
Issue 23   April 2012



www.hotgloo.com web-based wireframing

http://www.hotgloo.com/?pk_campaign=gloo_hackers
http://www.getharvest.com/hackers


http://www.getharvest.com/hackers


4   

Curator
Lim Cheng Soon

Contributors
Alex Walker 
Tom Ryder 
Nathan Marz 
Nick Johnson 
David Nolen 
Yann Esposito 
James Yu 
Tom Blomfield 
Des Traynor 
Valdis Krebs

Proofreaders
Emily Griffin
Sigmarie Soto

Illustrators
Teagan White 
John Schwegel

Printer
MagCloud

Hacker Monthly is the print magazine ver-
sion of Hacker News — news.ycombinator.com, a 
social news website wildly popular among program-
mers and startup founders. The submission guide-
lines state that content can be “anything that grati-
fies one’s intellectual curiosity.” Every month, we 
select from the top voted articles on Hacker News 
and print them in magazine format.  
For more, visit hackermonthly.com. 

Advertising
ads@hackermonthly.com

Contact
contact@hackermonthly.com

Published by
Netizens Media
46, Taylor Road,
11600 Penang,
Malaysia.

Hacker Monthly is published by Netizens Media and not affiliated with Y Combinator in any way.

Issue 23   April 2012

Cover Illustration: Teagan White (teaganwhite.com)

http://news.ycombinator.com
http://hackermonthly.com
mailto:ads@hackermonthly.com
mailto:contact@hackermonthly.com
http://teaganwhite.com


  5

Contents
FEATURES

06  The Cicada Principle
By Alex Walker

PROGRAMMING

14  Vim Anti-Patterns
By Tom Ryder

18  Suffering-Oriented Programming
By Nathan Marz

23  Spatial Indexing with Quadtrees  
& Hilbert Curves
By Nick Johnson

31  Comparing JavaScript, CoffeeScript 
& ClojureScript
By David nolen

34  Haskell Web Programming:  
A Yesod Tutorial
By Yann Esposito

44  Designing Great API Docs 
By James Yu

SPECIAL

48  Automate Everything
By Tom Blomfield

51  Criticism and Two Way Streets
By Des Traynor

54  Uncloaking a Slumlord Conspiracy 
with Social Network Analysis
By Valdis KREBS

For links to Hacker News dicussions, visit hackermonthly.com/issue-23

Illustration by John Schwegel (johnschwegel.com)

http://hackermonthly.com/issue-23
http://johnschwegel.com


6  FEATURES

FEATURES

A few years ago, I read some 
interesting stuff on periodical 
cicadas. We generally don’t 

see a lot of these little guys, as they 
spend the vast majority of their lives 
quietly tunneling away underground 
and munching on tree roots.

However, depending on the species, 
every 7, 13, or 17 years these periodi-
cal cicadas simultaneously emerge en 
masse, transform into noisy, flying 
creatures, find a mate, and die not long 
after.

The Cicada Principle

By Alex Walker

The Art of Seamless Tiles

6  FEATURES Illustration by Teagan White (teaganwhite.com)

http://teaganwhite.com


  7

While this is a rather rock & roll 
ending for our nerdy cicada, it raises an 
obvious question: is it just by chance 
that they adopted 7, 11, or 13-year life 
cycles, or are those numbers somehow 
special?

As it turns out, these numbers have 
something in common. They’re all 
prime numbers — numbers that can 
only be divided by themselves and 1 
(that is, 2, 3, 5, 7, 11, 13, 17, 19, 23, 
and so on).

But why does that matter?
Research has shown that the popula-

tions of creatures that eat cicadas — 
typically birds, spiders, wasps, fish and 
snakes — often have shorter 2–6 year 
cycles of boom and bust.

So, if our cicadas were to emerge, say, 
every 12 years, any predator that works 
in either 2, 3, 4 or 6 year cycles would 
be able to synchronize their boom 
years with this regular cicada feast. In 
fact, they’d probably name a public 
holiday after it called Cicada Day.

That’s not much fun if you’re a 
cicada.

On the other hand, if a brood of 
17-year cicadas was unlucky enough to 
emerge during a bumper 3-year wasp 
season, it will be 51 years before that 
event occurs again. In the intervening 
years, our cicadas can happily emerge 
in their tens of thousands, completely 
overwhelm the local predator popula-
tion, and be mostly left in peace.

Resourceful little guys, eh?

That’s great. But what has all this got 
to do with web design?
A few weeks ago we looked at the 
process of making seamless tiles 
[hn.my/tiles]. As super-useful as seam-
less tiles are, it can be tough to get the 
balance just right.

On one hand, you want to keep the 
file dimensions as small as possible to 
best take advantage of the tiling effect. 
However, when you notice a distinc-
tive feature — for instance, a knot in 
some woodgrain — repeating at regular 
intervals, it really breaks the illusion of 
organic randomness.

Maybe we borrow some ideas from 
cicadas to break that pattern?

Generating Organic Randomness 
with CSS

Example 1:
Enough talk. Here’s a quick proof-of-
concept. This is not supposed to be 
visually splendid, but it does a good 
job of showing what’s going on. Keep-
ing the “cicada principle” in mind, I’ve 
made three square, semi-transparent 
PNGs of 29px, 37px, and 53px respec-
tively, and set them up as multiple 
backgrounds on the HTML element of 
a test page.

By Alex Walker

http://hn.my/tiles


8  FEATURES

■■ 29-a.png (2.0kb) 

■■ 37-a.png (1.7kb)

■■ 53-a.png (2.5kb)

html {  
  background-image:  
    url(29-a.png),url(37-a.png),   
    url(53-a.png);    
  padding:0;  
  margin:0;  
  height: 100%;  
}

And here’s the result.

As you can see, the tiles overlap and 
interact to generate new patterns and 
colors. And as we’re using magical 
prime numbers, this pattern will not 
repeat for a long, long time.

Exactly how long? 29px × 37px × 
53px… or 56,869px!

Now this was something of a revela-
tion to me. I actually had to triple-
check my calculations, but the math 
is rock solid. Remember these are 
tiny graphics  —  less than 7kb in total 
— yet they are generating an area of 
original texture of almost 57,000 pixels 
wide.

You can imagine what happens if you 
were to add in a fourth layer of tiling 
— let’s say a 43px tile. Or maybe you 
can’t imagine it, as the numbers start 
getting a little brutal and are liable to 
slap you about the ears if you stare at 
them too long.

Suffice it to say, you’ll get a number 
more relevant to planet terraformation 
than web design.

Ok. So, abstract, geometric stripes 
are nice and all, but how else can you 
apply this idea?



  9

Example 2
Let’s take a more photo-realistic 
example that we’ve probably all seen 
at some point: the red velvet theatre 
curtain. I found a nice curtain graphic 
here to use as a start point. Looking at 
our curtain you can see it breaks into 
roughly equal vertical units.

For this example I’m going to refer to 
this distance as one “ruffle unit,” and 
(unlike the first example) it’s going to 
be more important than the strict pixel 
dimensions of the images we’re work-
ing with.

First, I’m going to pick out one of 
these ruffles and convert it into a 
seamless tile. It’s a JPEG and it weighs 
in at a tidy 8kb.

Rendered alone, this graphic is every-
thing we don’t like about tiling back-
grounds. While there are no obvious 
visible join, it’s very mechanical and 
wholly unconvincing.

For layer two, the prime number 
we’re going to use is three. 
I’m going to pick out a new 
section of curtain and place 
it inside a transparent PNG 
that is three ruffle units 
wide. I’ve feathered the right 
and left edges so it blends 
smoothly with the back-
ground. The resulting file 
comes in a tick under 15kb.

When we overlay this tile on our 
bottom layer we certainly get an 
improved result. There’s still an unnat-
urally regular pattern apparent, but it’s 
starting to break down a little.

 Coining a new measurement 
system  —  the “ruffle unit”

One layer tiling curtain: 
Not exactly impressive

A 3-unit-
wide tile

Two layers of tiling curtain  
—  an improvement



10  FEATURES

The magic number for our third layer 
is seven.

 We’re creating a new transparent 
PNG seven ruffle units wide, and I’m 
going to drop in two new sections of 
ruffle image at positions 3 and 6. If that 
sounds confusing, the diagram next 
should clear things up a bit. Again, I’ve 
feathered the edges on the image to 
help it blend with the lower layers.

Obviously this is a larger image in 
both pixel dimension and file size, but 
it still only tips the scale at around 
32kb —  not outrageous by any 
measure.

 Above’s what happens when we tile 
this graphic over the first two layers. 
I’m pretty happy with that result. True, 
your eye can pick out small sections 
of image that seem to repeat (because 
they do), but the underlying pattern 

becomes so complicated that your eyes 
stops searching for the similarities.

To look at it another way, if we treat 
each ruffle purely as a number, the 
number pattern it produces looks like 
this: 1, 2, 3, 1, 2, 6, 1, 2, 1, 3, 2, 1, 6, 2, 
1, 1, 3, 1, 1, 6, 1, 1, 2, 3,..

There is a pattern there but it’s very 
difficult to discern.

In this example, a practically end-
less curtain background has cost us a 
grand total of just 53kb. And of course, 
it would be relatively trivial to add a 
fourth layer — perhaps using 11 units 
— if we wanted to. However, I’m not 
convinced that’s warranted here.

Also bear this in mind: this example 
uses the one of the simplest possible 
sets of prime number — 1, 3, and 7. 
If we were to use, let’s say, 11, 13, 
and 17, we could build in much more 
complex variation for a given distance. 

It really just comes down to the scale 
of the curtain we choose versus the 
screen width.

The final result

Our third layer is a 
7-unit-wide tile



  11

Example 3
My last example is less about pure 
practical applications, and more about 
having some fun with primes. I’m not 
going to break down the theory again, 
as the core concept is the same as the 
first two examples, but you’re more 
than welcome to deconstruct it in 
FireBug.

2,200 years ago Emperor Qin Shi 
Huang, constructed an 8,000 man ter-
racotta army to guard his tomb. Each 
soldier, chariot and weapon is a one-
off, hand-crafted creation.

Using simple CSS, prime numbers, 
and handful of images, we’re going to 
raise our own mighty army. What it 
might lack in stature, it makes up for in 
sheer weight of numbers.

I give you… my Mighty Legion of 
Lego!

The legion is built from just eight 
images that mingle and weave together 
to produce thousands of permutations. 
It uses:

■■ 2 images for the background tiles
■■ 2 images for the legs
■■ 2 images for torsos
■■ 2 images for the heads

The Mighty Legion of Lego



12  FEATURES

Summary
Playing around with this idea, I’ve 
come up with some basic principles 
that seem to work. First, your stacking 
order tends to work best when it’s con-
structed like an upside-down pyramid.

