
The Lisp Curse
By Rudolf Winestock

Issue 13  June 2011

Image licensed by DepositPhotos.com/Andrey Armyagov

Curator
Lim Cheng Soon

Contributors
Paras Chopra

Rudolf Winestock

Thomas Buck

Udo Schroeter

Kenneth Myers

Howard Yeh

Ryan Tomayko

Angus Croll

Laurence Tratt

Proofreader
Emily Griffin

Printer
MagCloud

Hacker Monthly is the print magazine version

of Hacker News — news.ycombinator.com, a social news

website wildly popular among programmers and startup

founders. The submission guidelines state that content

can be “anything that gratifies one’s intellectual curiosity.”

Every month, we select from the top voted articles on

Hacker News and print them in magazine format.

For more, visit hackermonthly.com.

Advertising
ads@hackermonthly.com

Contact
contact@hackermonthly.com

Published by
Netizens Media

46, Taylor Road,

11600 Penang,

Malaysia.

Hacker Monthly is published by Netizens Media and not affiliated with Y Combinator in any way.

Contents

http://news.ycombinator.com
http://hackermonthly.com
mailto:ads@hackermonthly.com
mailto:contact@hackermonthly.com

Contents

For links to the posts on Hacker News, visit hackermonthly.com/issue-13. All articles are reprinted with permission of their original author.

STARTUP

14  Building a Web Application That Makes $500 a Month
By THOMAS BUCK

20  Hiring Developers: You’re Doing It Wrong
By uDo SCHRoETER

SPECIAL

24  A Rough Guide to Social Skills for Awkward Smart People
By kEnnETH MyERS

PROGRAMMING

26  Play Git Like A Violin
By HoWARD yEH

28  AWK-ward Ruby
By RYAN TOMAYKO

32  Understanding JavaScript’s “this” Keyword
By AnGuS CRoLL

37  Parsing: The Solved Problem That Isn’t
By LAuREnCE TRATT

FEATURES

04 How to Find Startup Ideas that Make Money
By PARAS CHOPRA

08 The Lisp Curse
By Rudolf winestock

http://hackermonthly.com/issue-13

4  FEATURES

FEATURES

By Paras Chopra

If your aim is to make money, pursuing

such ideas can be risky. While idea-driven

startups rarely make money, I professed a

market-driven approach for someone looking

to find startup ideas that actually make money.

Market-driven approach to finding startup
ideas that make money
The market-driven approach is quite simple. It

essentially means:

Find a startup idea that a) is already making
money for someone else in a growing industry,
b) interests you, and c) aligns with your skill
sets. Once you find such an idea, simply carve
out a niche within the industry by a) address-
ing pains of an under-served segment within
that industry, or b) making it much easier to
use than existing solutions, or c) disrupting the
market by making your product accessible to
masses at a much affordable price. And once
you dominate a particular niche, expand from
your niche with your eyes set on the largest
player in the market.

There is a lot going on here, so let’s break it up.

Finding a startup idea
For most entrepreneurs, this is perhaps the

most difficult phase of initiation. I have

known people who would wait for

years for that golden startup idea to

strike. Truth is, even if you wait

for years, startup ideas that are

born out of a vacuum almost

never work. As Steve Blank

says, “no business survives

first contact with the cus-

tomer.” So, why not skip the

whole idea-game altogether

and simply go ahead with ideas

that other people have tried-

and-tested? This is what market-

driven approach is all about. Pick

a growing market and simply make

a better product.

Here are some essential ingredients of

a market-driven startup idea:

•	 Growing industry: this is important because

a rising tide lifts all boats. Also, a growing

industry means that most probably a strong

How to Find Startup Ideas
that Make Money

  5

leader is yet to be established, and the field

is open for many new players, one of whom

could be you. How to find industries that

are growing? One good resource is Inc’s

5000 fastest growing companies list.

In that list you can find compa-

nies that have been growing at

+1000% every year for the last

3 years and have revenues in

millions of dollars. If they

can do it, why can’t you?

• Industry that interests

you: aim is to not just make

money but have fun on

the way, right? Hence, it is

important to pick a startup idea

in an industry that appeals you.

Even though eCommerce industry

for ladies’ bags and purses might be

growing, if you don’t see yourself passionate

about it, don’t pick it!

•	 Industry where you have a chance: it is

bit obvious, but there are a lot of things

in life that appeal to us, but we’ve got no

chance (for geeks: most obvious example

is dating a hot lady!). For example, it goes

without saying that even if the machine

vision industry is growing and people are

making money licensing such technology, if

it requires a PhD and you don’t have it, it is

probably not worthwhile to pursue an idea

in that industry.

The key idea here is to find an industry (like

SEO, document management, enterprise pro-

ductivity, eCommerce for travel, etc.) where

you know people are making money. Inc 5000,

Mixergy interviews and Flippa.com are just

some of the sources where companies reveal

how much money they are making. Make a

list of industries that make money for other

people, appeal to you, and are relevant to your

skill set. Finally select any one of them (though

in most cases you will end up with only 1 or 2

which satisfy all 3 criteria). Don’t be ashamed

of this activity, as we are not “copying” business

ideas; we are simply using information to select

which industry your startup should belong to.

“The key idea here is to find
an industry where you know
people are making money.”

$5700, flickr.com/photos/amagill/362201147/

http://flickr.com/photos/amagill/362201147/

6  FEATURES

But there are competitors in an
established market!
That’s precisely the key to this approach.

Lack of competitors in the market is a serious

indicator that nobody has found it profitable.

So, you would want to pick a startup idea that

has competitors. In addition to signaling that a

market is profitable, competition also helps in

positioning your startup. When you are new,

nobody understands your offering and frankly

nobody has time and patience to understand it.

They are simply too busy to digest an entirely

new idea or product offering. However, when

you position it against established competi-

tion, you instantly have their attention and

they instantly understand the differentiation.

Now customers don’t have to understand new

concepts, they simply understand what’s so

different about you.

This strategy of positioning against estab-

lished competition is very powerful. That’s

why when cars were invented, they were first

called horseless carriages. And that’s why I

have positioned my startup Visual Website

Optimizer [visualwebsiteoptimizer.com] as

a much easier alternative to Google Website

Optimizer with all the features of Omniture

Test and Target. (You may not understand the

positioning, but my target market of people

who do A/B testing day-in and day-out would

instantly get it.)

Even with all the benefits, many entrepre-

neurs still fear established competition. In the

previous step, once you pick an industry that

you want to start with, find a niche which

you can dominate initially. It is important to

become a leader in at least one aspect of your

industry. That aspect can be:

•	 Serving an under-served segment. Imagine

you picked SEO as an industry, next step is

to do research (hint: talking to people works

best, but probably I will address this in next

blog post) on what the current pain points are

that are not addressed by existing solutions

(including the market-leading one). It may be

the case that only a small segment is unhappy,

but in a growing market even that small seg-

ment can be pretty large (in terms of revenue

potential) for a startup. So, for example, you

find that marketing agencies want a white-

labeled solution for their clients. There, you

have a startup idea: white-labeled SEO tools

for agencies. Similarly, if it is document man-

agement, you may find that most solutions are

so generic that a specific subset of market like

accountants are craving much better manage-

ment of Excel spreadsheets. So, there you

have another startup idea: document manage-

ment for accountants and financial planners.

(Warning: the two startup ideas above may

or may not work. They are figments of my

imagination with no market research!)

“Lack of competitors in the market is a serious
indicator that nobody has found it profitable. ”

http://visualwebsiteoptimizer.com

  7

•	 Another differentiator of your idea could

be usability and ease of use. Most likely,

customers in any industry are fed up with

existing, bloated solutions with hard-to-use

interfaces. Simply pick an industry and make

it drop-dead easy to use. People usually dras-

tically under-estimate how big an advantage

ease-of-use can be for a startup. However,

simply look at some examples. File sharing

existed before Dropbox. Social networking

existed before Facebook. A/B testing existed

before (my) Visual Website Optimizer. What

all of these products did was to dramatically

simplify the key activity in an industry. You

can do the same. Taking example of SEO,

make a product that makes it a no-brainer to

generate new content and build backlinks for

it. Make it so simple that even a 5th grader

can do it, and you have a winner.

•	 Disrupt an industry with a lower (entry)

price point. If your industry is growing and

existing solutions are exorbitantly priced,

there may be an opportunity to build a prod-

uct as great as the leading one in the market

by simply providing it at a dramatically lower

price. Salesforce revolutionized CRM by

offering their product for $10/user/month,

while leading CRM solutions at that point

were costing tens of thousands of dollars.

The key point here is that it is important

to carve out a niche that you can dominate

with your startup in order to get noticed in

a growing industry and get your initial set of

customers.

So, is this the end of my startup story?

No! In fact, this is just the beginning. Niche

domination is not the aim. Industry domina-

tion is the aim. Visual Website Optimizer

doesn’t only want to be the easiest A/B testing

out there. In fact, it aims to be the leading A/B

testing tool out there. It’s going to be hard

— but not impossible. The idea is to expand

feature-set horizontally and gain prominence

outside of your niche slowly and steadily. Even-

tually, you should replace the industry leader

and in fact become a source of market-driven

ideas for other startups (I know, how meta).

Industry-leading companies are run by people

similar to you, and they probably followed the

path your startup is going to follow. So, there is

no question that you can be an industry leader

someday. It is a nice feeling to be a niche domi-

nator, but don’t feel satisfied with it. Always set

your eyes on the industry leadership position!

That’s where the big bucks are. n

Paras Chopra, based out of Delhi, India is the founder
of Visual Website Optimizer, an A/B testing tool to help
increase website sales and conversions. You can follow
him on Twitter @paraschopra.

“It is important to carve out a niche that
you can dominate with your startup.”

Reprinted with permission of the original author.
First appeared in hn.my/money.

http://twitter.com/paraschopra
http://hn.my/money

8  FEATURES

By Rudolf Winestock

The power of Lisp is its own

worst enemy.

