
Issue 25 June 2012

Dizzying But
Invisible Depth

Jean-Baptiste Queru

http://dueprops.com

Days go by quick. Then an entire week. What did you
miss on Hacker News?

Before you see another sunrise subscribe to Hacker
Newsletter, a weekly email of the best articles from
Hacker News curated by hand. Afterwards you won’t
miss another great article.

Visit http://hackernewsletter.com/hm to subscribe!

hackernewsletter

http://dueprops.com
http://hackernewsletter.com/hm

4  ﻿

Curator
Lim Cheng Soon

Contributors
Jean-Baptiste Queru
Carlos Bueno
Avichal Garg
Rob Fitzpatrick
Eric Karjaluoto
Rohin Dhar
Ed Weissman
Rob Ousbey
Aceex
Carl Lange
Salvatore Sanfilippo
Jeff Atwood
Yan Pritzker
Eric Naeseth
John D. Cook

Proofreaders
Emily Griffin
Sigmarie Soto

Illustrators
Jaime G. Wong
Geona Demyun

Printer
MagCloud

Hacker Monthly is the print magazine version
of Hacker News — news.ycombinator.com, a social news
website wildly popular among programmers and startup
founders. The submission guidelines state that content
can be “anything that gratifies one’s intellectual curios-
ity.” Every month, we select from the top voted articles
on Hacker News and print them in magazine format.
For more, visit hackermonthly.com

Advertising
ads@hackermonthly.com

Contact
contact@hackermonthly.com

Published by
Netizens Media
46, Taylor Road,
11600 Penang,
Malaysia.

Hacker Monthly is published by Netizens Media and not affiliated with Y Combinator in any way.

Cover Illustration: Jaime G. Wong

http://news.ycombinator.com
http://hackermonthly.com
mailto:ads@hackermonthly.com
mailto:contact@hackermonthly.com

  5

STARTUPS

10  Focus on Building 10x Teams,
Not on Hiring 10x Developers
By Avichal garg

14  My Dad Taught Me Cashflow with
a Soda Machine
By Rob Fitzpatrick

15  Forget Self-Improvement
By Eric Karjaluoto

16  Minimum Viable SEO
By Rohin Dhar

SPECIAL

18  How to Participate in Hacker News
By Ed Weissman

20  Make Yourself Redundant
By Rob Ousbey

22  Producer vs. Consumer
By aceex

23  Do Things, Tell People
By Carl Lange

PROGRAMMING

24  Redis Persistence Demystified
By Salvatore Sanfilippo

30  Speed Hashing
By Jeff atwood

33  Learn to Speak Vim
By Yan Pritzker

34  A Primer on Python Decorators
By Eric Naeseth

37  Surprises From Numerical Linear Algebra
By John D. Cook

For links to Hacker News dicussions, visit hackermonthly.com/issue-25

Contents
FEATURES

06  Dizzying But Invisible Depth
By Jean-Baptiste Queru

09  How Bots Seized Control of My Pricing Strategy
By Carlos Bueno

http://hackermonthly.com/issue-25

6  FEATURES

By Jean-Baptiste Queru

FEATURES

You just went to
the Google home
page.
Simple, isn’t it?

What just actually happened?
Well, when you know a bit of

about how browsers work, it’s
not quite that simple. You’ve just
put into play HTTP, HTML, CSS,
ECMAscript, and more. Those are
actually such incredibly complex
technologies that they’ll make any
engineer dizzy if they think about
them too much, and such that no
single company can deal with that
entire complexity.

Let’s simplify.

You just connected your com-
puter to www.google.com.

Simple, isn’t it?
What just actually happened?
Well, when you know a bit

about how networks work, it’s not
quite that simple. You’ve just put
into play DNS, TCP, UDP, IP, Wifi,
Ethernet, DOCSIS, OC, SONET,
and more. Those are actually such
incredibly complex technologies
that they’ll make any engineer
dizzy if they think about them
too much, and such that no single
company can deal with that entire
complexity.

Let’s simplify.

You just typed www.google.com
in the location bar of your browser.

Simple, isn’t it?
What just actually happened?
Well, when you know a bit

about how operating systems work,
it’s not quite that simple. You’ve
just put into play a kernel, a USB
host stack, an input dispatcher,
an event handler, a font hinter, a
sub-pixel rasterizer, a windowing
system, a graphics driver, and more,
all of those written in high-level
languages that get processed by
compilers, linkers, optimizers,
interpreters, and more. Those are
actually such incredibly complex
technologies that they’ll make any

Dizzying But
Invisible Depth

  7

engineer dizzy if they think about
them too much, and such that no
single company can deal with that
entire complexity.