 You can afford to make the bottom 
layer quite small and repetitive as 
much of it gets overwritten by the 
layers above. In fact, it’s likely that only 
20–40% will remain unobscured.

On the other hand, your upper-most 
layer should always have the largest 
image dimensions but also the most 
thinly-scattered imagery, as these image 
elements will never be blocked out by 
other layers. It’s also probably best not 
to include highly-distinctive, eye-catch-
ing detail on your uppermost layer. 
Keep it scarce and generic.

Either way, some trial and error is 
almost always required.

Browser Support
I’ve kept the markup simple by apply-
ing multiple backgrounds to the 
HTML element. This is supported by 
all the current main browsers (Firefox 
4, Chrome 10, IE9, Opera 11, Safari 5) 
but obviously not all older versions.

However if backward compatibility 
is a prerequisite, tiling the html, body 
and perhaps a single container div ele-
ment might be a viable option. While 
the container element might be non-
semantic, it’s potentially giving you 
huge sitewide value for a small conces-
sion. That’s your call.

These three examples are the first 
ideas that came to my mind, but I’m 
sure there are some much cleverer 
takes on the idea. Perhaps:

■■ An endless cityscape

■■ Nonrepeating woodgrain

■■ Star fields

■■ Densely layered jungle

■■ Cloudscapes

Lastly, check out the Cicada Proj-
ect [designfestival.com/cicada] to see 
where our community has taken this 
idea! n

Alex has been a front-end developer since 
the table-olithic era. He enjoys doing strange 
things to CSS and then writing about it.

Reprinted with permission of the original author.  
First appeared in hn.my/cicada (designfestival.com)

The stacking order 
model

http://designfestival.com/cicada
http://hn.my/cicada


http://duckduckgo.com


14  PROGRAMMING

By Tom Ryder

Vim Anti-Patterns

The benefits of getting to grips 
with Vim are immense in 
terms of editing speed and 

maintaining your “flow” when you’re 
on a roll, whether writing code, poetry, 
or prose, but because the learning 
curve is so steep for a text editor, it’s 
very easy to retain habits from your 
time learning the editor that stick with 
you well into mastery. Because Vim 
makes you so fast and fluent, it’s espe-
cially hard to root these out because 
you might not even notice them, but 
it’s worth it. Here I’ll list some of the 
more common ones.

Moving One Line at a Time
If you have to move more than a 
couple of lines, moving one line at a 
time by holding down j or k is inef-
ficient. There are many more ways 
to move vertically in Vim. I find that 
the two most useful are moving by 
paragraph and by screenful, but this 
depends on how far and how precisely 
you have to move.

■■ { — Move to start of previous para-
graph or code block.

■■ } — Move to end of next paragraph 
or code block.

■■ Ctrl+F — Move forward one 
screenful.

■■ Ctrl+B — Move backward one 
screenful.

If you happen to know precisely 
where you want to go, navigating by 
searching is the way to go, searching 
forward with / and backward with ?.

It’s always useful to jump back to 
where you were, as well, which is easily 
enough done with `` (two back-
ticks), or gi to go to the last place you 
inserted text. If you like, you can even 
go back and forth through your entire 
change list of positions with g; and g,.

PROGRAMMING



  15

Moving One Character at a Time
Similarly, moving one character at 
a time with h and l is often a waste 
when you have t and f:

■■ t<char> — Move forward until the 
next occurrence of the character.

■■ f<char> — Move forward over the 
next occurrence of the character.

■■ T<char> — Move backward until the 
previous occurrence of the character.

■■ F<char> — Move backward over the 
previous occurrence of the character.

Moving wordwise with w, W, b, B, e, 
and E is better, too. Again, searching to 
navigate is good here, and don’t forget 
you can yank, delete or change forward 
or backward to a search result:

y/search<Enter> 
y?search<Enter> 
d/search<Enter> 
d?search<Enter> 
c/search<Enter> 
c?search<Enter>

Searching for the Word Under the 
Cursor
Don’t bother typing it, or yanking/past-
ing it; just use * or #. It’s dizzying how 
much faster this feels when you use it 
enough for it to become automatic.

Deleting, Then Inserting
Deleting text with intent to replace it 
by entering insert mode immediately 
afterward isn’t necessary:

d2wi

It’s quicker and tidier to use c for 
change:

c2w

This has the added benefit of making 
the entire operation repeatable with 
the . command.

Using the Arrow Keys
Vim lets you use the arrow keys to 
move around in both insert and normal 
mode, but once you’re used to using 
hjkl to navigate, moving to the arrow 
keys to move around in text feels 
clumsy; you should be able to spend the 
vast majority of a Vim session with your 
hands firmly centered around home 
row. Similarly, while the Home and 
End keys work the same way they do in 
most editors, there’s no particular reason 
to use them when functional equiva-
lents are closer to home in ^ and $.

So wean yourself off the arrow keys, 
by the simple expedient of disabling 
them entirely, at least temporarily:

noremap <Up> <nop> 
noremap <Down> <nop> 
noremap <Left> <nop> 
noremap <Right> <nop>



16  PROGRAMMING

The benefits of sticking to home row 
aren’t simply in speed; it feels nicer to 
be able to rest your wrists in front of 
the keyboard and not have to move 
them too far, and for some people it 
has even helped prevent repetitive 
strain injury.

Moving in Insert Mode
There’s an additional benefit to the 
above in that it will ease you into 
thinking less about insert mode as 
a mode in which you move around; 
that’s what normal mode is for. You 
should, in general, spend as little time 
in insert mode as possible. When you 
want to move, you’ll get in the habit 
of leaving insert mode, and moving 
around far more efficiently in normal 
mode instead. This distinction also 
helps to keep your insert operations 
more atomic, and hence more useful to 
repeat.

Moving to Escape
The Escape key on modern keyboards 
is a lot further from home row than it 
was on Bill Joy’s keyboard back when 
he designed vi. Hitting Escape is usu-
ally unnecessary; Ctrl+[ is a lot closer, 
and more comfortable. It doesn’t take 
long using this combination instead 
to make reaching for Escape as you 
did when you were a newbie feel very 
awkward. You might also consider 
mapping the otherwise pretty useless 
Caps Lock key to be another Escape 
key in your operating system, or even 
mapping uncommon key combina-
tions like jj to Escape. I feel this is a 
bit drastic, but it works well for a lot of 
people:

inoremap jj <Esc>

Moving to the Start or End of the 
Line, Then Inserting
Just use I and A. Again, these make the 
action repeatable for other lines which 
might need the same operation.

Entering Insert Mode, Then Opening 
a New Line
Just use o and O to open a new line 
below and above respectively, and 
enter insert mode on it at the same 
time.



  17

Entering Insert Mode to Delete Text
This is a pretty obvious contradiction. 
Instead, delete the text by moving 
to it and using d with an appropri-
ate motion or text object. Again, this 
is repeatable, and means you’re not 
holding down Backspace. In general, 
if you’re holding down a key in Vim, 
there’s probably a faster way.

Repeating Commands or Searches
Just type @: for commands or n/N for 
searches; Vim doesn’t forget what your 
last search was as soon as you stop 
flicking through results. If it wasn’t 
your most recent command or search 
but it’s definitely in your history, just 
type q: or q/, find it in the list, and hit 
Enter.

Repeating Substitutions
Just type &.

Repeating Macro Calls
Just type @@.

These are really only just a few of 
the common traps to avoid to increase 
your speed and general efficiency with 
the editor without requiring plugins or 
substantial remappings. n

Tom Ryder is a Linux systems administrator 
and web developer from New Zealand. He’s 
an enthusiastic fan of the Vim text editor, 
the Bash shell, and free software develop-
ment tools. He blogs regularly at “Arabesque” 
[blog.sanctum.geek.nz]. 

Reprinted with permission of the original author.  
First appeared in hn.my/vap (sanctum.geek.nz)

http://blog.sanctum.geek.nz
http://hn.my/vap


18  PROGRAMMING

Someone asked me an interesting 
question the other day: “How did 
you justify taking such a huge 

risk on building Storm [hn.my/storm] 
while working on a startup?” (Storm is 
a real-time computation system). I can 
see how from an outsider’s perspec-
tive investing in such a massive project 
seems extremely risky for a startup. 
From my perspective, though, building 
Storm wasn’t risky at all. It was chal-
lenging, but not risky.

I follow a style of development that 
greatly reduces the risk of big projects 
like Storm. I call this style “suffering-
oriented programming.” Suffering-
oriented programming can be sum-
marized like so: don’t build technology 
unless you feel the pain of not having 
it. It applies to the big, architectural 

decisions as well as the smaller every-
day programming decisions. Suffering-
oriented programming greatly reduces 
risk by ensuring that you’re always 
working on something important, and 
it ensures that you are well-versed in 
a problem space before attempting a 
large investment.

I have a mantra for suffering-oriented 
programming: “First make it possible. 
Then make it beautiful. Then make it 
fast.”

By Nathan Marz

Suffering-Oriented 
Programming

http://hn.my/storm


  19

First Make It Possible
When encountering a problem domain 
with which you’re unfamiliar, it’s a 
mistake to try to build a “general” or 
“extensible” solution right off the bat. 
You just don’t understand the problem 
domain well enough to anticipate what 
your needs will be in the future. You’ll 
make things generic that needn’t be, 
adding complexity and wasting time.

It’s better to just “hack things out” 
and be very direct about solving the 
problems you have at hand. This allows 
you to get done what you need to get 
done and avoid wasted work. As you’re 
hacking things out, you’ll learn more 
and more about the intricacies of the 
problem space.

The “make it possible” phase for 
Storm was one year of hacking out a 
stream processing system using queues 
and workers. We learned about guar-
anteeing data processing using an 
“ack” protocol. We learned to scale our 
real-time computations with clusters 
of queues and workers. We learned that 
sometimes you need to partition a mes-
sage stream in different ways, some-
times randomly and sometimes using 
a hash/mod technique that makes sure 
the same entity always goes to the 
same worker.

We didn’t even know we were in the 
“make it possible” phase. We were just 
focused on building our products. The 
pain of the queues and workers system 
became acute very quickly though. 

Scaling the queues and workers system 
was tedious, and the fault-tolerance 
was nowhere near what we wanted. It 
was evident that the queues and work-
ers paradigm was not at the right level 
of abstraction, as most of our code had 
to do with routing messages and seri-
alization and not the actual business 
logic we cared about.

At the same time, developing our 
product drove us to discover new use 
cases in the “real-time computation” 
problem space. We built a feature for 
our product that would compute the 
reach of a URL on Twitter. Reach is the 
number of unique people exposed to 
a URL on Twitter. It’s a difficult com-
putation that can require hundreds 
of database calls and tens of millions 
of impressions to distinct just for one 
computation. Our original implemen-
tation that ran on a single machine 
would take over a minute for hard 
URLs, and it was clear that we needed 
a distributed system of some sort to 
parallelize the computation to make it 
fast.