Here’s a thought experi-

ment to prove it: take two

programming languages, neither of which are

object-oriented. Your mission, if you choose

to accept it, is to make them object-oriented,

keeping them backward-compatible with the

original languages, modulo some edge cases.

Inserting any pair of programming languages

into this thought experiment will show that

this is easier with some languages than with

others. That’s the point of the thought experi-

ment. Here’s a trivial example: Intercal and

Pascal.

Now make this thought experiment interest-

ing: imagine adding object orientation to the C

and Scheme programming languages. Making

Scheme object-oriented is a sophomore home-

work assignment. On the other hand, adding

object orientation to C requires the program-

ming chops of Bjarne Stroustrup.

The consequence of this divergence in

needed talent and effort causes The Lisp Curse:

Lisp is so powerful that problems which are

technical issues in other programming lan-

guages are social issues in Lisp.

Consider the case of Scheme, again.

Since making Scheme object-oriented is

so easy, many Scheme hackers have done so.

More to the point, many individual Scheme

hackers have done so. In the 1990s, this led

to a veritable warehouse inventory list of

object-oriented packages for the language.

The Paradox of Choice, alone, guaranteed that

none of them would become standard. Now

that some Scheme implementations have their

own object orientation facilities, it’s not so

bad. Nevertheless, the fact that many of these

packages were the work of lone individuals led

to problems which Olin Shivers wrote about in

documenting the Scheme Shell, scsh.

The Lisp Curse

  9

Programs written by individual hackers

tend to follow the scratch-an-itch model.

These programs will solve the problem that

the hacker, himself, is having without neces-

sarily handling related parts of the problem

which would make the program more useful

to others. Furthermore, the program is sure to

work on that lone hacker’s own setup, but may

not be portable to other Scheme implementa-

tions or to the same Scheme implementation

on other platforms. Documentation may be

lacking. Being essentially a project done in

the hacker’s copious free time, the program is

liable to suffer should real-life responsibilities

intrude on the hacker. As Olin Shivers noted,

this means that these 1-man-band projects

tend to solve 80% of the problem.

Dr. Mark Tarver’s essay, “The Bipolar Lisp

Programmer,” has an apt description of this

phenomenon. He writes of these lone-wolf

Lisp hackers and their

...inability to finish things off properly. The
phrase “throw-away design” is absolutely
made for the BBM, and it comes from the
Lisp community. Lisp allows you to just chuck
things off so easily, and it is easy to take this
for granted. I saw this 10 years ago when look-
ing for a GUI to my Lisp. No problem, there
were 9 different offerings. The trouble was that
none of the 9 were properly documented and
none were bug free. Basically each person had
implemented his own solution and it worked
for him so that was fine. This is a BBM
attitude; it works for me and I understand it.
It is also the product of not needing or wanting
anybody else’s help to do something.

Once again, consider the C programming

language in that thought experiment.

Due to the difficulty of making C object

oriented, only two serious attempts at the

problem have made any traction: C++ and

Objective-C. Objective-C is most popular on

the Macintosh, while C++ rules everywhere

else. That means that, for a given platform, the

question of which object-oriented extension

of C to use has already been answered defini-

tively. That means that the object-orientated

facilities for those languages have been docu-

mented, that integrated development environ-

ments are aware of them, that code libraries

are compatible with them, and so forth.

Dr. Mark Tarver’s essay on bipolar Lispers

makes the point:

Now in contrast, the C/C++ approach is quite
different. It’s so damn hard to do anything
with tweezers and glue that anything signifi-
cant you do will be a real achievement. You
want to document it. Also you’re liable to need
help in any C project of significant size; so
you’re liable to be social and work with others.
You need to, just to get somewhere.

And all that, from the point of view of an
employer, is attractive. Ten people who com-
municate, document things properly, and work
together are preferable to one BBM hacking
Lisp who can only be replaced by another
BBM (if you can find one) in the not unlikely
event that he will, at some time, go down
without being rebootable.

Therefore, those who already know C don’t

ask, “what object system should I learn?”

Instead, they use C++ or Objective-C depend-

ing on what their colleagues are using, then

move on to “how do I use object-oriented

feature X?” Answer: “Goog it and ye shall find.”

10  FEATURES

Real Hackers, of course, have long

known that object-oriented program-

ming is not the panacea that its partisans have

claimed. Real Hackers have moved on to more

advanced concepts such as immutable data

structures, type inferencing, lazy evaluation,

monads, arrows, pattern matching, constraint-

based programming, and so forth. Real Hackers

have also known, for a while, that C and C++

are not appropriate for most programs that

don’t need to do arbitrary bit-fiddling. Never-

theless, the Lisp Curse still holds.

Some smug Lisp-lovers have surveyed the

current crop of academic languages (Haskell,

Ocaml, et cetera) and found them wanting,

saying that any feature of theirs is either

already present in Lisp or can be easily imple-

mented — and improved upon — with Lisp

macros. They’re probably right.

Pity the Lisp hackers.

Dr. Mark Tarver — twice-quoted, above —

wrote a dialect of Lisp called Qi. It is less than

10,000 lines of macros running atop Clisp. It

implements most of the unique features of

Haskell and OCaml. In some respects, Qi sur-

passes them. For instance, Qi’s type inferencing

engine is Turing complete. In a world where

teams of talented academics were needed to

write Haskell, one man, Dr. Tarver wrote Qi all

by his lonesome.

Read that paragraph again and extrapolate.

Exercise for the reader: Imagine that a strong

rivalry develops between Haskell and Common

Lisp. What happens next?

Answer: The Lisp Curse kicks in. Every second

or third serious Lisp hacker will roll his own

implementation of lazy evaluation, functional

purity, arrows, pattern matching, type inferenc-

ing, and the rest. Most of these projects will be

lone-wolf operations. Thus, they will have 80%

of the features that most people need (a dif-

ferent 80% in each case). They will be poorly

documented. They will not be portable across

Lisp systems. Some will show great promise

before being abandoned while the project

maintainer goes off to pay his bills. Several

will beat Haskell along this or that dimension

(again, a different one in each case), but their

acceptance will be hampered by flame wars on

the comp.lang.lisp Usenet group.

Endgame: A random old-time Lisp hacker’s

collection of macros will add up to an undocu-

mented, unportable, bug-ridden implementa-

tion of 80% of Haskell because Lisp is more

powerful than Haskell.

  11

The moral of this story is that secondary

and tertiary effects matter. Technology

not only affects what we can do with respect

to technological issues, it also affects our social

behavior. This social behavior can loop back

and affect the original technological issues

under consideration.

Lisp is a painfully eloquent exemplar of

this lesson. Lisp is so powerful, that it encour-

ages individual independence to the point of

bloody-mindedness. This independence has

produced stunningly good innovation as in the

Lisp Machine days. This same independence

also hampers efforts to revive the “Lisp all the

way down” systems of old; no “Lisp OS” project

has gathered critical mass since the demise of

Symbolics and LMI.

One result of these secondary and tertiary

effects is that, even if Lisp is the most expres-

sive language ever, such that it is theoretically

impossible to make a more expressive lan-

guage, Lispers will still have things to learn from
other programming languages. The Smalltalk

guys taught everyone — including Lisp hack-

ers — a thing or two about object oriented

programming. The Clean programming lan-

guage and the Mozart/Oz combo may have a

few surprises of their own.

The Lisp Curse does not contradict the

maxim of Stanislav Datskovskiy: employers

much prefer that workers be fungible, rather

than maximally productive. Too true. With

great difficulty does anyone plumb the venality

of the managerial class. However, the last lines

of his essay are problematic. To wit:

As for the “free software” world, it eagerly
opposes industrial dogmas in rhetoric but not
at all in practice. No concept shunned by cube
farm hells has ever gained real traction among
the amateur masses.

In a footnote, he offers Linux as an example

of this unwillingness to pursue different ideas.

To be sure, he has a point when it comes to

operating systems (the topmost comment, in

particular, is infuriatingly obtuse). He does not

have a point when it comes to programming

languages. Python and Ruby were influenced

by Lisp. Many of their fans express respect for

Lisp and some of their interest has augmented

the Lisp renaissance. With some justice,

JavaScript has been described as “Scheme in

C’s clothing” despite originating in those cube

farm hells.

Nevertheless, in spite of this influence, in

both the corporate and open source worlds,

Lisp still has only a fraction of the developer

mind share which the current crop of advanced

scripting languages have attracted. The closed-

mindedness of MBA’s cannot be the only

explanation for this. The Lisp Curse has more

explanatory power.

12  FEATURES

The free development environments avail-

able for Lisp further exemplify the Lisp

Curse.

It’s embarrassing to point this out, but it

must be done. Forget about the Lisp Machine;

we don’t even have development systems

that match what the average Smalltalk hacker

takes for granted (“I’ve always felt Lisp is the

superior language and Smalltalk is the superior

environment,” said Ramon Leon). Unless they

pay thousands of dollars, Lisp hackers are still

stuck with Emacs.

James Gosling, the author of the first Emacs

that ran on Unix, has correctly pointed out

that Emacs has not fundamentally changed

in more than 20 years. This is because the

Emacs maintainers are still layering code atop

a design which was settled back when Emacs

was a grad-student project at the MIT AI Lab,

i.e., when Emacs development was still being

indirectly financed by the national debt. A

Slashdotter may object that Emacs is already

quite capable and can do anything that any

other development environment can do, only

better. Those who have used Lisp Machines say

otherwise.

So why don’t the Lisp hackers put the

Smalltalk guys in their proper place? Why

don’t they make a free development system

that calls to mind some of the lost glories

of the LispM, even if they can’t reproduce

another LispM?

The reason why this doesn’t happen is

because of the Lisp Curse. Large numbers of

Lisp hackers would have to cooperate with

each other. Look more closely: large numbers

of the kind of people who become Lisp hack-

ers would have to cooperate with each other.

