 regular “food” dots and four energizers. The
tunnels that lead off of
the left and right edges of
the screen act as shortcuts
to the opposite side of the
screen, and are usable
by both Pac-Man and
the ghosts, although the
ghosts’s speed is greatly
reduced while they are in
the tunnel. Even though
the layout is always the
same, the levels become
increasingly difficult due
to modifications to Pac-Man’s speed, as well as changes to
both the speed and behavior of the ghosts. After reaching
level twenty-one, no further changes to the game’s mechan-
ics are made, and every level from twenty-one onwards is
effectively identical.

Common Elements of Ghost Behaviour

“Well, there’s not much entertainment in a game of eating,
so we decided to create enemies to inject a little excitement
and tension. The player had to fight the enemies to get the
food. And each of the enemies has its own character. The
enemies are four little ghost-shaped monsters, each of them
a different color — blue, yellow, pink, and red. I used four
different colors mostly to please the women who play — I
thought they would like the pretty colors.”
– Toru Iwatani, Pac-Man creator

Each of the ghosts is programmed with an individual “per-
sonality” — a different algorithm it uses to determine its
method of moving through the maze. Understanding how
each ghost behaves is extremely important to be able to
effectively avoid them. But, before discussing their indi-
vidual behaviors, let’s first examine the logic that they share.

The Ghost House
When a player begins a game of Pac-Man, they are not
immediately attacked by all four of the ghosts. As shown
on the diagram of the initial game position, only one ghost

http://hn.my/dossier

8 FEATURES

begins in the actual maze, while the others are inside a small
area in the middle of the maze, often referred to as the “ghost
house”. Other than at the beginning of a level, the ghosts
will only return to this area if they are eaten by an energized
Pac-Man, or as a result of their positions being reset when
Pac-Man dies. The ghost house is otherwise inaccessible,
and is not a valid area for Pac-Man or the ghosts to move
into. Ghosts always move to the left as soon as they leave
the ghost house, but they may reverse direction almost
immediately due to an effect that will be described later.

The conditions that determine when the three ghosts that
start inside the ghost house are able to leave it are actually
fairly complex. Because of this, I’m going to consider them
outside the scope of this article, especially since they become
much less relevant after completing the first few levels.
If you’re interested in reading about these rules (and an
interesting exploit of them), Pittman’s “Pac-Man Dossier”
covers them in-depth, as always.

Target Tiles
Much of Pac-Man’s design
and mechanics revolve
around the idea of the
board being split into tiles.
“Tile” in this context refers
to an 8-by-8 pixel square
on the screen. Pac-Man’s
screen resolution is 224-
by-288, so this gives us a
total board size of 28-by-
36 tiles, although most of
these are not accessible to
Pac-Man or the ghosts. As an example of the impact of tiles, a
ghost is considered to have caught Pac-Man when it occupies
the same tile as him. In addition, every pellet in the maze
is in the center of its own tile. It should be noted that since
the sprites for Pac-Man and the ghosts are larger than one
tile in size, they are never completely contained in a single
tile. Due to this, for the game’s purposes, the character is
considered to occupy whichever tile contains its centerpoint.
This is important knowledge when avoiding ghosts, since
Pac-Man will only be caught if a ghost manages to move its
centerpoint into the same tile as Pac-Man’s.

The key to understanding ghost behavior is the concept
of a target tile. The large majority of the time, each ghost
has a specific tile that it’s trying to reach, and its behavior
revolves around trying to get to that tile from its current
one. All of the ghosts use identical methods to travel towards
their targets, but the different ghost personalities come
about due to the individual way each ghost has of selecting
its target tile. Note there are no restrictions that a target tile
must actually be possible to reach, they can (and often are)
located on an inaccessible tile, and many of the common
ghost behaviors are a direct result of this possibility. Target
tiles will be discussed in more detail in upcoming sections,
but for now just keep in mind that the ghosts are almost
always motivated by trying to reach a particular tile.

Ghost Movement Modes
The ghosts are always in one-of-three possible modes:
“Chase”, “Scatter”, or “Frightened”. The “normal” mode
with the ghosts pursuing Pac-Man is Chase, and this is the
one that they spend most of their time in. While in Chase
mode, all of the ghosts use Pac-Man’s position as a factor
in selecting their target tile, although it is more significant
to some ghosts than others. In Scatter mode, each ghost has
a fixed target tile, each of which is located just outside a
different corner of the maze. This causes the four ghosts to
disperse to the corners. Frightened mode is unique because
the ghosts do not have a specific target tile. Instead, they
pseudorandomly decide which turns to make at every
intersection. A ghost in Frightened mode also turns dark
blue, moves much more slowly and can be eaten by Pac-
Man. But, the duration of Frightened mode is shortened as
the player progresses through the levels, and is completely
eliminated from level nineteen onwards.

“To give the game some tension, I wanted the monsters to
surround Pac-Man at some stage of the game. But I felt it
would be too stressful for a human being like Pac-Man to be
continually surrounded and hunted down. So, I created the
monsters’s invasions to come in waves. They’d attack and
then they’d retreat. As time went by they would regroup,
attack, and disperse again. It seemed more natural than
having constant attack.”
– Toru Iwatani, Pac-Man creator

 9

Changes between Chase and Scatter modes occur on a
fixed timer, which causes the “wave” effect described by
Iwatani. This timer is reset at the beginning of each level
and whenever a life is lost. The timer is also paused while
the ghosts are in Frightened mode, which occurs whenever
Pac-Man eats an energizer. When Frightened mode ends, the
ghosts return to their previous mode, and the timer resumes
where it left off. The ghosts start out in Scatter mode, and
then there are four waves of Scatter-Chase alternation, after
which the ghosts will remain in Chase mode indefinitely
(until the timer is reset). For the first level, the durations
of these phases are:

1. Scatter for seven seconds, then Chase for twenty seconds.
2. Scatter for seven seconds, then Chase for twenty seconds.
3. Scatter for five seconds, then Chase for twenty seconds.
4. Scatter for five seconds, then switch to Chase mode
permanently.

The durations of these phases are changes somewhat
when the player reaches level two, and once again when
they reach level five. Starting on level two, the third Chase
mode lengthens considerably, to 1033 seconds (seventeen
minutes and thirteen seconds), and the following Scatter
mode lasts just sixtieth of a second before the ghosts proceed
to their permanent Chase mode. The level 5 changes build
on top of this, additionally reducing the first two Scatter
lengths to 5 seconds, and adding the 4 seconds gained here
to the third Chase mode, lengthening it to 1037 seconds
(seventeen minutes and seventeen seconds). Regarding the
sixtieth of a second Scatter mode on every level except the
first, even though it may seem that switching modes for
such an insignificant amount of time is pointless, there is a
reason behind it, which shall be revealed shortly.

Basic Ghost Movement Rules
The next step is understanding exactly how the ghosts
attempt to reach their target tiles. The ghosts’s AI is very
simple and short-sighted, which makes the complex behavior
of the ghosts even more impressive. Ghosts only ever plan
one step into the future as they move about the maze.
Whenever a ghost enters a new tile, it looks ahead to the
next tile that it will reach, and makes a decision about which
direction it will turn when it gets there. These decisions have

one very important restriction, which is that ghosts may
never choose to reverse their direction of travel. That is, a
ghost cannot enter a tile from the left side and then decide to
reverse direction and move back to the left. The implication
of this restriction is that whenever a ghost enters a tile with
only two exits, it will always continue in the same direction.

But, there is one exception to this rule, which is that
whenever ghosts change from Chase or Scatter to any other
mode, they are forced to reverse direction as soon as they
enter the next tile. This forced instruction will overwrite
whatever decision the ghosts had previously made about the
direction to move when they reach that tile. This effectively
acts as a notifier to the player that the ghosts have changed
modes, since it is the only time a ghost can possibly reverse
direction. Note that when the ghosts leave Frightened
mode they do not change direction, but this particular
switch is already obvious due to the ghosts reverting to their
regular colors from the dark blue of Frightened. So then,
the sixtieth of a second Scatter mode on every level after
the first will cause all the ghosts to reverse their direction
of travel, even though their target effectively remains the
same. This forced direction reversal is also applied to any
ghosts still inside the ghost house, so a ghost that hasn’t yet
entered the maze by the time the first mode switch occurs
will exit the ghost house with a “reverse direction as soon
as you can” instruction already pending. This causes them
to move left as usual for a very short time, but they will
almost immediately reverse direction and go to the right
instead.

This diagram shows a
simplified representation
of the maze layout. Deci-
sions are only necessary
at all when approaching
“intersection” tiles, which
are indicated in green on
the diagram.

When a decision about
which direction to turn
is necessary, the choice
is made based on which tile adjoining the intersection will
put the ghost nearest to its target tile, measured in a straight
line. The distance from every possibility to the target tile is

10 FEATURES

measured, and whichever tile is clos-
est to the target will be selected. In
the diagram to the left, the ghost will
turn upwards at the intersection. If
two or more potential choices are
an equal distance from the target, the decision between
them is made in the order of up > left > down. A decision
to exit right can never be made in a situation where two
tiles are equidistant to the target, since any other option
has a higher priority.

Since the only con-
sideration is which tile
will immediately place
the ghost closer to its
target, this can result in
the ghosts selecting the
“wrong” turn when the initial choice places them closer, but
the overall path is longer. An example is shown to the right,
where the beeline measurement makes exiting left appear
to be a better choice. But, this will result in an overall path
length of twenty-six tiles to reach the target, while exiting
right would have had a path of only eight tiles long.

One final special case, the four intersections that were
colored yellow on the simplified maze diagram. These spe-
cific intersections have an extra restriction — ghosts cannot
choose to turn upwards from these tiles. If entering them
from the right or left side they will always proceed out the
opposite side (excepting a forced direction reversal). Note
that this restriction does not apply to Frightened mode and
Frightened ghosts may turn upwards here if that decision
occurs randomly. A ghost entering these tiles from the top
can also reverse direction back out the top if a mode switch
occurs as they are entering the tile. The restriction is only
applied during “regular” decision making. If Pac-Man is being
pursued closely by ghosts, he can gain some ground on them
by making an upwards turn in one of these intersections,
since they will be forced to take a longer route around.

