
Issue 21 February 2012

How Airplanes Fly

2  ﻿

Curator
Lim Cheng Soon

Contributors
David Anderson
Scott Eberhardt
Peiter Buick
Pat Shaughnessy
Nick Johnson
Ian Ward
Brandon Mintern
Timothy Daly
James Tauber
Lisa Zhang

Proofreaders
Emily Griffin
Sigmarie Soto

Printer
MagCloud

Hacker Monthly is the print magazine version
of Hacker News — news.ycombinator.com, a social news
website wildly popular among programmers and startup
founders. The submission guidelines state that content
can be “anything that gratifies one’s intellectual curiosity.”
Every month, we select from the top voted articles on
Hacker News and print them in magazine format.
For more, visit hackermonthly.com.

Advertising
ads@hackermonthly.com

Contact
contact@hackermonthly.com

Published by
Netizens Media
46, Taylor Road,
11600 Penang,
Malaysia.

Hacker Monthly is published by Netizens Media and not affiliated with Y Combinator in any way.

Cover Photography: Dave Morrow’s Custom Creations

http://news.ycombinator.com
http://hackermonthly.com
mailto:ads@hackermonthly.com
mailto:contact@hackermonthly.com

  3

For links to Hacker News dicussions, visit hackermonthly.com/issue-21

Contents
FEATURES

04  How Airplanes Fly
By David Anderson and Scott Eberhardt

DESIGN

14  The Messy Art of UX Sketching
By Peiter Buick

PROGRAMMING

20  Never Create Ruby Strings Longer
Than 23 Characters
By Pat Shaughnessy

24  Fountain Codes
By Nick JohnSon

27  Unfortunate Python
By Ian Ward

30  Tips for Remote Unix Work
By Brandon Mintern

34  Being a Great Coder
By Timothy Daly

SPECIAL

36  Why 13th Chords
By JAMES TAUBER

38  Elevator Algorithms
By Lisa Zhang

http://hackermonthly.com/issue-21

4  FEATURES

FEATURES

By David Anderson & Scott Eberhardt

How Airplanes Fly

Almost everyone
today has flown
in an airplane.
Many ask the

simple question “what makes an
airplane fly?” The answer one fre-
quently gets is misleading and often
just plain wrong. As an example,
most descriptions of the physics
of lift fixate on the shape of the
wing (i.e. airfoil) as the key factor
in understanding lift. The wings in
these descriptions have a bulge on
the top so that the air must travel
farther over the top than under the
wing. Yet we all know that wings fly
quite well upside down where the
shape of the wing is inverted. To

cover for this paradox we some-
times see a description for inverted
flight that is different than for
normal flight. In reality the shape of
the wing has little to do with how
lift is generated and everything to
do with efficiency in cruise and stall
characteristics. Any description that
relies on the shape of the wing is
wrong.

Let us look at two examples
of successful wings that clearly
violate the descriptions that rely
on the shape of the wing. The
first example is a very old design.
Figure 1 shows a photograph of
the Curtis 1911 model D type IV
pusher. Clearly the air travels the

same distance over the top and
the bottom of the wing. Yet this
airplane flew and was the second
airplane purchased by the US Army
in 1911.

The second example of a wing
that violates the idea that lift is
dependent on the shape of the wing
is of a very modern wing. Figure
2 shows the profile of the Whit-
comb Supercritical Airfoil (NASA/
Langley SC(2)-0714). This wing
is basically flat on top with the
curvature on the bottom. Though
its shape may seem contrary to the
popular view of the shape of wings,
this airfoil is the foundation of the
wings modern airliners.

A Physical Description of Lift

Photo: Black & White Bi-Plane, flickr.com/photos/daves-f-stop/5516483143

http://flickr.com/photos/daves-f-stop/5516483143

  5

The emphasis on the wing shape
in many explanations of lift is based
on the Principle of Equal Transit
Times. This assertion mistakenly
states the air going around a wing
must take the same length of time,
whether going over or under, to get
to the trailing edge. The argument
goes that since the air goes farther
over the top of the wing it has to go
faster, and with Bernoulli’s principle
we have lift. Knowing that equal
transit times is not defendable the
statement is often softened to say
that since the air going over the top
must go farther it must to faster.
But, this is again just a variation
on the idea of equal transit times.
In reality, equal transit times holds
only for a wing without lift. Figure
3 shows a simulation of the airflow
around a wing with lift.

The Bernoulli equation is a
statement of the conservation
of energy. It is correct, but
not applicable to the descrip-
tion of lift on a real wing. The
wings of an 800,000 pound
airplane are doing a great
deal of work to keep the
airplane in the air. They are

adding a large amount of energy
to the air. One of the requirements
of the application of the Bernoulli
principle is that no energy is added
to the system. Thus, the speed and
pressure of the air above a real wing
in flight are not related by the Ber-
noulli principle. Also, descriptions
of lift that evoke the Bernoulli prin-
ciple depend on the shape of the
wing. As already stated, the shape
of the wing affects the efficiency
and stall characteristics of the wing
but not the lift. That is left to the
angle of attack and speed.

Newton’s laws and lift
So, how does a wing generate lift?
To begin to understand lift we must
review Newton’s first and third
laws. (We will introduce Newton’s
second law a little later.) Newton’s
first law states:

A body at rest will remain at rest,
or a body in motion will continue
in straight-line motion unless sub-
jected to an external applied force.

That means, if one sees a
bend in the flow of air, or if
air originally at rest is acceler-
ated into motion, a force is
acting on it.

Newton’s third law states
that:

For every action there is an equal
and opposite reaction.

As an example, an object sitting
on a table exerts a force on the
table (its weight) and the table puts
an equal and opposite force on the
object to hold it up. In order to gen-
erate lift a wing must do something
to the air. What the wing does to
the air is the action while lift is the
reaction.

Let’s compare two figures used
to show streamlines over a wing.
In figure 4 the air comes straight at
the wing, bends around it, and then
leaves straight behind the wing. We
have all seen similar pictures, even
in flight manuals. But, the air leaves
the wing exactly as it appeared
ahead of the wing. There is no net
action on the air so there can be no
lift! Figure 5 shows the streamlines,
as they should be drawn. The air
passes over the wing and is bent
down. Newton’s first law says that
there must be a force on the air to
bend it down (the action). New-
ton’s third law says that there must
be an equal and opposite force
(up) on the wing (the reaction). To
generate lift a wing must divert lots
of air down.

Figure 1. Curtis 1911 model D type IV pusher

Figure 2. Whitcomb Supercritical Airfoil

Figure 3 Air over a wing with lift.

Figure 4. Common depiction of airflow
over a wing. This wing has no lift.

Figure 5. True airflow over a wing with
lift showing upwash and downwash.

6  FEATURES

The lift of a wing is equal to the
change in momentum of the air it
is diverting down. Momentum is
the product of mass and velocity
(mv). The most common form of
Newton’s second law is F= ma, or
force equal mass times acceleration.
The law in this form gives the force
necessary to accelerate an object of
a certain mass. An alternate form
of Newton’s second law can be
written:

The lift of a wing is proportional to
the amount of air diverted down
times the vertical velocity of that
air.

It is that simple. For more lift
the wing can either divert more air
(mass), increase its vertical veloc-
ity or a combination of the two.
This vertical velocity behind the
wing is the vertical component of
the “downwash.” Figure 6 shows
how the downwash appears to the
pilot (or in a wind tunnel). The
figure also shows how the down-
wash appears to an observer on
the ground watching the wing go
by. To the pilot the air is coming
off the wing at roughly the angle
of attack and at about the speed
of the airplane. To the observer
on the ground, if he or she could
see the air, it would be coming
off the wing almost vertically at a
relatively slow speed. The greater
the angle of attack of the wing the
greater the vertical velocity of the
air. Likewise, for a given angle of
attack, the greater the speed of the
wing the greater the vertical veloc-
ity of the air. Both the increase in
the speed and the increase of the
angle of attack increase the length
of the vertical velocity arrow. It is
this vertical velocity that gives the
wing lift.

As stated, an observer on the
ground would see the air going
almost straight down behind the
plane. This can be demonstrated
by observing the tight column of
air behind a propeller, a household
fan, or under the rotors of a heli-
copter; all of which are rotating
wings. If the air were coming off
the blades at an angle the air would
produce a cone rather than a tight
column. The wing develops lift by
transferring momentum to the air.
For straight and level flight this
momentum eventually strikes the
earth. If an airplane were to fly over
a very large scale, the scale would
weigh the airplane.

Let us do a back-of-the-envelope
calculation to see how much air
a wing might divert. Take for
example a Cessna 172 that weighs
about 2300 lb (1045 kg). Traveling
at a speed of 140 mph (220 km/h),
and assuming an effective angle of
attack of 5 degrees, we get a vertical
velocity for the air of about 11.5
mph (18 km/h) right at the wing. If
we assume that the average vertical
velocity of the air diverted is half
that value we calculate from New-
ton’s second law that the amount
of air diverted is on the order of 5
ton/s. Thus, a Cessna 172 at cruise
is diverting about five times its own
weight in air per second to produce
lift. Think how much air is diverted
by a 250-ton Boeing 777.

Diverting so much air down
is a strong argument against lift
being just a surface effect (that is
only a small amount of air around
the wing accounts for the lift), as
implied by the popular explana-
tion. In fact, in order to divert 5
ton/sec the wing of the Cessna 172
must accelerate all of the air within
18 feet (7.3 m) above the wing.
One should remember that the
density of air at sea level is about
2 lb per cubic yard (about 1kg per
cubic meter). Figure 7 illustrates
the effect of the air being diverted
down from a wing. A huge hole is
punched through the fog by the
downwash from the airplane that
has just flown over it.

So how does a thin wing divert
so much air? When the air is bent
around the top of the wing, it pulls
on the air above it accelerating that
air downward. Otherwise there
would be voids in the air above
the wing. Air is pulled from above.
This pulling causes the pressure to
become lower above the wing. It
is the acceleration of the air above
the wing in the downward direction

Figure 6. How downwash appears to a pilot and to an observer on the ground.

Figure 7.
Downwash and
wing vortices in
the fog.

  7

that gives lift. (Why the wing bends
the air with enough force to gener-
ate lift will be discussed in the next
section.)

Normally, one looks at the air
flowing over the wing in the frame
of reference of the wing. In other
words, to the pilot the air is moving
and the wing is standing still. We
have already stated that an observer
on the ground would see the air
coming off the wing almost verti-
cally. But what is the air doing
below the wing? Figure 8 shows
an instantaneous snapshot of how
air molecules are moving as a wing
passes by. Remember in this figure
the air is initially at rest and it is
the wing moving. Arrow “1” will
become arrow “2” and so on. Ahead
of the leading edge, air is moving
up (upwash). At the trailing edge,
air is diverted down (downwash).
Over the top the air is accelerated
towards the trailing edge. Under-
neath, the air is accelerated forward
slightly. Far behind the wing the air
is going straight down.

So, why does the air follow this
pattern? First, we have to bear
in mind that air is considered an
incompressible fluid for low-speed
flight. That means that it cannot
change its volume and that there is a
resistance to the formation of voids.
Now the air has been accelerated
over the top of the wing by of the
reduction in pressure. This draws air
from in front of the wing and expels
if back and down behind the wing.

This air must be compensated for, so
the air shifts around the wing to fill
in. This is similar to the circulation
of the water around a canoe paddle.
This circulation around the wing is
no more the driving force for the
lift on the wing than is the circula-
tion in the water drives the paddle.
Though, it is true that if one is able
to determine the circulation around
a wing the lift of the wing can be
calculated. Lift and circulation are
proportional to each other.

