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FEATURES

By David Anderson & Scott Eberhardt

How Airplanes Fly

Almost everyone 
today has flown 
in an airplane. 
Many ask the 

simple question “what makes an 
airplane fly?” The answer one fre-
quently gets is misleading and often 
just plain wrong. As an example, 
most descriptions of the physics 
of lift fixate on the shape of the 
wing (i.e. airfoil) as the key factor 
in understanding lift. The wings in 
these descriptions have a bulge on 
the top so that the air must travel 
farther over the top than under the 
wing. Yet we all know that wings fly 
quite well upside down where the 
shape of the wing is inverted. To 

cover for this paradox we some-
times see a description for inverted 
flight that is different than for 
normal flight. In reality the shape of 
the wing has little to do with how 
lift is generated and everything to 
do with efficiency in cruise and stall 
characteristics. Any description that 
relies on the shape of the wing is 
wrong.

Let us look at two examples 
of successful wings that clearly 
violate the descriptions that rely 
on the shape of the wing. The 
first example is a very old design. 
Figure 1 shows a photograph of 
the Curtis 1911 model D type IV 
pusher. Clearly the air travels the 

same distance over the top and 
the bottom of the wing. Yet this 
airplane flew and was the second 
airplane purchased by the US Army 
in 1911.

The second example of a wing 
that violates the idea that lift is 
dependent on the shape of the wing 
is of a very modern wing. Figure 
2 shows the profile of the Whit-
comb Supercritical Airfoil (NASA/
Langley SC(2)-0714). This wing 
is basically flat on top with the 
curvature on the bottom. Though 
its shape may seem contrary to the 
popular view of the shape of wings, 
this airfoil is the foundation of the 
wings modern airliners.

A Physical Description of Lift

Photo: Black & White Bi-Plane, flickr.com/photos/daves-f-stop/5516483143

http://flickr.com/photos/daves-f-stop/5516483143
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The emphasis on the wing shape 
in many explanations of lift is based 
on the Principle of Equal Transit 
Times. This assertion mistakenly 
states the air going around a wing 
must take the same length of time, 
whether going over or under, to get 
to the trailing edge. The argument 
goes that since the air goes farther 
over the top of the wing it has to go 
faster, and with Bernoulli’s principle 
we have lift. Knowing that equal 
transit times is not defendable the 
statement is often softened to say 
that since the air going over the top 
must go farther it must to faster. 
But, this is again just a variation 
on the idea of equal transit times. 
In reality, equal transit times holds 
only for a wing without lift. Figure 
3 shows a simulation of the airflow 
around a wing with lift.

The Bernoulli equation is a 
statement of the conservation 
of energy. It is correct, but 
not applicable to the descrip-
tion of lift on a real wing. The 
wings of an 800,000 pound 
airplane are doing a great 
deal of work to keep the 
airplane in the air. They are 

adding a large amount of energy 
to the air. One of the requirements 
of the application of the Bernoulli 
principle is that no energy is added 
to the system. Thus, the speed and 
pressure of the air above a real wing 
in flight are not related by the Ber-
noulli principle. Also, descriptions 
of lift that evoke the Bernoulli prin-
ciple depend on the shape of the 
wing. As already stated, the shape 
of the wing affects the efficiency 
and stall characteristics of the wing 
but not the lift. That is left to the 
angle of attack and speed.

Newton’s laws and lift
So, how does a wing generate lift? 
To begin to understand lift we must 
review Newton’s first and third 
laws. (We will introduce Newton’s 
second law a little later.) Newton’s 
first law states:

A body at rest will remain at rest, 
or a body in motion will continue 
in straight-line motion unless sub-
jected to an external applied force.

That means, if one sees a 
bend in the flow of air, or if 
air originally at rest is acceler-
ated into motion, a force is 
acting on it.

Newton’s third law states 
that:

For every action there is an equal 
and opposite reaction.

As an example, an object sitting 
on a table exerts a force on the 
table (its weight) and the table puts 
an equal and opposite force on the 
object to hold it up. In order to gen-
erate lift a wing must do something 
to the air. What the wing does to 
the air is the action while lift is the 
reaction.

Let’s compare two figures used 
to show streamlines over a wing. 
In figure 4 the air comes straight at 
the wing, bends around it, and then 
leaves straight behind the wing. We 
have all seen similar pictures, even 
in flight manuals. But, the air leaves 
the wing exactly as it appeared 
ahead of the wing. There is no net 
action on the air so there can be no 
lift! Figure 5 shows the streamlines, 
as they should be drawn. The air 
passes over the wing and is bent 
down. Newton’s first law says that 
there must be a force on the air to 
bend it down (the action). New-
ton’s third law says that there must 
be an equal and opposite force 
(up) on the wing (the reaction). To 
generate lift a wing must divert lots 
of air down.

Figure 1. Curtis 1911 model D type IV pusher

Figure 2. Whitcomb Supercritical Airfoil

Figure 3 Air over a wing with lift.

Figure 4. Common depiction of airflow 
over a wing. This wing has no lift.

Figure 5. True airflow over a wing with 
lift showing upwash and downwash.
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The lift of a wing is equal to the 
change in momentum of the air it 
is diverting down. Momentum is 
the product of mass and velocity 
(mv). The most common form of 
Newton’s second law is F= ma, or 
force equal mass times acceleration. 
The law in this form gives the force 
necessary to accelerate an object of 
a certain mass. An alternate form 
of Newton’s second law can be 
written:

The lift of a wing is proportional to 
the amount of air diverted down 
times the vertical velocity of that 
air.

It is that simple. For more lift 
the wing can either divert more air 
(mass), increase its vertical veloc-
ity or a combination of the two. 
This vertical velocity behind the 
wing is the vertical component of 
the “downwash.” Figure 6 shows 
how the downwash appears to the 
pilot (or in a wind tunnel). The 
figure also shows how the down-
wash appears to an observer on 
the ground watching the wing go 
by. To the pilot the air is coming 
off the wing at roughly the angle 
of attack and at about the speed 
of the airplane. To the observer 
on the ground, if he or she could 
see the air, it would be coming 
off the wing almost vertically at a 
relatively slow speed. The greater 
the angle of attack of the wing the 
greater the vertical velocity of the 
air. Likewise, for a given angle of 
attack, the greater the speed of the 
wing the greater the vertical veloc-
ity of the air. Both the increase in 
the speed and the increase of the 
angle of attack increase the length 
of the vertical velocity arrow. It is 
this vertical velocity that gives the 
wing lift.

As stated, an observer on the 
ground would see the air going 
almost straight down behind the 
plane. This can be demonstrated 
by observing the tight column of 
air behind a propeller, a household 
fan, or under the rotors of a heli-
copter; all of which are rotating 
wings. If the air were coming off 
the blades at an angle the air would 
produce a cone rather than a tight 
column. The wing develops lift by 
transferring momentum to the air. 
For straight and level flight this 
momentum eventually strikes the 
earth. If an airplane were to fly over 
a very large scale, the scale would 
weigh the airplane.

Let us do a back-of-the-envelope 
calculation to see how much air 
a wing might divert. Take for 
example a Cessna 172 that weighs 
about 2300 lb (1045 kg). Traveling 
at a speed of 140 mph (220 km/h), 
and assuming an effective angle of 
attack of 5 degrees, we get a vertical 
velocity for the air of about 11.5 
mph (18 km/h) right at the wing. If 
we assume that the average vertical 
velocity of the air diverted is half 
that value we calculate from New-
ton’s second law that the amount 
of air diverted is on the order of 5 
ton/s. Thus, a Cessna 172 at cruise 
is diverting about five times its own 
weight in air per second to produce 
lift. Think how much air is diverted 
by a 250-ton Boeing 777.

Diverting so much air down 
is a strong argument against lift 
being just a surface effect (that is 
only a small amount of air around 
the wing accounts for the lift), as 
implied by the popular explana-
tion. In fact, in order to divert 5 
ton/sec the wing of the Cessna 172 
must accelerate all of the air within 
18 feet (7.3 m) above the wing. 
One should remember that the 
density of air at sea level is about 
2 lb per cubic yard (about 1kg per 
cubic meter). Figure 7 illustrates 
the effect of the air being diverted 
down from a wing. A huge hole is 
punched through the fog by the 
downwash from the airplane that 
has just flown over it.

So how does a thin wing divert 
so much air? When the air is bent 
around the top of the wing, it pulls 
on the air above it accelerating that 
air downward. Otherwise there 
would be voids in the air above 
the wing. Air is pulled from above. 
This pulling causes the pressure to 
become lower above the wing. It 
is the acceleration of the air above 
the wing in the downward direction 

Figure 6. How downwash appears to a pilot and to an observer on the ground.

Figure 7.  
Downwash and 
wing vortices in 
the fog.
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that gives lift. (Why the wing bends 
the air with enough force to gener-
ate lift will be discussed in the next 
section.)

Normally, one looks at the air 
flowing over the wing in the frame 
of reference of the wing. In other 
words, to the pilot the air is moving 
and the wing is standing still. We 
have already stated that an observer 
on the ground would see the air 
coming off the wing almost verti-
cally. But what is the air doing 
below the wing? Figure 8 shows 
an instantaneous snapshot of how 
air molecules are moving as a wing 
passes by. Remember in this figure 
the air is initially at rest and it is 
the wing moving. Arrow “1” will 
become arrow “2” and so on. Ahead 
of the leading edge, air is moving 
up (upwash). At the trailing edge, 
air is diverted down (downwash). 
Over the top the air is accelerated 
towards the trailing edge. Under-
neath, the air is accelerated forward 
slightly. Far behind the wing the air 
is going straight down.

So, why does the air follow this 
pattern? First, we have to bear 
in mind that air is considered an 
incompressible fluid for low-speed 
flight. That means that it cannot 
change its volume and that there is a 
resistance to the formation of voids. 
Now the air has been accelerated 
over the top of the wing by of the 
reduction in pressure. This draws air 
from in front of the wing and expels 
if back and down behind the wing. 

This air must be compensated for, so 
the air shifts around the wing to fill 
in. This is similar to the circulation 
of the water around a canoe paddle. 
This circulation around the wing is 
no more the driving force for the 
lift on the wing than is the circula-
tion in the water drives the paddle. 
Though, it is true that if one is able 
to determine the circulation around 
a wing the lift of the wing can be 
calculated. Lift and circulation are 
proportional to each other.

One observation that can be 
made from Figure 8 is that the top 
surface of the wing does much 
more to move the air than the 
bottom. So the top is the more criti-
cal surface. Thus, airplanes can carry 
external stores, such as drop tanks, 
under the wings but not on top 
where they would interfere with 
lift. That is also why wing struts 
under the wing are common but 
struts on the top of the wing have 
been historically rare. A strut, or any 
obstruction, on the top of the wing 
would interfere with the lift.

Air Bending Over a Wing
As always, simple statements often 
result in more questions. One 
natural question is why does the air 
bend around the wing? This ques-
tion is probably the most challeng-
ing question in understanding flight 
and it is one of the key concepts.

Let us start by first looking at a 
simple demonstration. Run a small 
stream of water from a faucet and 
bring a horizontal water glass over 
to it until it just touches the water, 
as in Figure 9. As in the figure, the 
water will wrap partway around the 
glass. From Newton’s first law we 
know that for the flow of water to 
bend there must be a force on it. 
The force is in the direction of the 
bend.

From Newton’s third law we 
know that there must be an equal 
and opposite force acting on the 
glass. The stream of water puts a 
force on the glass that tries to pull 
it into the stream, not push it away 
as one might first expect.

So why does the water bend 
around the glass, or air over a wing? 
First consider low-speed flight. In 
low-speed flight the forces on the 
air and the associated pressures 
are so low that the air is not only 
considered a fluid but an incom-
pressible fluid. This means that the 
volume of a mass of air remains 
constant and that flows of air do 
not separate from each other to 
form voids (gaps).

