
Issue 18
Nov 2011

I Am Nothing
by Paul Buchheit

Curator
Lim Cheng Soon

Contributors
Paul Buchheit
Patrick McKenzie
Vinicius Vacanti
Chris Leary
Ferry Boender
Alan Skorkin
Michael Trick
Tony Haile

Illustrator
Matthew Phelan

Proofreader
Emily Griffin

Printer
MagCloud

Hacker Monthly is the print magazine ver-
sion of Hacker News — news.ycombinator.com, a
social news website wildly popular among pro-
grammers and startup founders. The submission
guidelines state that content can be “anything that
gratifies one’s intellectual curiosity.” Every month,
we select from the top voted articles on Hacker
News and print them in magazine format.
For more, visit hackermonthly.com.

Advertising
ads@hackermonthly.com

Contact
contact@hackermonthly.com

Published by
Netizens Media
46, Taylor Road,
11600 Penang,
Malaysia.

Hacker Monthly is published by Netizens Media and not affiliated with Y Combinator in any way.

Cover Illustration: Matthew Phelan

For links to Hacker News dicussions, visit hackermonthly.com/issue-18

http://news.ycombinator.com
http://hackermonthly.com
mailto:ads@hackermonthly.com
mailto:contact@hackermonthly.com
http://hackermonthly.com/issue-18.html

For links to Hacker News dicussions, visit hackermonthly.com/issue-18

FEATURES

04  I Am Nothing
By Paul Buchheit

STARTUPS

08  Software Businesses in 5 Hours A Week
By Patrick McKenzie

14  The Long Grind Before You Become an Overnight Success
By Vinicius Vacanti

TRIBUTE

18  You’ve Got To Find What You Love
By Steve Jobs

PROGRAMMING

24  Understanding JIT Spray
By Chris Leary

34  Evolutionary Algorithm
By Ferry Boender

44  Bash Shortcuts For Maximum Productivity
By Alan Skorkin

SPECIAL

48  Finding Love Optimally
By Michael Trick

52  Things I Learned On A Round-The-World Yacht Race
By Tony Haile

Contents

http://hackermonthly.com/issue-18.html

4  FEATURES

By Paul Buchheit

FEATURES

On a scale of one to ten, how
good of a cog are you? How
well do you function in your

assigned role? How much of a man
or woman are you? How do you rate
yourself as a son or daughter, father or
mother, wife or husband, heterosexual
or homosexual, liberal or conservative,
black or white, winner or loser, shark or
sheep, introvert or extrovert, Christian,
Muslim, atheist? How smart are you?
How rational? How emotional? Do
people like you? Are you getting ahead,
or falling behind?

How do you know? Are you keeping
an eye on the others in your category,
comparing to see how you measure up
to your peers? Is it more important for
a man to be tall, or to have good hair?

This is, of course, the path of insanity,
and not the good kind of insanity.

What will you do if you’re too tough
to be a good woman, too sensitive
to be a good man, too selfish to be a
good husband, too lazy to be a good
employee, too shy to be a good friend,
too caring to be rational, too fat to be
pretty, too effeminate to be straight,
too introverted to be a good leader, too
smart to be kind, too young to be taken
seriously, too old to make a difference,
or too far behind to even get in the
race?

These are all false standards and false
dichotomies, but they are so common
and so ingrained that we sometimes
believe in them without even real-
izing it. And this leads to a mountain

I Am Nothing

  5

By Paul Buchheit

I Am Nothing

of insecurities, because nobody mea-
sures up to these crazy standards (and
nobody should). But even if we don’t
believe in these things, it still matters
what other people think, right? What
will the neighbors think? Or how

about our co-workers, or the people at
church? And so everyone works to hide
their insecurities, and they look around
at their peers for comparison, and
maybe they feel bad because everyone
else seems to have it easy, to have it all
figured out. The truth is nobody can
see the truth anymore. They are all
working to hide the truth: that they
are afraid of who or what they really
are. So they all put on a show, and they
pretend to be a good whatever. Or
maybe they rebel, and make a point of
being a bad whatever, but then they
are still under the control of that false
standard, and they are still not being
themselves.

That is all so exhausting.
I am nothing. It’s simple. If I were

smart, I might be afraid of looking
stupid. If I were successful, I might

be afraid of failure. If I were a man, I
might be afraid of being weak. If I were
a Christian, I might be afraid of losing
faith. If I were an atheist, I might be
afraid of believing. If I were rational,
I might be afraid of my emotions. If I

were introverted,
I might be afraid
of meeting new
people. If I were
respectable, I
might be afraid of
looking foolish. If
I were an expert, I
might be afraid of
being wrong.

But I am nothing, and so I am finally
free to be myself.

This isn’t license to stagnate. Change
is inevitable. Change is part of who
we are, but if we aren’t changing for
the better, then we are just slowly
decaying.

By returning to zero expectations,
by accepting that I am nothing, it is
easier to see the truth. Fear, jealousy,
insecurity, unfairness, embarrassment
— these feelings cloud our ability to
see what is. The truth is often threat-
ening, and once our defenses are up,
it’s difficult to be completely honest
with anyone, even ourselves. But when
I am nothing, when I have no image or
identity or ego to protect, I can begin
to see and accept things as they really
are. That is the beginning of positive
change, because we cannot change

“By returning to zero
expectations, by accepting
that I am nothing, it is easier
to see the truth.”

6  FEATURES

what we do not accept nor under-
stand. But with understanding, we
can finally see the difference between
fixing problems and hiding them,
between genuine improvement and
faking it. We discover that many of
our weaknesses are actually strengths
once we learn how to use them, and
that our greatest gifts are often buried
beneath our greatest insecurities.

Letting go of your identity can be dif-
ficult and takes time, possibly forever.
But as with any change, moving in the
right direction is all that really matters
(which is why you shouldn’t compare
yourself with others; you didn’t start in
the same place or with the same chal-
lenges). Fortunately, we have a variety
of emotions that can help us: pride,
anger, fear, jealousy, insecurity, unfair-
ness, embarrassment, bitterness, etc.
These are sometimes portrayed as bad
emotions, but there’s no such thing as
a bad emotion, just bad responses to
emotions. (For example, torturing chil-
dren is a very harmful response to fears
about your own sexuality) Instead, use
these emotions as a cue to remember
that “I am nothing.” When you let go of
your identity and examine why you are
feeling the emotion (typically because
something has threatened your iden-
tity), then these emotions are beneficial.
They reveal the truth.

True self improvement requires
becoming a better version of our selves,
not a lesser version of someone else.
But without self acceptance and under-
standing, how can we even know what
that looks like or whether we’re headed
in the right direction? It would be like
putting the final touches on the Mona
Lisa while picturing some celebrity you
saw on the cover of People magazine:
the result would be a mess. Until we
let go of our mental images of who we
are or who we should be, our vision
remains clouded by expectation. But
when we let go of everything, open our-
selves to any truth, and see the world
without fear or judgment, then we are
finally able to begin the process of peel-
ing off the false identity that prevents
our true self from growing. And it starts
with nothing. n

Paul Buchheit is a partner at the venture
capital firm Y Combinator. He previously co-
founded FriendFeed, which was acquired by
Facebook in 2009, and was one of the first
engineers at Google. At Google, he started
Gmail, suggested the “Don’t be evil” motto,
and created the first AdSense prototype.
Paul has a degree in Computer Science from
Case Western Reserve University.

Reprinted with permission of the original author.
First appeared in hn.my/nothing (paulbuchheit.blogspot.com)

http://hn.my/nothing

Trying to read
your customers’
minds?

Our simple engagement tools help you understand your customers,
prioritize feedback, and give great customer support even faster.
Spend more time building a product your customers will love!

Get 50% o� your first 3 months* with the code
mindreader at UserVoice.com.

* O�er good for new accounts if used before 12/31/2011.

https://app.uservoice.com/account/new/full_service_ultimate?coupon_key=mindreader

8  STARTUPS

STARTUPS

Software Businesses in
5 Hours A Week

➊ Charge More Money
Most engineers severely undercharge
for their products. This is particularly
true for products which are aimed at
businesses — almost all SaaS firms find
that they make huge portions of their
revenue from the topmost plan which
is bought by people spending other
people’s money, but instead of optimiz-
ing for this, we opt for charging “fair”
prices as determined by other software
developers who won’t pay for the
service anyway. This is borked. Charge
more.

➋ Do Web Applications
Faster iteration is a big deal. The faster
you can deliver product to your cus-
tomers, the faster you can get changes
to your customers, the faster you learn
about your business. And the better
your software will get, the happier your
customers will be, the more money you
will make.

You get higher conversion rates to
web applications in many cases. Mine is
double what the downloadable applica-
tion used to be. There are many, many
things that could go wrong with down-
loading an application. You download
it, “Where’d the installer go? I don’t
know how to install things. If I install
this on my computer, will it steal my
documents and break my Googles?”
Common customer worries. If it’s just a
website, they won’t have that worry.

Web applications that build recurring
revenue are always a great thing. You
have funnels leading up to your web
application, and you also have fun-
nels within your web application. One
of the things that I track religiously is
someone signing up for a free trial of
my Bingo Card Creator. Do they actu-
ally get Bingo cards spitting out of their
printer? If they don’t, I have failed in
some way. Maybe my software is too

By Patrick McKenzie

  9

complicated to use, and I could talk for
an hour about this, about little opti-
mizations I’ve made to the internals of
my application to make it more likely
that they succeed in getting their job
done for tomorrow. And as you make
it more likely that people are going
to succeed with using your software,
you’ll see the number of people who
convert and the time that they stay
using the software will increase, and
that’s money Straight To Your Bottom
Line.

➌ Put More of Your Iceberg Above
the Water Line
Businesses create value with almost
everything they do. The lion’s share
of the value is, like an iceberg, below
the waterline: it cannot be seen from
anywhere outside the business. Create
more value than you capture, certainly,
but get the credit for doing so, both
from Google and from everybody else.
This means producing value in a public
manner. Did you write software out-
side the core of your line of business?
Great, OSS it. Get the credit. Have
you learned something novel about
your customers or industry? Write
about it. Get the credit. Are your busi-
ness’ processes worthy of emulation?
Spread what you know. Get the credit.

➍ SEO
I mentioned obliquely that half of
my sales come from SEO, and 75% of
my profits do. As developers who are
trying to get into marketing, this is the
thing that you will learn most easily
and will make you huge, huge amounts
of money if you do it well.

The biggest SEO problem that
entrepreneurs have is this: you have a
website consisting of five or six pages,
and there’s no reason for someone to
cite that website unless they are in a
commercial relationship with you. So
if they use your software, they’ve paid
their money, and they’re happy, maybe
they’ll blog about that, and that’s good.
Getting money from someone is very
hard. Getting them to cite you is less
hard if you can produce something of
value for them.

➎ Optimize Everything
Some of the most important advice
I ever heard regarding the software
business came from Steve Pavlina: all
factors in the success of a software
business are multiplicative. So if your
conversion to the trial goes up by 10%,
and your conversion to the sale goes
up by 10%, you don’t go up by 20% to
your bottom line, you go up by 21%,
because 1.1 x 1.1 is 1.21. So if you just
get a 5% increase every month for a
year, you get 70% growth in revenue.
Yeah, it’s a hill-climbing algorithm.

10  STARTUPS

Yeah, it takes some time, and it’s not
going to give you the 10x, 100x, 1000x
return that some people are look-
ing for, but I hill-climbed all the way
out of the day job from hell, so it’s an
option.