One observation that can be
made from Figure 8 is that the top
surface of the wing does much
more to move the air than the
bottom. So the top is the more criti-
cal surface. Thus, airplanes can carry
external stores, such as drop tanks,
under the wings but not on top
where they would interfere with
lift. That is also why wing struts
under the wing are common but
struts on the top of the wing have
been historically rare. A strut, or any
obstruction, on the top of the wing
would interfere with the lift.

Air Bending Over a Wing
As always, simple statements often
result in more questions. One
natural question is why does the air
bend around the wing? This ques-
tion is probably the most challeng-
ing question in understanding flight
and it is one of the key concepts.

Let us start by first looking at a
simple demonstration. Run a small
stream of water from a faucet and
bring a horizontal water glass over
to it until it just touches the water,
as in Figure 9. As in the figure, the
water will wrap partway around the
glass. From Newton’s first law we
know that for the flow of water to
bend there must be a force on it.
The force is in the direction of the
bend.

From Newton’s third law we
know that there must be an equal
and opposite force acting on the
glass. The stream of water puts a
force on the glass that tries to pull
it into the stream, not push it away
as one might first expect.

So why does the water bend
around the glass, or air over a wing?
First consider low-speed flight. In
low-speed flight the forces on the
air and the associated pressures
are so low that the air is not only
considered a fluid but an incom-
pressible fluid. This means that the
volume of a mass of air remains
constant and that flows of air do
not separate from each other to
form voids (gaps).

A second point to understand is
that streamlines communicate with
each other. A streamline, in steady-
state flight, can be looked at as the
path of a particle in the moving air.
It is the path a small, light object
would take in the airflow over the
wing. The communication between
streamlines is an expression of pres-
sure and viscosity. Pressure is the
force per area that the air exerts on
the neighboring streamline. Viscos-
ity in a gas or liquid corresponds to
friction between solids.

Think of two adjacent stream-
lines with different speeds. Since
these streamlines have different
velocities forces between them
trying to speed up the slower
streamline and slow down the faster
streamline. The speed of air at the
surface of the wing is exactly zero

Figure 8. Direction of air movement
around a wing as seen by an observer on
the ground.

Figure 9. Water
wrapping around
a glass

8  FEATURES

with respect to the surface of the
wing. This is an expression of vis-
cosity. The speed of the air increases
with distance from the wing as
shown in Figure 10. Now imagine
the first non-zero velocity stream-
line that just grazes the highpoint
of the top of the wing. If it were
initially to go straight back and not
follow the wing, there would be a
volume of zero velocity air between
it and the wing. Forces would strip
this air away from the wing and
without a streamline to replace it,
the pressure would lower. This low-
ering of the pressure would bend
the streamline until it followed the
surface of the wing.

The next streamline above
would be bent to follow the first by
the same process, and so on. The
streamlines increase in speed with
distance from the wing for a short
distance. This is on the order of 6
inch (15 cm) at the trailing edge of
the wing of an Airbus A380. This
region of rapidly changing air speed
is the boundary layer. If the bound-
ary layer is not turbulent, the flow
is said to be laminar.

Thus, the streamlines are bent
by a lowering of the pressure. This
is why the air is bent by the top
of the wing and why the pressure
above the wing is lowered. This
lowered pressure decrease with
distance above the wing but is the
basis of the lift on a wing. The low-
ered pressure propagates out at the
speed of sound, causing a great deal
of air to bend around the wing.

Two streamlines communicate
on a molecular scale. This is an
expression of the pressure and the
viscosity of air. Without viscosity
there would be no communica-
tion between streamlines and no
boundary layer. Often, calculations
of lift are made in the limit of zero
viscosity. In these cases viscosity is
re-introduced implicitly with the
Kutta-Joukowski condition, which
requires that the air come smoothly
off at the trailing edge of the wing.
Also, the calculations require that
the air follows the surface of the
wing which is another introduc-
tion of the effects of viscosity. One
result of the near elimination of
viscosity from the calculations is
that there is no boundary layer
calculated.

It should be noted that the
speed of the uniform flow over
the top of the wing is faster then
the free-stream velocity, which is
the velocity of the undisturbed air
some distance from the wing. The
bending of the air causes the reduc-
tion in pressure above the wing.
This reduction in pressure causes
an acceleration of the air. It is often
taught that the acceleration of the
air causes a reduction in pressure. In
fact, it is the reduction of pressure
that accelerates the air in agreement
with Newton’s first law.

Let us look at the air bending
around the wing in Figure 11. To
bend the air requires a force. As
indicated by the colored arrows, the
direction of the force on the air is
perpendicular to the bend in the
air. The magnitude of the force is
proportional to the tightness of the
bend. The tighter the air bends the
greater the force on it. The forces
on the wing, as shown by the black
arrows in the figure, have the same
magnitude as the forces on the air

but in the opposite direction. These
forces, working through pressure,
represent the mechanism in which
the force is transferred to the wing.

Look again at Figure 11, while
paying attention to the black arrows
representing the forces on the wing.
There are two points to notice.
The first is that most of the lift is
on the forward part of the wing.
In fact, half of the total lift on a
wing at subsonic speeds is typically
produced in the first one-fourth
of the chord length. The chord is
the distance from the leading edge
to the trailing edge of the wing.
The second thing to notice is that
the arrows on the leading part of
the wing are tilted forward. Thus
the force of lift is pulling the wing
along as well as lifting it. This would
be nice if it were the entire story.
Unfortunately, the horizontal forces
on the trailing part of the wing
compensate the horizontal forces
on the leading part of the wing.

We now have the tools to
understand why a wing has lift. In
brief, the air bends around the wing
producing downwash. Newton’s
first law says that the bending of
the air requires a force on the air,
and Newton’s third law says that
there is an equal and opposite force
on the wing. That is a description of
lift. The pressure difference across
the wing is the mechanism in which
lift is transferred to the wing due to
the bending of the air.

Figure 10. The variation of the speed of
a fluid near an object

Figure 11. Forces on the air and the cor-
responding reaction forces on the wing

  9

Lift as a function of angle of
attack
There are many types of wing: con-
ventional, symmetric, conventional
in inverted flight, the early biplane
wings that looked like warped
boards, and even the proverbial
“barn door”. In all cases, the wing is
forcing the air down, or more accu-
rately pulling air down from above.
(although the early wings did have
a significant contribution from the
bottom.) What each of these wings
has in common is an angle of attack
with respect to the oncoming air. It
is the angle of attack that is the pri-
mary parameter in determining lift.

To better understand the role of
the angle of attack it is useful to
introduce an “effective” angle of
attack, defined such that the angle
of the wing to the oncoming air
that gives zero lift is defined to be
zero degrees. If one then changes
the angle of attack both up and
down one finds that the lift is
proportional to the angle. Figure 12
shows the lift of a typical wing as
a function of the effective angle of
attack. A similar lift versus angle of
attack relationship is found for all
wings, independent of their design.
This is true for the wing of a 747,
an inverted wing, or your hand out
the car window. The inverted wing
can be explained by its angle of
attack, despite the apparent con-
tradiction with the popular expla-
nation of lift. A pilot adjusts the
angle of attack to adjust the lift for
the speed and load. The role of the
angle of attack is more important
than the details of the wings shape
in understanding lift. The shape
comes into play in the understand-
ing of stall characteristics and drag
at high speed.

One can see in the figure that the
lift is directly proportional to the
effective angle of attack. The lift
is positive (up) when the wing is
tilted up and negative (down) when
it is tilted down. When corrected
for area and aspect ratio, a plot of
the lift as a function of the effec-
tive angle of attack is essentially
the same for all wings and all wings
inverted. This is true until the
wing approaches a stall. The stall
begins at the point where the
angle of attack becomes so
great that the airflow begins
to separate from the trailing
edge of the wing. This angle
is called the critical angle of
attack and is marked on the
figure. This separation of the
airflow from the top of the
wing is a stall.

The wing as air “virtual virtual
scoop”
We now would like to introduce a
new mental image of a wing. One
is used to thinking of a wing as a
thin blade that slices though the
air and develops lift somewhat by
magic. For this we would like to
adopt a visualization aid of looking

at the wing as a virtual scoop that
intercepts a certain amount of air
and diverts it to the angle of the
downwash. This is not intended to
imply that there is a real, physical
scoop with clearly defined bound-
aries, and uniform flow. But this
visualization aid does allow for a
clear understanding of how the
amount diverted air is affected by
speed and density. The concept of
the virtual scoop does have a real
physical basis but beyond the scope
of this work.

The virtual scoop diverts a
certain amount of air from the
horizontal to roughly the angle of
attack, as depicted in Figure 13.
For wings of typical airplanes it is a
good approximation to say that the
area of the virtual scoop is pro-
portional to the area of the wing.
The shape of the virtual scoop
is approximately elliptical for all
wings, as shown in the figure. Since
the lift of the wing is proportional
to the amount of air diverted, the
lift of is also proportional to the
wing’s area.

As stated before, the lift of a
wing is proportional to the amount
of air diverted down times the
vertical velocity of that air. As a
plane increases speed, the virtual
scoop diverts more air. Since the
load on the wing does not increase,
the vertical velocity of the diverted
air must be decreased proportion-
ately. Thus, the angle of attack is
reduced to maintain a constant lift.

Figure 12. Lift as a function of angle of
attack

Figure 13. The “virtual scoop” as a visualization
tool

10  FEATURES

When the plane goes higher, the air
becomes less dense so the virtual
scoop diverts less air at a given
speed. Thus, to compensate the
angle of attack must be increased.
The concepts of this section will
be used to understand lift in a
way not possible with the popular
explanation.

Lift requires power
When a plane passes overhead the
formally still air gains a downward
velocity. Thus, the air is left in
motion after the plane leaves. The
air has been given energy. Power is
energy, or work, per time. So, lift
requires power. This power is sup-
plied by the airplane’s engine (or by
gravity and thermals for a sailplane).

How much power will we need
to fly? If one fires a bullet with
a mass, m, and a velocity, v, the
energy given to the bullet is simply
½mv2. Likewise, the energy given to
the air by the wing is proportional
to the amount of air diverted down
times the vertical velocity squared
of that diverted air. We have already
stated that the lift of a wing is
proportional to the amount of air
diverted times the vertical velocity
of that air. Thus, the power needed
to lift the airplane is proportional to
the load (or weight) times the verti-
cal velocity of the air. If the speed
of the plane is doubled, the amount
of air diverted down also doubles.
Thus to maintain a constant lift, the
angle of attack must be reduced to
give a vertical velocity that is half
the original. The power required for
lift has been cut in half. This shows
that the power required for lift
becomes less as the airplane’s speed
increases. In fact, we have shown
that this power to create lift is pro-
portional to 1/speed of the plane.

But, we all know
that to go faster (in
cruise) we must
apply more power.
So there must be
more to power than
the power required
for lift. The power
associated with
lift is often called
the “induced” power. Power is also
needed to overcome what is called
“parasite” drag, which is the drag
associated with moving the wheels,
struts, antenna, etc. through the air.
The energy the airplane imparts
to an air molecule on impact is
proportional to the speed2 (from
½mv2). The number of molecules
struck per time is proportional to
the speed. The faster one goes the
higher the rate of impacts. Thus the
parasite power required to over-
come parasite drag increases as the
speed3.

Figure 14 shows the “power
curves” for induced power, parasite
power, and total power (the sum
of induced power and parasite
power). Again, the induced power
goes as 1/speed and the parasite
power goes as the speed3. At low
speed the power requirements of
flight are dominated by the induced
power. The slower one flies the
less air is diverted and thus the
angle of attack must be increased
to increase the vertical velocity of
that air. Pilots practice flying on the
“backside of the power curve” so
that they recognize that the angle
of attack and the power required
to stay in the air at very low speeds
are considerable.

At cruise, the power requirement
is dominated by parasite power.
Since this goes as the speed3 an
increase in engine size gives one a
faster rate of climb but does little
to improve the cruise speed of the
plane. Doubling the size of the
engine will only increase the cruise
speed by about 25%.