Individual Ghost Personalities

“This is the heart of the game. I wanted each ghostly enemy to
have a specific character and its own particular movements,
so they weren’t all just chasing after Pac-Man in single file,
which would have been tiresome and flat.”
– Toru Iwatani, Pac-Man creator

As has been previously mentioned, the only differences
between the ghosts are their methods of selecting target
tiles in Chase and Scatter modes. The only official descrip-
tion of each ghost’s personality comes from the one-word
“character” description shown in the game’s attract mode.
We’ll first take a look at how the ghosts behave in Scatter
mode, since it’s extremely straightforward, and then look
at each ghost’s approach to targeting in Chase mode.

Scatter Mode
Each ghost has a predefined,
fixed target tile while in
this mode, located just
outside the corners of the
maze. When Scatter mode
begins, each ghost will head
towards their “home” corner
using their regular methods.
But, since the actual target
tiles are inaccessible and
the ghosts cannot stop moving or reverse direction, they
are forced to continue past the target, but will turn back
towards it as soon as possible. This results in each ghost’s
path eventually becoming a fixed loop in their corner. If
left in Scatter mode, each ghost would remain in its loop
indefinitely. In practice, the duration of Scatter mode is
always quite short, so the ghosts often do not have time
to even reach their corner or complete a circuit of their
loop before reverting back to Chase mode. The diagram
shows each ghost’s target tile and eventual looping path,
color-coded to match their own color.

The Red Ghost
The red ghost starts outside of the
ghost house, and is usually the first
one to be seen as a threat, since
he makes a beeline for Pac-Man
almost immediately. He is referred to as Blinky, and the
game describes his personality as shadow. In Japanese, his

 11

personality is referred to as 追いかけ, oikake, which trans-
lates as “pursuer” or “chaser”. Both languages’s descriptions
are accurate, since Blinky’s target tile in Chase mode is
defined as Pac-Man’s current tile. This ensures that Blinky
almost always follows directly behind Pac-Man, unless
short-sighted decision making causes him to take an inef-
ficient path.

Even though Blinky’s targeting method is very simple,
he does have one idiosyncrasy that the other ghosts do
not: at two defined points in each level (based on the
number of dots remaining), his speed increases by 5% and
his behavior in Scatter mode changes. The timing of the
speed change varies based on the level, with the change
occurring earlier and earlier as the player progresses. The
change to Scatter targeting is perhaps more significant than
the speed increases, since it causes Blinky’s target tile to
remain as Pac-Man’s position even while in Scatter mode,
instead of his regular fixed tile in the upper-right corner.
This effectively keeps Blinky in Chase mode permanently,
though he will still be forced to reverse direction as a result
of a mode switch. When in this enhanced state, Blinky is
generally referred to as “Cruise Elroy”, although the origin
of this term seems to be unknown. Not even the almighty
“Pac-Man Dossier” has an answer here. If Pac-Man dies while
Blinky is in Cruise Elroy mode, he reverts back to normal
behavior temporarily, but returns to Elroy mode as soon as
all other ghosts have exited the ghost house.

The Pink Ghost
The pink ghost starts inside the
ghost house, but always exits imme-
diately, even in the first level. His
nickname is Pinky, and his
personality is described
as speedy. This is a con-
siderable departure from
his Japanese personality
description, which is 待
ち伏せ, machibuse, which
translates as “ambusher”.
The Japanese version is
much more appropriate,
since Pinky does not move faster than any of the other
ghosts (and slower than Blinky in Cruise Elroy mode), but

his targeting scheme attempts to move him to the place
where Pac-Man is going, instead of where he currently is.
Pinky’s target tile in Chase mode is determined by looking
at Pac-Man’s current position and orientation, and selecting
the location four tiles straight ahead of Pac-Man. At least,
this was the intention, and it works when Pac-Man is facing
to the left, down, or right, but when Pac-Man is facing
upwards, an overflow error in the game’s code causes Pinky’s
target tile to actually be set as four tiles ahead of Pac-Man
and four tiles to the left of him. I don’t wish to frighten off
non-programmers, but if you’re interested in the technical
details behind this bug Don Hodges has written a great
explanation [hn.my/pinky], including the actual assembly
code for Pinky’s targeting, as well as a fixed version.

One important implication of Pinky’s
targeting method is that Pac-Man can
often win a game of “chicken” with him.
Since his target tile is set four tiles in front
of Pac-Man, if Pac-Man heads directly
towards him, Pinky’s target tile will actu-
ally be behind himself once they are less
than four tiles apart. This will cause Pinky
to choose to take any available turn-off in order to loop
back around to his target. Because of this, it is a common
strategy to momentarily “fake” back towards Pinky if he
starts following closely. This will often send him off in an
entirely different direction.

The Blue Ghost
The blue ghost is nicknamed Inky,
and remains inside the ghost house
for a short time on the first level,
not joining the chase until Pac-Man
has managed to consume at least 30
of the dots. His English personality description is bashful,
while in Japanese he is referred to as 気紛れ, kimagure,
or “whimsical”. Inky is difficult to predict, because he is
the only one of the ghosts that uses a factor other than
Pac-Man’s position and orientation when determining his
target tile. Inky actually uses both Pac-Man’s position and
facing, as well as Blinky’s (the red ghost’s) position in his
calculation. To locate Inky’s target, we first start by selecting
the position two tiles in front of Pac-Man in his current
direction of travel, similar to Pinky’s targeting method. From

12 FEATURES

there, imagine drawing a vector from Blinky’s position to
this tile, and then doubling the length of the vector. The
tile that this new, extended vector ends on will be Inky’s
actual target.

As a result, Inky’s target can vary wildly when Blinky
is not near Pac-Man, but if Blinky is in close pursuit, Inky
generally will be as well. Note that Inky’s “two tiles in
front of Pac-Man” calculation suffers from exactly the same
overflow error as Pinky’s four-tile equivalent, so if Pac-Man
is heading upwards, the endpoint of the initial vector from
Blinky (before doubling) will actually be two tiles up and
two tiles left of Pac-Man.

The Orange Ghost
The orange ghost, Clyde,
is the last to leave the
ghost house, and does
not exit at all in the first
level until over a third of
the dots have been eaten. Clyde’s
English personality description
is pokey, whereas the Japanese
description is お惚け, otoboke or
“feigning ignorance”. As is typical,
the Japanese version is more accu-
rate, since Clyde’s targeting method
can give the impression that he is
just “doing his own thing,” without
concerning himself with Pac-Man at all. The unique feature
of Clyde’s targeting is that it has two separate modes which
he constantly switches back and forth between, based on his
proximity to Pac-Man. Whenever Clyde needs to determine
his target tile, he first calculates his distance from Pac-Man.
If he is farther than eight tiles away, his targeting is identi-
cal to Blinky’s, using Pac-Man’s current tile as his target.
But, as soon as his distance to Pac-Man becomes less than
eight tiles, Clyde’s target is set to the same tile as his fixed
one in Scatter mode, just outside the bottom-left corner
of the maze.

 The combination of these two methods has the overall
effect of Clyde alternating between coming directly towards
Pac-Man, and then changing his mind and heading back
to his corner whenever he gets too close. On the diagram

above, the X marks on the path represent the points where
Clyde’s mode switches. If Pac-Man somehow managed to
remain stationary in that position, Clyde would indefinitely
loop around that T-shaped area. As long as the player is not
in the lower left corner of the maze, Clyde can be avoided
completely by simply ensuring that you do not block his
“escape route” back to his corner. While Pac-Man is within
eight tiles of the lower left corner, Clyde’s path will end up
in exactly the same loop as he would eventually maintain
in Scatter mode.

Wrapping Up
If you’ve made it this far, you should now have a fairly
complete understanding of the logic behind Pac-Man’s
ghost movement. Understanding the ghosts’s behavior is
probably the single most important step towards becoming
a skilled Pac-Man player, and even a general idea of where
they are likely to move next should greatly improve your
abilities. I’ve never been good at Pac-Man, but while I was
researching this article and testing a few things, I found
that I was able to avoid the ghosts much more easily than
before. Even small things make a huge difference, such as
recognizing a switch to Scatter mode and knowing that you
have a few seconds where the ghosts won’t (deliberately)
try to kill you.

Pac-Man is an amazing example of seemingly complex
behavior arising from only a few cleverly designed rules.
The result being a deep and challenging game that players
still strive to master, 30 years after its release.

Chad Birch is a gamer and programmer living in Calgary, Alberta,
Canada. He distracts himself from his ever expanding lists of “games
to play” and “programming projects to work on” by analyzing and
writing about game mechanics at gameinternals.com.

Reprinted with permission of the original author. First appeared in hn.my/pacman.

http://gameinternals.com
http://hn.my/pacman

 13

Reprinted with permission of the original author. First appeared in hn.my/pacman.

http://wufoo.com
http://hn.my/pacman

14 STARTUP

RUBEN GAMEZ SAYS freemium
doesn’t work [hn.my/free].
Yet Dropbox, MailChimp

and Evernote say freemium does
work [hn.my/freecase]. So, does
freemium work or not?

This is the wrong question. The
right question is: when does free-
mium work?

The business model for Rapportive
(which adds rich contact profiles
to your email) is simple: build an
amazingly useful product, and charge
money for it. It will most likely be
freemium: a base version of Rapport-
ive will always be free, and there will
be a premium version which costs
money. We think that this strategy
will work for us.

But why? What signals indicate
whether freemium will work? I think
it depends on many things: the type
of product you have, the kind of com-
pany you want to build, and more.

Ten Questions To Consider

 How do users feel about your
product as a function of time?
Products which increase in value
over time are good candidates for
freemium.

 Do users love your product for
a short while, and then get bored
of it? For example, casual games.
Are they oblivious to it most of the
time, but occasionally desperate
for it? For example, data recovery
tools. Do they always dislike it? For
example, virus scanners. Or does it
gradually get more useful over time?1
For example, a tool which recovers
corrupted photos from your camera
is unlikely to work as freemium
(cameras can corrupt files, but it hap-
pens rarely), whereas a tool such as
Evernote works well as a freemium
(it becomes more useful over time as
you enter more data into it).

 How good is your long-term
retention?
With good retention you have a
better chance of converting free
users to paid users.