First track how many of your users
never come back, and you will find
it is a scary, scary number. I’ve been
optimizing this for years. My number is
60%. So I’m paying Google thousands
of dollars a month, and 60% of thou-
sands is totally wasted because they
never come back after the first time.
Lower that number by making their
first experience, their first five minutes
with the software totally awesome.
Getting them to that point with activa-
tion will produce great returns.

➏ Outsource/Automate/Eliminate
So You Can Do It All in 5 Hours a
Week
Three ways to avoid wasting your time:
outsource, automate, and eliminate.

■■ Outsourcing. Outsourcing means
that you delegate tasks to be done by
other people without harming the
value too much.

■■ Automation. Have the computer do
it, especially for repetitive things.

■■ Elimination. If it doesn’t add value,
then you shouldn’t be doing it.

What to Outsource:
■■ Web design. I have a seven to eight
day schedule for getting my web-
site up. I’m not going to both make
an application and hack together a
website in that time. Web develop-
ment talent is really cheap right now,
like web design talent. So hand off
the work to people who are talented,
who like doing this stuff, and who
constantly under price themselves.
Let them make the websites. You do
the work that adds value uniquely to
your business that you can’t get done
by other people.

■■ Web content. How many people
have written every word of text
on their websites? There are many
copywriters who can do that for you,
so hire them to do it, because they’re
cheaper than you are. The end goal
is maximizing effectiency. And any
time you are performing a task that
can be outsourced for far lower than
your goal wage without compromis-
ing quality and without compromis-
ing your users’ trust in you, then it
should be done by someone else.

■■ Self-contained programming proj-
ects. If it can be completed by some-
one else and checked by you in an
efficient fashion, then delegate.

  11

Don’t do all the development by
yourself just because you can. Your
success will not be determined by the
number of lines of code you write.
Write code when you want to write
code, when it makes you happy,
because you should be happy when
you’re running your own business. Do
not work at any soul-sucking job for 19
hours a day. Key takeaway: if a Japa-
nese company ever offers you a salaried
position, just say “No!”

What to Automate:
■■ Routine customer support tasks. You
will find that the same four things are
taking all of your time. In fact, when
I was selling downloadable software,
I dealt with the following: “What
is my registration key? I forgot it.”
“The Googles ate my computer.” “A
virus ate my hard drive, it’s no longer
installed. Can I get back? Where is
my registration?”

■■ If something comes up more than
three times, automate that. Any sup-
port tasks that I’ve ever done three
times can be done with like one click
from my dashboard. For example,
I didn’t used to issue receipts. Who
needs a receipt, right? Well, people
who want to get reimbursed need
receipts. So the first two times I hand-
wrote a receipt for her in notepad:
This is a receipt, not an invoice
###. Here’s your name, here’s my
name. You paid me $29.95. This is

your receipt. And I e-mailed that. I
did it like three times. And the fourth
time, I’m like, “Should the CEO really
be writing receipts by hand in Note-
pad?” No. So I wrote software to do
that, and there’s one button that I can
click that will send you a receipt.

■■ Drudgery. License generation. If
that isn’t outsourced or automated
already, it should be.

■■ Server maintenance and monitor-
ing. I used to check my server every
morning when I got up just to make
sure it had not died in the middle of
the night. That’s very repetitive. It’s
important that I do it because if it
dies, then, oh dear! But computers
can do that much easier than I can,
and they can check every five min-
utes of the day and just sent me an
alert Iif my server goes down.

What to Eliminate:
■■ Checking Google Analytics 37 times
a day. I used to do it. I wasted a lot of
time on that. I had five hours a week
and I’d spend one hour on Google
Analytics learning nothing. Be honest
with yourself. Is what I’m doing right
now really driving business forward?
If not, don’t do it.

■■ Worrying about competition. There
are fifteen other people who have
done bingo card creation software.
Many of them have cloned me, soup
to nuts. So I guess their marketing

Reprinted with permission of the original author. First appeared in hn.my/codelearn.

12  STARTUPS

strategy is being Patrick McKenzie-
like. That doesn’t work out so
well. So don’t worry about your
competition. They’ll clone you or
they won’t clone you. Who cares?
Do right by your customers. It will
work out in the end.

■■ Development which is not meet-
ing customer needs. I spent twenty
hours making this one feature for
my software — that’s an entire
month of my business sucked up.
I thought they had this problem:
my teachers clearly don’t under-
stand where a file is. I’ve been
talking to them for a couple of
years, they don’t get what the file
system metaphor actually means.
They want their bingo cards they
make at home to be available at
school, so I made a way that they
could upload their bingo cards to
my website and then download
them from school. I never asked
an actual teacher, “Would you use
this?” n

Patrick McKenzie runs a small software
business. His current focus is on Appoint-
ment Reminder, which solves small busi-
nesses’ problems with missed appoint-
ments. He also made Bingo Card Creator
and consults from time to time, mostly on
software marketing.

Summary

➊ Charge More Money

➋ Do Web Applications

➌ Put More of Your Ice-
berg Above the Water Line

➍ SEO

➎ Optimize Everything

➏ Outsource
■■ Web design
■■ Web content
■■ Self-contained program-

ming projects

Automate
■■ Routine customer support

tasks
■■ Something that comes up

more than three times	
■■ Drudgery
■■ Server maintenance and

monitoring

Eliminate
■■ Checking Google Analytics

37 times a day
■■ Worrying about

competition
■■ Development which is not

meeting customer needs

Reprinted with permission of the original author.
First appeared in hn.my/5hours (kalzumeus.com)

http://cloudkick.com
http://hn.my/5hours

Reprinted with permission of the original author. First appeared in hn.my/codelearn.

http://cloudkick.com

14  STARTUPS

By Vinicius Vacanti

The Long Grind Before
You Become an

Overnight Success

“So, what do you do?”
Ugh. I hated that question.
The truth was that we were

trying to start a new venture, but we
hadn’t really made any progress.

But, instead of just muttering some-
thing, I would force myself to enthu-
siastically pitch our current struggling
idea. They would nod along, but the
skepticism on their face was hard to
ignore.

And, when I was done, they would
sometimes hit me with: “So, is that
your full-time thing?” Ugh. What that
really meant was: you’re trying to tell
me that you spend all your time work-
ing on that ridiculous idea?

The Grind
We left our finance jobs in the summer
of 2007, and we worked really, really
hard. By February of 2010, it had been
over two and half years of hustling on
no salary. What did we have to show
for it? Nothing.

We hadn’t made a dollar of revenue.
We had been rejected by every inves-
tor we talked to. We hadn’t been able
to recruit anyone to join our team. We
hadn’t gotten traction with any of our
ideas.

We had failed to get more than 10K
monthly unique visitors for Yipit for
the last two years despite trying several
ideas with it. We were going sideways.

  15

On a personal level, my life savings
was disappearing. I kept getting hit
with late penalties on my credit card.
Not because I didn’t have the cash to
pay it, but because I just didn’t want
to think about it. It was too depressing
to look at my depleting bank account
that I had worked so hard to build up.
I remember withdrawing all the money
from my 401K account and having to
confirm that I did, in fact, understand
the massive penalties I would incur for
doing so.

In all honesty, I probably would have
given up earlier. The only reason why
I didn’t was out of loyalty to my co-
founder, Jim, who had also quit his
finance job. He had passed up many
amazing job opportunities to work
alongside me, and I wasn’t going to
quit on him.

Everything Changes
In February of 2010, over two and
half years since we started, we have
yet another idea: build an aggregator
for the early but quickly growing daily
deal industry. The idea was sound,
timely, and right up our alley, since we
had been doing local deal aggregation
for the last nine months.

And, in just three days, everything
changed.

We launched the new idea in a
three-day scramble, got some initial
press, users loved it, and four months
later raised $1 million from amazing

investors. A year after that, we’ve
raised $6 million, made real revenue,
attracted hundreds of thousands of
users, and recruited amazing people to
join our team. And, best of all, we’re
just getting started.

So, what happened in those three days?
I’m convinced that if we had the idea

for a daily deal aggregator back in 2007
or 2008 or even 2009, we wouldn’t
have gotten traction because we would
have messed it up.

But, after two and half years of fail-
ing and learning, we knew exactly what
to do:

■■ Product strategy. We had become a
part of the lean startup movement.
I had gone to the New York lean
startup meetups from the beginning,
read Four Steps to Epiphany, and
knew we just needed to build a mini-
mum viable product.

■■ Coding the prototype. I had taught
myself web development over the
last few years, and Jim had taught
himself front-end development. We
didn’t need to find an outsourcer, we
just quickly built it ourselves.

■■ Designing the user interface. We had
already designed a bunch of pro-
totypes. We knew how to design a
landing page that collects user email
addresses and a sign-up flow that col-
lects preferences, and we knew to ask
our new users to spread the message.

16  STARTUPS

■■ Getting initial press. We knew how
to craft our story in a way that would
get journalists interested. We got
featured on TechCrunch and Wired,
giving us a strong initial boost.

■■ Getting investors interested. We had
built relationships with many New
York angel investors over the last few
years, and so we were able to quickly
drum up some interest based on our
traction since they already knew who
we were.

■■ Building buzz. We had become
involved in the New York tech com-
munity and our friends in the indus-
try really helped us build initial buzz
for Yipit.

Now that I look back, I realize that I
was wrong to think that we had noth-
ing to show for two and half years of
hustling. While we didn’t have out-
ward signs of success, we had learned
something very important: the art and
science of starting a new venture. It
took us almost three years to know
what exactly we had to do during those
three days.

And so, to everyone out there who’s
struggling and feels like they have
nothing to show for it, I hope this
article keeps you going. You’re learn-
ing every day. And, when the inspira-
tion strikes, you’re going to be ready to
pounce on it. n

Vinicius Vacanti is the co-founder and CEO
of Yipit, which aggregates and recommends
daily deals based on your category and
location preferences. Previous to startups,
Vin worked as an investment analyst on Wall
Street. He graduated from Harvard College
with a degree in Applied Mathematics.

Reprinted with permission of the original author.
First appeared in hn.my/grind (viniciusvacanti.com)

http://hn.my/grind

http://hacker.postmarkapp.com

18  TRIBUTE

TRIBUTE

Stanford Commencement Address, June 2005
By Steve Jobs

You’ve Got To Find
What You Love

I am honored to be with you today
at your commencement from
one of the finest universities in
the world. I never graduated

from college. Truth be told, this is the
closest I’ve ever gotten to a college
graduation. Today I want to tell you
three stories from my life. That’s it. No
big deal. Just three stories.

The first story is about connecting
the dots.

I dropped out of Reed College after
the first 6 months, but then stayed
around as a drop-in for another 18
months or so before I really quit. So
why did I drop out?

It started before I was born. My bio-
logical mother was a young, unwed col-
lege graduate student, and she decided
to put me up for adoption. She felt
very strongly that I should be adopted
by college graduates, so everything was
all set for me to be adopted at birth
by a lawyer and his wife. Except that

when I popped out they decided at the
last minute that they really wanted
a girl. So my parents, who were on a
waiting list, got a call in the middle of
the night asking: “We have an unex-
pected baby boy; do you want him?”
They said: “Of course.” My biological
mother later found out that my mother
had never graduated from college and
that my father had never graduated
from high school. She refused to sign
the final adoption papers. She only
relented a few months later when my
parents promised that I would some-
day go to college.

And 17 years later I did go to college.
But I naively chose a college that was
almost as expensive as Stanford, and
all of my working-class parents’ sav-
ings were being spent on my college
tuition. After six months, I couldn’t
see the value in it. I had no idea what
I wanted to do with my life and no
idea how college was going to help me

  19

figure it out. And here I was spending
all of the money my parents had saved
their entire life. So I decided to drop
out and trust that it would all work
out OK. It was pretty scary at the time,
but looking back it was one of the best
decisions I ever made. The minute I
dropped out I could stop taking the
required classes that didn’t interest me,
and begin dropping in on the ones that
looked interesting.