One of the key realizations that 
sparked Storm was that the “reach 
problem” and the “stream processing” 
problem could be unified by a simple 
abstraction.



20  PROGRAMMING

Then Make It Beautiful
You develop a “map” of the problem 
space as you explore it by hacking 
things out. Over time, you acquire 
more and more use cases within the 
problem domain and develop a deep 
understanding of the intricacies of 
building these systems. This deep 
understanding can guide the creation 
of “beautiful” technology to replace 
your existing systems, alleviate your 
suffering, and enable new systems/
features that were too hard to build 
before.

The key to developing the “beautiful” 
solution is figuring out the simplest set 
of abstractions that solve the concrete 
use cases you already have. It’s a mis-
take to try to anticipate use cases you 
don’t actually have or else you’ll end 
up over-engineering your solution. As 
a rule of thumb, the bigger the invest-
ment you’re trying to make, the deeper 
you need to understand the problem 
domain and the more diverse your use 
cases need to be. Otherwise you risk 
the second-system effect [hn.my/sse].

“Making it 
beautiful” is 
where you use 
your design and 
abstraction skills 
to distill the 
problem space 
into simple 

abstractions that can be composed 
together. I view the development of 

beautiful abstractions as similar to 
statistical regression: you have a set 
of points on a graph (your use cases) 
and you’re looking for the simplest 
curve that fits those points (a set of 
abstractions).

 The more use cases you have, 
the better you’ll be able to find the 
right curve to fit those points. If you 
don’t have enough points, you’re 
likely to either overfit or underfit the 
graph, leading to wasted work and 
over-engineering.

A big part of making it beautiful is 
understanding the performance and 
resource characteristics of the problem 
space. This is one of the intricacies you 
learn in the “making it possible” phase, 
and you should take advantage of that 
learning when designing your beautiful 
solution.

With Storm, I distilled the real-time 
computation problem domain into 
a small set of abstractions: streams, 
spouts, bolts, and topologies. I devised 
a new algorithm for guaranteeing data 
processing that eliminated the need 
for intermediate message brokers, the 
part of our system that caused the 
most complexity and suffering. That 
both stream processing and reach, two 
very different problems on the surface, 
mapped so elegantly to Storm was a 
strong indicator that I was onto some-
thing big.

http://hn.my/sse


  21

I took additional steps to acquire 
more use cases for Storm and validate 
my designs. I canvassed other engineers 
to learn about the particulars of the 
real-time problems they were dealing 
with. I didn’t just ask people I knew. I 
also tweeted out that I was working on 
a new real-time system and wanted to 
learn about other people’s use cases. 
This led to a lot of interesting discus-
sions that educated me more on the 
problem domain and validated my 
design ideas.

Then Make It Fast
Once you’ve built out your beauti-
ful design, you can safely invest time 
in profiling and optimization. Doing 
optimization too early will just waste 
time, because you still might rethink 
the design. This is called premature 
optimization.

“Making it fast” isn’t about the high 
level performance characteristics of 
a system. The understanding of those 
issues should have been acquired in the 
“make it possible” phase and designed 
for in the “make it beautiful” phase. 
“Making it fast” is about micro-opti-
mizations and tightening up the code 
to be more resource efficient. So you 
might worry about things like asymp-
totic complexity in the “make it beauti-
ful” phase and focus on the constant-
time factors in the “make it fast” phase.

Rinse and Repeat
Suffering-oriented programming is a 
continuous process. The beautiful sys-
tems you build give you new capabili-
ties, which allow you to “make it pos-
sible” in new and deeper areas of the 
problem space. This feeds learning back 
to the technology. You often have to 
tweak or add to the abstractions you’ve 
already come up with to handle more 
and more use cases.

Storm has gone through many itera-
tions like this. When we first started 
using Storm, we discovered that we 
needed the capability to emit multiple, 
independent streams from a single 
component. We discovered that the 
addition of a special kind of stream 
called the “direct stream” would allow 
Storm to process batches of tuples as 
a concrete unit. Recently I developed 
“transactional topologies” which go 
beyond Storm’s at-least-once process-
ing guarantee and allow exactly-once 
messaging semantics to be achieved for 
nearly arbitrary real-time computation.

By its nature, hacking things out in a 
problem domain you don’t understand 
so well and constantly iterating can 
lead to some sloppy code. The most 
important characteristic of a suffering-
oriented programmer is a relentless 
focus on refactoring. This is critical to 
prevent accidental complexity from 
sabotaging the codebase.



22  PROGRAMMING

Conclusion
Use cases are everything in suffering-
oriented programming. They’re worth 
their weight in gold. The only way to 
acquire use cases is through gaining 
experience through hacking.

There’s a certain evolution most 
programmers go through. You start off 
struggling to get things to work and 
have absolutely no structure to your 
code. Code is sloppy and copy/past-
ing is prevalent. Eventually you learn 
about the benefits of structured pro-
gramming and sharing logic as much as 
possible. 

Then you learn about making generic 
abstractions and using encapsulation 
to make it easier to reason about sys-
tems. Then you become obsessed with 
making all your code generic, with 
making things extensible to future-
proof your programs.

Suffering-oriented programming 
rejects that you can effectively antici-
pate needs you don’t currently have. 
It recognizes that attempts to make 
things generic without a deep under-
standing of the problem domain will 
lead to complexity and waste. Designs 
must always be driven by real, tangible 
use cases. n

Nathan Marz is an engineer at Twitter. Previ-
ously Nathan was the lead engineer of Back-
Type which was acquired by Twitter in July of 
2011. He is a believer in the power of open 
source and has authored some significant 
open source projects, including Cascalog, 
ElephantDB, and Storm. He writes a blog at 
nathanmarz.com

Reprinted with permission of the original author.  
First appeared in hn.my/suffer (nathanmarz.com)

http://nathanmarz.com
http://hn.my/suffer


  23

Last Thursday night after the 
sessions at Oredev was “Birds 
of a Feather” — a sort of mini-

unconference. Anyone could write 
up a topic on the whiteboard; inter-
ested individuals added their names, 
and each group got allocated a room 
to chat about the topic. I joined the 
“Spatial Indexing” group, and we spent 
a fascinating hour-and-a-half talking 
about spatial indexing methods, which 
reminded me of several interesting 
algorithms and techniques.

Spatial indexing is increasingly 
important as more and more data and 
applications are geospatially-enabled. 
Efficiently querying geospatial data, 
however, is a considerable challenge. 
Because the data is two-dimensional 
(or sometimes more), you can’t use 
standard indexing techniques to query 

on position. Spatial indexes solve this 
through a variety of techniques. In 
this post, we’ll cover several methods: 
quadtrees, geohashes (not to be con-
fused with geohashing), and space-
filling curves and reveal how they’re all 
interrelated.

Quadtrees
Quadtrees are a very straightforward 
spatial indexing technique. In a 
Quadtree, each node represents a 
bounding box covering some part of 
the space being indexed, with the root 
node covering the entire area. Each 
node is either a leaf node or an internal 
node. A leaf node contains one or more 
indexed points and no children while 
an internal node has exactly four 
children, one for each quadrant 
obtained by dividing the area covered 

By Nick Johnson

Spatial Indexing with 
Quadtrees & Hilbert Curves



24  PROGRAMMING

in half along both axes, hence the 
name.

Inserting data into a Quadtree is 
simple: 

■■ Start at the root and determine 
which quadrant your point occupies. 

■■ Recurse to that node and repeat until 
you find a leaf node. 

■■ Add your point to that node’s list of 
points. 

■■ If the list exceeds some pre-deter-
mined maximum number of ele-
ments, split the node and move the 
points into the correct subnodes.

To query a Quadtree:

■■ Start at the root. 

■■ Examine each child node and check 
if it intersects the area being queried 
for. If it does, recurse into that child 
node. Whenever you encounter a leaf 
node, examine each entry to see if 
it intersects with the query area and 
return it if it does.

Note that a Quadtree is very regular. 
It is, in fact, a trie since the values of 
the tree nodes do not depend on the 
data being inserted. A consequence of 
this is that we can uniquely number 
our nodes in a straightforward manner: 

■■ Number each quadrant in binary (00 
for the top left, 10 for the top right, 
and so forth)

■■ The number for a node is the concat-
enation of the quadrant numbers for 
each of its ancestors, starting at the 
root. Using this system, the bottom 
right node in the sample image 
would be numbered 11 01.

If we define a maximum depth for 
our tree, then we can easily calculate a 
point’s node number without reference 
to the tree:

■■ Normalize the node’s coordinates 
to an appropriate integer range (for 
example, 32 bits each). 

■■ Interleave the bits from the x and y 
coordinates. Each pair of bits speci-
fies a quadrant in the hypothetical 
Quadtree.

A representation of how a 
Quadtree is structured internally. 



  25

Geohashes
This system might seem familiar: it’s a 
geohash! At this point, you can actu-
ally throw out the Quadtree itself. The 
node number, or geohash, contains 
all the information we need about its 
location in the tree. Each leaf node in a 
full-height tree is a complete geohash, 
and each internal node is represented 
by the range from its smallest leaf node 
to its largest one. Thus, you can effi-
ciently locate all the points under any 
internal node by performing a query 
to index on the geohash for everything 
within the numeric range covered by 
the desired node.

Querying once we’ve thrown away 
the tree itself becomes a little more 
complex. Instead of refining our search 
set recursively, we need to construct 
a search set ahead of time by finding 
the smallest prefix (or quadtree node) 
that completely covers the query area. 
In the worst case, this may be sub-
stantially larger than the actual query 
area. For example, a small shape in the 
center of the indexed area that inter-
sects all four quadrants would require 
selecting the root node for this step.

The aim, now, is to construct a set 
of prefixes that completely covers 
the query region while including as 
little area outside the region as pos-
sible. If we had no other constraints, 
we could simply select the set of leaf 
nodes that intersect the query area, but 
that would result in a lot of queries. 

Another constraint, then, is that we 
want to minimize the number of 
distinct ranges we have to query for. 
One approach to doing this is setting 
a maximum number of ranges we’re 
willing to have: 

■■ Construct a set of ranges, initially 
populated with the prefix we identi-
fied earlier. 

■■ Pick the node in the set that can be 
subdivided without exceeding the 
maximum range count and that will 
remove the most unwanted area 
from the query region. 

■■ Repeat this until there are no 
ranges in the set that can be further 
subdivided. 

■■ Examine the resulting set, and join 
any adjacent ranges, if possible. 

The diagram below demonstrates 
how this works for a query on a circu-
lar area with a limit of 5 query ranges.

This approach works well, and it 
allows us to avoid recursive lookups. 
The set of range lookups we do exe-
cute can all be done in parallel. Since 
each lookup can be expected to require 
a disk seek, parallelizing our queries 
allows us to substantially cut down the 
time required to return the results.