And they would have to cooperate with each

other on a design which was not already a

given from the beginning. And there wouldn’t

be any external discipline, such as a venture

capitalist or other corporate master, to keep

them on track.

Every project has friction between members,

disagreements, conflicts over style and philoso-

phy. These social problems are counteracted

by the fact that no large project can be accom-

plished otherwise. “We must all hang together,

or we will all hang separately.” But the expres-

siveness of Lisp makes this countervailing force

much weaker; one can always start one’s own

project. Thus, individual hackers decide that

the trouble isn’t worth it. So they either quit

the project, or don’t join the project to begin

with. This is the Lisp Curse.

One could even hack Emacs to get some-

thing that’s good enough. Thus, the Lisp Curse

is the ally of Worse is Better.

The expressive power of Lisp has drawbacks.

There is no such thing as a free lunch. n

Rudolf Winestock is an aspiring mathematician and
writer with his own web design company at Winestock
Webdesign, LLC.

Reprinted with permission of the original author.
First appeared in hn.my/lispcurse.

http://hn.my/lispcurse

  13

Reprinted with permission of the original author. First appeared in hn.my/codelearn.

http://cloudkick.com

14  STARTUP

STARTUP

By Thomas Buck

Building a Web Application
That Makes $500 a Month

This is an article about the first web

app I wrote for myself, TweetingMa-

chine [tweetingmachine.com]. I’ll

cover every aspect of its creation and develop-

ment, starting at how the idea came to me, the

many, many mistakes I made, and how eventu-

ally I improved the tool so much that it now

brings in $500 a month, a figure that increases

with each month. I realize that this isn’t a huge

amount of money, but it’s a nice present.

December 2009: The Idea
At the time, I was getting freelance work from

vWorker [vworker.com], and I started to see

a lot of requests asking for coders to work on

various Twitter-based applications. Some people

wanted to create sites that let users schedule

tweets; others wanted to be able to auto-

matically follow people back; and some shady

characters wanted full-on spam engines. I was

looking for an excuse to learn Twitter’s API,

and the more I thought about it, the more I

realized that I could write a web app in my free

time with lots of great features, that would be

easy to use, and in no time it would become the

#1 Twitter tool! Not only that — I could charge

to access it…and people would sign up, and use

it, and love it, and inside 90 days I’d be making

tens of thousands each and every month!

Well, a guy can dream.

January 2010: The Execution
I had my great idea. Time to get cracking on

what would turn out to be the easy bit: writing

the code. I’m a web developer — have been

for a decade — and I know how to write web

apps. Find a cheap VPS (prgmr.com — inciden-

tally, highly recommended and far exceeded

my expectations), sketch out some database

and object designs, choose a framework, and

that was me, up and running, coding like a

demon for a good few weeks.

http://tweetingmachine.com
http://vworker.com
http://prgmr.com

  15

The important fact here is that I’m very

much a developer; I have all the design skills

of a dead fish. So I took a look at a few sites

out there and attempted to make something

similar. This is going to be embarrassing, but

here we go anyway:

As you can see, TweetingMachine was not a

pretty sight. I was still naively optimistic that

my poor design skills would be ignored by the

legions of customers that would be overawed

by TweetingMachine’s features and ease of use.

I launched the site, submitted it to the likes

of FeedMyApp, KillerStartups, and so on. This

was right before…

February 2010: The Big Pause
My girlfriend and I (along with her sister, for

that matter) had decided to escape Poland’s

chilly winter and spend three weeks in India

instead. A fantastic time was had by all, and I

occasionally managed to stop thinking about

the millions of dollars that must be waiting in

my PayPal account.

March 2010: Crashing Back Down to
Reality
Arrive back home. Check emails. Zero sales.

Check server. Apache has been crashing. Cron

jobs not running. Sit down. Cry. Fix up the

code. Go work on something else.

April 2010: First Sale!
I should stop here to explain what I origi-

nally thought my pricing plans would look

like: I was offering tiered pricing — if you

wanted to use multiple Twitter accounts, it’d

cost you more…and if you wanted to send

more messages, that would cost you as well.

Enjoying taking rash decisions, I decided to

scrap the tiered pricing, and stick to a single

price: $9.99/month, with a week’s free trial

beforehand.

Surprisingly, within a week, I had my first

sale. With $9.99 in my PayPal account, I was

halfway to breaking even on my monthly

hosting costs, a small triumph! That said, I

was starting to notice a rather nasty trend: my

visitor numbers were dropping, sharply. If this

carried on, I would have maybe a single visitor

per day in the next month. Not having any

marketing skills, I was starting to wonder what

I should do.

First try

Let’s try that again

And again…

16  STARTUP

May 2010: Internet Marketing for
Dummies
I was at a loss, and so I started to read every

basic guide out there for how to market your

web app. All of them made it seem so simple:

find relevant websites and blogs; contact

authors and owners; ask for a review or if

they’d let you publish something; and then sit

back and watch the targeted visitors pour in.

Sadly, with TweetingMachine that didn’t

happen. I started to realize that its design

could really be holding the tool back, but I

don’t have the money to pay a designer, so

what else can I do? Failing elsewhere, I added

a page to the site “Bloggers” that offered a free

year’s subscription to TweetingMachine in

return for a review on their blog.

Just in case you ever go down this route,

you will not believe the cheek of some people.

I still regularly receive emails from people

demanding free subscriptions, and sending

me a link to a copy of a review by someone

else. Funnily enough though, in a couple of

cases this has led to purchases after I got into

an argument — “It’s only $19.99, why don’t

you just buy it?!” — with the person originally

trying to cheat a subscription out of me.

June 2010: Second Sale, and Desperation
Kicks In
Suddenly, my second sale arrived: I was now

breaking even on my monthly hosting costs!

I decided to ignore the design problem: with

enough features, SEO, and gimmicks, surely

I’d start to make enough money to pay for a

designer? So, in my free time I worked on these

3 aspects:

➊ As mentioned, adding more features.

Otherwise known as reading my competitor’s

websites, and working out how to do what

they’re doing, but do it better.

➋ SEO. I started reading every SEO guide out

there after realizing how many basic mistakes I

was making (such as having a title tag consist-

ing of the word TweetingMachine alone)

➌ Gimmicks. Another embarrassing confes-

sion, but honestly, this is how desperate I was.

I made TweetingMachine translation-friendly,

and then set about adding Google Translate

versions of every language I could find. I later

realized quite how terrible and irritating the

translations were when the visitor logs showed

non-English visitors repeatedly choosing the

English version of the site, usually after view-

ing a single page in their native tongue.

“I got into an argument — “It’s only
$19.99, why don’t you just buy it?!””

  17

July 2010 – September 2010: Close to
Giving Up
The pattern of low usage and sales continued

over the next few months. I gained 10 sub-

scribers, over half of whom cancelled after a

month’s usage. And, honestly, I lost interest

in the project, now hating the design and the

feature set.

One evening, though, I got in contact with

a friend I hadn’t spoken to in ages. He men-

tioned a website that was paying his rent, and

I expressed my frustration about TweetingMa-

chine’s lack of income. I think at this point,

total monthly revenue was $30.

Have you ever felt really, really stupid? I

excel in stupidity, missing common sense and

so on, and as the conversation progressed, the

familiar feeling swept over me once again. My

friend told me, “Yup, honestly your site’s design

sucks. Why don’t you go on ThemeForest, buy

this theme [hn.my/agencia] for the front-end,

this theme [hn.my/terminator] for the tool

itself, and hey — you only need a couple of

subscribers for a couple of months, and the

themes will have paid for themselves.”

Well, knock me down with a feather! Decent

designs are available for not much money at

all! My friend had made a great argument. I

paid the $50 and got to work.

October 2010: What a Difference a Design
Makes
I bought the themes and sat down to integrate

them. I was expecting this to take a lot longer

than it did: in the end, it took me a few hours

over the course of the evening. Bedtime was

approaching, and I chose to spend the last hour

of the night harassing my ever-patient fiancée

with over-enthusiastic demonstrations of

TweetingMachine’s new-found greatness.

You see, over the past few months, my

hatred for TweetingMachine had built up day

by day, its cheery colors and shiny logo only

heightening my sense of failure. Thankfully,

integrating the themes gave me a new burst

of enthusiasm for the project. Suddenly, I was

really enjoying visiting the site and playing

with the tool. As I woke up the next day, my

head filled with all-too-ambitious dreams of

wealth and success, and this in turn motivated

me to develop yet more features.

Enough talking! What do the figures look

like? This is a graph of new free trials:

I’ll leave the precise date I put the new designs live
as an exercise for the reader.

“Decent designs are available for not
much money at all! ”

http://hn.my/agencia
http://hn.my/terminator

18  STARTUP

So, cue wild happiness! But how well did

this translate into sales?

Honestly, I couldn’t believe it.

One month, and only five new subscriptions.

November 2010: Running Out of Excuses
At this point, I was charging $9.99/month,

with a free trial of 24 hours. I thought this

was a fair deal, but as the stagnating number

of new subscriptions showed, it was clear that

something wasn’t working.

What could it be? And why? Of course! The

price! That must be where I’m going wrong!

Halfway through November, I bit the bullet

and made a significant change to the pricing:

TweetingMachine now cost $19.99 per year;

no more monthly rebills.

I have yet to have any magic moments with

changes I’ve made to TweetingMachine. By

that, I mean, changes that have had an instant

effect on use or payment. The pricing change

was no exception…for the first 2 days.

It was now the middle of November. And on

the 15th, someone subscribed. On the 16th,

another user paid. Teasingly, no-one signed up

on the 17th…but on the 18th I received 2 new

subscriptions. The pattern continued for the

rest of the month, averaging 1 sale per day.

Well! This was much more like it! Novem-

ber brought in over $200!

December 2010: What Was that About
Marketing?
The rate of new subscriptions continued

throughout December, sometimes 2 subscrip-

tions a day, and on 1 memorable day, 5 users

subscribed!

