
Issue 20
January 2012

http://duckduckgo.com

  3

http://duckduckgo.com
http://www.getharvest.com/hackers

4  ﻿

Curator
Lim Cheng Soon

Contributors
Matt Might
Jason Cohen
Charlie Park
Edward Z. Yang
Chandra Patni
Alex MacCaw
Paul Stamatiou
Matthew Flickinger

Proofreader
Emily Griffin

Printer
MagCloud

Hacker Monthly is the print magazine version
of Hacker News — news.ycombinator.com, a social
news website wildly popular among programmers and
startup founders. The submission guidelines state that
content can be “anything that gratifies one’s intellectual
curiosity.” Every month, we select from the top voted
articles on Hacker News and print them in magazine
format. For more, visit hackermonthly.com.

Advertising
ads@hackermonthly.com

Contact
contact@hackermonthly.com

Published by
Netizens Media
46, Taylor Road,
11600 Penang,
Malaysia.

Hacker Monthly is published by Netizens Media and not affiliated with Y Combinator in any way.

http://news.ycombinator.com
http://hackermonthly.com
mailto:ads@hackermonthly.com
mailto:contact@hackermonthly.com

  5

For links to Hacker News dicussions, visit hackermonthly.com/issue-20

Contents
FEATURES

06  Translating Math into Code
By Matt Might

STARTUPS

20  Hiring Employee #1
By Jason Cohen

DESIGN

26  Slopegraphs
By Charlie Park

PROGRAMMING

38  How to Read Haskell Like Python
By Edward Z. Yang

46  Fast, Easy, Realtime Metrics Using Redis Bitmaps
By Chandra Patni

50  Asynchronous UIs
By Alex MacCaw

56  The Coding Zone
By Paul Stamatiou

58  What’s in a GIF — Bit by Byte
By Matthew Flickinger

http://hackermonthly.com/issue-20

6  FEATURES

FEATURES

Translating
Math into Code

By Matt Might

with Examples in Java, Racket, Haskell and Python

Discrete mathematical struc-
tures form the foundation of
computer science.

These structures are so universal that
most research papers in the theory of
computation, programming languages,
and formal methods present concepts
in terms of discrete mathematics rather
than code.

The underlying assumption is that
the reader will know how to translate
these structures into a faithful imple-
mentation as a working program.

A lack of material explaining this
translation frustrates outsiders.

What deepens that frustration is that
each language paradigm encodes dis-
crete structures in a distinct way.

Many of the encodings are as immu-
table, purely functional data structures
(even in imperative languages), a topic
unfortunately omitted from many com-
puter science curricula. Many standard
libraries provide only mutable versions
of these data structures, which instantly
leads to pitfalls.

Okasaki’s classic Purely Functional
Data Structures [hn.my/okasaki] is an
essential reference.
Read on for my guide to translating
the common discrete mathematical
structures — sets, sequences, functions,
disjoint unions, relations and syntax
— into working code in Java, Python,
Racket, and Haskell.

http://hn.my/okasaki

  7

Caution: Math has no side effects
The fatal mistake newcomers make
when translating math into code is
using mutable data structures where
only an immutable structure was
correct.

Mathematics has no side effects.
Math cannot modify the value of a

variable, either global or local. It cannot
mutate an element in an array. And a
mathematical function always returns
the same value for the same input.

The literal rendering of mathematics
into code cannot contain side effects.

Mathematics is a purely functional
language.

Of course, once the constraints on
an implementation are understood, it’s
usually possible to exchange immu-
table data structures for mutable ones
in key places to achieve performance
savings.

But, for the purposes of prototyping,
it’s always best to start with a direct,
purely functional implementation.

Sets and power sets
The rendering of a set as code will
usually be a type, a collection backed
by a balanced tree or a hash map, or a
predicate.

In mathematics, a set is an unordered
collection of elements.

The empty set, ∅, is a special set con-
taining no elements.

The syntax for literal sets is curly
braces: {}. For example, the set {1,2,3} is
the set containing 1, 2 and 3.

The relationship x ∈ S declares that
the value x is a member of the set S.

Sets as types
Infinite sets tend to be encoded as
types. (Of course, some finite sets are
encoded as types too.)

In some cases, a set X is defined as a
subset of another set Y:

X ⊂ Y.

This subset relationship could be rep-
resented as inheritance in a language
like Java or Python, if these sets are
meant to be types:

class X extends Y { ... }

When a set X is defined to be the
power set of another set Y:

X = P(Y) = 2Y,

then X and Y will be types, and mem-
bers of X will be collections.

Sets as collections
When a set’s contents are computed at
run-time, then it will often be a sorted
collection backed by a structure like a
red-black tree.

It’s not hard to implement a purely
functional, sorted (but unbalanced)
search tree in Java:

8  FEATURES

interface Ordered <T> {
 public boolean isLessThan(T that) ;
}

abstract class SortedSet<T extends Ordered<T>> {
 public abstract boolean isEmpty() ;
 public abstract boolean contains(T element) ;
 public abstract SortedSet<T> add(T element) ;
 public static final <E extends Ordered<E>> SortedSet<E> empty() {
 return new EmptySet<E>();
 }
}

final class EmptySet<T extends Ordered<T>> extends SortedSet<T> {
 public boolean isEmpty() {
 return true ;
 }

 public boolean contains(T element) {
 return false ;
 }
 public SortedSet<T> add(T element) {
 return new Node<T>(this,element,this) ;
 }

 public EmptySet() {
 }
}

final class Node<T extends Ordered<T>> extends SortedSet<T> {

 private final SortedSet<T> left ;
 private final T element ;
 private final SortedSet<T> right ;
 public boolean isEmpty() {
 return false ;
 }
 public Node(SortedSet<T> left, T element, SortedSet<T> right) {
 this.left = left ;

  9

 this.right = right ;
 this.element = element ;
 }
 public boolean contains(T needle) {
 if (needle.isLessThan(this.element)) {
 return this.left.contains(needle) ;
 } else if (this.element.isLessThan(needle)){
 return this.right.contains(needle) ;
 } else {
 return true ;
 }
 }
 public SortedSet<T> add(T newGuy) {
 if (newGuy.isLessThan(this.element)) {
 return new Node<T>(left.add(newGuy),this.element,right) ;
 } else if (this.element.isLessThan(newGuy)) {
 return new Node<T>(left,this.element,right.add(newGuy)) ;
 } else {
 return this ;
 }
 }
}

Be warned that the Java library’s Set
interface (optionally) allows imperative
addition and removal of elements. A
computational rendering of mathemat-
ics cannot use these features.

A run-time set might also be backed
by an immutable hash table.

Regardless of representation, these
set data structures typically need to
support operations like enumeration,
union, intersection and difference, and
relations like membership, equality, and
subset.

Whether a balanced tree or a hash
map is better for ease of implementa-
tion and performance rests on type

of the elements in the set and the
algorithmic uses-cases for the set
operations.

In some cases, it’s easy to provide an
efficient ordering function. Sometimes,
it’s easier to provide a hash function
and a definition of equality.

Python provides syntactic support for
hash-backed sets:

>>> { 3 , 2 , 1 } == { 1 , 2 , 3 }
True

>>> {1,2,3} | {3,4,5}
set([1, 2, 3, 4, 5])

10  FEATURES

Racket also provides native sets:

> (equal? (set 3 2 1) (set 1 2 3))
#t

> (set-union (set 3 2 1) (set 3 4
5))
(set 1 2 3 4 5)

In Haskell, Data.Set provides a full-
featured implementation of sorted,
balanced tree-backed sets.

I’m fond of the following notation
for Haskell:

import Data.Set
type P = Data.Set.Set

so that I can write things like:

type Ints = P(Int)

which is aesthetically closer to the
formal mathematics.

Sets as predicates
If the set X is a subset of Y, but the
structure of the set X is outside the
descriptive capacity of the type system,
then X could be represented as a
predicate:

class Y {
 public boolean isX() { ... }
}

or in Haskell:

isX :: Y -> Bool

Some advanced programming lan-
guages like Agda support dependent
types, which allow predicates in the
type system itself.

In Racket, rich, expressive contracts
take the place of dependent types.

Disjoint union (sums)
A disjoint (or tagged) union of several
sets is a new set containing all of the
elements of the constituent sets, but
with an implicit mark (or tag) added to
each element to indicate from which
constituent set it came.

The set A + B is the disjoint union of
the sets A and B.

In mathematics, that distinguishing
mark is almost always kept implicit
or inferred from context. (The tag is
rarely needed.)

In fact, when that mark is required, it
is common to use syntactic sets.

In Java (and other object-oriented
languages), sum types are represented
through class-based inheritance. The
sum forms an abstract base type, and
each constituent forms a subtype. For
example, the type A + B + C would
become:

abstract class ApBpC { ... }

class A extends ApBpC { ... }
class B extends ApBpC { ... }
class C extends ApBpC { ... }

Haskell supports algebraic data types
that closely mimic the sum form.
Explicit constructors serve as tags. For
example:

data ApBpC = ACons A
 | BCons B
 | CCons C

  11

The constructors are also used for
pattern-matching; for example:

whatAmI (ACons _) = "I'm an A."
whatAmI (BCons _) = "I'm a B."
whatAmI (CCons _) = "I'm a C."

Of course, in Java, a whatAmI method
becomes dynamic dispatch:

abstract class ApBpC {
 abstract public String whatAmI()
;
}
class A extends ApBpC {
 public String whatAmI() {
 return "I'm an A." ;
 }
}
class B extends ApBpC {
 public String whatAmI() {
 return "I'm a B." ;
 }
}
class C extends ApBpC {
 public String whatAmI() {
 return "I'm a C." ;
 }
}

In untyped languages like Racket,
where the universal type is already the
sum of all types, there is no need for a
special embedding.

Languages like Python can exploit
class-based inheritance or take the
Racket-like approach for representing
sum types.

Sequences and vectors
Sequences are a common discrete
structure, and their rendering in code is
perhaps the most straightforward.

In formal notation, the set of sequences
over elements in S is written S*.

It is usually clear from context
whether S* should contain infinite
sequences or only finite ones. (And, in
many cases, it doesn’t matter.)

For example, if the set A = {a, b} is
an alphabet, then the set of strings over
this alphabet is A*, which would con-
tain elements like ab and babba.

If the variable used to denote ele-
ments of the set S is s, then a sequence
in the set S* is usually a bold-faced s
or s. (It is a common convention to
use the lower-case version of a set to
denote members of that set.)

Given a sequence s, its first element
is s1, and its ith element is si.

Explicit sequences tend to be
wrapped in angle-brackets, so that:

s = <s1, s2, ... sn>

12  FEATURES

Sequences as linked lists
Most frequently, a finite sequence will be encoded as a linked list.

For example, in Java:

abstract class Sequence<S> {
 public abstract S getHead() ;
 public abstract Sequence<S> getTail() ;
 public abstract boolean isEmpty() ;

 public static final <T> Sequence<T> cons(T head, Sequence<T> tail) {
 return new Cons<T>(head,tail) ;
 }

 public static final <T> Sequence<T> nil() {
 return new Nil<T>() ;
 }
}

final class Cons<S> extends Sequence<S> {
 private final S head ;
 private final Sequence<S> tail ;

 public S getHead() {
 return this.head ;
 }

 public Sequence<S> getTail() {
 return this.tail ;
 }

 public boolean isEmpty() {
 return false ;
 }

 public Cons(S head, Sequence<S> tail) {
 this.head = head ;
 this.tail = tail ;
 }
}

  13

final class Nil<S> extends Sequence<S> {
 public S getHead() {
 throw new EmptySequenceException() ;
 }

 public Sequence<S> getTail() {
 throw new EmptySequenceException() ;
 }

 public boolean isEmpty() {
 return true ;
 }
 public Nil() { }
}
class EmptySequenceException extends RuntimeException {
}

class Test {
 public static void main(String[] args) {
 Sequence<Integer> end = Sequence.nil() ;

 Sequence<Integer> si =
 Sequence.cons(3, end) ;
 }
}

Functional languages excel at encod-
ing sequences. Haskell has a list type:
[]. A function that adds one to every
element of a list could be written:

add1 :: [Int] -> [Int]
add1 [] = []
add1 (hd:tl) = (hd + 1):(add1 tl)

Or, more succinctly using map:

add1 :: [Int] -> [Int]
add1 = map (+1)

In most Lisps (like Racket), cons con-
structs lists, while car and cdr destruct:

 (car (cons 1 (cons 2 '()))) ==
1
 (car (cdr (cons 1 (cons 2 '()))))
== 2
 (pair? '()) == #f
 (pair? (cons 1 '())) == #t

14  FEATURES

In Python, tuples and lists work
about equally well as sequences, but
tuples might be less error-prone since
they’re immutable.