 How a query for 
a region is broken 
into a series of geo-
hash prefixes/ranges. 



26  PROGRAMMING

Still, we can do better. You may 
notice that all the areas we need to 
query in the above diagram are adja-
cent, yet we can only merge two of 
them (the 2 in the bottom right of the 
selected area) into a single range query, 
requiring us to do 4 separate queries. 
This is due in part to the order that 
our geohashing approach “visits” subre-
gions, working left to right, then top to 
bottom in each quad. The discontinu-
ity as we go from top right to bottom 
left results in us having to split up 
some ranges that we could otherwise 
make contiguous. If we were to visit 
regions in a different order, perhaps 
we could minimize or eliminate these 
discontinuities, resulting in more areas 
that can be treated as adjacent and 
fetched with a single query. With an 
improvement in efficiency like that, we 
could do fewer queries for the same 
area covered, or conversely,  the same 
number of queries, but including less 
extraneous area.

Hilbert Curves
Suppose instead, we visit regions in a 
“U” shape. Within each quad, of course, 
we also visit subquads in the same “U” 
shape, but aligned so as to match up 
with neighboring quads. If we organize 
the orientation of these “U”s correctly, 
we can completely eliminate any dis-
continuities and visit the entire area at 
whatever resolution we choose con-
tinuously to fully explore each region 
before moving on to the next. Not only 
does this eliminate discontinuities, but 
it also improves the overall locality. 
The pattern we get if we do this may 
look familiar because it’s a Hilbert 
Curve. 

Hilbert Curves are part of a class 
of one-dimensional fractals known as 
space-filling curves, so named because 
they are one-dimensional lines that 
nevertheless fill all available space 
in a fixed area. They’re fairly well 
known, in part thanks to XKCD’s 
use of them for a map of the inter-
net [xkcd.com/195/]. As you can see, 
they’re also of use for spatial indexing 
since they exhibit exactly the locality 
and continuity required. For instance, 
if we take another look at the example 
we used for finding the set of queries 
required to encompass a circle above, 
we find that we can reduce the number 
of queries by one. The small region 
in the lower left is now contiguous 
with the region to its right and while 
the two regions at the bottom are no 

Illustrates the order in which 
a Hilbert Curve “visits” each 
quad. 

http://xkcd.com/195/


  27

longer contiguous with each other, the 
rightmost one is now contiguous with 
the large area in the upper right.

One thing that our elegant new 
system is lacking so far is a way to con-
vert between a pair of (x,y) coordinates 
and the corresponding position in the 
Hilbert Curve. With geohashing it was 
easy and obvious — just interleave the 
x and y coordinates. However, there’s 
no obvious way to modify that for a 
Hilbert Curve. Searching the internet, 
you’re likely to come across many 
descriptions of how Hilbert Curves 
are drawn, but there are few, if any, 
descriptions of how to find the position 
of an arbitrary point. To figure this out, 
we need to take a closer look at how 
the Hilbert Curve can be recursively 
constructed.

The first thing to observe is that 
although most references to Hilbert 
Curves focus on how to draw the 
curve, this is a distraction from the 
essential property of the curve. Spe-
cifically, its importance to us: it’s an 
ordering for points on a plane. If we 
express a Hilbert Curve in terms of 

this ordering, drawing the curve itself 
becomes trivial, as it is simply a matter 
of connecting the dots. Forget about 
how to connect adjacent sub-curves, 
and instead, focus on how to recur-
sively enumerate the points. 

At the root level, enumerating the 
points is simple: pick a direction and a 
start point, and proceed around the 
four quadrants, numbering them 0 to 3. 
The difficulty is introduced when we 
want to determine the order in which 
we visit the sub-quadrants while main-
taining the overall adjacency property. 
Examination reveals that each of the 
sub-quadrants’ curves are a simple 
transformation of the original curve: 
there are only four possible transforma-
tions. Naturally, this applies recursively 
to sub-sub quadrants and so forth. The 
curve we use for a given quadrant is 
determined by the curve we used for 
the square it’s in and the quadrant’s 
position. With a little work, we can 
construct a table that encapsulates this:

Illustrates the order in which the geo-
hashing approach “visits” each quad. 

Hilbert Curves are all 
about ordering a set of 
points on a 2d plane. 



28  PROGRAMMING

Suppose we want to use this table to 
determine the position of a point on a 
third-level Hilbert Curve. For the sake 
of this example, assume our point has 
coordinates (5,2):

■■ Starting with the first square on the 
diagram, find the quadrant our point 
is in. In this case, it’s the upper right 
quadrant. The first part of our Hil-
bert Curve position, then, is 3 (11 in 
binary). 

■■ Consult the square shown in the 
inset of square 3. In this case, it’s the 
second square. 

■■ Repeat the process. Which sub-quad-
rant does our point fall into? Here, 
it’s the lower left one, meaning the 
next part of your position is 1 and 
the square we should should consult 
next is the second one again. 

■■ Repeat the process one final time to 
find that our point falls in the upper 
right sub-sub-quadrant. The final 
coordinate is 3 (11 in binary). String-
ing them together, we now know the 
position of the point on the curve is 
110111 binary, or 55.

Let’s be a little more methodical 
and write methods to convert between 
(x,y) coordinates and Hilbert Curve 
positions. First, we need to express our 
diagram above in terms a computer can 
understand:

hilbert_map = { 

'a': �{(0, 0): (0, 'd'), (0, 1): 	
(1, 'a'),  
(1, 0): (3, 'b'), (1, 1): (2, 
'a')}, 

'b': �{(0, 0): (2, 'b'), (0, 1): 	
(1, 'b'),  
(1, 0): (3, 'a'), (1, 1): (0, 
'c')}, 

'c': �{(0, 0): (2, 'c'), (0, 1): 
(3, 'd'),  
(1, 0): (1, 'c'), (1, 1): (0, 
'b')}, 

'd': �{(0, 0): (0, 'a'), (0, 1): 
(3, 'c'),  
(1, 0): (1, 'd'), (1, 1): (2, 
'd')},  
} 

In the snippet above, each element 
of hilbert_map corresponds to one of 
the four squares in the diagram above. 
To make things easier to follow, I’ve 
identified each one with a letter: “a” 
is the first square, “b” the second, and 
so forth. The value for each square is 
a dict, mapping x and y coordinates 
for the (sub-)quadrant to the posi-
tion along the line (the first part of the 
value tuple) and the square to use next 
(the second part of the value tuple). 
Here’s how we can use this to translate 
x and y coordinates into a hilbert curve 
position:



  29

def point_to_hilbert(x, y, 
order=16):  
  current_square = 'a'  
  position = 0  
  for i in range(order - 1, -1, 
-1):  
    position <<= 2 quad_x = 1  
      if x & (1 << i) else 0  
    quad_y = 1  
      if y & (1 << i) else 0  
    quad_position,  
    current_square = hilbert_
map[current_square] 
      [(quad_x, quad_y)]  
    position |= quad_position  
  return position 

The input to this function is the inte-
ger x and y coordinates and the order 
of the curve. An order 1 curve fills a 
2x2 grid, an order 2 curve fills a 4x4 
grid, and so forth. Our x and y coor-
dinates, then, should be normalized to 
a range of 0 to 2order-1. The function 
works by stepping over each bit of the 
x and y coordinates, starting with the 
most significant. For each, it deter-
mines which (sub-)quadrant the coor-
dinate lies in by testing the correspond-
ing bit and then fetching the position 
along the line and the next square to 
use from the table we defined earlier. 
The curve position is set as the least 
significant 2 bits on the position vari-
able. At the beginning of the next loop, 
it’s left-shifted to make room for the 
next set of coordinates.

Let’s check that we’ve written the 
function correctly by running our 
example from above through it:

>>> point_to_hilbert(5,2,3) 
55 

Presto! For a further test, we can use 
the function to generate a complete list 
of ordered points for a Hilbert Curve 
and then use a spreadsheet to graph 
them and see if we get a Hilbert Curve. 
Enter the following expression into an 
interactive Python interpreter:

>>> �points = [(x, y) for x in 
range(8) for y in range(8)]

>>> sorted_points = sorted(points,  
    �key=lambda k: point_to_

hilbert(k[0], k[1], 3))

>>> �print '\n'.join('%s,%s' % x 
for x in sorted_points)                         

Take the resulting text, paste it into 
a file called hilbert.csv, open it in your 
favorite spreadsheet, and instruct it to 
generate a scatter plot. The result is, of 
course, a nicely plotted Hilbert Curve!

The inverse of point_to_hilbert is 
a straightforward reversal of the hil-
bert_map; implementing it is left as an 
exercise for the reader.



30  PROGRAMMING

Conclusion
There you have it — spatial indexing 
from quadtrees to geohashes to hilbert 
curves. One final observation: If you 
express the ordered sequence of (x,y) 
coordinates required to draw a Hilbert 
Curve in binary, do you notice any-
thing interesting about the ordering? 
Does it remind you of anything?

Just to wrap up, a caveat: All of the 
indexing methods I’ve described today 
are only well-suited to indexing points. 
If you want to index lines, polylines, 
or polygons, you’re probably out of 
luck with these methods. And so far as 
I’m aware, the only known algorithm 
for effectively indexing shapes is the 
R-tree, an entirely different and more 
complex beast. n

Nick Johnson is a Developer Programs Engi-
neer for Google App Engine, who’s just seen 
the light and relocated to Australia. He regu-
larly blogs about interesting computer science 
topics at his blog [blog.notdot.net], and when 
he’s not saving the world there he can be found 
on Twitter (@nicksdjohnson) or Stack Overflow 
helping folks out.

Reprinted with permission of the original author. First 
appeared in hn.my/spatial (notdot.net)

http://blog.notdot.net
http://twitter.com/nicksdjohnson
http://hn.my/spatial


  31

By David nolen

Comparing JavaScript, 
CoffeeScript & 
ClojureScript

I’ve been spending a lot of 
time recently hacking on 
the ClojureScript language 

[github.com/clojure/clojurescript]. I 
can say without qualification that I 
haven’t had this much fun program-
ming since I first taught myself JavaS-
cript nearly seven years ago. So let’s put 
aside logic programming for a moment 
and let’s talk about code complexity 
and code expressivity.

Recently on StackOverflow someone 
asked how to idiomatically construct 
a type in ClojureScript. Before we get 
into that, let’s consider how this is 
done in JavaScript:

// 193 characters 
var Foo = function(a, b, c){ 
  this.a = a; 
  this.b = b; 
  this.c = c;     
} 

Foo.prototype.bar = function(x){ 
  return this.a + this.b + this.c 
+ x; 
} 
var afoo = new Foo(1,2,3); 
afoo.bar(3);

CoffeeScript gets a lot of deserved 
attention for its brevity for common 
tasks. For example the same thing in 
CoffeeScript:

# 106 characters 
 
class Foo 
  constructor: (@a, @b, @c) -> 
  bar: (x) -> @a + @b + @c + x 
 
afoo = new Foo 1, 2, 3 
afoo.bar 3

http://github.com/clojure/clojurescript


32  PROGRAMMING

That requires nearly half the amount 
of characters. Of course on real code 
the code compression isn’t nearly that 
great — perhaps 10-20% in my expe-
rience. Still, I find that CoffeeScript 
tends to give the feeling of compres-
sion for many common tasks, and how 
a language feels day in and day out is 
important for programmer happiness.