Your product may become more
useful over time, but if a large
proportion of free users stop using
it after a while that’s bad news if
you were hoping to convert them
to paying later on. In that case, you
should probably ask them for money
early, while you still have their
attention, or improve your retention!
But, if a large proportion of your free
users stick around for a long time,
and your product becomes more
useful over time, more and more of
them will eventually convert from
free to paid.

Will Freemium Work For You?
By MARTIN KLEPPMANN and RAHUL VOHRA

STARTUP

http://hn.my/free
http://hn.my/freecase

 15

 Does your product require behav-
ior change or can people start using
it gradually?
If people can start using your prod-
uct gradually, freemium might work.

For example, an image editor
requires an abrupt change of behav-
ior: you’ve got to stop using the old
one and start using the new one. In
that case, charging all users from day
one may actually help you: by having
spent money, users are more likely to
also spend the time learning how to
use the new application (due to the
sunk cost fallacy), and thus end up
getting more value from the product.
On the other hand, if your product
doesn’t have a big learning overhead
and users can gently start using it, it
may be better to charge for it later.

 Does your product have dis-
tinct modes of use for different
audiences?
If it does, you can be more creative
with your freemium model.

I am fascinated by Yammer’s busi-
ness model. They get lots of people
in an organization to use it for free,
and then sometime later, when there
are lots of active users, they sell the
enterprise IT department on stuff
like data ownership, admin controls,
and security tools. The end-users
who sign up do not care about the
admin features — the IT department
does, and they are a separate audi-
ence. This is an interesting take on
freemium: always free for end users;
always paid-for for IT departments
doing their job.

 What is your market like?
If you are targeting a large unmet
need, you should make your product
free.

When faced with a wide open field
you should be in land-grab mode,
and acquire users before your com-
petitors do. On the other hand, if
you’re in a well-established market,
you’ll need to gradually convince
users to move away from their exist-
ing solutions. In this case, charging
money is the best way of finding
customers who care enough about
the problem that they are willing to
pay for a better solution.

 Are you targeting a premium
niche?
Free users are the opposite of
premium.

Sometimes free users are more
troublesome than paid users (for
example, MailChimp was faced with
a spam problem when they started
offering a free plan). If you are
going for the top end of the market,
giving something away for free may
hurt you more than it benefits you.
The price of your product says a lot
about your positioning, and people
tend to assume that if something is
free, it’s less valuable than something
expensive.

 Which metric do you use to
separate free from paying users?
Freemium makes sense if there’s an
obvious point to start charging.

Do your users need to pay when
they exceed a certain number of
seats, credits, or widgets? Picking a
metric is tricky, and is a topic worthy
of a separate article. Number of
seats is a common metric, but it only
makes sense for applications where
there’s a downside to everyone using
the same log-in;for example, if your
application is an analytics dashboard,
it doesn’t really matter if there’s one
shared log-in or each person has a
separate log-in. If there is no obvious
metric which separates free from
paying users, you should probably
charge everybody.

 Do you depend on word-of-mouth
marketing?
More users (even if they are free) =
more mouths.

If yes, note that more people using
your product means more mouths
to spread the word. You still need to
reach the right kind of users, so the
question is: can you reach people
who will pay through the word of
people who will remain forever free?
My guess is that if you’re targeting a
specific niche, word-of-mouth spread
and willingness to pay are strongly
correlated (which suggests that there
is little benefit in having lots of free
users). If you’re targeting a broad
audience, the two are uncorrelated,
so free users can help you carry the
word to people who will pay.2

16 STARTUP

 What kind of company do you
want to build?
You need lots of users if you want to
take over the world.

If you’ve taken venture capital
and want to take over the world,
you need to grow quickly, even if it
means leaving revenue on the table.
If you want to grow organically and
maximize profits, you’re better off
maximizing revenue per user, and
ignoring those users who would
never pay you anyway.

 What are your costs per user?
They had better be low if you have
lots of free users.

Are your costs fixed (develop-
ers, testers) or variable (servers,
support)? If your variable costs are
low enough, it’s fine to have a low
conversion rate, because one paid-for
user may pay for 1,000 free users.
Support for free users is often the
limiting factor. To keep your support
burden low, you’ll need to make
your product easy to use and fix all
your bugs...but that’s well worth
doing anyway!

SO, WHY DOES Ruben say that free
plans don’t work? Well, for his

situation, I think he’s absolutely
right. Let’s consider the above ques-
tions for Bidsketch [bidsketch.com].

Bidsketch a workflow tool for
designers: it’s immediately valuable
and then probably stays this valuable
over time. It requires a change of
behaviour: stop using email and start
using Bidsketch. It has two distinct
modes of use (one for designers

and one for clients), but it seems
pitched at one audience (design-
ers). It competes with email, a well
established solution. It seems to
target a premium niche of the best
freelance designers — this is not a
tool for everybody. Ruben is self-
declared Micropreneur who wants
his business to grow organically. And,
because he’s working by himself (as
far as I can tell), the support burden
of free users would be significant.

So I agree: freemium is not right
for Ruben’s product. But it might be
right for yours.

Notes

1. Phil Libin, CEO of Evernote, gave
an excellent talk [hn.my/evernote]
on Evernote’s business metrics in
May. It’s packed with great insights
for products which gradually become
more useful over time:

“Every month, the longer you use
[Evernote], the more valuable it gets.
And since the long-term retention
is flat, and the conversion goes
up, what you see is: the longer a
cohort stays, the more valuable they
become.” (at 14’55”)

Examining the cohort of users
which signed up in March 2008, Phil
found that after 3 months, they were
making $300/month from 11,000
people (a conversion rate of about
0.6%); 22 months later, they were
making $8,000/month from the
same 11,000 people (a conversion
rate of about 16%!):

“Users are kind of like a nice wine,
or a stinky cheese. As [a cohort of
users] ages, it actually gets better. A
lot of the people who wouldn’t pay
leave, and a lot of the people who
stay end up paying. Even though
there’s no hard sell, and you can
use Evernote forever for free, a much
larger percentage winds up convert-
ing.” (at 17’05”)

Of course, not every application
increases in value to users over time.

2. Rapportive has broad appeal and
is not limited to a specific niche, so it
makes sense for us to have lots of free
users. When Brad Feld recently said
that he was trying Gmail, a chorus
of our users jumped to recommend
Rapportive to him. We wouldn’t
have got that without lots of people
using and loving our product.

Martin Kleppmann is co-founder of Rap-
portive. He likes to pretend that he can do
a bit of everything, including architecting
software, designing user experiences, build-
ing businesses, and writing geeky essays at
martin.kleppmann.com.

Rahul Vohra is a co-founder and the CEO
of Rapportive. He is a computer scientist, a
gamer, and an entrepreneur. You can follow
Rahul on Twitter at @rahulvohra.

Reprinted with permission of the original author.
First appeared in hn.my/whenfree.

http://bidsketch.com
http://hn.my/evernote
http://martin.kleppmann.com
http://twitter.com/rahulvohra
http://hn.my/whenfree

Try it with your team: www.rypple.com/hacker

#badass
Reprinted with permission of the original author.
First appeared in hn.my/whenfree.

http://www.rypple.com/hacker
http://hn.my/whenfree

18 STARTUP

HIRING IS HARD. Not hiring can seem
even harder, but often isn’t.

At my last company we went from
entrance to exit without hiring one

employee. I’m now three years into DuckDuckGo, and
still haven’t hired.

Needless to say, I’m an outlier. So, don’t take what I say
about hiring too seriously, but perhaps I have something
useful to say on not hiring.

Most angel pitches I get seem to suggest the use of funds
will go to salary — both to the founders and to immediate
new hires. The assumption is, of course, that these new hires
will move the company forward faster.

Yet every time I see that pitch, I look at my own experi-
ence and question this assumption. I would much rather
see the use of initial funds around figuring out distribution,
i.e., testing out different traction verticals. And then, once
one-or-more customer acquisition channels are flowing, hire.

So why do people want to hire so early?
We need to build x, y, and z ASAP. Before you’ve figured

out distribution? What evidence do you have that x, y, and
z, once built, will make customer acquisition any easier?

Beta customers saying they want things isn’t enough.
There isn’t a good reason to add x, y, and z to your product,

i.e., complexity, unless you really know it will propel you
faster to new customers. Yes, you can never really know, but
I see a lot of people who certainly don’t know.

But I understand their position. They like engineering,
they like working on hard problems, and they like the idea
of running a team. That’s great, but it doesn’t make it the
right business decision.

We need a real designer because we suck at design. Have
you really tried yet? Really? Usually not.

I’m not the world’s best designer, by any means, nor
am I “classically trained” in design, as they say, but I like
my results, and I bring in the big guns when needed as
freelancers. I’m sure you can do the same for at least your
initial versions.

It just takes time and effort. Yes, that is time and effort you
may not want to spend, but do you need to hire a full-time
position because you’re insecure or lazy? No.

Instead, lean on the powers of incremental improvement
and the Pareto principle (80/20 rule). Spend time each
week looking at specific parts of your design, and iterate on
them. It will get better if you put in the time. And then for
finishing touches, e.g., nicer images (the last 20%), outsource
via 99designs or freelancers.

On Not Hiring
By GABRIEL WEINBERG

 19

A corollary to this one is user experience (UX), i.e.,
interaction design. I agree this is super important. I also still
think the founders should be doing it. Again, iterate based
on real feedback from users, and then bring in consultants
and tools to give you ideas and polish.

We have too much to do. Any startup can easily grow to
fill 100% of your time. That doesn’t mean you’re spend-
ing your time on the right things, or that hiring someone
new and filling 100% of their time will increase outcome
potential for your startup.

In addition, there are three main problems with hiring.
The wrong person can negatively impact your startup.

There are horror stories, but more run of the mill is they’re
just mediocre or don’t have a true startup mentality. Their
presence can turn your company mediocre, and that is not
good.

People also tend to underestimate the time it will require
post-hiring to manage your hire(s). You’ve just added lots of
meetings and other communication channels. Hiring takes
a lot of time before and after. Your employee will not be
inside your head.

And finally, hiring takes money. It increases your burn
rate significantly. Companies before product fit, i.e., traction,
need to stay around long enough until they get it. That can
take a lot of time — like years. There are countless cases
where companies folded only to miss their moment and see
other companies rise up where they might have done so.