Let’s simplify.
You just pressed a key on your

keyboard.
Simple, isn’t it?
What just actually happened?
Well, when you know a bit about

how input peripherals work, it’s
not quite that simple. You’ve just
put into play a power regulator, a
debouncer, an input multiplexer,
a USB device stack, a USB hub
stack, all of that implemented in
a single chip. That chip is built
around thinly sliced wafers of
highly purified single-crystal silicon
ingot, doped with minute quanti-
ties of other atoms that are blasted
into the crystal structure, inter-
connected with multiple layers
of aluminum or copper, that are
deposited according to patterns of
high-energy ultraviolet light that
are focused to a precision of a frac-
tion of a micron, connected to the
outside world via thin gold wires,
all inside a packaging made of a
dimensionally and thermally stable
resin. The doping patterns and the
interconnects implement transis-
tors, which are grouped together to
create logic gates. In some parts of
the chip, logic gates are combined

to create arithmetic and bitwise
functions, which are combined to
create an ALU. In another part of
the chip, logic gates are combined
into bistable loops, which are lined
up into rows, which are combined
with selectors to create a register
bank. In another part of the chip,
logic gates are combined into bus
controllers and instruction decoders
and microcode to create an execu-
tion scheduler. In another part of
the chip, they’re combined into
address and data multiplexers and
timing circuitry to create a memory
controller. There’s even more. Those
are actually such incredibly com-
plex technologies that they’ll make
any engineer dizzy if they think
about them too much, and such
that no single company can deal
with that entire complexity.

Can we simplify further?
In fact, very scarily, no, we can’t.

We can barely comprehend the
complexity of a single chip in a
computer keyboard, and yet there’s
no simpler level. The next step
takes us to the software that is used
to design the chip’s logic, and that
software itself has a level of com-
plexity that requires going back to
the top of the loop.

Today’s computers are so com-
plex that they can only be designed
and manufactured with slightly
less complex computers. In turn
the computers used for the design
and manufacture are so complex
that they themselves can only be
designed and manufactured with
slightly less complex computers.
You’d have to go through many
such loops to get back to a level
that could possibly be re-built from
scratch.

Once you start to understand
how our modern devices work and
how they’re created, it’s impossible
to not be dizzy about the depth of
everything that’s involved, and to
not be in awe about the fact that
they work at all, when Murphy’s
law says that they simply shouldn’t
possibly work.

For non-technologists, this is all
a black box. That is a great success
of technology: all those layers of
complexity are entirely hidden, and
people can use them without even
knowing that they exist at all. That
is the reason why many people can
find computers so frustrating to
use: there are so many things that
can possibly go wrong that some
of them inevitably will, but the
complexity goes so deep that it’s
impossible for most users to be able
to do anything about any error.

“We can barely comprehend the complexity
of a single chip in a computer keyboard,
and yet there’s no simpler level.”

8  FEATURES

That is also why it’s so hard for
technologists and non-technologists
to communicate together: tech-
nologists know too much about too
many layers, and non-technologists
know too little about too few layers
to be able to establish effective
direct communication. The gap is
so large that it’s not even possible
anymore to have a single person be
an intermediate between those two
groups. That’s why we end up with
those convoluted technical support
call centers and their multiple tiers.
Without such deep support struc-
tures, you end up with the frustrat-
ing situation that we see when end
users have access to a bug database
that is directly used by engineers:
neither the end users nor the engi-
neers get the information that they
need to accomplish their goals.

That is why the mainstream
press and the general population
have talked so much about Steve
Jobs’ death and comparatively so
little about Dennis Ritchie’s Steve’s
influence was at a layer that most
people could see, while Dennis’ was
much deeper. On the one hand, I
can imagine where the computing
world would be without the work
that Jobs did and the people he
inspired: probably a bit less shiny,
a bit more beige, a bit more square.
Deep inside, though, our devices
would still work the same way and
do the same things. On the other
hand, I literally can’t imagine where
the computing world would be
without the work that Ritchie did
and the people he inspired. By the
mid 80s, Ritchie’s influence had
taken over, and even back then very
little remained of the pre-Ritchie
world.

Last but not least, that is why our
patent system is broken: technol-
ogy has done such an amazing job
at hiding its complexity that the
people regulating and running the
patent system are barely even aware
of the complexity of what they’re
regulating and running. That’s the
ultimate bikeshedding: just as the
proverbial town hall discussions
about a nuclear power plant end
up being about the paint color for
the plant’s bike shed, the patents
on modern computing systems end
up being about screen sizes and
icon ordering. In both cases those
are the only aspects that the people
involved are capable of discussing,
even though they are irrelevant to
the actual function of the overall
system in question. n

Jean-Baptiste Queru is a software engineer
working at Google on the Android Open-
Source Project, specializing in large-scale
source code management, with 14 years
of experience in mobile technologies and
operating systems.