Let’s take a look at the same thing in 
ClojureScript:

;; 130 characters 
 
(defprotocol IFoo  
  (bar [this x])) ;; 93 characters 
w/o this! 
 
(deftype Foo [a b c] 
  IFoo  
  (bar [_ x] (+ a b c x))) 
 
(def afoo (Foo. 1 2 3)) 
(bar afoo 3)

The ClojureScript without the 
strange protocol form would give even 
better compression than CoffeeScript! 
So what does this protocol form do, 
and why do we need that cluttering up 
our type definition?

ClojureScript, unlike JavaScript or 
CoffeeScript, promotes defining reus-
able abstractions. Imagine if all the 
types in your favorite library were 
swappable with your own implemen-
tations? Hmm...perhaps that’s an 
abstraction too far for many users of 
JavaScript or CoffeeScript.

Well, here’s a use case I think more 
people will get: neither JavaScript 
nor CoffeeScript provides any kind 
of doesNotUnderstand: hook that 
is fantastic for providing default 
implementations.

(defprotocol IFoo  
  (bar [this x])) 
 
(extend-type default 
  IFoo 
  (bar [_ x] :default)) 
 
(bar 1) ; >> :default

We’ve extended all objects including 
numbers to respond to the bar func-
tion. We can provide more specific 
implementations at anytime, i.e. by 
using extend-type on string, array, 
Vector, even your custom types instead 
of default. It’s important to note 
that this extension is safe and local to 
whatever namespace you defined your 
protocol.

Still not convinced? Let’s demon-
strate a very powerful form of exten-
sion that even Dart is getting behind.

In ClojureScript it’s simple to con-
struct types which act like functions. 
While this might sound esoteric, con-
sider very succinct operations like the 
following:



  33

(def address {:street "1010 Foo 
Ave."

:apt "11111111" 
:city "Bit City" 
:zip "00000000"})

(map address [:street :zip])  
;; >> ("1010 Foo Ave." "00000000")

Wow. HashMaps in ClojureScript 
are functions! Now this may look 
like some special case provided by 
the language, but that’s not true. Clo-
jureScript eats its own dog food; the 
language is defined on top of reusable 
abstractions.

How can we leverage this? An exam-
ple: JavaScript and CoffeeScript both 
let you extract a range from strings and 
arrays. In JavaScript you have slice 
and CoffeeScript provides sugar via 
the [i..j] syntax. Neither provides 
you with a way to succinctly construct 
and manipulate the idea of a slice. For 
example:

(defprotocol ISlice 
  (-shift [this])) 
 
(deftype Slice [start end] 
  ISlice 
  (-shift [_] (Slice. (inc start) 
(inc end))) 
  IFn 
  (-invoke [_ x] 
    (cond 
      (string? x) (.substring x 
start end) 

      (vector? x) (subvec x start 
end)))) 
 
(def s (Slice. 0 5)) 
(def v ["List Processing" [0 1 2 
3 4 5 6]]) 
 
(map s v) 
;; >> ("List " [0 1 2 3 4]) 
(map (-shift s) v) 
;; >> ("ist P" [1 2 3 4 5])

IFn is one of the many reusable 
abstractions that ships with language. 
We define ISlice to illustrate that our 
type has dual functionality as an object 
with fields that can be manipulated 
and as a function which can be applied 
to data!

Many people have the misconceived 
notion that Clojure/Script is only 
about functional programming. On the 
contrary Clojure/Script is very much 
“Object Oriented Programming: The 
Good Parts.” n

David Nolen is a JavaScript developer for The 
New York Times. In his free time he works on a 
variety of open source Clojure projects includ-
ing core.match, core.logic, and ClojureScript.

Reprinted with permission of the original author.  
First appeared in hn.my/jscs (dosync.posterous.com)

http://hn.my/jscs


34  PROGRAMMING

By Yann Esposito

Haskell Web Programming: 
A Yesod Tutorial

The Yesod documentation 
and particularly the book 
are excellent. But I missed 

an intermediate tutorial. This tuto-
rial won’t explain all details, but I will 
try to give a step by step of how to 
start from a five minute tutorial to an 
almost production-ready architecture. 
Furthermore, explaining something to 
others is a great way to learn. If you are 
used to Haskell [haskell.org] and Yesod 
[yesodweb.com], this tutorial won’t 
teach you much. If you are completely 
new to Haskell and Yesod, it hopefully 
helps you.

During this tutorial you’ll install, 
initialize, and configure your first Yesod 
project. Then there is a very minimal 
five-minute Yesod tutorial to heat up 
and verify the awesomeness of Yesod. 
Then we will clean up the five-minute 

tutorial to use some “best practices.” 
Finally, there will be a more standard 
real-world example: a minimal blog 
system.

Before the Real Start

Install
The recommended way to install 
Haskell is to download the Haskell 
Platform [haskell.org/platform].

Once done, you need to install Yesod. 
Open a terminal session and do:

~ cabal update 
~ cabal install Yesod cabal-dev

Initialize
You are now ready to initialize your 
first Yesod project. Open a terminal 
and type:

~ yesod init

http://haskell.org
http://yesodweb.com
http://haskell.org/platform


  35

Enter your name, choose yosog for the 
project name and enter Yosog for the 
name of the Foundation. Finally choose 
sqlite. Now, start the development 
cycle:

~ cd yosog 
~ cabal-dev install && yesod --dev 
devel

This will compile the entire project. 
Be patient: it could take a while the 
first time. Once finished, a server is 
launched, and you can visit it at http://
localhost:3000

Some Last Minute Words
Up until here, we have a directory 
containing a bunch of files and a local 
web server listening the port 3000. If 
we modify a file inside this directory, 
Yesod should try to recompile the site 
as fast as possible. Instead of explaining 
the role of every file, let’s focus only on 
the important files/directories for this 
tutorial:

■■ config/routes — is where you’ll con-
figure the map URL to code.

■■ Handler/ — contains the files that 
will contain the code called when a 
URL is accessed.

■■ templates/ — contains HTML, 
JavaScript and CSS templates.

■■ config/models — is where you’ll con-
figure the persistent objects (database 
tables).	

Now we are ready to start!

Echo
To verify the quality of the security 
of the Yesod framework, let’s make a 
minimal echo application.

Goal: Make a server that when 
accessed /echo/[some text] should 
return a web page containing “some 
text” inside an h1 bloc.

First, we must declare the URL of 
the form /echo/... meaningful. Let’s 
take a look at the file config/routes:

/static StaticR Static getStatic 
/auth   AuthR   Auth   getAuth 
 
/favicon.ico FaviconR GET 
/robots.txt RobotsR GET 
 
/ RootR GET

We want to add a route of the form 
/echo/[anything] somehow and 
do some action with this. Add the 
following:

/echo/#String EchoR GET

This line contains three elements: 
the URL pattern, a handler name, an 
HTTPmethod. I am not particularly a 
fan of the big R notation, but this is the 
standard convention.

If you save config/routes, you 
should see your terminal in which you 
launched yesod devel activate and 
certainly displaying an error message.

Application.hs:31:1: Not in scope: 
`getEchoR'



36  PROGRAMMING

Why? Simply because we didn’t 
write the code for the handler EchoR. 
Edit the file Handler/Root.hs and 
append this:

getEchoR :: String -> Handler 
RepHtml 
getEchoR theText = do 
    defaultLayout $ do 
       amlet|<h1>#{theText}|]

Don’t worry if you find all of this a 
bit cryptic. In short, it just declares a 
function named getEchoR with one 
argument (theText) of type String. 
When this function is called, it returns 
a Handler RepHtml whatever it is. 
But mainly this will encapsulate our 
expected result inside an HTML text.

After saving the file, you should 
see Yesod recompile the application. 
When the compilation is finished 
you’ll see the message: “Starting devel 
application.”

Now you can visit: http://
localhost:3000/echo/Yesod%20rocks!

TADA! It works!

Bulletproof?
Even this extremely minimal web 
application has some impressive prop-
erties. For example, imagine an attacker 
entering this URL: 

http://localhost:3000/echo/<a>I'm 
<script>alert("Bad!");

The special characters are protected 
for us. A malicious user could not hide 
some bad script inside.

This behavior is a direct consequence 
of type safety. The URL string is put 
inside a URL type. Then the interest-
ing part in the URL is put inside a 
String type. To pass from URL type to 
String type, some transformation are 
made. For example, replace all “%20” 
with space characters. Then to show 
the String inside an HTML document, 
the String is put inside an HTML 
type. Some transformation occurs like 
replace “<” by “&lt;”. Thanks to Yesod, 
this tedious job is done for us.

Yesod is not only fast, it helps us 
to remain secure. It protects us from 
many common errors in other para-
digms. Yes, I am looking at you, PHP!

Cleaning Up
Even this very minimal example should 
be enhanced. We will clean up many 
details:

■■ Use a general CSS (cleaner than the 
empty by default)

■■ Dispatch handler code into different 
files

■■ Use Data.Text instead of String

■■ Put our “views” inside the template 
directory

Use a Better CSS
It is nice to note, the default template 
is based on HTML5 boilerplate. Let’s 
change the default CSS. Add a file 
named default-layout.lucius inside 
the templates/ directory containing:



  37

body { 
    font-family: Helvetica, sans-
serif;  
    font-size: 18px; } 
#main { 
    padding: 1em; 
    border: #CCC solid 2px; 
    border-radius: 5px; 
    margin: 1em; 
    width: 37em; 
    margin: 1em auto; 
    background: #F2F2F2; 
    line-height: 1.5em; 
    color: #333; } 
.required { margin: 1em 0; } 
.optional { margin: 1em 0; } 
label { width: 8em; display: 
inline-block; } 
input, textarea { background: 
#FAFAFA} 
textarea { width: 27em; height: 
9em;} 
ul { list-style: square; } 
a { color: #A56; } 
a:hover { color: #C58; } 
a:active { color: #C58; } 
a:visited { color: #943; }

Personally I would prefer if such a 
minimal CSS was put with the scaf-
folding tool. I am sure somebody 
already made such a minimal CSS 
which gives the impression the browser 
handles HTML correctly without any 
style applied to it. But I digress.