It wasn’t all romantic. I didn’t have
a dorm room, so I slept on the floor in
friends’ rooms, I returned coke bottles
for the 5¢ deposits to buy food with,
and I would walk the 7 miles across
town every Sunday night to get one
good meal a week at the Hare Krishna
temple. I loved it. And much of what
I stumbled into by following my curi-
osity and intuition turned out to be
priceless later on. Let me give you one
example:

Reed College at that time offered
perhaps the best calligraphy instruc-
tion in the country. Throughout the
campus every poster, every label on
every drawer, was beautifully hand
calligraphed. Because I had dropped
out and didn’t have to take the normal
classes, I decided to take a calligraphy
class to learn how to do this. I learned
about serif and san serif typefaces,
about varying the amount of space
between different letter combinations,
about what makes great typography
great. It was beautiful, historical, artis-
tically subtle in a way that science can’t
capture, and I found it fascinating.

None of this had even a hope of any
practical application in my life. But ten
years later, when we were designing the
first Macintosh computer, it all came
back to me. And we designed it all into
the Mac. It was the first computer with
beautiful typography. If I had never
dropped in on that single course in
college, the Mac would have never had
multiple typefaces or proportionally
spaced fonts. And since Windows just
copied the Mac, it’s likely that no per-
sonal computer would have them. If I
had never dropped out, I would have
never dropped in on this calligraphy
class, and personal computers might
not have the wonderful typography
that they do. Of course it was impos-
sible to connect the dots looking for-
ward when I was in college. But it was
very, very clear looking backwards ten
years later.

20  TRIBUTE

Again, you can’t connect the dots
looking forward; you can only connect
them looking backwards. So you have
to trust that the dots will somehow
connect in your future. You have to
trust in something — your gut, destiny,
life, karma, whatever. This approach
has never let me down, and it has
made all the difference in my life.

My second story is about love and
loss.

I was lucky — I found what I loved
to do early in life. Woz and I started
Apple in my parents garage when I was
20. We worked hard, and in 10 years
Apple had grown from just the two of
us in a garage into a $2 billion com-
pany with over 4000 employees. We
had just released our finest creation —
the Macintosh — a year earlier, and I
had just turned 30. And then I got fired.
How can you get fired from a com-
pany you started? Well, as Apple grew
we hired someone who I thought was
very talented to run the company with
me, and for the first year or so things
went well. But then our visions of the
future began to diverge and eventu-
ally we had a falling out. When we did,
our Board of Directors sided with him.
So at 30 I was out. And very publicly
out. What had been the focus of my
entire adult life was gone, and it was
devastating.

I really didn’t know what to do for
a few months. I felt that I had let the
previous generation of entrepreneurs
down — that I had dropped the baton
as it was being passed to me. I met
with David Packard and Bob Noyce
and tried to apologize for screwing up
so badly. I was a very public failure,
and I even thought about running away
from the valley. But something slowly
began to dawn on me — I still loved
what I did. The turn of events at Apple
had not changed that one bit. I had

  21

been rejected, but I was still in love.
And so I decided to start over.

I didn’t see it then, but it turned out
that getting fired from Apple was the
best thing that could have ever hap-
pened to me. The heaviness of being
successful was replaced by the light-
ness of being a beginner again, less sure
about everything. It freed me to enter
one of the most creative periods of my
life.

During the next five years, I started
a company named NeXT, another
company named Pixar, and fell in love
with an amazing woman who would
become my wife. Pixar went on to
create the worlds first computer ani-
mated feature film, Toy Story, and is
now the most successful animation
studio in the world. In a remarkable
turn of events, Apple bought NeXT, I
returned to Apple, and the technology
we developed at NeXT is at the heart
of Apple’s current renaissance. And
Laurene and I have a wonderful family
together.

I’m pretty sure none of this would
have happened if I hadn’t been fired
from Apple. It was awful tasting medi-
cine, but I guess the patient needed
it. Sometimes life hits you in the head
with a brick. Don’t lose faith. I’m
convinced that the only thing that kept
me going was that I loved what I did.
You’ve got to find what you love. And
that is as true for your work as it is for
your lovers. Your work is going to fill a
large part of your life, and the only way

to be truly satisfied is to do what you
believe is great work. And the only way
to do great work is to love what you do.
If you haven’t found it yet, keep look-
ing. Don’t settle. As with all matters of
the heart, you’ll know when you find it.
And, like any great relationship, it just
gets better and better as the years roll
on. So keep looking until you find it.
Don’t settle.

My third story is about death.
When I was 17, I read a quote that

went something like: “If you live each
day as if it was your last, someday you’ll
most certainly be right.” It made an
impression on me, and since then, for
the past 33 years, I have looked in the
mirror every morning and asked myself:

“If today were the last day of my life,
would I want to do what I am about to
do today?” And whenever the answer
has been “No” for too many days in a
row, I know I need to change something.

Remembering that I’ll be dead soon
is the most important tool I’ve ever
encountered to help me make the big
choices in life. Because almost every-
thing — all external expectations, all
pride, all fear of embarrassment or
failure — these things just fall away in
the face of death, leaving only what
is truly important. Remembering that
you are going to die is the best way I
know to avoid the trap of thinking you
have something to lose. You are already
naked. There is no reason not to follow
your heart.

22  TRIBUTE

About a year ago I was diagnosed
with cancer. I had a scan at 7:30 in the
morning, and it clearly showed a tumor
on my pancreas. I didn’t even know
what a pancreas was. The doctors told
me this was almost certainly a type
of cancer that is incurable, and that I
should expect to live no longer than
three to six months. My doctor advised
me to go home and get my affairs in
order, which is doctor’s code for pre-
pare to die. It means to try to tell your
kids everything you thought you’d
have the next 10 years to tell them in
just a few months. It means to make
sure everything is buttoned up so that
it will be as easy as possible for your
family. It means to say your goodbyes.

I lived with that diagnosis all day.
Later that evening I had a biopsy,
where they stuck an endoscope down
my throat, through my stomach and
into my intestines, put a needle into
my pancreas and got a few cells from
the tumor. I was sedated, but my wife,
who was there, told me that when they
viewed the cells under a microscope the
doctors started crying because it turned
out to be a very rare form of pancreatic
cancer that is curable with surgery. I
had the surgery and I’m fine now.

This was the closest I’ve been to
facing death, and I hope it’s the closest
I get for a few more decades. Having
lived through it, I can now say this
to you with a bit more certainty than
when death was a useful but purely
intellectual concept:

No one wants to die. Even people
who want to go to heaven don’t want
to die to get there. And yet death is the
destination we all share. No one has
ever escaped it. And that is as it should
be, because Death is very likely the
single best invention of Life. It is Life’s
change agent. It clears out the old to
make way for the new. Right now the
new is you, but someday not too long
from now, you will gradually become
the old and be cleared away. Sorry to
be so dramatic, but it is quite true.

Your time is limited, so don’t waste it
living someone else’s life. Don’t be trapped
by dogma — which is living with the
results of other people’s thinking. Don’t
let the noise of others’ opinions drown out
your own inner voice. And most important,
have the courage to follow your heart and
intuition. They somehow already know
what you truly want to become. Every-
thing else is secondary.

When I was young, there was an
amazing publication called The Whole
Earth Catalog, which was one of the
bibles of my generation. It was created
by a fellow named Stewart Brand not
far from here in Menlo Park, and he
brought it to life with his poetic touch.
This was in the late 1960’s, before per-
sonal computers and desktop publish-
ing, so it was all made with typewriters,
scissors, and polaroid cameras. It was
sort of like Google in paperback form,
35 years before Google came along:
it was idealistic, and overflowing with
neat tools and great notions.

In Memoriam, Steve Jobs (1955-2011)

  23

Stewart and his team put out several
issues of The Whole Earth Catalog,
and then when it had run its course,
they put out a final issue. It was the
mid-1970s, and I was your age. On
the back cover of their final issue was
a photograph of an early morning
country road, the kind you might find
yourself hitchhiking on if you were
so adventurous. Beneath it were the
words: “Stay Hungry. Stay Foolish.” It
was their farewell message as they
signed off. Stay Hungry. Stay Fool-
ish. And I have always wished that for
myself. And now, as you graduate to
begin anew, I wish that for you.

Stay Hungry. Stay Foolish.
Thank you all very much. n

“Have the courage to follow your heart
and intuition. They somehow already
know what you truly want to become.”

Special thanks to Stanford University for granting the
permission to reprint.

Photo Credit (in order of appearance):
Robert Holmgren, Joi Ito, Matthew Yohe.

24  PROGRAMMING

PROGRAMMING

By Chris Leary

Understanding
JIT Spray

Steel your mind for a tale of
intrigue, intertwined with a
complex topic in browser secu-

rity. (It’s kind of all over the place, but
I might spray something useful.)

Our story, like so many others, starts
out with a browser user like yourself,
a bottle of red wine, and a devoted
young hacker from the Eastern Bloc
that answers to the handle “Coleslaw.”

Winey-and-Cheesy Corporation, the
largest international wine and cheese
distributor, has just blitzkrieg bopped
the mainstream media over the head
with a tactical PR campaign — a free
case of wine and sizable wheel of
Gouda for the five millionth visitor to
their website.

The only problem is that Winey-and-
Cheesy’s massively trafficked website...
has been owned.

Coleslaw is something of a wunder-
kind, and has, through feats of social
engineering and technical prowess

paralleled only by terrible movies from
the mid 90s, gained the ability to insert
some arbitrary, special-sauce HTML
and JavaScript into that promotional
page.

Coleslaw intends to perform a “zero-
day attack” — this means that there’s
a bug in the browser that Coleslaw
knows about, but that the browser ven-
dors are unaware of. Coleslaw thinks
that this bug can be used to take over
the machines of some unsuspecting
users who visit the promotional page,
capitalizing on their maniacal love of
fine dining.

The Attacker’s Dilemma
So, to recap, Coleslaw has found a
bug in the browser. Coleslaw wants
to exploit that bug in order to obtain
arbitrary code execution — the ability to
run whatever code Coleslaw feels like
on the machine that’s running the vul-
nerable browser. The question is, how

  25

does Coleslaw get from point A, “I see
that there’s a bug,” to point B, “I can
run anything I want on the vulnerable
machine”? The process of figuring this
out is called exploit development.

The exploit development process is a
narrative about control. Coleslaw starts
off by having control over a small set
of things — the JavaScript and HTML
on a page that the browser visits — but
wants to end up controlling everything
that the user controls on the vulnerable
machine. The environment that inter-
net sites have access to is supposed
to be sandboxed; i.e. internet sites are
expected to have a somewhat limited
and carefully selected set of things it
can control. For example, websites
that you happen to stumble across
shouldn’t be able to delete files off of
your hard drive.

Strongly-related to this narrative
about control is the concept of deter-
minism. If Coleslaw has a concrete
understanding that performing some
action, like calling alert from JavaS-
cript, always results in some conse-
quence, like creating and displaying
an alert window in the browser, then
Coleslaw has effectively extended the
realm of control from JavaScript to
triggering-the-code-in-the browser-
that-displays-an-alert-dialog. Barring
bugs, the realm of control is always
confined to the sandbox — the set
of possible actions are those that the
browser vendor permits an untrusted
website to take.