One approach I like that some of my portfolio compa-
nies are taking is to tie hiring decision points to traction
milestones, i.e., once we hit $xK/month in revenue we’ll
do our next hire.

The nice things about this approach are that it allows
you to (a) manage the burn rate issue, and (b) take a long
time to plan your hire. The latter allows you to make sure
you’re getting the right person in the right position, and
that they will have a positive impact on the startup.

Early on it is not entirely clear who that right position will
turn out to be. You have a lot of short term needs, but that
doesn’t mean they should turn into full-time positions.

Gabriel Weinberg is the founder of Duck Duck Go, a search engine.
He is also an active angel investor, based out of Valley Forge, PA.
More info at his homepage: ye.gg.

“
”

You have a lot of short term needs,
but that doesn’t mean they should
turn into full-time positions.

Reprinted with permission of the original author. First appeared in hn.my/nothire.

http://hn.my/nothire

20 SPECIAL

I GET EMAILS FROM people I’ve
never met asking if they can
pay me money to improve

some of my favorite open-source
software. That’s right. I get money.
I get to do something I enjoy. I get
good software. And I get to share it
with whoever I please. It’s one of the
greatest economic arrangements in
the world. It’s up there with being
landed gentry, a corrupt government
official, or Dave Barry.

This essay is about how you, too,
can get paid to write great open
source software. If you’re not a soft-
ware developer, you should probably
spend the next few minutes of your
leisure time on things other than this
article. I recommend The Really Big
Button That Doesn’t Do Anything.

Now, when I talk about being paid
to hack on open source projects, I’m
not talking about sucking the big
scaly teat of the Mozilla Founda-
tion. That would be like having any

other job, except there’s no Sally
Shareholder holding Mindy Manage-
ment’s tookus over the teakettle.
Nor am I talking about hiding out in
the “community” wing of the Heav-
ily Underfunded Projects Division
of, say, Sun Microsystems or Apple
Computers. I mean waking up, going
to the computer, and banging out
some code before breakfast. I mean
turning down projects that don’t
sound like fun. I mean getting paid
in proportion to output. By another
name: contract work.

I didn’t really set out with the goal
of being an open source contractor. It
just sort of happened, like sex with
a much older neighbor. If I wanted
to be a good contractor, a full-time
contractor, there’s probably a lot
more I could do. I’ll get to that.
What follows is a mix of tested and
untested advice. I think it’s all pretty
good. The road ain’t easy and it ain’t
for everyone.

First, you need to understand some
economics. It’s hard to make money
from open source software. Some
companies have tried giving away
software and then selling “support
and services”, but that business plan
has proven as profitable as giving
away VCRs and selling the Owner’s
Manuals.

If you write proprietary software,
you can sell thousands of copies. If
you write open source software, you
can sell the first copy, but you’re
forced to give away all subsequent
copies. So, as an open source contrac-
tor, you will not be writing software
for Connie Consumer. No Pidgin
plugins, no Gnome widgets, no iPod
synchronizer, or whatever. You will
be writing software for Seymour
CTO: a single company that stands
to save serious money by your
efforts.

How To Become An
Open-Source Contractor

By EVAN MILLER

SPECIAL

 21

It’s a peculiar set of circumstances
that will allow you to write open
source software for a company. The
company needs to have a culture
of fixing problems themselves. This
usually means fixing problems at
any hour, day or night. If software
bugs can “wait till next week,” then a
company would probably be better
off buying software from a vendor
than developing software in-house
or using an open source solution. In
general, proprietary software can be
developed with greater resources.

The need for quick fixes I think
explains why open-source software
has thrived on web servers. Always-
on web companies don’t have to
rely on another company to fix their
problems. Many Internet companies
bring in thousands of dollars an hour,
and every minute the site is broken
means Stanley Stakeholder’s net
worth inches downward. An Internet
company simply can’t afford to wait

for another company to wake up and
diagnose the problem.

A company reliant on open-source
software for revenue will be large
enough to have developers on hand
(at the very least to fix problems),
but not so large that they want to
develop everything themselves. The
company that will hire an open
source contractor has at least one but
probably no more than a few dozen
software engineers.

But hiring you, the contractor, is a
risk. You might not deliver on time,
your software might crash, and you
might flee the country. In general,
a company would much prefer
an employee did the work than a
contractor, because an employee has
more to lose if he does a bad job.
So, why would a firm with software
engineers on the payroll hire another
software engineer on a contract basis?
Because that’s all they can afford.

If you want to be a successful
contractor, you have to make yourself
a scarce resource. You need to be able
to do something better than almost
all of the software engineers at a
particular firm. You want engineering
managers to think, “It’d be great if we
could hire this guy, but at the very
least let’s try to get some of his time.”

The trick, of course, is to become
an expert on something. Preferably
a world expert. This doesn’t mean
you have to know something better
than anyone in the world; instead,
it just means you can demonstrate
your expertise as well as anyone else
in the same domain. You don’t need
to prove you’re the best. You just
want no-one else to have proven that
they’re the best.

I became an expert by accident.
Gather around, beardless youth,
I shall tell you a tale. Once, long
ago (2006), I worked for A Large
Internet Retailer. My coworkers

“If you want to be a successful contractor,
you have to make yourself a scarce resource.”

22 SPECIAL

often talked about things I didn’t
understand — “non-blocking sockets”
and “duping file descriptors,” and
other concepts that sounded vaguely
like fighting moves. In an effort to
decode this strange tongue, I did
some Google searches and found
out my colleagues were discussing,
not Marquess of Queensbury rules,
or Masonic arcana, but the closely
related subject of UNIX network
programming. I set out to learn
more, primarily so I could fit in. I
read a book on UNIX and a book
on networking, and tinkered on my
machine at home. But I found it hard
to write even rudimentary server
programs. They would work, mostly,
but contain bugs when talking with
certain web browsers. So, I decided
I’d let someone else’s program deal
with the client bugs.

At the time, I happened to be
playing with Nginx — a web server
with a funny name. I decided I
would figure out how to write my
toy programs as extensions to Nginx,
rather than as standalone programs.
Unfortunately, I couldn’t find any
documents on the web about how
to write Nginx extensions, so I
poked around the code and jotted
down observations in a notebook.

After a several evenings and couple
Saturdays, I had a pretty clear idea of
how to write an extension. Figuring
out the details was much harder
than I initially expected; the Nginx
source code, being of Russian origin,
had very few comments in English,
and very many variables with one-
character or two-character names, or
slightly longer but equally obscure
variable names such as “nldcf”.

My first Nginx extension, cul-
minating from weeks of effort, was
around 100 lines of code. Most of
the effort went into my notes, of
which I had accumulated several
pages. Because I didn’t have anything
better to do one afternoon, I typed
up my notes and thought, “What the
hell, I’ll put them online.” Mind you
at this time I didn’t have a homep-
age, so I simply sent to the Nginx
mailing list a link to “Emiller’s Balls
Out Guide to Nginx Module Devel-
opment (DRAFT).”

My guide was an instant hit in
Russia — I was tickled to see the
phrase “Emiller’s Balls Out Guide”
surrounded by Cyrillic text on
several Russian tech sites. And in
the English-speaking world, I started
fielding a trickle of questions about
Nginx internals. Apparently no-one

this side of Saint Petersburg had
written an Nginx module before, and
all of a sudden I was an expert in this
limited domain.

And apparently people needed
an expert. I got an email a few days
after publishing my guide asking if I
wanted to write an Nginx module for
an Internet startup. They had plenty
of developers, the CTO explained,
but rather than have one of them
spend two weeks learning how to
write an Nginx module using my
guide, it would be more economical
to pay me — you know, an expert
— to write it. And they wanted the
resulting work to be open source. At
the time I really wanted a MacBook
Pro, so I named a price equal to a
MacBook Pro plus income tax, and
they agreed.

If you’re a developer who has
never done contract work, and
never been paid expert wages, you
are in for a ride. I probably worked
harder on that first paid module than
anything I’ve worked on in my life.
It felt liberating to know the faster
I worked, the sooner I got paid. It
felt good, yes, but greedy. Liberating
isn’t quite the right word. It felt
motivating, energizing, inebriating;
it hit the same spot as a double shot

“
”

If you’re a developer who has never
done contract work, and never been
paid expert wages, you are in for a ride.

 23

of love and coke. It was like my brain
opened up a brand new Reward
Center twice as big as the old one —
with triple the parking. It felt good.
Good as gold. Good as greed. Good
as God. I was Hernán Cortés, and C
was my sword.

I delivered the final product in
four days instead of four weeks, and
had to spend a couple of days in
Code Detox (i.e., watching lots of
House). When I went to pick up my
check, the CTO said, the company
liked what I did so much they were
giving me an extra 500 bucks just to
say thanks.

I was getting busier with other
projects at the time, and I declined
their offer to contract more work.
Since that first job, I’ve taken on gigs
here and there — just enough to
keep my skills sharp — but as they
say, there’s nothing like your first hit.

Anyway, enough of this ancient
history. I’ll try to distill my experi-
ence into a finite list of — O
wisdom, what shall be thy verbal
chains? — original aphorisms with
commentary.

In the chef’s kitchen, the knife that
cuts anything, cuts nothing. To be a
contractor, you have to specialize.

“Smart and gets things done” ain’t
enough. You need to do something
better than most people at the
company that’s hiring you. Pick a
system, program, or set of libraries
to specialize in. Pick something that
interests you. But also pick some-
thing which small to medium-sized
companies rely on. Write patches,
features, applications, and plug-ins
until you reckon you’re as good at it
as anybody out there. Then prove it.

A good teacher is better than a great
student. To become known as an
“expert”, write about what you know
about. Explain things in tutorials.
Participate in mailing lists. Present at
conferences. But remember...

Bigger locks keep smaller secrets.
Don’t give away all your knowledge.
It’s OK to keep some voodoo up
your sleeve. It’s even better to men-
tion offhand that you’re leaving out
some “details”.

More seek a charlatan at his office
than a doctor at his home. Make a
presence for yourself. Make a website
explaining what you do. People
aren’t going to find you by telepathy.

Today a stitch, tomorrow a suit.
Companies hiring you might have
a few projects in mind, and they’ll

start with the smallest one just to
test the waters. If it’s a small job, take
any price you can get. If you impress
them, you’ll be offered a much more
lucrative job next.

