
Issue 14  July 2011

My First Six Months
of Programming

By Whitaker Blackall

Curator
Lim Cheng Soon

Contributors
Chad Etzel

Whitaker Blackall

Paul Stamatiou

Diomidis Spinellis

Ruben Berenguel

Fabien Sanglard

Joel Neely

Robin Houston

Proofreader
Emily Griffin

Molly O’Donnell

Printer
MagCloud

Hacker Monthly is the print magazine version

of Hacker News — news.ycombinator.com, a social news

website wildly popular among programmers and startup

founders. The submission guidelines state that content

can be “anything that gratifies one’s intellectual curiosity.”

Every month, we select from the top voted articles on

Hacker News and print them in magazine format.

For more, visit hackermonthly.com.

Advertising
ads@hackermonthly.com

Contact
contact@hackermonthly.com

Published by
Netizens Media

46, Taylor Road,

11600 Penang,

Malaysia.

Hacker Monthly is published by Netizens Media and not affiliated with Y Combinator in any way.

Contents

Cover Photography: Dana Tesser

http://news.ycombinator.com
http://hackermonthly.com
mailto:ads@hackermonthly.com
mailto:contact@hackermonthly.com

Contents

For links to the posts on Hacker News, visit hackermonthly.com/issue-14. All articles are reprinted with permission of their original author.

DESIGN

18  Crash Course: Design for Startups
By PAUL STAMATioU

SPECIAL

22  What I Learned from Fixing my Laptop’s Motherboard
By DioMiDiS SPinELLiS

24  Learn to Remember Everything
By Ruben Berenguel

PROGRAMMING

28  Doom Engine Code Review
By FABiEn SAnGLARD

36  Why Data Structures Matter
By JOEL NEELY

38  The Worst Algorithm in the World?
By RoBin HoUSTon

FEATURES

04 Startups are Hard
By CHAD ETzEL

10 My First 6 Months of Programming
By WHiTAKER BLACKALL

Effort, flickr.com/photos/krikit/2880756271

http://hackermonthly.com/issue-14.html
http://flickr.com/photos/krikit/2880756271

4  FEATURES

FEATURES

By Chad Etzel

Startups are Hard

Startups are hard. No, startups are damn
hard.

Contrary to popular belief, there are no

clouds of money that float around Silicon

Valley and rain on anyone that utters the phrase, “I’m

a founder!” Unfortunately, starting a company and

raising money is just as hard as ever; it’s just that the

investors don’t have as much leverage as they used to,

but they still have a lot.

Most reporting on startups suffers from a terrible

case of success bias. Nobody wants to report on a

dying startup unless it is to highlight another company

that has come along to kill them, but that actually

turns into a piece about the better company and not

the dying one.

  5

Startups that die rarely talk about it publicly

because it is frustrating, embarrassing, and most of

the time the people involved want to forget the

whole mess and move on rather than sit around talk-

ing about the fact that they failed.

Most people don’t want to admit that startups

are hard, either, because to admit something is hard

is to admit that you don’t know everything there is

to know about a certain topic and to display weak-

ness. If there’s one thing you do not want to do as a

startup, it’s appear weak. Only the strong survive.

But guess what: startups are hard. At times they

are soul-crushingly hard. I am not afraid to admit this

anymore. I am not afraid to talk openly about it with

peers anymore. So, this post serves as a counterpoint

to all the recent postings alluding to the fact that

anyone can suddenly decide to be a founder and the

next week find themselves swimming around in a

kiddie-pool full of angel/VC money.

You’re Nobody Till Somebody Loves You
In the Valley, you are a Nobody until you are a Some-

body. Trying to launch a new product as a Nobody

is hard. Trying to get press as a Nobody is very hard,

because nobody knows who you are (read: nobody

cares who you are) and so they don’t care about your

product. Press outlets are already so saturated with

inbound leads from trusted and credible sources that

trying to promote yourself as a Nobody will find your

attempts mostly routed to an inbox black hole.

Raising money as a Nobody isn’t just hard, it is

nearly impossible. There are a few major factors that

investors look at when making an investment deci-

sion. Two big factors are Traction and Revenue, and

they are somewhat orthogonal. It’s ok if you have

impressive numbers on one axis but not the other,

but having both is even better.

One other major factor is Social Proof: that is, are

you a Somebody?

Having a track record of past success is a really big

deal. This is what allows people to raise money with

their name alone. It allows them to walk into a VC

office, say “I have a cool idea,” and walk out with a

fat check. (This is an oversimplification, of course,

but it’s not too far off.) The fact that the Color team

was able to raise $41M is not a surprise to me; in fact

that number seems pretty low given the resources

they will need to reach their ambitious goals. Being

a Somebody affords you lots and lots of advantages

(both in getting press and raising money).

So then, the question becomes, how does a

Nobody become a Somebody? You need your first

big success to become a Somebody. Having your first

big hit as a Nobody is the major bootstrap problem

that all new founders will face. The trick is to brute

force a successful result in the face of nobody caring

about who you are. And that, to me, is the hardest

part about startups. It demands superior execution

and perseverance in the face of the crap-storm you

will endure.

I’m still a Nobody in the Valley. Sure, I have a lot

of great contacts, a great network of fellow startup

folks, and a great resume of past corporate experi-

ence, but all that does not a Somebody make. Until I

have a track record of at least one past success, I will

continue to be a Nobody.

“Jealousy... is a mental cancer.” – B.C. Forbes
Am I jealous of other companies’ success? I would be

lying if I said no. I am slightly jealous when I wake up

and read another story about some company raising a

million dollars for some idea that makes absolutely no

sense to me, or seeing an acquisition of a company for

a product I did not feel was particularly well exe-

cuted. I am happy for them because they were able to

pull off something that I know firsthand is very hard.

At the same time, I am jealous that they were able

to figure something out that I honestly haven’t been

able to yet. The point is, though, I am not just sitting

around whining and waiting for my ship to come in.

I am actively building my ship from scratch by hand,

and one day it will set sail. I am also discovering how

to refocus that envious energy into learning from their

successful experiences.

Effort, flickr.com/photos/krikit/2880756271

http://flickr.com/photos/krikit/2880756271

6  FEATURES

Having a Support Group
Startups are grueling, and the only way to stay sane is

to have some sort of support group, especially outside

of work. Co-founders and employees are of course

wonderful for support, but they are also drinking the

same kool-aid. Having some friends outside of work to

give different perspectives is very valuable. Since we

just moved to the area recently, we haven’t had time

to foster many new or deep friendships. So for me, my

greatest supporter is my wife.

My wife is a saint. She has supported me every day

with encouragement. She is my biggest cheerleader.

Some days I am honestly surprised that I don’t wake

up and find an empty dresser, a missing suitcase, and

a letter on the counter. She has sacrificed every bit as

much as I have for no other reason than she believes

in me. Some days that is the only motivation moving

me forward.

Recently my wife found a job after six months of

searching. It’s right up her alley, and she loves it. This

has been a real boon both for her morale and for our

bank account. Her paycheck now represents a signifi-

cant portion of our income, and I recognize this fact.

Thanks to her job, I am able to reduce my paycheck,

and thus give a longer lifespan to my startup.

Someday when this is all over, and assuming the

result is that we can afford it, I owe her a month long

stay at a 5-star spa.

Sacrifice
Startups demand sacrifice. As a sample size of two,

here is a list of things my wife and I have sacrificed in

order to go out and chase the American Dream:

•	 My well-salaried corporate job working on fun and

interesting problems.

•	 A peer group at work that gave me equal amounts

of respect, even though I was several years their

junior.

•	 Low cost of living on the East Coast.

•	 Our 3-story townhouse with a huge kitchen and

hardwood floors in the 'burbs traded in for a tiny

one-bedroom apartment in San Francisco with

insane rent (in addition to still paying the mortgage

on our house).

•	 My awesome sports car that I loved to drive

around the mountains.

•	 Burning through nearly all of our personal savings.

•	 Health insurance.

•	 Vacations (read: time-off, since I could still travel

around if I really wanted to, but I am never really

“off the clock”).

•	 Monthly contributions to a 401k plan.

•	 Our great church home in Raleigh.