Not All Bugs Are Created Equal
There are lots of different kinds of
bugs that browser software can have.
There’s a relatively tiny set of bugs that
permit control flow hijacking, which are
generally of interest for gaining arbi-
trary code execution. Successful hijack-
ing implies that you have the ability
to control the address of the instruc-
tion being executed, which is com-
monly referred to as pseudo-register
%eip (where ip is short for instruction
pointer). With full control of %eip, the
attacker can point it at any executable
code — possibly at executable code
that they’ve created.

Control flow hijacking is typically
accomplished through some kind of
memory corruption, stemming from
errors in the use of type-unsafe pro-
gramming constructs in the browser. In
general, the bugs of interest for control
flow hijacking are:

■■ Memory writes that can be used to
clobber vtable pointer or function
pointer values. The attacker may
have control over the location of the
memory write, the value being writ-
ten, or both.

■■ Buffer overruns that can be used to
manipulate values that are ultimately
used to determine code to run. The
classic example of this is clobbering
return addresses present on the C
stack.

26  PROGRAMMING

There’s also the possibility of
using an attacker-controllable invalid
memory read bug to cause an invalid
write to happen further along in
program execution. Bugs that cause
segfaults are carefully evaluated by
browser security teams to see if the
invalid memory access being performed
can be manipulated for use in control
flow hijacking.

Platform-level Mitigations: DEP, ASLR,
and Canaries
There are some nifty platform-level
protections against traditional con-
trol flow hijacking techniques. They
make both taking control of %eip and
executing an attacker-controlled code
sequence more difficult.

One control-flow hijacking miti-
gation is stack smashing protection,
which is enabled at compile time using
a technique referred to as “canary
values.” An attacker could historically
use stack buffer overruns to clobber
the return address in a function frame
with a target %eip value, and the ret
instruction at the end of the func-
tion’s machine code would return to
that new (attacker-controlled) address
value. With this mitigation enabled,
however, the compiler places a spe-
cial value on the stack between local
variables (where the buffer lives) and
the return value. The compiler also
augments the function body with pre-
return function prologue code that
checks the canary value on the stack

against its original value. If a stack
buffer overrun causes the return value
to be overwritten, the canary that lives
in the contiguous space between the
locals and return value should indicate
that things have gone horribly wrong.

Generally, we tend to think of
executables as containing all their
executable code as static machine-
code. Other than the code that the
compiler spat out as specific sections
of the executable, nothing else should
run over the course of the program’s
execution. This expectation is codified
in an OS-level mitigation called Data
Execution Prevention (DEP).

The goal of DEP is to prevent things
which are not code from being exe-
cuted as code at runtime. Your program
stack, for example, is just a bunch of
space for data that your C function
frames can’t keep in registers. There’s
basically no reason that a sane program
would ever want to start executing the
stack area of memory like it were code.
If something like that were to happen,
it would be better if your program just
terminated, because it could be the
pivotal point before an attacker like
Coleslaw takes control. Program ter-
mination means loss of control for the
attacker.

Trying to execute code that was
not in the original binary will gen-
erally cause the program to fault.
In a JIT, however, we purposefully
create code at runtime, violating the

  27

all-the-code-is-in-the-binary assump-
tion. As a result, we have to explicitly
mark the machine code that we create
as executable by calling to an operating
system API function, like VirtualProtect
or mprotect, to indicate that the data the
process has created should really be
executable.

DEP’s close friend from acronym
club is Address Space Layout Ran-
domization (ASLR). ASLR reduces
determinism in the process that the
attacker is trying to exploit by random-
izing the stack address, library loading
address, heap address, and PEB address,
amongst other key program compo-
nents. With this mitigation, hardcoded
constant addresses in attacker-crafted
code become probabilistically unlikely
to succeed at hitting their target. As an
example, the start of the program stack
could wind up being placed at one of
16,000 locations!

This also means that the address of
system DLLs, like the ones contain-
ing OS API functions like VirtualPro-
tect and C library functions like system,
are probabilistically unknown to the
attacker. Since the browser ships linked
with all ASLR-enabled DLLs, it’s dif-
ficult to use linked DLL code as direct
footholds in process space.

Coleslaw wants to run an attacker-
controlled code payload, but DEP
makes it difficult to execute that
payload, since it won’t be marked as
executable by default.

Coleslaw wants to be able to turn the
bug that relinquishes control of %eip
into a reliable exploit, but ASLR makes
it difficult to know where to point %eip
in order to run exploit code.

I imagine that turning a crash into an
exploit isn’t trivial these days.

Staged Shellcode Payloads
The machine-code payloads that
attackers create are referred to as shell-
code. Shellcode is generally character-
ized by its size and its goal, which is
usually reflected by the “stage” it’s said
to be running. For example, the very
first shellcode to run, in computer sci-
ence style, is referred to as “stage 0.”

Intermediate stages of shellcode are
often used to bootstrap more com-
plex executable code sequences. The
complexity involved in turning a bug
into an exploit often prevents arbi-
trarily complex code sequences from
executing immediately, so tinier code
sequences are written that just delegate
responsibility to a more easily formed
executable payload. Constraints that
apply to the code that the exploit starts
running directly tend to disappear after
you’ve gone through some amount of
indirection.

Shellcode can easily embed astound-
ingly small code sequences called “egg
hunters” to find the memory address
of other attacker-controlled payloads.
The egg hunters are designed to avoid
faulting the application, because faults
cause the attacker to lose control.

28  PROGRAMMING

They work by performing a series
of fast-and-minimally-sized system
calls to determine whether a vir-
tual memory page is safe to traverse
through and read to find the “egg”
payload delimiter.

Once the address of a stage 1 data
payload is determined, stage 0 shell-
code may attempt to make that seg-
ment of memory executable. Despite
ASLR, the address of the VirtualProtect
function can be derived by hopping
from the known TEB address to the
PEB address to the DLL loader address
mapping table. Once executable per-
missions have been added to the stage
1 shellcode, it can simply be jumped to.

Another alternative, if the stage 0
shellcode is executing out of a code
space with both writable and execut-
able permissions and sufficient avail-
able space, is to use what’s called a
“GetPC” shellcode sequence to deter-
mine the current value of %eip and then
copy the contents of a stage 1 shellcode
payload buffer into the current code
space.

For some bugs it may be possible to
create “common” stage 0 shellcode to
bootstrap any other shellcode payload.
This common shellcode is
a valuable commodity for
exploit toolkits.

JIT Spray, Deconstructed
As mentioned earlier, the JIT
has to mark its own assem-
bly buffers as executable. An

attacker may look at using that fact to
generate executable stage 0 shellcode
in order to bypass some of the pain
inflicted by DEP. But how could you
possibly use JIT compilation process to
make shellcode?

JIT spraying is the process of coercing
the JIT engine to write many execut-
able pages with embedded shellcode.
— Blazakis, 2010

Dion Blazakis wrote the seminal
paper on JIT spray, in which he pre-
sented a jaw-dropping example. Blaza-
kis noticed that the following Action-
Script code:

Was JIT-compiled into the following
instruction sequence:

var y = (
 0x3c54d0d9 ^
 0x3c909058 ^
 0x3c59f46a ^
 0x3c90c801 ^
 0x3c9030d9 ^
 0x3c53535b ^
 ...
)

addr op imm assembly
0 B8 D9D0543C MOV EAX,3C54D0D9
5 35 5890903C XOR EAX,3C909058
10 35 6AF4593C XOR EAX,3C59F46A
15 35 01C8903C XOR EAX,3C90C801
20 35 D930903C XOR EAX,3C9030D9
25 35 5B53533C XOR EAX,3C53535B

  29

Check out the first line. It’s showing
that the first instruction is a MOV that
places the 32-bit immediate payload
into the EAX register. The 32-bit imme-
diate payload from that instruction
(3C54D0D9) is exactly the immediate
that was used as the left-hand-side to
the long XOR sequence in the original
ActionScript code.

Now, if we look at the subsequent
lines, we see that the addr column,
which is showing the address of
instructions relative to the start of the
sequence, goes up by 5 every time.
That’s because each instruction after
the initial MOV is performing an XOR
against the original value in the accu-
mulator register, EAX, exactly as the
ActionScript program described.

Each of these instructions is exactly
5 bytes long — each instruction
has a 1-byte opcode prefix, given
under the op column, followed by
a 32-bit immediate constant: the
opcode for MOV EAX,[imm32] is 0xB8,
and the opcode sequence for XOR
EAX,[imm32] is 0x35.

The immediate column may
look confusing at a glance, but
it’s actually just the little-endian
equivalent of the 32-bit immediate
given in the assembly: the “little end”
(least significant byte) goes “in” (at the
lowest memory address), which is why
the byte order looks flipped around
from the one given in the assem-
bly (and in the original ActionScript
program).

It may not look so sinister, but the above
table is actually deceiving you!

In the table, all of the instructions
are the same number of bytes (5)
in length. On x86 CPUs, however,
instructions are actually a variable
number of bytes in length: instructions
can be as small as a single byte, but
can get quite long: the nop instruction
is just a 0x90 opcode byte with no
operands, whereas the movl $0xdeadbeef,
0x12345678(%ebx,%edx,1) instruction is
significantly larger.

As a result, when we look at this
instruction sequence “crooked” (with a
1-byte skew to the address), we decode
a totally different sequence of instruc-
tions. I’ll show you what I mean.

Our instructions in memory look like
the following buffer:

static const char buf[] = {
 0xB8, 0xD9, 0xD0, 0x54, 0x3C,
 0x35, 0x58, 0x90, 0x90, 0x3C,
 0x35, 0x6A, 0xF4, 0x59, 0x3C,
 0x35, 0x01, 0xC8, 0x90, 0x3C,
 0x35, 0xD9, 0x30, 0x90, 0x3C,
 0x35, 0x5B, 0x53, 0x53, 0x3C
};

30  PROGRAMMING

When we load this up in GDB, and
run the disassemble command, we
confirm the instructions present in the
above table:

But then, if we look at the buffer
with a 1-byte offset, we see a totally
different set of instructions! Note the
use of buf+1 as the disassembly target:

(gdb) disassemble/r buf
Dump of assembler code for function buf:
 0x08048460 <+0>: b8 d9 d0 54 3c mov eax,0x3c54d0d9
 0x08048465 <+5>: 35 58 90 90 3c xor eax,0x3c909058
 0x0804846a <+10>: 35 6a f4 59 3c xor eax,0x3c59f46a
 0x0804846f <+15>: 35 01 c8 90 3c xor eax,0x3c90c801
 0x08048474 <+20>: 35 d9 30 90 3c xor eax,0x3c9030d9
 0x08048479 <+25>: 35 5b 53 53 3c xor eax,0x3c53535b

(gdb) disassemble/r (buf+1), (buf+sizeof(buf))
Dump of assembler code from 0x8048461 to 0x804847e:
 0x08048461 <buf+1>: d9 d0 fnop
 0x08048463 <buf+3>: 54 push esp
 0x08048464 <buf+4>: 3c 35 cmp al,0x35
 0x08048466 <buf+6>: 58 pop eax
 0x08048467 <buf+7>: 90 nop
 0x08048468 <buf+8>: 90 nop
 0x08048469 <buf+9>: 3c 35 cmp al,0x35
 0x0804846b <buf+11>: 6a f4 push 0xfffffff4
 0x0804846d <buf+13>: 59 pop ecx
 0x0804846e <buf+14>: 3c 35 cmp al,0x35
 0x08048470 <buf+16>: 01 c8 add eax,ecx
 0x08048472 <buf+18>: 90 nop
 0x08048473 <buf+19>: 3c 35 cmp al,0x35
 0x08048475 <buf+21>: d9 30 fnstenv [eax]
 0x08048477 <buf+23>: 90 nop
 0x08048478 <buf+24>: 3c 35 cmp al,0x35

  31

If you look down the middle part
of the two disassemblies, before the
assembly mnemonics, you can read
that the bytes are the same from left to
right: the first line of the first disassem-
blies goes b8 d9 d0 54 3c, and the second
disassembly starts on the second byte
of that same sequence with d9 d0 54 3c,
straddling multiple instructions. This is
the magic of variable length instruction
encoding: when you look at an instruc-
tion stream a little bit sideways, things
can change very drastically.