So now the concept is proven, how can I get

more potential users to visit the site? I took the

view that if in doubt (as I was and continue to

be — note earlier implied reference to busi-

ness ability of a squashed frog) follow what

your competitors are doing. So, I sat down,

typed my competitors’ names into Google,

went through page after page of links, and

identified bloggers who might be interested in

covering TweetingMachine. I sent hundreds of

personalized emails, and received fewer than

10 reviews in total. Oh well, better than a kick

in the teeth.

I also found lots of directories of Twitter

tools: type in a description, upload screenshots,

get listed, lots of happy users dance their merry

way towards your site.

I was expecting new subscriptions to tail

off just before Christmas. It made sense to

me that there might not be that many people

online, and even fewer ready to hand over their

hard-earned cash after the yuletide spending

craziness. Imagine my happiness when new

subscriptions continued, including on Christ-

mas day itself!

December brought in just under $500 — to

be precise, $479.71 after PayPal fees.

  19

January 2011: Brave New Subscriptions
The first month of 2011 was a time of high

emotion. For several days on end, no users

would sign up…and then a flurry of 3 or 4

subscriptions would come in within a couple

of hours. My mind even deluded itself into

thinking it was acceptable to describe this as “A

rollercoaster of emotions.”

Whilst I was happy with January’s tak-

ings — $429.75 after fees — the new signups

permanently tailed off at the end of the month.

Something was definitely amiss.

February 2011: Delusions
I had started a new job in January, developing

Facebook applications for a local startup, and

this was taking up an awful lot of my evening

time. I had some ideas for changes to make to

TweetingMachine that I was keen to imple-

ment, but wasn’t sure when I’d get around to

it. After all, assuming that my time is free, each

month it still bought in the equivalent of a few

nice meals out.

Still, subscriptions had nearly stopped

coming in altogether. For reasons unknown,

TweetingMachine had 6 people in total sub-

scribing in February. I had strangely depressing

thought: if I had been lucky in December and

January, how much money is being made by

those who knew what they were doing?

I eventually found the spare time, and made

a couple of small, but effective changes: I coded

some flexibility into prices, so future price

changes would take seconds to implement, and

I did the same for the free trial period.

Going forwards, TweetingMachine cost

$19.99/month, and the free trial increased

from 24 hours to 10 days.

March 2011: All Change!
What difference did increasing the price

12-fold make? Color me shocked, surprised

and, frankly, happy: it made *zero* difference!

Actually, I tell a lie; the rate was between

that of January and February. Essentially the

same — except that these subscriptions were

going to be rebilled each and every month!

I was starting to feel cautiously optimistic.

There were still plenty of outstanding ques-

tions (such as: how do I get more, more, more

users to visit?), but for now my most pressing

question was: will these subscribers continue

their subscriptions next month?

April 2011: The answer is… yes!
Please forgive me if this article feels like a con.

I’ve had months where I’ve made just under

$500, and months where I’ve made a lot less

than that. April’s on target to make over $500,

and as of the 27th, I’ve had 1 unsubscribe from

the previous month, out of 17 new subscrib-

ers. Not the greatest retention rate, but if that

continues for the next 20 years…

Now, this isn’t a story of huge, wild success;

it’s of a 29-year-old making his first steps in

business. I believe that in a few more years,

after a few more failures, and a few more,

modest, successes, I’ll be in a pretty good place

for my first major success. The point is: you

have to make a start. n

Thomas is a British developer currently based in Warsaw,
Poland. When he’s not offending tunefully-gifted lis-
teners with his woeful piano skills, he blogs about his
attempts to create profitable SaaS apps at tbbuck.com.

Reprinted with permission of the original author.
First appeared in hn.my/500.

http://tbbuck.com
http://hn.my/500

20  STARTUP

By Udo Schroeter

Hiring Developers:
You’re Doing It Wrong

When Evan Carmi posted his

Google job interview experi-

ence [hn.my/ecarmi] on HN,

I felt reminded of my bygone startup days. In

over a decade of “modern” IT startup job inter-

views, we have made no progress whatsoever.

If anything, I was part of the problem there for

a few years. I simply copied a hiring mecha-

nism that seemed like a standard at the time,

and in doing so I failed miserably at the most

important goals a company should observe

when looking for new developers. Today the

tech front pages are full of Larry Page’s efforts

to turn around the company, but I think

performance problems at developer-centric

companies may to a large part be burned into

their DNA by a deeply faulty hiring process.

How We Did It
My cofounder and I were running a small web

development shop in Germany. We had started

working literally out of my friend’s basement.

Over time, we grew and moved into real office

space. At first it was easy to find new employ-

ees, we could just ask our friends to come in

and work for us. Of course, that model didn’t

scale, but it performed a very important func-

tion: it made sure we hired people that were

a good fit for the company, both on a personal

and a professional level. Then came the day

when we needed to fill positions by bringing in

people from the outside.

One of the redeeming features of the

German regional unemployment offices is

they will send you a large stack of CVs on

demand, within a few hours of calling them

on the phone. I was pleasantly surprised that

we didn’t have to hire an agency to do this.

Together with the CVs we already had from

people who applied to the job posting on our

website, we now had some sifting to do. In the

end, we agreed on about a dozen of the best

and invited them for an interview. This is the

part where everything went wrong.

http://hn.my/ecarmi

  21

The Standard Dev Interview
A candidate would come in, usually all dressed

up in their best suit and tie, and we’d sit down

and have a talk. That talk was essentially like

an oral exam in college. I would ask them to

code algorithms for all the usual cute little

CS problems, and I’d get answers with wildly

varying qualities. Some were shooting their

pre-canned answers at me with unreasonable

speed. They were prepared for exactly this

kind of interview. Others would break under

the “pressure”, barely able to continue the

interview.

To be honest, when we first started doing

this, I had to look up these puzzles in advance,

mainly to make sure I didn’t embarrass myself.

This should have been the first warning sign

that maybe we weren’t exactly testing for skills

that were most relevant to our requirements.

If these doubts occurred to me, I must have

dismissed them very quickly. After all, it was

the way everyone approached the interview

process.

Of course, we ended up hiring the candidate

with the smoothest answers. Inevitably, the

next job openings came, we did it again and

again in the same fashion, for the rest of the

company’s lifetime. If this sounds familiar to

you, you are clearly not alone.

Actual Job Performance
But how did the candidates we selected

measure up? The truth is, we got very mixed

results. Many of them were average, very few

were excellent, and some were absolutely

awful fits for their positions. So at best, the

interview had no actual effect on the quality

of people we were selecting, and I’m afraid

that at worst, we may have skewed the scale in

favor of the bad ones.

What does bad and good even mean in this

context? Let’s have a look some of the bench-

marks that I consider important:

Company Culture. In hindsight, one of

the most important features a new employee

should have is compatibility with the spirit of

the people who already work there. The Stan-

dard Dev Interview performed worst in this

area, for obvious reasons. It’s difficult to judge

people’s personalities in interviews because

they are not exactly themselves. In fact, they’re

incentivized not to be themselves.

Programming Competence. Somewhat

counter intuitively, the code examples done

during the interview were a bad indicator for

actual competence on the job. Real world

projects rarely consist of implementing binary

searches without access to a parser or literature.

It turned out that employees who had done

very well in the code examples were not always

able to transfer theoretical knowledge into

practical solutions. Having candidates write

sorting algos on the whiteboard is a method

that rewards people with great and precise

short-term memory who come prepared for

exactly these kinds of questions. In our case,

we needed resourceful coders who could write

neat, stable, and elegant software — and the

interview process wasn’t delivering them to us.

Project Management. People who did well

in the interview were not necessarily good

team mates or even good presenters in front of

our customers. This result, too, was surprising

to me. Turns out, sucking up to an interviewer

for an hour is a completely different skill set

than, say, being good at coordinating with your

coworkers or the people who pay our bills. Nor

was their interview performance indicative

of the ability to write good documentation or

how to behave in online communications.

22  STARTUP

The Result
The results of a hiring process such as this may

be one of the factors responsible for a company

to lose its startup spirit and its creative soul.

This was certainly the case with our company.

As the CEO, I was ultimately at fault; however,

having the wrong people on the job was a

large part of the company’s inability to deliver

the quality and quantity of output needed

to sustain it. Infighting poisoned our teams.

Incompetence was covered up with good

presentation skills and ass-kissing. Good people

left the company because they hated the new

atmosphere.

Though I had to let go of many people for

different reasons over the years and in the end

had to deliver the hardest speech of my life on

the morning I dissolved the company, I only

went “full Trump” once on an employee. It was

the one who had displayed the best interview

performance and the best academic references

of them all, only a year before.

Sure, that’s an extreme example. Most

companies succeed regardless. But I still

believe we can vastly improve the chances of

finding candidates that are good fits by radi-

cally changing the way we do interviews. And

in our case, that would probably have made all

the difference in the world.

An Alternative
So what should a developer job interview look

like then? Simple: eliminate the exam part

of the interview altogether. Instead, ask a few

open-ended questions that invite your candi-

dates to elaborate about their programming

work.

•	 What’s the last project you worked on at

your former employer?

•	 Tell me about some of your favorite projects.

•	 What projects are you working on in your

spare time?

•	 What online hacker communities do you

participate in?

•	 Tell me about some (programming/techni-

cal) issues that you feel passionately about.

These questions are designed to reveal a

great deal about the person you have in front

of you. They can help you decide whether the

candidate is interested in the same things as

you, whether you like their way of thinking,

and where their real interests lie. It’s tougher for

them to bullshit their way through here, because

the interviewer can drill deeper into a large

number of issues as they present themselves.

What about actual coding ability? Well, take

a few moments after the interview and look

into some code the candidate wrote. Maybe

for an open source project, maybe they have

to send you something that’s not public — it

doesn’t matter. Looking at actual production

code tells you so much more than having them

write contrived fiveliners on the whiteboard.

I’m sure you can come up with even more

questions and other ways to engage the inter-

viewee. At this point, pretty much any idea

will be an improvement.