•	 My wife’s friends.

•	 My wife’s job at UNC.

•	 Nine months living separated from my wife while I

went through YC and tried to raise money thereafter.

“Startups are grueling, and the only way to
stay sane is to have some sort of support
group, especially outside of work.”

  7

•	 Sold all of our belongings except our clothes so we

could move across the country.

•	 Took on credit card debt for the first time in our

lives.

•	 Left my funk band (happily, they found a replace-

ment and are still jamming!).

•	 Losing my hair (well ok, this has been happening

for a while...).

Has it all been worth it? If you are expecting me to

say “Yes, of course!” you would be wrong. The truth

is, it hasn’t been worth it at all...yet.

Financially speaking, we are much worse off now

than when I took the plunge. Of course the goal is for

it to be worth it someday, but it is unclear how long

it will ultimately take. In other aspects of my life, it

may have been worth it so far, but it is hard to quan-

tify those things. For example, I am now surrounded

by a lot of like-minded technical people (which is

great!), but overall my quality of life has taken a

big hit. How long one can take this is a measure of

their true grit, but how long that is for me personally

remains to be seen.

Startup Depression
In the case of Notifo and Phrygian Labs, Inc (the

parent company of Notifo), we had a terrible time

fundraising last fall, even when the investing market

was starting to get really hot again. The ultimate

reality, though, is that we failed utterly at fundraising.

We ended up wasting a lot of time. We had dozens

and dozens of intros, which led to about 40 or so

meetings. After spending 3 months and hearing “no”

39 times (this includes all the jerks who never both-

ered to reply with an answer after our meeting and

repeated attempts of contacting them) we decided

to just give up raising money. We looked around and

felt like everyone around us was raising insane rounds

with no problem, and here we were just getting

stonewalled. The net effect was that it killed our

morale dead.

After hearing, “UR DOING IT WRONG!” so many

times, it’s hard to think that you’re doing anything

right. At that point it’s very hard to soldier on. One of

the things I regret now is that we didn’t just carry on

in spite of everyone telling us no. We had made a ter-

rible mistake; we had given control to the investors,

and they weren’t even giving us money! We let them

dictate our path with their negative signaling instead

of listening to our guts. We had been told, “...mobile

notifications is a hot space, you’ll have no problem

raising a ton of money,” so many times that when we

failed to do so, it made us feel like total idiots.

“Has it all been worth it? If you are
expecting me to say “Yes, of course!”
you would be wrong. ”

8  FEATURES

Looking back, I wish we had carried on

full-bore, but I can also remember after we

quit fundraising that I felt like such utter shit

that I didn’t feel much like doing anything at

all, much less writing code. There was literally

a week when I would just stay in bed all day

so I didn’t have to face the world. This was the

lowest point in my entire life.

The lesson here is if you are having trouble

putting together a round in the first few weeks

of actual investor meetings, just say, “screw it,”

and get back to working ASAP.

On top of all that, in the middle of all that

fundraising junk we received an “interesting”

acquisition offer from another company. That

is another long story for another time, but

the end result was that they caught us at our

most vulnerable which caused a lot of mental

anguish. We basically went back and forth

on accepting and rejecting it dozens of times.

After seeking advice from Paul Graham about

the situation and telling him how much money

we had left in the bank he said, “There are

starving startups in Africa that don’t have that

much money. You still have time to make a go

of it!” Ultimately, it was not the right offer and

we said no.

This whole episode basically set us on a

sideways path of non-productivity for the next

several months as we flailed around looking for

a way to pivot or just reset entirely.

Conclusions
So, what is the point here? The point is that

startups are still hard even if nobody is spend-

ing time discussing that fact. Admitting this

and realizing that all other startups are in your

same boat is liberating. Having other friends

who are in startups that are willing to openly

share their hardships is cathartic. It helps you

realize you are not alone when it seems like

everyone else is succeeding. Of course it looks

like everyone else is succeeding; every com-

pany has a duty to seem like they are doing

fine from the outside, otherwise everyone

(investors, press, and most importantly custom-

ers) will lose all confidence in them. Every

company has this facade that they are doing

really well, and this creates the very convincing

illusion that you are the only ones suffering.

The reality is, every startup is basically screwed

in one way or another. The fact that a large

majority of startups fail is a testament to how

hard they really are. If startups were easy,

everyone would be running them. n

Chad Etzel is the founder of Notifo.com, a Y Combina-
tor startup. He enjoys writing code for web and native
mobile applications. Prior to starting Notifo, Chad
worked at Twitter and Cisco. You can find him only at
jazzychad.net

Reprinted with permission of the original author.
First appeared in hn.my/startupshard

http://Notifo.com
http://jazzychad.net
http://hn.my/startupshard

  9

Reprinted with permission of the original author. First appeared in hn.my/codelearn.

http://cloudkick.com

10  FEATURES

By Whitaker Blackall

My First 6 Months
of Programming

From Man-Rodent to Partyman

Photography: Dana Tesser

  11

Almost exactly six months

ago, I decided to embark

on an adventure. Before

October of 2010, I had

never programmed a day in my life. Okay,

maybe I had a week-long unit on the very, very,

very basics in sixth grade, but that is all. I had

no idea what to expect. October 19th, 2010

I tweeted: “What have I gotten myself into.

I’ve just embarked on learning programming,

having absolutely no experience. Oh man I’m

already nervous.” That was the beginning of

a path that I’m so glad I have taken. I’m not

looking back.

Beginnings
I’m going to give you a quick overview of my

first few months, because it was pretty boring. I

started with Invent with Python

[inventwithpython.com], a really awesome

book for complete noobs. To show you how

beginner it was, here is a quote from the book:

“The + sign tells the computer to add the
numbers 2 and 2. To subtract numbers use
the – sign, and to multiply numbers use an
asterisk (*).”

After I got the very basics down, I made

a bunch of random text-based games, like

hangman, jotto, and guess-the-number. My first

big hit was a game called “The Man-Rodent.”

It was about a Man-Rodent, whatever the hell

that is, who was terrorizing the

village. He was hiding, and you

had to guess where he was.

This was also when I

received my first piece of

cherished fan art. I posted the

game on Reddit, and Michael

Hussinger made this amazing
cover art for it.

Next, I moved on to my first quasi-graphics

based game: Minesweeper. This is when I

really started to understand why creating a

flexible game engine is really important (yeah,

like I created a game engine). The game was

still text-based, but it was completely flexible

in that I could specify board size and mine

amount. This ended up giving it some replay-

ability, and it was fun to play around with

crazy numbers just to see what happened.

Here’s that game [hn.my/minesweeper].

Welcome to iOS
At this point, I felt I was ready to move on

to actual graphics. I felt at an impasse. I had

absolutely no idea where to start. I took a look

at SDL but was in way over my head and got

quickly discouraged. Since I knew I eventu-

ally wanted to make an iPhone app, I asked

Matt Rix (Trainyard), who gave me some sage

advice. He recommended I start by learning C,

then Objective-C, then Cocos2d. I’m happy

to say that as of today, I’ve learned all three of

those — the basics anyway.

During the period of learning the basics of C

and Obj-C, I came across a lot of frustrations,

and I didn’t make many games. Many times,

I really wondered if I could ever get past the

hurdle and figure it out. A few of the things

that I pulled my hair out over when I first

learned of them: structs, arrays, multi-dimen-

sional arrays, properties, views, view controllers,

protocols and delegates, memory management,

and many more. And there is still so much out

there that is way over my head. But I’m going

to keep trucking, because everyone I talk to

says the only way to get better is to just keep

making games. Being a piano player, I am well

aware that practice pays off, so that’s what I’ve

been doing (and will keep doing).

Photography: Dana Tesser

http://inventwithpython.com
http://hn.my/minesweeper

12  FEATURES

Welcome to Cocos2d
Once I finally got the basics of creating an

iPhone app down, I was ready to delve into

Cocos2d. I was nervous but excited. Now, I

don’t know if I’m crazy or stupid, but I have

found that the Cocos2d documentation is

not very good. All the classes, methods, and

properties are listed, but I am constantly strug-

gling to understand things because they are

not explained well. An example: every “node”

(the main Cocos2d element) has a “(BOOL)

is Running” property. It sounds simple enough,

but it could easily mean any number of things.