Of course, the standard warning
about side effects applies: do not use
the side-effecting features of Python
lists, like popping an element.

Vectors as arrays
When dealing with a set of sequences
which all have the same length, the
term “vector” is commonly used instead
of “sequence.”

The set of vectors over the set S of
length n is written Sn.

Sometimes vectors are written with
a right-arrow (→) over the unbolded
representative variable.

Vectors can be efficiently encoded
using arrays, but lists also suffice.

Remember: the array must not be
mutated!

If you need to update an index in a
vector, it should be copied into a new
array first, leaving the original array
untouched.

That said, it is often the case that
you can prove that when one vector
is computed as the update of another
vector that the original vector is garbage.
In these cases, it is a safe and common
optimization to mutate the array.

Infinite sequences as streams
Infinite sequences are not common,
but when they arise, they are often
encoded as streams.

In Haskell, laziness means that any
list can be an infinite list.

It is easy to encode an infinite
sequence like the list of all natural
numbers:

nats = 1:(map (+1) nats)

so that take 5 nats yields
[1,2,3,4,5].

And, even more remarkably, we can
filter this list to produce the list of all
primes:

isPrime n = all (\ m -> n `mod` m
/= 0) [2..n-1]

primes = filter isPrime (tail nats)

It is actually the case that take 6
primes yields [2,3,5,7,11,13].

Racket includes a stream library,
allowing the equivalent:

(define (inc n) (+ 1 n))
(define nats (stream-cons 1 (stream-
map inc nats)))
(define (prime? n)
 (call/ec (λ (return)
 (for ([m (in-range 2 (- n
1))])
 (when (= (modulo n m) 0)
 (return #f)))
 (return #t))))
(define primes (stream-filter prime?
(stream-rest nats)))

In an object-oriented setting like
Python or Java, streams can be con-
structed from an interface:

interface Stream<A> {
 public A first() ;
 public Stream<A> rest() ;
}

  15

The first() method should be sure
to cache its result, and if the stream is
I/O-backed, then the rest() method
should invoke the first() method.

Cartesian products (tuples)
Cartesian products, or tuples, are
ordered collections, where the location
of the element in the collection deter-
mines its type.

Cartesian products map onto records,
structs, and objects, with each index
into the tuple occupying a field.

For instance, A × B produces a set of
pairs, where the first element is from
the set A, and the second is from the
set B.

Individual tuples are denoted with
parentheses.

For example, (a, b, c) is a member of
A × B × C.
In Java, the type A × B would be a
class:

class AtimesB {
 public final A a ;
 public final B b ;
 public AtimesB(A a, B b) {
 this.a = a ;
 this.b = b ;
 }
}

In Racket, this would be a struct:

(define-struct a×b (a b))

Python contains native tuple support:

>>> x = (1,1,2,3)
>>> x[3]
3

But, one might just as easily have
defined a class:

class MyTuple:
 def __init__(self,first,second,t
hird,fourth):
 self.first = first ;
 self.second = second ;
 self.third = third ;
 self.fourth = fourth ;

Haskell provides native tuple support,
too:

Prelude> let t = (1,2,3)
Prelude> t
(1,2,3)

Haskell also allows for record-like
data types, such as in the following two
definitions:

data AB = Pair A B
data AB' = Pair' { a :: A, b :: B
}

Both definitions introduce constructors:

Pair :: A -> B -> AB
Pair' :: A -> B -> AB'

The second definition introduces two
extractors, one for each field:

a :: AB' -> A
b :: AB' -> B

16  FEATURES

Functions (maps)
Mathematical functions transform
inputs to outputs.

The set of functions from the set A
into the set B is the set A → B.

Under the interpretation of (→) as an
operator on sets, the signature

f : X → Y

can be interpreted as the function f is a
member of the set X → Y:

f ∈ X → Y

In mathematical notation, there are
several extant notations for application:

f(x) = f x = f.x

All of these are the application of the
function f to the value x.

In code, functions can translate into
procedures and methods, but if they’re
finite, they can also translate into finite
maps backed by hash tables or sorted,
balanced tree maps.

Functions as code
Most of the time a mathematical func-
tion will map into a procedure in the
underlying language.

When a function is supposed to
map into executable code, it’s usually
straightforward to make the mapping
using the data structures and algo-
rithms presented elsewhere in this
guide.

Functions as maps
In some cases, mathematicians use
functions as the formal analog of a hash
table or a dictionary. For example:

f [x ↦ y]

represents a function identical to f
except that x maps to y.

Please note that extending a function
like this does not (and cannot) change
the original function f !

Immutable red-black tree maps are
a great data structure for represent-
ing these finite functions meant to be
extended.

Once again, it is not safe to use the
mutable sorted maps and hash tables
provided by the Java library, nor the
mutable dictionaries provided by Python.

Haskell provides the Data.Map library
for this purpose, and Racket also offers
immutable hash maps.

Sometimes, it is acceptable to hijack
the native notion of functions to get
them to act like immutable dictionaries.
For instance, in Python, we can define
extend:

def extend (f, x, y):
 return lambda xx: y if xx == x
else f(xx)
def empty(x): raise Exception("No
such input")

so that the following works:

g = extend(extend(empty, 3, 4),
5, 6)
print(g(3)) # prints 4
print(g(5)) # prints 6

  17

The disadvantage of taking over the
internal notion of function like this is
that one cannot enumerate the con-
tents of the function, as with a hash or
tree-backed formulation.

Immutable maps atop mutable
structures

If a language already provides a good
native map-like structure (like Python’s
dictionaries), then it is possible to
exploit this structure through shallow
copies every time the map is extended:

class DictMap:
 def __init__(self, contents):
 self.contents = contents
 def extend(self,x,y):
 contents_ = copy.copy(self.
contents)
 contents_[x] = y
 return DictMap(contents_)
 def __call__(self,x):
 return self.contents[x]

Relations
Structurally, a relation R is a (possibly
infinite) set of subset of some Cartesian
product.

The set of all relations over A × B is
P(A × B).

Computational encodings of relations
center on understanding relations in
terms of other data structures.

In the special case where a relation
relates elements of the same set, e.g.
R ⊆ A × A, then R defines a directed
graph over nodes in A.

Given a relation R, the notation

R(x1,...,xn)

is equivalent to

(x1,...,xn) ∈ R.

There are three common ways to
encode a relation computationally:
as a collection, as a function, and as a
predicate.

Relations as collections
Structurally, a relation is a set of tuples,
and for finite relations, an encoding as a
set of tuples is reasonable.

Relations as functions
Given a relation R ⊆ A × B, the follow-
ing congruences allow a relation to be
represented as a function:

P(A × B) ≅ A → P(B).

This functional encoding of a relation
is particularly popular for implement-
ing the transition relation of abstract
machines, which relates a machine
state to all of its possible successors.

Relations as predicates
If one only needs to know whether or
not some tuple is within the relation,
then it is frequently most efficient to
encode the relation as a predicate.

This view is supported by another
congruence:

P(A × B) ≅ A × B → {true,false}

18  FEATURES

Syntax
Syntactic sets are common within the
fields of formal methods and program-
ming languages.

A syntactic definition for the set E
uses the following form:

E ::= pat1 | ... | patn

where each syntactic pattern pat
defines a new syntactic form for con-
structing members of the set E.

A syntactic set is, in essence, a dis-
joint union with explicit tags.

Viewing syntactic sets as sum types
guides translation into code.

Syntactic set examples
For example, we can define a syntax for
expression trees:

E	 ::=	 e + e
	 |	 e * e
	 |	 n

We might then define an evaluator
eval : E → N on this set:

eval(e + e)	 = eval(e) + eval(e)
eval(e * e)	 = eval(e) × eval(e)
eval(n)	 = n

In Java (or any object-oriented lan-
guage), this could become:

abstract class Exp {
 abstract public int eval() ;
}

class Sum extends Exp {
 public final Exp left ;
 public final Exp right ;

 public Sum(Exp left, Exp right)
{
 this.left = left ;
 this.right = right ;
 }

 public int eval() {
 return left.eval() + right.
eval() ;
 }
}

class Product extends Exp {
 public final Exp left ;
 public final Exp right ;

 public Product(Exp left, Exp
right) {
 this.left = left ;
 this.right = right ;
 }

 public int eval() {
 return left.eval() * right.
eval() ;
 }
}

class Const extends Exp {
 public int value ;

 public Const(int value) {
 this.value = value ;
 }

 public int eval() {
 return value ;
 }
}

  19

To define a sum type with explicit
tags, one might use the following form:

Kont	 ::=	 letk(v, e, ρ, κ)
	 |	 seqk(e, ρ, κ)
	 |	 setk(v,e, ρ, κ)
	 |	 halt

In Haskell, this structure could be:

data Kont = LetK Var Exp Env Kont
 | SeqK Exp Env Kont
 | SetK Var Exp Env Kont
 | Halt

In mathematics, the syntactic nota-
tion can only be used if the represen-
tative variables for each set (e.g., κ
for Kont, ρ for Env) have been clearly
established, since in the Haskell nota-
tion, these types are required. n

Matt Might is a professor of Computer Sci-
ence at the University of Utah. His research
interests include programming language
design, static analysis and compiler optimi-
zation. He blogs at matt.might.net/articles
and tweets from @mattmight.

Reprinted with permission of the original author.
First appeared in hn.my/mathcode (matt.might.net)

http://matt.might.net/articles
http://twitter.com/mattmight
http://hn.my/mathcode

20  STARTUPS

STARTUPS

By Jason Cohen

Hiring Employee #1

It’s a big decision to make your first
hire, because what you’re really
deciding is whether you want to

keep a lifestyle business or attempt to
“cross the chasm” and maybe even get
rich.

Assuming you really are in the
market for another pair of hands to
screw stuff up worse than you already
do, the question is how to acquire
resumes, how to pare them down, and
how to identify someone who is going
to work well in your company.

There’s already a lot of great advice
about hiring at little startups. Before
I give you mine, here are some of my
favorite articles, in no particular order:

■■ “Smart, And Gets Things Done”
[hn.my/joelhire] by Joel Spolsky. The
classic guide to what to do during the
interview and how to know whether
to “hire” or “not hire.”

■■ “Hazards of Hiring” [hn.my/hazards]
by Eric Sink. Great tips, including
some specific to hiring developers.

■■ “Why Startups Should Always
Compromise When Hiring”
[hn.my/compromise] by Dharmesh
Shah. There are many attributes
you’d like to see in a hire, but com-
promise is necessary; here’s how to
do it.

■■ “Five Quick Pointers on Startup
Hiring” [hn.my/5points] and “Dis-
agreeing with Entrepreneur Maga-
zine” [hn.my/disagree] by Dharmesh
Shah. Assorted tips, all important.

■■ “Date Before Getting Married,”
Part 1 [hn.my/married1] and Part
2 [hn.my/married2], by Dharmesh
Shah. A strong argument in favor of
working with a person rather than
relying on interviews.