Separate Handlers
Generally you don’t want to have all 
your code inside a unique file. This 
is why we will separate our handlers. 
First create a new file Handler/Echo.hs 
containing:

module Handler.Echo where 
 
import Import 
 
getEchoR :: String -> Handler 
RepHtml 
getEchoR theText = do 
    defaultLayout $ do 
        [whamlet|<h1>#{theText}|]

Do not forget to remove the getEchoR 
function inside Handler/Root.hs.

We must declare this new file into 
yosog.cabal. Just after Handler.Root, 
add:

Handler.Echo

We must also declare this new Han-
dler module inside Application.hs. 
Just after the “import Handler.Root”, 
add:

import Handler.Echo

Data.Text
It is good practice to use Data.Text 
instead of String.
To declare it, add this import directive 
to Foundation.hs (just after the last 
one):

import Data.Text



38  PROGRAMMING

We have to modify config/routes 
and our handler accordingly. Replace 
#String by #Text in config/routes:

/echo/#Text EchoR GET

And do the same in Handler/Echo.hs:

module Handler.Echo where 
 
import Import 
 
getEchoR :: Text -> Handler 
RepHtml 
getEchoR theText = do 
    defaultLayout $ do 
        [whamlet|<h1>#{theText}|]

Use Templates
Some HTML (more precisely hamlet) 
is written directly inside our handler. 
We should put this part inside another 
file. Create the new file templates/
echo.hamlet containing:

<h1> #{theText}

and modify the handler Handler/Echo.
hs:

getEchoR :: Text -> Handler 
RepHtml 
getEchoR theText = do 
    defaultLayout $ do 
        $(widgetFile "echo")

At this point, our web application 
is structured between different files. 
Handlers are grouped, we use Data.
Text, and our views are in templates. It 
is the time to try a slightly more com-
plex example.

Mirror
Let’s make another minimal appli-
cation. You should see a form con-
taining a text field and a validation 
button. When you enter some text 
(for example “Jormungad”) and 
validate, the next page presents the 
content and its reverse appended to 
it. In our example it should return 
“JormungaddagnumroJ”.

First, add a new route:

/mirror MirrorR GET POST

This time the path /mirror will 
accept GET and POST requests. Add 
the corresponding new Handler file:

■■ Mirror.hs

module Handler.Mirror where 
 
import Import 
import qualified Data.Text as T 
 
getMirrorR :: Handler RepHtml 
getMirrorR = do 
    defaultLayout $ do 
        $(widgetFile "mirror") 
 
postMirrorR :: Handler RepHtml 
postMirrorR =  do 
        postedText <- runInputPost 
$ ireq textField "content" 
        defaultLayout $ do 
            $(widgetFile "posted")

Don’t forget to declare it inside yosog.
cabal and Application.hs.



  39

We will need to use the reverse 
function provided by Data.Text which 
explains the additional import.

Create the two corresponding 
templates:

■■ mirror.hamlet 

<h1> Enter your text 
<form method=post action=@{Mir-
rorR}> 
    <input type=text name=content> 
    <input type=submit>

■■ posted.hamlet 

<h1>You've just posted 
<p>#{postedText}#{T.reverse post-
edText} 
<hr> 
<p><a href=@{MirrorR}>Get back

And that is all. This time, we won’t 
need to clean up. We could have used 
another way to generate the form, but 
we’ll see this in the next section.

Try it here: http://localhost:3000/
mirror

Also you can try to enter strange 
values. As before, your application is 
quite secure.

A Blog
We saw how to retrieve HTTP param-
eters. It is the time to save things into a 
database.

As before, add some routes inside 
config/routes:

/blog               BlogR       
GET POST 
/blog/#ArticleId    ArticleR    
GET

This example will be very minimal:

■■ GET on /blog should display the list 
of articles.

■■ POST on /blog should create a new 
article.

■■ GET on /blog/<article id> should 
display the content of the article.

First, we declare another model 
object. Append the following content 
to config/models:

Article 
    title   Text 
    content Html  
    deriving

As Html is not an instance of Read, 
Show and Eq, we had to add the deriv-
ing line. If you forget it, there will be 
an error.



40  PROGRAMMING

After the route and the model, 
we write the handler. First, declare 
a new Handler module. Add 
import Handler.Blog inside Appli-
cation.hs and add it into yosog.
cabal. Let’s write the content of 
Handler/Blog.hs. We start by declar-
ing the module and by importing some 
block necessary to handle HTML in 
forms.

module Handler.Blog 
    ( getBlogR, postBlogR,  
    getArticleR ) 
where 
 
import Import 
 
-- to use Html into forms 
import Yesod.Form.Nic (YesodNic, 
nicHtmlField) 
instance YesodNic Yosog

Remark: it is a best practice to add the 
YesodNic instance inside Foundation.
hs. I put this definition here to make 
things easier, but be warned about this 
orphan instance. To put the include 
inside Foundation.hs is left as an exer-
cise to the reader.

entryForm :: Form Article 
entryForm = renderDivs $ Article 
    <$> areq   textField "Title" 
Nothing 
    <*> areq   nicHtmlField "Con-
tent" Nothing

This function defines a form for 
adding a new article. Don’t pay atten-
tion to all the syntax. If you are curi-
ous you can take a look at Applicative 
Functor. You just have to remember 
areq is for required form input. Its 
arguments being: areq type label 
default_value.

-- The view showing the list of 
-- articles 
getBlogR :: Handler RepHtml 
getBlogR = do 
    -- Get the list of articles      
    -- inside the database. 
    articles <- runDB $ selectList 
[] [Desc ArticleTitle] 
    -- We'll need the two  
    -- "objects": articleWidget  
    -- and enctype to construct  
    -- the form (see templates/ 
    -- articles.hamlet). 
    ((_,articleWidget), enctype) 
<- generateFormPost entryForm 
    defaultLayout $ do 
        $(widgetFile "articles")



  41

This handler should display a list of 
articles. We get the list from the DB 
and we construct the form. Just take a 
look at the corresponding template:

■■ articles.hamlet 

<h1> Articles 
$if null articles 
  -- Show a standard message if  
  -- there is no article 
  <p> There are no articles in 
the blog 
$else 
  -- Show the list of articles 
  <ul> 
    $forall Entity articleId 
article <- articles 
      <li>  
        <a href=@{ArticleR arti-
cleId} > #{articleTitle article} 
<hr> 
  <form method=post 
enctype=#{enctype}> 
    ^{articleWidget} 
    <div> 
      <input type=submit 
value="Post New Article">

You should notice we added some 
logic inside the template. There is a 
test and a “loop.”

Another very interesting part is the 
creation of the form. The article-
Widget was created by Yesod. We have 
given him the right parameters (input 
required or optional, labels, default 
values). And now we have a protected 
form made for us. But we have to 
create the submit button.

Get back to Handler/Blog.hs.

-- we continue Handler/Blog.hs 
postBlogR :: Handler RepHtml 
postBlogR = do 
  ((res,articleWidget),enctype)  
    <- runFormPost entryForm 
  case res of  
    FormSuccess article -> do  
      articleId <- runDB $ insert 
article 
      setMessage $ toHtml $  
        (articleTitle article) <> 
" created" 
      redirect $ ArticleR arti-
cleId  
    _ -> defaultLayout $ do 
      setTitle "Please correct 
your entry form" 
      $(widgetFile 
"articleAddError")



42  PROGRAMMING

This function should be used to 
create a new article. We handle the 
form response. If there is an error, we 
display an error page; for example, if 
we left some required value blank. If 
things goes right:

■■ We add the new article inside the DB 
(runDB $ insert article).

■■ We add a message to be displayed 
(setMessage $ ...).

■■ We are redirected to the article web 
page.

Here is the content of the error page:

<form method=post 
enctype=#{enctype}> 
  ^{articleWidget} 
  <div> 
    <input type=submit value="Post 
New Article">

Finally, we need to display an article:

getArticleR :: ArticleId -> Han-
dler RepHtml 
getArticleR articleId = do 
    article <- runDB $ get404 
articleId 
    defaultLayout $ do 
        setTitle $ toHtml $ arti-
cleTitle article 
        $(widgetFile "article")

The get404 function tries to do a get 
on the DB. If it fails, it returns a 404 
page. The rest should be clear. Here is 
the content of templates/article.
hamlet:

<h1> #{articleTitle article} 
<article> #{articleContent 
article}

The blog system is finished. Just for 
fun, you can try to create an article 
with the following content:

<p>A last try to <em>cross 
script</em>  
   and <em>SQL injection</em></p> 
<p>Here is the first try:  
   <script>alert("You loose");</
script></p> 
<p> And Here is the last </p> 
"); DROP TABLE ARTICLE;;



  43

Conclusion
This is the end of this tutorial.

If you already know Haskell and you 
want to go further, you should take 
a look at the recent i18n blog tuto-
rial [hn.my/i18n]. It will be obvious it 
inspired my own tutorial. You’ll learn 
in a very straightforward way how easy 
it is to use authorizations, Time, and 
internationalization.

If, on the other hand, you don’t 
know Haskell, then you shouldn’t 
jump directly to web programming. 
Haskell is a very complex and unusual 
language. My advice for quickly using 
Haskell for web programming is:

1.	Start by trying Haskell in your 
browser. [tryhaskell.org]

2.	Then read the excellent “Learn 
you a Haskell for Great Good.” 
[learnyouahaskell.com]

3.	If you have difficulties in understand-
ing concepts like monads, you should 
really read these articles. For me, they 
were enlightening. [hn.my/monads]

4.	If you feel confident, you should 
be able to follow the Yesod book. 
If you find it difficult to follow 
the Yesod book, you should read 
Haskell first (it is a must-read). 
[book.realworldhaskell.org]

Also, note that:

■■ haskell.org is full of excellent 
resources.

■■ hoogle [haskell.org/hoogle] will be 
very useful.

■■ Use hlint [hn.my/hlint] as soon as 
possible to get good habits.

As you can see, if you don’t already 
know Haskell, the path is long but I 
guarantee it will be very rewarding! n

PS: You can download the source 
of this Yesod blog tutorial at 
github.com/yogsototh/yosog

Yann Esposito is the author of YPassword. 
He co-founded GridPocket and is an active 
web and iOS developer. He has a post Ph.D. in 
Machine Learning. He has written two research 
tools: dees & SEDiL.

Reprinted with permission of the original author.  
First appeared in hn.my/yesod (yannesposito.com)

http://hn.my/i18n
http://tryhaskell.org
http://learnyouahaskell.com
http://hn.my/monads
http://book.realworldhaskell.org
http://haskell.org
http://haskell.org/hoogle
http://hn.my/hlint
http://github.com/yogsototh/yosog
http://hn.my/yesod


44  PROGRAMMING

By James Yu

Designing Great API Docs 

Writing documentation is 
one of those things that 
many developers dread. 

It takes a lot of effort and time to 
get right. And too often, people take 
shortcuts. This is sad, because well 
designed documentation is the key 
to getting people excited about your 
project, whether it’s open source or a 
developer-focused product.