All the documentation says about this prop-

erty is “whether or not the node is running.”

Uh, okay….Needless to say, I’m still pretty

confused about a fair amount of things in

Cocos2d.

But enough of the insults, I am loving

Cocos2d. Once I got a hang of the basics, I

started to see how much easier it was to get a

simple game up and running in no time. And

since I already know how to do music and

sound, and also know a little bit of Photo-

shop, I was really starting to see some pretty

cool results. Since I was really confused by

Cocos2d at first, I started with a few of Ray

Wenderlich’s awesome tutorials [hn.my/ray].

A Bunch of Sorta-Games I’ve Made
Here is my first Cocos2d game, which I created

by directly following Ray’s tutorial (it even had

my own music and stupid sound effects for

when an enemy died):

Next, I made a Pong clone. It even had

multiplayer:

After Pong, I was feeling encouraged and

decided to try to make Tetris. Big mistake. I

was not ready. I ran into a lot of really annoy-

ing errors and bugs, and when I finally got the

basic framework down, I tweeted something

like: “So proud of myself. I just created a really

complex class/subclass system for my Tetris

clone.” Noel Llopis quickly informed me how

bad of an idea that was. So I looked at some

tutorials and tried to completely revamp my

Tetris clone, but it was still too difficult. I will

return and defeat you one day, Tetris!

After my failed attempt at Tetris, I made a

little Tilt to Live inspired prototype, except in

this version you get points for collecting red

dots instead of avoiding them. And this one

didn’t have the music I did for the real game:

http://hn.my/ray

  13

After a lot more learning of Cocos2d, I

had a random inspiration to make an endless

crumpled paper background. So I crumpled

paper and made it an endless background.

Then I put a little paper circle in the game that

you could roll around using the accelerometer.

I was really proud of myself when I figured

out how to roll the circle because it involved

some math that I hadn’t done in a long time

(even though it was fairly

simple trigonometry). The

background was buggy —

there were frequently gaps

between the images of the

repeating background —

but it worked.

Next, after seeing a trailer for the awesome-

looking upcoming game Bumpy Road, I got

inspired and wondered if I could recreate

an effect similar to its bumpy road element.

Needless to say, my graphics were a bit more

barren, but you can compare.

After this, I wanted to

try my hand at actually

animating something. I had

never animated anything

before and gave it a go

on Photoshop. Man, was

it tedious! Even for just

a stupid, little line draw-

ing. But what I came up

with was someone I like

to call PARTYMAN. All

he did was open and close

his mouth over and over

again, each time making

a randomly chosen grunt

noise. You could also move

him around the screen, and

the background flashed

different colors. And he

only grunted and partied

when you were actually

touching the screen.

Somehow, PARTYMAN

gained a small following.

I think he might be next

in the long list of icons including Mario, Link,

Samus, and others. I actually ended up sending

a copy to Jared of Touch Arcade (hey, he asked

for it). Then, to my

great surprise and

utmost joy, Craig

Sharpe of Retro

Dreamer created

my second official

piece of fan art!

Here is Craig’s

AWESOME take

on PARTYMAN.

Bumpy Road

My version

14  FEATURES

His drawing was so awesome, in fact, that

I had to include it in one of my next games.

But first, on a whim I started making a game

about a guy jumping over poles. The original

point was just to see if I could make a parallax

background with a simple game mechanic, but

I just kept going with it. It ended up having a

title screen, score-tracking, replayability, music,

sounds, variable jump heights, a jump height

progress bar indicator, and even a credits page!

It was my most complete game yet. I drew

some pretty awful sprites for my game, as you

can see above.

Since my drawings sucked, I asked Michael

Hussinger (of “The Man-Rodent is in the Barn”

fame) if he wanted to do a few quick doodles

for it, and he did! He drew this awesome pizza

guy in probably 20 minutes. It would take

me hours upon hours to draw something that

good, if I even could at all. He also drew a

nice mountainous background for my parallax

scrolling. Here’s how the game looked after his

help, along with my title and credits pages.

  15

My next game was inspired by Trainyard.

I wanted to see if I could create a grid that

I could draw roads on that a vehicle would

follow. What better opportunity for a return of

PARTYMAN, right? So I called it Partybus. The

point of the game was to click a spot on the

grid to make a party (a flashing, color-changing

spot with music coming out of it), then to

draw a road to the

party and have PARTY-

MAN drive there in his

Partybus. Needless to

say, it was a really easy

game. But the cool thing

is, when he reached

his party destination,

the music got louder

and more bass, the bus

started doing a dance,

and Craig’s fan art of

him appeared above the

bus and started shaking

to the beat!

The code was very buggy and pretty damn

broken. I tried to have my brother play the

app, and it took him three tries to do anything

at all because he would click the wrong square

at the wrong time and it would basically ruin

the game. And I would have to completely

restart the app each time because I didn’t

build in a “restart” feature. But I was still pretty

proud of my crappy Trainyard ripoff. Matt

should pay me for it.

My next project was a Snake clone. I found

this tutorial on how to build Snake in flash

[hn.my/snake] and basically just ported it to

iPhone. It gave me a lot of insight into how to

make this game. Before the tutorial, I was plan-

ning on having the snake move once per frame,

but was having a lot of trouble figuring out

how to make his tail follow him. I was consid-

ering building up an array of all the past moves

and assigning them to each of his tail pieces

every tick, but that would have gotten really

annoying really fast. This tutorial flipped my

world upside down when I realized the Snake

was not actually moving. Instead, the illusion

of movement was given by simply adding and

removing snake pieces from the grid on every

frame. Then when you picked up an apple

all it did was tell the program not to remove

any pieces for five turns. I need to remake

this game for sure, because the UI sucked, the

controls were awful, and the code was pretty

messy due to my hacked together port. But for

a basic Snake game it turned out pretty well!

http://hn.my/snake

16  FEATURES

After Snake, I tried making Partybus 2:

Partyman’s Big Weekend. I got a little further

than before. Ended up adding a speed slider

like in Trainyard, a depot that the train could

leave from, sound effects (when he crashed

there was the sound of a massive car accident

and he yelled “No partying today!”), and just

overall cleaner code. But again, I soon ran into

entangled code, and whenever I tried to fix one

thing, another thing wouldn’t work. My biggest

problem was that when I set the speed slider

all the way to its highest value, the bus would

crash at a random joint in

the road. This was due to

the updates being called

too often and the code not

updating enough before

the next tick. Even though

I sort of knew what the

problem was, it would take

too much work to go back

and fix it. I think I will

have to make a Partybus 3:

The Final Party.

My most current project

is a remake of Doodle

Jump. So far it’s coming

along quite nicely. I have

platforms that keep

moving higher and higher,

a jumper guy, some items

(well, so far only a spring),

custom music and sounds,

and a UI that totally rips

off the original game. I’m

pretty happy with this one

so far. I’m going to try to

keep adding a bunch of

stuff to it.

Conclusion
It truly is amazing how much practice helps.

Every time I write a new program, I run into

a ton of unforeseen problems and bugs. While

frustrating at the time, I usually plan around

them the next time I program. This makes me

feel like I’m in my very own while loop:

while (stillPrettyBadAtProgramming) {

 programmingPracticeTime++;

 Program *newProgram = [Program
programWithType:ProgramTypeGame];

 if (newProgram.isReallyGood == YES &&
programmingPracticeTime >= A_HUGE_AMOUNT) 	
 {
	 stillPrettyBadAtProgramming = NO;
 }

}

I’m going to keep creating. It’s been a blast

so far, and I can’t wait to see what the next six

months entails. n

Whitaker Blackall has composed music for a number of
popular iOS games, including the Casey’s Contraptions,
Tilt to Live, Chicken Balls, Velocispider, and Super Stick-
man Golf. In his spare time, he is learning to program
so that someday he can release a game of his own. He
currently lives in Chicago with his awesome fiancée and
mini Goldendoodle.

Reprinted with permission of the original author.
First appeared in hn.my/first6

http://hn.my/first6

  17

http://hacker.postmarkapp.com

18  DESIGN

DESIGN

By PAUL STAMATIOU

Crash Course:
Design for Startups

I have been brainstorming for the past

few days about how to scope this article.