A second point to understand is 
that streamlines communicate with 
each other. A streamline, in steady-
state flight, can be looked at as the 
path of a particle in the moving air. 
It is the path a small, light object 
would take in the airflow over the 
wing. The communication between 
streamlines is an expression of pres-
sure and viscosity. Pressure is the 
force per area that the air exerts on 
the neighboring streamline. Viscos-
ity in a gas or liquid corresponds to 
friction between solids.

Think of two adjacent stream-
lines with different speeds. Since 
these streamlines have different 
velocities forces between them 
trying to speed up the slower 
streamline and slow down the faster 
streamline. The speed of air at the 
surface of the wing is exactly zero 

Figure 8. Direction of air movement 
around a wing as seen by an observer on 
the ground.

Figure 9. Water 
wrapping around 
a glass
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with respect to the surface of the 
wing. This is an expression of vis-
cosity. The speed of the air increases 
with distance from the wing as 
shown in Figure 10. Now imagine 
the first non-zero velocity stream-
line that just grazes the highpoint 
of the top of the wing. If it were 
initially to go straight back and not 
follow the wing, there would be a 
volume of zero velocity air between 
it and the wing. Forces would strip 
this air away from the wing and 
without a streamline to replace it, 
the pressure would lower. This low-
ering of the pressure would bend 
the streamline until it followed the 
surface of the wing.

The next streamline above 
would be bent to follow the first by 
the same process, and so on. The 
streamlines increase in speed with 
distance from the wing for a short 
distance. This is on the order of 6 
inch (15 cm) at the trailing edge of 
the wing of an Airbus A380. This 
region of rapidly changing air speed 
is the boundary layer. If the bound-
ary layer is not turbulent, the flow 
is said to be laminar.

Thus, the streamlines are bent 
by a lowering of the pressure. This 
is why the air is bent by the top 
of the wing and why the pressure 
above the wing is lowered. This 
lowered pressure decrease with 
distance above the wing but is the 
basis of the lift on a wing. The low-
ered pressure propagates out at the 
speed of sound, causing a great deal 
of air to bend around the wing.

Two streamlines communicate 
on a molecular scale. This is an 
expression of the pressure and the 
viscosity of air. Without viscosity 
there would be no communica-
tion between streamlines and no 
boundary layer. Often, calculations 
of lift are made in the limit of zero 
viscosity. In these cases viscosity is 
re-introduced implicitly with the 
Kutta-Joukowski condition, which 
requires that the air come smoothly 
off at the trailing edge of the wing. 
Also, the calculations require that 
the air follows the surface of the 
wing which is another introduc-
tion of the effects of viscosity. One 
result of the near elimination of 
viscosity from the calculations is 
that there is no boundary layer 
calculated.

It should be noted that the 
speed of the uniform flow over 
the top of the wing is faster then 
the free-stream velocity, which is 
the velocity of the undisturbed air 
some distance from the wing. The 
bending of the air causes the reduc-
tion in pressure above the wing. 
This reduction in pressure causes 
an acceleration of the air. It is often 
taught that the acceleration of the 
air causes a reduction in pressure. In 
fact, it is the reduction of pressure 
that accelerates the air in agreement 
with Newton’s first law.

Let us look at the air bending 
around the wing in Figure 11. To 
bend the air requires a force. As 
indicated by the colored arrows, the 
direction of the force on the air is 
perpendicular to the bend in the 
air. The magnitude of the force is 
proportional to the tightness of the 
bend. The tighter the air bends the 
greater the force on it. The forces 
on the wing, as shown by the black 
arrows in the figure, have the same 
magnitude as the forces on the air 

but in the opposite direction. These 
forces, working through pressure, 
represent the mechanism in which 
the force is transferred to the wing.

Look again at Figure 11, while 
paying attention to the black arrows 
representing the forces on the wing. 
There are two points to notice. 
The first is that most of the lift is 
on the forward part of the wing. 
In fact, half of the total lift on a 
wing at subsonic speeds is typically 
produced in the first one-fourth 
of the chord length. The chord is 
the distance from the leading edge 
to the trailing edge of the wing. 
The second thing to notice is that 
the arrows on the leading part of 
the wing are tilted forward. Thus 
the force of lift is pulling the wing 
along as well as lifting it. This would 
be nice if it were the entire story. 
Unfortunately, the horizontal forces 
on the trailing part of the wing 
compensate the horizontal forces 
on the leading part of the wing.

We now have the tools to 
understand why a wing has lift. In 
brief, the air bends around the wing 
producing downwash. Newton’s 
first law says that the bending of 
the air requires a force on the air, 
and Newton’s third law says that 
there is an equal and opposite force 
on the wing. That is a description of 
lift. The pressure difference across 
the wing is the mechanism in which 
lift is transferred to the wing due to 
the bending of the air.

Figure 10. The variation of the speed of 
a fluid near an object

Figure 11. Forces on the air and the cor-
responding reaction forces on the wing
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Lift as a function of angle of 
attack
There are many types of wing: con-
ventional, symmetric, conventional 
in inverted flight, the early biplane 
wings that looked like warped 
boards, and even the proverbial 
“barn door”. In all cases, the wing is 
forcing the air down, or more accu-
rately pulling air down from above. 
(although the early wings did have 
a significant contribution from the 
bottom.) What each of these wings 
has in common is an angle of attack 
with respect to the oncoming air. It 
is the angle of attack that is the pri-
mary parameter in determining lift.

To better understand the role of 
the angle of attack it is useful to 
introduce an “effective” angle of 
attack, defined such that the angle 
of the wing to the oncoming air 
that gives zero lift is defined to be 
zero degrees. If one then changes 
the angle of attack both up and 
down one finds that the lift is 
proportional to the angle. Figure 12 
shows the lift of a typical wing as 
a function of the effective angle of 
attack. A similar lift versus angle of 
attack relationship is found for all 
wings, independent of their design. 
This is true for the wing of a 747, 
an inverted wing, or your hand out 
the car window. The inverted wing 
can be explained by its angle of 
attack, despite the apparent con-
tradiction with the popular expla-
nation of lift. A pilot adjusts the 
angle of attack to adjust the lift for 
the speed and load. The role of the 
angle of attack is more important 
than the details of the wings shape 
in understanding lift. The shape 
comes into play in the understand-
ing of stall characteristics and drag 
at high speed.

One can see in the figure that the 
lift is directly proportional to the 
effective angle of attack. The lift 
is positive (up) when the wing is 
tilted up and negative (down) when 
it is tilted down. When corrected 
for area and aspect ratio, a plot of 
the lift as a function of the effec-
tive angle of attack is essentially 
the same for all wings and all wings 
inverted. This is true until the 
wing approaches a stall. The stall 
begins at the point where the 
angle of attack becomes so 
great that the airflow begins 
to separate from the trailing 
edge of the wing. This angle 
is called the critical angle of 
attack and is marked on the 
figure. This separation of the 
airflow from the top of the 
wing is a stall.

The wing as air “virtual virtual 
scoop”
We now would like to introduce a 
new mental image of a wing. One 
is used to thinking of a wing as a 
thin blade that slices though the 
air and develops lift somewhat by 
magic. For this we would like to 
adopt a visualization aid of looking 

at the wing as a virtual scoop that 
intercepts a certain amount of air 
and diverts it to the angle of the 
downwash. This is not intended to 
imply that there is a real, physical 
scoop with clearly defined bound-
aries, and uniform flow. But this 
visualization aid does allow for a 
clear understanding of how the 
amount diverted air is affected by 
speed and density. The concept of 
the virtual scoop does have a real 
physical basis but beyond the scope 
of this work.

The virtual scoop diverts a 
certain amount of air from the 
horizontal to roughly the angle of 
attack, as depicted in Figure 13. 
For wings of typical airplanes it is a 
good approximation to say that the 
area of the virtual scoop is pro-
portional to the area of the wing. 
The shape of the virtual scoop 
is approximately elliptical for all 
wings, as shown in the figure. Since 
the lift of the wing is proportional 
to the amount of air diverted, the 
lift of is also proportional to the 
wing’s area.

As stated before, the lift of a 
wing is proportional to the amount 
of air diverted down times the 
vertical velocity of that air. As a 
plane increases speed, the virtual 
scoop diverts more air. Since the 
load on the wing does not increase, 
the vertical velocity of the diverted 
air must be decreased proportion-
ately. Thus, the angle of attack is 
reduced to maintain a constant lift. 

Figure 12. Lift as a function of angle of 
attack

Figure 13. The “virtual scoop” as a visualization 
tool
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When the plane goes higher, the air 
becomes less dense so the virtual 
scoop diverts less air at a given 
speed. Thus, to compensate the 
angle of attack must be increased. 
The concepts of this section will 
be used to understand lift in a 
way not possible with the popular 
explanation.

Lift requires power
When a plane passes overhead the 
formally still air gains a downward 
velocity. Thus, the air is left in 
motion after the plane leaves. The 
air has been given energy. Power is 
energy, or work, per time. So, lift 
requires power. This power is sup-
plied by the airplane’s engine (or by 
gravity and thermals for a sailplane).

How much power will we need 
to fly? If one fires a bullet with 
a mass, m, and a velocity, v, the 
energy given to the bullet is simply 
½mv2. Likewise, the energy given to 
the air by the wing is proportional 
to the amount of air diverted down 
times the vertical velocity squared 
of that diverted air. We have already 
stated that the lift of a wing is 
proportional to the amount of air 
diverted times the vertical velocity 
of that air. Thus, the power needed 
to lift the airplane is proportional to 
the load (or weight) times the verti-
cal velocity of the air. If the speed 
of the plane is doubled, the amount 
of air diverted down also doubles. 
Thus to maintain a constant lift, the 
angle of attack must be reduced to 
give a vertical velocity that is half 
the original. The power required for 
lift has been cut in half. This shows 
that the power required for lift 
becomes less as the airplane’s speed 
increases. In fact, we have shown 
that this power to create lift is pro-
portional to 1/speed of the plane.

But, we all know 
that to go faster (in 
cruise) we must 
apply more power. 
So there must be 
more to power than 
the power required 
for lift. The power 
associated with 
lift is often called 
the “induced” power. Power is also 
needed to overcome what is called 
“parasite” drag, which is the drag 
associated with moving the wheels, 
struts, antenna, etc. through the air. 
The energy the airplane imparts 
to an air molecule on impact is 
proportional to the speed2 (from 
½mv2). The number of molecules 
struck per time is proportional to 
the speed. The faster one goes the 
higher the rate of impacts. Thus the 
parasite power required to over-
come parasite drag increases as the 
speed3.

Figure 14 shows the “power 
curves” for induced power, parasite 
power, and total power (the sum 
of induced power and parasite 
power). Again, the induced power 
goes as 1/speed and the parasite 
power goes as the speed3. At low 
speed the power requirements of 
flight are dominated by the induced 
power. The slower one flies the 
less air is diverted and thus the 
angle of attack must be increased 
to increase the vertical velocity of 
that air. Pilots practice flying on the 
“backside of the power curve” so 
that they recognize that the angle 
of attack and the power required 
to stay in the air at very low speeds 
are considerable.

At cruise, the power requirement 
is dominated by parasite power. 
Since this goes as the speed3 an 
increase in engine size gives one a 
faster rate of climb but does little 
to improve the cruise speed of the 
plane. Doubling the size of the 
engine will only increase the cruise 
speed by about 25%.

Since we now know how the 
power requirements vary with 
speed, we can understand drag, 
which is a force. Drag is simply 
power divided by speed. Figure 14 
shows the induced, parasite, and 
total drag as a function of speed. 
Here the induced drag varies as 1/
speed2 and parasite drag varies as 
the speed2. Taking a look at these 
figures one can deduce a few things 
about how airplanes are designed. 
Slower airplanes, such as gliders, 
are designed to minimize induced 
power, which dominates at lower 
speeds. Faster propeller-driven 
airplanes are more concerned 
with parasite power, and jets are 
dominated by parasite drag. (This 
distinction is outside of the scope of 
this article.)