I’m not going to rehash those or
attempt a “complete guide to hiring.”

But I do have some fresh advice you
might not have seen before:

http://hn.my/joelhire
http://hn.my/hazards
http://hn.my/compromise
http://hn.my/5points
http://hn.my/disagree
http://hn.my/married1
http://hn.my/married2

  21

Hire “Startup-minded” People
If a person just left IBM, is she a good
fit for your startup?

If she left because she couldn’t stand
the crushing bureaucracy, the tolerance
of incompetence, and the lack of any
visibility into what customers actually
wanted, then she sounds like a person
ready for a startup.

Or therapy.
On the other hand, if during the

interview she asks how often you do
performance reviews, that means she
doesn’t understand the startup culture.
If she says “I thrive in environments
with clear requirements, written expec-
tations, and defined processes,” run
away as fast as your little legs can carry
you.

Startups are chaotic. Rules change,
and there is no “job description.” It’s
better to make a strong decision that
turns out wrong, and admit it, than
to plan ahead or wait for instructions.
Potential earnings (e.g. stock, perfor-
mance bonuses) are preferred to guar-
anteed earnings (e.g. salary, benefits).

You already live by this Code of Tur-
moil because you’re the entrepreneur;
you have no choice. But normal people
do have a choice, and most abhor
chaos. Big companies don’t behave this
way, and most people are accustomed
to working for big companies.

You have to hire someone comfy
with the bedlam of startup life.

Write a Crazy Job Description
You’re not just hiring any old pro-
grammer or salesman, you’re hiring
employee #1. This person helps set the
culture of the company. This person
has to mesh with your personality
100%. You’re going to be putting in
long hours together. If they don’t get
your jokes, it’s not going to work.

So, why wait until the interview to
see whether your personalities mesh?
Put it right in the job description.

Be funny, reflect your personality, and
reflect the uniqueness of your company.
See the jobs page at WP Engine [wpen-
gine.com/careers] for a bunch of exam-
ples — everything from detailing our
culture (“Being transparent about our
strengths and weaknesses wins us sales”)
to attitude on writing awesome code
(“You think using a profiler is fun, like
a treasure hunt”) to treating customers
(“Whether or not you sleep at night is
directly proportional to whether you’ve
made someone thrilled or pissed off
that day”).

You should see the results in the
cover letters. If after a job posting like
that the person is still sending the
generic bullshit cover letter, you know
they’re not for you. If they respond in
kind, good sign.

And anyway, one day you actually
might need them to change those pel-
lets, and then you’ve got it in writing!

http://wpengine.com/careers
http://wpengine.com/careers

22  STARTUPS

Do Not Use a Recruiter
On young startups using recruiters,
Bryan Menell sums it up nicely:

“If you find yourself wanting to hire
a recruiter, hit yourself in the head
with a frying pan until the feeling goes
away.”

You need to hire an absolute super-
star, and recruiters are not in the busi-
ness of helping you find superstars.

In fact, their incentives are exactly
opposite yours. Here’s why.

Recruiters are like real estate sales-
men: they make money when you hire
someone. They make the same amount
of money whether it takes you four
days or four months to find that some-
one. So every day that passes, every
additional resume you request, every
additional interview you set up, the
recruiter is making less and less money
per hour.

In fact, there’s a floor that the
recruiter can’t go below, so the more
time you take to find the right person,
the more they’ll push you to settle for
someone you’ve already rejected.

The exception is a recruiter who
works by the hour rather than for a
hiring bounty. These are hard to find,
but they do exist. I’ve had luck only in
this case.

Resumes Are (Mostly) Useless
Think about your own resume. Is there
anything on there that qualifies you
to run your own company? Not just
“experience” generically, but really rel-
evant knowledge? I’ll bet there’s very
little. But it doesn’t matter, right?

Right; so it doesn’t matter with your
first few employees either.

Resumes are useful only as talk-
ing points. That is, when you have a
candidate on the phone, you can use
the resume to ask about previous
experience, test their knowledge of
technologies they claim to have, etc.
Resumes are conversation-starters, but
they imply nothing about whether the
person is right for you.

One particularly useful trick with
resumes is to dig deep on a detail. Pick
the weirdest technology in the list, or
pick on one bullet point they listed
two jobs ago that seems a little odd to
you. Then go deep. Don’t let them say
“It’s been a while” — if they can’t talk
about it, how can they claim it’s expe-
rience they’re bringing along?

  23

Writing Skills Are Required
I don’t care if this person is going to
spend 60 hours a week writing inscru-
table code that only a Ruby interpreter
could love. I don’t care if the job
description is “sit in that corner and
work multi-variate differential equa-
tions.” Everyone has to be able to com-
municate clearly.

In a modern startup everyone will be
writing blog entries, Twittering, Face-
booking, and God only knows what the
hell other new Goddamn technology
is coming next. But whatever it is, you
can bet it will require good communi-
cation skills.

In a small startup there’s no layer
separating employees from custom-
ers. Everyone talks to everyone. You
can’t have your company represented
by someone who can’t be trusted with
a customer. In fact, everyone needs to
be able to not just talk to customers,
but even sell to them. Remember, tech
support is sales!

In a small startup everyone has
to understand one other’s nuances.
There’s enough crap you have to figure
out without also having to decipher
an email. There’s enough about your
business you don’t understand without
translating garbage sentence fragments
in a README file.

Therefore, some part of the interview
process has to include free-form writ-
ing. In fact, there’s a particularly useful
time for that….

Screen Candidates With Mini-Essay
Questions
When you post a job listing — espe-
cially on large-scale sites like Monster
or Craig’s List — expect a torrent of
resumes. It’s not unusual to get 100 in
a day. You need a time-efficient system
for winnowing them down to a small
handful worthy of an interview.

Screening resumes is not an option,
because resumes are useless. Besides,
you don’t have time to read hundreds
of resumes.

Instead, prepare an email template
that asks the applicant to write a
few paragraphs on a few topics. For
example:

Thanks for sending us your resume.
The next step in our hiring process
is for you to write a few paragraphs
on each of the following topics. Please
reply to this email address with your
response:

1.	Why do you want to work at
[company]?

2.	Describe a situation in your work-life
where you failed.

3.	Describe a time when you accom-
plished something you thought was
impossible. (Can be work-related or
personal)

Thanks for your interest in [company],
and I hope to hear from you soon.

Here’s what happens: First, most
people never respond. Good riddance!

24  STARTUPS

Second, you’ll get lazy-ass responses
like “I want to work at your company
because I saw you are hiring” and ludi-
crous answers like “I have never failed
at anything.”

Resist the temptation to reply with,
“You just did.” That’s what assholes do.

Maybe 10% of the respondents will
actually answer the questions, and
you’ll know in two minutes whether
this person can communicate and, yes,
even whether they seem fun, intelli-
gent, or interesting.

One exception to this rule: If the
cover letter is truly wonderful, that’s a
rare, great sign, and you can probably
skip right to the phone interview.

Always Be Hiring
The rule of thumb is that it takes 3-6
months to hire a really good person.
Why so long?

■■ Good people are rare, so it takes a
while to dig them up. Like truffles.
Or weeds.

■■ Good people won’t change jobs more
often than once a year — probably
more like every 3 – 4 years, espe-
cially if their employer appreciates
their abilities and compensates them
accordingly. So you have to find this
person in their “once every three
years” window.

■■ Good people gets lots of good job
offers (yes, even in this economy).
So when you do find one, and you
give them the writing test, the phone
interview,,the in-person interview,

discuss compensation, and then pro-
vide a formal written offer… there’s
a good chance they just accepted
an awesome offer somewhere else.
(This happened to me all the time
at Smart Bear. It’s happening now at
WP Engine.)

This means if you start hiring when
you really need someone, that’s too
late. You’ll be “in need” for months.

This means you need to be hiring
constantly.

So how do you “hire constantly”
without being drowned in resumes and
interviews? The answer comes from
another attribute of good people:

Good people choose where they
want to work, not vice versa. They
hear about a cool company, and when
they’re interested in new work, they
call you.Your company has to be a
place good people will seek, not where
you have to go fishing. How do you
manage that, especially when you’re
small? Ideas:

■■ Develop your blog/Twitter so you
have a steady stream of eyeballs from
people who like you.

■■ Attend local meet-ups and user
groups. Meet the woman who runs
the group — she knows everyone
worth knowing.

■■ Sponsor a meet-up at your office.
Don’t have an office? Co-sponsor
with someone who does, like another
company or a co-working place.

  25

■■ Ask your friends for resumes of
people they didn’t hire but who
they liked. That is, people who are
good but just weren’t a fit for that
company.

■■ Try to get your “Jobs” page to rank
well in local-only search. So e.g.
“java programmer job in Austin TX,”
not something impossible like “java
programmer.”

■■ Take everyone you know to lunch
periodically and ask if they know of
a candidate. Yes, you can ask them
by email, but often being in-person
brings out more information. Or
maybe one of them will be interested
himself. (That’s happened to me a
few times.)

Don’t Be Trapped by What You Think
Hiring “Should” Be
You’re hiring a friend, a trusted partner,
someone you’ll be spending 10 hours a
day with for the foreseeable future.

You’re not hiring a Systems Engineer
III for IBM or a Senior Regional Sales
Manager for Dell. The “rules” of HR
don’t apply to you (except the law).

Think of it more like getting married
than hiring an underling.

Going with your gut is not wrong. n

Jason Cohen is the founder of WP Engine
[wpengine.com] — Heroku for WordPress,
after exitting from three previous companies.
He blogs at blog.asmartbear.com

Reprinted with permission of the original author.
First appeared in hn.my/hire1 (asmartbear.com)

http://wpengine.com
http://blog.asmartbear.com
http://hn.my/hire1

26  DESIGN

By Charlie Park

Slopegraphs

Back in 2004, Edward Tufte defined
and developed the concept of a
“sparkline.” Odds are good that if
you’re reading this, you’re familiar

with them and how popular they’ve become.
What’s interesting is that over twenty years

before sparklines came on the scene, Tufte devel-
oped a different type of data visualization that
didn’t fare nearly as well. To date, in fact, I’ve only
been able to find three examples of it, and even
they aren’t completely in line with his vision.

It’s curious that it hasn’t become more popu-
lar; the chart type is quite elegant, aligns with
all of Tufte’s best practices for data visualization,
and was created by the master of information
design. Why haven’t these charts (christened
“slopegraphs” by Tufte about a month ago) taken
off the way sparklines did?

We’re going to look at slopegraphs: what they
are, how they’re made, why they haven’t seen a
massive uptake so far, and why I think they’re
about to become much more popular in the
near future.

Edward Tufte’s

DESIGN

  27

Slopegraphs

The Table-Graphic
In his 1983 book The Visual Dis-
play of Quantitative Information
[hn.my/visual], Tufte displayed a
new type of data graphic.

As Tufte notes in his book, this
type of chart is useful for seeing:

■■ the hierarchy of the countries in
both 1970 and 1979 [the order
of the countries]

■■ the specific numbers associated
with each country in each of
those years [the data value next
to their names]

■■ how each country’s numbers
changed over time [each coun-
try’s slope]

■■ how each country’s rate of
change compares to the other
countries’ rates of change [the
slopes compared with one
another]

■■ any notable deviations in the
general trend (notice Britain in
the above example) [aberrant
slopes]

This chart does this in a remark-
ably minimalist way. There’s abso-
lutely zero non-data ink.

So, anyway, Professor Tufte
made this new kind of graph.
Unlike sparklines, though, it didn’t
really get picked up. Anywhere.

Tufte, Edward.
The Visual Display of Quan-
titative Information. Cheshire,
Connecticut: Graphics Press;
1983; p. 158

http://hn.my/visual

28  DESIGN

My theory on this lack of response is
three-fold:

➊ It didn’t have a name. (He just ref-
erenced it as a “table-graphic” at the
time.)