Unfortunately I don’t think I can distill

everything about design into this or any

number of posts. For one, design can be very

subjective (or just plain wrong at times).

Second, there’s a sharp distinction between

graphic design and user experience that

deserves its own article. Third, there’s a whole

world of typography, color theory, gestalt

laws, Fitts’ law, Hick’s law, visual hierarchy,

UI patterns, layout mastery, and copywriting

that needs to be explored firsthand. But most

importantly, I’m still learning, too. This is not

a definitive guide, just a friendly pointer for

startup folks getting into design.

Subtlety is Key! Except When it’s Not
When I was a wee pixel pusher, I would over-

use whatever graphic effect I had just learned.

Text-shadow? Awesome, let’s put 5px 5px 5px

#444. Border-radius? Knock that up to 15px.

Gradients? How about from red to black?

You can imagine how horrible everything

looked. Now, my rule of thumb in most cases

is applying just enough to make it perceivable,

no more. This usually means no blur on text-

shadow and just a 1px offset, or only dealing

with gradients moving between a very narrow

color range.

Then what do I mean about “except when

it’s not”? Take for example visual hierarchy —

where to draw someone’s eyes first with color,

contrast, and proportion. If you are going to

increase the font size of a particular element,

don’t increase it by 1 or 2 points. Increase it by

10. Here’s a nice test: take a screenshot of your

website or layout and make it 3 times smaller.

Can you still see the main headline or call to

action well? No? Make it bigger!

  19

Get Inspired and Stay Organized
This is not a new concept by any means, but

it bears repeating: keep the right side of your

brain engaged by regularly seeking great website

designs, reading about design, sketching site lay-

outs (or anything really), and more. Whenever

I see a website I like, or even just a particular

element of a site, I take a screenshot and archive

it. I have been doing this for at least a year with

the help of LittleSnapper [hn.my/lilsnap]. Be

warned, the app is a little slow.

I have amassed over 700 screenshots so far.

Not a day goes by that I don’t archive some-

thing nice I see online. There is an app in the

Mac App Store called Galleried which is the

desktop app equivalent of browsing many CSS

galleries, and it helps, too.

Process
My typical site redesign process usually goes

like this:

➊ I get in the mindset of the target audience.

Since this is your startup, this probably

won’t involve much research as you are

likely already the domain expert and ideal

customer of your product. If not, checkout

the Five W’s of UX: Who, What, Where,

When, and Why. Keep a clear cut use case in

mind throughout the redesign.

➋ I spend a few hours trying to formulate

my thoughts about how the first step

affects layout. Should it have one big call

to action for a primary use case? Are there

multiple needs and products that need to be

addressed? What will the hierarchy be like?

What gets the most attention? I flip through

the aforementioned screenshots I take every

day and find 5 or 6 layouts I admire most. It

might not be overall layouts, but particular

elements I like.

➌ The next step is either a few quick layout

sketches with whatever I have on me —

either my trusty Cambridge notepad and

uniball Super Ink pen or UI Stencils pad —

or straight to HTML/CSS. More often than

not I start directly in HTML/CSS. This is a

big point of contention for designers. There’s

a large camp of folks that start with mock-

ups or wireframes with Photoshop, Mocking-

bird/Balsamiq, OmniGraffle and so on, and

those that begin in markup. The points for

starting with the former are that it’s easier

to change things on the fly, and you’re more

open to trying radical changes that would

usually require substantial markup changes.

Kyle Neath of GitHub prefers a mixture of

both methods: screenshot stuff, cut it up and

tweak in Photoshop, then implement.

➍ I sketch 2 or 3 simple layout variants on a

notepad, no more than 20 minutes, then go

straight to markup. I setup Sass, import my

mixins, reset, and get to work. Once a basic

semblance of a website is up, I actually do

a lot of design tinkering in Chrome Dev

Tools. I used to staunchly prefer Firebug, but

webkit and Chrome Dev Tools have come a

very long way.

➎ And then I take more screenshots of the

Chrome Dev Tools-edited variations I like.

I probably had 10 variations before I went

with the one I liked for Notifo.

➏ I tend to start with grayscale then tinker

with color after I have the visual hierarchy

down. I use xScope to help align anything

and everything. It’s perfect for quickly

measuring space between elements (the red

lines and measurements in the first image in

this post is xScope).

http://hn.my/lilsnap

20  DESIGN

➐ Color adjustments and typography tweaks

usually continue through to the very last

minute. I’m always experimenting to see

what it would look like with other tones,

hues, and font stacks.

➑ Most work up until now has been for the

homepage. Mentally prepare a sort of style

guide — modules or patterns that will be

used throughout the site. Classes to use for

various sidebar elements, secondary naviga-

tion, and so on. Update layout to work for

content pages and style one-off pages like

login, signup, and a tour or benefits page.

➒ Ask around for feedback and incorporate

changes.

For smaller sites, like Pic A Fight, I skip

all this and just wing it in HTML/CSS. On

the other hand, sites like Skribit have several

layouts — i.e. the homepage structure was

completely different from the structure used

on logged-in user pages, so there’s some extra

work there.

Required Reading
While I could easily recommend many great

design books, such as Universal Principles of

Design and Norman’s classic The Design of

Everyday Things, I’ll start with some of what

I consider to be the essentials for web and

graphic design.

Read the Non-Designer’s Design

Book and learn about basic color

theory and C.R.A.P. — Contrast,

Repetition, Alignment, and Prox-

imity. Cool colors like blue recede,

while warm colors like orange

seem to move toward the viewer.

Mark Boulton’s A Practical

Guide to Designing for the Web

is fantastic. I purchased the PDF

to help support Mark, but a free

online version [hn.my/dftw] is

available as well. There are some

sections in the book about how to

get started freelancing, business

plan stuff, dealing with client

briefs and so on, but you can skip

that. You’re already well on your

way with your startup.

Little known fact: the Ballmer peak phenomenon
doesn’t only apply to coding, it works with
design too. That explains the two buck chuck.

Easy to use with their browser bookmarklet. LittleSnapper stays out of sight
and saves the screenshots.

http://hn.my/dftw

  21

If you were going to only go with one design

book, this would be it. Mark covers it all: type

classification, typesetting, everything about

color (with site examples), color as emotion,

designing without color, using and not using

grids, composition basics, including lead room

and movement. It makes for a fairly quick

read. Knock it out on a lazy analog Sunday and

achieve design enlightenment.

The Elements of Typographic Style by

Robert Bringhurst is widely considered to be

one of the great works discussing typography,

but it is mainly concerned with print. Fortu-

nately, Richard Rutter and Steve Marshall have

adapted Bringhurt’s work vis-a-vis the web.

The Elements of Typographic Style Applied to

the Web [webtypography.net] is a great foun-

dation in typography for the web, including

various CSS snippets throughout. For example,

never use line-height with absolute units as

that can actually result in negative leading on

browser font-size increases. Use a unit-less

value2 greater than 1.4 to keep leading propor-

tional to text size.

More Homework
Get a Typekit account and rigorously browse

through fonts. Take note of their organization

structure. Learn about font stacks. Try out

some fonts on a site of yours. Make sure you

set fallback fonts. Experiment. Learn about

lettering.js [letteringjs.com]. Aim for contrast

while avoiding conflict. Play with font size,

weight, structure, form, direction, and color.

Typography is easily one of the most over-

looked aspects of design for new web designers.

It makes a huge difference and is worth explor-

ing. Great designers treat text as UI has always

been Cameron Moll’s mantra.

Briefly read up on the Gestalt Principles

[hn.my/gestalt] as they refer to user interface

design: proximity, similarity, good continuation,

closure, common fate, past experience, figure,

and ground. And Fitts’ Law [hn.my/fitts], too.

Then find out what UX [hn.my/ux] really

means. n

Paul Stamatiou is the co-founder of a stealth startup
currently in Y Combinator’s Summer 2011 batch. You
can follow him online: @Stammy

Coders that get stumped usually
do something non-code related
for a while and come back to see
that the code gremlins have fixed
their problem, or going for a walk
helped them think outside the box.
Something similar applies for design.
Keep your brain active by constantly
seeking new sources of inspiration
and creativity. I got a Wacom tablet
to doodle in Illustrator and found
that helps with idea generation a
bunch. Yes, this is a long caption.