Reprinted with permission of the original author.
First appeared in hn.my/dizzy

Illustration by Jaime G. Wong.

http://hn.my/dizzy

  9

By Carlos Bueno

Before I talk about my own
troubles, let me tell you
about another book, Com-

puter Game Bot Turing Test. It’s one
of over 100,000 “books” “written”
by a Markov chain running over
random Wikipedia articles, bundled
up and sold online for a ridiculous
price. The publisher, Betascript, is
notorious for this kind of thing.

 It gets better. There are whole
species of other bots that infest the
Amazon Marketplace, pretending to
have used copies of books, fighting
epic price wars no one ever sees. So
with Turing Test we have a delight-
ful futuristic absurdity: a computer
program, pretending to be human,
hawking a book about comput-
ers pretending to be human, while
other computer programs pretend
to have used copies of it. A book
that was never actually written,
much less printed and read.

The internet has everything.

This would just be an interesting
anecdote, except that bot activ-
ity also seems to affect books that,
you know, actually exist. Last year

I published my children’s book
about computer science, Lauren
Ipsum [hn.my/lauren]. I set a
price of $14.95 for the paperback
edition and sales have been pretty
good. Then last week I noticed a
marketplace bot offering to sell it
for $55.63. “Silly bots”, I thought
to myself, “must be a bug.” After
all, it’s print-on-demand, so where
would you get a new copy to sell?

Then it occurred to me that all
they have to do is buy a copy from
Amazon, if anyone is ever fool-
ish enough to buy from them, and
reap a profit. Lazy evaluation, made
flesh. Clever bots!

Then another bot piled on, and
then one based in the UK. They
started competing with each other
on price. Pretty soon they were
offering my book below the retail
price, and trying to make up the
difference on “shipping and han-
dling.” I was getting a bit worried.

The punchline is that Amazon
itself is a bot that does price-match-
ing. Soon after the marketplace
bot’s race to the bottom, it decided
to put my book on sale! 28% off.
I can’t wait to find out what that
does to my margin. (Update: noth-
ing, it turns out. Amazon is eating
the entire discount. This is a pleas-
ant surprise.)

My reaction to this algorithmic
whipsawing has settled down to
a kind of helpless bemusement. I
mean, the plot of my book is about
how understanding computers is
the first step to taking control of
your life in the 21st century. Now I
don’t know what to believe.

It’s possible that the optimal
price of Lauren Ipsum is, in fact,
$10.76, and I should just relax
and trust the tattooed hipster who
wrote Amazon’s pricing algorithm.
After all, I no longer have a choice.
The price is now determined by
the complex interaction of several
independent computer programs,
most of which don’t actually have a
copy to sell.

But I can’t help but think about
that old gambler’s proverb: “If you
can’t spot the sucker, it’s you.” n

Carlos Bueno is an engineer at Facebook.
He writes occasionally about program-
ming, performance, internationalization,
and why everyone should learn computer
science.

How Bots Seized Control of My
Pricing Strategy

Reprinted with permission of the original author.
First appeared in hn.my/bot (bueno.org)

http://hn.my/lauren
http://hn.my/bot

10  STARTUPS

STARTUPS

By Avichal garg

There are a lot of posts
out there about identify-
ing and hiring 10x engi-

neers. And a lot of discussion about
whether or not these people even
exist. At Spool [spool.com], we’ve
taken a very different approach. We
focused on building a 10x team.

We believe that the effort spent
trying to hire five 10x developers is
better spent building one 10x team.

10x matters because of the Eco-
nomics of Superstars
The “Economics of Superstars”
[hn.my/superstar] observes that in
some industries, marginally more
talented people/groups generate
exponentially more value.

The Economics of Superstars
phenomenon requires a distribution
channel to move a large volume of
goods. For superstar athletes, televi-
sion enables endorsements and mer-
chandise sales. For software devel-
opers, the Internet enables scalable
distribution of digital goods.

Finding a way to be 10x better
than median can now gener-
ate exponentially more value for
people who make digital goods.

In software, the superstar is the
team, not the individual
In the Economics of Superstars, if an
individual has tremendous control
over the outcome (points scored in
a basketball game), that individual
is the beneficiary. So Kobe gets a big
chunk of the value he generates for
the team, stadium, and advertisers.