Since we now know how the
power requirements vary with
speed, we can understand drag,
which is a force. Drag is simply
power divided by speed. Figure 14
shows the induced, parasite, and
total drag as a function of speed.
Here the induced drag varies as 1/
speed2 and parasite drag varies as
the speed2. Taking a look at these
figures one can deduce a few things
about how airplanes are designed.
Slower airplanes, such as gliders,
are designed to minimize induced
power, which dominates at lower
speeds. Faster propeller-driven
airplanes are more concerned
with parasite power, and jets are
dominated by parasite drag. (This
distinction is outside of the scope of
this article.)

Figure 14. The power required for flight
as a function of speed.

  11

Wing efficiency
At cruise, a non-negligible amount
of the drag of a modern wing is
induced drag. Parasite drag of a
Boeing 747 wing is only equivalent
to that of a 1/2-inch cable of the
same length. One might ask what
affects the efficiency of a wing. We
saw that the induced power of a
wing is proportional to the verti-
cal velocity of the air. If the area of
a wing were to be increased, the
size of our virtual scoop would also
increase, diverting more air. So, for
the same lift the vertical veloc-
ity (and thus the angle of attack)
would have to be reduced. Since
the induced power is proportional
to the vertical velocity of the air,
it is also reduced. Thus, the lifting
efficiency of a wing increases with
increasing wing area. The larger
the wing the less induced power
required to produce the same lift,
though this is achieved with and
increase in parasite drag.

There is a misconception by some
that lift does not require power. This
comes from aeronautics in the study
of the idealized theory of wing sec-
tions (airfoils). When dealing with
an airfoil, the picture is actually that
of a wing with infinite span. We
have seen that the power neces-
sary for lift decrease with increasing
area of the wing. A wing of infinite
span does not require power for lift
since it develops lift by diverting an
infinite amount of air at near-zero
velocity. If lift did not require power
airplanes would have the same
range full as they do empty, and
helicopters could hover at any alti-
tude and load. Best of all, propellers
(which are rotating wings) would
not require much power to produce
thrust. Unfortunately, we live in
the real world where both lift and
propulsion require power.

Power and wing loading
Now let us consider the relation-
ship between wing loading and
power. At a constant speed, if the
wing loading is increased the verti-
cal velocity of the downwash must
be increased to compensate. This
is accomplished by increasing the
angle of attack of the wing. If the
total weight of the airplane were
doubled (say, in a 2g turn), and the
speed remains constant, the verti-
cal velocity of the air is doubled
to compensate for the increased
wing loading. The induced power is
proportional to the load times the
vertical velocity of the diverted air,
which have both doubled. Thus the
induced power requirement has
increased by a factor of four! So
induced power is proportional to
the load2.

One way to measure the total
power is to look at the rate of fuel
consumption. Figure 16 shows
the fuel consumption versus gross
weight for a large transport air-
plane traveling at a constant speed
(obtained from actual data). Since
the speed is constant the change
in fuel consumption is due to the
change in induced power. The data
are fitted by a constant (parasite
power) and a term that goes as the
load2. This second term is just what
was predicted in our Newtonian
discussion of the effect of load on
induced power.

The increase in the angle of
attack with increased load has a
downside other than just the need
for more power. As shown in Figure
12 a wing will eventually stall when
the air can no longer follow the
upper surface. That is, when the
critical angle is reached. Figure 17
shows the angle of attack as a func-
tion of airspeed for a fixed load and
for a 2-g turn. The angle of attack
at which the plane stalls is constant
and is not a function of wing load-
ing. The angle of attack increases
as the load and the stall speed
increases as the square root of the
load. Thus, increasing the load in
a 2-g turn increases the speed at
which the wing will stall by 40%.
An increase in altitude will further
increase the angle of attack in a 2-g
turn. This is why pilots practice
“accelerated stalls” which illustrates
that an airplane can stall at any
speed, since for any speed there is a
load that will induce a stall.

Figure 16. Fuel consumption as a function of
weight for large jet at a costant speed.

Figure 17. Angle of attack versus speed
for straight and level flight and for a 2-g
turn.

12  FEATURES

Wing vortices
One might ask what the down-
wash from a wing looks like. The
downwash comes off the wing as a
sheet and is related to the details on
the load distribution on the wing.
Figure 18 shows, through condensa-
tion, the distribution of lift on an
airplane during a high-g maneuver.
From the figure one can see that
the distribution of load changes
from the root of the wing to the
tip. Thus, the amount of air in the
downwash must also change along
the wing. The wing near the root is
“virtual scooping” up much more
air than the tip. Since the wing near
the root is diverting so much air
the net effect is that the downwash
sheet will begin to curl outward
around itself, just as the air bends
around the top of the wing because
of the change in the velocity of the
air. This is the wing vortex. The
tightness of the curling of the wing
vortex is proportional to the rate
of change in lift along the wing. At
the wing tip the lift must rapidly
become zero causing the tightest
curl. This is the wing tip vortex and
is just a small (though often most
visible) part of the wing vortex.
Returning to Figure 7 one can
clearly see the development of the
wing vortices in the downwash as
well as the wing tip vortices.

Winglets (those small vertical
extensions on the tips of some
wings) are used to improve the
efficiency of the wing by increasing
the effective length, and thus area,
of the wing. The lift of a normal
wing must go to zero at the tip
because the bottom and the top
communicate around the end. The
winglet blocks this communication
so the lift can extend farther out on
the wing. Since the efficiency of a
wing increases with area, this gives
increased efficiency. One caveat is
that winglet design is tricky and
winglets can actually be detrimental
if not properly designed.

Ground effect
The concept of ground effect is
well known to pilots. This effect is
the increase in efficiency of a wing
as it comes to within about a wing’s
length of the ground. The effect
increases with the reduction in the
distance to the ground. A low-wing
airplane will experience a reduction
in the induced drag of as much as
50 percent just before touchdown.
This reduction in drag just above
a surface is used by large birds,
which can often be seen flying just
above the surface of the water.
Pilots taking off from deep-grass
or soft runways also use ground
effect. The pilot is able to lift the
airplane off the soft surface at a
speed too slow to maintain flight
out of ground effect. This reduces
the resistance on the wheels and
allows the airplane to accelerate to
a higher speed before climbing out
of ground effect.

What is the cause of this reduc-
tion in drag? There are two contri-
butions that can be credited with
the reduction in drag. The ground
influences the flow field around the
wing which, for a given angle of
attack, increases the lift. But, at the
same time, there is a reduction in
downwash. It can be surmised that
this additional lift must come from
an increase in pressure between the
wing and the ground. In addition,
since lift is increased for a given
angle of attack, the angle of attack
can be reduced for the same lift,
resulting in less downwash and less
induced drag.

Ground effect introduces a
fundamental change from the
discussion of flight at altitude.
When no ground is present, the
relationship between lift, drag and
downwash is straight forward. But,
near the ground, there is an action-
reaction between the wing, the air
and the ground. At altitude the
ground is so distant that this effect
does not exist. Near the ground
this interaction helps produce lift
and reduce downwash due to an
increase in pressure below the wing.
The details of ground effect are
extremely complex. Most aerospace
texts devote a paragraph or two
and don’t attempt to describe it in
depth. The truth is that so much
is changing in ground effect that it
is difficult to describe by pointing
to a single change in the air flow
or a term in an equation. There is
no simple way to describe how the
airflow adjusts to satisfy the change
in conditions.

Figure 18. Condensation showing the
distribution of lift along a wing.

  13

Conclusions
Let us review what we have learned
and get some idea of how the
physical description has given us a
greater ability to understand flight.
First what have we learned:

■■ The amount of air diverted by
the wing is proportional to the
speed of the wing and the air
density.

■■ The vertical velocity of the
diverted air is proportional to the
speed of the wing and the angle
of attack.

■■ The lift is proportional to the
amount of air diverted times the
vertical velocity of the air.

■■ The power needed for lift is
proportional to the lift times the
vertical velocity of the air. Now
let us look at some situations
from the physical point of view
and from the perspective of the
popular explanation.

■■ The plane’s speed is reduced.
The physical view says that the
amount of air diverted is reduced
so the angle of attack is increased
to compensate. The power
needed for lift is also increased.
The popular explanation cannot
address this.

■■ The load of the plane is
increased. The physical view says
that the amount of air diverted is
the same but the angle of attack
must be increased to give addi-
tional lift. The power needed
for lift has also increased. Again,
the popular explanation cannot
address this.

■■ A plane flies upside down. The
physical view has no problem
with this. The plane adjusts the
angle of attack of the inverted
wing to give the desired lift. The
popular explanation implies that
inverted flight is impossible.

As one can see, the popular expla-
nation, which fixates on the shape
of the wing, may satisfy many but it
does not give one the tools to really
understand flight. The physical
description of lift is easy to under-
stand and much more powerful. n

David Anderson is a private pilot and a
lifelong flight enthusiast. He as degrees
from the University of Washington, Seattle,
and a Ph.D. in physics from Columbia Uni-
versity. He has had a 30-year career in high-
energy physics at Los Alamos National Lab-
oratory, CERN in Geneva, Switzerland, and
the Fermi National Accelerator Laboratory.

Scott Eberhardt is a private pilot who works
in high-lift aerodynamics at Boeing Com-
mercial Airplanes Product Development.
He has degrees from MIT and a Ph.D. in
aeronautics and astronautics from Stanford
University. He joined Boeing in 2006 after
20 years on the faculty of the Department
of Aeronautics and Astronautics at the Uni-
versity of Washington, Seattle.

Reprinted with permission of the original authors.
First appeared in hn.my/allstar (allstar.fiu.edu)

This material can be found in more detail in Un-
derstanding Flight 1st and 2nd editions by David
Anderson and Scott Eberhardt, McGraw-Hill, 2001,
and 2009.

http://hn.my/allstar

14  DESIGN

DESIGN

By Peiter Buick

The Messy Art of
UX Sketching

I hear a lot of people talk-
ing about the importance of
sketching when designing or

problem-solving, yet it seems that
very few people actually sketch. As
a UX professional, I sketch every
day. I often take over entire walls
in our office and cover them with
sketches, mapping out everything
from context scenarios to wire-
frames to presentations.

Although starting a prototype on
a computer is sometimes easier, it’s

not the best way to visually prob-
lem-solve. When you need to ideate
website layouts or mobile applica-
tions or to storyboard workflows
and context scenarios, sketching is
much more efficient. It keeps you
from getting caught up in the tech-
nology, and instead focuses you on
the best possible solution, freeing
you to take risks that you might not
otherwise take.

Many articles discuss the power
of sketching and why you should do

it, but they don’t go into the how
or the methods involved. Sketching
seems straightforward, but there are
certain ways to do it effectively. In
this article, we’ll cover a collection
of tools and techniques that I (and
many other UX and design folks)
use every day.

Sketching ≠ Drawing
Some of the most effective sketches
I’ve seen are far from perfect draw-
ings. Just like your thoughts and
ideas, sketches are in a constant
state of flux, evolving and morph-
ing as you reach a potential solu-
tion. Don’t think that you have to
be able to draw in order to sketch,
although having some experience
with it does help.

■■ Sketching is an expression of
thinking and problem-solving.

■■ It’s a form of visual communi-
cation, and, as in all languages,
some ways of communicating are
clearer than others.

■■ Sketching is a skill: the more you
do it, the better you’ll get at it.

When evaluating your sketches,
ask yourself, “How could I better
communicate these thoughts?”

My desk.

  15

Getting caught up in evaluating
your drawing ability is easy, but try
to separate the two. Look at your
sketch as if it were a poster. What’s
the first thing that’s read? Where is
the detailed info? Remember, the
eye is drawn to the area with the
most detail and contrast.

Just as one’s ability to enunci-
ate words affects how well others
understand them, one’s ability to
draw does have an impact on how
communicative a sketch is. The
good news is that drawing and
sketching are skills, and the more
you do them, the better you’ll get.