Reprinted with permission of the original author.
First appeared in hn.my/design

http://webtypography.net
http://letteringjs.com
http://hn.my/gestalt
http://hn.my/fitts
http://hn.my/ux
http://twitter.com/Stammy
http://hn.my/design

22  SPECIAL

SPECIAL

By Diomidis Spinellis

What I Learned from Fixing
my Laptop’s Motherboard

A month ago, I managed to break

my laptop by reversing the polarity

of a universal power supply. The

repair shop diagnosed the problem as a failed

motherboard and asked for €659 to replace it.

I found the price preposterous, and the notion

of throwing away a motherboard for a single

failed component ecologically unsound. Here is

how I fixed the laptop on my own, and what I

learned in the process.

Thankfully, I was quickly able to find a

service manual. The troubleshooting guide

quickly led me in the same direction as that of

the repair shop: “Replace the motherboard.”

However, the manual also provided me the

exact 28-step sequence for extracting the

motherboard. It involved removing more than

40 screws, unseating about a dozen connectors,

and separating a similar number of parts.

Lesson ➊ Don’t attempt to disassemble a
laptop without a service guide.

Lesson ➋ Keep notes on which screw belongs
to which part. Place screws on paper sheets
numbered by the step on which you removed
them. This will help you reassembling the chaos
into one working piece.

Lesson ➌ Release connectors before pulling
flat cables. Usually you pull a retaining part out
or up. Be careful, flat cables and their connec-
tors are very fragile.

Locating the problem on the motherboard

proved a lot more difficult. When I was young

I remember consumer electronics, like tape

recorders, coming with their circuit diagram as

part of their documentation. I was fascinated

by them. Later those diagrams got relegated

to service manuals. The technical reference

manual of the original IBM PC contained the

detailed circuit diagram of every part. Sadly,

all my laptop’s service manual offered was a

useless (for my purposes) block diagram.

  23

I thus had to resort to other methods. I

quickly learned two more lessons.

Lesson ➍ Following circuit traces on a modern
multi-layer board is a futile exercise.

Lesson ➎ You can find component connec-
tions by testing logical places for connectivity
with a multimeter.

This last strategy proved easy to follow

once I located the key components used for

the power supply

subsystem: a power

supply controller and

a battery charger IC

made by Maxim. The

corresponding data

sheets gave me a circuit

diagram that was very

close to what I saw on

the motherboard.

Lesson ➏ You can reverse engineer complex
systems by reading the application notes of
key components used; original equipment
manufacturers seem to follow closely the plans
of component suppliers.

Locating the data sheet for each component

on the Internet proved invaluable. I thus

quickly found out that tens of what looked

like 8-pin ICs were in fact MOSFETs packaged

with a Schottky diode.

Lesson ➐ Data sheets are your friends.

Given that the motherboard was in theory

a complete write-off, I decided to test it under

power. By measuring voltage at various points,

I found that a diode that was supposed to

supply the battery charging controller was

broken. When I short-circuited the diode and

found voltage at various other motherboard

locations that were previously dead, I was sure

I had located the culprit.

Lesson ➑ To locate a fault, be prepared to
work top-down (from subsystems to compo-
nents) or bottom-up (look for a faulty compo-
nent) or to start from the fault’s reason (e.g.
reversed polarity) or its symptom (e.g. lack of
power).

Fixing the problem on a dense board of

surface-mounted components wasn’t trivial,

however. Fortunately, finding a replacement

part was easy. According to the application

note, I could use a simple signal

diode, so I just pulled a 1N4148

diode out of my component

drawer. To fit it on the circuit

board, I soldered thin insulated

solid copper wire at its two

ends and placed the package in

a heat-shrink tube. This allowed

me to place the package nearby

and solder the two ends on the pads left by

removing the original diode that had failed.

Lesson ➒ For the fix you’ll have to improvise
and make concessions. The tools of your trade
are a very small soldering iron, a magnifying
glass, thin wire-wrap cable, and insulation
materials.

The fix proved correct, and some time later I

was happily using my newly revived laptop.

Lesson ➓ Fixing a modern motherboard isn’t
trivial, but it isn’t impossible. n

Diomidis Spinellis is a professor in the Department of
Management Science and Technology at the Athens
University of Economics and Business and the author
of the award-winning books Code Reading and Code
Quality.

Reprinted with permission of the original author.
First appeared in hn.my/motherboard

http://hn.my/motherboard

24  SPECIAL

By Ruben Berenguel

Learn to Remember
Everything

In this article I’ll teach you how to have

perfect recall of lists of items. Length is not

much of an issue; it can be your shopping

list of 10 items, or it can be a list with 50, 100,

or even 1000. And in a forthcoming post I’ll

show you how to apply this technique to learn-

ing new languages. Sounds good, doesn’t it?

The technique we’ll be learning is called

the memory palace and is also known as the

method of loci (for the Latin word locus,

meaning “place”) and also the mind palace.

The Memory Palace
The memory palace technique began in the

5th century B.C., when Simonides of Ceos,

poet, was attending an unfortunate banquet

in Thessalia. While he was away to talk with a

courier who asked for him outside, the hall’s

ceiling crumbled, killing everyone. There was

no way to recognize the corpses...until Simo-

nides realized that it was no problem to recall

who was where without any effort.

Think about it: It is not hard to remember

who sits beside the host, where your friends

sit, who is beside them, and so on. This dawned

upon Simonides, and he is credited as the

“inventor” of the memory palace technique.

Widely spread through antiquity, there were

not a lot of written accounts on it: it appears

in the anonymous Rhetorica ad Herrenium

and Cicero’s De Oratore. It is not that strange

that there were no written accounts. It is like

writing a book about how to put your trousers

on. Everybody knows how to do it.

The memory palace is well suited to how

our brains have evolved. Back in our nomadic

days we needed to know how to get some-

where (the lake, the plain) and remember what

was there (fresh water, hunting). By taking

advantage of this fact we can build an array

of impressive memorization techniques for

ordered or unordered lists.

The Memory Palace Technique

  25

Remembering lists may sound lame — who

wants to memorize a list? But lists are just an

ordered array of knowledge! What you study

for a history exam is a list of ordered dates

accompanied by facts and causes (sub-lists).

When you learn a new recipe, it is a list. A

telephone number is a list of numbers. A poem

is a list of phrases.

Your First Memory Palace: Building & Filling
Let’s start by creating our first memory palace.

It does not need to be a palace — in fact, it

shouldn’t be. Just think of your home, and

as a sample I’ll assume is really small: from

the door you get to a small hall, connected

to a living room which leads to a kitchen, a

bathroom, and a bedroom with a balcony. This

is a sample; to memorize correctly, you have

to visualize your home or any other place you

may know very well. You can, of course, use

this mental image of an imaginary house, but

memorizing may be harder, be warned.

Now consider the following shopping list:

lettuce, bacon, onion rings, SD card, and

oranges. We want to memorize it. I picked a

short list to make the post shorter and make it

fit in our small imaginary home. Try your hand

with a longer list if you don’t believe we can

do it with longer lists.

To remember the list, we have to place each

item somewhere in our mind palace. This, of

course, can mean one item per room or several

items per room, each one in a special spot in

the room. The simplest method is to put each

item in its own room. When you are confident

enough, create additional trapping space in

each room. Thus, our small 5-room house could

be easily a 5, 10, or 15 places memory palace.

“Remembering lists may sound lame —
who wants to memorize a list? But lists
are just an ordered array of knowledge!”

26  SPECIAL

To place an item, we have to visualize it in

the room, and to make sure we remember it,

it has to be an extremely odd image. It has to

leave a clear impression, and to do so, it has to

be surprising, bizarre, or sexual, among other

options. If the image is dull, remembering it is

close to impossible.