Figure 14. The power required for flight 
as a function of speed.
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Wing efficiency
At cruise, a non-negligible amount 
of the drag of a modern wing is 
induced drag. Parasite drag of a 
Boeing 747 wing is only equivalent 
to that of a 1/2-inch cable of the 
same length. One might ask what 
affects the efficiency of a wing. We 
saw that the induced power of a 
wing is proportional to the verti-
cal velocity of the air. If the area of 
a wing were to be increased, the 
size of our virtual scoop would also 
increase, diverting more air. So, for 
the same lift the vertical veloc-
ity (and thus the angle of attack) 
would have to be reduced. Since 
the induced power is proportional 
to the vertical velocity of the air, 
it is also reduced. Thus, the lifting 
efficiency of a wing increases with 
increasing wing area. The larger 
the wing the less induced power 
required to produce the same lift, 
though this is achieved with and 
increase in parasite drag.

There is a misconception by some 
that lift does not require power. This 
comes from aeronautics in the study 
of the idealized theory of wing sec-
tions (airfoils). When dealing with 
an airfoil, the picture is actually that 
of a wing with infinite span. We 
have seen that the power neces-
sary for lift decrease with increasing 
area of the wing. A wing of infinite 
span does not require power for lift 
since it develops lift by diverting an 
infinite amount of air at near-zero 
velocity. If lift did not require power 
airplanes would have the same 
range full as they do empty, and 
helicopters could hover at any alti-
tude and load. Best of all, propellers 
(which are rotating wings) would 
not require much power to produce 
thrust. Unfortunately, we live in 
the real world where both lift and 
propulsion require power.

Power and wing loading
Now let us consider the relation-
ship between wing loading and 
power. At a constant speed, if the 
wing loading is increased the verti-
cal velocity of the downwash must 
be increased to compensate. This 
is accomplished by increasing the 
angle of attack of the wing. If the 
total weight of the airplane were 
doubled (say, in a 2g turn), and the 
speed remains constant, the verti-
cal velocity of the air is doubled 
to compensate for the increased 
wing loading. The induced power is 
proportional to the load times the 
vertical velocity of the diverted air, 
which have both doubled. Thus the 
induced power requirement has 
increased by a factor of four! So 
induced power is proportional to 
the load2.

One way to measure the total 
power is to look at the rate of fuel 
consumption. Figure 16 shows 
the fuel consumption versus gross 
weight for a large transport air-
plane traveling at a constant speed 
(obtained from actual data). Since 
the speed is constant the change 
in fuel consumption is due to the 
change in induced power. The data 
are fitted by a constant (parasite 
power) and a term that goes as the 
load2. This second term is just what 
was predicted in our Newtonian 
discussion of the effect of load on 
induced power.

The increase in the angle of 
attack with increased load has a 
downside other than just the need 
for more power. As shown in Figure 
12 a wing will eventually stall when 
the air can no longer follow the 
upper surface. That is, when the 
critical angle is reached. Figure 17 
shows the angle of attack as a func-
tion of airspeed for a fixed load and 
for a 2-g turn. The angle of attack 
at which the plane stalls is constant 
and is not a function of wing load-
ing. The angle of attack increases 
as the load and the stall speed 
increases as the square root of the 
load. Thus, increasing the load in 
a 2-g turn increases the speed at 
which the wing will stall by 40%. 
An increase in altitude will further 
increase the angle of attack in a 2-g 
turn. This is why pilots practice 
“accelerated stalls” which illustrates 
that an airplane can stall at any 
speed, since for any speed there is a 
load that will induce a stall.

Figure 16. Fuel consumption as a function of 
weight for large jet at a costant speed.

Figure 17. Angle of attack versus speed 
for straight and level flight and for a 2-g 
turn.



12  FEATURES

Wing vortices
One might ask what the down-
wash from a wing looks like. The 
downwash comes off the wing as a 
sheet and is related to the details on 
the load distribution on the wing. 
Figure 18 shows, through condensa-
tion, the distribution of lift on an 
airplane during a high-g maneuver. 
From the figure one can see that 
the distribution of load changes 
from the root of the wing to the 
tip. Thus, the amount of air in the 
downwash must also change along 
the wing. The wing near the root is 
“virtual scooping” up much more 
air than the tip. Since the wing near 
the root is diverting so much air 
the net effect is that the downwash 
sheet will begin to curl outward 
around itself, just as the air bends 
around the top of the wing because 
of the change in the velocity of the 
air. This is the wing vortex. The 
tightness of the curling of the wing 
vortex is proportional to the rate 
of change in lift along the wing. At 
the wing tip the lift must rapidly 
become zero causing the tightest 
curl. This is the wing tip vortex and 
is just a small (though often most 
visible) part of the wing vortex. 
Returning to Figure 7 one can 
clearly see the development of the 
wing vortices in the downwash as 
well as the wing tip vortices.

Winglets (those small vertical 
extensions on the tips of some 
wings) are used to improve the 
efficiency of the wing by increasing 
the effective length, and thus area, 
of the wing. The lift of a normal 
wing must go to zero at the tip 
because the bottom and the top 
communicate around the end. The 
winglet blocks this communication 
so the lift can extend farther out on 
the wing. Since the efficiency of a 
wing increases with area, this gives 
increased efficiency. One caveat is 
that winglet design is tricky and 
winglets can actually be detrimental 
if not properly designed.

Ground effect
The concept of ground effect is 
well known to pilots. This effect is 
the increase in efficiency of a wing 
as it comes to within about a wing’s 
length of the ground. The effect 
increases with the reduction in the 
distance to the ground. A low-wing 
airplane will experience a reduction 
in the induced drag of as much as 
50 percent just before touchdown. 
This reduction in drag just above 
a surface is used by large birds, 
which can often be seen flying just 
above the surface of the water. 
Pilots taking off from deep-grass 
or soft runways also use ground 
effect. The pilot is able to lift the 
airplane off the soft surface at a 
speed too slow to maintain flight 
out of ground effect. This reduces 
the resistance on the wheels and 
allows the airplane to accelerate to 
a higher speed before climbing out 
of ground effect.

What is the cause of this reduc-
tion in drag? There are two contri-
butions that can be credited with 
the reduction in drag. The ground 
influences the flow field around the 
wing which, for a given angle of 
attack, increases the lift. But, at the 
same time, there is a reduction in 
downwash. It can be surmised that 
this additional lift must come from 
an increase in pressure between the 
wing and the ground. In addition, 
since lift is increased for a given 
angle of attack, the angle of attack 
can be reduced for the same lift, 
resulting in less downwash and less 
induced drag.

Ground effect introduces a 
fundamental change from the 
discussion of flight at altitude. 
When no ground is present, the 
relationship between lift, drag and 
downwash is straight forward. But, 
near the ground, there is an action-
reaction between the wing, the air 
and the ground. At altitude the 
ground is so distant that this effect 
does not exist. Near the ground 
this interaction helps produce lift 
and reduce downwash due to an 
increase in pressure below the wing. 
The details of ground effect are 
extremely complex. Most aerospace 
texts devote a paragraph or two 
and don’t attempt to describe it in 
depth. The truth is that so much 
is changing in ground effect that it 
is difficult to describe by pointing 
to a single change in the air flow 
or a term in an equation. There is 
no simple way to describe how the 
airflow adjusts to satisfy the change 
in conditions.

Figure 18. Condensation showing the 
distribution of lift along a wing.
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Conclusions
Let us review what we have learned 
and get some idea of how the 
physical description has given us a 
greater ability to understand flight. 
First what have we learned:

■■ The amount of air diverted by 
the wing is proportional to the 
speed of the wing and the air 
density.

■■ The vertical velocity of the 
diverted air is proportional to the 
speed of the wing and the angle 
of attack.

■■ The lift is proportional to the 
amount of air diverted times the 
vertical velocity of the air. 

■■ The power needed for lift is 
proportional to the lift times the 
vertical velocity of the air. Now 
let us look at some situations 
from the physical point of view 
and from the perspective of the 
popular explanation. 

■■ The plane’s speed is reduced. 
The physical view says that the 
amount of air diverted is reduced 
so the angle of attack is increased 
to compensate. The power 
needed for lift is also increased. 
The popular explanation cannot 
address this.

■■ The load of the plane is 
increased. The physical view says 
that the amount of air diverted is 
the same but the angle of attack 
must be increased to give addi-
tional lift. The power needed 
for lift has also increased. Again, 
the popular explanation cannot 
address this.

■■ A plane flies upside down. The 
physical view has no problem 
with this. The plane adjusts the 
angle of attack of the inverted 
wing to give the desired lift. The 
popular explanation implies that 
inverted flight is impossible.

As one can see, the popular expla-
nation, which fixates on the shape 
of the wing, may satisfy many but it 
does not give one the tools to really 
understand flight. The physical 
description of lift is easy to under-
stand and much more powerful. n

David Anderson is a private pilot and a 
lifelong flight enthusiast. He as degrees 
from the University of Washington, Seattle, 
and a Ph.D. in physics from Columbia Uni-
versity. He has had a 30-year career in high-
energy physics at Los Alamos National Lab-
oratory, CERN in Geneva, Switzerland, and 
the Fermi National Accelerator Laboratory. 
 
Scott Eberhardt is a private pilot who works 
in high-lift aerodynamics at Boeing Com-
mercial Airplanes Product Development. 
He has degrees from MIT and a Ph.D. in 
aeronautics and astronautics from Stanford 
University. He joined Boeing in 2006 after 
20 years on the faculty of the Department 
of Aeronautics and Astronautics at the Uni-
versity of Washington, Seattle.

Reprinted with permission of the original authors. 
First appeared in hn.my/allstar (allstar.fiu.edu)

This material can be found in more detail in Un-
derstanding Flight 1st and 2nd editions by David 
Anderson and Scott Eberhardt, McGraw-Hill, 2001, 
and 2009.

http://hn.my/allstar
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DESIGN

By Peiter Buick

The Messy Art of  
UX Sketching

I hear a lot of people talk-
ing about the importance of 
sketching when designing or 

problem-solving, yet it seems that 
very few people actually sketch. As 
a UX professional, I sketch every 
day. I often take over entire walls 
in our office and cover them with 
sketches, mapping out everything 
from context scenarios to wire-
frames to presentations.

Although starting a prototype on 
a computer is sometimes easier, it’s 

not the best way to visually prob-
lem-solve. When you need to ideate 
website layouts or mobile applica-
tions or to storyboard workflows 
and context scenarios, sketching is 
much more efficient. It keeps you 
from getting caught up in the tech-
nology, and instead focuses you on 
the best possible solution, freeing 
you to take risks that you might not 
otherwise take.

Many articles discuss the power 
of sketching and why you should do 

it, but they don’t go into the how 
or the methods involved. Sketching 
seems straightforward, but there are 
certain ways to do it effectively. In 
this article, we’ll cover a collection 
of tools and techniques that I (and 
many other UX and design folks) 
use every day.

Sketching ≠ Drawing
Some of the most effective sketches 
I’ve seen are far from perfect draw-
ings. Just like your thoughts and 
ideas, sketches are in a constant 
state of flux, evolving and morph-
ing as you reach a potential solu-
tion. Don’t think that you have to 
be able to draw in order to sketch, 
although having some experience 
with it does help.

■■ Sketching is an expression of 
thinking and problem-solving.

■■ It’s a form of visual communi-
cation, and, as in all languages, 
some ways of communicating are 
clearer than others.

■■ Sketching is a skill: the more you 
do it, the better you’ll get at it.

When evaluating your sketches, 
ask yourself, “How could I better 
communicate these thoughts?” 

My desk.
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Getting caught up in evaluating 
your drawing ability is easy, but try 
to separate the two. Look at your 
sketch as if it were a poster. What’s 
the first thing that’s read? Where is 
the detailed info? Remember, the 
eye is drawn to the area with the 
most detail and contrast.

Just as one’s ability to enunci-
ate words affects how well others 
understand them, one’s ability to 
draw does have an impact on how 
communicative a sketch is. The 
good news is that drawing and 
sketching are skills, and the more 
you do them, the better you’ll get.