OK, let’s get started.

Work In Layers
Often when I’ve done a sketch, the
result looks more like a collage than
a sketch. Efficiency in sketching
comes from working in layers.

Technique
Start with a light-gray marker (20
to 30% gray), and progressively add
layers of detail with darker markers
and pens.

Why?
Starting with a light-gray marker
makes this easy. It allows you
to make mistakes and evaluate
your ideas as you work through a
problem. Draw a crooked line with
the light marker? No big deal. The
lines will barely be noticeable by
the time you’re finished with the
sketch.

As the pages fill up with ideas, go
back in with a darker marker (60%
gray) or pen, and layer in addi-
tional details for the parts you like.
This is also a great way to make a
particular sketch pop beside other
sketches.

Sketching in layers also keeps you
from getting caught up in details
right away. It forces you to decide
on the content and hierarchy of the
view first. If you are sketching an
interface that contains a list, but
you don’t yet know what will go
in the list, put in a few squiggles.
Later, you can go back in and sketch
a few options for each list item and
append them to the page.

Caution
If you start drawing with a ball-
point pen and then go in later with
a marker, the pen’s ink will likely
smear from the alcohol in the marker.

As you get more confident in
your sketching, you will become
more comfortable and find that you
don’t need to draw as many under-
lays. But I still find it useful because
it allows you to experiment and
evaluate ideas as you sketch.

Loosen Up
Technique
When sketching long lines, consider
moving your arm and pen with your
shoulder rather than from the elbow
or wrist. Reserve drawing with your
wrist for short quick lines and areas
where you need more control.

Why?
This will allow you to draw longer,
straighter lines. If you draw from
the elbow, you’ll notice that the
lines all have a slight curve to them.
Placing two dots on the paper, one
where you want the line to start
and one where you want it to end,
is sometimes helpful. Then, orient
the paper, make a practice stroke or
two, and then draw the line.

A bonus to drawing from the
shoulder is that much of the
motion translates to drawing on
a whiteboard; so, in time, your
straight lines will be the envy of
everyone in the room.

Play To Your Strengths
Technique
Rotate the page before drawing
a line in order to draw multiple
angles of lines more easily.

Why?
Very few people can draw lines in
all directions equally well. Rotat-
ing the page allows you to draw a
line in the range and direction that
works best for you. Don’t try to
draw a vertical line if you find it
difficult; rotate the page 90 degrees,
and draw a horizontal one instead.
It’s super-simple but amazingly
powerful.

Caution
This does not translate well to a
whiteboard, so you’ll still need to
learn to draw vertical lines.

Sketching Interactions
Technique
Start with a base sketch, and then
use sticky notes to add tooltips,
pop-overs, modal windows and
other interactive elements.

Why?
Using sticky notes to define tooltips
and other interactive elements lets
you quickly define interactions and
concepts without having to redraw
the framework of the application.
They are easy to move around and
can be sketched on with the same
markers and pens you are already
using.

■■ Define multiple interactions on
one sketch, and then strategi-
cally remove pieces one at a time
before scanning them in or copy-
ing the sketch.

■■ Use different colors to represent
different types of interaction.

16  DESIGN

■■ Is one sticky note not big enough
for your modal window? Add
another right next to it.

■■ Is one sticky note too big for your
tooltip, user a ruler as a guide to
quickly rip the note down to size.

Copying And Pasting For The
Real World
At times, you may want to manu-
ally redraw a UI element multiple
times in a sketch. This is not always
a bad thing, because it gives you the
opportunity to quickly iterate and
forces you to reconsider your ideas.
That being said, an all-in-one scan-
ner or photocopier could dramati-
cally increase your efficiency.

Technique
Use a photocopier to quickly create
templates from existing sketches or
to redraw an area of a sketch.

Why?
A photocopier is the old-school
version of Control + C, Control
+ V. It makes the production of
templates and underlays more effi-
cient. It also boosts your confidence,
because if you mess up (and you
will mess up), you can easily fix it.

■■ Does one part of your interface
need to be consistently redrawn
in multiple sketches? Run a few
copies, and then sketch directly
on the print-outs.

■■ Did you mess up a part of the
sketch? No problem. Cover up
that portion of the sketch with a
piece of paper or with correction
fluid, run off a copy, and then
start sketching directly on the
print-out.

■■ Are you working on a mobile
project? Or do you want to make
a series of sketches all of the same
size? Create a layout and copy off
a few rounds of underlays. Easier
yet, print off underlays of devices
or browsers; a good selection can
be found in the article “Free Print-
able Sketching, Wireframing and
Note-Taking PDF Templates 8.”
[hn.my/wireframe]

■■ Do you want to change the
layout of a sidebar in your last
five sketches? Sketch the new
sidebar, run off a few copies, and
then tape the new sidebars over
the old ones. It’s that easy.

■■ To use a sketch as an underlay
of another similar one, adjust the
density or darkness setting on
your photocopier to run a copy
of the sketch at 20% of it original
value.

Explore a variety of interactions and ideas in a single sketch using sticky notes.

Upon photocopying various versions of a sketch, each with different sticky notes,
you’ll end up with various distinct sketches.

http://hn.my/wireframe

  17

The Design Is In The Details
Use a ruler; specifically, a quilting ruler. Quilting rulers
are translucent and are normally printed with a grid
screen, letting you see the line you’re drawing relative
to the rest of the sketch.

Technique
Use a ruler and a light-gray marker to draw an underlay
for a detailed sketch.

Why?
This lets you quickly draw a series of lines that are
offset a set distance from each other. This works great
for elements such as lists items, charts, buttons and
anything else that needs to be evenly spaced. It’s like an
analog version of “smart guides.”

Technique
After using a light-gray marker to lay out a sketch, use
a ruler and ballpoint pen or black marker to finalize it.

Why?
When sketching in layers, you want the final design or
layout to “pop.” A ruler enables you to be more pre-
cise in detailed areas and ensures that long edges are
straight.

There is no shame in using a ruler. The key is know-
ing when to use it. Don’t start sketching with a ruler;
rather, bring one in when you need the detail and pre-
cision. Remember, you’re sketching, not drawing.

Sketching over a photocopy of the original to reevaluate the
sidebar.

The final sketch. Notice how the sidebar and its detail are
darker than the photocopy. This is intentional, because it
allows you to explore ideas in the context of the overall
design.

Quickly creating evenly spaced lines with a quilting ruler and
30% gray marker.

Ripping a sticky note with a ruler.

18  DESIGN

Technique
Use a ruler to quickly rip paper or
sticky notes by firmly holding the
paper with one hand and ripping
away the edge with the other hand.

Why?
It’s quicker then grabbing scissors;
you already have the ruler with
you; and you can take it through
airport security.

After lightly sketching an inter-
face with a light marker, finalize it
or make one area pop by using a
ruler to lay down darker lines.

Sketching ideas for a mobile application in the context of where it will be used.

Tell The Whole Story
Technique
Draw the application in the context
of where and how it being used, or
frame it with the device it will be
used on.

Why?
This forces you to think about the
environment that the application
will be used in, instills empathy for
your users, and establishes under-
standing of the challenges unique to
this application.

I get it. No one wants to sketch
out a monitor every time they draw
a wireframe. I’m not saying you
have to, but a few sketches with
context go a long way. Especially
with mobile devices, the more con-
text you add to a sketch, the better.
Moreover, I always sketch the
device for a mobile interface as an
underlay, and I often try to sketch
the UI at full scale. This forces you
to deal with the constraints of the
device and makes you aware of how
the user may be holding the device.

Caution
Drawing the surrounding envi-
ronment can be challenging and
requires a higher level of sketching
competency. Don’t let this intimi-
date you. If you’re not comfortable
sketching the environment or you
find it takes too long, use a picture
as an underlay instead.

  19

Ditch The Sketchbook
Technique
Draw on 8.5 × 11" copy paper.

Why?
Sketches are for sharing. You can
easily hang 8.5 × 11" sheets on a
wall to share ideas with others or to
see a project in its entirety. When
you need to save a sketch or two,
you can easily batch scan them into
a computer without ripping them
out of the sketchbook. Still not con-
vinced? Copy paper is cheaper; it
allows you to use sketches as under-
lays without photocopying; and
you don’t have to choose between
book-bound or spiral-bound.

What Are You Waiting For?
Sketching is not reserved for design-
ers. Developers, project managers
and business analysts can get in on
the fun, too. It’s the best way for
teams to quickly communicate,
explore and share ideas across dis-
ciplines. Also, I’ve found that others
are more receptive to give feedback
and make suggestions when shown
sketches than when shown print-
outs or screenshots.

Remember, it’s about getting
ideas out, reviewing those ideas
and documenting them, not about
creating a work of art. When evalu-
ating your sketches, ask yourself,
“How could I better communicate
these thoughts?” Getting caught up
in evaluating your drawing ability
is easy, but try to separate the two,
and know that the more you do it,
the better you’ll get.

It’s worth repeating that sketch-
ing is the quickest way to explore
and share thinking with others. It
focuses you on discovering the best
possible solution, without getting
caught up in the technology.

Go for it! Don’t get caught up in
the tools. Make a mess. And have
fun! n

Peiter Buick is Senior UX Specialist at
Universal Mind. He is passionate about
design’s ability to directly impact peoples
lives. With a background in industrial
design, he brings a unique perspective to
the UX community.

One of the many walls of sketches in our office.

Reprinted with permission of the original author.
First appeared in hn.my/sketch (smashingmagazine.com)
Images by Michael Kleinpaste.

http://hn.my/sketch

20  PROGRAMMING

PROGRAMMING

By Pat Shaughnessy

Never Create Ruby Strings
Longer Than 23 Characters

Obviously this is an utterly
preposterous statement: it’s
hard to think of a more ridicu-

lous and esoteric coding requirement.
I can just imagine all sorts of amusing
conversations with designers and business
sponsors: “No… the size of this <input>
field should be 23… 24 is just too long!”
Or: “We need to explain to users that
their subject lines should be less than 23
letters…” Or: “Twitter got it all wrong…
the 140 limit should have been 23!”

Why in the world would I even imagine
saying this? As silly as this requirement
might be, there is actually a grain of truth
behind it: creating shorter Ruby strings is
actually much faster than creating longer
ones. It turns out that this line of Ruby
code:

str = "1234567890123456789012" + "x"

… is executed about twice as fast by the
MRI 1.9.3 Ruby interpreter than this line
of Ruby code:

str = "12345678901234567890123" + "x"

Huh? What’s the difference? These two
lines look identical! Well, the difference
is that the first line creates a new string

containing 23 characters, while
the second line creates one with
24. It turns out that the MRI
Ruby 1.9 interpreter is opti-
mized to handle strings contain-
ing 23 characters or less more
quickly than longer strings. This
isn’t true for Ruby 1.8.

Today I’m going to take a
close look at the MRI Ruby
1.9 interpreter to see how it
actually handles saving string
values… and why this is actually
true.

Not all strings are created
equal
Over the holidays I decided to
read through the Ruby Hack-
ing Guide [rhg.rubyforge.org].
If you’ve never heard of it, it’s
a great explanation of how the
Ruby interpreter works inter-
nally. Unfortunately, it’s written
in Japanese, but a few of the
chapters have been translated
into English. Chapter 2, one
of the translated chapters, was
a great place to start since it

explains all of the basic Ruby
data types, including strings.

After reading through that,
I decided to dive right into the
MRI 1.9.3 C source code to learn
more about how Ruby handles
strings; since I use RVM, for me
the Ruby source code is located
under ~/.rvm/src/ruby-1.9.3-
preview1. I started by looking
at include/ruby/ruby.h, which
defines all of the basic Ruby data
types, and string.c, which imple-
ments Ruby String objects.