➋ It was a totally new concept. (Where
sparklines are easily understood as
“an axis-less line chart, scaled down
(and kind of cute),” this “table-
graphic” is something new.)

➌ It’s a little good deal more compli-
cated to draw. (More on that at the
end.)

A Super-Close Zoom-In on a Line
Chart
The best way I’ve found to describe
these table-graphics is this: it’s like a
super-close zoom-in on a line chart,
with a little extra labeling.

Imagine you have a line chart, show-
ing the change in European countries’
population over time. Each country has
a line, zigzagging from January (on the
left) to December (on the right). Each
country has twelve points across the
chart. The lines zigzag up and down
across the chart. Now, let’s say you
zoomed in to just the June-July seg-
ment of the chart, and you labeled the
left and right sides of each country’s
June-July lines (with the country’s
name, and the specific number at each
data point).

That’s it. Fundamentally, that’s all a
table-graphic is.

Hierarchical Table-Graphics in the
Wild
Where sparklines found their way into
products at Google (Google Charts
and Google Finance) and Microsoft,
and even saw some action from a pre-
jQuery John Resig (jspark.js [hn.my/
jspark]), this table-graphic thing saw
essentially zero uptake.

At present, Googling for “tufte table-
graphic” yields a whopping eighty-
three results, most of which have noth-
ing to do with this technique.

Actually, since Tufte’s 1983 book,
I’ve found three non-Tuftian examples
(total). And even they don’t really do
what Tufte laid out with his initial idea.

Let’s look at each of them.

Ben Fry’s Baseball Chart
The first we’ll look at came from
Processing developer/data visualiza-
tion designer Ben Fry, who developed
a chart showing baseball team perfor-
mance vs. total team spending.

A version of this graphic was
included in his 2008 book Visualizing
Data, but I believe he shared it online
before then.

Anyway, you can see each major-
league baseball team on the left, with
their win/loss ratio on the left and their
annual budget on the right. Between
them is a sloped line showing how
their ordering in each column com-
pares. Lines angled up (red) suggest
a team that is spending more than
their win ratio suggests they should
be, where blue lines suggest the team’s

http://hn.my/jspark
http://hn.my/jspark

  29

getting a good value for their dollars.
The steeper the blue line, the more
wins-per-dollar.

There are two key distinctions
between Tufte’s chart and Fry’s chart.

First: Fry’s baseball
chart is really just com-
paring order, not scale.
The top-most item on
the left is laid out with
the same vertical position
as the top-most item on
the right, and so on down
the list.

Second: Fry’s is com-
paring two different
variables: win ratio and
team budget. Tufte’s
looks at a single vari-
able, over time. (To be
fair, Fry’s does show
the change over time,
but only in a dynamic,
online version, where the
orders change over time
as the season progresses.
The static image above
doesn’t concern itself
with change-over-time.)

If you want to get
technical, Fry’s chart is
essentially a “forced-rank
parallel coordinates plot”
with just two metrics.

Another difference I
should note: This type of
forced-rank chart doesn’t

have any obvious allowance for ties.
That is, if two items on the chart have
the same datum value (as is the case
in eleven of the thirty teams above),
the designer (or the algorithm, if the
process is automated) has to choose
one item to place above the other. (For

[benfry.com/salaryper/]

http://benfry.com/salaryper/

30  DESIGN

example, see the Reds
and the Braves, at posi-
tions #6 and #7 on the
left of the chart.) In
Fry’s case, he uses the
team with the lower
salary as the “winner”
of the tie. But this isn’t
obvious to the reader.

In Visualizing Data,
Fry touches on the
“forcing a rank” ques-
tion (p. 118), noting
that at the end of the
day, he wants a ranked
list, so a scatterplot
using the X and Y axes
is less effective of a
technique (as the main
point with a scatterplot
is simply to display
a correlation, not to
order the items). I’m
not convinced, but I
am glad he was inten-
tional about it. I also
suspect that,because
the list is generated
algorithmically, it was
easier to do it and
avoid label collisions
this way.

Nevertheless, I do think it’s a good
visualization.

The National Geographic Magazine
Life-Expectancy Chart
In 2009, Oliver Uberti at National Geo-
graphic Magazine released a chart show-
ing the average life expectancy at birth of
citizens of different countries, comparing
that with what each nation spends on
health care per person (above).

 [blogs.ngm.com/blog_central/2009/12/the-cost-of-care.html]

http://blogs.ngm.com/blog_central/2009/12/the-cost-of-care.html

  31

Like Fry’s chart, Uberti’s chart uses
two different variables. Unlike Fry’s
chart, Uberti’s does use different scales.
While that resolves the issue I noted
about having to force-rank identical
data points, it introduces a new issue:
dual-scaled axes.

By selecting the two scales used,
the designer of the graph — whether
intentionally or not — is introducing
meaning where there might not actu-
ally be any.

For example, should the right-side
data points have been spread out so
that the highest and lowest points were
as high and low as the Switzerland and
Mexico labels (the highest and lowest
figures, apart from the US) on the left?

Should the scale been adjusted so that
the Switzerland and/or Mexico lines
ran horizontally? Each of those options
would have affected the layout of the
chart. I’m not saying that Uberti should
have done that — just that a designer
needs to tread very carefully when
using two different scales on the same
axis.

A few bloggers criticized the NatGeo
chart, noting that, like the Fry chart
above, it was an Inselberg-style parallel-
coordinates plot, and that a better
option would be a scatter plot.

In a great response on the NatGeo
blog [hn.my/natgeo], Uberti then re-
drew the data in a scatter plot:

http://hn.my/natgeo

32  DESIGN

Uberti also gave some good reasons
for drawing the graph the way he did
originally, with his first point being that
“many people have difficulty read-
ing scatter plots. When we produce
graphics for our magazine, we con-
sider a wide audience, many of whose
members are not versed in visualiza-
tion techniques. For most people, it’s
considerably easier to understand an
upward or downward line than relative
spatial positioning.”

I agree with him on that. Scatterplots
reveal more data, and they reveal the
relationships better (and Uberti’s scat-
terplot is really good, apart from a few
quibbles I have about his legend place-
ment). But scatterplots can be tricky to
parse, especially for laymen.

Note, for example, that in the scatter
plot, it’s hard at first to see the cluster
of bubbles in the bottom-left corner of
the chart, and the eye’s initial “read” of
the chart is that a best-fit line would
run along that top-left-to-bottom-right
string of bubbles from Japan to Lux-
embourg. In reality, though, that line
would be absolutely wrong, and the
best-fit would run from the bottom-
left to the upper-right.

Also, the entire point of the chart
is to show the US’s deviant spending
pattern, but in the scatter plot, the
eye’s activity centers around that same
cluster of bubbles, and the US’s bubble
on the far right is lost.

The “Above average spending / Below
average life expectancy” labels on the
quadrants are really helpful, but, again,

it reinforces Uberti’s point, that scat-
ter plots are tricky to read. Should
those labels really be necessary? With-
out them, would someone be able to
glance at the scatter chart and “get it”?

For quick scanning, the original chart
really does showcase the extraordinary
amount the US spends on healthcare
relative to other countries. And that’s
the benefit of these table-graphics:
slopes are easy to read.

Speed Per Dollar
Back in July of 2007 (I know: we’re
going back in time a bit, but this chart
diverges even more from Tufte’s than
the others, and I wanted to build up to
it), a designer at online driving maga-
zine WindingRoad.com developed the
“Speed per Dollar” index (next page).

 Again, what we have is, essentially,
an Inselberg-style parallel-coordinates
plot, with a Fry-style forced-rank. In
this case, though, each step of the pro-
gression leads us through the math, to
the conclusion at the right-side of the
chart: dollar-for-dollar, your best bet is
the Ariel Atom.

Anyway, this chart uses slopes to
carry meaning, hence its inclusion
here, but I think it’s different enough
from the table-chart Tufte developed
in 1983 that it isn’t quite in the same
family.

Dave Nash, a “kindly contributor” at
Tufte’s forum then refined the chart,
making aspects of it clearer and more
Tuftian (next page).

  33

(I like how the original included the
math at the top of the chart, showing
how the SPD value was derived, and I
like how it highlights the final column,

drawing the eye to the conclusions,
but I do think Nash’s shows the data
better.)

34  DESIGN

Cancer Survival Rates
We’ll close with the last example of
these table-charts I’ve found.

This one’s from Tufte himself. It
shows cancer survival rates over 5-, 10-,
15-, and 20-year periods.

Actually, the chart below is a refine-
ment of a Tufte original (2002), done
(again) by Kindly Contributor Dave
Nash (2003, 2006).

Owing it to being
a creation of the man
himself, this is most
in-line with the table-
chart I showed at the
very top, from 1983.
We can clearly see
each item’s standings
on the chart, from one
quinquennium to the
next. In fact, this ren-
dition of the data is a
good illustration of my
earlier simplification,
that these table-charts
are, essentially, mini-
malist versions of line
charts with intra-line
labels.

[edwardtufte.com/bboard/q-and-a-fetch-msg?msg_id=0000Jr]

http://edwardtufte.com/bboard/q-and-a-fetch-msg?msg_id=0000Jr

  35

Tufte Names His Creation
Although it’s possible that Tufte has
used this term in his workshops, the
first occasion I can find of the “table-
chart” having an actual name is this
post from Tufte’s forums [hn.my/tufte-
forum] on June 1st, 2011. The name
he gives the table-chart: Slopegraphs.

I suspect that we’ll see more slope-
graphs in the wild, simply because
people will now have something they
can use to refer to the table-chart
besides “that slopey thing Tufte had in
Visual Design.”

But there’s still a technical problem:
How do you make these damn things?

Making Slopegraphs
At the moment, both of the canoni-
cal slopegraphs were made by hand,
in Adobe Illustrator. A few people
have made initial efforts at software
that aids in creating slopegraphs. It’s
hard, though. If the labels are too close
together, they collide, making the chart
less legible. A well-done piece of soft-
ware, then, is going to include collision-
detection and account for overlapping
labels in some regard.

Here are a few software tools that are
currently being developed:

■■ Dr. David Ruau has developed a
working version of slopegraphs in R
[hn.my/slopegraphr].

■■ Alex Kerin, slopegraphs in Tableau
[hn.my/tableau].

■■ Coy Yonce, slopegraphs in Crystal
Reports [hn.my/slopecr] and slope-
graphs in Crystal Reports Enterprise
[hn.my/slopecre].

■■ I started developing a slopegraphs in
Javascript/Canvas version
[hn.my/slopejs], but probably won’t
continue it, and Ill try to use the
Google Charts’ API if I try again. The
“jaggies” on the lines were too rough
for me.

In each case, if you use the chart-
making software to generate a slope-
graph, attribute the software creator.

With this many people working on
software implementations of slope-
graphs, I expect to see a large uptick
in slopegraphs in the next few months
and years. But when should people use
slopegraphs?

When to Use Slopegraphs
In Tufte’s June 1st post, he sums up the
use of slopegraphs well: “Slopegraphs
compare changes over time for a list of
nouns located on an ordinal or interval
scale.”

Basically: Any time you’d use a line
chart to show a progression of univari-
ate data among multiple actors over
time, you might have a good candidate
for a slopegraph. There might be other
occasions where it would work as well.
Note that strictly by Tufte’s June 1st
definition, none of the examples I gave
(Baseball, Life Expectancy, Speed-per-
Dollar) count as slopegraphs.

http://hn.my/tufteforum
http://hn.my/tufteforum
http://hn.my/slopegraphr
http://hn.my/tableau
http://hn.my/slopecr
http://hn.my/slopecre
http://hn.my/slopejs

36  DESIGN

But some situations clearly would
benefit from using a slopegraph, and I
think Tufte’s definition is a good one
until more examples come along and
expand it or confirm it.