Begin with the list. When we enter the front

door, we are greeted by Kermit the frog only

that this special Kermit is made of lettuce,

like a talking lettuce. Can you see it? Feel the

freshness of Lettucit’s leaves? In the living

room a stampede of pigs followed by Kevin

Bacon with a fork should be bizarre and clear

enough! In the kitchen, Scarlett Johansson

plays hoola-hoop with an onion ring. You enter

the bedroom, and to your surprise, the bed

is a gigantic SD card: you can hide the bed

by pressing it in to be read. Finally, you open

the balcony to find that the sun is now a big,

luminous orange. It starts to drip juice over the

desert in front of your window!

You should put all these images in a place

you know like the palm of your hand: your

home, the house you grew up, your office. This

is very important.

You may not believe it works at all, but you

will be surprised. I wrote the first part of this

post in the afternoon, and now more than 3

hours later I still can see clearly all the images.

Of course this is a short list... But it would not

matter: you could remember a list 5 times as

long as easily as with this one.

Finding an Array of Memory Palaces
To remember a lot of things, you need to have

a lot of places to put all these memories. You

will need to find your own array of memory

palaces. The first time I considered this

problem, I thought about creating imaginary

palaces linked somehow by corridors. The

problem? Artificial palaces get blurry very

quickly, and you tend to forget them. It is far,

far better to use real places, or at least places

you can revisit in real life, like pictures from a

book, levels in a computer game, or buildings

you can visit.

Then I started to think about houses and

places I could use — and I found that there are

plenty. I still remember schoolmates’ houses

from 16 years ago, hotels I’ve been to, buildings

I have visited. I am sure you will find a huge

array of places you can use. To begin with the

technique, use very known places like your

house or office, and as you get more confident

with the technique, start using older places.

Final Words
You have to get the knack of the method.

Get some degree of experience in converting

everyday objects (like lettuce) into long-lasting

impressions (like Kermit the lettuce-head).

This only comes with practice, like walk-

ing around your images of memory palaces.

Practice, practice, practice!

By the way, can you recall the shopping list

above? n

Ruben Berenguel is a mathematician finishing his
PhD about invariant manifolds in infinite dimensional
dynamical systems. A lifelong language geek, he is
currently trying to learn Irish and Icelandic, and set-
ting sights on Norwegian and Swedish. He blogs in
mostlymaths.net and tweets as @berenguel

Reprinted with permission of the original author.
First appeared in hn.my/palace

http://mostlymaths.net
http://twitter.com/berenguel
http://hn.my/palace

  27

http://startupsopensourced.com

28  PROGRAMMING

PROGRAMMING

By Fabien sanglard

Doom Engine Code Review

Introduction
Before studying the iPhone version, it was

important for me to understand how Doom

engine was performing rendition back in 1993.

After all, the OpenGL port must reuse the

same data from the WAD archive. Here are my

notes about Doom 1993 renderer; maybe it

will help someone to dive in.

From Designer Screen to Player Screen
Maps were designed in 2D by a level designer

using Doom editor (DoomED). LINEDEFS

were describing closed sectors (SECTORS in

the source code); the third dimension (height)

was defined on a per sector basis. The first level

of Doom E1M1 looks like this:

When the map was finished, it was sliced

via Binary Space Partitioning. Recursively, a

LINEDEF was chosen and its plan extended as

splitting plan. LINEDEF were hence cut into

segments (SEGS) until only convex SubSectors

(SSECTOR in the code) remained.

  29

Following is an example of the first map being

recursively split:

Recursion level 1

	

In blue, a wall is selected and extended as

splitting plan (red). Splitter was selected in

order to balance the BSP tree, but also to limit

the number of SEGS generated. The green

bounding boxes are used later to discard entire

chunks of map.

Recursion level 2 (only right subspace)

	

In the end, SECTORS were spliced into

convex sub-sectors (called SSECTORS) and

LINEDEFS were sliced into segments (called

SEGS):

30  PROGRAMMING

The Big Picture of Runtime
Here is what the main rendering method

(R_RenderPlayerView) looks like:

void R_RenderPlayerView (player_t* player)
{	
	 [..]
	 R_RenderBSPNode (numnodes-1);
	 R_DrawPlanes ();
	 R_DrawMasked ();
}

Four things happen:

•	 R_RenderBSPNode: All sub-sectors in the map

are sorted using the BSP tree. Big chunks are

discarded via bounding box (green in the

previous drawing).

•	 R_RenderBSPNode: Visible SEGS are projected

on screen via a lookup table and clipped

via an occlusion array. Walls are drawn as

column of pixels. The size of a column is

determined by the distance from the player

POV and the Y position of a column via the

height relative to the played. The base and

the top of the walls generate visplanes, a

structure used to render the floor and ceiling

(called flats).

•	 R_DrawPlanes: Visplanes are converted

from column of pixels to lines of pixels and

rendered to screen.

•	 R_DrawMasked: The “things” (enemies, objects,

and transparent walls) are rendered.

Binary Space Partition Sorting
Two examples with E1M1 (Doom first map)

and a BSP looking as follows:

// Coordinate system origin in lower left
// corner

// Plane equation ax + by + c = 0 with
// unit normal vector = (a,b)

// Root plane (splitting map between zone
// A and B):

normal = (-1,0)	 c = 3500	

// A plane (splitting zone A between zone
// A1 and A2):

normal = (1,0)		 c = -2500

// B plane (splitting zone B between zone
// B1 and B2):

normal = (-0.24,0.94)	 c = -650

// Injecting any point coordinate (x,y) in
// a plane equation gives the distance
// from that plane.

	

BSP walking always starts at the root node,

sorting both subspaces. Recursion follows on

both node children.

  31

Example 1: Player (green dot) watching through

the window from point p=(2300,1900):

	

// Player position = (2300, 1900)
// R_RenderBSPNode run against AB splitter
// (-x + 3500 = 0):
-2300 + 3500 = 1200
Result is positive: Closest subspace is in
the FRONT of the splitting plane. (A is
closer than B).

// R_RenderBSPNode now run recursively
// against the two child of the root node:
// A1/A2 splitter and B1/B2 splitter.

 // R_RenderBSPNode run against A1/A2 	
 // splitter (x - 2500 = 0):
 2300 - 2500 = -200
 Result is negative so the closest
 subspace is in the BACK of the splitting
 plane. (A1 is closer than A2).

 // R_RenderBSPNode run against B1/B2
 // splitter (-0.24x +0.97y - 650 = 0):
 -0.24 * 2300 + 0.97 * 1900- 650 = 641
 Result is positive so the closest
 subspace is in the FRONT of the
 splitting plane. (B1 is closer than B2).

Result: Sorted zones, from near to far:
{ A1, A2, B1, B2 }

 Example 2: Player (green dot) watching from

the secret balcony a point p=(5040, 2400):

// Player position = (5040, 2400)
// R_RenderBSPNode run against AB splitter
// (-x + 3500 = 0):
-5040 + 3500 = -1540
Result is negative: Closest subspace is
in the BACK of the splitting plane. (B is
closer than A).

32  PROGRAMMING

// R_RenderBSPNode now recursively run
// against the two child of the root node:
// A1/A2 splitter and B1/B2 splitter.

 // R_RenderBSPNode run against B1/B2
 // splitter (-0.24x +0.97y - 650 = 0):
 -0.24 * 5040 + 0.97 * 2400 - 650 = 468
 Result is positive so the closest
 subspace is in the FRONT of the
 splitting plane. (B1 is closer than B2).

 // R_RenderBSPNode run against A1/A2
 // splitter (x - 2500 = 0):
 5040 - 2500 = 2540
 Result is positive so the closest
 subspace is in the FRONT of the
 splitting plane. (A2 is closer than A1).

Result: Sorted zones, from near to far:
{ B1, B2, A2, A1 }

BSP allowed SEGS sorting from anywhere

in the map at a consistent speed, regardless of

the player’s location. At the cost of one dot

product and one addition per plane.

Entire part of the map was also

discarded via bounding box testing.

Note: It is not immediately appar-

ent but BSP sorting all SEGS around

the player, even the ones he/she is

not looking at, frustrum culling is

essential when using BSP.

Walls
With the BSP sorting walls (SEGS) near to

far, the closest 256 walls were rendered. Every

SEGS’s two vertices were converted to two

angles (relative to the player’s position).