Yo Dawg, I Heard You Like X86
Assembly...
It’s not obvious, at first glance, just how
clever this technique is.

The goal of the ActionScript code
pattern is for the attacker to insert
arbitrary bytes into the code stream
that the JIT otherwise generates. The
attacker then uses these arbitrary bytes
as an alternate instruction stream.
However, the attacker has to compen-
sate for the non-attacker-controlled
bytes that surround its own.

Each 32-bit immediate encoded in
the ActionScript program starts with a
MSB of 0x3c. That byte is little-endian
encoded and placed, in memory, right
before each of the 0x35s that represent
the XOR EAX,[imm32] opcode.

Jumping to the 1-byte offset from
the base address of the instruction
stream starts us off executing 0xd9 0xd0,
a 2-byte instruction that runs a no-op
on the floating point unit. Both of
these bytes were part of the attacker’s
immediate value: 0x3c54d0d9.

Effectively, the attacker is able to
control 4 out of every 5 bytes per
instruction in the stream. They are
somewhat limited by the bytes fixed
in the instruction stream, however.
The MSB of each immediate is a 0x3c
so that it can successfully combine
with the 0x35 from the XOR EAX,[imm32]
opcode to create a nop-like instruc-
tion, cmp al,0x35, that keeps the stream
executing at the 1-byte offset.

It would be ideal for the attacker if
they could find a way to incorporate
the 0x35 into an instruction in a useful
way, instead of having to lose a byte in
order to control it; however, there are
lots of fun tricks that you can play to
make compact instruction sequences.
By making use of the stacky subset of
x86 you can get a nice little MISCy
program: pushes and pops are nice
1-byte instructions that you can split
across the semantic nops to simulate
moves, and pushing 8-bit signed imme-
diates only takes 2 bytes, as you can see
at buf+11. Dumping your floating point
coprocessor state out to the stack is a
2-byte sequence. Accessing the TEB is
a 3-byte sequence. How can you not
love x86?

32  PROGRAMMING

For this particular code sequence,
the attacker only has a 1 in 5 chance
of jumping to an %eip that gives control
back to the JIT program. If you land
anywhere in the constant-encoded por-
tion, the instruction sequence will be
entirely different.

Outstanding Issues
So now we know the basic requirements
for pulling off a JIT spray attack:

■■ Deterministic attacker control of
values embedded in the instruction
stream

■■ Control of %eip

■■ The ability to jump somewhere
inside the JIT code, in order to prob-
abilistically execute the attacker’s
interleaved instruction stream

But wait, how do you know where to
jump?

JIT spray opens up the possibil-
ity for an attacker to create a lot of
very similar code via the JIT compiler,
possibly with nop sled prefixes. As a
result, one approach to bypassing both
DEP and ASLR is to fill enough of
the address space with JIT code that
you can jump to a random location
and hit an attacker-controlled portion
valid JIT code buffer with reasonable
probability.

But this leads to further questions:
what address does the attacker pick
to jump to? How much code memory
does the attacker spray? Creating a reli-
able exploit seems significantly more
difficult.

Blazakis’ Solution
In order to create a reliable exploit
(as opposed to a probabilistic one),
Blazakis used the techniques of pointer
inferencing and heap feng shui.

The sandbox makes it particularly
tricky to figure out where things live in
memory. Those kinds of details defi-
nitely aren’t supposed to be exposed
through the sandbox. If the attacker
were able to figure out the locations of
things in memory space through the
sandbox, it would be considered an
information leak.

Pointer inferencing is the technique
that Blazakis used to accurately deter-
mine the memory location of heapified
ActionScript entities in the Flash VM.
The inferencing described in Blaza-
kis’ paper is cleverly based on the fact
that literal integer values in the Flash
virtual machines are hashed alongside
of heap-object pointers. By observing
the default dictionary enumeration
order — the order in which keys exist
in the hash table — Blazakis was able
to narrow down the value of the object
pointer to its exact location.

  33

“Heap feng shui” is the process of
understanding the memory allocation
behaviors of the sandboxed environ-
ment that code is running in, and using
that knowledge to place objects in
some known locations in memory rela-
tive to each other. Blazakis noted that
the ActionScript object heap expands
in 16MiB increments and took into
account the heuristics for executable
allocations when loading ActionScript
bytecode entities. Blazakis also relied
on the usage of VirtualAlloc in the
ActionScript memory allocator, with
the knowledge that VirtualAlloc maps
the first 64KiB aligned hole that’s
found in a linear scan through the vir-
tual address space.

Blazakis was able to combine these
techniques into reliable stage 0 shell-
code execution by:

1.	Determining the exact pointer of
the first object within a 16MiB heap
chunk.

2.	Spraying just enough JIT code to
place a JIT code allocation right after
that 16MiB chunk.

3.	Determining the JIT spray address to
be the object address + 16MiB.

4.	Adding a value like 0x101 to the
base address to get an unaligned JIT
code location, as described in the JIT
spray section above.

5.	Jumping to that resulting address.

Back to the Story: the Law of Large
Numbers
So, Coleslaw intends to use a multi-
step process:

1.	Find bug that permits control flow
hijacking

2.	Perform JIT spray

3.	Jump to probabilistic address for
stage 0 shellcode

Importance of leaked information
about the memory map becomes appar-
ent here: it prevents you from doing
a JIT-spray and jump-spray. However,
given enough visitors, like the 5 mil-
lion to Winey-and-Cheesy’s giveaway,
we have to start calculating expected
values. As mitigations are added to
lower the probability of success, we can
see the expected value of ownage drop as
well. n

Chris Leary is a Mozilla JavaScript engine
hacker working on JIT spray mitigations for
an upcoming version of Firefox.

Reprinted with permission of the original author.
First appeared in hn.my/jit (cdleary.com)

http://hn.my/jit

34  PROGRAMMING

By Ferry Boender

Evolutionary Algorithm

My interest in Evolutionary
Algorithms started when
I read On the Origin of

Circuits over at DamnInteresting.com.
I always wanted to try something like
that out for myself, but never really
found the time. Now I have, and I think
I’ve found some interesting results.

Disclaimer: I know next to nothing
about Evolutionary Algorithms. Every-
thing you read in here is the product
of my own imagination and tests. I may
use the wrong algorithms, nomencla-
ture, and methodology, and I might just
be getting very bad results. They are,
however, interesting to me, and I do
know something about evolution, so
here it is anyway.

How Evolution Works
So, how does an Evolutionary Algo-
rithm work? Why, the same as normal
biological evolution, mostly! Very
(very) simply said, organisms consist of
DNA, which determines their charac-
teristics. When organisms reproduce,
there is a chance their offspring’s DNA
contains a mutation, which can lead
to differences in characteristics. Suf-
ficiently negative changes in offspring
make that offspring less fit to survive,
causing it, and the mutation, to die out
eventually. Positive changes are passed
on to future offspring. So through evo-
lution, a set of DNA naturally tends to
grow towards its “goal,” which is ulti-
mate fitness for its environment. Now
this is not an entirely correct descrip-
tion, but for our purposes it is good
enough.

Evolving “Hello, World!”

  35

A Simple Evolutionary Algorithm
There is nothing stopping us from
using the same technique to evolve
things towards goals set by a program-
mer. As can be seen from the Antenna
example in the DamnInteresting arti-
cle, this can sometimes even produce
better things than engineers can come
up with. For example, I’m going to
evolve the string “Hello, World!” from
random garbage. The first example
won’t be very interesting, but it dem-
onstrates the concept rather well.

First, let’s define our starting point
and end goal:

Our evolutionary algorithm will start
with “jiKnp4bqpmAbp”, which we
can view as the DNA of our “organ-
ism.” It will then randomly mutate
some of the DNA, and judge the new
mutated string’s fitness. But how do we
determine fitness? This is probably the
most difficult part of any evolutionary
algorithm.

Lucky for us, there’s an easy way to
do this with strings. All we have to do
is take the value of each character in
the mutated string, and see how much
it differs from the same character in
the target string. This is called the
distance between two characters. We
then add all those differences, which

leads us to a single value which is the
fitness of that string. A fitness of 0 is
perfect, and means that both strings are
exactly the same. A fitness of 1 means
one of the characters is off by one. For
instance, the strings “Hfllo” and “Hdllo”
both have a fitness of one. The higher
the fitness number, the less fit it actu-
ally is!

Here’s the fitness function.

If you look closely, you’ll notice that
for each character, I square the differ-
ence. This is to convert any negative
numbers to positive ones, and to put
extra emphasis on larger differences.
If we don’t do this, the string “Hannp”
would have a fitness of 0. You see, the
difference between “e” and “a” is -5,
between “l” and “n” is +2 (which we
have twice) and between “o” and “p”
is +1. Adding these up yields a fitness
of 0, but it's not the string we want at
all. If we square the differences, they
become 25, 4, 4 and 1, which yields
a fitness of 34. Effectively, we square
each difference so that they can’t
cancel each other out.

def fitness(source, target):
 fitval = 0
 for i in range(0, len(source)):
 fitval += (ord(target[i]) -
ord(source[i])) ** 2
 return(fitval)source = "jiKnp4bqpmAbp"

target = "Hello, World!"

36  PROGRAMMING

Now we need to introduce mutations
into our string. This is rather easy. We
simply pick a random character in the
string, and either increment or decrease
it by one, or leave it alone:

Time to tie the whole shebang
together!

This should be easy enough to under-
stand. For each iteration of the While-
loop, we mutate the string and then
calculate its fitness. If it is fitter then

the original string (the parent), we
make the child the new string. Other-
wise, we throw it away. If the fitness is
0, we’re done!

Let’s look at some output. I’m snip-
ping out some intermediary output
because it’s not terribly interesting.

At generation 1, we have a fitness
of 15491, and the string looks noth-
ing like “Hello, World!” The same for
generation 20, 40, 60, etc.

Not much progress so far. At genera-
tion 500 it’s still a load of nonsense:

Generation 1200: we start to see some-
thing that looks like “Hello, World!”:

def mutate(source):
 charpos = random.randint(0, len(source) - 1)
 parts = list(source)
 parts[charpos] = chr(ord(parts[charpos])
+ random.randint(-1,1))
 return(''.join(parts))

fitval = fitness(source, target)
i = 0
while True:
 i += 1
 m = mutate(source)
 fitval_m = fitness(m,
target)
 if fitval_m < fitval:
 fitval = fitval_m
 source = m
 print "%5i %5i %14s" %
(i, fitval_m, m)
 if fitval == 0:
 break

 1 15491 jjKnp4bqpmAbp
20 15400 jiKnp3bppoAbp
40 15377 jiKlo2bpooAdp
60 15130 iiKlo2aoooAdp

500 9986 \eTlo,YaorNdf

1200 4186 Heglo,LWorhdP

  37

GENSIZE = 20
genepool = []
for i in range(0, GENSIZE):
 dna = [random.choice
(string.printable[:-5]) for j
in range(0, len(target))]
 fitness = calc_fitness(dna,
target)
 candidate = {'dna': dna,
'fitness': fitness }
 genepool.append(candidate)

Generation 1500: we’re getting very

close!
It still takes a good 1500 generations

more before we’re finally there:
 There it is!