  23

Nay-saying
Most people are quick to defend the status

quo, and sure, that’s a rewarding position to

hold. It’s risk free and you can always fall back

on the old argument “a lot of smart, rich and

successful people do it the old way, so my

money is on whatever they are doing.”

“Nice, but that doesn’t work for large, successful
companies. Your idea doesn’t scale.”
Sure, it scales: in terms of effort per interview,

there is no difference. There is no reason this

couldn’t work in larger companies. In the end,

the interviewer always makes a personal and

deeply subjective decision. I’m merely suggest-

ing a way that delivers more relevant informa-

tion for that purpose.

“The best programmers have no spare time proj-
ects.” or: “The most talented people I know work
from 9 to 5 and then go home to watch football/
be with their families/whatever.”
This is not my experience. I’m not saying that a

good programmer should not have a life. But I

do believe that a certain amount of enthusiasm

for programming is called for. And really, if

you have such a great skill, not using it for fun

seems kind of wasteful to me.

“In my spare time I’m working on making the
next million for my company. Oh, when I’m not
working for my company? I’m with my family or
friends.”
That’s great, those people can surely show

me something they have been working on.

I would, however, consider the lack of any

hobby projects a warning sign for some devel-

opment jobs.

Final Thoughts
It has been my experience that the traditional

developer interview is insufficient at finding

good candidates. While the typical whiteboard

coding exercises correlate somewhat with

general CS competence, they are poor indica-

tors of actual programming performance. It is

my contention that we have been doing them

this way for years simply because they’re easy

to administer, but the data that’s coming out of

these interviews is largely irrelevant at best. We

as an industry should move to more personal-

ized interview questions that focus on the

entirety of a developer’s skill set. Also, I believe

it is more productive to judge production code

as opposed to abstract modular puzzles that

have no real connection to the actual job in

question. Most importantly, I am convinced

that gaining insight into the developer’s real

personality is just as important as checking for

professional competence, because one bad fit

can destroy an entire team. n

Udo Schroeter works as a project manager at Kautschuk
Gesellschaft Group in Frankfurt, Germany. While he
loves writing web applications, his professional focus is
bioinformatics and computational modeling. In his spare
time, he is currently building the Hubbub Distributed
Social Network open source project.

Reprinted with permission of the original author.
First appeared in hn.my/hiring.

http://hn.my/hiring

24  SPECIAL

SPECIAL

By Kenneth Myers

I am a full-on dork. The things that make

me want to get up in the morning are

things that make normal people lose

interest in the conversation, or giggle. These

are things like lucid dreaming, artificial intel-

ligence, utopian movements, and Esperanto.

Be that as it may, I’m mostly fine with

boring the normals and living in the Vibrant

True World of Beauty with its other full-on

dork denizens. Amazingly, I’ve found that

Esperantists seem to be anarcho-Taoists, that

AI researchers tend to have experimented with

lucid dreaming, and that other secret threads

hold the seemingly disparate interests of Dorks

Like Me together. I have countrymen. Just not

yet my country.

The other thing that holds my kinsmen

together, though, is an unfortunate thing: they

are all asses. They decimate the chances of

their ideas’ success by offending everyone they

meet, making it look like being happy and

having friends are suspicious, counterrevolu-

tionary behaviors.

In case you’re wondering if my sermon is

directed at you, there are some common tropes

in our oft-reenacted social suicide:

➊ We call someone’s beliefs “idiotic.”

➋ We call someone’s beliefs “idiotic” within

five minutes of meeting them.

➌ We happily inform strangers of our vast

and superior intelligence.

➍ We derail a conversation about American

Idol to bring it back to the real issue at hand:

that there is no God.

➎ When given a compliment, “Oh, you’re so

well-read!”, we look blankly in the eyes of the

complimenter, and respond “Yes, I know.”

I can hear your retort, oh ye smart and

lonely: “But I am the smartest person in the

room”/“But their beliefs are idiotic”/“I’m not

going to compromise the truth to make some

idiot happy.”

A Rough Guide to
Social Skills for

Awkward Smart People

  25

Great. Good luck with that. Oh, and by the

way, your cause will die, I promise.

People don’t respond well to being told

that they’re idiots, even if they are. Ideas don’t

spread by beating their enemies to a pulp. They

spread by subterfuge and incalculable subtlety.

I would propose that sacrificing some

smaller truths in your day-to-day interactions is

the only way for the greater truth to prevail.

Be a Good Spy
As a short exercise, I invite you to think of it

this way: it is World War II, and you are an

Allied spy. You are in Germany, and you have

attained a mid-level rank in the Nazi bureau-

cracy. Your superiors speak well of the Führer.

Now ask yourself, which response probably

achieves the most towards the furtherance of

your objectives?

a) “No, he’s actually an idiot, and killing Jews

is wrong, and I’m an Allied spy, and there are

Jews in my attic.”

or

b) “Heil Hitler.”

The Old One-Two
Now, of course we’ll never achieve anything

good if we simply walk around saying “Heil

Hitler” all day. If you do have an important

mission in the world, you’ll have to face dan-

gers, and at some point show your true colors.

Doing this in the wrong way Schrutes your

whole mission. Doing this in the right way

makes you Ani Difranco or Bob Dylan.

Ani Difranco has a trick. She gets up on

the stage, and her guitar is un-tuned. While

tuning it, she ad-libs a story. The story isn’t

funny. There are a lot of pauses, and a lot of

“uh”s. The crowd starts to get uncomfortable.

We feel sympathetic embarrassment. Massive

pity. Poor little girl. Then, suddenly, she rips

into everyone’s soul, fast. Now she’s confident

and smarter than you can handle. Now she’s

referencing poets and playing brilliantly with

language. The whole dumb scared thing was an

act (she doesn’t do it in interviews). It works. I

call this The Old One-Two.

One: Disarm. Don’t be an ass. Be weak. Be

self-deprecating. Build Ethos.

Two: Be brilliant.

The Old One-Two is charm at its atomistic

simplest. Most good actors use it (though not

so much in their stage performances as in

interviews). Bob Dylan is the absolute king

of the game, ripping off Milton and making it

sound like something he misheard his grandfa-

ther say.

What I find the most interesting about The

Old One-Two is that even after I realize I’ve

been duped, I still love the guy who’s scammed

me.

“Oh no, I really don’t play piano, I just mess

around.”

“Aw, come on, please?”

“Oh, alright.” {Flawless Bach Piece}

“Whoa.”

Even after you know it was a lie, the false

humility still gives you warm feelings. Now

when this guy later turns around and says, “Aw,

naw, not really — well, I guess kind of I dabble

in The Ultimate Truth,” I’ll probably listen. n

Kenneth Myers is the administrator of an ESL program
at a small college in Texas, an amateur programmer,
an occasional politician, and a fun guy. Call him when
you’re in Dallas. You should be his friend.

Reprinted with permission of the original author.
First appeared in hn.my/social.

http://hn.my/social

26  PROGRAMMING

PROGRAMMING

By Howard Yeh

People think that playing the violin

is hard. But that’s only when you are

learning and practicing. When you are

actually playing, it’s as natural as breathing. So

it is with Git. After a couple years of use, and

with the help of a few aliases, my Git usage

now comes as easily as music from a familiar

piece:

git caa
git ca
git s
git l
git r1
git rh 330183
git s
git d
git cm 'a new commit'

All of us at some point or another kept a

private cheat sheet of common Git commands.

I know I did. After a while, I gained enough

experience with Git to know the common

tasks that I do all the time. For these common

tasks I create aliases.

Very often, after I’ve made a commit, I’d

keep wanting to make small fixes to it, like

fussing around with spaces, or renaming

variables, or rewording the comments, or

minor refactoring of the code. These changes

are too small to be worth their own commits

(that would only clutter up the history). So I’d

prefer if these changes belonged to the commit

I already have. I’d do this:

git commit -a --amend -C HEAD

This adds all the changes to the staging area

and commits it as an amendment to the previ-

ous commit, using the same commit message.

Effectively, I am saying: “put whatever I’ve

done into the previous commit.”

For this usage pattern, I have created an alias

in my ~/.gitconfig, like so:

[alias]
 caa = commit -a --amend -C HEAD

Play Git Like A Violin

Sueño Abandonado II, flickr.com/photos/toboeh/3393011759/

http://flickr.com/photos/toboeh/3393011759/

  27

Then, ever after, I’d type git caa whenever I

wanted to do the same thing. Another pattern

I use a lot is to create a commit for the changes

I’ve done, all in one step:

git commit -a -m 'commit message'

Thus I’d create another alias:

[alias]
 cma = commit -a -m

Then, ever after that, I’d type g cma.

Ninety percent of the time, git caa and git
cma cover my commit needs. If you ask me

what they stand for, I honestly can’t tell you,

because these commands are so short, they are

ingrained in my muscle memory. I don’t think

about what I am doing with Git, just as when

I am playing an arpeggio on the violin, I don’t

think about the notes individually.

Here are all my Git aliases. I hope you find

some of them useful to integrate into your Git

workflow.

[alias]
I like using the interactive mode to
make complex commits
ai = add --interactive

All the aliases relate to commits. Note
that they are grouped by common prefixes,
so I don't confuse what I want done by
accident.

c = commit
commit with a message
cm = commit -m
cma = commit -a -m
amending the previous commit
ca = commit --amend
caa = commit -a --amend -C HEAD

reset
soft resets
r = reset
r1 = reset HEAD^
r2 = reset HEAD^^
hard resets
rh = reset --hard
rh1 = reset HEAD^ --hard
rh1 = reset HEAD^^ --hard

shortcuts for commands
s = status
d = diff
a = add
co = checkout
b = branch
l = log
f = fetch
r = reset
p = push

Cherry on top: I aliased g as git in my bash

shell. What I actually do is:

g caa
g ca
g s
g l
g r1
g rh 330183
g s
g d
g cm 'a new commit' n

Howard Yeh graduated with a degree in Cognitive
Science and currently travelling the world. He likes
Lisp, but now works mostly in Ruby. Follow him on
Twitter @hayeah.