Reading the C code, I discov-
ered that Ruby actually uses
three different types of string
values, which I call:

■■ Heap Strings

■■ Shared Strings

■■ Embedded Strings

I found this fascinating! For
years I’ve assumed every Ruby
String object was like every
other String object. But it turns
out this is not true! Let’s take a
closer look…

http://rhg.rubyforge.org

  21

Heap Strings
The standard and most
common way for Ruby to save
string data is in the “heap.” The
heap is a core concept of the
C language: it’s a large pool of
memory that C programmers
can allocate from and use via a
call to the malloc function. For
example, this line of C code
allocates a 100 byte chunk of
memory from the heap and
saves its memory address into
a pointer:

char *ptr = malloc(100);

Later, when the C program-
mer is done with this memory,
she can release it and return it
to the system using free:

free(ptr);

Avoiding the need to
manage memory in this very
manual and explicit way is one
of the biggest benefits of using
any high level programming
language, such as Ruby, Java,
C#, etc. When you create a
string value in Ruby code like
this, for example:

str = "Lorem ipsum dolor
sit amet, consectetur adip-
isicing elit"

… the Ruby interpreter creates
a structure called “RString”
that conceptually looks like
this:

You can see that the RString
structure contains two values:
ptr and len, but not the actual
string data itself. Ruby actu-
ally saves the string character
values themselves in some
memory allocated from the
heap, and then sets ptr to the
location of that heap memory
and len to the length of the
string.

Here’s a simplified version
of the C RString structure:

struct RString {
 long len;
 char *ptr;
};

I’ve simplified this a lot;
there are actually a number
of other values saved in this
C struct. I’ll discuss some of
them next and others I’ll skip
over for today. If you’re not
familiar with C, you can think
of struct (short for “struc-
ture”) as an object that con-
tains a set of instance
variables, except in
C there’s no object
at all – struct is just
a chunk of memory
containing a few
values.

I refer to this type
of Ruby string as
“Heap String” since
the actual string data
is saved in the heap.

Shared Strings
Another type of string value that the Ruby
interpreter uses is called a “Shared String” in
the Ruby C source code. You create a Shared
String every time you write a line of Ruby
code that copies one string to another, similar
to this:

str = "Lorem ipsum dolor sit amet, con-
sectetur adipisicing elit"
str2 = str

Here the Ruby interpreter has realized that
you are assigning the same string value to
two variables: str and str2. So in fact there’s
no need to create two copies of the string
data itself. Instead, Ruby creates two RString
values that share the single copy of the string
data. The way this works is that both RString
structs contain the same ptr value to the
shared data… meaning both strings contain
the same value. There’s also a shared value
saved in the second RString struct that points
to the first RString struct. There are some
other details, which I’m not showing here,
such as some bit mask flags that Ruby uses to
keep track of which RStrings are shared and
which are not.

Aside from saving memory, this also speeds
up execution of your Ruby programs dramat-
ically by avoiding the need to allocate more
memory from the heap using another call to
malloc. malloc is actually a fairly expensive
operation: it takes time to track down avail-
able memory of the proper size in the heap
and also to keep track of it for freeing later.

22  PROGRAMMING

Here’s a somewhat more accurate
version of the C RString structure,
including the shared value:

struct RString {
 long len;
 char *ptr;
 VALUE shared;
};

Strings that are copied from one
variable to another like this I call
“Shared Strings.”

Embedded Strings
The third and last way that MRI
Ruby 1.9 saves string data is by
embedding the characters into the
RString structure itself, like this:

str3 = "Lorem ipsum dolor"

 This RString structure contains
a character array called ary and not
the ptr, len and shared values we
saw above. Here’s another simpli-
fied definition of the same RString
structure, this time containing the
ary character array:

struct RString {
 char ary[RSTRING_EMBED_LEN_
MAX + 1];
}

If you’re not familiar with C
code, the syntax char ary[100]
creates an array of 100 characters
(bytes). Unlike Ruby, C arrays are
not objects. Instead, they are really
just a collection of bytes. In C you
have to specify the length of the
array you want to create ahead of
time.

How do Embedded Strings work?
Well, the key is the size of the ary
array, which is set to RSTRING_
EMBED_LEN_MAX+1. If you’re running
a 64-bit version of Ruby, RSTRING_
EMBED_LEN_MAX is set to 24. That
means a short string like this will fit
into the RString ary array:

str = "Lorem ipsum dolor"

… while a longer string like this will
not:

str = "Lorem ipsum dolor sit
amet, consectetur adipisicing
elit"

How Ruby creates new string
values
Whenever you create a string value
in your Ruby 1.9 code, the inter-
preter goes through an algorithm
similar to this:

■■ Is this a new string value or a
copy of an existing string? If it’s
a copy, Ruby creates a Shared
String. This is the fastest option
since Ruby only needs a new
RString structure and not another
copy of the existing string data.

■■ Is this a long string or a short
string? If the new string value is
23 characters or less, Ruby cre-
ates an Embedded String. While
not as fast as a Shared String, it’s
still fast because the 23 charac-
ters are simply copied right into
the RString structure and there’s
no need to call malloc.

■■ Finally, for long string values, 24
characters or more, Ruby cre-
ates a Heap String — meaning it
calls malloc and gets some new
memory from the heap, and then
copies the string value there. This
is the slowest option.

The actual RString structure
For those of you familiar with the C
language, here’s the actual Ruby 1.9
definition of RString:

struct RString {
 struct RBasic basic;
 union {
 struct {
 long len;
 char *ptr;
 union {
 long capa;
 VALUE shared;
 } aux;
 } heap;

 char ary[RSTRING_EMBED_LEN_
MAX + 1];
 } as;
};

I won’t try to explain all the code
details here, but here are a couple
important things to learn about
Ruby strings from this definition:

■■ The RBasic structure keeps
track of various important bits
of information about this string,
such as flags indicating whether
it’s shared or embedded, and
a pointer to the corresponding
Ruby String object structure.

■■ The capa value keeps track of the
“capacity” of each Heap String...
it turns out Ruby will often
allocate more memory than is
required for each Heap String,
again to avoid extra calls to
malloc if a string size changes.

■■ The use of union allows Ruby
to EITHER save the len/ptr/
capa/shared information OR the
actual string data itself.

■■ The value of RSTRING_EMBED_LEN_
MAX was chosen to match the size
of the len/ptr/capa values. That’s
where the 23-character limit
comes from.

  23

We get an interesting result:

 user system total real
21 chars 0.250000 0.000000 0.250000 (0.247459)
22 chars 0.250000 0.000000 0.250000 (0.246954)
23 chars 0.250000 0.000000 0.250000 (0.248440)
24 chars 0.480000 0.000000 0.480000 (0.478391)
25 chars 0.480000 0.000000 0.480000 (0.479662)
26 chars 0.480000 0.000000 0.480000 (0.481211)
27 chars 0.490000 0.000000 0.490000 (0.490404)

Note that when the string length is 23 or less, it takes
about 250ms to create 1 million new strings. But when
my string length is 24 or more, it takes around 480ms,
almost twice as long!

Here’s a graph showing some more data; the bars show
how long it takes to allocate 1 million strings of the given
length:

Conclusion
Don’t worry! I don’t think you should refactor all your
code to be sure you have strings of length 23 or less. That
would obviously be ridiculous. The speed increase sounds
impressive, but actually the time differences I measured
were insignificant until I allocated 100,000s or millions
of strings — how many Ruby applications will need to
create this many string values? And even if you do need to
create many string objects, the pain and confusion caused
by using only short strings would overwhelm any perfor-
mance benefit you might get.

For me I really think understanding something about
how the Ruby interpreter works is just fun! I enjoyed
taking a look through a microscope at these sorts of tiny
details. I do also suspect having some understanding of
how Matz and his colleagues actually implemented the
language will eventually help me to use Ruby in a wiser
and more knowledgeable way. n

Pat Shaughnessy (@pat_shaughnessy) is a Ruby developer working
at a global management consulting firm. Pat also writes in-depth
articles at patshaughnessy.net, some of which have been featured on
the Ruby Weekly newsletter, the Ruby5 podcast and the Ruby Show.

Here’s the line of code from ruby.h that defines
this value:

#define RSTRING_EMBED_LEN_MAX ((int)
((sizeof(VALUE)*3)/sizeof(char)-1))

On a 64-bit machine, sizeof(VALUE) is 8,
leading to the limit of 23 characters. This will be
smaller for a 32-bit machine.

Benchmarking Ruby string allocation
Let’s try to measure how much faster short strings
are vs. long strings in Ruby 1.9.3. Here’s a simple
line of code that dynamically creates a new string
by appending a single character onto the end:

new_string = str + 'x'

The new_string value will either be a Heap
String or an Embedded String, depending on how
long the str variable’s value is. The reason I need
to use a string concatenation operation, the + 'x'
part, is to force Ruby to allocate a new string
dynamically. Otherwise, if I just used new_string =
str, I would get a Shared String.

Now I’ll call this method from a loop and bench-
mark it:

require 'benchmark'

ITERATIONS = 1000000

def run(str, bench)
 bench.report("#{str.length + 1} chars") do
 ITERATIONS.times do
 new_string = str + 'x'
 end
 end
end

Here I’m using the benchmark library to mea-
sure how long it takes to call that method 1 million
times. Now running this with a variety of different
string lengths:

Benchmark.bm do |bench|
 run("12345678901234567890", bench)
 run("123456789012345678901", bench)
 run("1234567890123456789012", bench)
 run("12345678901234567890123", bench)
 run("123456789012345678901234", bench)
 run("1234567890123456789012345", bench)
 run("12345678901234567890123456", bench)
end

247
=

247
=

248
=

478
=

479
=

481
=

490
=

481
=	

475
=

490
=

478
=450

400
350
300
250
200
150
100

50
0

20 21 22 23 24 25 26 27 28 29 30

String Length

Time required to create 1 million strings (ms)

Reprinted with permission of the original author. First appeared in hn.my/23char (patshaughnessy.net)

http://twitter.com/pat_shaughnessy
http://patshaughnessy.net
http://hn.my/23char

24  PROGRAMMING

By Nick JohnSon

Fountain Codes

Fountain Codes, otherwise
known as “rateless codes,” is
a way to take some data — a

file, for example — and transform
it into an effectively unlimited
number of encoded chunks, such
that you can reassemble the origi-
nal file given any subset of those
chunks, as long as you have a little
more than the size of the origi-
nal file. In other words, it lets you
create a “fountain” of encoded data;
a receiver can reassemble the file by
catching enough “droplets,” regard-
less of which ones they get and
which ones they miss.

What makes this so remarkable
is that it allows you to send a file
over a lossy connection — such as,
say, the internet — in a way that
doesn’t rely on you knowing the
rate of packet loss, and it doesn’t
require the receivers to commu-
nicate anything back to you about
which packets they missed. You
can see how this would be useful
in a number of situations, from

sending a static file over a broad-
cast medium, such as on-demand
TV, to propagating chunks of a file
amongst a large number of peers,
like BitTorrent does.

Fundamentally, though, fountain
codes are surprisingly simple. There
are a number of variants, but for
the purposes of this article, we’ll
examine the simplest, called an LT,
or Luby Transform Code. LT codes
generate encoded blocks like this:

1.	Pick a random number, d,
between 1 and k, the number of
blocks in the file. We’ll discuss
how best to pick this number
later.

2.	Pick d blocks at random from the
file, and combine them together.
For our purposes, the xor opera-
tion will work fine.

3.	Transmit the combined block,
along with information about
which blocks it was constructed
from.

That’s pretty straightforward,
right? A lot depends on how we
pick the number of blocks to com-
bine together — called the degree
distribution — but we’ll cover that
in more detail shortly. You can see
from the description that some
encoded blocks will end up being
composed of just a single source
block, while most will be composed
of several source blocks.