And, finally, some non-aphoristic
advice:

Look professional. Give out
business cards at conferences. Make
an invoice template. State your rates
with confidence. Deliver ahead of
schedule. Write tests and documen-
tation. Code exactly what your client
wants, and not what you think the
world wants. Spell properly.

The world has room for open-
source independent contractors. I
don’t know how much room. And I
don’t know for how long. But now
you know how I did it.

Well, except for one or two
details...

Evan Miller is a graduate student in Eco-
nomics at the University of Chicago, and the
author of the Chicago Boss web framework.

“In the chef’s kitchen, the knife
that cuts anything, cuts nothing.”

Reprinted with permission of the original author.
First appeared in hn.my/contractor.

http://hn.my/contractor

24 PROGRAMMING

THIS DOCUMENT SHOWS you how to write
and build your first operating system in
x86 assembly language. It explains what
you need, the fundamentals of the PC

boot process and assembly language, and how to take it
further. The resulting OS will be very small (fitting into a
boot loader) and have very few features, but it’s a starting
point for you to explore further.

After you have read the guide, see the MikeOS project
[mikeos.berlios.de] for a bigger x86 assembly language OS
that you can explore to expand your skills.

Requirements
Prior programming experience is essential. If you’ve done
some coding in a high-level language like PHP or Java,
that’s good, but ideally you’ll have some knowledge of a
lower-level language like C, especially on the subject of
memory and pointers.

For this guide we’re using Linux. OS development is
certainly possible on Windows, but it’s so much easier on
Linux as you can get a complete development toolchain

in a few mouse clicks/commands. Linux is also very good
for making floppy disk and CD-ROM images — you don’t
need to install loads of fiddly programs.

Installing Linux is very easy these days: grab Ubuntu and
install it in VMware or VirtualBox if you don’t want to dual-
boot. When you’re in Ubuntu, get all the tools you need
to follow this guide by entering this in a terminal window:

sudo apt-get install build-essential qemu nasm

This gets you the development toolchain (compiler, etc),
QEMU PC emulator and the NASM assembler, which
converts assembly language into raw machine code execut-
able files.

PC primer
If you’re writing an OS for x86 PCs (the best choice, due to
the huge amount of documentation available), you’ll need
to understand the basics of how a PC starts up. Fortunately,
you don’t need to dwell on complicated subjects such as
graphics drivers and network protocols, as you’ll be focusing
on the essential parts first.

How To Write A Simple
Operating System

PROGRAMMING

By MIKE SAUNDERS

http://mikeos.berlios.de

 25

When a PC is powers up, it starts executing the BIOS
(Basic Input/Output System), which is essentially a mini-
OS built into the system. It performs a few hardware tests
(e.g., memory checks), and typically spurts out a graphic
(e.g., Dell logo) or diagnostic text to the screen. Then, when
it’s done, it starts to load your operating system from any
media it can find. Many PCs jump to the hard drive and
start executing code they find in the Master Boot Record
(MBR), a 512-byte section at the start of the hard drive;
some try to find executable code on a floppy disk (boot
sector) or CD-ROM.

This all depends on the boot order — you can normally
specify it in the BIOS options. The BIOS loads 512 bytes
from the chosen media into its memory, and begins execut-
ing it. This is the boot loader, the small program that then
loads the main OS kernel or a larger boot program (e.g.,
GRUB/LILO for Linux systems). This 512-byte boot loader
has two special numbers at the end to tell the OS that it’s
a boot sector - we’ll cover that later.

Note that PCs have an interesting feature for booting.
Historically, most PCs had a floppy drive, so the BIOS was
configured to boot from that device. But, today many PCs
don’t have a floppy drive — only a CD-ROM — so a hack
was developed to cater for this. When you’re booting from
a CD-ROM, it can emulate a floppy disk — the BIOS reads
the CD-ROM drive, loads in a chunk of data, and executes
it as if it was a floppy disk. This is incredibly useful for us
OS developers, as we can make floppy disk versions of our
OS, but still boot it on CD-only machines. (Floppy disks
are really easy to work with, whereas CD-ROM filesystems
are much more complicated.)

So, to recap, the boot process is:

1. Power on: the PC starts up and begins executing the
BIOS code.

2. The BIOS looks for various media such as a floppy disk
or a hard drive.

3. The BIOS loads a 512-byte boot sector from the specified
media and begins executing it.

4. Those 512 bytes then go on to load the OS itself, or a
more complex boot loader.

For MikeOS, we have the 512-byte boot loader, which
we write to a floppy disk image file (a virtual floppy). We
can then inject that floppy image into a CD for PCs that
only have CD-ROM drives. Either way, the BIOS loads it
as if it was on a floppy, and starts executing it. We have
control of the system!

Assembly language primer
Most modern operating systems are written in C/C++.
That’s very useful when portability and code-maintainability
are crucial, but it adds an extra layer of complexity to
the proceedings. For your very first OS, you’re better off
sticking with assembly language, as used in MikeOS. It’s
more verbose and non-portable, but you don’t have to
worry about compilers and linkers. Besides, you need a bit
of assembly to kick-start any OS.

Assembly language (or colloquially “asm”) is a textual way
of representing the instructions that a CPU executes. For
instance, an instruction to move some memory in the CPU
may be 11001001 01101110, but that’s hardly memorable!
So, assembly provides mnemonics to substitute for these
instructions, such as mov ax, 30. They correlate directly
with machine-code CPU instructions, but without the
meaningless binary numbers.

Like most programming languages, assembly is a list
of instructions followed in order. You can jump around
between various places and set up subroutines/functions,
but it’s much more minimal than C# and friends. You can’t
just print “Hello world” to the screen — the CPU has no
concept of what a screen is! Instead, you work with memory:
manipulating chunks of RAM, performing arithmetic on
them, and putting the results in the right place. Sounds
scary? It’s a bit alien at first, but it’s not hard to grasp.

At assembly-level, there is no such thing as variables in
the high-level language sense. What you do have, instead, is
a set of registers, which are on-CPU memory stores. You can
put numbers into these registers and perform calculations
on them. In 16-bit mode, these registers can hold numbers
between 0 and 65535. Here’s a list of the fundamental
registers on a typical x86 CPU:

26 PROGRAMMING

So, you can use these registers to store numbers as
you work — a bit like variables, but they’re much more
fixed in size and purpose. There are a few others, notably
segment registers. Due to limitations in old PCs, memory
was handled in 64k chunks called segments. This is a really
messy subject, but thankfully you don’t have to worry
about it. For the time being, your OS will be less than a
kilobyte anyway! In MikeOS, we limit ourselves to a single
64k segment so that we don’t have to mess around with
segment registers.

The stack is an area of your main RAM used for storing
temporary information. It’s called a stack because numbers
are stacked on top of one another. Imagine a Pringles tube:
if you put in a playing card, an iPod Shuffle, and a beermat,
you’ll pull them out in the reverse order (the beermat, then
the iPod, and, finally, the playing card). It’s the same with
numbers: if you push the numbers 5, 7, and 15 onto the
stack, you will pop them out as 15 first, then 7, and then 5.
In assembly, you can push registers onto the stack and pop
them out later — it’s useful when you want to store the
value of a register temporarily while you use that register
for something else.

PC memory can be viewed as a linear line of pigeonholes
ranging from byte 0 to whatever you have installed (millions
of bytes on modern machines). At byte number 53,634,246
in your RAM, for instance, you may have your web browser
code to view this document. But whereas we humans count
in powers of 10 (10, 100, 1000, etc — in decimal), comput-
ers are better off with powers of two (because they’re based
on binary). So we use hexadecimal, which is base 16, as a
way of representing numbers. See this chart to understand:

As you can see, whereas our normal decimal system uses
0-9, hexadecimal uses 0-F in counting. It’s a bit weird at
first, but you’ll get the hang of it. In assembly programming,
we identify hexadecimal (hex) numbers by tagging an “h”
onto the end — so 0Ah is hex for the number 10. (You
can also denote hexadecimal in assembly by prefixing the
number with 0x - for instance, 0x0A.)

Let’s finish off with a few common assembly instruc-
tions. These move memory around, compare them, and
perform calculations. They’re the building blocks of your
OS — there are hundreds of instructions, but you don’t
have to memorize them all, because the most important
handful are used 90% of the time.

Decimal 0 1 2 3 4 5 6 7 8 9

Hexadecimal 0 1 2 3 4 5 6 7 8 9

Decimal 10 11 12 13 14 15 16 17 18 19 20

Hexadecimal A B C D E F 10 11 12 13 14

AX, BX, CX,
DX

General-purpose registers for stor-
ing numbers that you’re using. For
instance, you may use AX to store the
character that has been pressed on the
keyboard, while using CX to act as a
counter in a loop. (Note: these 16-bit
registers can be split into 8-bit registers
such as AH/AL, BH/BL, etc.)

SI, DI Source and destination data index reg-
isters. These point to places in memory
for retrieving and storing data.

SP The Stack Pointer (explained in a
moment).

IP (sometimes
CP)

The Instruction/Code Pointer. This
contains the location in memory of
the instruction being executed. When
an instruction has finished, it is incre-
mented and moves on to the next
instruction. You can change the con-
tents of this register to move around
in your code.