An example of a good slopegraph
candidate: in my personal finance
webapp PearBudget, we’ve relied far
more on tables than on charts. (In fact,
the only chart we include is a “spark-
bar” under each category’s name, show-
ing the amount of money available in
the current month.) We’ve avoided
charts in general (and pie charts in
particular, unlike every other personal
finance webapp), but I’m consider-
ing adding a visual means of compar-
ing spending across years — how did
my spending on different categories
this June compare with my spending
on those categories in June of 2010?
Did they all go up? Did any go down?
Which ones changed the most? This
would be a great situation in which to
use a slopegraph.

Slopegraph Best Practices
Because slopegraphs don’t have a lot of
uses in place, best practices will have to
emerge over time. For now, though:

■■ Be clear. First to yourself, then to
your reader, whether your numbers
are displaying the items in order or
whether they’re on an actual scale.

■■ If the data points or labels are bunch-
ing up, expand the vertical scale as
necessary.

■■ Left-align the names of the items on
both the left-hand and right-hand
axes to make vertical scanning of the
items’ names easier.

■■ Include both the names of the items
and their values on both the left-
hand and right-hand axes.

■■ Use a thin, light gray line to connect
the data. A too-heavy line is unneces-
sary and will make the chart harder
to read.

■■ But when a chart features multiple
slope intersections (like the baseball
or speed-per-dollar charts above),
judicious use of color can avoid
what Ben Fry describes as the “pile
of sticks” phenomenon (Visualizing
Data, 121).

■■ A table with more statistical detail
might be a good complement to use
alongside the slopegraph. As Tufte
notes: “The data table and the slope-
graph are colleagues in explanation
not competitors. One display can
serve some but not all functions.”

■■ Defer to current best practices out-
lined by Tufte, Stephen Few, and
others, including maximizing data-to-
ink ratios, minimizing chartjunk, and
so on. n

Charlie Park runs the online personal finance
app pearbudget.com, and is about to launch
monotask.com, described as “ADD meds for
your computer.” He lives in Virginia with his
wife and three daughters.

Reprinted with permission of the original author. First appeared in hn.my/slopegraphs (charliepark.org)

http://pearbudget.com
http://monotask.com
http://hn.my/slopegraphs

  37

Reprinted with permission of the original author. First appeared in hn.my/codelearn.

http://cloudkick.com

38  PROGRAMMING

PROGRAMMING

By Edward Z. Yang

How to Read Haskell
Like Python

Have you ever been
in a situation
where you need

to quickly understand what
a piece of code in some
unfamiliar language does?
If the language looks a lot
like what you’re comfort-
able with, you can usually
guess what large amounts
of the code do, even if you
may not be familiar with
how all the language fea-
tures work.

For Haskell, this is a
little more difficult, since
Haskell syntax looks very
different from traditional
languages. But there’s no
really deep difference here;
you just have to squint at it
right. Here is a fast, mostly
incorrect, and hopefully
useful guide for interpret-
ing Haskell code like a
Pythonista. By the end, you
should be able to interpret
this fragment of Haskell:

runCommand env cmd state = ...
retrieveState = ...
saveState state = ...

main :: IO ()
main = do
 args <- getArgs
 let (actions, nonOptions, errors) =
getOpt Permute options args
 opts <- foldl (>>=) (return startOp-
tions) actions
 when (null nonOptions) $ printHelp >>
throw NotEnoughArguments
 command <- fromError $ parseCommand non-
Options
 currentTerm <- getCurrentTerm
 let env = Environment
 { envCurrentTerm = currentTerm
 , envOpts = opts
 }
 saveState =<< runCommand env command =<<
retrieveState

  39

■■ Types. Ignore everything you see
after :: (similarly, you can ignore
type, class, instance and newtype.
Some people claim that types help
them understand code. If you’re a
complete beginner, things like Int
and String will probably help, and
things like LayoutClass and Monad-
Error won’t. Don’t worry too much
about it.)

■■ Arguments. f a b c translates into
f(a, b, c). Haskell code omits
parentheses and commas. One conse-
quence of this is we sometimes need
parentheses for arguments: f a (b1
+ b2) c translates into f(a, b1 +
b2, c).

■■ Dollar sign. Since complex state-
ments like a + b are pretty common
and Haskellers don’t really like
parentheses, the dollar sign is used
to avoid parentheses: f $ a + b is
equivalent to the Haskell code f (a
+ b) and translates into f(a + b).
You can think of it as a big opening
left parenthesis that automatically
closes at the end of the line (no need
to write)))))) anymore!). In par-
ticular, if you stack them up, each
one creates a deeper nesting: f $ g x
$ h y $ a + b is equivalent to f (g
x (h y (a + b))) and translates into
f(g(x,h(y,a + b)) (though some
consider this bad practice).
In some code, you may see a variant
of $: <$> (with angled brackets).
You can treat <$> the same way
as you treat $. (You might also see

<*>; pretend that it’s a comma, so f
<$> a <*> b translates to f(a, b).
There’s not really an equivalent for
regular $)

■■ Backticks. x `f` y translates into
f(x,y). The thing in the backticks
is a function, usually binary, and the
things to the left and right are the
arguments.

■■ Equals sign. Two possible mean-
ings. If it’s at the beginning of a code
block, it just means you’re defining a
function:

doThisThing a b c = ...
 ==>
def doThisThing(a, b, c):
 ...

Or if you see it near a let key-
word, it’s acting like an assignment
operator:

let a = b + c in ...
 ==>
a = b + c
...

■■ Left arrow. Also acts like an assign-
ment operator:

a <- createEntry x
 ==>
a = createEntry(x)

Why don’t we use an equals sign?
Shenanigans. (More precisely, crea-
teEntry x has side effects. More
accurately, it means that the expres-
sion is monadic. But that’s just she-
nanigans. Ignore it for now.)

40  PROGRAMMING

■■ Right arrow. It’s complicated. We’ll
get back to them later.

■■ Do keyword. Line noise. You can
ignore it. (It does give some infor-
mation, namely that there are side
effects below, but you never see this
distinction in Python.)

■■ Return. Line-noise. Also ignore.
(You’ll never see it used for control
flow.)

■■ Dot. f . g $ a + b translates to
f(g(a + b)). Actually, in a Python
program you’d probably have been
more likely to see:

x = g(a + b)
y = f(x)

But Haskell programmers are allergic
to extra variables.

■■ Bind and fish operators. You might
see things like =<<, >>=, <=< and >=>.
These are basically just more ways of
getting rid of intermediate variables:

doSomething >>= doSomethingElse
>>= finishItUp
 ==>
x = doSomething()
y = doSomethingElse(x)
finishItUp(y)

Sometimes a Haskell programmer
decides that it’s prettier if you do
it in the other direction, especially
if the variable is getting assigned
somewhere:

z <- finishItUp =<< doSomethin-
gElse =<< doSomething
 ==>
x = doSomething()
y = doSomethingElse(x)
z = finishItUp(y)

The most important thing to do is to
reverse engineer what’s actually hap-
pening by looking at the definitions
of doSomething, doSomethingElse
and finishItUp: it will give you a clue
what’s “flowing” across the fish opera-
tor. If you do that, you can read <=<
and >=> the same way (they actually
do function composition, like the dot
operator). Read >> like a semicolon
(e.g. no assignment involved):

doSomething >> doSomethingElse
 ==>
doSomething()
doSomethingElse()

■■ Partial application. Sometimes,
Haskell programmers will call a func-
tion, but they won’t pass enough
arguments. Never fear; they’ve prob-
ably arranged for the rest of the argu-
ments to be given to the function
somewhere else. Ignore it, or look
for functions which take anonymous
functions as arguments. Some of
the usual culprits include map, fold
(and variants), filter, the composi-
tion operator ., the fish operators
(=<<, etc). This happens a lot to the
numeric operators: (+3) translates
into lambda x: x + 3.

  41

■■ Control operators. Use your instincts
on these: they do what you think
they do! (Even if you think they
shouldn’t act that way.) So if you see:
when (x == y) $ doSomething x,
it reads like “When x equals y, call
doSomething with x as an argument.”

Ignore the fact that you couldn’t
actually translate that into when(x
== y, doSomething(x)) (Since, that
would result in doSomething always
being called.) In fact, when(x == y,
lambda: doSomething x) is more
accurate, but it might be more com-
fortable to just pretend that when is
also a language construct.
if and case are built-in keywords.

They work the way you’d expect
them to.

■■ Right arrows (for real!) Right arrows
have nothing to do with left arrows.
Think of them as colons: they’re
always nearby the case keyword and
the backslash symbol, the latter of
which is lambda: \x -> x translates
into lambda x: x.

Pattern matching using case is a
pretty nice feature, but a bit hard
to explain here. Probably the easiest
approximation is an if..elif..else
chain with some variable binding:

case moose of
 Foo x y z -> x + y * z
 Bar z -> z * 3
 ==>
if isinstance(moose, Foo):
 x = moose.x # the variable
binding!
 y = moose.y
 z = moose.z
 return x + y * z
elif isinstance(moose, Bar):
 z = moose.z
 return z * 3
else:
 raise Exception("Pattern match
failure!")

■■ Bracketing. You can tell something is
a bracketing function if it starts with
with. They work like contexts do in
Python:

withFile "foo.txt" ReadMode $ \h
-> do
 ...
 ==>
with open("foo.txt", "r") as h:
 ...

(You may recall the backslash from
earlier. Yes, that’s a lambda. Yes,
withFile is a function. Yes, you can
define your own.)

42  PROGRAMMING

■■ Exceptions. throw, catch, catches,
throwIO, finally, handle and all the
other functions that look like this
work essentially the way you expect
them to. They may look a little funny,
however, because none of these
are keywords: they’re all functions,
and follow all those rules. So, for
example:

trySomething x `catch` \(e ::
IOException) -> handleError e
 ===
catch (trySomething x) (\(e ::
IOException) -> handleError e)
 ==>
try:
 trySomething(x)
except IOError as e:
 handleError(e)

■■ Maybe. If you see Nothing, it can be
thought of as None. So isNothing x
tests if x is None. What’s the oppo-
site of it? Just. For example, isJust
x tests if x is not None.

You might see a lot of line noise
associated with keeping Just and
None in order. Here’s one of the most
common ones:

maybe someDefault (\x -> ...) mx
 ==>
if mx is None:
 x = someDefault
else:
 x = mx
...

Here’s one specific variant, for when
a null is an error condition:

maybe (error "bad value!") (\x
-> ...) x
 ==>
if x is None:
 raise Exception("bad value!")

■■ Records. The work they way you’d
expect them too, although Haskell
lets you create fields that have no
names:

data NoNames = NoNames Int Int
data WithNames = WithNames {
 firstField :: Int,
 secondField :: Int
}

So NoNames would probably be rep-
resented as a tuple (1, 2) in Python,
and WithNames a class:

class WithNames:
 def __init__(self, firstField,
secondField):
 self.firstField = firstField
 self.secondField =
secondField

Then creation is pretty simple
NoNames 2 3 translates into (2, 3),
and WithNames 2 3 or WithNames {
firstField = 2, secondField = 3 }
translates into WithNames(2,3).

Accessors are a little more differ-
ent. The most important thing to
remember is Haskellers put their
accessors before the variable, whereas
you might be most familiar with

  43

them being after. So field x translates
to x.field. How do you spell x.field
= 2? Well, you can’t really do that.
You can copy one with modifications
though:

return $ x { field = 2 }
 ==>
y = copy(x)
y.field = 2
return y

Or you can make one from scratch
if you replace x with the name of the
data structure (it starts with a capi-
tal letter). Why do we only let you
copy data structures? This is because
Haskell is a pure language; but don’t
let that worry you too much. It’s just
another one of Haskell’s quirks.