A Better, More Interesting,
Algorithm
Okay, so that worked. But...it was kind
of lame. Nothing interesting to see,
really, was there? That’s because our
algorithm was a little too simplistic.
Only one “organism” in the gene pool,
only one character mutated at any
time. We can do better than that, so
let’s modify the program to make it
more interesting.

We’re not going to touch our fitness
function, since that works rather well.
Instead, let’s introduce a gene pool.
Instead of having only one string, why
not have a whole bunch of randomly
generated strings and let them duke it
out among themselves. That sounds a
bit more real-life, doesn’t it?

This little snippet generates a gene
pool with 20 random strings and their
fitnesses. In an official implementa-
tion, the gene pool would be called the
population.

Now, let’s modify our mutation
function. Instead of mutating one
single character, we feed it two parents,
picked at random from the genepool,
and it will mix their DNA together a
bit. This is called “crossover”. It will
also randomly mutate one character in
the resulting DNA. It then returns the
newly fabricated child, including its
fitness.

1500 3370 Hello,GWorldL

3078 2 Hello, Vorld"
3079 2 Hfllo, World"
3080 2 Hfllo, World"
3081 0 Hello, World!

38  PROGRAMMING

We also need a routine to pick two
random parents from the genepool.
Now, we could just pick them com-
pletely random, but what you really
want is for parents with a good fitness
to have a better chance of offspring.
This is called “elitism.” If we sort the
genepool list by fitness, we can use a
uniform product distribution to make
sure that parents with better fitness get
chosen more often.

Now you might ask, what the hell
is a uniform product distribution?
When you randomly pick a number
between, say, 1 and 10, each number
has the same chance of being picked.
This is called a “uniform distribution.”
But when you pick two random num-
bers, and you multiply them, there’s a

much bigger chance of getting a bigger
number than a smaller number. Hence
the name “uniform product distribu-
tion.” Here’s how that looks:

 So our random parent picker will do
just that. We select two random real
numbers between 0 and 1, multiple
those two random numbers and then
scale the result up to our pool size by

def mutate(parent1, parent2):
 child_dna = parent1['dna'][:]

 # Mix both DNAs
 start = random.randint(0, len(parent2['dna']) - 1)
 stop = random.randint(0, len(parent2['dna']) - 1)
 if start > stop:
 stop, start = start, stop
 child_dna[start:stop] = parent2['dna'][start:stop]

 # Mutate one position
 charpos = random.randint(0, len(child_dna) - 1)
 child_dna[charpos] = chr(ord(child_dna[charpos]) +
random.randint(-1,1))
 child_fitness = calc_fitness(child_dna, target)
 return({'dna': child_dna, 'fitness': child_fitness})

  39

multiplying the result with the size of
the pool. We return that parent from
the pool.

There! Now it’s time for our main
loop.

For each iteration of the While True
loop, we first sort the genepool by fit-
ness so that the most fit parents are at
the top. We check to see if the fittest
happens to be the target string we’re
looking for. If so, we stop the loop.

Then we select two parents from the
genepool using the uniform product

distribution so that fitter
parents are chosen more
often. We create a bastard
mutated child that will
mix both parents’ DNA
together and introduce a
little mutation. If the new
child is more fit than the
worst in the genepool, it
will replace that degener-
ate one in the genepool. In
the next iteration, the pool
is sorted again on fitness so
that the new child takes its
rightful place.

Results
Now it’s time to run this puppy and
see what it does. Again, I snip out some
of the less interesting stuff.

def random_parent(genepool):
 wRndNr = random.random() * random.random() * (GENSIZE - 1)
 wRndNr = int(wRndNr)
 return(genepool[wRndNr])

while True:
 genepool.sort(key=lambda candidate:
candidate['fitness'])

 if genepool[0]['fitness'] == 0:
 # Target reached
 break

 parent1 = random_parent(genepool)
 parent2 = random_parent(genepool)

 child = mutate(parent1, parent2)
 if child['fitness'] < genepool[-1]
['fitness']:
 genepool[-1] = child

40  PROGRAMMING

Here’s the genepool in the beginning.
The first number is the generation (the
number of times the While-loop has
run), the second number is the fitness,
and the third column is the DNA for
that entry in the genepool.

One big random jumbled mess. Note
the ones I’ve emphasized. These are
the parents that were selected for the
new child in the next generation. Let’s
see how it looks after one generation:

Two random parents from the previ-
ous generation have their DNA mixed,
and have generated an offspring (the
bold one) which is better then both of
them. It comes in second with a fit-
ness of 8742, while its parents only
had fitness of 9284 and 16588. Let’s
skip ahead a bit and look at the 6th
generation:

1 7617 'iSx{$,K`u~(B
1 9284 SQf`1N#UdrPlT
1 12837 sYIu<E"Fq'^_.
1 15531 DC8Dg1I$*mUs-
1 16064 L~*}JBVdF7bu2
1 16533 1,XU%)5$q[YuO
1 16588 ff],ceW<0fud&
1 17316 [V3@2'VgY\{KV
1 17356 kWw#v/P<#apG9
1 17581 <Lrh(1hN_Bd)3
1 18777 TM]_]TbtxFY:q
1 19656 $zS+EI?BS>%z(
1 19841 =S;B~((W8 D,6
1 20398 P_A$D|NPJPio/
1 21957 J&f=O:g\8'{S2
1 22543 5*T2c"pMZ80L'
1 24954 A&lZ#A_}MxI"P
1 25186 &9MrI|0&x)q,N
1 28110 OlXT/Q{y3{"LR
1 29656 8WB99hx%0]}h[

2 7617 'iSx{$,K`u~(B
2 8742 SQf`1N#UdfumT
2 9284 SQf`1N#UdrPlT
2 12837 sYIu<E"Fq'^_.
2 15531 DC8Dg1I$*mUs-
2 16064 L~*}JBVdF7bu2
2 16533 1,XU%)5$q[YuO
2 16588 ff],ceW<0fud&
2 17316 [V3@2'VgY\{KV
2 17356 kWw#v/P>#apG9
2 17581 <Lrh(1hN_Bd)3
2 18777 TM]_]TbtxFY:q
2 19656 $zS+EI?BS>%z(
2 19841 =S;B~((W8 D,6
2 20398 P_A$D|NPJPio/
2 21957 J&f=O:g\8'{S2
2 22543 5*T2c"pMZ80L'
2 24954 A&lZ#A_}MxI"P
2 25186 &9MrI|0&x)q,N
2 28110 OlXT/Q{y3{"LR

  41

As you can see, the “SQf” has repro-
duced again with success, and there are
now four variants of it in the genepool.
We also note the “kWw#”, of which
there are two identical ones. This can
happen when the entire DNA of one
parent is copied and no mutation
occurs. In our mutate function, we use
the first parent’s DNA as a base and
then randomly overlay some of the sec-
onds parent’s DNA. This can be any-
thing from the entire second parent’s
DNA, or nothing at all. But generally,
the chance is higher that the first par-
ent’s DNA survives largely in tact.

The next interesting generation is 13:

Wow! “SQf” has been really busy
and now almost rules the genepool.
“iSx” is second and third, but has lost
its number one position to the “RQf”
variant of “SQf.” “RQf” was introduced
in the 12th generation as a child of an
“iSx” and “SQf” variant. We see that
“kWv” has been knocked almost to the
end of the list by more fit candidates.
It is very obvious that this pool is no
longer random. Patterns are starting to
emerge all over it.

6 7617 'iSx{$,K`u~(B
6 8742 SQf`1N#UdfumT
6 9284 SQf`1N#UdrPlT
6 10198 SQfD1N#UdfumT
6 12837 sYIu<E"Fq'^_.
6 15531 DC8Dg1I$*mUs-
6 16064 L~*}JBVdF7bu2
6 16387 SQf`1N"MZ80LT
6 16533 1,XU%)5$q[YuO
6 16588 ff],ceW<0fud&
6 17316 [V3@2'VgY\{KV
6 17356 kWw#v/P>#apG9
6 17356 kWw#v/P>#apG9
6 17581 <Lrh(1hN_Bd)3
6 18777 TM]_]TbtxFY:q
6 19656 $zS+EI?BS>%z(
6 19841 =S;B~((W8 D,6
6 20287 fe],1eW<0fud&
6 20398 P_A$D|NPJPio/
6 21957 J&f=O:g\8'{S2

13 4204 RQf`{$,KdfumT
13 7617 'iSx{$,K`u~(B
13 7617 'iSx{$,K`u~(B
13 8742 SQf`1N#UdfumT
13 8742 SQf`1N#UdfumT
13 9284 SQf`1N#UdrPlT
13 9284 SQf`1N#UdrPlT
13 10198 SQfD1N#UdfumT
13 12837 sYIu<E"Fq'^_.
13 15531 DC8Dg1I$*mUs-
13 15838 L~*xJBVdG7bu2
13 15856 $zS+<E"Fq(^_(
13 15883 L~*xJCVdG7bu2
13 16064 L~*}JBVdF7bu2
13 16387 SQf`1N"MZ80LT
13 16533 1,XU%)5$q[YuO
13 16588 ff],ceW<0fud&
13 17316 [V3@2'VgY\{KV
13 17356 kWw#v/P>#apG9
13 17356 kWw#v/P>#apG9

42  PROGRAMMING

By the time we reach generation 40:

The genepool is now almost entirely
dominated by the “RQf” variants.
Forms of its original parents “SQf” and
“iSx” can still be found here and there,
although “iSx” is almost entirely gone
from the pool. An interesting thing is
that we can see combinations of letters
(bold) that keep reappearing. These are
almost like actual genes! Combinations
of DNA that work well together and
therefore stay in the genepool in that
combination. It takes lots of genera-
tions to make variants of these genes
that are more fit then previous versions.

The next milestone is found in the
67th generation:

This marks the first generation where
there are no other variations than the
RQS one. But immediately, we see
the next generation in which a new
number one is found:

By the 96th generation, QQS has
taken over the top:

40 3306 RQSw{$-KcfumB
40 4204 RQf`{$,KdfumT
40 4229 RQf`|$,KdfumT
40 4242 RQe`|$,KdfumT
40 4795 RQSw{$-KdfumT
40 4971 RQSwz$*K`uSnT
40 4973 RQSwz$+K`uSmT
40 4992 RQSwz$+K`uSnT
40 5017 SQSxz$+K`uSmT
40 5017 SQSxz$+K`uSmT
40 5951 (QSxz$+KdfSmT
40 5985 'QSxz$+K`uSmT
40 6421 SQfx{$+K`u~(B
40 6444 TQf`{$+K`u~(B
40 6489 SQfx{$+KdfS(B
40 6492 TQf`{$-K`u~(B
40 7034 SQSxy$+KdfS(B
40 7617 'iSx{$,K`u~(B
40 7617 'iSx{$,K`u~(B
40 7625 'iS`{$,Kdg~(B

67 3138 RQSw{$+KdfukA
67 3161 RQSw{$+KcfukA
67 3176 RQSw{$,KdfulA
67 3176 RQSw{$+KcfulA
67 3218 RQSw{$-LcfumA
67 3222 RQSw{%,KefumB
67 3237 RQSw{$-LcfvmA
67 3241 RQSw{$-KcfumA
67 3241 RQSw{$-KcfumA
67 3266 RQSw{$-KceumA
67 3266 RQSw{$-KceumA
67 3267 RRSw{$-KcfumB
67 3289 RQSw{%,KefumC
67 3306 RQSw{$-KcfumB
67 3306 RQSw{$-KcfumB
67 3323 RQSw{#-KcfumB
67 3324 RPSw{$-KdfumB
67 3331 RQSw{$-KbfumB
67 3348 RQSw{#-KbfumB
67 3489 RQSw{$+KdfumA

68 3119 QQSw{$+KdfukA
68 3138 RQSw{$+KdfukA
68 3161 RQSw{$+KcfukA

  43

This is where the race gets boring.
Every now and then a new, better,
mutation will arise and take over the
genepool. Change is slow, though, and
no big surprises are left. The candidates
slowly but surely mutate until they
reach something resembling the “Hello,
World!” we are looking for in genera-
tion 1600:

It takes almost another half-thousand
generation to get to the final target:

Interesting facts:
■■ It usually takes anywhere between
2500 and 4000 generations to evolve
the target.