In fact, I argue that the most impor-
tant piece of UX for a developer prod-
uct isn’t the homepage or the sign up 
process or the SDK download. It’s the 
API documentation! Who cares if your 
product is the most powerful thing in 
the world if no one understands how 
to use it?

If you’re a making a developer-
focused product, the documentation 
is as core to the user experience as the 
endpoints themselves.

I’ve seen far too many projects that 
simply dump you to a GitHub page 
with a two-liner readme. The most 

successful API docs are carefully 
crafted with love. Here at Parse, we 
devote ourselves to this art.

So, what elements go into making 
great API documentation?

Documentation is a Layered Beast
Your documentation shouldn’t just be 
a plain listing of endpoints with their 
parameters. Documentation is a whole 
ecosystem of content that aims to 
teach users how to interact with your 
API. At the very least, you should have 
these components:

■■ Reference: This is the listing of all 
the functionality in excruciating 
detail. This includes all data type and 
function specs. Your advanced devel-
opers will leave this open in a tab all 
day long.

■■ Guides: This is somewhere between 
the reference and tutorials. It should 
be like your reference with prose 
that explains how to use your API.



  45

■■ Tutorials: These teach your users 
specific things that they can do with 
your API, and are usually tightly 
focused on just a few pieces of func-
tionality. Bonus points if you include 
working sample code.

At Parse, we have all three of these 
components, and we’re currently work-
ing on fleshing out more tutorials.

Another good example is Stripe’s 
API, which has an awesome hybrid 
guide [stripe.com/docs/api] and 
reference and also a cadre of great 
tutorials. GitHub’s reference API 
[developer.github.com] is also very 
well designed.

Remove Abstractions with Examples
You could argue that your API is one 
big abstraction, and that’s kind of the 
point. However, when teaching devel-
opers, try to remove as many abstrac-
tions as possible.

Liberally sprinkle real world exam-
ples throughout your documentation. 

No developer will ever complain that 
there are too many examples. They 
dramatically reduce the time for devel-
opers to understand your product. In 
fact, we even have example code right 
on our homepage [parse.com].

Minimize Clicking
It’s no secret that developers hate to 
click. Don’t spread your documenta-
tion onto a million different pages. 
Keep related topics close to each other 
on the same page.

We’re big fans of long single page 
guides that let users see the big picture 
with the ability to easily zoom into the 
details with a persistent navigation bar. 
This has the great side effect that users 
can search all the content with an in-
page browser search.

A great example of this is the Back-
bone.js documentation [hn.my/bbdoc], 
which has everything at your fingertips.

The way to a developer’s heart 
is great documentation.”

http://stripe.com/docs/api
http://developer.github.com
http://parse.com
http://hn.my/bbdoc


46  PROGRAMMING

Include a Gentle Quickstart
The hardest part of adopting a new 
API is right at the beginning, where the 
learning curve is steep and the devel-
oper is exposed to complicated new 
ideas. The solution to this is to intro-
duce the API with a quickstart guide.

The goal of the quickstart is to walk 
the user through the minimal steps 
needed to do the smallest thing pos-
sible in your API. Nothing more. Once 
a user has done this, they’re ready 
to move on to the more advanced 
concepts.

For example, our quickstart guide 
has the user download our SDKs and 
then save one object to our platform. 
We even have a button that lets users 
test whether they’ve done this cor-
rectly. This gives them the confidence 
to move on and learn the rest of our 
platform.

Use Multiple Languages
We live in a polyglot world. If appro-
priate, try to list examples for multiple 
languages that your API supports, 
most likely via client libraries. Learn-
ing a new API is hard enough without 
having to parse unfamiliar languages.

MailGun’s API [hn.my/mailgun] 
does a great job of this by letting 
developers choose between curl, Ruby, 
Python, Java, C#, and PHP for the 
examples in a global menu.

You Can Never Over-communicate 
Edge Cases
The worst thing is to be developing 
with an API only to discover an error 
state that isn’t documented. In situa-
tions like this, it can be unclear if the 
error is in your code, or in your under-
standing of the API.

Your reference should include every 
edge case and every assumption that 
is made, either implicitly or explicitly. 
Spending a few minutes doing this can 
save hours of your user’s collective 
time.

Sample Applications
At the end of the day, developers want 
to see the big picture. And the best way 
to show that is with working sample 
applications. I find that application 
code is the best way to communi-
cate how everything in your API ties 
together and how it integrates with 
other systems.

A great example of this is sample 
code in Apple’s iOS Developer Library 
[hn.my/ioslib], which has an exhaus-
tive selection of sample iOS apps orga-
nized by topic.

http://hn.my/mailgun
http://hn.my/ioslib


  47

Add Personality
Reading API documentation isn’t 
exactly a thrilling roller coaster ride. 
But, you can at least add some person-
ality and fun into your writing. Surprise 
your reader with funny examples and 
variable names other than foo.

This will at least prevent them from 
falling asleep.

Conclusion
The way to a developer’s heart is great 
documentation, and great documenta-
tion requires a lot of investment. But 
this investment is well worth it and is 
just as important for a developer prod-
uct as the API itself. n

James Yu is co-founder of Parse, the mobile 
application platform. He is a hacker, designer, 
and marketer passionate about building prod-
ucts that people love to use.

Reprinted with permission of the original author.  
First appeared in hn.my/apidocs (parse.com)

http://hn.my/apidocs


48  SPECIAL

Performing manual, repetitive 
tasks enrages me. I used to think 
this was a corollary of being a 

programmer, but I’ve come to suspect 
(or hope) that this behavior is inherent 
in being human.

But being able to hack together 
scripts simply makes it much easier to 
go from a state of rage to a basic solu-
tion in a very small amount of time. 
As a side point, this is one of the rea-
sons that teaching the basics of pro-
gramming in schools is so important. 
It’s hard to think of any job which 
wouldn’t benefit from a few simple 
scripts to perform more automation.

When we’re hiring, even for non-
developer roles, we look for this kind 

of mentality — it’s extremely useful, 
especially when building a software 
businesses, if costs don’t scale linearly 
with revenue. The more we can invest 
up-front in automation, the less time 
our team has to spend on performing 
stupid, manual tasks. As we add more 
employees, the benefits are com-
pounded. And less rage generally makes 
the workplace a much happier place.

I encountered a practical example 
earlier this week. It was time to submit 
expense reports, and I could feel the 
rage starting to build up. For some 
reason, our accountant decreed that we 
had to fill in a spreadsheet, line-by-line, 
for every expense item. 

By Tom Blomfield

Automate 
Everything

Illustration by John Schwegel (johnschwegel.com)

SPECIAL

http://johnschwegel.com


  49

 Presumably, hundreds of millions of 
people have to do this every month, 
costing millions hours of lost produc-
tivity. And in most companies, it’s 
because a well-meaning HR or Finance 
person has said that It Must Be Done. 
But if that Finance person had a modi-
cum of programming experience, they 
might be minded to try to find a better 
way. That’s what I mean by hiring 
people with this kind of mentality. We 
don’t want anyone who’ll lump some 
stupid task on the rest of the team 
because they’ve not got the mindset to 
think about automation in a sensible 
way. Even if they can’t program the 
solution themselves, they need to be 
able to figure out pretty quickly that a 
better solution must exist.

After briefly raging out, I decided 
to do something about this particular 
problem. 

➊ Quickly define the 
requirements

■■ Record details of every expense 
item including date, amount, and 
description.

■■ Be able to query the list to produce 
reports (by month and/or person 
submitting the receipt).

■■ Keep copies of receipts for HMRC.

➋ Think about how receipts 
fit into our workflow at the 

moment, and the major problems
■■ Receipts can be physical (ex., till 
receipt for lunch) or electronic (ex., 
Rackspace email).

■■ They can pop up at random points 
in they day — not conveniently all at 
the same time every month.

■■ People have to store small pieces of 
paper for up to 30 days. Unreliable.

■■ People then have to spend an hour 
or two each month going through 
thousands of emails and hundreds 
of small pieces of paper to find the 
receipts, remember what they’re for, 
and write them down one-by-one. At 
least the spreadsheet auto-sums the 
amounts to a total… Inefficient!

➌ Apply a modicum of brainpower 
to automate the pain-points

To avoid the unreliability of storing 
small pieces of paper and the inef-
ficiency of examining thousands of 
emails, perhaps we could store them 
all in one place, electronically. This 
place could be an email account called 
something imaginative like “expenses@
mycompany.com”. 

To avoid having to go through each 
receipt one-by-one, perhaps some kind 
of machine could parse relevant infor-
mation out of each email and persist it 



50  SPECIAL

somehow. Perhaps a database might be 
useful. To produce the report, perhaps 
the database could output certain 
information based on some kind of 
structured query language. So that 
the people at HRMC don’t suffer an 
instantaneous and fatal brain-explosion 
when we send them the data, per-
haps we could separate values with 
a comma, save them all in a file, and 
advise HRMC to open the file with 
their preferred Microsoft spreadsheet 
program.

As a side note: in the interest of not 
re-inventing the wheel, it’s generally 
a good idea to check if someone has 
solved problem before. I decided to 
roll my own in this case because I was 
interested in learning about email han-
dling after watching this great railscast 
from Ryan Bates [hn.my/mailman]. 
And because paying $9 per month 
per user for something I could prob-
ably write myself in a couple of hours 
seemed silly.

Technical Details
If you’re interested in the technical 
details, I used a ruby gem called Mail-
man, hosted on Heroku’s new cedar 
stack, to poll our POP3 mail server 
every minute. Attachments (pdfs, 
photos, etc) are saved to AWS S3, 
and simple details of each receipt are 
stored in a postgres database. A Camp-
fire gem called Tinder immediately 

alerts our company chat room that 
someone’s spent some of our hard-
earned cash (just for amusement, 
really), and a very simple Rails app 
hosted on Heroku makes the data 
available in HTML or CSV, which can 
be queried by date-range or employee. 

Emails are required to have a line 
similar to “Amount 12.50”. Running 
OCR on photos of receipts and detect-
ing the right line to take the Bill total 
from seemed like too much effort. We 
might switch to mechanical turk if 
people find this step troublesome.

Conclusion
Don’t put up with repetitive, manual 
tasks — automate them! It’s the hacker 
way. n

Tom is a Ruby developer in London. He’s cur-
rently working at GoCardless.com, an online 
payments company which he founded in 2010.

Reprinted with permission of the original author.  
First appeared in hn.my/automate (tomblomfield.com)

http://hn.my/mailman
http://GoCardless.com
http://hn.my/automate


  51

By Des Traynor

Criticism and  
Two Way Streets

Bill Buxton is a Principal 
Researcher with Microsoft 
where his main role focuses on 

designing an environment that permits 
great design to happen. As many have 
learned to their peril, it’s not simply a 
case of just dumping talent in a room 
full of IKEA furniture. In large com-
panies you have to design the process 
that creates design. One key idea Bill 
advocates is an emphasis on exploring 
the solution space before iterating on a 
solution.