■■ List comprehensions. They originally
came from the Miranda-Haskell lin-
eage! There are just more symbols.

[x * y | x <- xs, y <- ys, y >
2]
 ==>
[x * y for x in xs for y in ys
if y > 2]

It also turns out Haskellers often
prefer list comprehensions written in
multi-line form (perhaps they find it
easier to read). They look something
like:

do
 x <- xs
 y <- ys
 guard (y > 2)
 return (x * y)

So if you see a left arrow and
it doesn’t really look like it’s
doing side effects, maybe it’s a list
comprehension.

■■ More symbols. Lists work the way
you would expect them to in Python;
[1, 2, 3] is in fact a list of three
elements. A colon, like x:xs means
construct a list with x at the front
and xs at the back (cons, for you
Lisp fans.) ++ is list concatenation.
!! means indexing. Backslash means
lambda. If you see a symbol you
don’t understand, try looking for it
on Hoogle [haskell.org/hoogle](yes,
it works on symbols!).

■■ More line noise. The following func-
tions are probably line noise, and can
probably be ignored. liftIO, lift,
runX (e.g. runState), unX (e.g. unCon-
structor), fromJust, fmap, const,
evaluate, an exclamation mark
before an argument (f !x), seq, a
hash sign (e.g. I# x).

44  PROGRAMMING

■■ Bringing it all together. Let’s return to the original code fragment:

runCommand env cmd state = ...
retrieveState = ...
saveState state = ...
main :: IO ()
main = do
 args <- getArgs
 let (actions, nonOptions, errors) = getOpt Permute options args
 opts <- foldl (>>=) (return startOptions) actions
 when (null nonOptions) $ printHelp >> throw NotEnoughArguments
 command <- fromError $ parseCommand nonOptions
 currentTerm <- getCurrentTerm
 let env = Environment
 { envCurrentTerm = currentTerm
 , envOpts = opts
 }
 saveState =<< runCommand env command =<< retrieveState

With some guessing, we can pop out this translation:

def runCommand(env, cmd, state):
 ...
def retrieveState():
 ...
def saveState(state):
 ...

def main():
 args = getArgs()
 (actions, nonOptions, errors) = getOpt(Permute(), options, args)
 opts = **mumble**
 if nonOptions is None:
 printHelp()
 raise NotEnoughArguments
 command = parseCommand(nonOptions)
 currentTerm = getCurrentTerm()
 env = Environment(envCurrentTerm=currentTerm, envOpts=opts)
 state = retrieveState()
 result = runCommand(env, command, state)
 saveState(result)

  45

This is not bad, for a very superfi-
cial understanding of Haskell syntax
(there’s only one obviously untranslat-
able bit, which requires knowing what
a fold is. Not all Haskell code is folds;
I’ll repeat, don’t worry about it too
much!)

Most of the things I have called “line
noise” actually have very deep reasons
behind them, and if you’re curious
about the actual reasons behind these
distinctions, I recommend learning
how to write Haskell. But if you’re
just reading Haskell, I think these rules
should be more than adequate. n

Edward Z. Yang is an undergraduate currently
studying computer science at MIT/University of
Cambridge. He is interested in topics related to
functional programming, and plays the oboe.

Reprinted with permission of the original author.
First appeared in hn.my/haskellpython (ezyang.com)

http://hn.my/haskellpython

46  PROGRAMMING

By Chandra Patni

Fast, Easy, Realtime Metrics
Using Redis Bitmaps

At Spool, we calculate
our key metrics in
real time. Tradition-

ally, metrics are performed
by a batch job (running
hourly, daily, etc.). Redis-
backed bitmaps allow us to
perform such calculations in
realtime and are extremely
space efficient. In a simula-
tion of 128 million users, a
typical metric such as “daily
unique users” takes less than
50 ms on a MacBook Pro and
only takes 16 MB of memory.
Spool doesn’t have 128 mil-
lion users yet, but it’s nice to
know our approach will scale.
We thought we’d share how
we do it, in case other start-
ups find our approach useful.

Crash Course on Bitmap and Redis Bitmaps

Bitmap (aka Bitset)
A Bitmap or bitset is an array of zeros and ones.
A bit in a bitset can be set to either 0 or 1, and
each position in the array is referred to as an
offset. Operations such as logical AND, OR,
XOR, etc., and other bitwise operations are fair
game for Bitmaps.

Population Count
The population count of a Bitmap is the
number of bits set to 1. There are efficient
algorithms for calculating population count. For
instance, the population count of a 90% filled
bitset containing 1 billion bits took 21.1 ms on a
MacBook Pro. There is even a hardware instruc-
tion in SSE4 for the population count of an
integer.

Reprinted with permission of the original author. First appeared in hn.my/redisbitmap (spool.com)

http://hn.my/redisbitmap

  47

Bitmaps in Redis
Redis allows binary keys and binary
values. Bitmaps are nothing but binary
values. The setbit(key, offset, value)
operation, which takes O(1) time, sets
the value of a bit to 0 or 1 at the speci-
fied offset for a given key.

A simple example: Daily Active Users
To count unique users that logged in
today, we set up a bitmap where each
user is identified by an offset value.
When a user visits a page or performs
an action, which warrants it to be
counted, set the bit to 1 at the offset
representing user id. The key for the
bitmap is a function of the name of
the action user performed and the
timestamp.

In this simple example, every time
a user logs in we perform a redis.
setbit(daily_active_users, user_
id, 1). This flips the appropriate
offset in the daily_active_users bitmap
to 1. This is an O(1) operation. Doing
a population count on this results in 9
unique users that logged in today. The
key is daily_active_users and the
value is 1011110100100101.

Of course, since the daily active users
will change every day, we need a way
to create a new bitmap every day. We
do this by simply appending the date
to the bitmap key. For example, if we

want to calculate the daily unique
users who have played at least 1 song
in a music app for a given day, we can
set the key name to be play:yyyy-
mm-dd. If we want to calculate the
number of unique users playing a song
each hour, we can name the key name
play:yyyy-mm-dd-hh. For the rest of
the discussion, we will stick with daily
unique users that played a song. To
collect daily metrics, we will simple set
the user’s bit to 1 in the play:yyyy-
mm-dd key whenever a user plays a
song. This is an O(1) operation.

redis.setbit(play:yyyy-mm-dd,
user_id, 1)

The unique users that played a song
today are the population count of
the bitmap stored as the value for the
play:yyyy-mm-dd key. To calculate
weekly or monthly metrics, we can
simply compute the union of all the
daily Bitmaps over the week or the
month, and then calculate the popula-
tion count of the resulting bitmap.

 You can also extract more complex
metrics very easily. For example, the
premium account holders who played
a song in November would be:

(play:2011-11-01 ∪ play:2011-
11-02 ∪...∪play:2011-11-30) ∩
premium:2011-11

48  PROGRAMMING

Performance comparison
using 128 million users
The table below shows a com-
parison of daily unique action
calculations calculated over 1
day, 7 days, and 30 days for 128
million users. The 7 and 30 met-
rics are calculated by combining
daily bitmaps.

Period Time (ms)

Daily 50.2

Weekly 392.0

Monthly 1624.8

Optimizations
In the above example, we
can optimize the weekly and
monthly computations by cach-
ing the calculated daily, weekly,
and monthly counts in Redis.

This is a very flexible
approach. An added bonus of
caching is that it allows fast
cohort analysis, such as weekly
unique users who are also
mobile users — the intersection
of a mobile users bitmap with a
weekly active users bitmap. Or,
if we want to compute rolling
unique users over the last n
days, having cached daily unique
counts makes this easy; simply
grab the previous n-1 days from
your cache and union it with
the real time daily count, which
only takes 50 ms.

Sample Code
A Java code snippet below computes unique
users for a given user action and date.

import redis.clients.jedis.Jedis;
import java.util.BitSet;
...
 Jedis redis = new Jedis("localhost");
...
 public int uniqueCount(String action,
String date) {
 String key = action + ":" + date;
 BitSet users = BitSet.valueOf(redis.
get(key.getBytes()));
 return users.cardinality();
 }

The code snippet below computes the unique
users for a given user action and a list of dates.

import redis.clients.jedis.Jedis;
import java.util.BitSet;
...
 Jedis redis = new Jedis("localhost");
...
 public int uniqueCount(String action,
String... dates) {
 BitSet all = new BitSet();
 for (String date : dates) {
 String key = action + ":" + date;
 BitSet users = BitSet.
valueOf(redis.get(key.getBytes()));
 all.or(users);
 }
 return all.cardinality();
 } n

Chandra Patni is a member of the Spool geek squad.
These days he hacks on Node, CoffeeScript, Redis and
Ruby. He is @cpatni on Twitter and @rubyorchard on
GitHub.

http://twitter.com/cpatni
http://github.com/rubyorchard

  49

Trying to read
your customers’
minds?

Our simple engagement tools help you understand your customers,
prioritize feedback, and give great customer support even faster.
Spend more time building a product your customers will love!

Get 50% o� your first 3 months* with the code
mindreader at UserVoice.com.

* O�er good for new accounts if used before 12/31/2011.

https://app.uservoice.com/account/new/full_service_ultimate?coupon_key=mindreader

50  PROGRAMMING

By Alex MacCaw

Asynchronous UIs

It’s an interesting time to be work-
ing on the frontend now. We have
new technologies such as HTML5,

CSS3, Canvas and WebGL, all of
which greatly increase the possibilities
for web application development. The
world is our oyster!

However, there’s also another trend
I’ve noticed. Web developers are still
stuck in the request/response mindset.
I call it the “click and wait” approach
— where every UI interaction results
in a delay before another interaction
can be performed. That’s the process
they’ve used their entire careers, so it’s
no wonder most developers are blink-
ered to the alternatives.

Speed matters — a lot. Or to be
precise, perceived speed matters a lot.
Speed is a critical and often neglected
part of UI design, but it can make a
huge difference to user experience,
engagement, and revenue.

■■ Amazon: 100 ms of extra load time
caused a 1% drop in sales (source:
Greg Linden, Amazon).

■■ Google: 500 ms of extra load time
caused 20% fewer searches (source:
Marissa Mayer, Google).

■■ Yahoo!: 400 ms of extra load time
caused a 5–9% increase in the
number of people who clicked “back”
before the page even loaded (source:
Nicole Sullivan, Yahoo!).

Yet, despite all this evidence, devel-
opers still insist on using the request/
response model. Even the introduc-
tion of Ajax hasn’t improved the scene
much, replacing blank loading states
with spinners. There’s no technical
reason why we’re still in this state of
affairs, it’s purely conceptual.

A good example of the problem is
Gmail’s “sending” notification; how is
this useful to people? What’s the point
of blocking? 99% of the time the email
will be sent just fine.

the Future of Web User Interfaces

  51

 As developers, we should optimize
for the most likely scenario. Behavior
like this reminds me of Window’s bal-
loon notifications, which were awe-
some for telling you about something
you just did:

The Solution
I’ve been working on this problem,
specifically with a MVC JavaScript
framework called Spine [spinejs.com],
and implementing what I’ve dubbed
asynchronous user interfaces, or AUIs.
The key to this is that interfaces should
be completely non-blocking. Interac-
tions should be resolved instantly;
there should be no loading messages or
spinners. Requests to the server should
be decoupled from the interface.

The key thing to remember is that
users don’t care about Ajax. They don’t
give a damn if a request to the server
is still pending. They don’t want load-
ing messages. Users would just like
to use your application without any
interruptions.

The Result
AUIs result in a significantly better
user experience, more akin to what
people are used to on the desktop than
the web. Here’s an example of an AUI
Spine application with a Rails backend
[spine-rails3.herokuapp.com].