  25

Another thing that might not be immedi-
ately obvious is that while we do have to let
the receiver know what blocks we combined
together to produce the output block, we
don’t have to transmit that list explicitly.
If the transmitter and receivers agree on a
pseudo-random number generator, we can
seed that PRNG with a randomly chosen
seed and use that to pick the degree and
the set of source blocks. Then, we just send
the seed along with the encoded block, and
our receiver can use the same procedure to
reconstruct the list of source blocks we used.

The decoding procedure is a little — but
not much — more complicated:

1.	Reconstruct the list of source blocks that
were used to construct this encoded block.

2.	For each source block from that list, xor
that block with the encoded block if you
have already decoded it, and remove it
from the list of source blocks.

3.	If there are at least two source blocks left
in the list, add the encoded block to a
holding area.

4.	If there is only one source block remaining
in the list, you have successfully decoded
another source block! Add it to the
decoded file, and iterate through the hold-
ing list, repeating the procedure for any
encoded blocks that contain it.

0x48 0x48 = "H"

0x2D ?

0x24 ?

0x66 ?

0x03 ?

0x48 0x48 = "H"

0x2D 0x65 = "e"

0x24 0x6C = "I"

0x66 ?

0x03 ?

Let’s work through an
example of decoding to
make it clearer. Suppose
we receive five encoded
blocks, each one byte
long, along with informa-
tion about which source
blocks each is constructed
from. We could represent
our data in a graph, like
this:

Nodes on the left repre-
sent encoded blocks we
received, and nodes on
the right represent source
blocks. The first block
we received, 0x48 turns
out to consist of only one
source block — the first
source block — so we
already know what that
block was. Following the
arrows pointing to the
first source block, we can
see that the second and
third encoded blocks only
depend on the first source
block and one other. Since
we now know the first
source block, we can xor
them together, giving us
this:

26  PROGRAMMING

Repeating the same
procedure again, we can
see we now know enough
to decode the fourth
encoded block, which
depends on the second
and third source blocks,
both of which we now
know. XORing them
together lets us decode
the fifth and final source
block, giving us this:

Finally, we can now
decode the last remaining
source block, giving us the
rest of the message:

0x48 0x48 = "H"

0x2D 0x65 = "e"

0x24 0x6C = "I"

0x66 ?

0x03 0x6F = "o"

0x48 0x48 = "H"

0x2D 0x65 = "e"

0x24 0x6C = "I"

0x66 0x6C = "I"

0x03 0x6F = "o"

Admittedly this is a fairly contrived
example since we happened to receive just
the blocks we needed to decode the message,
with no extras and in a very convenient order.
However, it serves to demonstrate the prin-
ciple. I’m sure you can see how this applies to
larger blocks and larger files quite simply.

I mentioned earlier that selecting the
degree distribution, which is the number of
source blocks each encoded block should
consist of, is quite important. Ideally, we need
to generate a few encoded blocks that have
just one source block so decoding can get
started, and a majority of encoded blocks that
depend on a few others. It turns out such an
ideal distribution exists, and is called the ideal
soliton distribution.

Unfortunately, the ideal soliton distribu-
tion isn’t quite so ideal in practice, as random
variations make it likely that there will be
source blocks that are never included, or that
decoding will stall when it runs out of known
blocks. A variation on the ideal soliton distri-
bution, called the robust soliton distribution,
improves on this, generating more blocks
with very few source blocks and also generat-
ing a few blocks that combine all or nearly all
of the source blocks to facilitate decoding the
last few source blocks.

That, in a nutshell, is how fountain codes,
and LT codes specifically, work. LT codes
are the least efficient of the known fountain
codes, but also the simplest to explain. If
you’re interested in learning more, I’d highly
recommend reading this technical paper on
fountain codes [hn.my/mackay], as well as
reading about Raptor Codes [hn.my/raptor],
which add only a little complexity over LT
codes, but significantly improve their effi-
ciency, both in terms of transmission over-
head and computation. n

Nick Johnson is a Developer Programs Engineer for
Google App Engine, who’s just seen the light and relo-
cated to Australia. He regularly blogs about interesting
computer science topics at his blog [blog.notdot.net].
When he’s not saving the world there, he can be found
on Twitter (@nicksdjohnson) or Stack Overflow help-
ing folks out.

Reprinted with permission of the original author.
First appeared in hn.my/fountain (notdot.net)

http://hn.my/mackay
http://hn.my/raptor
http://blog.notdot.net
http://twitter.com/nicksdjohnson
http://hn.my/fountain

27  PROGRAMMING

By Ian Ward

Unfortunate Python

Python is a wonder-
ful language, but some
parts should really
have bright warning

signs all over them. There are fea-
tures that just can’t be used safely
and others are that are useful but
people tend to use in the wrong
ways.

Easy Stuff First
Starting with the non-controversial:
Anything that has been marked
deprecated should be avoided. The
deprecation warning should have
instructions with safe alternatives
you can use.

Some of the most frequent
offenders are parts of the language
that make it difficult to safely call
other programs:

■■ os.system()

■■ os.popen()

■■ import commands

We have the excellent subprocess
module for these now, use it.

Ducks in a Row
Explicitly checking the type of a
parameter passed to a function
breaks the expected duck-typing
convention of Python. Common
type checking includes:

■■ isinstance(x, X)

■■ type(x) == X

With type() being the worse of the
two.

If you must have different behav-
ior for different types of objects
passed, try treating the object as
the first data type you expect, and
catching the failure if that type
wasn’t that type, and then try the
second. This allows users to create
objects that are close enough to the
types you expect and still use your
code.

Not Really a Vegetable

import pickle # or cPickle

Objects serialized with pickle are
tied to their implementations in
the code at that time. Restoring
an object after an underlying class
has changed will lead to undefined
behavior. Unserializing pickled data
from an untrusted source can lead
to remote exploits. The pickled data
itself is opaque binary that can’t be
easily edited or reviewed.

This leaves only one place
where pickle makes sense — short-
lived data being passed between
processes, just like what the
multiprocessing module does.

Anywhere else, use a different
format. Use a database or use JSON
with a well-defined structure. Both
are restricted to simple data types
and are easily verified or updated
outside of your Python script.

28  PROGRAMMING

Toys are for Children
Many people are drawn to these
modules because they are part of
Python’s standard library. Some
people even try to do serious work
with them.

■■ asyncore / asynchat

■■ SimpleHTTPServer

The former resembles a reason-
able asynchronous library, until you
find out there are no timers. At all.
Use Twisted instead; it’s the best
we’ve got.

The latter makes for a neat demo
by giving you a web server in your
pocket with the one command
python -m SimpleHTTPServer. But
this code was never intended for
production use and certainly not
designed to be run as a public web
server. There are plenty of real,
hardened web servers out there
that will run your Python code as a
WSGI script. Choose one of them
instead.

Foreign Concepts

import array

All the flexibility and ease of use of
C arrays, now in Python!

If you really, really need this you
will know. Interfacing with C code
in an extension module is one valid
reason.

If you’re looking for speed, try
just using regular Python lists
and PyPy. Another good choice is
NumPy for its much more capable
array types.

Can't be Trusted

def __del__(self):

The mere existence of this method
makes objects that are part of a
reference cycle uncollectable by

Python’s garbage collector and
could lead to memory leaks.

Use a weakref.ref object with a
callback to run code when an object
is being removed instead.

Split Personality

reload(x)

It looks like the code you just
changed is there, except the old
versions of everything are still there
too. Objects created before the
reload will still use the code as it
was when they were created, lead-
ing to situations with interesting
effects that are almost impossible to
reproduce.

Just re-run your program. If
you’re debugging at the interactive
prompt, consider debugging with a
small script and python -i instead.

Almost Reasonable

import copy

The copy module is harmless
enough when used on objects that
you create and you fully under-
stand. The problem is once you get
in the habit of using it, you might
be tempted to use it on objects
passed to you by code you don’t
control.

Copying arbitrary objects is
troublesome because you will often
copy too little or too much. If this
object has a reference to an external
resource, it’s unclear what copying
that even means. It can also easily
lead to subtle bugs introduced into
your code by a change outside your
code.

If you need a copy of a list or a
dict, use list() or dict() because
you can be sure what you will get
after they are called. copy(), how-
ever, might return anything, and
that should scare you.

Admit You Always Hated It

if __name__ == '__main__':

This little wart has long been a
staple of many Python introduc-
tions. It lets you treat a Python
script as a module or a module as
a Python script. Clever, sure, but
it’s better to keep your scripts and
modules separate in the first place.

If you treat a module like a script,
and then something imports the
module, you’re in trouble: now you
have two copies of everything in
that module.

I have used this trick to make
running tests easier, but setuptools
already provides a better hook for
running tests. For scripts, setuptools
has an answer too: just give it a
name and a function to call, and
you’re done.

My last criticism is that a single
line of Python should never be 10
alphanumeric characters and 13
punctuation characters. All those
underscores are there as a warn-
ing that some special non-obvious
language-related thing is going on,
and it’s not even necessary.

Don’t Emulate stdlib
If it’s in standard library, it must be
well written, right?

May I present the implementa-
tion of namedtuple, which is a
really handy little class that, if used
properly, can significantly improve
your code’s readability:

def namedtuple(typename,
field_names, verbose=False,
rename=False):
 # Parse and validate the field
 # names. Validation serves
 # two purposes, generating
 # informative error messages
 # and preventing template
 # injection attacks.

  29

Wait, what? “preventing template injection attacks”?
This is followed by 27 lines of code that validates field_names.

And then:

template = '''class %(typename)s(tuple):
 '%(typename)s(%(argtxt)s)' \n
 __slots__ = () \n
 _fields = %(field_names)r \n
 def __new__(_cls, %(argtxt)s):
 'Create new instance of %(typename)s(%(argtxt)s)'
 return _tuple.__new__(_cls, (%(argtxt)s)) \n
 @classmethod
 def _make(cls, iterable, new=tuple.__new__, len=len):
 'Make a new %(typename)s object from a sequence or
iterable'
 result = new(cls, iterable)
 if len(result) != %(numfields)d:
 raise TypeError('Expected %(numfields)d arguments,
got %%d' %% len(result))
 return result \n
 def __repr__(self):
 'Return a nicely formatted representation string'
 return '%(typename)s(%(reprtxt)s)' %% self \n
 def _asdict(self):
 'Return a new OrderedDict which maps field names to
their values'
 return OrderedDict(zip(self._fields, self)) \n
 __dict__ = property(_asdict) \n
 def _replace(_self, **kwds):
 'Return a new %(typename)s object replacing specified
fields with new values'
 result = _self._make(map(kwds.pop, %(field_names)r,
_self))
 if kwds:
 raise ValueError('Got unexpected field names:
%%r' %% kwds.keys())
 return result \n
 def __getnewargs__(self):
 'Return self as a plain tuple. Used by copy and
pickle.'
 return tuple(self) \n\n''' % locals()

Yes, that’s a class definition in a big
Python string, filled with variables from
locals(). The result is then execed in the
right namespace, and some further magic is
applied to “fix” copy() and pickle().

I believe this code was meant as some
sort of warning to people that would con-
tribute code to Python — something like
“We make it look like we know what we’re
doing, but we’re really just nuts” (love ya
Raymond).

Trying Too Hard

hasattr(obj, 'foo')

hasattr has always been defined to swal-
low all exceptions, even ones you might
be interested in (such as a KeyboardInter-
rupt), and turn them into a False return
value. This interface just can’t be fixed, so
use getattr with a sentinel value instead.

Off by One

'hello'.find('H')

str.find and str.rfind return -1 on failure.
This can lead to some really hard-to-find
bugs when combined with containers like
strings that treat -1 as the last element. Use
str.index and str.rindex instead. n

Ian Ward is an independent software developer
in Ottawa, Canada. He works primarily with Linux,
Python, C and PostgreSQL. He is also the author and
maintainer of the Python console user interface
library Urwid.