 27

Let’s look at some of these instructions in a little more
detail. Consider the following code snippet:

 mov bx, 1000h
 mov ax, [bx]
 cmp ax, 50
 jge label
 ...
label:
 mov ax, 10

In the first instruction, we move the number 1000h into
the BX register. Then, in the second instruction, we store
in AX whatever is in the memory location pointed to by
BX. This is what the [bx] means: if we just did mov ax, bx
it’d simply copy the number 1000h into the AX register.
But, by using square brackets, we’re saying: don’t just copy
the contents of BX into AX, but copy the contents of
the memory address to which BX points. Given that BX
contains 1000h, this instruction says: find whatever is at
memory location 1000h, and put it into AX.

mov Copies memory from one location (or register) to another. For instance, mov ax, 30 places the number
30 into the AX register. Using square brackets, you can get the number at the memory location
pointed to by the register. For instance, if BX contains 80, then mov ax, [bx] means “get the number
in memory location 80, and put it into AX”. You can move numbers between registers too: mov bx, cx.

add/sub Adds a number to a register. add ax, FFh adds FF in hexadecimal (255 in our normal decimal) to the
AX register. You can use sub in the same way: sub dx, 50.

cmp Compares a register with a number. cmp cx, 12 compares the CX register with the number 12. It then
updates a special register on the CPU called FLAGS — a special register that contains information about
the last operation. In this case, if the number 12 is bigger than the value in CX, it generates a negative
result, and notes that negative in the FLAGS register. We can use this in the following instructions.

jmp/jg/jl... Jump to a different part of the code. jmp label jumps (GOTOs) to the part of our source code where
we have label: written. But, there’s more — you can jump conditionally, based on the CPU flags set
in the previous command. For instance, if a cmp instruction determined that a register held a smaller
value than the one with which it was compared, you can act on that with jl label (jump to label if
less than). Similarly, jge label jumps to “label” in the code if the value in the cmp was greater than
or equal to its compared number.

int Interrupt the program and jump to a specified place in memory. Operating systems set up interrupts
that are analogous to subroutines in high-level languages. For instance, in MS-DOS the 21h interrupt
provides DOS services (e.g., as opening a file). Typically, you put a value in the AX register, then call
an interrupt and wait for a result (passed back in a register too). When you’re writing an OS from
scratch, you can call the BIOS with int 10h, int 13h, int 14h, or int 16h to perform tasks like
printing strings, reading sectors from a floppy disk, etc.

28 PROGRAMMING

So, if the byte of memory at location 1000h contains 37,
then that number 37 will be put into the AX register via
our second instruction. Next up, we use cmp to compare the
number in AX with the number 50 (the decimal number
50 — we didn’t suffix it with “h”). The following jge instruc-
tion acts on the cmp comparison, which has set the FLAGS
register as described earlier. The jge label says: if the
result from the previous comparison
is greater than or equal, jump to the
part of the code denoted by label:.
So, if the number in AX is greater
than or equal to 50, execution jumps
to label:. If not, execution continues
at the “...” stage.

One last thing, you can insert data
into a program with the db (define
byte) directive. For instance, this
defines a series of bytes with the
number zero at the end, represent-
ing a string:

mylabel: db 'Message here', 0

In our assembly code, we know that
a string of characters, terminated by
a zero, can be found at the mylabel:
position. We could also set up single
byte to use somewhat like a variable:

foo: db 0

Now foo: points at a single byte
in the code, which in the case of
MikeOS will be writable as the OS
is copied completely to RAM. So you
could have this instruction:

mov byte al, [foo]

This moves the byte pointed to by
foo into the AL register.

That’s the essentials of x86 PC
assembly language, and enough to get you started. When
writing an OS, though, you’ll need to learn much more as
you progress, so see the Resources section at mikeos.berlios.de
for links to more in-depth assembly tutorials.

Your first OS
Now you’re ready to write your first operating system
kernel! Of course, this is going to be extremely bare bones,
just a 512-byte boot sector as described earlier, but it’s a
starting point for you to expand further. Paste the follow-
ing code into a file called myfirst.asm and save it into your
home directory — this is the source code to your first OS:

Let’s step through this. The BITS 16 line isn’t an x86 CPU
instruction — it just tells the NASM assembler that we’re
working in 16-bit mode. NASM can then translate the fol-
lowing instructions into raw x86 binary. Then we have the
start: label, which isn’t strictly needed as execution begins
right at the start of the file anyway, but it’s a good marker.

 BITS 16
start:
 mov ax, 07C0h ; Set up 4K stack space after this boot loader
 add ax, 288 ; (4096 + 512) / 16 bytes per paragraph
 mov ss, ax
 mov sp, 4096

 mov ax, 07C0h ; Set data segment to where we're loaded
 mov ds, ax

 mov si, text_string ; Put string position into SI
 call print_string ; Call our string-printing routine

print_string: ; Routine: output string in SI to screen
 mov ah, 0Eh ; int 10h 'print char' function
.repeat:
 lodsb ; Get character from string
 cmp al, 0
 je .done ; If char is zero, end of string
 int 10h ; Otherwise, print it
 jmp .repeat
.done:
 ret

 times 510-($-$$) db 0 ; Pad remainder of boot sector with 0s
 dw 0xAA55 ; The standard PC boot signature

 29

From here onwards, note that the semicolon (;) character
is used to denote non-executable text comments — we can
put anything there.

The following six lines of code aren’t really of interest
to us — they simply set up the segment registers, so that
the stack pointer (SP) knows where our handy stack of
temporary data is, and where the data segment (DS) is
located. As mentioned, segments are a hideously messy way
of handling memory from the old 16-bit days, but we just
set up the segment registers and forget about them. (The
references to 07C0h are the equivalent segment location
at which the BIOS loads our code, so we start from there.)

The next part is where the fun happens. The mov si,
text_string line says, “Copy the location of the text string
below into the SI register.” Simple enough! Then we use
call, which is like a GOSUB in BASIC or a function call
in C. It means, jump to the specified section of code, but
prepare to come back here when we’re done.

How does the code know how to do that? Well, when
we use a call instruction, the CPU increments the position
of the IP (Instruction Pointer) register and pushes it onto
the stack. You may recall from the previous explanation
of the stack that it’s a last-in first-out memory storage
mechanism. All that business with the stack pointer (SP)
and stack segment (SS) at the start cleared a space for the
stack, so that we can drop temporary numbers there without
overwriting our code.

So, the call print_string means, jump to the print_string
routine, but push the location of the next instruction onto
the stack, so we can pop it off later and resume execution
here. Execution has jumped over to print_string:, this
routine uses the BIOS to output text to the screen. First
we put 0Eh into the AH register (the upper byte of AX).
Then we have a lodsb (load string byte) instruction, which
retrieves a byte of data from the location pointed to by SI,
and stores it in AL (the lower byte of AX). Next we use
cmp to check if that byte is zero — if so, it’s the end of the
string and we quit printing (jump to the .done label).

If it’s not zero, we call int 10h (interrupt our code and
go to the BIOS), which reads the value in the AH register
(0Eh) we set up before. Ah, says the BIOS. 0Eh in the AH
register says , “Print the character in the AL register to
the screen!” So, the BIOS prints the first character in our
string, and returns from the int call. We then jump to the

.repeat label, which starts the process again. lodsb loads
the next byte from SI (it increments SI each time), see if
it’s zero and decide what to do. The ret at the end of our
string-printing routine says, “We’ve finished here — return
back to the place where we were called by popping the
code location from the stack back into the IP register”.

So, there we have a demonstration of a loop in a stand-
alone routine. You can see that the text_string label is
alongside a stream of characters, which we insert into our
OS using db. The text is in apostrophes so that NASM
knows it’s not code, and at the end we have a zero to tell
our print_string routine that we’re at the end.

Let’s recap: we start off by setting up the segment reg-
isters so that our OS knows where the stack pointer and
executable code resides. Then, we point the SI register
at a string in our OS binary, and call our string-printing
routine. This routine scans through the characters pointed
to by SI and displays them until it finds a zero, at which
point it returns back into the code that called it. Then, the
jmp $ line means, keep jumping to the same line. (The “$”
in NASM denotes the current point of code.) This sets up
an infinite loop, so that the message is displayed and our
OS doesn’t try to execute the following string!

The final two lines are interesting. For a PC to recognize
a valid floppy disk boot sector, it has to be exactly 512
bytes in size and end with the numbers AAh and 55h (the
boot signature). So, the first of these lines says, “Pad out
our resulting binary file to be 510 bytes in size.” Then the
second line uses dw (define a word — two bytes) containing
the aforementioned boot signature. Voilà! A 512-byte boot
file with the correct numbers at the end for the BIOS to
recognize.

Let’s build our new OS. In a terminal window, in your
home directory, enter:

Here we assemble the code from our text file into a raw
binary file of machine code instructions. With the -f bin
flag, we tell NASM that we want a plain binary file (not
a complicated Linux executable — we want it as plain as
possible!) The part tells NASM to generate
the resulting binary in a file called myfirst.bin.

30 PROGRAMMING

Now we need a virtual floppy disk image to which we
can write our boot loader-sized kernel. Copy mikeos.flp
from the disk_images/directory of the MikeOS bundle into
your home directory, and rename it myfirst.flp. Then, enter:

This uses the “dd” utility to directly copy our kernel to
the first sector of the floppy disk image. When it’s done,
we can boot our new OS using the QEMU PC emulator
as follows:

And there you are! Your OS will boot up in a virtual PC.
If you want to use it on a real PC, you can write the floppy
disk image to a real floppy and boot from it, or generate a
CD-ROM ISO image. For the latter, make a new directory
called cdiso and move the myfirst.flp file into it. Then, in
your home directory, enter:

This generates a CD-ROM ISO image called myfirst.iso
that emulates a floppy disk and is bootable, using the virtual
floppy disk image from before. Now you can burn that
ISO to a CD-R and boot your PC from it! (Note that you
need to burn it as a direct ISO image and not just copy it
onto a disc.)

Next you’ll want to improve your OS — explore the
MikeOS source code to get some inspiration. Remember
that boot loaders are limited to 512 bytes, so if you want
to do a lot more, you’ll need to make your boot loader load
a separate file from the disk and begin executing it, in the
same fashion as MikeOS.

Mike Saunders is a Linux journalist, machine code hacker and expert
at Mario Kart (the SNES version). His operating system, MikeOS, can
be found at mikeos.berlios.de. He lives in Bath, England.

Commentary
By MICHAEL MELANSON (a-priori)

WHILE IT’S COOL and all to write your
own boot loader, this means you have

to deal with a lot of the really ugly bits of x86/
PC architecture like the A20 gate (if you don’t
know what that is, count yourself lucky.)

Instead, I suggest using GRUB to boot your
kernel image. It leaves you in 32-bit mode and a
relatively sane state. It’s not hard to write a loader
file (in assembly) which contains the multi-boot
header and an entry point. Presumably, you’ll
want to set up a basic C runtime environment
and call your C “main” function.

By JACQUES MATTHEIJ (jasquesm)

WRITING YOUR OWN boot loader is actu-
ally an excellent exercise in getting to

know the intricacies of the memory mapping
on the PC architecture. After you’re done you
can always decide to go for a readymade one,
but rolling your own is definitely useful if you
plan on writing your own OS.