Notice that any action you take, such
as updating a page, is completely asyn-
chronous and instant. Ajax REST calls
are sent off to Rails in the background
after the UI has updated. It’s a much
better user experience.

Compare it to the static version of
the same application, which blocks
and navigates to a new page on every
interaction. The AUI experience is a
big improvement that will get even
more noticeable in larger (and slower)
applications.

Have a browse around the source
[hn.my/spinerails] to see what’s going
on, especially the main controller.

Not a Silver Bullet
It’s worth mentioning here that I don’t
think this approach is a silver bullet
for all web applications, and it won’t
be appropriate for all use cases. One
example that springs to mind is credit-
card transactions, something you’ll
always want to be synchronous and
blocking. However, I do believe that
AUIs are applicable the vast majority
of the time.

The other point I’d like to make is
that not all feedback is bad. Unob-
trusive feedback that’s actually useful
to your users is completely fine, like
a spinner indicating when files have
synced, or network connections have
finished. The key thing is that feedback
is useful and doesn’t block further
interaction.

http://spinejs.com
http://spine-rails3.herokuapp.com
http://hn.my/spinerails

52  PROGRAMMING

The Implementation
So how do you achieve these AUIs?
There are a number of key principles:

■■ Move state and view rendering to the
client side

■■ Intelligently preload data

■■ Asynchronous server communication

Now, these concepts turn the exist-
ing server-driven model on its head. It’s
often not possible to convert a con-
ventional web application into a client
side app; you need to set out from the
get-go with these concepts in mind as
they involve a significantly different
architecture.

Moving state to the client side is a
huge subject and beyond the scope of
this article. For more information on
that, you might want to read my book,
JavaScript Web Applications [hn.my/
jsapp]. Here I want to focus on a spe-
cific part of AUIs: asynchronous server
communication, or in other words,
server interaction that’s decoupled
from the user interface.

The idea is that you update the client
before you send an Ajax request to the
server. For example, say a user updated
a page name in a CMS. With an asyn-
chronous UI, the name change would
be immediately reflected in the appli-
cation, without any loading or pend-
ing messages. The UI is available for
further interaction instantly. The Ajax
request specifying the name change
would then be sent off separately in
the background. At no point does the

application depend on the Ajax request
for further interaction.

For example, let’s take a Spine Model
called Page. Say we update it in a con-
troller, changing its name:

page = Page.find(1)
page.name = "Hello World"
page.save()

As soon as you call save(), Spine will
perform the following actions:

1.	Run validation callbacks and persist
the changes to memory

2.	Fire the change event and update the
user interface

3.	Send an Ajax PUT to the server indi-
cating the change

Notice that the Ajax request to the
server has been sent after the UI has
been updated; in other words, what
we’ve got here is an asynchronous
interface.

Synchronizing State
Now this is all very well in principle,
but I’m sure you’re already thinking
of scenarios where this breaks down.
Since I’ve been working with these
types of applications for a while, I can
hopefully address some of these con-
cerns. Feel free to skip the next few
sections if you’re not interested in the
finer details.

Validation
What if server validation fails? The
client thinks the action has already suc-
ceeded, so they’ll be pretty surprised

http://hn.my/jsapp
http://hn.my/jsapp

  53

if subsequently told that the validation
had failed.

There’s a pretty simple solution to
this: client-side validation. Replicate
server-side validation on the client side,
performing the same checks. You’ll
always ultimately need server-side
validation, since you can’t trust clients.
But, by also validating on the client,
you can be confident a request will
be successful. Server-side validation
should only fail if there’s a flaw in your
client-side validation.

That said, not all validation is pos-
sible on the client-side, especially
validating the uniqueness of an attri-
bute (an operation which requires DB
access). There’s no easy solution to this,
but there is a discussion covering vari-
ous options in Spine’s documentation.

Network Failures and Server Errors
What happens if the user closes
their browser before a request has
completed? This is fairly simple to
resolve: just listen to the window.
onbeforeunload event, check to see if
Ajax requests are still pending, and,
if appropriate, notify the user. Spine’s
Ajax documentation contains a discus-
sion about this.

window.onbeforeunload = ->
 if Spine.Ajax.pending
 '''Data is still being sent to
the server; you may lose unsaved
changes if you close the page.'''

Alternatively, if the server returns an
unsuccessful response code, say a 500,
or if the network request fails, we can
catch that in a global error handler and
notify the user. Again, this is an excep-
tional event, so it’s not worth investing
too much developer time into. We can
just log the event, inform the user, and
perhaps refresh the page to re-sync
state.

ID Generation
IDs are useful to refer to client-side
records, and are used extensively
throughout JavaScript frameworks
like Backbone [hn.my/backbone] and
Spine. However, this throws up a bit of
a dilemma: where are the IDs gener-
ated, with the server or the client?

Generating IDs on the server has
the advantage that IDs are guaranteed
to be unique, but generating them on
the client side has the advantage that
they’re available instantly. How do we
resolve this situation?

Well, a solution that Backbone uses is
generating an internal cid (or client id).
You can use this cid temporarily before
the server responds with the real iden-
tifier. Backbone has a separate record
retrieval API, depending on whether
you’re using a cid, or a real id.

Users.getByCid(internalID)
Users.get(serverID)

http://hn.my/backbone

54  PROGRAMMING

I’m not such a fan of that solution, so
I’ve taken a different tack with Spine.
Spine generates pseudo GUIDs inter-
nally when creating records (unless you
specify an ID yourself). It’ll use that
ID to identify records from then on.
However, if the response from an Ajax
create request to the server returns a
new ID, Spine will switch to using the
server specified ID. Both the new and
old ID will still work, and the API to
find records is still the same.

Synchronous Requests
The last issue is with Ajax requests
that get sent out in parallel. If a user
creates a record, and then immediately
updates the same record, two Ajax
requests will be sent out at the same
time, a POST and a PUT. However, if the
server processes the “update” request
before the “create” one, it’ll freak out. It
has no idea which record needs updat-
ing, as the record hasn’t been created
yet.

The solution to this is to pipeline
Ajax requests, transmitting them seri-
ally. Spine does this by default, queuing
up POST, PUT and DELETE Ajax requests
so they’re sent one at a time. The next
request is sent only after the previous
one has returned successfully.

Next Steps
So that’s a pretty thorough introduc-
tion into asynchronous interfaces,
and even if you glossed over the finer
details, I hope you’ve been left with
the impression that AUIs are a huge
improvement over the status quo,
and a valid option when building web
applications. n

Alex MacCaw is a JavaScript/Ruby developer,
and works at Twitter with the frontend Rev-
enue Team. He also enjoys traveling and writ-
ing, and his book JavaScript Web Applications
was published by O’Reilly this year.

Reprinted with permission of the original author.
First appeared in hn.my/aui (alexmaccaw.co.uk)

http://hn.my/aui

Dream. Design. Print.
MagCloud, the revolutionary new self-publishing web service
by HP, is changing the way ideas, stories, and images find
their way into peoples’ hands in a printed magazine format.

HP MagCloud capitalizes on the digital revolution, creating a
web-based marketplace where traditional media companies,
upstart magazine publishers, students, photographers, design-
ers, and businesses can affordably turn their targeted content
into print and digital magazine formats.

Simply upload a PDF of your content, set your selling price, and
HP MagCloud takes care of the rest—processing payments,
printing magazines on demand, and shipping orders to loca-
tions around the world. All magazine formatted publications
are printed to order using HP Indigo technology, so they not
only look fantastic but there’s no waste or overruns, reducing
the impact on the environment.

Become part of the future of magazine publishing today at
www.magcloud.com.

25% Off the First Issue You Publish
Enter promo code HACKER when you set your
magazine price during the publishing process.

Coupon code valid through February 28, 2011.
Please contact promo@magcloud.com with any questions.

http://www.magcloud.com

56  PROGRAMMING

By Paul Stamatiou

The Coding Zone

I’ve learned there are three things
that set me up for a productive
programming session.

Good Music
An endless supply of new beats

works wonders. This is the absolute
most important thing for me. If I
have to context switch every three
minutes to find a better song to
play, not much is going to get done.
Sometimes I’ll loop through a Dead-
mau5 album on Spotify, or listen to
a set like Trance Around the World
[trancearoundtheworld.com]. While
I really enjoy leaks and mashups on
Hype Machine [hypem.com/stammy],
it is so hit or miss that I end up having
to change the track often.

Getting in the coding zone starts by
isolating myself from the rest of the
world with my headphones. That’s also
a sign to Akshay, who works a few feet
in front of me, that I’m in get-shit-done
mode but have Campfire open if he
needs anything.

No Chance of Interruption
I must have a seemingly endless

block of time at my disposal. If I have
a meeting in one hour, that severely
limits how much of a zone I can get
into. My most productive work tends
to happen at odd hours where there is
no possible way that I will get a text
about going out for lunch, an IM from
Olark, or a bunch of emails filling my
inbox.

For example, it’s early on Sunday
morning, my cofounder is sleeping
(I’ve slumped into a nocturnal phase....
We’re in a no-meetings-until-we-ship-
some-new-stuff mode), and I will
probably be up until 7 am in a blissful
coding rage. Everything is perfect right
now.

http://trancearoundtheworld.com
http://hypem.com/stammy

57  PROGRAMMING

Reprinted with permission of the original author. First appeared in hn.my/czone (paulstamatiou.com)

Organization
I’m never far away from our

Trello board [trello.com], my own per-
sonal Trello “scratch” board, my trusty
Pilot Hi-Tec C Cavalier 0.3 mm pen
and browser sketch pad [hn.my/uisten-
cils] on my desk. Anything that crosses
my mind worth doing now goes on my
sketch pad and anything worth doing
later goes on our Trello. I used to hate
Trello because I thought it was fugly,
but the simplicity has grown on me.

For some reason I can’t seem to
shake the “to do.txt” file on my desktop.
Nowadays it has evolved into more of
a scratch pad as well — random snip-
pets of code or copy that I don’t need
this moment but don’t feel like having
to browse through github to find later
should I need it again. n

Paul Stamatiou is the co-founder of
Picplum [picplum.com], a startup making it
easy to automatically send photo prints to
loved ones.

Honorable mentions:
A depth charge [hn.my/
depth] or cappuccino on my
desk, being motivated about
what I’m actually building
(that’s the easy part for me
and why I have only ever
worked on my startups), and
having a clean workspace,
both in my physical living
area and on my computer’s
desktop and Picplum Drop-
box folder.

http://hn.my/czone
http://trello.com
http://hn.my/uistencils
http://hn.my/uistencils
http://picplum.com
http://hn.my/depth
http://hn.my/depth

58  PROGRAMMING

By Matthew Flickinger

What’s in a GIF
— Bit by Byte

We will start off by walking
though the different parts
of a GIF file. (The infor-

mation on this page is primarily drawn
from the W3C
GIF89a specifi-
cation [hn.my/
gift89a].) A GIF
file is made up of
a bunch of dif-
ferent “blocks” of
data. The follow-
ing diagram shows all of the different
types of blocks and where they belong
in the file. The file starts at the left and
works its way right. At each branch
you may go one way or the other. The
large middle section can be repeated
as many times as needed. (Technically,

it may also be omitted completely, but
I can’t imagine what good a GIF file
with no image data would be.)

I’ll show you what these blocks looks
like by walking through a sample GIF
file. You can see the sample file and
its corresponding bytes on top of next
page.

http://hn.my/gift89a
http://hn.my/gift89a

59  PROGRAMMING

Note that not all blocks are repre-
sented in this sample file. I will provide
samples of missing blocks where appro-
priate. The different types of blocks
include: header, logical screen descrip-
tor, global color table, graphics control
extension, image descriptor, local color
table, image data, plain text extension,
application extension, comment exten-
sion, and trailer. Let’s get started with
the first block!