Reprinted with permission of the original author.
First appeared in hn.my/violin.

http://twitter.com/hayeah
http://hn.my/violin

28  PROGRAMMING

By Ryan Tomayko

Ruby, like most successful languages,

was assembled from pieces of things

that came before it: Smalltalk’s

consistent object system, Perl’s practical syntax,

UNIX’s sensibilities. Not that it didn’t bring

entirely new innovations of its own(Smalltalk

had block syntax first!), but it’s amazing to

consider how much of Ruby’s design rests on

the elegant packaging of old concepts into a

new coherent whole.

There’s something less obvious but perhaps

more essential that Ruby borrowed: the very

concept of blatant, unashamed borrowing. In

his 1999 talk, Perl, the first postmodern computer
language, Larry Wall states plainly that Perl was

built mostly from things that “didn’t suck” in

the languages that preceded it:

When I started designing Perl, I explicitly set
out to deconstruct all the computer languages I
knew and recombine or reconstruct them in a
different way, because there were many things
I liked about other languages, and many things
I disliked. I lovingly reused features from many
languages. (I suppose a Modernist would
say I stole the features, since Modernists are

hung up about originality.) Whatever the verb
you choose, I’ve done it over the course of the
years from C, sh, csh, grep, sed, awk, Fortran,
COBOL, PL/I, BASIC-PLUS, SNOBOL,
Lisp, Ada, C++, and Python. To name a
few. To the extent that Perl rules rather than
sucks, it’s because the various features of these
languages ruled rather than sucked.

Ruby, the story goes, borrowed much from

Perl: integral regular expressions, statement

modifiers (do_this if that), array/hash liter-

als, funny global variable names, and, of course,

the philosophy of having more than one way of

doing the same thing (TMTOWTDI).

Or did it?

If these features didn’t originate with Perl,

as Wall seems to imply, then where did they

come from?

AWK-ward Ruby

Image of Ruby licensed by DepositPhotos.com/Kesamasek

  29

One of the most important influences on

Perl’s design was AWK. So much so that Perl

was sometimes described as a semantic super-

set of AWK. Are the relics of AWK still present

in Ruby? Let’s see.

Today, AWK is probably best known as a

versatile tool for extracting fields from delim-

ited flat files in a shell pipeline:

cat /etc/passwd | awk -F: '{ print $1 }'

It’s rare to see AWK used for more complex

problems in modern systems, but there’s

actually a full-blown programming language

lurking beneath the surface. It was at one

time used to solve a lot of the same problems

people commonly use Ruby, Perl, or Python to

solve today.

You might find some of AWK’s language

features familiar:

•	 Associative array type.

•	 Automatic string, integer, and floating point

value types.

•	 C-style if, while, and do constructs.

•	 For-each style for construct for iterating over

associative arrays.

•	 Arithmetic (+, -, *, /), modulu-division (%),

exponentiation (^), increment/decrement

(++, --), and assignment shorthand (+=, -=,

*=, …) operators.

•	 Array membership operator (expr in
array).

•	 Integral regular expression type and match-

ing operators (str ~ /pattern/).

•	 Comprehensive builtin function library (a

small sample: printf, gsub, split, substr,

cos, sin, log, sqrt).

•	 User defined functions.

Not bad for 1977.

It would seem that a large portion of Ruby’s

basic syntax and semantics were present in

AWK. So how did Perl come to dominate the

problem space? There must be something very

different about AWK.

While AWK had much of the primitive

syntax right, it also overcompensated for a

specific case: processing streams of delimited

text. The top-level context is used exclusively

for declaring one or more matching statements:

pattern { action }
...

Here, pattern is a full-blown expression and

action is a block of code executed when pat-

tern evaluates truthfully. The pattern is tested

for each line (or record) of input and action

is executed when pattern returns truthfully.

Omitting the pattern causes the action to be

executed for every line.

There’s special patterns for setting actions

up to run before the first line of input is read

and after all lines have been processed. Here’s

an example that uses the special BEGIN pattern

along with a regular expression match. It prints

all the usernames from /etc/passwd while

avoiding comment lines:

cat /etc/passwd |
awk '
 BEGIN { FS = ":" }
 /^[a-z_]/ { print $1 }
'

(NOTE: You can paste bomb that into your

shell on just about any UNIX system.)

Pingouin, flickr.com/photos/52345210@N08/4816336371/

http://www.flickr.com/photos/52345210@N08/4816336371/

30  PROGRAMMING

Here’s a more complex example that shows

off some of AWK’s advanced features, like

associative arrays and for-in syntax. It calculates

word frequencies from the text of Jonathan

Swift’s, A Modest Proposal:

curl -s http://www.gutenberg.org/
files/1080/1080.txt |
awk '
 BEGIN { FS="[^a-zA-Z]+" }

 {
 for (i=1; i<=NF; i++) {
 word = tolower($i)
 words[word]++
 }
 }

 END {
 for (w in words)
 printf("%3d %s\n", words[w], w)
 }
' |
sort -rn

It may seem strange, but this style of

programming was very common in UNIX’s

hayday. Instead of programs being dominated

by a single language like Perl or Ruby, you’d

build pipelines that combined standard utilities

(like sort shown above), sprinkle in bits and

pieces of AWK as needed, and drop down to C

when performance was critical.

Perl took the guts of AWK and left behind

the mandatory pattern matching at the top-

level. That simple design change turned what

was a special purpose language for processing

delimited text streams into what we know

today as a “general purpose scripting language.”

But that’s not the end of the story.

It was important that Perl be able to act as

a replacement for AWK in all its capacities,

including within shell pipelines. This meant

having the ability to run perl in a kind of top-

level AWK mode. Ruby borrowed this capabil-

ity from Perl, making it possible to use Ruby

for the same style of programming facilitated

by AWK, complete with BEGIN and END blocks!

Here’s the word frequency script in AWK-

ish Ruby:

curl -s http://www.gutenberg.org/
files/1080/1080.txt |
ruby -ne '
 BEGIN { $words = Hash.new(0) }
 $_.split(/[^a-zA-Z]+/).each
 { |word| $words[word.downcase] += 1 }

 END {
 $words.each { |word, i|
 printf "%3d %s\n", i, word }
 }
' |
sort -rn

The -n argument causes Ruby to assume

a while gets(); ... end loop around the

provided script. $_ is set to the last line read,

and the BEGIN and END blocks function exactly

as they did in AWK. n

Ryan Tomayko is a systems designer at GitHub and
lifelong student of Unix philosophy.

Reprinted with permission of the original author.
First appeared in hn.my/awkward.

http://hn.my/awkward

  31

http://hacker.postmarkapp.com

32  PROGRAMMING

By ANgus Croll

The JavaScript this keyword is ubiqui-

tous, yet misconceptions abound.

What You Need to Know
Every execution context has an associated

ThisBinding whose lifespan is equal to that of

the execution context and whose value is con-

stant. There are 3 types of execution context:

➊ Global context

this is bound to the global object (window in a

browser)

alert(this); //window

➋ Function context

There are at least 5 ways to invoke a function.

The value of this depends on the method of

invocation.

a) Invoke a property

this is the baseValue of the property reference:

var a = {
 b: function() {
 return this;
 }
};

a.b(); //a;

a['b'](); //a;

var c= {};
c.d = a.b;
c.d(); //c

Understanding JavaScript’s
“this” Keyword

Image licensed by DepositPhotos.com/Viviamo

  33

b) Invoke a variable

this is the global object:

var a = {
 b: function() {
 return this;
 }
};

var foo = a.b;
foo(); //window

var a = {
 b: function() {
 var c = function() {
 return this;
 };
 return c();
 }
};

a.b(); //window

The same applies to self-invoking functions:

var a = {
 b: function() {
 return this;
 }
};

var foo = a.b;
foo(); //window

var a = {
 b: function() {
 var c = function() {
 return this;
 };
 return c();
 }
};
a.b(); //window

c) Invoke using Function.prototype.call

this is passed by argument.

d) Invoke using Function.prototype.apply

this is passed by argument:

var a = {
 b: function() {
 return this;
 }
};

var d = {};

a.b.apply(d); //d

e) Invoke a constructor using new

this is the newly created object:

var A = function() {
 this.toString = function() {
 return "I'm an A"
 };
};

new A(); //"I'm an A"

➌ Evaluation context

this value is taken from the this value of the

calling execution context:

alert(eval('this==window'));
//true - (except firebug, see above)

var a = {
 b: function() {
 eval('alert(this==a)');
 }
};

a.b(); //true;

34  PROGRAMMING

What You Might Want to Know
This section explores the process by which

this gets its value in the functional context —

using ECMA 5 262 as a reference.

Let’s start with the ECMAScript definition

of this:

The this keyword evaluates to the value of

the ThisBinding of the current execution

context.

 – from ECMA 5, 11.1.1

How is ThisBinding set?

Each function defines a [[Call]] internal

method which passes invocation values to the

function’s execution context:

The following steps are performed when

control enters the execution context for

function code contained in function object

F, a caller provided thisValue, and a caller

provided argumentsList:

1. If the function code is strict code, set the

ThisBinding to thisValue.

2. Else if thisValue is null or undefined, set

the ThisBinding to the global object.

3. Else if Type(thisValue) is not Object, set

the ThisBinding to ToObject(thisValue).

4. Else set the ThisBinding to thisValue.

 – from ECMA 5, 10.4.3 Entering Function
Code (slightly edited)

In other words, ThisBinding is set to the object

coercion of the abstract argument thisValue,
or if thisValue is undefined, the global object

(unless running in strict mode, in which case,

thisValue is assigned to ThisBinding as-is).

So where does thisValue come from?

Here we need to go back to our 5 types of

function invocation:

➊ Invoke a property

➋ Invoke a variable

In ECMAScript parlance these are Function
Calls and have two components: a

MemberExpression and an Arguments list.

1. Let ref be the result of evaluating

MemberExpression.