OK, let’s get started.

Work In Layers
Often when I’ve done a sketch, the 
result looks more like a collage than 
a sketch. Efficiency in sketching 
comes from working in layers.

Technique
Start with a light-gray marker (20 
to 30% gray), and progressively add 
layers of detail with darker markers 
and pens.

Why?
Starting with a light-gray marker 
makes this easy. It allows you 
to make mistakes and evaluate 
your ideas as you work through a 
problem. Draw a crooked line with 
the light marker? No big deal. The 
lines will barely be noticeable by 
the time you’re finished with the 
sketch.

As the pages fill up with ideas, go 
back in with a darker marker (60% 
gray) or pen, and layer in addi-
tional details for the parts you like. 
This is also a great way to make a 
particular sketch pop beside other 
sketches.

Sketching in layers also keeps you 
from getting caught up in details 
right away. It forces you to decide 
on the content and hierarchy of the 
view first. If you are sketching an 
interface that contains a list, but 
you don’t yet know what will go 
in the list, put in a few squiggles. 
Later, you can go back in and sketch 
a few options for each list item and 
append them to the page.

Caution
If you start drawing with a ball-
point pen and then go in later with 
a marker, the pen’s ink will likely 
smear from the alcohol in the marker.

As you get more confident in 
your sketching, you will become 
more comfortable and find that you 
don’t need to draw as many under-
lays. But I still find it useful because 
it allows you to experiment and 
evaluate ideas as you sketch.

Loosen Up
Technique
When sketching long lines, consider 
moving your arm and pen with your 
shoulder rather than from the elbow 
or wrist. Reserve drawing with your 
wrist for short quick lines and areas 
where you need more control.

Why?
This will allow you to draw longer, 
straighter lines. If you draw from 
the elbow, you’ll notice that the 
lines all have a slight curve to them. 
Placing two dots on the paper, one 
where you want the line to start 
and one where you want it to end, 
is sometimes helpful. Then, orient 
the paper, make a practice stroke or 
two, and then draw the line.

A bonus to drawing from the 
shoulder is that much of the 
motion translates to drawing on 
a whiteboard; so, in time, your 
straight lines will be the envy of 
everyone in the room.

Play To Your Strengths
Technique
Rotate the page before drawing 
a line in order to draw multiple 
angles of lines more easily.

Why?
Very few people can draw lines in 
all directions equally well. Rotat-
ing the page allows you to draw a 
line in the range and direction that 
works best for you. Don’t try to 
draw a vertical line if you find it 
difficult; rotate the page 90 degrees, 
and draw a horizontal one instead. 
It’s super-simple but amazingly 
powerful.

Caution
This does not translate well to a 
whiteboard, so you’ll still need to 
learn to draw vertical lines.

Sketching Interactions
Technique
Start with a base sketch, and then 
use sticky notes to add tooltips, 
pop-overs, modal windows and 
other interactive elements.

Why?
Using sticky notes to define tooltips 
and other interactive elements lets 
you quickly define interactions and 
concepts without having to redraw 
the framework of the application. 
They are easy to move around and 
can be sketched on with the same 
markers and pens you are already 
using.

■■ Define multiple interactions on 
one sketch, and then strategi-
cally remove pieces one at a time 
before scanning them in or copy-
ing the sketch.

■■ Use different colors to represent 
different types of interaction.
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■■ Is one sticky note not big enough 
for your modal window? Add 
another right next to it.

■■ Is one sticky note too big for your 
tooltip, user a ruler as a guide to 
quickly rip the note down to size.

Copying And Pasting For The 
Real World
At times, you may want to manu-
ally redraw a UI element multiple 
times in a sketch. This is not always 
a bad thing, because it gives you the 
opportunity to quickly iterate and 
forces you to reconsider your ideas. 
That being said, an all-in-one scan-
ner or photocopier could dramati-
cally increase your efficiency.

Technique
Use a photocopier to quickly create 
templates from existing sketches or 
to redraw an area of a sketch.

Why?
A photocopier is the old-school 
version of Control + C, Control 
+ V. It makes the production of 
templates and underlays more effi-
cient. It also boosts your confidence, 
because if you mess up (and you 
will mess up), you can easily fix it.

■■ Does one part of your interface 
need to be consistently redrawn 
in multiple sketches? Run a few 
copies, and then sketch directly 
on the print-outs.

■■ Did you mess up a part of the 
sketch? No problem. Cover up 
that portion of the sketch with a 
piece of paper or with correction 
fluid, run off a copy, and then 
start sketching directly on the 
print-out.

■■ Are you working on a mobile 
project? Or do you want to make 
a series of sketches all of the same 
size? Create a layout and copy off 
a few rounds of underlays. Easier 
yet, print off underlays of devices 
or browsers; a good selection can 
be found in the article “Free Print-
able Sketching, Wireframing and 
Note-Taking PDF Templates 8.” 
[hn.my/wireframe]

■■ Do you want to change the 
layout of a sidebar in your last 
five sketches? Sketch the new 
sidebar, run off a few copies, and 
then tape the new sidebars over 
the old ones. It’s that easy.

■■  To use a sketch as an underlay 
of another similar one, adjust the 
density or darkness setting on 
your photocopier to run a copy 
of the sketch at 20% of it original 
value.

Explore a variety of interactions and ideas in a single sketch using sticky notes.

Upon photocopying various versions of a sketch, each with different sticky notes, 
you’ll end up with various distinct sketches.

http://hn.my/wireframe
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The Design Is In The Details
Use a ruler; specifically, a quilting ruler. Quilting rulers 
are translucent and are normally printed with a  grid 
screen, letting you see the line you’re drawing relative 
to the rest of the sketch.

Technique
Use a ruler and a light-gray marker to draw an underlay 
for a detailed sketch.

Why?
This lets you quickly draw a series of lines that are 
offset a set distance from each other. This works great 
for elements such as lists items, charts, buttons and 
anything else that needs to be evenly spaced. It’s like an 
analog version of “smart guides.”

Technique
After using a light-gray marker to lay out a sketch, use 
a ruler and ballpoint pen or black marker to finalize it.

Why?
When sketching in layers, you want the final design or 
layout to “pop.” A ruler enables you to be more pre-
cise in detailed areas and ensures that long edges are 
straight.

There is no shame in using a ruler. The key is know-
ing when to use it. Don’t start sketching with a ruler; 
rather, bring one in when you need the detail and pre-
cision. Remember, you’re sketching, not drawing.

Sketching over a photocopy of the original to reevaluate the 
sidebar.

The final sketch. Notice how the sidebar and its detail are 
darker than the photocopy. This is intentional, because it 
allows you to explore ideas in the context of the overall 
design.

Quickly creating evenly spaced lines with a quilting ruler and 
30% gray marker.

Ripping a sticky note with a ruler.
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Technique
Use a ruler to quickly rip paper or 
sticky notes by firmly holding the 
paper with one hand and ripping 
away the edge with the other hand.

Why?
It’s quicker then grabbing scissors; 
you already have the ruler with 
you; and you can take it through 
airport security.

After lightly sketching an inter-
face with a light marker, finalize it 
or make one area pop by using a 
ruler to lay down darker lines.

Sketching ideas for a mobile application in the context of where it will be used.

Tell The Whole Story
Technique
Draw the application in the context 
of where and how it being used, or 
frame it with the device it will be 
used on.

Why?
This forces you to think about the 
environment that the application 
will be used in, instills empathy for 
your users, and establishes under-
standing of the challenges unique to 
this application.

I get it. No one wants to sketch 
out a monitor every time they draw 
a wireframe. I’m not saying you 
have to, but a few sketches with 
context go a long way. Especially 
with mobile devices, the more con-
text you add to a sketch, the better. 
Moreover, I always sketch the 
device for a mobile interface as an 
underlay, and I often try to sketch 
the UI at full scale. This forces you 
to deal with the constraints of the 
device and makes you aware of how 
the user may be holding the device.

Caution
Drawing the surrounding envi-
ronment can be challenging and 
requires a higher level of sketching 
competency. Don’t let this intimi-
date you. If you’re not comfortable 
sketching the environment or you 
find it takes too long, use a picture 
as an underlay instead.
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Ditch The Sketchbook
Technique
Draw on 8.5 × 11" copy paper.

Why?
Sketches are for sharing. You can 
easily hang 8.5 × 11" sheets on a 
wall to share ideas with others or to 
see a project in its entirety. When 
you need to save a sketch or two, 
you can easily batch scan them into 
a computer without ripping them 
out of the sketchbook. Still not con-
vinced? Copy paper is cheaper; it 
allows you to use sketches as under-
lays without photocopying; and 
you don’t have to choose between 
book-bound or spiral-bound.

What Are You Waiting For?
Sketching is not reserved for design-
ers. Developers, project managers 
and business analysts can get in on 
the fun, too. It’s the best way for 
teams to quickly communicate, 
explore and share ideas across dis-
ciplines. Also, I’ve found that others 
are more receptive to give feedback 
and make suggestions when shown 
sketches than when shown print-
outs or screenshots.

Remember, it’s about getting 
ideas out, reviewing those ideas 
and documenting them, not about 
creating a work of art. When evalu-
ating your sketches, ask yourself, 
“How could I better communicate 
these thoughts?” Getting caught up 
in evaluating your drawing ability 
is easy, but try to separate the two, 
and know that the more you do it, 
the better you’ll get.

It’s worth repeating that sketch-
ing is the quickest way to explore 
and share thinking with others. It 
focuses you on discovering the best 
possible solution, without getting 
caught up in the technology.

Go for it! Don’t get caught up in 
the tools. Make a mess. And have 
fun! n

Peiter Buick is Senior UX Specialist at 
Universal Mind. He is passionate about 
design’s ability to directly impact peoples 
lives. With a background in industrial 
design, he brings a unique perspective to 
the UX community. 

One of the many walls of sketches in our office.

Reprinted with permission of the original author. 
First appeared in hn.my/sketch (smashingmagazine.com)
Images by Michael Kleinpaste.

http://hn.my/sketch
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PROGRAMMING

By Pat Shaughnessy

Never Create Ruby Strings 
Longer Than 23 Characters

Obviously this is an utterly 
preposterous statement: it’s 
hard to think of a more ridicu-

lous and esoteric coding requirement. 
I can just imagine all sorts of amusing 
conversations with designers and business 
sponsors: “No… the size of this <input> 
field should be 23… 24 is just too long!” 
Or: “We need to explain to users that 
their subject lines should be less than 23 
letters…” Or: “Twitter got it all wrong… 
the 140 limit should have been 23!”

Why in the world would I even imagine 
saying this? As silly as this requirement 
might be, there is actually a grain of truth 
behind it: creating shorter Ruby strings is 
actually much faster than creating longer 
ones. It turns out that this line of Ruby 
code:

str = "1234567890123456789012" + "x"

… is executed about twice as fast by the 
MRI 1.9.3 Ruby interpreter than this line 
of Ruby code:

str = "12345678901234567890123" + "x"

Huh? What’s the difference? These two 
lines look identical! Well, the difference 
is that the first line creates a new string 

containing 23 characters, while 
the second line creates one with 
24. It turns out that the MRI 
Ruby 1.9 interpreter is opti-
mized to handle strings contain-
ing 23 characters or less more 
quickly than longer strings. This 
isn’t true for Ruby 1.8.

Today I’m going to take a 
close look at the MRI Ruby 
1.9 interpreter to see how it 
actually handles saving string 
values… and why this is actually 
true.

Not all strings are created 
equal
Over the holidays I decided to 
read through the Ruby Hack-
ing Guide [rhg.rubyforge.org]. 
If you’ve never heard of it, it’s 
a great explanation of how the 
Ruby interpreter works inter-
nally. Unfortunately, it’s written 
in Japanese, but a few of the 
chapters have been translated 
into English. Chapter 2, one 
of the translated chapters, was 
a great place to start since it 

explains all of the basic Ruby 
data types, including strings.