NIH applies like always, but if you plan
on taking control of the machine you might
as well begin at the beginning. Rolling your
own BIOS would be a step too far I think. :)

Reprinted with permission of the original author. First appeared in hn.my/os.

http://mikeos.berlios.de
http://hn.my/os

 31

http://www.paymo.biz

32 PROGRAMMING

WELL, NOT YOU specifically, but by ‘you’ I
mean the average Mac developer. It’s too
easy to crack Mac applications. Way too

easy. By walking through how I can hack your application
with only one Tterminal shell, I hope to shed some light on
how this is most commonly done, and hopefully convince
you to protect yourself against me. I’ll be ending this article
with some tips to prevent this kind of hack.

Disclaimer: I am fervently against software piracy, and
I do not participate in piracy. Some will view this article
as an endorsement of piracy, but rest assured that it is not.
ButHowever, I do not believe that obscurity and ignoring
the problem is an acceptable solution.

In order to follow along you’re going to need a few com-
mand line utilities. You’re going to need the Xcode tools
installed,. andAnd lastly, you’re going to need an application
to operate on. I chose Exces [excesapp.com], a shareware
aApplication I wrote a long time ago.

Let’s start by making sure we have the two utilities we
need: otx and class-dump. I like to use Homebrew as my pack-
age manager of choice. Note that I will use command-line
utilities only, including vim. If you prefer GUIs, feel free
to use your code-editor of choice, HexFiend, and otx’s
GUI app.

$ sudo brew install otx
$ sudo brew install class-dump

The first step is to poke into the target application’s headers,
gentlemanly left intact by the unwitting developer.

$ cd Exces.app/Contents/MacOS
$ class-dump Exces | vim

Browse around, and find the following gem:

@interface SSExcesAppController : NSObject
{
[...]
 BOOL registred;
[...]
- (void)verifyLicenseFile:(id)arg1;
- (id)verifyPath:(id)arg1;
- (BOOL)registred;

What do we have here?! A (badly spelled) variable and
what looks like three methods related to registration. We can
now focus our efforts around these symbols. Let’s continue
poking by disassembling the source code for these methods.

$ otx Exces -arch i386

I Can Crack Your App With
Just A Shell
(And How To Stop Me)

 By KENNETH BALLENEGGER

http://excesapp.com

 33

Note that Exces is a universal binary, and that we need to
ensure we only deal with the active architecture. In this case,
Intel’s i386. Let us find out what verifyLicenseFile: does.

-(void)[SSExcesAppController verifyLicenseFile:]
[...]
+34 0000521e e8c21e0100 calll 0x000170e5
-[(%esp,1) verifyPath:]
+39 00005223 85c0 testl %eax,%eax
+41 00005225 0f84e2000000 je 0x0000530d
[...]
+226 000052de c6472c01 movb $0x01,0x2c(%edi)
(BOOL)registred
[...]

This is not straight Objective-C code, but rather assembly
— what C compiles into. The first part of each line, the
offset, +34, shows how many bytes into the method the
instruction is. 0000521e is the address of the instruction
within the program. e8c21e0100 is the instruction in byte
code. calll 0x000170e5 is the instruction in assembly lan-
guage. -[(%esp,1) verifyPath:] is what otx could gather the
instruction to represent in Objective-C from the symbols
left within the binary.

With this in mind, we can realize that verifyLicense-
File: calls the methodverifyPath: and later sets the
boolean instance variable as registred. We can guess that
verifyPath: is probably the method that checks the validity
of a license file. We can see from the header that verifyPath:
returns an object and thus would be way too complex to
patch. We need something that deals in booleans.

Let’s launch Exces in the gdb debugger and check when
verifyLicenseFile: is called.

$ gdb Exces
(gdb) break [SSExcesAppController verifyLicenseFile:]
Breakpoint 1 at 0x5205
(gdb) run

No bite. The breakpoint is not hit on startup. We can
assume that there’s a good reason whyverifyLicenseFile:
and verifyPath: are two separate methods. While we could
patch verifyLicenseFile: to always set registred to true,
verifyLicenseFile: is probably called only to check license
files entered by the user. Quit gdb and let’s instead search

for another piece of code that calls verifyPath:. In the otx
dump, find the following inawakeFromNib:,

-(void)[SSExcesAppController awakeFromNib]
[...]
+885 00004c8c a1a0410100 movl 0x000141a0,%eax
verifyPath:
+890 00004c91 89442404 movl %eax,0x04(%esp)
+894 00004c95 e84b240100 calll 0x000170e5
-[(%esp,1) verifyPath:]
899 00004c9a 85c0 testl %eax,%eax
+901 00004c9c 7409 je 0x00004ca7
+903 00004c9e 8b4508 movl 0x08(%ebp),%eax
+906 00004ca1 c6402c01 movb $0x01,0x2c(%eax)
(BOOL)registred
+910 00004ca5 eb7d jmp 0xe00004d24
return;
[...]

The code is almost identical to verifyLicenseFile:. Here’s
what happens,

verifyPath: is called. (+894 calll)

 A test happens based on the result of the call. (+899
testl)

 Based on the result of the text, jump if equal. (+901
je) A test followed by a jeje or jnejne (jump if not
equal) is assembly-speak for an if statement.

 The registred ivar is set, if we have not jumped away.

Since awakeFromNib is executed at launch, we can safely
assume that if we override this check, we can fool the
application into thinking it’s registered. The easiest way to
do that is to change the je into a jne, essentially reversing
its meaning.

Search the dump for any jne statement, and compare
it to the je:,

+901 00004c9c 7409 je 0x00004ca7
+14 00004d9f 7534 jne 0x00004dd5
return;

7409 is the binary code for je 0x00004ca7. 7534 is a
similar binary code. If we simply switch the binary code
for the je to 7534, at address 00004c9c, we should have
our crack. Let’s test it out in gdb.

34 PROGRAMMING

$ gdb Exces
(gdb) break [SSExcesAppController awakeFromNib]
Breakpoint 1 at 0x4920
(gdb) r
(gdb) x/x 0x00004c9c
0x4c9c <-[SSExcesAppController awakeFromNib]+901>:
0x458b0974

We break on awakeFromNib so we’re able to fiddle around
while the application is frozen. x/x reads the code in
memory at the given address. Now here’s the confusing
thing to be aware of: endianness. While on disk, the binary
code is normal, Intel is a little-endian system which puts the
most significant byte last, and thus reverses every four-byte
block in memory. So, while the code at address 0x4c9c is
printed as 0x458b0974, it’s actually 0x74098b45. We recognize
the first two bytes 7409 from earlier.

We need to switch the first two bytes to 7534. Let’s start
by disassembling the method so we can better see our way
around. Find the relevant statement,

0x00004c9c <-[SSExcesAppController awakeFromNib]+901>:
je 0x4ca7 <-[SSExcesAppController awakeFromNib]+912>

Now let’s edit code in memory,

(gdb) set {char}0x00004c9c=0x75
(gdb) x/x 0x00004c9c
0x4c9c <-[SSExcesAppController awakeFromNib]+901>:
0x458b0975
(gdb) set {char}0x00004c9d=0x34
(gdb) x/x 0x00004c9c
0x4c9c <-[SSExcesAppController awakeFromNib]+901>:
0x458b3475

Here we set the first byte at 0x00004c9c. By simply count-
ing in hexadecimal, we know that the next byte goes at
address 0x00004c9d, and set it as such. Let’s disassemble
again to check if the change was done right,

(gdb) disas
0x00004c9c <-[SSExcesAppController awakeFromNib]+901>:
jne 0x4cd2 <-[SSExcesAppController awakeFromNib]+955>

Whoops, we made a mistake and changed the destination
of the jump from +912 to +955. We realize that the first
byte (74) of the byte code stands for the je/jne and the

second byte is the offset, or how many bytes to jump by.
We should only have changed 74 to 75, and not 09 to 34.
Let’s fix our mistake.

(gdb) set {char}0x00004c9c=0x75 (gdb) set
{char}0x00004c9d=0x09

And check again,

0x00004c9c <-[SSExcesAppController awakeFromNib]+901>:
jne 0x4ca7 <-[SSExcesAppController awakeFromNib]+912>

Hooray! This looks good! Let’s execute the app to
admire our crack.

(gdb) continue

Woot! Victory! We’re in, and the application thinks we’re
a legitimate customer. Time to get wasted and party! (I
recommend Vessel nightclub in downtown San Francisco.)
Well, not quite. We still need to make our change perma-
nent. As it currently stands, everything will be erased as soon
as we quit gdb. We need to edit the code on disk — the
actual binary file. Let’s find a chunk of our edited binary big
enough that it likely won’t be repeated in the whole binary.

(gdb) x/8x 0x00004c9c
0x4c9c <-[SSExcesAppController awakeFromNib]+901>:
0x458b0975 0x2c40c608 0x8b7deb01 0xa4a10855
0x4cac <-[SSExcesAppController awakeFromNib]+917>:
0x89000141 0x89082454 0x89042444 0x26e82414

That’s the memory representation of the code, a whole 8
blocks of four-bytes starting at 0x00004c9c. Taking endian-
ness into account, we must reverse them and we get the
following:

0x75098b45 0x08c6402c 0x01eb7d8b 0x5508a1a4
0x41010089 0x54240889 0x44240489 0x1424e826

The very first byte of the series is the 74 that we switched
into 75. By changing it back, we can deduce the original
binary code to be:

0x74098b45 0x08c6402c 0x01eb7d8b 0x5508a1a4
0x41010089 0x54240889 0x44240489 0x1424e826

Let’s open the binary in a hex editor. I used vim, but
feel free to use any hex editor at this point. HexFiend has
a great GUI.

 35

(gdb) quit
$ vim Exces

This loads up the binary as ascii text, which is of little help.
Convert it to hex thusly,

vim formats hex like this,

0000000: cafe babe 0000 0002 0000 0012 0000 0000
................