■■ On average, it takes approximately
3100 generations to evolve the
target.

■■ If we remove the parent DNA
mixing and rely solely on mutations,
it takes on average 3650 generations
to evolve the target.

■■ The parent DNA mixing is only really
useful in the beginning. In the first
generations, it can quickly propel a
new mix of DNA to the top of the
list, but later on random mutations
instead of mixing DNA becomes the
main driving force between the evo-
lutions. (This doesn’t have to be the
case in real life evolution, naturally.) n

Ferry Boender is a Software Engineer and
hacker with over 20 years of programming
experience. He holds a Bachelor’s degree in
Computer Science.

96 3060 QQSw{%+KdhukA
96 3065 QRSw{%+KdfukA
96 3081 QQSw{%+KdgukA
96 3081 QQSw{%+KdgukA
96 3081 QQSw{%+KdgukA
96 3096 QQSw{$+KdgukA
96 3104 QQSw{%+KdfukA
96 3119 QQSw{$+KdfukA
96 3119 QQSw{$+KdfukA
96 3119 QQSw{$+KdfukA
96 3137 RRSw{$,KdfulA
96 3137 RRSw{$,KdfulA
96 3138 RQSw{$+KdfukA
96 3138 RQSw{$+KdfukA
96 3138 RQSw{$+KdfukA
96 3138 RQSw{$+KdfukA
96 3138 RQSw{$+KdfukA
96 3142 QQSw{$,KdfukA
96 3142 QQSw{$+KcfukA
96 3144 QQSw|$+KdfukA

1600 19 Hdllo+ Worle%
1600 20 Hdklo+ Worle%
1600 20 Hdklo+ Worle%
1600 20 Hdklo+ Worle%
1600 20 Hdklo+ Worle%
1600 20 Hdklo+ Workd%

1904 0 Hello, World!
1904 1 Hello, World"
1904 1 Hello, World"
1904 2 Hello, Wprld"
1904 2 Helmo, World"

Reprinted with permission of the original author.
First appeared in hn.my/evolution (electricmonk.nl)

http://hn.my/evolution

44  PROGRAMMING

It may or may not surprise you
to know that the bash shell has
a very rich array of convenient
shortcuts that can make your

life, working with the command line,
a whole lot easier. This ability to edit
the command line using shortcuts is
provided by the GNU Readline library.
This library is used by many other *nix
applications besides bash, so learn-
ing some of these shortcuts will not
only allow you to zip around bash
commands with absurd ease, but also
make you more proficient in using a
variety of other *nix applications that

use Readline. I don’t want to get into
Readline too deeply so I’ll just mention
one more thing. By default Readline
uses emacs key bindings. Although it
can be configured to use the vi edit-
ing mode, I prefer to learn the default
behavior of most applications (I find
it makes my life easier not having to
constantly customize stuff). If you’re
familiar with emacs then many of these
shortcuts will not be new to you. These
are mostly for the rest of us.

By Alan Skorkin

Bash Shortcuts For
Maximum Productivity

  45

Command Editing Shortcuts

■■ Ctrl + a → go to the start of the
command line

■■ Ctrl + e → go to the end of the com-
mand line

■■ Ctrl + k → delete from cursor to the
end of the command line

■■ Ctrl + u → delete from cursor to the
start of the command line

■■ Ctrl + w → delete from cursor to
start of word (i.e., delete backwards
one word)

■■ Ctrl + y → paste word or text that
was cut using one of the deletion
shortcuts (such as the one above)
after the cursor

■■ Ctrl + xx → move between start of
command line and current cursor
position (and back again)

■■ Alt + b → move backward one word
(or go to start of word the cursor is
currently on)

■■ Alt + f → move forward one word
(or go to end of word the cursor is
currently on)

■■ Alt + d → delete to end of word
starting at cursor (whole word if
cursor is at the beginning of word)

■■ Alt + c → capitalize to end of word
starting at cursor (whole word if
cursor is at the beginning of word)

■■ Alt + u → make uppercase from
cursor to end of word

■■ Alt + l → make lowercase from
cursor to end of word

■■ Alt + t → swap current word with
previous

■■ Ctrl + f → move forward one character

■■ Ctrl + b → move backward one
character

■■ Ctrl + d → delete character under
the cursor

■■ Ctrl + h → delete character before
the cursor

■■ Ctrl + t → swap character under
cursor with the previous one

46  PROGRAMMING

Command Recall Shortcuts

■■ Ctrl + r → search the history
backwards

■■ Ctrl + g → escape from history
searching mode

■■ Ctrl + p → previous command in
history (i.e., walk back through the
command history)

■■ Ctrl + n → next command in history
(i.e., walk forward through the com-
mand history)

■■ Alt + . → use the last word of the
previous command
Command Control Shortcuts

■■ Ctrl + l → clear the screen

■■ Ctrl + s → stops the output to the
screen (for long-running verbose
command)

■■ Ctrl + q → allow output to the
screen (if previously stopped using
command above)

■■ Ctrl + c → terminate the command

■■ Ctrl + z → suspend/stop the
command

Bash Bang (!) Commands
Bash also has some handy features that
use the ! (bang) to allow you to do
some funky stuff with bash commands.

■■ !! → run last command

■■ !blah → run the most recent com-
mand that starts with “blah” (e.g.,
!ls)

■■ !blah:p → print out the command
that !blah would run (also adds it
as the latest command in the com-
mand history)

■■ !$ → the last word of the previous
command (same as Alt + .)

■■ !$:p → print out the word that !$
would substitute

■■ !* → the previous command except
for the last word (e.g., if you type
‘find some_file.txt /‘, then !* would
give you ‘find some_file.txt‘)

■■ !*:p → print out what !* would
substitute

There is one more handy thing you
can do. This involves using the ^^
“command.” If you type a command
and run it, you can re-run the same
command but substitute a piece of text
for another piece of text using ^^. For
example:

  47

Here, the command was the ^-al^-
lash, which replaced the -al with -lash
in our previous ls command and re-ran
the command again.

There is a lot more that you can do
when it comes to using shortcuts with
bash. But, the shortcuts above will get
you 90% of the way towards maximum
bash productivity. n

Alan Skorkin is a developer and aspiring
software craftsman from Melbourne, Aus-
tralia. He is often found causing controversy
on his blog skorks.com, while sharing his
thoughts about hacking, the software devel-
opment profession and the people who
work in it.

Reprinted with permission of the original author. First appeared in hn.my/bash (skorks.com)

$ ls -al
total 12
drwxrwxrwx+ 3 Admin None 0 Jul 21 23:38 .
drwxrwxrwx+ 3 Admin None 0 Jul 21 23:34 ..
-rwxr-xr-x 1 Admin None 1150 Jul 21 23:34 .bash_profile
-rwxr-xr-x 1 Admin None 3116 Jul 21 23:34 .bashrc
drwxr-xr-x+ 4 Admin None 0 Jul 21 23:39 .gem
-rwxr-xr-x 1 Admin None 1461 Jul 21 23:34 .inputrc
$ ^-al^-lash
ls -lash
total 12K
 0 drwxrwxrwx+ 3 Admin None 0 Jul 21 23:38 .
 0 drwxrwxrwx+ 3 Admin None 0 Jul 21 23:34 ..
4.0K -rwxr-xr-x 1 Admin None 1.2K Jul 21 23:34
.bash_profile
4.0K -rwxr-xr-x 1 Admin None 3.1K Jul 21 23:34 .bashrc
 0 drwxr-xr-x+ 4 Admin None 0 Jul 21 23:39 .gem
4.0K -rwxr-xr-x 1 Admin None 1.5K Jul 21 23:34 .inputrc

http://hn.my/bash

48  SPECIAL

SPECIAL

By Michael Trick

Finding Love Optimally

Like many in operations research,
my research interests often creep
over into my everyday life. Since

I work on scheduling issues, I get particu-
larly concerned with everyday schedul-
ing, to the consternation of my friends
and family (“We should have left 6 min-
utes ago: transportation is now on the
critical path!”). This was particularly true
when I was a doctoral student when, by
academic design, I was living and breath-
ing operations research 24 hours a day.

I was a doctoral student from ages 22
to 27, and like many in that age group, I
was quite concerned with finding a part-
ner with whom to spend the rest of my
life. Having decided on certain param-
eters for such a partner (female, breath-
ing, etc.), I began to think about how I
should optimally find a wife. In one of
my classes, it hit me that the problem has
been studied: it is the Secretary Problem!

Heart Of The Storm, flickr.com/photos/jdhancock/4354438814

http://flickr.com/photos/jdhancock/4354438814

  49

I had a position to fill (secretary, wife,
what’s the difference?), a series of
applicants, and my goal was to pick the
best applicant for the position.

 Fortunately, there is quite a lit-
erature on the Secretary Problem,
and there are a number of surprising
results. The most surprising is that it
is possible to find the best secretary
with any reasonable probability at all.
The hard part is that each candidate is
considered one at a time, and an imme-
diate decision must be made to accept
or reject the candidate. You can’t go
back and say “You know, I think you
are the cat’s meow after all.” This
matched up with my empirical experi-
ence in dating. Further, at each step,
you only know if the current candidate
is the best of the ones you have seen:
candidates do not come either with
objective values or with certifications
of perfection, again matching empiri-
cal observations. You can only compare
them with what you have sampled.

Despite these handicaps, if you
know how many candidates there are,
there is a simple rule to maximize the
chance of finding the best mate: sample
the first K candidates without select-
ing any of them, and then take the first
subsequent candidate who is the best
of all you have seen. K depends on N,
the total number of candidates you will
see. As N gets big, K moves toward 1/e
times N, where e is 2.71….So sample
36.9% of the candidates, and then take
the first candidate who is the best you
have seen. This gives a 36.9% chance of
ending up with Ms. or Mrs. Right.

One problem here: I didn’t know
what N is. How many eligible women
will I meet? Fortunately, the next class
covered that topic. If you don’t know
what N is but know that you will be
doing this over a finite amount of
time T, then it is okay to replace this
with a time cutoff rule: simply take
the first candidate after 36.9% of the
time (technically, you use 36.9% of the
cumulative distribution, but I assumed
a uniform distribution of candidate
arrivals). Okay, I figured, people are
generally useless at 40 (so I thought
then: the 50-year-old-me would like
to argue with that assumption), and
start this matching process at about 18
(some seem to start earlier, but they
may be playing a different game), so,
taking 36.9% of the 22 year gap gives
an age of 26.11. That was my age! By a
great coincidence, operations research

50  SPECIAL

had taught me what to do at exactly
the time I needed to do that.

Redoubling my efforts, I proceeded
to sample the candidate pool (recog-
nizing the odds were against me: there
is still only a 36.9% chance of finding
Ms. Right) when lo and behold — I
met her: the woman who was better
than every previous candidate. I didn’t
know if she was Perfect (the assump-
tions of the model don’t allow me
to determine that), but there was no
doubt that she met the qualifications
for this step of the algorithm. So I
proposed.