After reading through that, 
I decided to dive right into the 
MRI 1.9.3 C source code to learn 
more about how Ruby handles 
strings; since I use RVM, for me 
the Ruby source code is located 
under ~/.rvm/src/ruby-1.9.3-
preview1. I started by looking 
at include/ruby/ruby.h, which 
defines all of the basic Ruby data 
types, and string.c, which imple-
ments Ruby String objects.

Reading the C code, I discov-
ered that Ruby actually uses 
three different types of string 
values, which I call:

■■ Heap Strings

■■ Shared Strings

■■ Embedded Strings

I found this fascinating! For 
years I’ve assumed every Ruby 
String object was like every 
other String object. But it turns 
out this is not true! Let’s take a 
closer look…

http://rhg.rubyforge.org
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Heap Strings
The standard and most 
common way for Ruby to save 
string data is in the “heap.” The 
heap is a core concept of the 
C language: it’s a large pool of 
memory that C programmers 
can allocate from and use via a 
call to the malloc function. For 
example, this line of C code 
allocates a 100 byte chunk of 
memory from the heap and 
saves its memory address into 
a pointer:

char *ptr = malloc(100);

Later, when the C program-
mer is done with this memory, 
she can release it and return it 
to the system using free:

free(ptr);

Avoiding the need to 
manage memory in this very 
manual and explicit way is one 
of the biggest benefits of using 
any high level programming 
language, such as Ruby, Java, 
C#, etc. When you create a 
string value in Ruby code like 
this, for example:

str = "Lorem ipsum dolor 
sit amet, consectetur adip-
isicing elit"

… the Ruby interpreter creates 
a structure called “RString” 
that conceptually looks like 
this:

You can see that the RString 
structure contains two values: 
ptr and len, but not the actual 
string data itself. Ruby actu-
ally saves the string character 
values themselves in some 
memory allocated from the 
heap, and then sets ptr to the 
location of that heap memory 
and len to the length of the 
string.

Here’s a simplified version 
of the C RString structure:

struct RString { 
  long len; 
  char *ptr; 
};

I’ve simplified this a lot; 
there are actually a number 
of other values saved in this 
C struct. I’ll discuss some of 
them next and others I’ll skip 
over for today. If you’re not 
familiar with C, you can think 
of struct (short for “struc-
ture”) as an object that con-
tains a set of instance 
variables, except in 
C there’s no object 
at all – struct is just 
a chunk of memory 
containing a few 
values.

I refer to this type 
of Ruby string as 
“Heap String” since 
the actual string data 
is saved in the heap.

Shared Strings
Another type of string value that the Ruby 
interpreter uses is called a “Shared String” in 
the Ruby C source code. You create a Shared 
String every time you write a line of Ruby 
code that copies one string to another, similar 
to this:

str = "Lorem ipsum dolor sit amet, con-
sectetur adipisicing elit" 
str2 = str

Here the Ruby interpreter has realized that 
you are assigning the same string value to 
two variables: str and str2. So in fact there’s 
no need to create two copies of the string 
data itself. Instead, Ruby creates two RString 
values that share the single copy of the string 
data. The way this works is that both RString 
structs contain the same ptr value to the 
shared data… meaning both strings contain 
the same value. There’s also a shared value 
saved in the second RString struct that points 
to the first RString struct. There are some 
other details, which I’m not showing here, 
such as some bit mask flags that Ruby uses to 
keep track of which RStrings are shared and 
which are not.

Aside from saving memory, this also speeds 
up execution of your Ruby programs dramat-
ically by avoiding the need to allocate more 
memory from the heap using another call to 
malloc. malloc is actually a fairly expensive 
operation: it takes time to track down avail-
able memory of the proper size in the heap 
and also to keep track of it for freeing later.
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Here’s a somewhat more accurate 
version of the C RString structure, 
including the shared value:

struct RString { 
    long len; 
    char *ptr; 
    VALUE shared; 
};

Strings that are copied from one 
variable to another like this I call 
“Shared Strings.”

Embedded Strings
The third and last way that MRI 
Ruby 1.9 saves string data is by 
embedding the characters into the 
RString structure itself, like this:

str3 = "Lorem ipsum dolor"

 This RString structure contains 
a character array called ary and not 
the ptr, len and shared values we 
saw above. Here’s another simpli-
fied definition of the same RString 
structure, this time containing the 
ary character array:

struct RString { 
  char ary[RSTRING_EMBED_LEN_
MAX + 1]; 
}

If you’re not familiar with C 
code, the syntax char ary[100] 
creates an array of 100 characters 
(bytes). Unlike Ruby, C arrays are 
not objects. Instead, they are really 
just a collection of bytes. In C you 
have to specify the length of the 
array you want to create ahead of 
time.

How do Embedded Strings work? 
Well, the key is the size of the ary 
array, which is set to RSTRING_
EMBED_LEN_MAX+1. If you’re running 
a 64-bit version of Ruby, RSTRING_
EMBED_LEN_MAX is set to 24. That 
means a short string like this will fit 
into the RString ary array:

str = "Lorem ipsum dolor"

… while a longer string like this will 
not:

str = "Lorem ipsum dolor sit 
amet, consectetur adipisicing 
elit"

How Ruby creates new string 
values
Whenever you create a string value 
in your Ruby 1.9 code, the inter-
preter goes through an algorithm 
similar to this:

■■ Is this a new string value or a 
copy of an existing string? If it’s 
a copy, Ruby creates a Shared 
String. This is the fastest option 
since Ruby only needs a new 
RString structure and not another 
copy of the existing string data.

■■ Is this a long string or a short 
string? If the new string value is 
23 characters or less, Ruby cre-
ates an Embedded String. While 
not as fast as a Shared String, it’s 
still fast because the 23 charac-
ters are simply copied right into 
the RString structure and there’s 
no need to call malloc.

■■ Finally, for long string values, 24 
characters or more, Ruby cre-
ates a Heap String — meaning it 
calls malloc and gets some new 
memory from the heap, and then 
copies the string value there. This 
is the slowest option.

The actual RString structure
For those of you familiar with the C 
language, here’s the actual Ruby 1.9 
definition of RString:

struct RString { 
  struct RBasic basic; 
  union { 
    struct { 
      long len; 
      char *ptr; 
      union { 
        long capa; 
        VALUE shared; 
      } aux; 
    } heap; 
 
    char ary[RSTRING_EMBED_LEN_
MAX + 1]; 
  } as; 
};

I won’t try to explain all the code 
details here, but here are a couple 
important things to learn about 
Ruby strings from this definition:

■■ The RBasic structure keeps 
track of various important bits 
of information about this string, 
such as flags indicating whether 
it’s shared or embedded, and 
a pointer to the corresponding 
Ruby String object structure.

■■ The capa value keeps track of the 
“capacity” of each Heap String... 
it turns out Ruby will often 
allocate more memory than is 
required for each Heap String, 
again to avoid extra calls to 
malloc if a string size changes.

■■ The use of union allows Ruby 
to EITHER save the len/ptr/
capa/shared information OR the 
actual string data itself.

■■ The value of RSTRING_EMBED_LEN_
MAX was chosen to match the size 
of the len/ptr/capa values. That’s 
where the 23-character limit 
comes from.
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We get an interesting result:

          user       system     total     real 
21 chars  0.250000   0.000000   0.250000 (0.247459) 
22 chars  0.250000   0.000000   0.250000 (0.246954) 
23 chars  0.250000   0.000000   0.250000 (0.248440) 
24 chars  0.480000   0.000000   0.480000 (0.478391) 
25 chars  0.480000   0.000000   0.480000 (0.479662) 
26 chars  0.480000   0.000000   0.480000 (0.481211) 
27 chars  0.490000   0.000000   0.490000 (0.490404)

Note that when the string length is 23 or less, it takes 
about 250ms to create 1 million new strings. But when 
my string length is 24 or more, it takes around 480ms, 
almost twice as long!

Here’s a graph showing some more data; the bars show 
how long it takes to allocate 1 million strings of the given 
length:

Conclusion
Don’t worry! I don’t think you should refactor all your 
code to be sure you have strings of length 23 or less. That 
would obviously be ridiculous. The speed increase sounds 
impressive, but actually the time differences I measured 
were insignificant until I allocated 100,000s or millions 
of strings — how many Ruby applications will need to 
create this many string values? And even if you do need to 
create many string objects, the pain and confusion caused 
by using only short strings would overwhelm any perfor-
mance benefit you might get.

For me I really think understanding something about 
how the Ruby interpreter works is just fun! I enjoyed 
taking a look through a microscope at these sorts of tiny 
details. I do also suspect having some understanding of 
how Matz and his colleagues actually implemented the 
language will eventually help me to use Ruby in a wiser 
and more knowledgeable way. n

Pat Shaughnessy (@pat_shaughnessy) is a Ruby developer working 
at a global management consulting firm. Pat also writes in-depth 
articles at patshaughnessy.net, some of which have been featured on 
the Ruby Weekly newsletter, the Ruby5 podcast and the Ruby Show.

Here’s the line of code from ruby.h that defines 
this value:

#define RSTRING_EMBED_LEN_MAX ((int)
((sizeof(VALUE)*3)/sizeof(char)-1))

On a 64-bit machine, sizeof(VALUE) is 8, 
leading to the limit of 23 characters. This will be 
smaller for a 32-bit machine.

Benchmarking Ruby string allocation
Let’s try to measure how much faster short strings 
are vs. long strings in Ruby 1.9.3. Here’s a simple 
line of code that dynamically creates a new string 
by appending a single character onto the end:

new_string = str + 'x'

The new_string value will either be a Heap 
String or an Embedded String, depending on how 
long the str variable’s value is. The reason I need 
to use a string concatenation operation, the + 'x' 
part, is to force Ruby to allocate a new string 
dynamically. Otherwise, if I just used new_string = 
str, I would get a Shared String.

Now I’ll call this method from a loop and bench-
mark it:

require 'benchmark' 
 
ITERATIONS = 1000000 
 
def run(str, bench) 
  bench.report("#{str.length + 1} chars") do 
    ITERATIONS.times do 
      new_string = str + 'x' 
    end 
  end 
end

Here I’m using the benchmark library to mea-
sure how long it takes to call that method 1 million 
times. Now running this with a variety of different 
string lengths:

Benchmark.bm do |bench| 
  run("12345678901234567890", bench) 
  run("123456789012345678901", bench) 
  run("1234567890123456789012", bench) 
  run("12345678901234567890123", bench) 
  run("123456789012345678901234", bench) 
  run("1234567890123456789012345", bench) 
  run("12345678901234567890123456", bench) 
end
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Reprinted with permission of the original author. First appeared in hn.my/23char (patshaughnessy.net)

http://twitter.com/pat_shaughnessy
http://patshaughnessy.net
http://hn.my/23char
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By Nick JohnSon

Fountain Codes

Fountain Codes, otherwise 
known as “rateless codes,” is 
a way to take some data — a 

file, for example — and transform 
it into an effectively unlimited 
number of encoded chunks, such 
that you can reassemble the origi-
nal file given any subset of those 
chunks, as long as you have a little 
more than the size of the origi-
nal file. In other words, it lets you 
create a “fountain” of encoded data; 
a receiver can reassemble the file by 
catching enough “droplets,” regard-
less of which ones they get and 
which ones they miss.

What makes this so remarkable 
is that it allows you to send a file 
over a lossy connection — such as, 
say, the internet — in a way that 
doesn’t rely on you knowing the 
rate of packet loss, and it doesn’t 
require the receivers to commu-
nicate anything back to you about 
which packets they missed. You 
can see how this would be useful 
in a number of situations, from 

sending a static file over a broad-
cast medium, such as on-demand 
TV, to propagating chunks of a file 
amongst a large number of peers, 
like BitTorrent does.

Fundamentally, though, fountain 
codes are surprisingly simple. There 
are a number of variants, but for 
the purposes of this article, we’ll 
examine the simplest, called an LT, 
or Luby Transform Code. LT codes 
generate encoded blocks like this:

1.	Pick a random number, d, 
between 1 and k, the number of 
blocks in the file. We’ll discuss 
how best to pick this number 
later.