Reprinted with permission of the original author.
First appeared in hn.my/unfortunate (excess.org)

http://hn.my/unfortunate

30  PROGRAMMING

By Brandon Mintern

If you are anything like me,
you have programs running
on all kinds of different
servers. You probably have

a GitHub account, a free Heroku
instance, a work desktop, a couple
website instances, and maybe even
a home server. The best part is that
using common Unix tools, you can
connect to all of them from one
place.

In this article, I will review some
of the more interesting aspects of
my workflow, covering the usage
of SSH, screen, and VNC, includ-
ing a guide for getting started with
VNC. I’ll provide some quick start
information and quickly progress
to advanced topics (like SSH pipes
and auto-session-creation) that even
experienced Unix users may not be
aware of.

SSH to rule them all
By now you’ve almost certainly
used SSH. It’s the easiest way to
login to a remote machine and get
instant command line access. It’s as
easy as ssh user@example.com. You
type in your password, and you’re
in! But you might not know that
it can be even easier (and more
secure) than that.

Logging in via SSH without a
password
We have only recently seen web-
sites start to offer solutions for
logging in without a password. SSH
has provided a secure mechanism
for this (based on public-key cryp-
tography) since its inception. It’s
pretty easy to setup once you know
how it works.

1. Generate a public-private key
pair
If you haven’t already, run ssh-
keygen on your laptop, or what-
ever computer you will be doing
your work from. You can just
continue pressing Enter to accept
the defaults, and you can leave the
password blank (if you secure your
laptop with encryption, a locking
screensaver, and a strong password,
your SSH key doesn’t require a
password). This will generate a
public key at ~/.ssh/id_rsa.pub
and a private key at ~/.ssh/id_rsa.
The private key should never leave
your computer.

2. Copy the public key to each
computer you connect to
For each computer that you
connect to, run the following
command:

ssh-copy-id user@example.com

(Note that you can specify -p PORT
or any other SSH arguments before
the user@example.com portion of
the above command.)

This should be the last time
you ever have to type your login
password when connecting to the
remote server. From now on, when
you SSH to the remote server, its
sshd service will encrypt some
data using the public key that you
appended to authorized_keys, and
your local machine will be able to
decode that challenge with your
private key.

3. There is no step 3
It’s that easy! Don’t you wish you
had set this up a long time ago?

Tips for Remote Unix Work

  31

SSH and pipes
If you take a look at the ssh-copy-
id script, you’ll see a line that
roughly translates to:

cat ~/.ssh/id_rsa.pub | ssh
user@example.com "umask 077;
test -d ~/.ssh || mkdir
~/.ssh ; cat >> ~/.ssh/
authorized_keys"

When you ran ssh-copy-id above,
here’s what that line did:

1.	The contents of ~/.ssh/id_rsa.
pub were piped into the SSH
command.

2.	SSH encrypted that data and
sent it across the network to your
remote machine.

3.	Everything in double quotes after
the host is a single argument to
ssh; this specified that instead of
giving you an interactive login,
you instead wanted to run a
command.

4.	The first portion of that com-
mand (umask 077; test -d
~/.ssh || mkdir ~/.ssh ;)
created a .ssh directory on the
remote machine if it did not
already exist, ensuring that it had
the proper permissions.

5.	The second portion (cat >>
.ssh/authorized_keys) received
the standard input via the SSH
tunnel and appended it to the
authorized_keys file on the
remote machine.

This avoids the need to use SCP
and login multiple times. SSH
can do it all! Here are some more
examples to show you some of the
neat things you can do with SSH
pipe functionality.

Send the files at ~/src/ to example.
com:~/src/ without rsync or scp

cd && tar czv src | ssh exam-
ple.com 'tar xz'

Copy the remote website at exam-
ple.com:public_html/example.com
to ~/backup/example.com

mkdir -p ~/backup/

cd !$

ssh example.com 'cd public_html
&& tar cz example.com' | tar
xzv

See if httpd is running on
example.com

ssh example.com 'ps ax | grep
[h]ttpd'

Other SSH tunnels
If piped data were the only thing
that could be securely tunneled
over SSH connections, that would
still be useful. But SSH can also
make remote ports seem local.
Let’s say that you’re logged into
example.com, and you’re editing a
remote website that you’d like to
test on port 8000. But you don’t
want just anyone to be able to
connect to example.com:8000, and
besides, your firewall won’t allow it.
What if you could get a connection
to example.com, localhost:8000,
but from your local computer and
browser? Well, you can!

Create an SSH tunnel

ssh -NT -L 9000:localhost:8000
example.com

Using the -L flag, you can tell SSH
to listen on a local port (9000),
and to reroute all data sent and
received on that port to example.
com:8000. To any process listen-
ing on example.com:8000, it will
look like it’s talking to a local
process (and it is: an SSH process).
So open a terminal and run the
above command, and then fire up
your browser locally and browse to
localhost:9000. You will be whisked
away to example.com:8000 as if
you were working on it locally!

Let me clarify the argument to -L
a bit more. The bit before the colon
is the port on your local machine
that you will connect to in order
to be tunneled to the remote port.
The part after the second colon is
the port on the remote machine.
The “localhost” bit is the remote
machine you will be connected to,
from the perspective of example.
com. When you realize the rami-
fications of this, it becomes even
more exciting! Perhaps you have a
work computer to which you have
SSH access, and you have a com-
pany intranet site at 192.168.10.10.
Obviously, you can’t reach this
from the outside. Using an SSH
tunnel, however, you can!

ssh -NT -L
8080:192.168.10.10:80 work-
account@work-computer.com

Now browse to localhost:8080
from your local machine, and smile
as you can access your company
intranet from home with your lap-
top’s browser, just as if you were on
your work computer.

32  PROGRAMMING

But my connection sucks, or,
GNU screen
Have you ever started a long-
running command, checked in on it
periodically for a couple hours, and
then watched horrified as your con-
nection dropped and all the work
was lost? Don’t let it happen again.
Install GNU screen on your remote
machine, and when you reconnect
you can resume your work right
where you left off (it may have
even completed while you were
away).

Now, instead of launching right
into your work when you connect
to your remote machine, first start
up a screen session by running
screen. From now on, all the work
you are doing is going on inside
screen. If your connection drops,
you will be detached from the
screen session, but it will continue
running on the remote machine.
You can reattach to it when you log
back in by running screen -r. If
you want to manually detach from
the session but leave it running,
type Ctrl-a, d from within the
screen session.

Using screen
Screen is a complex program, and
going into everything it can do
would be a series of articles. Instead,
check out this great screen quick
reference guide [hn.my/screen].
Some of screen’s more notable
features are its ability to allow
multiple terminal buffers in a single
screen session and its scrollback
buffer.

What happened to Control-a?
Screen intercepts Control-a to
enable some pretty cool function-
ality. Unfortunately, you may be
used to using Control-a for readline
navigation. You can now do this by
pressing Ctrl-a, a. Alternatively,
you can remap it by invoking screen
with the -e option. For example,
running screen -e ^jj would
cause Control-j to be intercepted
by screen instead of Control-a. If
you do this, just replace references
to “C-a” in the aforementioned ref-
erence guide with whatever escape
key you defined.

Shift-PageUp is broken
Like vim and less, screen uses
the terminal window differently
from most programs, controlling
the entire window instead of just
dumping text to standard output
and standard error. Unfortunately,
this breaks Shift-PageUp and Shift-
PageDown in gnome-terminal. For-
tunately, we can fix this by creating
a ~/.screenrc file with the follow-
ing line in it:

termcapinfo xterm ti@:te@

And while you’re mucking
around in .screenrc, you might as
well add an escape ^jj line to it, so
that you can stop typing in -e ^jj
every time you invoke screen.

Starting screen automatically
It’s pretty easy to forget to run
screen after logging in. Personally,
any time I am using SSH to login
and work interactively, I want to be
in a screen session. We can com-
bine SSH’s ability to run a remote
command upon login with screen’s
ability to reconnect to detached ses-
sions. Simply create an alias in your
~/.bashrc file:

alias sshwork='ssh -t work-
username@my-work-computer.com
"screen -dR"'

This will automatically fire up
a screen session if there is not one
running, and if there is one running,
it will connect to it. Detaching from
the screen session will also logout of
the remote server.

Remote graphical work
Even in spite of SSH’s port for-
warding capabilities, we still some-
times need to use graphical applica-
tions. If you have a fast connection
or a simple GUI, passing the -Y flag
to SSH could be enough to allow
you run the application on your
local desktop. Unfortunately, this
often is a very poor user experience,
and it does not work well with
screen (a GUI application started
in a screen session dies when you
detach from the screen session).

The time-tested Unix solution to
this problem is VNC. This is effec-
tively a combination of screen and
a graphical environment. Unfortu-
nately, it has several drawbacks.

http://hn.my/screen

  33

■■ It can be tricky to setup
reasonably.

■■ It is inherently insecure, with
unencrypted data and a weak
password feature.

■■ Its performance on a sub-optimal
connection is less-than-stellar.

■■ It doesn’t transfer sounds over
the network.

I’m going to help you solve all of
these problems, except the sound
one. Who needs sounds, anyway?

VNC installation and setup
On the remote machine, you’ll
need to install a VNC server and a
decent lightweight window man-
ager. I chose fluxbox and x11vnc:

sudo apt-get install x11vnc
fluxbox

The programs that are started
when you first start a VNC ses-
sion are controlled by the ~/.vnc/
xstartup file. I prefer something a
bit better than the defaults, so mine
looks like this:

#!/bin/sh
[-x /etc/vnc/xstartup] &&
exec /etc/vnc/xstartup
[-r $HOME/.Xresources] &&
xrdb $HOME/.Xresources
netbeans &
gnome-terminal &
fluxbox &

Modify this to suit your own
needs. I only invoke netbeans
because it’s the only reason I
ever use a remote GUI at all. NB:
Although it may seem counterin-
tuitive, it’s typically best to put the
window manager command last.

You can start a VNC server with
the following command:

vncserver -geometry WIDTHxHEIGHT

where WIDTHxHEIGHT is your
desired resolution. For me, it’s
1440x900. The first time you run
this, it will ask you to create a
password. We are going to ensure
security through other means, so
you can set it to whatever you want.
Running the above command will
give a message like “New ‘remote-
machine:1 (username)’ desktop is
remote-machine:1”. The “:1” is the
display number. By adding 5900
to this, we can determine which
port the VNC server is listening
on. At this point, we can connect
to remote-machine:5901 with a
vncviewer and log in to the session
we’ve created. We don’t want the
entire Internet to be able to connect
to our poorly-secured session, so let’s
terminate that VNC server session:

vncserver -kill :1

Securing the VNC server
Remember how we tunneled ports
with SSH? We can do the same
thing with VNC data. First, we’ll
invoke our VNC server slightly
differently:

vncserver -localhost -geometry
WIDTHxHEIGHT -SecurityTypes
None

This causes the VNC server
to only accept connections that
originate on the local machine.
It also indicates that we will not
need a password to connect to
our session; simply being logged
in locally as the user who created
the session is enough. You should
now have a VNC server running
on a remote machine listening on
localhost:5901.

On your local machine, install
a VNC viewer. I personally use
gvncviewer, though I don’t par-
ticularly recommend it. Now, to
connect to that remote port, you’ll
need to start an SSH tunnel on
your local machine:

ssh -NT -L 5901:localhost:5901
remote-machine.com

We can now run the VNC viewer
on our local machine to connect via
the tunnel to our VNC session:

gvncviewer :1

Speeding up VNC?
When starting an SSH tunnel, we
can compress the data it sends by
including the -C flag. Depending
on your connection speed, it may
be worth including the flag in your
tunnel command. Experiment with
this option and see what works best
for you.