Note: In 1993, only the very high-end

486DX machines had a FPU (floating point

unit), hence Doom engine was doing all angles

calculation via Binary Angular Measurement

(BAMs), relying on int only, float is rarely used.

For the same reason, sub integer precision is

achieved via fixed_t a 16.16 binary fixed point.

Once converted to angle screen space X

coordinate are retrieved via a lookup table

(viewangletox). Because BAMs were int, angles

were first scaled down from 32 bits to 13 bits

via a 19 bits right shift in order to fit the 8k

lookup table.

The wall is then clipped against an occlusion

array (solidsegs, some articles about Doom

engine mention a linked list but it does not

look like it). After clipping, space remaining

was interpolated and drawn as column of

pixels: the height and Y coordinate of the

column of pixel were based respectively on

the SEGS’s sector height and its distance from

player POV.

Note about surface culling: Backface culling

was done via angle2-angle1 > 180 . Only

walls within the Field of View were actually

rendered.

Note: Not all walls were made of an unique

texture; walls could have a lower texture, a

upper texture, and a middle texture (that

could be transparent or semi-transparent).

  33

Trivia: Because walls were rendered as col-

umns, wall textures were stored in memory

rotated 90 degrees to the left. This was done

to reduce the amount of computation required

for texture coordinates:

int WIDTH;
int HEIGHT;

char texture[WIDTH*HEIGHT];

char* firstPixelInColumn = texture;
char* lastPixelInColumn ;

// If the texture is stored vertically in
// memory, the last element in a column is:
lastPixelInColumn = firstPixelInColumn +
textureWidth * (HEIGHT-1);

// If the texture is stored horizontally in
// memory, the last element in a column is:
lastPixelInColumn = firstPixelInColumn +
HEIGHT-1;

Flats (Ceiling and Floor) or the Infamous
Visplanes
While drawing column of walls, top and

bottom screen space coordinates were used

to generate “visplanes,” an area in screen space

(not necessarily continuous horizontally). Here

is a visplane_t as declared in Doom engine.

// Now what is a visplane, anyway?
typedef struct
{
	 fixed_t		 height;
	 int		 picnum;
	 int		 lightlevel;
	 int		 minx;
	 int		 maxx;
	 byte		 top[SCREENWIDTH]
	 byte		 bottom[SCREENWIDTH];
} visplane_t;

The first part of the structure holds infor-

mation about the “material,” (height picnum
lightlevel). The last 4 members define the

screenspace zone covered.

If 2 subSectors shared the same material

(height, texture, and illumination level), Doom

engine tried to merge them together, but

because of the visplante_t structure limitation

it was not always possible.

For the entire width of the screen, a visplane

can store the location of a column of pixels

(because visplanes are deduced from the

walls projection on screen, they are created as

column of pixels).

Here are the starting screen’s 3 main visplanes:

The green one is particularly interesting as it

illustrates visplane_t’s ability to store discon-

tinued areas (but only horizontally). As long as

the column is continuous, visplane can store it.

This limitation shows in the engine: some sub-

sectors can be merged and rendered via only

1 visplane, but if something comes between

vertically they cannot be merged.

34  PROGRAMMING

Here is a screenshot illustrating visplane

fragmentation.

Trivia: Visplanes hardcoded limit

(MAXVISPLANES 128) was a plague for modders

as the game would crash and go back to DOS.

Two issues could arise:

•	 “R_FindPlane: no more visplanes”: The

total number of different visplanes materials

(height, texture, and illumination level) is

over 128.

•	 R_DrawPlanes: visplane overflow
(%i): Visplanes fragmentation is

important and number of visplanes

is over 128.

Why limit it to 128? Two stages in

the renderer pipeline were requested

to search in the list of visplanes

(via R_FindPlane). This was done via

linear search, and it was probably too

expensive beyond 128. Lee Killough

later lifted this limitation, replacing

linear search with a chained hash

table implementation.

Things and Transparent Walls
When all solid/“middle texture transparent”

walls and ceiling/floors surfaces were rendered,

there only remained the “things,” regrouping

enemies, barrel, ammos, and semi-transparent

walls. Those are rendered far to near but are

not projected into screen space using the wall’s

lookup table. It’s all done with 16.16 binary

fixed point calculations.

Profiling
Loading “Chocolate Doom” in Mac OS X’s

Instrument allows you to do some profiling:

It seems the port is pretty fidele to Vanilla

Doom: most time is spent drawing walls

(R_DrawColumn), ceiling/floor(R_DrawSpan), and

things (R_DrawMaskedColumn). Besides drawing,

I noticed the high cost of wall interpolation

(R_RenderSegLoop) and visplane conversion

from columns to lines of pixels (R_MakeSpans).

Finally come monsters IA (R_MobjThinker) and

BSP traversal (R_RenderBSPNode).

  35

With an inverted call tree, we can see that

most of the work is indeed done in the BSP

traversal, wall rendition, and visplanes genera-

tion: R_RenderBSPNode (second column is for

percentage of time).

All Together
Finally, a video (screenshot above) of the

legendary first screen generation where you can

see in order:

•	 Walls, near to far, as column of pixels.

•	 Flats, near to far, as lines of pixels.

•	Things, far to near. n

Fabien Sanglard is a game developer and a tech-
nical writer specializing in 3D engines. Since
2007, his website [fabiensanglard.net] has pub-
lished numerous computer graphic tutorial and
engine internals reviews. Born and raised in
France, he now resides in Toronto and holds a
Master of Science in Computer Sciences.

Reprinted with permission of the original author.
First appeared in hn.my/doom

http://fabiensanglard.net
http://hn.my/doom

36  PROGRAMMING

Why Data Structures Matter
By JOEL NEELY

Our experience on Day 0 of JPR11

[hn.my/jpr11] yielded a nice

example of the need to choose an

appropriate implementation of an abstract con-

cept. We experimented with Michael Barker’s

Scala implementation [hn.my/jpr11dojo]

of Guy Steele’s parallelizable word-splitting

algorithm [hn.my/wordsplit] (slides 51-67).

Here’s the core of the issue.

Given a type-compatible associative opera-

tor and sequence of values, we can fold the

operator over the sequence to obtain a single

accumulated value. For example, because addi-

tion of integers is associative, addition can be

folded over the sequence:

1, 2, 3, 4, 5, 6, 7, 8

from the left:

((((((1 + 2) + 3) + 4) + 5) + 6) + 7) + 8

or the right:

1 + (2 + (3 + (4 + (5 + (6 + (7 + 8))))))

or from the middle outward, by recursive/

parallel splitting:

((1 + 2) + (3 + 4)) + ((5 + 6) + (7 + 8))

A 2-D view shows even more clearly the

opportunity to evaluate sub-expressions in

parallel. Assuming that addition is a constant-

time operation, the left fold:

 and the right fold:

http://hn.my/jpr11
http://hn.my/jpr11dojo
http://hn.my/wordsplit

  37

 require linear time, but the balanced tree:

can be done in logarithmic time.

But the associative operation for the word-

splitting task involves accumulating lists

of words. With a naive implementation of

linked lists, appending is not a constant-time

operation; it is linear on the length of the left

operand. So for this operation the right fold is

linear on the size of the task:

 the left fold is quadratic:

and the recursive/parallel version is linear:

Comparing just the “parallel-activity-versus-

time” parts of those diagrams makes it clear

that right fold is as fast as the parallel version,

and also does less total work:

 Of course, there are other ways to imple-

ment the sequence-of-words concept, and that

is the whole point. This little example provides

a nice illustration of how parallel execution of

the wrong implementation is not a win. n

Joel Neely has been programming since 1968, and has
been involved in computing in higher education and
industry ever since. As a survivor of Modular Program-
ming, Structured Programming, Fifth-Generation Pro-
gramming, and Object-Oriented Programming, he is
watching the gradual mainstreaming of Functional
Programming and multi-language development with
a sense of deja vu. He currently works in development
in a Fortune 100 company.

Reprinted with permission of the original author.
First appeared in hn.my/data

http://hn.my/data

38  PROGRAMMING

By Robin Houston

The Worst Algorithm
in the World?