2.	Pick d blocks at random from the 
file, and combine them together. 
For our purposes, the xor opera-
tion will work fine.

3.	Transmit the combined block, 
along with information about 
which blocks it was constructed 
from.

That’s pretty straightforward, 
right? A lot depends on how we 
pick the number of blocks to com-
bine together — called the degree 
distribution — but we’ll cover that 
in more detail shortly. You can see 
from the description that some 
encoded blocks will end up being 
composed of just a single source 
block, while most will be composed 
of several source blocks.
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Another thing that might not be immedi-
ately obvious is that while we do have to let 
the receiver know what blocks we combined 
together to produce the output block, we 
don’t have to transmit that list explicitly. 
If the transmitter and receivers agree on a 
pseudo-random number generator, we can 
seed that PRNG with a randomly chosen 
seed and use that to pick the degree and 
the set of source blocks. Then, we just send 
the seed along with the encoded block, and 
our receiver can use the same procedure to 
reconstruct the list of source blocks we used.

The decoding procedure is a little — but 
not much — more complicated:

1.	Reconstruct the list of source blocks that 
were used to construct this encoded block.

2.	For each source block from that list,  xor 
that block with the encoded block if you 
have already decoded it, and remove it 
from the list of source blocks.

3.	If there are at least two source blocks left 
in the list, add the encoded block to a 
holding area.

4.	If there is only one source block remaining 
in the list, you have successfully decoded 
another source block! Add it to the 
decoded file, and iterate through the hold-
ing list, repeating the procedure for any 
encoded blocks that contain it.

0x48 0x48 = "H"

0x2D ?

0x24 ?

0x66 ?

0x03 ?

0x48 0x48 = "H"

0x2D 0x65 = "e"

0x24 0x6C = "I"

0x66 ?

0x03 ?

Let’s work through an 
example of decoding to 
make it clearer. Suppose 
we receive five encoded 
blocks, each one byte 
long, along with informa-
tion about which source 
blocks each is constructed 
from. We could represent 
our data in a graph, like 
this:

 

Nodes on the left repre-
sent encoded blocks we 
received, and nodes on 
the right represent source 
blocks. The first block 
we received, 0x48 turns 
out to consist of only one 
source block — the first 
source block — so we 
already know what that 
block was. Following the 
arrows pointing to the 
first source block, we can 
see that the second and 
third encoded blocks only 
depend on the first source 
block and one other. Since 
we now know the first 
source block, we can xor 
them together, giving us 
this:
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Repeating the same 
procedure again, we can 
see we now know enough 
to decode the fourth 
encoded block, which 
depends on the second 
and third source blocks, 
both of which we now 
know. XORing them 
together lets us decode 
the fifth and final source 
block, giving us this: 

 

Finally, we can now 
decode the last remaining 
source block, giving us the 
rest of the message:

 

0x48 0x48 = "H"

0x2D 0x65 = "e"

0x24 0x6C = "I"

0x66 ?

0x03 0x6F = "o"

0x48 0x48 = "H"

0x2D 0x65 = "e"

0x24 0x6C = "I"

0x66 0x6C = "I"

0x03 0x6F = "o"

Admittedly this is a fairly contrived 
example since we happened to receive just 
the blocks we needed to decode the message, 
with no extras and in a very convenient order. 
However, it serves to demonstrate the prin-
ciple. I’m sure you can see how this applies to 
larger blocks and larger files quite simply.

I mentioned earlier that selecting the 
degree distribution, which is the number of 
source blocks each encoded block should 
consist of, is quite important. Ideally, we need 
to generate a few encoded blocks that have 
just one source block so decoding can get 
started, and a majority of encoded blocks that 
depend on a few others. It turns out such an 
ideal distribution exists, and is called the ideal 
soliton distribution.

Unfortunately, the ideal soliton distribu-
tion isn’t quite so ideal in practice, as random 
variations make it likely that there will be 
source blocks that are never included, or that 
decoding will stall when it runs out of known 
blocks. A variation on the ideal soliton distri-
bution, called the robust soliton distribution, 
improves on this, generating more blocks 
with very few source blocks and also generat-
ing a few blocks that combine all or nearly all 
of the source blocks to facilitate decoding the 
last few source blocks.

That, in a nutshell, is how fountain codes, 
and LT codes specifically, work. LT codes 
are the least efficient of the known fountain 
codes, but also the simplest to explain. If 
you’re interested in learning more, I’d highly 
recommend reading this technical paper on 
fountain codes [hn.my/mackay], as well as 
reading about Raptor Codes [hn.my/raptor], 
which add only a little complexity over LT 
codes, but significantly improve their effi-
ciency, both in terms of transmission over-
head and computation. n

Nick Johnson is a Developer Programs Engineer for 
Google App Engine, who’s just seen the light and relo-
cated to Australia. He regularly blogs about interesting 
computer science topics at his blog [blog.notdot.net]. 
When he’s not saving the world there, he can be found 
on Twitter (@nicksdjohnson) or Stack Overflow help-
ing folks out. 

Reprinted with permission of the original author. 
First appeared in hn.my/fountain (notdot.net)

http://hn.my/mackay
http://hn.my/raptor
http://blog.notdot.net
http://twitter.com/nicksdjohnson
http://hn.my/fountain


27  PROGRAMMING

By Ian Ward

Unfortunate Python

Python is a wonder-
ful language, but some 
parts should really 
have bright warning 

signs all over them. There are fea-
tures that just can’t be used safely 
and others are that are useful but 
people tend to use in the wrong 
ways. 

Easy Stuff First
Starting with the non-controversial: 
Anything that has been marked 
deprecated should be avoided. The 
deprecation warning should have 
instructions with safe alternatives 
you can use. 

Some of the most frequent 
offenders are parts of the language 
that make it difficult to safely call 
other programs: 

■■ os.system()

■■ os.popen()

■■ import commands

We have the excellent subprocess 
module for these now, use it. 

Ducks in a Row
Explicitly checking the type of a 
parameter passed to a function 
breaks the expected duck-typing 
convention of Python. Common 
type checking includes: 

■■ isinstance(x, X)

■■ type(x) == X

With type() being the worse of the 
two. 

If you must have different behav-
ior for different types of objects 
passed, try treating the object as 
the first data type you expect, and 
catching the failure if that type 
wasn’t that type, and then try the 
second. This allows users to create 
objects that are close enough to the 
types you expect and still use your 
code.  

Not Really a Vegetable

import pickle # or cPickle

Objects serialized with pickle are 
tied to their implementations in 
the code at that time. Restoring 
an object after an underlying class 
has changed will lead to undefined 
behavior. Unserializing pickled data 
from an untrusted source can lead 
to remote exploits. The pickled data 
itself is opaque binary that can’t be 
easily edited or reviewed. 

This leaves only one place 
where pickle makes sense — short-
lived data being passed between 
processes, just like what the 
multiprocessing module does. 

Anywhere else, use a different 
format. Use a database or use JSON 
with a well-defined structure. Both 
are restricted to simple data types 
and are easily verified or updated 
outside of your Python script. 
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Toys are for Children
Many people are drawn to these 
modules because they are part of 
Python’s standard library. Some 
people even try to do serious work 
with them. 

■■ asyncore / asynchat 

■■ SimpleHTTPServer 

The former resembles a reason-
able asynchronous library, until you 
find out there are no timers. At all. 
Use Twisted instead; it’s the best 
we’ve got. 

The latter makes for a neat demo 
by giving you a web server in your 
pocket with the one command 
python -m SimpleHTTPServer. But 
this code was never intended for 
production use and certainly not 
designed to be run as a public web 
server. There are plenty of real, 
hardened web servers out there 
that will run your Python code as a 
WSGI script. Choose one of them 
instead. 

Foreign Concepts

import array

All the flexibility and ease of use of 
C arrays, now in Python! 

If you really, really need this you 
will know. Interfacing with C code 
in an extension module is one valid 
reason. 

If you’re looking for speed, try 
just using regular Python lists 
and PyPy. Another good choice is 
NumPy for its much more capable 
array types. 

Can't be Trusted

def __del__(self):

The mere existence of this method 
makes objects that are part of a 
reference cycle uncollectable by 

Python’s garbage collector and 
could lead to memory leaks. 

Use a weakref.ref object with a 
callback to run code when an object 
is being removed instead. 

Split Personality

reload(x)

It looks like the code you just 
changed is there, except the old 
versions of everything are still there 
too. Objects created before the 
reload will still use the code as it 
was when they were created, lead-
ing to situations with interesting 
effects that are almost impossible to 
reproduce. 

Just re-run your program. If 
you’re debugging at the interactive 
prompt, consider debugging with a 
small script and python -i instead. 

Almost Reasonable

import copy

The copy module is harmless 
enough when used on objects that 
you create and you fully under-
stand. The problem is once you get 
in the habit of using it, you might 
be tempted to use it on objects 
passed to you by code you don’t 
control. 

Copying arbitrary objects is 
troublesome because you will often 
copy too little or too much. If this 
object has a reference to an external 
resource, it’s unclear what copying 
that even means. It can also easily 
lead to subtle bugs introduced into 
your code by a change outside your 
code. 

If you need a copy of a list or a 
dict, use list() or dict() because 
you can be sure what you will get 
after they are called. copy(), how-
ever, might return anything, and 
that should scare you. 

Admit You Always Hated It

if __name__ == '__main__':

This little wart has long been a 
staple of many Python introduc-
tions. It lets you treat a Python 
script as a module or a module as 
a Python script. Clever, sure, but 
it’s better to keep your scripts and 
modules separate in the first place. 

If you treat a module like a script, 
and then something imports the 
module, you’re in trouble: now you 
have two copies of everything in 
that module. 

I have used this trick to make 
running tests easier, but setuptools 
already provides a better hook for 
running tests. For scripts, setuptools 
has an answer too: just give it a 
name and a function to call, and 
you’re done. 

My last criticism is that a single 
line of Python should never be 10 
alphanumeric characters and 13 
punctuation characters. All those 
underscores are there as a warn-
ing that some special non-obvious 
language-related thing is going on, 
and it’s not even necessary. 

Don’t Emulate stdlib
If it’s in standard library, it must be 
well written, right? 

May I present the implementa-
tion of namedtuple, which is a 
really handy little class that, if used 
properly, can significantly improve 
your code’s readability: 

def namedtuple(typename, 
field_names, verbose=False, 
rename=False): 
  # Parse and validate the field  
  # names. Validation serves  
  # two purposes, generating  
  # informative error messages  
  # and preventing template    
  # injection attacks.
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Wait, what? “preventing template injection attacks”? 
This is followed by 27 lines of code that validates field_names. 

And then: 

template = '''class %(typename)s(tuple): 
   '%(typename)s(%(argtxt)s)' \n 
   __slots__ = () \n 
   _fields = %(field_names)r \n 
   def __new__(_cls, %(argtxt)s): 
       'Create new instance of %(typename)s(%(argtxt)s)' 
       return _tuple.__new__(_cls, (%(argtxt)s)) \n 
   @classmethod 
   def _make(cls, iterable, new=tuple.__new__, len=len): 
       'Make a new %(typename)s object from a sequence or 
iterable' 
       result = new(cls, iterable) 
       if len(result) != %(numfields)d: 
       raise TypeError('Expected %(numfields)d arguments, 
got %%d' %% len(result)) 
       return result \n 
   def __repr__(self): 
       'Return a nicely formatted representation string' 
       return '%(typename)s(%(reprtxt)s)' %% self \n 
   def _asdict(self): 
       'Return a new OrderedDict which maps field names to 
their values' 
       return OrderedDict(zip(self._fields, self)) \n 
   __dict__ = property(_asdict) \n 
   def _replace(_self, **kwds): 
       'Return a new %(typename)s object replacing specified 
fields with new values' 
       result = _self._make(map(kwds.pop, %(field_names)r, 
_self)) 
       if kwds: 
           raise ValueError('Got unexpected field names: 
%%r' %% kwds.keys()) 
       return result \n 
   def __getnewargs__(self): 
       'Return self as a plain tuple.  Used by copy and 
pickle.' 
       return tuple(self) \n\n''' % locals()

Yes, that’s a class definition in a big 
Python string, filled with variables from 
locals(). The result is then execed in the 
right namespace, and some further magic is 
applied to “fix” copy() and pickle(). 