However, having great designers each 
producing great solutions to a shared 
problem can cause conflict if not man-
aged correctly.

Exploring the Solution Space
Like Apple, Microsoft encourages their 
designers to create many different solu-
tions to any given design problem. But 
picking an outright winner isn’t easy. 
It can cause arguments and standstills. 
The quality of resolution here defines 
the quality of the design process. 
Who gets to decide? Is it the loudest 
shouter? The most senior? The high-
est paid? None of these are correct by 
default.

When Does Your Solution Suck?
Every solution is great in some circum-
stances and terrible in others. Design 
debates are best settled by inviting 
everyone to present their solution 
but also explaining under what cir-
cumstances their solution is terrible. 
Finally, they’re asked to explain under 
what circumstances their colleague’s 



52  SPECIAL

solution would be better. This is what 
Bill Buxton refers to as walking on both 
sides of the street.

The person who demonstrates most 
knowledge about the shortcomings of 
their own solution and the benefits of 
all the alternatives is best-equipped to 
make the call.

Less Time Arguing, More Time 
Designing
One surprising knock-on effect of this 
approach is a reduction in pointless 
design arguments. Those arguments are 
rarely constructive when people get 
offended and cling on to their own pre-
cious concepts. When everyone must 
be able to praise their colleague’s work 
and criticize their own, inevitably a 
solution is agreed upon before a show-
down is necessary. Also, by making a 
rule of praising alternate solutions and 
criticizing your own, the discussions 
move clear of the realm of personal 
preference and bias. It’s simply a dis-
cussion of what is right and when. 

Design decisions should always be 
based on what’s appropriate for the 
task at hand. If you find your design 
is being beaten down, the best way 
to fight back is to counter with “Well, 
when would my design be appropri-
ate?” Conversely, before you take 
pleasure in destroying someone else’s 
hard work, first make sure that you can 
answer the question: “When will this 
solution be great?”

The quality of critique decides the 
quality of design output. Giving it five 
minutes before you criticize certainly 
helps, as does learning to understand 
what it’s trying to achieve, where it 
would be right, and where it would be 
wrong. 

Lastly, always remember the golden 
rule of critique: don’t be a dick. n

Des Traynor is the COO and UX Lead at Inter-
com [intercom.io]. He writes regularly about 
design, start-ups and customer acquisition on 
The Intercom Blog [blog.intercom.io]. Des is on 
Twitter as @destraynor, and can be reached at 
des@intercom.io

Reprinted with permission of the original author. First 
appeared in hn.my/criticism (intercom.io)

http://intercom.io
http://blog.intercom.io
http://twitter.com/destraynor
des@intercom.io
http://hn.my/criticism


  53

Reprinted with permission of the original author. First appeared in hn.my/codelearn.

http://cloudkick.com


54  SPECIAL

By Valdis KREBS

Uncloaking a Slumlord 
Conspiracy with Social 

Network Analysis

A client of ours — a small, not-
for-profit, economic justice 
organization (EJO) — used 

social network analysis (SNA) to assist 
their city attorney in convicting a 
group of “slumlords” of various housing 
violations that the real estate investors 
had been side-stepping for years. The 
housing violations, in multiple build-
ings, included:

1.	Raw sewage leaks

2.	Multiple tenant children with high 
lead levels

3.	Eviction of complaining tenants

4.	Utility liens of six figures

The EJO had been working with 
local tenants in run-down properties 
and soon started to notice some pat-
terns. The EJO began to collect public 
data on the properties with the most 
violations. As the collected data grew 
in size, the EJO examined various ways 

Sunlight is the best disinfectant.  
— U.S. Supreme Court Justice Louis Brandeis”



  55

they could visualize the data making 
it clear and understandable to all 
concerned. They tried various mind-
mapping and organization-charting 
software but to no avail — the com-
plex ties they were discovering just 
made the diagrams hopelessly unread-
able. They turned to social network 
analysis to make sense of the complex 
interconnectivity.

The data I will present below is not 
the actual data from the criminal case. 
However, it does accurately reflect the 
social network analysis they performed. 
The names and genders of the individ-
uals, as well as the names of real estate 
holdings (LLC) and other businesses 
have all been masked. This case will 
be presented in the sequence the EJO 
followed: first they looked at the real 
estate holdings, then the owners of the 
holdings, and then their connections, 
which led to other connections, and 
more people and entities.

The EJO worked with the tenants 
and city inspectors to assess the build-
ings and document the violations. But 
every time documented problems were 
delivered to the current LLC owners 
by city officials, nothing would happen. 
When the city’s deadline approached 
to fix the violations, the old LLC 
owner would explain that the property 
had changed hands and they were no 
longer involved. The buildings contin-
ued to deteriorate as owner after owner 
avoided addressing the violations.

Figure 1 shows how a building came 
under new ownership. The gray links 
show the “sold to” flow as building 
ownership changed from left to right. 
Every time a property changed hands, 
it became a new LLC (Limited Liabil-
ity Corporation) with new owners.

The blue links in Figure 2 show own-
ership/business ties for each LLC. This 
data was gathered by the EJO from 
public records. Everything appears 
normal — a different set of players in 
each LLC.

Yet, things were not normal. The 
EJO discovered that some of the LLC 
owners were married. As the EJO 
peeled the onion, more family ties 
were found within, and between, the 
LLCs.

Figure 1

Figure 2

Figure 3



56  SPECIAL

Figure 3 shows us that these LLCs 
were not as separate as they first 
appeared. The dark red links reveal 
family ties found in public records. The 
LLCs were not independent business 
entities. The business transactions were 
happening within extended families! A 
conspiracy was coming into focus.

The dark red links in Figure 3 reveal 
two family clusters. Yet, there was a 
curious gap  — the transaction between 
ghi LLC andjkl LLC. Were these clus-
ters connected? How? These questions 
soon led to a key discovery: the master-
mind behind the conspiracy. Conspira-
cies often work in this way — master-
minds are two steps or more from the 
events they planned.

Figure 4 reveals the family matriarch 
and patriarch. The matriarch (Heather) 
was discovered in public records, 
explaining the gap. Then her current 
husband (Moe) was a quick deduction. 
The gap turned out to be the dividing 
line between Heather’s first family and 
her current family. She was the point of 
overlap between the two groups. 

 

Once Moe was uncloaked, the EJO’s 
chief investigator decided to explore 
how he was connected — what other 
business ties did he have? It turned 
out that Moe had ownership interests 
in several restaurants throughout the 
metropolitan area...and he was on the 
board of a mortgage company. 

A mortgage company? It was not just 
any mortgage company, Moe was on 
the board of the mortgage company 
that had financed many of the real 
estate transactions we have been fol-
lowing here. Moe’s ties completed the 
connections of the conspiracy — the 
“circle of deceit.”

Figure 6 shows the complete con-
spiracy. It was now obvious that prop-
erties exchanged hands not as indepen-
dent and valid real estate investments 
but as a conspiracy to avoid fixing the 

Figure 4

Figure 5

Figure 6



  57

building violations. The green links 
represent borrowed money flowing 
into the buildings through new mort-
gages. As time went on, and the build-
ings appreciated in value during a real 
estate boom. Loans from the mortgage 
company allowed the owners to “strip 
mine” the equity from the buildings. 
This is a common slumlord modus 
operandi: they suck money out of a 
building rather than put money back in 
for maintenance.

Network analysis is not just about 
maps. Once a map is drawn, you can 
measure it. Social network metrics 
reveal much about the nodes and the 
clusters they form. Who knows what 
is going on? Who wields power or 
influence? Who is a key connector? 
Who is in the “thick of things” in this 
conspiracy? Our metrics reveal Moe 
and Heather are most integrated nodes 
in the network. The highlighted met-
rics in the Report window in Figure 
7, showing the InFlow software, pro-
vides mathematical support to what is 

quite obvious in the diagrams. InFlow 
[orgnet.com/inflow3.html] allows us to 
quickly see the relationships between 
“the maps and the metrics”: the pic-
tures and the numbers.

The city attorney combined the net-
work analysis, along with the city’s own 
extensive investigation and was able to 
get a conviction of key family mem-
bers. Later, all of one building’s tenants 
filed a civil suit using much of the same 
evidence and won a sufficient award 
to allow all of them to move out into 
decent housing. Several tenants used a 
part of their award to start businesses.

The common wisdom is that only 
big business and government use social 
network analysis. Yet, there are many 
individuals and groups that are learning 
the craft, and solving local problems. 
Although social network analysis can 
not be learned by reading a book, it 
does not require a PhD either. Any 
intelligent person, under the right guid-
ance, and with the proper tools, can 
apply the methodology to an appropri-
ate problem and gain enormous insight 
into what was previously hidden. n

Valdis is the Founder, and Chief Scien-
tist, at orgnet.com. He is a management 
consultant, researcher, trainer, author, 
and the developer of InFlow software for 
social and organizational network analysis 
(SNA/ONA).

Reprinted with permission of the original author. 
First appeared in orgnet.com/slumlords.html

Figure 7

http://orgnet.com/inflow3.html
http://orgnet.com
http://orgnet.com/slumlords.html


http://dueprops.com


Dream. Design. Print.
MagCloud, the revolutionary new self-publishing web service 
by HP, is changing the way ideas, stories, and images find 
their way into peoples’ hands in a printed magazine format. 

HP MagCloud capitalizes on the digital revolution, creating a 
web-based marketplace where traditional media companies, 
upstart magazine publishers, students, photographers, design-
ers, and businesses can affordably turn their targeted content 
into print and digital magazine formats.

Simply upload a PDF of your content, set your selling price, and 
HP MagCloud takes care of the rest—processing payments, 
printing magazines on demand, and shipping orders to loca-
tions around the world. All magazine formatted publications 
are printed to order using HP Indigo technology, so they not 
only look fantastic but there’s no waste or overruns, reducing 
the impact on the environment. 

Become part of the future of magazine publishing today at 
www.magcloud.com.

25% Off the First Issue You Publish
Enter promo code HACKER when you set your 
magazine price during the publishing process.

Coupon code valid through February 28, 2011. 
Please contact promo@magcloud.com with any questions.

http://www.magcloud.com

	FEATURES
	The Cicada Principle

	PROGRAMMING
	Vim Anti-Patterns
	Suffering-Oriented Programming
	Spatial Indexing with Quadtrees & Hilbert Curves
	Comparing JavaScript, CoffeeScript & ClojureScript
	Haskell Web Programming: A Yesod Tutorial
	Designing Great API Docs 

	SPECIAL
	Automate Everything
	Criticism and Two Way Streets
	Uncloaking a Slumlord Conspiracy with Social Network Analysis