If you are really having prob-
lems, you might also want to check
out the -deferUpdate option,
which can delay how often display
changes are sent to the client. For
more information, man Xvnc.

Automatically starting and connect-
ing to your VNC session
Putting everything together, we can
create a script that does all of this
for us. Simply set the GEOMETRY and
SSH_ARGS variables appropriately (or
modify it slightly to accept them as
command line arguments).

#!/bin/bash
set -e

GEOMETRY=1440x900
SSH_ARGS='-p 22 username@remote-server.com'

Get VNC display number. If there is not a VNC
process running, start one
vnc_display="$(ssh $SSH_ARGS 'ps_text="$(ps x |
grep X[v]nc | awk '"'"'{ print $6 }'"'"' | sed
s/://)"; if ["$ps_text" = ""]; then vncserver
-localhost -geometry '$GEOMETRY' -Security-
Types none 2>&1 | grep New | sed '"'"'s/^.*:\
([^:]*\)$/\1/'"'"'; else echo "$ps_text"; fi')"
port=`expr 5900 + $vnc_display`
ssh -NTC -L $port:localhost:$port $SSH_ARGS &
SSH_CMD=`echo $!`
sleep 3
gvncviewer :$vnc_display
kill $SSH_CMD

The vnc_display line is pretty gross, so I’ll give some
explanation. It uses SSH to connect to the remote server
and look for a running process named Xvnc: this is the
running VNC server. If there’s one running we extract
the display number. Otherwise, we start one up with
the specified geometry and grab the display number

from there. This all happens within a single command
executed by ssh, and the resulting output is piped across
the network back into our vnc_display variable.

Either way we get the value, we now know which
port to connect to in order to reach our VNC server.
We start our SSH tunnel and get the resulting PID.
Finally, we invoke the vncviewer on that tunneled local
port. When the VNC viewer exits, we automatically
kill our SSH tunnel as well.

Concluding remarks
One of the best parts of Unix is that it was built to
be run remotely from Day 1. Just about anything you
can do on your local computer can also be done on a
remote one. By leveraging tools like SSH, screen, and
VNC, we can make remote work as easy and conve-
nient as local work. I hope this gave you some ideas for
how you can create a productive workflow with these
very common Unix tools. n

Brandon Mintern is Lead Software Engineer at EasyESI, a seed-
funded startup in Berkeley. His pursuits include reverse engi-
neering, data processing, and language design. He presented
at the first annual PyOhio. He currently enjoys exploring all the
Bay Area has to offer.

By Timothy DalyBeing a Great Coder
Do yourself a favor and lose

the “great coder” meme. Or
get a job at Google and remain
blissfully unaware.

One of the best books I’ve ever
read about programming is called
“Practicing: A Musician’s Return
to Music,” where the author talks
about his development as a musi-
cian. He would receive compli-
ments on how great he was at
playing the guitar. At one point he
replies, “How would you know?”
The better he got, the worse he
knew he was.

Your opinion of how great you
are at programming will follow a
bell curve. You’ll start off coming
out of college thinking you’re ok,
memorize a few algorithms and
order theory (“the Google disease”)
and think you’re “great” (“Google
only hires great coders”). But as
you learn more you’ll discover that
you have SO much more to learn,
and as you work on larger proj-
ects you’ll discover the musician’s
insight. People would rate you
“great,” but you’ll be able to say,
“How would you know?” At which
point, the better you get, the worse
you’ll know you are.

Anybody who rates themselves
as “great” is probably on the uphill
side of the learning curve.

If you’re trying to learn Clojure,
moving into areas that are beyond
your comfort zone, and trying
to learn literate programming to
improve your game, all points to the
fact that you will likely reach a point
where you feel that being labeled
“great” is a sign that the speaker is
clueless. Give it 10000 hours. n

Timothy Daly is Axiom’s lead developer.
He is currently running his own consulting
business, Literate Software, while building
a base of literate tools.

Reprinted with permission of the original author.
First appeared in hn.my/remoteunix (brandonmintern.com)

Reprinted with permission of the original author. First appeared in hn.my/greatcoder

http://hn.my/remoteunix
http://hn.my/greatcoder

Reprinted with permission of the original author. First appeared in hn.my/codelearn.

Reprinted with permission of the original author.
First appeared in hn.my/remoteunix (brandonmintern.com)

http://cloudkick.com
http://hn.my/remoteunix

36  SPECIAL

SPECIAL

By JAMES TAUBER

Why 13th

As the background to my
music theory is more classical
in nature, it used to puzzle me
when I saw jazz chords like

C9, B♭11 or F13. I mean, I knew what a 9th,
11th and 13th note were, but I wondered why
you’d call a note a 9th rather than a 2nd, or a
13th rather than a 6th and so on.

After all, when you talk about chord, you’re
normally talking about notes independent of
octave. If you describe something as a C7 chord,
you’re not saying anything about whether the E
and B♭ are in the same octave or not.

I can’t remember when, but the breakthrough
came when I realized that a 9th chord isn’t just
a major triad with the 2nd added, but one with
the 2nd and 7th added. An 11th chord is one
with the 4th and 7th added.

(Just as an aside: the fact 2+7=9 and 4+7=11
here is an unrelated coincidence. An 11th is
4th+octave, but due to the 1-based indexing
used, you add 7, not 8.)

Now yes, I’ve seen the theory books
where they show a C9 as C+E+G+B♭+D,
a C11 as C+E+G+B♭+D+F and a C13 as
C+E+G+B♭+D+F+A, but that really didn’t help
emphasize that it’s the existence of the 7th that
makes the chord sound like (and be described
as) a C9, C11 or C13 respectively, instead of,
say a Cadd2, Cadd4 or C6.

The 3rd and 7th are really the defining notes
of a chord in jazz, particularly comping on
piano where you expect the bass to provide the
root. So the final light went off when I saw the
closing jazz riff of Ben Folds Five’s Underground
notated. There were a bunch of triads that were
marked as 13th chords. So, for example, the
voicing E♭+A+D was marked as F13.

Note that that voicing has just the 3rd, 7th
and 13th. The 13th is also a 6th, but by call-
ing the chord F13, it’s making it clear the 7th
is there as well, which gives the chord a very
different direction it wants to go. The 7th makes
the whole chord want to resolve to a B♭, which
gives the 13th/6th (the D) more of a suspended
feel it doesn’t have in an F6 chord.

I find not only the 13th chord a great sub-
stitute for a 7th now, especially when it’s the
dominant resolving to the tonic, but I also love
the 7th+3rd+13th/6th way of voicing it too.

I know this is jazz 101, but it was a break-
through moment for me. n

James Tauber is the founder and CEO of web startup
Eldarion, Inc. When not working with software startups,
websites and open source software, he is an aspiring
composer, music theorist, mathematician and linguist.
James lives just outside of Boston with his wife but is
originally from Perth, Western Australia.

Chords

Reprinted with permission of the original author. First appeared in hn.my/chords (jtauber.com). Image by Mauricio Duque.

http://duckduckgo.com
http://hn.my/chords

  37

http://duckduckgo.com

38  SPECIAL

In Philadelphia, I spent a
lot of time waiting for eleva-
tors. I inevitably paid a lot
of attention to the control

algorithms used by different eleva-
tors in different buildings.

All elevator algorithms solve the
same type of optimization problem:
if a building has n floors and m
elevators, how could we most effi-
ciently move people up/down the
floors? I’m sure you already know
of the simple algorithm that every
elevator implements, but one can
definitely improve on this. Here’s
one improvement someone tried to
make:

Example #1
This building has 1 elevator and
8 floors. The elevator was made
to move back to floor 4 when it is
idle.

This is an intuitive solution.
Since there are n floors from where
people could call the elevator,
why not minimize the wait time
by making the elevator go back
to floor n/2 when it is idle? The
problem with this argument is that
it assumes an elevator is equally
likely to be called from any of the
n floors, which is not true. In most
cases, people who use the elevator
would use it to either go down to

ground floor from the floor they’re
at or up from ground floor to the
floor they should be in. This means
that approximately half the time,
elevator requests would occur at
the ground floor. A better design is

the following:

Example #2
There are no more
than 10 floors
(I believe it was
less) and about 6
elevators. When
an elevator is idle,
it moves to the
ground floor and
opens its door.

This speeds things
up a lot. Not only
could you avoid

waiting for the elevator to get to the
ground floor, you don’t even have
to press the button and wait for the
door to open! I thought this was a
great idea! An acquaintance pointed
out, though, that unsuspecting
people might mistakenly think the
elevator is broken. Well then...

The algorithm used in Example
#2 focuses a lot more on people
going up rather than people going
down. I think this makes sense.
Going up stairs takes a lot more
effort than going down stairs, so
people are more likely to use the
elevator to go up. However, in a
building with more floors, more
people would want to use the
elevator to go down, so having all
the elevators on ground floor is not
going to help. Here’s a solution that
seems to work well:

Example #3
This building has 2 elevators and
~12 floors. It is programmed to
ensure that at least 1 elevator is on
the ground floor at any given time.
The other elevator is often seen on

floor 6, but I’m not sure if there’s a
pattern here.

This makes a lot of sense. The
first elevator takes care of the case
where people want to go up from
floor 1. The second elevator takes
care of the case where people
would want to go down, and since
the elevator is at floor 6, the wait
time is reduced.

For small n and m, I really can’t
think of a better solution than the
one used in Example #3. For larger
n and m, though, it becomes more
complicated:

Example #4
This building has about 38 floors
and at least 12 elevators. The
elevators are divided into 2 groups:
the first group goes to floors up to
22. The second elevator skips all
the floors until floor 22, so it stops
at floors 22-38 (and the ground
floor).

It would be quite disastrous if
elevators aren’t organized this way.
Imagine working on the top floor
and having to wait for the elevator
to stop at every floor in between!
This elevator is designed to go
super fast from floor 1 to floor 22,
making things even more efficient.

All of these examples are real.
What I don’t understand is why so
many buildings do not have these
optimizations built into their eleva-
tors. Implementing these changes
cost almost nothing, and they can
save a lot of peoples’ time in the
long run. n

Lisa is a pure math and applied math
student at the University of Waterloo.
She is passionate about data science,
data mining, data visualization and
entrepreneurship.

By Lisa Zhang

Elevator
Algorithms

Reprinted with permission of the original author.
First appeared in hn.my/elevator (lisazhang.ca)

http://hn.my/elevator

Reprinted with permission of the original author.
First appeared in hn.my/elevator (lisazhang.ca)

http://www.getharvest.com/hackers
http://hn.my/elevator

Dream. Design. Print.
MagCloud, the revolutionary new self-publishing web service
by HP, is changing the way ideas, stories, and images find
their way into peoples’ hands in a printed magazine format.

HP MagCloud capitalizes on the digital revolution, creating a
web-based marketplace where traditional media companies,
upstart magazine publishers, students, photographers, design-
ers, and businesses can affordably turn their targeted content
into print and digital magazine formats.

Simply upload a PDF of your content, set your selling price, and
HP MagCloud takes care of the rest—processing payments,
printing magazines on demand, and shipping orders to loca-
tions around the world. All magazine formatted publications
are printed to order using HP Indigo technology, so they not
only look fantastic but there’s no waste or overruns, reducing
the impact on the environment.

Become part of the future of magazine publishing today at
www.magcloud.com.

25% Off the First Issue You Publish
Enter promo code HACKER when you set your
magazine price during the publishing process.

Coupon code valid through February 28, 2011.
Please contact promo@magcloud.com with any questions.

http://magcloud.com

	Contents
	FEATURES
	How Airplanes Fly

	DESIGN
	The Messy Art of UX Sketching

	PROGRAMMING
	Never Create Ruby Strings Longer Than 23 Characters
	Fountain Codes
	Unfortunate Python
	Tips for Remote Unix Work
	Being a Great Coder

	SPECIAL
	Why 13th Chord
	Elevator Algorithms