I believe this code was meant as some 
sort of warning to people that would con-
tribute code to Python — something like 
“We make it look like we know what we’re 
doing, but we’re really just nuts” (love ya 
Raymond).

Trying Too Hard

hasattr(obj, 'foo')

hasattr has always been defined to swal-
low all exceptions, even ones you might 
be interested in (such as a KeyboardInter-
rupt), and turn them into a False return 
value. This interface just can’t be fixed, so 
use getattr with a sentinel value instead. 

Off by One

'hello'.find('H')

str.find and str.rfind return -1 on failure. 
This can lead to some really hard-to-find 
bugs when combined with containers like 
strings that treat -1 as the last element. Use 
str.index and str.rindex instead. n

Ian Ward is an independent software developer 
in Ottawa, Canada. He works primarily with Linux, 
Python, C and PostgreSQL. He is also the author and 
maintainer of the Python console user interface 
library Urwid.

Reprinted with permission of the original author. 
First appeared in hn.my/unfortunate (excess.org)

http://hn.my/unfortunate
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By Brandon Mintern

If you are anything like me, 
you have programs running 
on all kinds of different 
servers. You probably have 

a GitHub account, a free Heroku 
instance, a work desktop, a couple 
website instances, and maybe even 
a home server. The best part is that 
using common Unix tools, you can 
connect to all of them from one 
place.

In this article, I will review some 
of the more interesting aspects of 
my workflow, covering the usage 
of SSH, screen, and VNC, includ-
ing a guide for getting started with 
VNC. I’ll provide some quick start 
information and quickly progress 
to advanced topics (like SSH pipes 
and auto-session-creation) that even 
experienced Unix users may not be 
aware of.

SSH to rule them all
By now you’ve almost certainly 
used SSH. It’s the easiest way to 
login to a remote machine and get 
instant command line access. It’s as 
easy as ssh user@example.com. You 
type in your password, and you’re 
in! But you might not know that 
it can be even easier (and more 
secure) than that.

Logging in via SSH without a 
password
We have only recently seen web-
sites start to offer solutions for 
logging in without a password. SSH 
has provided a secure mechanism 
for this (based on public-key cryp-
tography) since its inception. It’s 
pretty easy to setup once you know 
how it works.

1. Generate a public-private key 
pair
If you haven’t already, run ssh-
keygen on your laptop, or what-
ever computer you will be doing 
your work from. You can just 
continue pressing Enter to accept 
the defaults, and you can leave the 
password blank (if you secure your 
laptop with encryption, a locking 
screensaver, and a strong password, 
your SSH key doesn’t require a 
password). This will generate a 
public key at ~/.ssh/id_rsa.pub 
and a private key at ~/.ssh/id_rsa. 
The private key should never leave 
your computer.

2. Copy the public key to each 
computer you connect to
For each computer that you 
connect to, run the following 
command:

ssh-copy-id user@example.com

(Note that you can specify -p PORT 
or any other SSH arguments before 
the user@example.com portion of 
the above command.)

This should be the last time 
you ever have to type your login 
password when connecting to the 
remote server. From now on, when 
you SSH to the remote server, its 
sshd service will encrypt some 
data using the public key that you 
appended to authorized_keys, and 
your local machine will be able to 
decode that challenge with your 
private key.

3. There is no step 3
It’s that easy! Don’t you wish you 
had set this up a long time ago?

Tips for Remote Unix Work
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SSH and pipes
If you take a look at the ssh-copy-
id script, you’ll see a line that 
roughly translates to:

cat ~/.ssh/id_rsa.pub | ssh 
user@example.com "umask 077; 
test -d ~/.ssh || mkdir 
~/.ssh ; cat >> ~/.ssh/
authorized_keys"

When you ran ssh-copy-id above, 
here’s what that line did:

1.	The contents of ~/.ssh/id_rsa.
pub were piped into the SSH 
command.

2.	SSH encrypted that data and 
sent it across the network to your 
remote machine.

3.	Everything in double quotes after 
the host is a single argument to 
ssh; this specified that instead of 
giving you an interactive login, 
you instead wanted to run a 
command.

4.	The first portion of that com-
mand (umask 077; test -d 
~/.ssh || mkdir ~/.ssh ;) 
created a .ssh directory on the 
remote machine if it did not 
already exist, ensuring that it had 
the proper permissions.

5.	The second portion (cat >> 
.ssh/authorized_keys) received 
the standard input via the SSH 
tunnel and appended it to the 
authorized_keys file on the 
remote machine.

This avoids the need to use SCP 
and login multiple times. SSH 
can do it all! Here are some more 
examples to show you some of the 
neat things you can do with SSH 
pipe functionality.

Send the files at ~/src/ to example.
com:~/src/ without rsync or scp

cd && tar czv src | ssh exam-
ple.com 'tar xz'

Copy the remote website at exam-
ple.com:public_html/example.com 
to ~/backup/example.com

mkdir -p ~/backup/ 
 
cd !$ 
 
ssh example.com 'cd public_html 
&& tar cz example.com' | tar 
xzv

See if httpd is running on  
example.com

ssh example.com 'ps ax | grep 
[h]ttpd'

Other SSH tunnels
If piped data were the only thing 
that could be securely tunneled 
over SSH connections, that would 
still be useful. But SSH can also 
make remote ports seem local. 
Let’s say that you’re logged into 
example.com, and you’re editing a 
remote website that you’d like to 
test on port 8000. But you don’t 
want just anyone to be able to 
connect to example.com:8000, and 
besides, your firewall won’t allow it. 
What if you could get a connection 
to example.com, localhost:8000, 
but from your local computer and 
browser? Well, you can!

Create an SSH tunnel

ssh -NT -L 9000:localhost:8000 
example.com

Using the -L flag, you can tell SSH 
to listen on a local port (9000), 
and to reroute all data sent and 
received on that port to example.
com:8000. To any process listen-
ing on example.com:8000, it will 
look like it’s talking to a local 
process (and it is: an SSH process). 
So open a terminal and run the 
above command, and then fire up 
your browser locally and browse to 
localhost:9000. You will be whisked 
away to example.com:8000 as if 
you were working on it locally!

Let me clarify the argument to -L 
a bit more. The bit before the colon 
is the port on your local machine 
that you will connect to in order 
to be tunneled to the remote port. 
The part after the second colon is 
the port on the remote machine. 
The “localhost” bit is the remote 
machine you will be connected to, 
from the perspective of example.
com. When you realize the rami-
fications of this, it becomes even 
more exciting! Perhaps you have a 
work computer to which you have 
SSH access, and you have a com-
pany intranet site at 192.168.10.10. 
Obviously, you can’t reach this 
from the outside. Using an SSH 
tunnel, however, you can!

ssh -NT -L 
8080:192.168.10.10:80 work-
account@work-computer.com

Now browse to localhost:8080 
from your local machine, and smile 
as you can access your company 
intranet from home with your lap-
top’s browser, just as if you were on 
your work computer.
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But my connection sucks, or, 
GNU screen
Have you ever started a long-
running command, checked in on it 
periodically for a couple hours, and 
then watched horrified as your con-
nection dropped and all the work 
was lost? Don’t let it happen again. 
Install GNU screen on your remote 
machine, and when you reconnect 
you can resume your work right 
where you left off (it may have 
even completed while you were 
away).

Now, instead of launching right 
into your work when you connect 
to your remote machine, first start 
up a screen session by running 
screen. From now on, all the work 
you are doing is going on inside 
screen. If your connection drops, 
you will be detached from the 
screen session, but it will continue 
running on the remote machine. 
You can reattach to it when you log 
back in by running screen -r. If 
you want to manually detach from 
the session but leave it running, 
type Ctrl-a, d from within the 
screen session.

Using screen
Screen is a complex program, and 
going into everything it can do 
would be a series of articles. Instead, 
check out this great screen quick 
reference guide [hn.my/screen]. 
Some of screen’s more notable 
features are its ability to allow 
multiple terminal buffers in a single 
screen session and its scrollback 
buffer.

What happened to Control-a?
Screen intercepts Control-a to 
enable some pretty cool function-
ality. Unfortunately, you may be 
used to using Control-a for readline 
navigation. You can now do this by 
pressing Ctrl-a, a. Alternatively, 
you can remap it by invoking screen 
with the -e option. For example, 
running screen -e ^jj would 
cause Control-j to be intercepted 
by screen instead of Control-a. If 
you do this, just replace references 
to “C-a” in the aforementioned ref-
erence guide with whatever escape 
key you defined.

Shift-PageUp is broken
Like vim and less, screen uses 
the terminal window differently 
from most programs, controlling 
the entire window instead of just 
dumping text to standard output 
and standard error. Unfortunately, 
this breaks Shift-PageUp and Shift-
PageDown in gnome-terminal. For-
tunately, we can fix this by creating 
a ~/.screenrc file with the follow-
ing line in it:

termcapinfo xterm ti@:te@

And while you’re mucking 
around in .screenrc, you might as 
well add an escape ^jj line to it, so 
that you can stop typing in -e ^jj 
every time you invoke screen.

Starting screen automatically
It’s pretty easy to forget to run 
screen after logging in. Personally, 
any time I am using SSH to login 
and work interactively, I want to be 
in a screen session. We can com-
bine SSH’s ability to run a remote 
command upon login with screen’s 
ability to reconnect to detached ses-
sions. Simply create an alias in your 
~/.bashrc file:

alias sshwork='ssh -t work-
username@my-work-computer.com 
"screen -dR"'

This will automatically fire up 
a screen session if there is not one 
running, and if there is one running, 
it will connect to it. Detaching from 
the screen session will also logout of 
the remote server.

Remote graphical work
Even in spite of SSH’s port for-
warding capabilities, we still some-
times need to use graphical applica-
tions. If you have a fast connection 
or a simple GUI, passing the -Y flag 
to SSH could be enough to allow 
you run the application on your 
local desktop. Unfortunately, this 
often is a very poor user experience, 
and it does not work well with 
screen (a GUI application started 
in a screen session dies when you 
detach from the screen session).

The time-tested Unix solution to 
this problem is VNC. This is effec-
tively a combination of screen and 
a graphical environment. Unfortu-
nately, it has several drawbacks.

http://hn.my/screen
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■■ It can be tricky to setup 
reasonably.

■■ It is inherently insecure, with 
unencrypted data and a weak 
password feature.

■■ Its performance on a sub-optimal 
connection is less-than-stellar.

■■ It doesn’t transfer sounds over 
the network.

I’m going to help you solve all of 
these problems, except the sound 
one. Who needs sounds, anyway?

VNC installation and setup
On the remote machine, you’ll 
need to install a VNC server and a 
decent lightweight window man-
ager. I chose fluxbox and x11vnc:

sudo apt-get install x11vnc 
fluxbox

The programs that are started 
when you first start a VNC ses-
sion are controlled by the ~/.vnc/
xstartup file. I prefer something a 
bit better than the defaults, so mine 
looks like this:

#!/bin/sh 
[ -x /etc/vnc/xstartup ] && 
exec /etc/vnc/xstartup 
[ -r $HOME/.Xresources ] && 
xrdb $HOME/.Xresources 
netbeans & 
gnome-terminal & 
fluxbox &

Modify this to suit your own 
needs. I only invoke netbeans 
because it’s the only reason I 
ever use a remote GUI at all. NB: 
Although it may seem counterin-
tuitive, it’s typically best to put the 
window manager command last.