The first part, before the colon, is the address of block.
Following it are sixteen16 bytes, broken off in two-byte
segments. Incidentally, every Mach-O binary starts with the
hex bytes cafebabe. Drunk Kernel programmers probably
thought it’d be funny. Now that we have our beautiful hex
code loaded up, let’s search for the first two bytes of our
code to replace:

/7409

Shit. Too many results to make sense of. Let’s add another
two bytes. Search for “7409 8b45” instead and boom, only
one result,

001fc90: 0089 4424 04e8 4b24 0100 85c0 7409 8b45
..D$..K$....t..E

Edit it to the following,

001fc90: 0089 4424 04e8 4b24 0100 85c0 7509 8b45
..D$..K$....t..E

Convert it back to binary form, then save and quit,

And… we’re done! To check our work, launch the applica-
tion in gdb, break to [SSExcesAppController awakeFromNib]
and disassemble.

$ gdb Exces
(gdb) break [SSExcesAppController awakeFromNib]
Breakpoint 1 at 0x4c90
(gdb) r
(gdb) disas

Admire our work,

0x00004c9c <-[SSExcesAppController awakeFromNib]+901>:
jne 0x4ca7 <-[SSExcesAppController awakeFromNib]+912>

Quit gdb and relaunch the application from the Finder, and
bask in your leet glory.

How you can stop me
Objective-C makes it really easy to mess with an applica-
tion’s internals. Try to program the licensing mechanism for
your application in pure C, that will already make it harder
for me to find my way around your binary. Also, read this
older article of mine [hn.my/binarycrack] on three easy tips
— stripping debug symbols, using PT_DENY_ATTACH,
and doing a checksum of your binary — you can implement
to make it a whole lot harder for your application to be
cracked.

A truly skilled hacker will always find his way around
your protection, but implementing a bare minimum of
security will weed out 99% of amateurs. I am not a skilled
hacker — yet with some very basic knowledge I tore this
apart in no time. Implementing the various easy tips above
takes very little time, yet would have made it enough of a
pain for me that I would have given up.

From Lausanne, Switzerland, Kenneth Ballenegger moved to the
Bay Area where he works as an iPhone developer. When not busy
building the next big thing, he studies graphic design during the
day, while roaming San Francisco’s trendy spots at night. Kenneth
muses about the world of design, software and life on his blog,
kswizz.com.

Reprinted with permission of the original author. First appeared in hn.my/crackapp.

http://hn.my/binarycrack
http://kswizz.com
http://hn.my/crackapp

36 PROGRAMMING

I’M READING DO More Faster, which is more than a bit of
an advertisement for the TechStars startup incubator,
but it’s a good read nonetheless. What struck me is that

several of the people who went through the program suc-
cessfully enough to at least get initial funding didn’t know
how to program. They learned it so they could implement
their startup ideas.

Think about that. It’s like having a song idea and learning
to play an instrument so you can make it real. I suspect
that the learning process in this case would horrify most
professional musicians, but that horror doesn’t necessarily
mean that it’s a bad idea, or that the end result wouldn’t be
successful. After all, look at how many bands find success
without the benefits of a degree in music theory.

I already knew how to program when I took an “Introduc-
tion to BASIC” class in high school. One project was to
make a visual demo using the sixteen-color, low-resolution
mode of the Apple II. I quickly put together something
algorithmic, looping across the screen co-ordinates and
drawing lines and changing colors. It took me about half
an hour to write and tweak, and I was done.

I seriously underestimated what people would create.
One guy presented this amazing demo full of animation

and shaded images. I’m talking crazy stuff, like a skull that
dripped blood from its eye into a rising pool at the bottom
of the screen. And that was just one segment of his project.
I was stunned. Clearly I wasn’t the hotshot programmer I
thought was.

Eventually, I saw the BASIC listing for his program. It
was hundreds and hundreds of lines of statements to change
colors and draw points and lines. There were no loops or
variables. To animate the blood he drew a red pixel, waited,
then drew another red pixel below it. All the coordinates
were hard-coded. How did he keep track of where to draw
stuff? He had a piece of graph paper that he updated as
he went.

My prior experience hurt me in this case. I was thinking
about the program, and how I could write something that
was concise and clean. The guy who wrote the skull demo
wasn’t worried about any of that. He didn’t care about
what the code looked like, or how maintainable it was. He
just wanted a way to present his vision.

There’s a lesson there that’s easy to forget — or ignore.
It’s extremely difficult to be simultaneously concerned
with the userexperience of whatever it is that you’re build-
ing and the architecture of the program that delivers that
experience. Maybe impossible. I think the only way to pull
it off is to simply not care about the latter. Write comically
straightforward code, as if you just learned to program, and
go out of your way to avoid wearing any kind of software
engineering hat — unless what you really want to be is a
software engineer, and not the designer of an experience.

James Hague is a recovering programmer who now works full time
as a game designer, most recently acting as Design Director for Red
Faction: Guerrilla. He’s running his own indie game studio and is a
published photographer.

Write Code Like You Just
Learned How To Program

By JAMES HAGUE

Reprinted with permission of the original author. First appeared in hn.my/codelearn.

http://hn.my/codelearn

http://www.sendgrid.com/hacker
http://hn.my/codelearn

38 PROGRAMMING

EMULATION IS A multifaceted
area. Here are the basic
ideas and functional

components. Many of the things
I’m going to describe will require
knowledge of the inner workings of
processors — assembly knowledge is
necessary.

Basic Idea
Emulation works by handling the
behavior of the processor and the
individual components. You build
each individual piece of the system
and then connect the pieces much
like wires do in hardware.

Processor Emulation
There are three ways of handling
processor emulation:

With all of these paths, you have
the same overall goal: execute a
piece of code to modify processor
state and interact with “hardware”.
Processor state is a conglomeration
of the processor registers, interrupt
handlers, etc, for a given processor
target. For the 6502, you’d have a
number of 8-bit integers represent-
ing registers: A, X, Y, P, and S; you’d
also have a 16-bit PC register.

With interpretation, you start at
the IP (instruction pointer — also
called PC, program counter) and read
the instruction from memory. Your
code parses this instruction and uses
this information to alter processor
state as specified by your processor.
The core problem with interpreta-
tion is that it’s very slow; each time
you handle a given instruction, you
have to decode it and perform the
requisite operation.

With dynamic recompilation,
you iterate over the code much like
interpretation, but instead of just
executing opcodes, you build up a
list of operations. Once you reach a
branch instruction, you compile this
list of operations to machine code for
your host platform, then you cache
this compiled code and execute it.
Then, when you hit a given instruc-
tion group again, you only have to
execute the code from the cache. (By
the way, most people don’t actu-
ally make a list of instructions but
compile them to machine code on
the fly — this makes it more difficult
to optimize)

With static recompilation, you do
the same as in dynamic recompila-
tion, but you follow branches. You
end up building a chunk of code that
represents all of the code in the pro-
gram, which can then be executed

How Do Emulators Work
And How Are They Written

By CODY BROCIOUS

 39

with no further interference. This
would be a great mechanism if it
weren’t for the following problems:

Code that isn’t in the program
to begin with (e.g., compressed,
encrypted, generated/modified at
runtime, etc) won’t be recompiled,
so it won’t run.

It’s been proven that finding
all the code in a given binary
is equivalent to the “Halting
problem”.

These combine to make static
recompilation completely infeasible
in 99% of cases. For more informa-
tion, Michael Steil has done some
great research in static recompilation
— the best I’ve seen.

The other side to processor emula-
tion is the way in which you interact
with hardware. This really has two
sides:

Processor Timing
Certain platforms — especially older
consoles like the NES, SNES, etc —
require your emulator to have strict
timing to be completely compatible.
With the NES, you have the PPU
(pixel processing unit) which requires
that the CPU puts pixels into its
memory at precise moments. If you
use interpretation, you can easily
count cycles and emulate proper
timing; with dynamic/static recompi-
lation, things are a lot more complex.

Interrupt Handling
Interrupts are the primary mecha-
nism that the CPU communicates
with hardware. Generally, your hard-
ware components will tell the CPU

what interrupts it cares about. This is
pretty straightforward — when your
code throws a given interrupt, you
look at the interrupt handler table
and call the proper callback.

Hardware Emulation
There are two sides to emulating a
given hardware device:

Emulating the functionality of the
device.
Emulating the actual device
interfaces.

Take the case of a hard drive. The
functionality is emulated by creat-
ing the backing storage, read/write/
format routines, etc. This part is
generally very straightforward.

The actual interface of the device
is a bit more complex. This is gener-
ally some combination of memory
mapped registers (e.g., parts of
memory that the device watches for
changes to do signaling) and inter-
rupts. For a hard drive, you may have
a memory mapped area where you
place read commands, writes, etc,
then read this data back.

For a complete list of resources and
addendum, see the original post at
hn.my/emulators.

Cody Brocious is a senior security consul-
tant with Matasano Security and founder
of projects such as PyMusique, Emokit, and
the Renraku OS. His work has been featured
in Forbes Magazine, EDN, CNET’s News.com,
and on his mother’s refrigerator.

Senior Developer
youDevise, Ltd.
(https://dev.youdevise.com)

London, England
60-person agile financial
software company in London
committed to learning and
quality (dojos, TDD, continu-
ous integration, exploratory
testing). Under 10 revenue-
affecting production bugs last
year. Release every 2 weeks.
Mainly Java, also Groovy,
Scala; no prior knowledge of
any language needed.
To Apply: Send CV to
jobs@youdevise.com.

Front-end and Back-end
Engineers
Meetup (http://www.meetup.com)
New York
Meetup thinks the world is
a better place when groups
of people meetup locally, in
person, around a common
interest. We’re reinventing
how this is done, but we
can’t do it alone! We value
iterating/launching quickly,
pragmatism, and long walks
on the beach.
To Apply:
http://meetup.com/jobs

HACKER JOBS

Reprinted with permission of the original author.
First appeared in hn.my/emulators.

http://hn.my/emulators
http://www.meetup.com
http://meetup.com/jobs
http://hn.my/emulators

Dream. Design. Print.

25% O! the First Issue You Publish
HACKER

40 HACKER JOBS

http://www.magcloud.com

	Contents
	FEATURES
	How To Get Your Startup On Hacker News
	Understanding Pac-Man Ghost Behavior

	STARTUP
	Will Freemium Work For You?
	On Not Hiring

	PROGRAMMING
	How To Write A Simple Operating System
	I Can Crack Your App With Just A Shell
	Write Code Like You Just Learned How To Program
	How Do Emulators Work And How Are They Written

	HACKER JOBS