And she turned me down.
And that is when I realized why it is

called the Secretary Problem, and not
the Fiancée Problem (though Merrill
Flood proposed the problem under
that name). Secretaries have applied
for a job and, presumably, will take the
job if offered. Potential mates, on the
other hand, are also trying to deter-
mine their best match through their
own Secretary Problem. In order for
Ms. Right to choose me, I had to be Mr.
Right to her! And then things get much
more complicated. What if I was meet-
ing women in their sampling phase? It
did seem that some people were very
enthusiastic about having long sam-
pling phases, and none of them would
be accepting me, no matter how good a
match they would be for me. And even
the cutoff of 36.9% looks wrong in this
case. In order to have a hope of match-
ing up at all in this “Dual Secretary

Problem,” it looked like I should have
had a much earlier cutoff, and in fact, it
seemed unlikely there was a good rule
at all!

I was chagrined that operations
research did not help me solve my
matching problem. I had made one of
the big mistakes of practical operations
research: I did not carefully examine
the assumptions of my model to deter-
mine applicability.

Downcast, I graduated with my
doctorate, resolving to marry myself to
integer programming. I embarked on a
postdoc to Germany.

There, I walked into a bar, fell in love
with a beautiful woman, moved in
with her 3 weeks later, invited her to
live in the United States “for a while,”
married her 6 years after that, and had
a beautiful son with her 6 years ago. I
am not sure what optimization model
led me down that path, but I think I
am very happy with the result. n

Michael Trick is a professor at Carnegie
Mellon, who really did meet his wife as a
postdoc in Germany. His research is in math-
ematical optimization, with an emphasis on
applications in voting and in sports.

Reprinted with permission of the original author.
First appeared in hn.my/love (mat.tepper.cmu.edu)

http://hn.my/love

Reprinted with permission of the original author.
First appeared in hn.my/love (mat.tepper.cmu.edu)

http://wpengine.com/?utm_source=hackermonthly&utm_medium=online&utm_campaign=fsquare
http://hn.my/love

52  SPECIAL

Things I Learned On
A Round-The-World

Yacht Race

Eleven years ago this
month, I stepped aboard
a 72-foot racing cutter
affectionately called

The Good Ship Logica and began a
10-month round the world yacht race,
the only one to go around the world
against the currents and prevailing
winds. Below deck, I was the geek,
making sure the satellite could broad-
cast despite 90ft waves blocking line of

sight; above deck I was the bowman,
standing at the pointy end and getting
the shit kicked out of me by walls of
water as our team struggled to take
down huge sails that the wind wanted
to keep up.

 Today I learned that someone mis-
handled a crane in Portsmouth during a
routine maneuver and dropped Logica,
effectively killing it. This was the boat
that I learned to trust to keep me safe

By Tony Haile

  53

through hurricanes, lightning strikes
and the worst the Southern Ocean had
to offer. It was the boat that I cursed
every time a rampant wave picked me
up and tossed me down the deck like a
rag doll, slamming me into rigging and
stanchions. It was the boat in whose
bowels I spent cold hours pumping
water into buckets after the electric
pump failed, the boat that taught me
how to sleep on a rollercoaster while a
generator roared next to my head, the
boat I loved, heart and soul. Now she’s
gone.

So today I’ve been thinking about the
lessons she taught me.

The Opposite of Fear Is Not
Bravery, It’s Initiative
When my first hurricane at sea hit, it
came out of nowhere. I was deliver-
ing a boat (the older, smaller sister
of Logica) across the Atlantic from
Plymouth to Boston. The boom swung
across the deck with such ferocity
that it ripped the pulley system that
controlled it out of the deck and flung
it out to sea; the third wave took the
heavily bolted down compass and
consigned that to the ocean. Our skip-
per was up on deck so fast it seemed
incredible that he had just been asleep
and, screaming above the waves, he
got us working to try to bring down
the mainsail and control the wayward
boom. Our boat was so far over on its

54  SPECIAL

side that the mast was dipping into the
ocean and water was starting to drag
the mainsail and the boat further down
into the lifeless grey. I don’t remember
being frightened, at least not in the
way I had always thought about fear;
traditional fear involves some predic-
tion of a future you would rather avoid.
At this point, I couldn’t begin to think
about a future at all. I just remember
feeling utterly drained of initiative. I
would do whatever anyone asked me
to do, but I was utterly unable to think
or to act for myself.

I brooded over that night for months
afterwards, dwelling on my own inade-
quate response when faced with a true
crisis. I knew I was due to set out on a
round-the-world yacht race the next
year and was terrified that I didn’t have
what it takes, that I would let down my
team when it mattered most.

In October 2000, my skipper came
below decks and asked us if we had
ever seen the Perfect Storm (it had
occurred on the Grand Banks near
our position at the time). “Yeah, three
storms converging on the Flemish Cap,”

  55

replied Adam, the bowman on the
other watch. “We’re in luck,” the skip-
per replied, “we’ve only got two storms
converging on us.” We watched the
scarlet dawn rising and remarked upon
the sailors motto “red sky at night,
sailor’s delight; red sky at morning,
we’re fucked.”

We had more warning this time, but
the hurricane still hit with a vengeance.
There’s something about the sea when
the wind gets above 70 knots of breeze
(80mph), it becomes gunmetal grey,
as if not even color could live in these

conditions. Our bow team struggled
up to the foredeck to take down the
headsails and put up our storm staysail.
Orange and bulletproof, we needed it
up if we were going to be able to steer
a course through this storm at all. This
was the moment I had thought about
for years, but for some reason I was not
the same man who had been so use-
less on that previous voyage. I was able
to think, to act on my own initiative
and help my team to survive. It was a
revelation and gave me hope that the
ability to lead in a crisis was not inbuilt

56  SPECIAL

from birth but could be learned, that
I could become better. The lesson I
took from this is that bravery is a term
applied retroactively, after the work has
been done and the danger has passed.
In a situation that engenders fear and
terror, don’t ask yourself to be brave;
simply ask yourself to act. The bravery
comes later.

Finding Fault is a Luxury Best Saved
for Tomorrow
My first day of training on the yacht,
and I’d already managed to break
something. A sail was tumbling down
and the boat was losing speed. The first
mate darted across the boat to find out

what had happened and I started in on
a long and rambling tale of the series of
unfortunate events which had, through
no fault of my own, caused the damage
we were looking at right now. I was
barely three sentences in, when the
mate interrupted me: “I don’t give a
crap whose fault it was, I just need to
know what to fix.”

 The words hit me like a sledgeham-
mer, my concern had been with my
perceived reputation and standing as a
competent crewman, his concern was
simply that the boat wasn’t working
right and yet it needed to be. Identify-
ing the incompetent culprit responsible
or working out the precise series of

  57

events leading us to here were luxuries
that could wait for another time. Right
now the boat needed to be fixed before
we lost too much speed and time. If I
was ever going to truly pull my weight
with the crew, I would have to learn to
be ok with people potentially thinking
the worst of me or ascribing failures
to me that were not directly my own
fault, what mattered was keeping the
boat moving. I find thinking of that day
instructive when facing a board meet-
ing. Finding fault or assigning blame is
an idle luxury — what matters is keep-
ing the company moving.

Do Your Thinking Before The Crisis
We were deep in the Southern Ocean,
one of the nastiest environments on
earth, and three of us were sitting on
the windward side of the deck (the
high side) with little to do but endure
the waves crashing over us and make
sure the helmsman didn’t get hurt.
Our skipper came up on deck to take
a look around and spotted a trail-
ing rope on the leeward side that he
wanted to tidy. He made his way down
to where the deck was skimming the
water and began to bring in the rope
when a rogue wave took him by sur-
prise and knocked him down the deck.
All three of us leaped forward to grab
him before he was washed overboard,
but two of us were stopped short by
our safety lines like a dog reaching the
limits of its leash.

Only Glyn, had the presence of
mind to first unhook his safety line get
across to the other side, reattach and
reach our skipper before it was too
late. While I and my team-mate had
been sitting there grumpily bearing the
waves and wishing we were elsewhere,
Glyn had been running through scenar-
ios in his head and working out poten-
tial plans of action should any of them
occur. He knew that there isn’t neces-
sarily time in a crisis to stop, assess the
best course of action and then enact it,
so you have to do your thinking before-
hand. Be constantly working through
“what if?” scenarios so that your brain
has the advantage when an accident
happens and you are not left flailing
helplessly at the end of a line watching
someone get washed away.

Leave It on the Last Wave
Our round the world yacht race
involved putting 18 people in a tin can,
plunging it in salt water, and shak-
ing it violently for 10 months. People
hallucinate through lack of sleep, the
unconscious tapping of teeth can pro-
voke a knife fight (which occurred on
another yacht in a previous race), and
one simply can’t avoid someone if you
have an argument. The only way for
your team to mentally survive in that
kind of environment is to embody the
motto of “leave it on the last wave.”
The argument you had during a sail
change? That happened on a wave way

58  SPECIAL

in the distance, leave it out there where
it belongs. The time you almost came
to blows with a team mate over some-
thing so minor you both can’t remem-
ber, leave it on the wave where it
started because the wind has changed
and there are new sails to be put up
and a new course to take. The lesson on
a boat is clear: you can either let go of
slights or negative emotions or you can
damn near kill someone. There’s not
much wiggle room in between.

These are some of the gifts that
Logica gave me. My friends have often
remarked upon how the person who
joined the race in September 2000 was

utterly different from the man who
left it in July of 2001. I miss my boat, I
miss my team, and I will always trea-
sure what I learned on her deck. n

Tony Haile is CEO of Chartbeat and an all-
round troublemaker at Betaworks. Prior
to his life in startups, Tony competed in a
round-the-world yacht race, was Editor of
the Middle East and international terrorism
desk for Control Risks and managed to get
paid to muck about on polar expeditions.
He has stood at the North Pole, worked sail
changes under the Southern Lights and
married a Pennsylvanian.

Reprinted with permission of the original author.
First appeared in hn.my/yacht (tonyhaile.com)

http://hn.my/yacht

  59

Dream. Design. Print.
MagCloud, the revolutionary new self-publishing web service
by HP, is changing the way ideas, stories, and images find
their way into peoples’ hands in a printed magazine format.

HP MagCloud capitalizes on the digital revolution, creating a
web-based marketplace where traditional media companies,
upstart magazine publishers, students, photographers, design-
ers, and businesses can affordably turn their targeted content
into print and digital magazine formats.

Simply upload a PDF of your content, set your selling price, and
HP MagCloud takes care of the rest—processing payments,
printing magazines on demand, and shipping orders to loca-
tions around the world. All magazine formatted publications
are printed to order using HP Indigo technology, so they not
only look fantastic but there’s no waste or overruns, reducing
the impact on the environment.

Become part of the future of magazine publishing today at
www.magcloud.com.

25% Off the First Issue You Publish
Enter promo code HACKER when you set your
magazine price during the publishing process.

Coupon code valid through February 28, 2011.
Please contact promo@magcloud.com with any questions.

http://www.magcloud.com

	Contents
	FEATURES
	I Am Nothing

	STARTUPS
	Software Businesses in 5 Hours A Week
	The Long Grind Before You Become an Overnight Success

	TRIBUTE
	You’ve Got To Find What You Love

	PROGRAMMING
	Understanding JIT Spray
	Evolutionary Algorithm
	Bash Shortcuts For Maximum Productivity

	SPECIAL
	Finding Love Optimally
	Things I Learned On A Round-The-World Yacht Race