You can start a VNC server with 
the following command:

vncserver -geometry WIDTHxHEIGHT

where WIDTHxHEIGHT is your 
desired resolution. For me, it’s 
1440x900. The first time you run 
this, it will ask you to create a 
password. We are going to ensure 
security through other means, so 
you can set it to whatever you want. 
Running the above command will 
give a message like “New ‘remote-
machine:1 (username)’ desktop is 
remote-machine:1”. The “:1” is the 
display number. By adding 5900 
to this, we can determine which 
port the VNC server is listening 
on. At this point, we can connect 
to remote-machine:5901 with a 
vncviewer and log in to the session 
we’ve created. We don’t want the 
entire Internet to be able to connect 
to our poorly-secured session, so let’s 
terminate that VNC server session:

vncserver -kill :1

Securing the VNC server
Remember how we tunneled ports 
with SSH? We can do the same 
thing with VNC data. First, we’ll 
invoke our VNC server slightly 
differently:

vncserver -localhost -geometry 
WIDTHxHEIGHT -SecurityTypes 
None

This causes the VNC server 
to only accept connections that 
originate on the local machine. 
It also indicates that we will not 
need a password to connect to 
our session; simply being logged 
in locally as the user who created 
the session is enough. You should 
now have a VNC server running 
on a remote machine listening on 
localhost:5901.

On your local machine, install 
a VNC viewer. I personally use 
gvncviewer, though I don’t par-
ticularly recommend it. Now, to 
connect to that remote port, you’ll 
need to start an SSH tunnel on 
your local machine:

ssh -NT -L 5901:localhost:5901 
remote-machine.com

We can now run the VNC viewer 
on our local machine to connect via 
the tunnel to our VNC session:

gvncviewer :1

Speeding up VNC?
When starting an SSH tunnel, we 
can compress the data it sends by 
including the -C flag. Depending 
on your connection speed, it may 
be worth including the flag in your 
tunnel command. Experiment with 
this option and see what works best 
for you.

If you are really having prob-
lems, you might also want to check 
out the -deferUpdate option, 
which can delay how often display 
changes are sent to the client. For 
more information, man Xvnc.

Automatically starting and connect-
ing to your VNC session
Putting everything together, we can 
create a script that does all of this 
for us. Simply set the GEOMETRY and 
SSH_ARGS variables appropriately (or 
modify it slightly to accept them as 
command line arguments).



#!/bin/bash 
set -e 
 
GEOMETRY=1440x900 
SSH_ARGS='-p 22 username@remote-server.com' 
 
# Get VNC display number. If there is not a VNC 
# process running, start one 
vnc_display="$(ssh $SSH_ARGS 'ps_text="$(ps x | 
grep X[v]nc | awk '"'"'{ print $6 }'"'"' | sed 
s/://)"; if [ "$ps_text" = "" ]; then vncserver 
-localhost -geometry '$GEOMETRY' -Security-
Types none 2>&1 | grep New | sed '"'"'s/^.*:\
([^:]*\)$/\1/'"'"'; else echo "$ps_text"; fi')" 
port=`expr 5900 + $vnc_display` 
ssh -NTC -L $port:localhost:$port $SSH_ARGS & 
SSH_CMD=`echo $!` 
sleep 3 
gvncviewer :$vnc_display 
kill $SSH_CMD

The vnc_display line is pretty gross, so I’ll give some 
explanation. It uses SSH to connect to the remote server 
and look for a running process named Xvnc: this is the 
running VNC server. If there’s one running we extract 
the display number. Otherwise, we start one up with 
the specified geometry and grab the display number 

from there. This all happens within a single command 
executed by ssh, and the resulting output is piped across 
the network back into our vnc_display variable.

Either way we get the value, we now know which 
port to connect to in order to reach our VNC server. 
We start our SSH tunnel and get the resulting PID. 
Finally, we invoke the vncviewer on that tunneled local 
port. When the VNC viewer exits, we automatically 
kill our SSH tunnel as well.

Concluding remarks
One of the best parts of Unix is that it was built to 
be run remotely from Day 1. Just about anything you 
can do on your local computer can also be done on a 
remote one. By leveraging tools like SSH, screen, and 
VNC, we can make remote work as easy and conve-
nient as local work. I hope this gave you some ideas for 
how you can create a productive workflow with these 
very common Unix tools. n

Brandon Mintern is Lead Software Engineer at EasyESI, a seed-
funded startup in Berkeley. His pursuits include reverse engi-
neering, data processing, and language design. He presented 
at the first annual PyOhio. He currently enjoys exploring all the 
Bay Area has to offer.

By Timothy DalyBeing a Great Coder
Do yourself a favor and lose 

the “great coder” meme. Or 
get a job at Google and remain 
blissfully unaware. 

One of the best books I’ve ever 
read about programming is called 
“Practicing: A Musician’s Return 
to Music,” where the author talks 
about his development as a musi-
cian. He would receive compli-
ments on how great he was at 
playing the guitar. At one point he 
replies, “How would you know?” 
The better he got, the worse he 
knew he was. 

Your opinion of how great you 
are at programming will follow a 
bell curve. You’ll start off coming 
out of college thinking you’re ok, 
memorize a few algorithms and 
order theory (“the Google disease”) 
and think you’re “great” (“Google 
only hires great coders”). But as 
you learn more you’ll discover that 
you have SO much more to learn, 
and as you work on larger proj-
ects you’ll discover the musician’s 
insight. People would rate you 
“great,” but you’ll be able to say, 
“How would you know?” At which 
point, the better you get, the worse 
you’ll know you are. 

Anybody who rates themselves 
as “great” is probably on the uphill 
side of the learning curve. 

If you’re trying to learn Clojure, 
moving into areas that are beyond 
your comfort zone, and trying 
to learn literate programming to 
improve your game, all points to the 
fact that you will likely reach a point 
where you feel that being labeled 
“great” is a sign that the speaker is 
clueless. Give it 10000 hours. n

Timothy Daly is Axiom’s lead developer. 
He is currently running his own consulting 
business, Literate Software, while building 
a base of literate tools.
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SPECIAL

By JAMES TAUBER 

Why 13th 

As the background to my 
music theory is more classical 
in nature, it used to puzzle me 
when I saw jazz chords like 

C9, B♭11 or F13. I mean, I knew what a 9th, 
11th and 13th note were, but I wondered why 
you’d call a note a 9th rather than a 2nd, or a 
13th rather than a 6th and so on. 

After all, when you talk about chord, you’re 
normally talking about notes independent of 
octave. If you describe something as a C7 chord, 
you’re not saying anything about whether the E 
and B♭ are in the same octave or not. 

I can’t remember when, but the breakthrough 
came when I realized that a 9th chord isn’t just 
a major triad with the 2nd added, but one with 
the 2nd and 7th added. An 11th chord is one 
with the 4th and 7th added. 

(Just as an aside: the fact 2+7=9 and 4+7=11 
here is an unrelated coincidence. An 11th is 
4th+octave, but due to the 1-based indexing 
used, you add 7, not 8.) 

Now yes, I’ve seen the theory books 
where they show a C9 as C+E+G+B♭+D, 
a C11 as C+E+G+B♭+D+F and a C13 as 
C+E+G+B♭+D+F+A, but that really didn’t help 
emphasize that it’s the existence of the 7th that 
makes the chord sound like (and be described 
as) a C9, C11 or C13 respectively, instead of, 
say a Cadd2, Cadd4 or C6. 

The 3rd and 7th are really the defining notes 
of a chord in jazz, particularly comping on 
piano where you expect the bass to provide the 
root. So the final light went off when I saw the 
closing jazz riff of Ben Folds Five’s Underground 
notated. There were a bunch of triads that were 
marked as 13th chords. So, for example, the 
voicing E♭+A+D was marked as F13. 

Note that that voicing has just the 3rd, 7th 
and 13th. The 13th is also a 6th, but by call-
ing the chord F13, it’s making it clear the 7th 
is there as well, which gives the chord a very 
different direction it wants to go. The 7th makes 
the whole chord want to resolve to a B♭, which 
gives the 13th/6th (the D) more of a suspended 
feel it doesn’t have in an F6 chord. 

I find not only the 13th chord a great sub-
stitute for a 7th now, especially when it’s the 
dominant resolving to the tonic, but I also love 
the 7th+3rd+13th/6th way of voicing it too. 

I know this is jazz 101, but it was a break-
through moment for me. n

James Tauber is the founder and CEO of web startup 
Eldarion, Inc. When not working with software startups, 
websites and open source software, he is an aspiring 
composer, music theorist, mathematician and linguist. 
James lives just outside of Boston with his wife but is 
originally from Perth, Western Australia.
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In Philadelphia, I spent a 
lot of time waiting for eleva-
tors. I inevitably paid a lot 
of attention to the control 

algorithms used by different eleva-
tors in different buildings.

All elevator algorithms solve the 
same type of optimization problem: 
if a building has n floors and m 
elevators, how could we most effi-
ciently move people up/down the 
floors? I’m sure you already know 
of the simple algorithm that every 
elevator implements, but one can 
definitely improve on this. Here’s 
one improvement someone tried to 
make:

Example #1 
This building has 1 elevator and 
8 floors. The elevator was made 
to move back to floor 4 when it is 
idle.

This is an intuitive solution. 
Since there are n floors from where 
people could call the elevator, 
why not minimize the wait time 
by making the elevator go back 
to floor n/2 when it is idle? The 
problem with this argument is that 
it assumes an elevator is equally 
likely to be called from any of the 
n floors, which is not true. In most 
cases, people who use the elevator 
would use it to either go down to 

ground floor from the floor they’re 
at or up from ground floor to the 
floor they should be in. This means 
that approximately half the time, 
elevator requests would occur at 
the ground floor. A better design is 

the following:

Example #2 
There are no more 
than 10 floors 
(I believe it was 
less) and about 6 
elevators. When 
an elevator is idle, 
it moves to the 
ground floor and 
opens its door.

This speeds things 
up a lot. Not only 
could you avoid 

waiting for the elevator to get to the 
ground floor, you don’t even have 
to press the button and wait for the 
door to open! I thought this was a 
great idea! An acquaintance pointed 
out, though, that unsuspecting 
people might mistakenly think  the 
elevator is broken. Well then...

The algorithm used in Example 
#2 focuses a lot more on people 
going up rather than people going 
down. I think this makes sense. 
Going up stairs takes a lot more 
effort than going down stairs, so 
people are more likely to use the 
elevator to go up. However, in a 
building with more floors, more 
people would want to use the 
elevator to go down, so having all 
the elevators on ground floor is not 
going to help. Here’s a solution that 
seems to work well:

Example #3 
This building has 2 elevators and 
~12 floors. It is programmed to 
ensure that at least 1 elevator is on 
the ground floor at any given time. 
The other elevator is often seen on 

floor 6, but I’m not sure if there’s a 
pattern here.

This makes a lot of sense. The 
first elevator takes care of the case 
where people want to go up from 
floor 1. The second elevator takes 
care of the case where people 
would want to go down, and since 
the elevator is at floor 6, the wait 
time is reduced.

For small n and m, I really can’t 
think of a better solution than the 
one used in Example #3. For larger 
n and m, though, it becomes more 
complicated:

Example #4 
This building has about 38 floors 
and at least 12 elevators. The 
elevators are divided into 2 groups: 
the first group goes to floors up to 
22. The second elevator skips all 
the floors until floor 22, so it stops 
at floors 22-38 (and the ground 
floor).

It would be quite disastrous if 
elevators aren’t organized this way. 
Imagine working on the top floor 
and having to wait for the elevator 
to stop at every floor in between! 
This elevator is designed to go 
super fast from floor 1 to floor 22, 
making things even more efficient.

All of these examples are real. 
What I don’t understand is why so 
many buildings do not have these 
optimizations built into their eleva-
tors. Implementing these changes 
cost almost nothing, and they can 
save a lot of peoples’ time in the 
long run. n

Lisa is a pure math and applied math 
student at the University of Waterloo. 
She is passionate about data science, 
data mining, data visualization and 
entrepreneurship.

By Lisa Zhang
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