You know the Fibonacci numbers:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, …

Each number is the sum of the

previous two. Let’s say the zeroth Fibonacci

number is zero, so:

And let’s say you want to write some code to

compute this function. How would you do it?

Perhaps something like this? (Python code)

def fib_rec(n):
 assert n >= 0
 if n < 2: return n
 return fib_rec(n-2) + fib_rec(n-1)

This is a pretty popular algorithm, which can

be found in dozens of places online. It is also a

strong candidate for the title of Worst Algorithm

in the World. It’s not just bad in the way that

Bubble sort [hn.my/bubble] is a bad sorting

algorithm; it’s bad in the way that Bogosort

[hn.my/bogo] is a bad sorting algorithm.

Why so bad? Well, mainly it is quite aston-

ishingly slow. Computing fib_rec(40) takes

about a minute and a half on my computer. To

see why it’s so slow, let’s calculate how many

calls are made to the fib_rec routine. If we

write for the number of calls made when

calculating fib_rec(n), then:

 So are the Leonardo numbers

[hn.my/leornado],

In other words, computing fib using fib_rec

takes time O(fib(n)).

So computing fib_rec(40) involves c(40) =

331,160,281 calls to the fib_rec routine, which

is pretty crazy considering it’s only called with

40 different arguments. An obvious idea for

improvement is to check whether it’s being

called with an argument that we’ve seen before,

and just return the result we got last time.

http://hn.my/bubble
http://hn.my/bogo
http://hn.my/leornado

  39

cached_results = {}
def fib_improved(n):
 assert n >= 0
 if n < 2: return n
 if n not in cached_results:
 cached_results[n] = fib_improved(n-2) +
 fib_improved(n-1)
 return cached_results[n]

That’s a huge improvement, and we can

compute fib_improved(40) in a fraction of

a millisecond, which is much better than a

minute and a half. What about larger values?

>>> fib_improved(1000)
434665576869374564356885276750406258025646
605173717804024817290895365554179490518904
038798400792551692959225930803226347752096
896232398733224711616429964409065331879382
98969649928516003704476137795166849228875L

That looks good, and it’s still apparently

instant. How about 10,000?

>>> fib_improved(10000)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 6, in fib_improved
 File "<stdin>", line 6, in fib_improved
 [...]
 File "<stdin>", line 6, in fib_improved
RuntimeError: maximum recursion depth
exceeded

Oh dear! We’ve blown the stack. You could

blame Python here for having a hard (if

configurable) limit on stack size, but that’s not

the real point. The problem here is that this

algorithm creates n stack frames when you call

fib_improved(n), so it uses at least O(n) space.

It’s easy enough to write a version that only

uses constant space — well, not really: but it

only uses twice as much space as we need for

the end result, so it’s within a small constant

factor of optimal — as long as we’re willing to

forgo recursion:

def fib_iter(n):
 assert n >= 0
 i, fib_i, fib_i_minus_one = 0, 0, 1
 while i < n:
 i, fib_i, fib_i_minus_one = i + 1,
fib_i_minus_one+fib_i, fib_i
 return fib_i

This is much better. We can compute

fib_iter(100,000) in less than a second (on my

computer, again), and fib_iter(1,000,000) in

about 80 seconds. Asymptotically, this algo-

rithm takes O(n2) time to compute fib(n).

(Maybe you think it should be O(n) time,

because the loop runs for n iterations. But the

numbers we’re adding are getting bigger expo-

nentially, and you can’t add two arbitrarily-

large numbers in constant time. Sometimes

computer scientists use theoretical models that

assume you can, which makes me irrationally

angry: what use is a model whose assumptions

hide a physical impossibility? Of course two

machine words can be added in constant time,

but we’re talking about asymptotic behavior,

and arbitrarily large numbers don’t fit in a

single machine word. When I rule the world,

this will be punishable.)

40  PROGRAMMING

We can do better than this. Since the

Fibonacci numbers are defined by a linear

recurrence, we can express the recurrence as a

matrix, and it’s easy to verify that

Since we can get from to

by squaring, this suggests we can

compute fib(n) using just log2(n) iterations:

def bits(n):
 """Represent an integer as an array of 	
 binary digits.
 """
 bits = []
 while n > 0:
 n, bit = divmod(n, 2)
 bits.append(bit)
 bits.reverse()
 return bits

def fib_mat(n):
 assert n >= 0
 a, b, c = 1, 0, 1
 for bit in bits(n):
 a, b, c = a*a + b*b, a*b + b*c, b*b +
c*c
 if bit: a, b, c = b, c, b+c
 return b

This is certainly much faster in practice. We

can compute fib_mat(1,000,000) in less than a

second and a half. The asymptotic complexity

depends on the multiplication algorithm used.

If it’s conventional long multiplication then

multiplying two k-bit numbers takes time

O(k2), in which case this algorithm is actu-

ally still quadratic! I believe Python uses the

Karatsuba algorithm [hn.my/karatsuba], which

makes it about O(n1.6) in Python.

While we’re writing code, let’s improve the

constant factor. Each step of fib_mat uses six

multiplications, but we can halve that just by

observing that c can always be computed as

a+b and rearranging things a little:

def fib_fast(n):
 assert n >= 0
 a, b, c = 1, 0, 1
 for bit in bits(n):
 if bit: a, b = (a+c)*b, b*b + c*c
 else: a, b = a*a + b*b, (a+c)*b
 c = a + b
 return b

And this does indeed run about twice as fast.

Further improvement is possible, but I think

the point has been made, so let’s leave it there.

If you want to see a super-efficient version,

have a look at the algorithm in GMP.

Some other good articles on the subject:

David Eppstein’s [hn.my/eppstein] lecture

notes cover similar ground to this; Peteris

Krumins measures the running time of fib_iter

[hn.my/catonmat], and explains why it’s

quadratic rather than linear. n

Robin enjoys clever algorithms, good coffee, category-
theoretic logic, and laughing. He lives in London, where
he develops websites for mySociety.

Reprinted with permission of the original author.
First appeared in hn.my/fibo

http://hn.my/karatsuba
http://hn.my/eppstein
http://hn.my/catonmat
http://hn.my/fibo

  41

Harvest is available wherever your work
takes you. Whether you are working from
home, on-site, or through a flight. Harvest
keeps a handle on your billable time so you
can invoice accurately. Visit us and learn
more about how Harvest can help you work
better today.

Why Harvest?
• Convenient and accessible, anywhere you go.

• Get paid twice as fast when you send web invoices.

• Trusted by small businesses in over 100 countries.

• Ability to tailor to your needs with full API.

• Fast and friendly customer support.

Track time anywhere, and invoice your clients with ease.

Learn more at www.getHarvest.com/hackers

TWITTER

WEB BROWSER

DESKTOP WIDGET

IPHONE / ANDROID

GOOGLE APPS

http://getHarvest.com/hackers

42  PROGRAMMING

Dream. Design. Print.
MagCloud, the revolutionary new self-publishing web service
by HP, is changing the way ideas, stories, and images find
their way into peoples’ hands in a printed magazine format.

HP MagCloud capitalizes on the digital revolution, creating a
web-based marketplace where traditional media companies,
upstart magazine publishers, students, photographers, design-
ers, and businesses can affordably turn their targeted content
into print and digital magazine formats.

Simply upload a PDF of your content, set your selling price, and
HP MagCloud takes care of the rest—processing payments,
printing magazines on demand, and shipping orders to loca-
tions around the world. All magazine formatted publications
are printed to order using HP Indigo technology, so they not
only look fantastic but there’s no waste or overruns, reducing
the impact on the environment.

Become part of the future of magazine publishing today at
www.magcloud.com.

25% Off the First Issue You Publish
Enter promo code HACKER when you set your
magazine price during the publishing process.

Coupon code valid through February 28, 2011.
Please contact promo@magcloud.com with any questions.

http://www.magcloud.com

	Contents
	FEATURES
	Startups are Hard
	My First 6 Months of Programming

	DESIGN
	Crash Course: Design for Startups

	SPECIAL
	What I Learned from Fixing my Laptop's Motherboard
	Learn to Remember Everything

	PROGRAMMING
	Doom Engine Code Review
	Why Data Structures Matter
	The Worst Algorithm in the World?