2. Let func be GetValue(ref).

6. If Type(ref) is Reference, then

a. If IsPropertyReference(ref) is true

i. Let thisValue be GetBase(ref).

b. Else, the base of ref is an Environment

Record

i. Let thisValue be the result of calling the

ImplicitThisValue concrete method of

GetBase(ref).

8. Return the result of calling the [[Call]]

internal method on func, providing this-
Value as the this value and providing the

list argList as the argument values

 – from ECMA 5, 11.2.3 Function Calls

So, in essence, thisValue becomes the

baseValue of the function expression (see step

6, above).

Where the function is expressed as a property,

the baseValue is the identifier preceding the dot

(or square bracket).

foo.bar(); //foo assigned to thisValue
foo['bar'](); //foo assigned to thisValue

  35

var foo = {
 bar:function() {
 //(Comments apply to example 		
	 //invocation only)
 //MemberExpression = foo.bar
 //thisValue = foo
 //ThisBinding = foo
 return this;
 }
};
foo.bar(); //foo

 For variables, the baseValue is the Vari-

ableObject (the “Environment Record” above),

which is a Declarative Environment Record.

ECMA 10.2.1.1 tells us that the ImplcitThis-
Value of a Declarative Environment Record is

undefined.

var bar = function() {…};

bar(); //thisValue is undefined

Revisiting 10.4.3 Entering Function Code

(see above) we see that unless in strict mode,

an undefined thisValue results in a ThisBind-
ing value of global object. So this in a variable

function invocation will be the global object.

In full…

var bar = function() {
 //(Comments apply to example
 //invocation only)
 //MemberExpression = bar
 //thisValue = undefined
 //ThisBinding = global object
 //(e.g.window)
 return this
};
bar(); //window

➌ Invoke using Function.prototype.apply
➍ Invoke using Function.prototype.call

(specifications at 15.3.4.3 Function.prototype.

apply and 15.3.4.4 Function.prototype.call)

These sections describe how, in call and apply

invocations, the actual value of the function’s

this argument (i.e. its first argument) is passed

as the thisValue to 10.4.3 Entering Function

Code. (Note this differs from ECMA 3, where

primitive thisArg values undergo a toObject

transformation, and null or undefined values

are converted to the global object — but the

difference will normally be negligible since the

value will undergo identical transformations

in the target function invocation [as we’ve

already seen in 10.4.3 Entering Function

Code.])

➎ Invoke a constructor using new

When the [[Construct]] internal method

for a Function object F is called with a pos-

sibly empty list of arguments, the following

steps are taken:

1. Let obj be a newly created native

ECMAScript object.

8. Let result be the result of calling the

[[Call]] internal property of F, providing obj

as the thisValue and providing the argu-

ment list passed into [[Construct]] as args.

10. Return obj.

 – from ECMA 5, 13.2.2 [[Construct]]

This is pretty clear. Invoking the constructor

with new creates an object that gets assigned as

the thisValue. It’s also a radical departure from

any other usage of this.

36  PROGRAMMING

House Cleaning
Strict mode

In ECMAScript’s strict mode, the thisValue

is not coerced to an object. A this value of

null or undefined is not converted to the global

object and primitive values are not converted

to wrapper objects.

The bind function

Function.prototype.bind is new in

ECMAScript 5 but will already be familiar to

users of major frameworks. Based on call/apply,

it allows you to prebake the thisValue of an

execution context using simple syntax. This is

especially useful for event handling code, for

example, a function to be invoked by a button

click, where the ThisBinding of the handler

will default to the baseValue of the property

being invoked — i.e. the button element:

//Bad Example: fails because ThisBinding
//of handler will be button
var sorter = {
 sort: function() {
 alert('sorting');
 },
 requestSorting: function() {
 this.sort();
 }
}
$('sortButton').onclick = sorter.
requestSorting;

//Good Example: sorter baked into This
//Binding of handler
var sorter = {
 sort: function() {
 alert('sorting');
 },
 requestSorting: function() {
 this.sort();
 }
}
$('sortButton').onclick = sorter.request-
Sorting.bind(sorter);

Further Reading
ECMA 262 5th Edition (PDF) [hn.my/emca]

•	 11.1.1 Definition of this

•	 10.4.3 Entering Function Code

•	 11.2.3 Function Calls

•	 13.2.1 [[Call]]

•	 10.2.1.1 Declarative Environment Record

(ImplicitThisValue)

•	 13.2.2 [[Construct]]

•	 15.3.4.3 Function.prototype.apply

•	 15.3.4.4 Function.prototype.call

•	 15.3.4.5 Function.prototype.bind

•	 Annex C The Strict Mode of ECMAScript n

Angus Croll is a front end developer at Twitter and
author of the influential “JavaScript, JavaScript” blog
[javascriptweblog.wordpress.com]. He’s also a mentor
at JSMentors.com.

Reprinted with permission of the original author.
First appeared in hn.my/thisjs.

http://hn.my/emca
http://javascriptweblog.wordpress.com
http://JSMentors.com
http://hn.my/thisjs

  37

By Laurence Tratt

Parsing: The Solved
Problem That Isn’t

Parsing is the act of taking a stream of

characters and deducing if and how

they conform to an underlying gram-

mar. For example the sentence, “Bill hits Ben,”

conforms to the part of the English grammar

noun-verb-noun. Parsing concerns itself with

uncovering structure; although this gives a

partial indication of the meaning of a sentence,

the full meaning is only uncovered by later

stages of processing. Parsable but obviously

nonsensical sentences, like “Bill evaporates

Ben,” highlight this (the sentence is still

noun-verb-noun, but finding two people who

agree on what it means will be a struggle). As

humans we naturally parse text all the time,

without even thinking about it; indeed, we

even have a fairly good ability to parse con-

structs that we’ve never seen before.

In computing, parsing is also common.

While the grammars are synthetic (e.g. of a

specific programming language), the overall

idea is the same as for human languages.

Although different communities have different

approaches to the practicalities of parsing —

(C programmers reach for lex/yacc; functional

programmers to parser combinators; others

for tools like ANTLR or a Packrat/PEG-based

approach), they typically rely on the same

underlying area of knowledge.

After the creation of programming languages

themselves, parsing was one of the first major

areas tackled by theoretical computer science

and, in many people’s eyes, one of its greatest

successes. The 1960s saw a concerted effort

to uncover good theories and algorithms for

parsing. Parsing in the early days seems to have

shot off in many directions before (largely)

converging. Context Free Grammars (CFGs)

eventually won, because they are fairly expres-

sive and easy to reason about, both for practi-

tioners and theorists.

Unfortunately, given the extremely limited

hardware of 1960s computers (not helped by

the lack of an efficient algorithm), the parsing

38  PROGRAMMING

of an arbitrary CFG was too slow to be practi-

cal. Parsing algorithms such as LL, LR, and

LALR identified subsets of the full class of

CFGs that could be efficiently parsed. Later,

relatively practical algorithms for parsing any

CFG appeared, most notably Earley’s 1973

parsing algorithm. It is easy to overlook the

relative difference in performance between

then and now: the fastest computer in the world

from 1964-1969 was the CDC6600 which

executed at around 10 MIPS. My 2010 mobile

phone has a processor which runs at over 2000

MIPS. By the time computers had become fast

enough for Earley’s algorithm, LL, LR, and

friends had established a cultural dominance

which is only now being seriously challenged.

Many of the most widely used tools still use

those algorithms (or variants) for parsing. Nev-

ertheless in tools such as ACCENT / ENTIRE

and recent versions of bison, one has access to

performant parsers that can parse any CFG, if

that is needed.

The general consensus, therefore, is that

parsing is a solved problem. If you’ve got a

parsing problem for synthetic languages, one

of the existing tools should do the job. A few

heroic people — such as Terence Parr, Adrian

Johnstone, and Elizabeth Scott — continue

working away to ensure that parsing becomes

even more efficient, but, ultimately, this will be

transparently adopted by tools without overtly

changing the way that parsing is typically done.

Language composition
One thing that’s become increasingly obvi-

ous to me over the past few years is that

the general consensus breaks down for one

vital emerging trend: language composition.

Composition is one of those long, complicated,

but often vague terms that crops up a lot in

theoretical work. Fortunately, for our purposes

it means something simple: grammar composi-

tion, which is where we add one grammar to

another and have the combined grammar parse

text in the new language (exactly the sort of

thing we want to do with Domain Specific

Languages [DSLs]). To use a classic example,

imagine that we wish to extend a Java-like

language with SQL so that we can directly

write:

for (String s : SELECT name FROM person
WHERE age > 18) {
 ...
}

Let’s assume that someone has provided

us with two separate grammars: one for the

Java-like language and one for SQL. Grammar

composition seems like it should be fairly easy.

In practice, it turns out to be rather frustrating,

and I’ll now explain some of the reasons why.

  39

Grammar composition

While grammar composition is theoreti-

cally trivial, simply squashing two grammars

together is rarely useful in practice. Typically,

grammars have a single start rule; one therefore

needs to choose which of the two grammars

has the start rule. More messy is the fact that

the chances of the two grammars referencing

each other is slight. In practice, one needs

to specify a third tranche of data — often

referred to, perhaps slightly misleadingly, as

glue — which actually links the two grammars

together. In our running example, the Java-like

language has the main grammar; the glue will

specify where, within the Java-like expressions,

SQL statements can be referenced.

For those using old parsing algorithms such

as LR (and LL etc.), there is a more fundamen-

tal problem. If one takes two LR-compatible

grammars and combines them, the resulting

grammar is not guaranteed to be LR-compati-

ble (i.e. an LR parser may not be able to parse

using it). Therefore such algorithms are of little

use for grammar composition.

At this point, users of algorithms such as

Earley’s have a rather smugger look on their

face. Since we know from grammar theory

that unioning two CFGs always leads to a valid

CFG, such algorithms can always parse the

result of grammar composition. But, perhaps

inevitably, there are problems.