Header Block

All GIF files must start with a header
block. The header takes up the first six
bytes of the file. These bytes should all
correspond to ASCII character codes
[ascii.cl]. We actually have two pieces
of information here. The first three
bytes are called the signature. These
should always be “GIF” (e.g., 47=“G”,
49=“I”, 46=“F”). The next three specify
the version of the specification that was
used to encode the image. We’ll only
be working with “89a” (e.g., 38=“8”,
39=“9”, 61=“a”). The only other rec-
ognized version string is “87a” but I
doubt most people will run into those
anymore.

Logical Screen Descriptor

The logical screen descriptor always
immediately follows the header. This
block tells the decoder how much
room this image will take up. It is
exactly seven bytes long. It starts with
the canvas width. This value can be
found in the first two bytes. It’s saved
in a format the spec simply calls
“unsigned.” Basically we’re looking at a
16-bit, nonnegative integer (0-65,535).
As with all the other multi-byte values
in the GIF format, the least signifi-
cant byte is stored first (little-endian
format). This means where we would
read 0A 00 from the byte stream, we
would normally write it as 000A, which
is the same as 10. Thus the width of
our sample image is 10 pixels. As a
further example, 255 would be stored
as FF 00, but 256 would be 00 01. As
you might expect, the canvas height
follows. Again, in this sample we can
see this value is 0A 00, which is 10.

(from Sample File)

(from Sample File)

60  PROGRAMMING

Next we have a packed byte. That
means that this byte actually has mul-
tiple values stored in its bits. In this
case, the byte 91 can be represented
as the binary number 10010001. (The
built-in Windows calculator is actually
very useful when converting numbers
into hexadecimal and binary formats.
Be sure it’s in “scientific” or “program-
mer” mode, depending on the version
of Windows you have.) The first and
most-significant bit is the global color
table flag. If it’s 0, then there is none.
If it’s 1, then a global color table will
follow. In our sample image, we can
see that we will have a global color
table (as will usually be the case). The
next three bits represent the color
resolution. The spec says this value “is
the number of bits per primary color
available to the original image, minus
1” and “...represents the size of the
entire palette from which the colors in
the graphic were selected.” Because I
don’t much about what this one does,
I’ll point you to a more knowledge-
able article on bit and color depth
[hn.my/bitcolor]. For now 1 seems to
work. Note that 001 represents 2 bits/
pixel; 111 would represent 8 bits/pixel.
The next single bit is the sort flag. If
the value is 1, then the colors in the
global color table are sorted in order of
“decreasing importance,” which typi-
cally means “decreasing frequency” in
the image. This can help the image
decoder but is not required. Our value
has been left at 0. The last three bits
are the size of global color table. Well,

that’s a lie; it’s not the actual size of
the table. If this value is N, then the
actual table size is 2^(N+1). From our
sample file, we get the three bits 001,
which is the binary version of 1. Our
actual table size would be 2^(1+1) =
2^2 = 4. (We’ve mentioned the global
color table several times with this byte,
we will be talking about what it is in
the next section.)

The next byte gives us the back-
ground color index. This byte is only
meaningful if the global color table
flag is 1. It represents which color in
the global color table (by specifying its
index) should be used for pixels whose
value is not specified in the image data.
If, by some chance, there is no global
color table, this byte should be 0.

The last byte of the logical screen
descriptor is the pixel aspect ratio. I’m
not exactly sure what this value does.
Most of the images I’ve seen have this
value set to 0. The spec says that if
there was a value specified in this byte,
N, the actual ratio used would be (N +
15) / 64 for all N<>0.

http://hn.my/bitcolor

  61

Global Color Table

We’ve mentioned the global color table
a few times already now let’s talk about
what it actually is. As you are probably
already aware, each GIF has its own
color palette. That is, it has a list of all
the colors that can be in the image and
cannot contain colors that are not in
that list. The global color table is where
that list of colors is stored. Each color is
stored in three bytes. Each of the bytes
represents an RGB color value. The first
byte is the value for red (0-255), next
green, then blue. The size of the global
color table is determined by the value
in the packed byte of the logical screen
descriptor. As we mentioned before,
if the value from that byte is N, then
the actual number of colors stored is
2^(N+1). This means that the global
color table will take up 3*2^(N+1)
bytes in the stream.

Our sample file has a global color
table size of 1. This means it holds
2^(1+1)=2^2=4 colors. We can

see that it takes up 12 (3*4) bytes as
expected. We read the bytes three at a
time to get each of the colors. The first
color is #FFFFFF (white). This value is
given an index of 0. The second color
is #FF0000 (red). The color with an
index value of 2 is #0000FF (blue).
The last color is #000000 (black). The
index numbers will be important when
we decode the actual image data.

Note that this block is labeled as
“optional.” Not every GIF has to spec-
ify a global color table. However, if
the global color table flag is set to 1 in
the logical screen descriptor block, the
color table is then required to immedi-
ately follow that block.

Graphics Control Extension

Graphic control extension blocks are
used frequently to specify transparency
settings and control animations. They
are completely optional.

The first byte is the extension intro-
ducer. All extension blocks begin with
21. Next is the graphic control label,
F9, which is the value that says this is
a graphic control extension. Third up
is the total block size in bytes. Next is

Size in Logical
Screen Desc

No. of
Colors

Byte
Length

0 2 6

1 4 12

2 8 24

3 16 48

4 32 96

5 64 192

6 128 384

7 256 768

(from Sample File)

(from Sample File)

62  PROGRAMMING

a packed field. Bits 1-3 are reserved for
future use. Bits 4-6 indicate disposal
method. The penultimate bit is the
user input flag, and the last is the trans-
parent color flag. The delay time value
follows in the next two bytes stored
in the unsigned format. After that we
have the transparent color index byte.
Finally we have the block terminator
which is always 00.

Image Descriptor

A single GIF file may contain mul-
tiple images (useful when creating
animated images). Each image begins
with an image descriptor block. This
block is exactly 10 bytes long.

The first byte is the image separa-
tor. Every image descriptor begins
with the value 2C. The next 8 bytes
represent the location and size of
the following image. An image in the
stream may not necessarily take up the
entire canvas size defined by the logical
screen descriptor. Therefore, the image
descriptor specifies the image left posi-
tion and image top position of where

the image should begin on the canvas.
Next it specifies the image width and
image height. Each of these values is
in the 2-byte, unsigned format. Our
sample image indicates that the image
starts at (0,0) and is 10 pixels wide by
10 pixels tall. (This image does take up
the whole canvas size.)

The last byte is another packed field.
In our sample file this byte is 0, so all

of the sub-values will be zero. The
first and most significant bit in the
byte is the local color table flag.
Setting this flag to 1 allows you to
specify that the image data that
follows uses a different color table
than the global color table. (More
information on the local color table
follows.) The second bit is the inter-
lace flag.

Local Color Table
The local color table looks identical to
the global color table. The local color
table would always immediately follow
an image descriptor but will only be
there if the local color table flag is set
to 1. It is effective only for the block of
image data that immediately follows it.
If no local color table is specified, the

(from Sample File)

  63

global color table is used for the fol-
lowing image data.

The size of the local color table can
be calculated by the value given in the
image descriptor. Just like with the
global color table, if the image descrip-
tor specifies a size of N, the color table
will contain 2^(N+1) colors and will
take up 3*2^(N+1) bytes. The colors
are specified in RGB value triplets.

Image Data

Finally we get to the actual image data.
The image data is composed of a series
of output codes which tell the decoder
which colors to spit out to the canvas.
These codes are combined into the
bytes that make up the block.

The first byte of this block is the
LZW minimum code size. This value is
used to decode the compressed output
codes. The rest of the bytes represent
data sub-blocks. Data sub-blocks are
groups of 1-256 bytes. The first byte in
the sub-block tells you how many bytes
of actual data follow. This can be a value
from 0 (00) to 255 (FF). After you’ve
read those bytes, the next byte you read
will tell you how many more bytes of
data follow that one. You continue to
read until you reach a sub-block that
says that zero bytes follow.

You can see our sample file has a
LZW minimum code size of 2. The
next byte tells us that 22 bytes of data

follow it (16 hex = 22). After we’ve
read those 22 bytes, we see the next
value is 0. This means that no bytes
follow and we have read all the data in
this block.

Plain Text Extension

Oddly enough the spec allows you to
specify text which you wish to have
rendered on the image. I followed the
spec to see if any application would
understand this command; but IE,
Firefox, and Photoshop all failed to
render the text. Rather than explaining
all the bytes, I’ll tell you how to recog-
nize this block and skip over it.

The block begins with an extension
introducer as all extension block types
do. This value is always 21. The next
byte is the plain text label. This value
of 01 is used to distinguish plain text
extensions from all other extensions.
The next byte is the block size. This
tells you how many bytes there are
until the actual text data begins, or in
other words, how many bytes you can
now skip. The byte value will probably
be 0C which means you should jump
down 12 bytes. The text that follows is

(from Sample File)
Example (Not in Sample File)

64  PROGRAMMING

encoded in data sub-blocks. The block
ends when you reach a sub-block of
length 0.

Application Extension

The spec allows for application spe-
cific information to be embedded in
the GIF file itself. The only reference
I could find to application extensions
was the NETSCAPE2.0 extension,
which is used to loop an animated GIF
file.

Like with all extensions, we start with
21, which is the extension introducer.
Next is the extension label, which for
application extensions is FF. The next
value is the block size, which tells you
how many bytes there are before the
actual application data begins. This byte
value should be 0B, which indicates 11
bytes. These 11 bytes hold two pieces
of information. First is the applica-
tion identifier which takes up the first
8 bytes. These bytes should contain
ASCII character codes that identify
to which application the extension
belongs. In the case of the example
above, the application identifier is
“NETSCAPE” which is conveniently 8
characters long. The next three bytes
are the application authentication
code. The spec says these bytes can be
used to “authenticate the application
identifier.” With the NETSCAPE2.0
extension, this value is simply a version

number, “2.0”, hence the extensions
name. What follows is the application
data broken into data sub-blocks. Like
with the other extensions, the block
terminates when you read a sub-block
that has zero bytes of data.

Comment Extension

One last extension type is the com-
ment extension. Yes, you can actually
embed comments within a GIF file.
Why you would want to increase the
file size with unprintable data, I’m not
sure. Perhaps it would be a fun way to
pass secret messages.

It’s probably no surprise by now that
the first byte is the extension intro-
ducer which is 21. The next byte is
always FE, which is the comment label.
Then we jump right to data sub-blocks
containing ASCII character codes for
your comment. As you can see from
the example, we have one data sub-
block that is 9 bytes long. If you trans-
late the character codes you see that
the comment is “blueberry.” The final
byte, 00, indicates a sub-block with zero
bytes that follow, which let’s us know
we have reached the end of the block.

Example (Not in Sample File)

Example (Not in Sample File)

  65

Trailer

The trailer block indicates when you’ve
hit the end of the file. It is always a
byte with a value of 3B.

You can read the rest of this series
here:

■■ LZW Image Data [hn.my/imagedata]

■■ Animation and Transparency
[hn.my/animation] n

Matthew is currently a PhD student in the
department of biostatistics at the University
of Michigan where he is studying statistical
genetics. He was been teaching computers
new tricks ever since he started retyping BASIC
programs from the back of 3-2-1 Contact
magazines.

Reprinted with permission of the original author.
First appeared in hn.my/gif (matthewflickinger.com)

(from Sample File)

http://hn.my/imagedata
http://hn.my/animation
http://hn.my/gif

	Contents
	FEATURES
	Translating Math into Code

	STARTUPS
	Hiring Employee #1

	DESIGN
	Slopegraphs

	PROGRAMMING
	How to Read Haskell Like Python
	Fast, Easy, Realtime Metrics Using Redis Bitmaps
	Asynchronous UIs
	The Coding Zone
	What’s in a GIF — Bit by Byte