Tokenization

Parsing is generally a two-phase process: first

we break the input up into tokens (tokeniza-

tion,; and then we parse the tokens. Tokens

are what we call words in everyday language.

In English, words are easily defined (roughly, a

word starts and ends with a space or punctua-

tion character). Different computer languages,

however, have rather different notions of what

their tokens are. Sometimes, tokenization rules

are easily combined; however, since tokeniza-

tion is done in ignorance of how the token

will later be used, sometimes it is difficult. For

example, in SQL, SELECT might be a key-

word, but in Java it is also a valid identifier; it is

often hard — if not impossible — to combine

such tokenization rules in traditional parsers.

Fortunately, there is a solution: scannerless

parsing (e.g. SDF2 scannerless parsing). For

our purposes, it might perhaps better be called

tokenless parsing. The different names reflect

the naming conventions of different parsing

schools. Scannerless parsing does away with a

separate tokenization phase. The grammar now

contains the information necessary to dynami-

cally tokenize text. Combining grammars with

markedly different tokenization rules is now

possible.

40  PROGRAMMING

Fine-grained composition

In practice, the simple “glue” mentioned earlier

used to combine two grammars is often not

enough. There can be subtle conflicts between

the grammars, in the sense that the combined

language might not give the result that was

expected. Consider combining two grammars

that have different keywords. Scannerless pars-

ing allows us to combine the two grammars,

but we may wish to ensure that the combined

languages do not allow users to use keywords

in the other language as identifiers. There is no

easy way to express this in normal CFGs. The

SDF2 paper referenced earlier allows reject

productions as a solution to this; unfortunately

this then makes SDF2 grammars mildly

context sensitive. As far as I know, the precise

consequences of this haven’t been explored,

but it does mean that at least some of the body

of CFG theory won’t be applicable; it’s enough

to make one a little nervous, at the very least

(not withstanding the excellent work that has

been created using the SDF2 formalism by

Eeclo Visser and others).

A recent, albeit relatively unknown, alterna-

tive are boolean grammars. These are a gener-

alization of CFGs that include conjunction and

negation, which, at first glance, are exactly the

constructs needed to make grammar composi-

tion practical (allowing one to say things like

“identifiers are any sequence of ASCII charac-

ters except SELECT”). Boolean grammars, to

me at least, seem to have a lot of promise, and

Alexander Okhotin is making an heroic effort

on them. However, there hasn’t yet been any

practical use of them that I know of, so wrap-

ping one’s head around the practicalities is far

from trivial. There are also several open ques-

tions about Boolean grammars, some of which,

until they are answered one way or the other,

may preclude wide-scale uptake. In particular,

one issue relates to ambiguity, of which more

now needs to be said.

Ambiguity

By severely restricting which CFGs they

accept, grammars that are compatible with

traditional parsing algorithms (LL, LR etc.) are

always unambiguous (though, as we shall see,

this does not mean that all the incompatible

grammars are ambiguous-many are unambigu-

ous). Grammar ambiguity is thus less widely

understood than it might otherwise have been.

Consider the following grammar of standard

arithmetic:

E ::= E "+" E
 | E "-" E
 | E "/" E
 | E "*" E

  41

Using this grammar, a string such as 2 + 3 *
4 can be parsed ambiguously in two ways: as

equivalent to (2 + 3) * 4; or as equivalent

to 2 + (3 * 4). Parsing algorithms such as

Earley’s will generate all possibilities even

though we often only want one of them (due

to arithmetic conventions, in this case we want

the latter parse). There are several different

ways of disambiguating grammars, such as pre-

cedences (in this example, higher precedences

win in the face of ambiguity):

E ::= E "+" E %precedence 1
 | E "-" E %precedence 1
 | E "/" E %precedence 2
 | E "*" E %precedence 3

This might suggest that we can tame ambi-

guity relatively easily. Unfortunately, parsing

theory tells us that the reality is rather tricky.

The basic issue is that, in general, we cannot

statically analyze a CFG and determine if it

is ambiguous or not. To discover whether a

given CFG is ambiguous or not, we have to

try every possible input: if no input triggers an

ambiguous parse, the CFG is not ambiguous.

However, this is, in general, impractical: most

CFGs describe infinite languages and cannot

be exhaustively tested. There are various

techniques that aim to give good heuristics

for ambiguity (see Bas Basten’s masters thesis

[hn.my/basten] for a good summary; I am

also collaborating with a colleague on a new

approach, though it’s far too early to say if it

will be useful or not). However, these heuris-

tics are inherently limited. If they say a CFG is

ambiguous, it definitely is; but if they cannot

find ambiguity, all they can say is that the CFG

might be unambiguous.

Since theoretical problems are not always

practical ones, a good question is the following:

is this a real problem? In my experience thus

far, defining stand-alone grammars for pro-

gramming languages using Earley parsing (i.e.

a parsing algorithm in which ambiguity is pos-

sible), it has not been a huge problem. As the

grammar designer, I often understand where

dangerous ambiguity might exist and can nip

it in the bud. I’ve been caught out a couple of

times, but not enough to really worry about.

However, I do not think that my experience

will hold in the face of widespread grammar

composition. The theoretical reason is easily

stated: combining two unambiguous grammars

may result in an ambiguous grammar (which, as

previously stated, we are unlikely to be able to

statically determine in general). Consider com-

bining two grammars from different authors,

neither of whom could have anticipated the

particular composition: it seems to me that

ambiguity is much more likely to crop up in

such cases. It will then remain undetected until

an unfortunate user finds an input that triggers

the ambiguity. Compilers that fail on seemingly

valid input are unlikely to be popular.

http://hn.my/basten

42  PROGRAMMING

PEGs

As stated earlier, unambiguous parsing algo-

rithms such as LL and LR aren’t easily usable

in grammar composition. More recently, a

rediscovered parsing approach has gathered a

lot of attention: Packrat/PEG parsing (which I

henceforth refer to as PEGs). PEGs are dif-

ferent than everything mentioned previously:

they have no formal relation to CFGs. The

chief reason for this is PEGs ordered choice
operator, which removes any possibility for

ambiguity in PEGs. PEGs are interesting

because, unlike LL and LR, they’re closed

under composition: in other words, if you have

two PEGs and compose them, you have a valid

PEG.

Are PEGs the answer to our problems? Alas

— at least as things stand now — I doubt it.

First, PEGs are rather inexpressive: like LL and

LR parsing, PEGs are often frustrating to use in

practise. This is, principally, because they don’t

support left recursion. Alex Warth proposed

an approach which adds left recursion, but I

discovered what appear to be problems with

it, though I should note that there is not yet

a general consensus on this (and I am col-

laborating with a colleague to try and reach an

understanding of precisely what left recursion

in PEGs should mean). Second, while PEGs

are always unambiguous, depending on the

glue one uses during composition, the ordered

choice operator may cause strings that were

previously accepted in the individual languages

not to be accepted in the combined language

— which, to put it mildly, is unlikely to be the

desired behaviour.

Conclusions
If you’ve got this far, well done. This article

has ended up much longer than I originally

expected — though far shorter than it could

be if I really went into detail on some of these

points! It is important to note that I am not a

parsing expert: I only ever wanted to be a user
of parsing, not — as I currently am — someone

who knows bits and pieces about its inner

workings. What’s happened is that, in wanting

to make greater use of parsing, I have gradually

become aware of the limitations of what I have

been able to find. The emphasis is on “gradu-

ally”: knowledge about parsing is scattered over

several decades (from the 60s right up to the

present day), from many publications (some of

them hard to get hold of) and many people’s

heads (some of whom no longer work in

computing, let alone in the area of parsing). It

is therefore hard to get an understanding of the

range of approaches or their limitations. This

article is my attempt to write down my current

understanding and, in particular, the limita-

tions of current approaches when composing

grammars. I welcome corrections from those

more knowledgeable than myself. Predicting

the future is a mugs game, but I am starting

to wonder whether, if we fail to come up with

more suitable parsing algorithms, programming

languages of the future that wish to allow

syntax extension will bypass parsing altogether,

and use syntax-directed editing instead. Many

people think parsing is a solved problem — I

think it isn’t. n

Dr. Laurence Tratt is a software consultant and Senior
Lecturer at Middlesex University. His research interests
center around language design, implementation, and
usage. His homepage can be found at tratt.net/laurie.

Reprinted with permission of the original author.
First appeared in hn.my/parsing.

http://tratt.net/laurie
http://hn.my/parsing

  43

http://startupsopensourced.com

44  PROGRAMMING

Dream. Design. Print.
MagCloud, the revolutionary new self-publishing web service
by HP, is changing the way ideas, stories, and images find
their way into peoples’ hands in a printed magazine format.

HP MagCloud capitalizes on the digital revolution, creating a
web-based marketplace where traditional media companies,
upstart magazine publishers, students, photographers, design-
ers, and businesses can affordably turn their targeted content
into print and digital magazine formats.

Simply upload a PDF of your content, set your selling price, and
HP MagCloud takes care of the rest—processing payments,
printing magazines on demand, and shipping orders to loca-
tions around the world. All magazine formatted publications
are printed to order using HP Indigo technology, so they not
only look fantastic but there’s no waste or overruns, reducing
the impact on the environment.

Become part of the future of magazine publishing today at
www.magcloud.com.

25% Off the First Issue You Publish
Enter promo code HACKER when you set your
magazine price during the publishing process.

Coupon code valid through February 28, 2011.
Please contact promo@magcloud.com with any questions.

http://www.magcloud.com

	Contents
	FEATURES
	How to Find Startup Ideas that Make Money
	The Lisp Curse

	STARTUP
	Building a Web Application That Makes $500 a Month
	Hiring Developers: You’re Doing It Wrong

	SPECIAL
	A Rough Guide to Social Skills for Awkward Smart People

	PROGRAMMING
	Play Git Like A Violin
	AWK-ward Ruby
	Understanding JavaScript’s “this” Keyword
	Parsing: The Solved Problem That Isn’t