Software development, how-
ever, is more like rowing. It’s a
team sport that requires skill and
synchronization. This applies at all
scales. On a three-person boat, one
person out of sync will stall your
boat. As you get bigger, no single
developer can impact your team’s
performance, so again synchroniza-
tion is key.

Making your team as efficient as
possible is what determines long-
term success.

A bunch of 10x people != A 10x
team
Most hiring processes assume that if
you find a great developer and put
them on a great team, the indi-
vidual and team will do well. Good
teams try to nail down “culture fit,”
but this is usually only based on
whether the candidate gets along
with the team.

Throwing together a bunch of
great developers who get along does
not make for a 10x team.

Focus on Building 10x Teams,
Not on Hiring 10x Developers

10x Team Fit

10x Technical Ability

the people
most companies

try to find

the people
you should find

Startups optimize hiring for individual
rather than team contributors

http://spool.com
http://hn.my/superstar

  11

How to Think About Building a
10x Team
Building a 10x team is a different
task than trying to make an exist-
ing team 10x more efficient. The
hardest part about building a 10x
team is that who you need next is a
moving target, because it’s a func-
tion of who is already on the team.

The following are the top three
non-technical questions we ask
ourselves when considering a
candidate:

■■ Does this person extend the
team’s one strategic advantage?
Successful startups do NOT have
world class design, engineering,
sales, and marketing all at once.
They tend to be phenomenal at
one thing and competent at the
rest. Eventually they upgrade
talent for “the rest.” For example,
Zynga first nailed virality with
crappy graphics, then later
upgraded their art teams.

■■ Is there enough shared culture?
Communication overhead will
cripple most teams. Hiring
people with a common culture
is the simplest way to solve this
problem. For example, alumni of
a university tend to use the same
jargon, think similarly, know the
same programming languages,
etc.. They will communicate
naturally and are free to focus on
higher-order problems. It’s not a
surprise that PayPal was mostly
UIUC, for example. At Spool
we’ve consciously hired mostly
Stanford alums, because Curtis
and I are Stanford grads. I apolo-
gize if I gave the impression that
we don’t value diversity. We’ve
gone out of our way to build a
diverse team. But there are many
things that don’t impact your

success early on that you can
short-circuit by picking people
who have a similar enough back-
ground. Consider it the Goldi-
locks Principle [hn.my/goldi].

■■ Does this person make other
people better? A friend once told
me that the best hire he made
was a mistake. Had he prop-
erly screened this candidate’s
technical ability, he wouldn’t
have hired the candidate. But it
turned out this engineer was so
driven that he immediately made
everyone else on the team more
driven. Just by hiring him, the
team became more productive,
which far outweighed that indi-
vidual being an average engineer.
It’s sometimes worth trading off
some technical ability to get a
multiplier for your whole team.

What sorts of people make
other people better?
When we were building Spool’s
founding team, we looked for
people who were technically solid
but especially good at making other
people around them better. The
following are the types of people
we identified that do this. There are
probably others.

■■ The Lead Engineer sets the
technical standard. She will
conduct the hardest interviews
and will generally work technical
magic. She will raise everyone’s
technical bar. This is usually what
someone says when they mean
10x developer.

■■ The Hustler will bend the rules a
little when need be, find loop-
holes in a system, find people you
need to find, hack together sys-
tems to extract data, and set the
standard for just getting things
done. She challenges everyone’s
thinking about how to get things
done.

■■ The Little Engine That Could
refuses to lose. She manages to
do great things through sheer
determination. Sometimes she
will tell you about this in an
interview, but many times you
will need to dig into someone’s
background to get a read on this.
She makes everyone else more
driven, focused, and makes them
believe great things are possible.

■■ The Teacher soaks up and dis-
seminates information. A teacher
is constantly learning new
technologies or synthesizing large
amounts of information. She
then distills the critical points
and actively shares them with
others. She makes everyone more
productive almost immediately.
This adds up tremendously over
the years.

■■ The Anti-Pinocchio is willing to
call b.s. on anyone, including the
CEO. She is great at spotting b.s.
and willing to ask questions of
anyone. This keeps a team honest
and a company transparent. This
is different from being an asshole
or a heretic.

http://hn.my/goldi

12  STARTUPS

■■ The Energizer Bunny throws
herself into a task fully and
doesn’t have an off switch. She
gets everyone to give 100% and
is so enthused that everyone else
becomes enthused. She sets the
bar for effort and makes everyone
want to work harder just so they
don’t disappoint her. This extends
outside work, too. She’ll be the
first person at the party, the
last one to leave, and will make
everyone have more fun every
day. Happy, enthusiastic teams
are productive teams.

■■ The Heart — this is the person
on the team that everyone misses
when she’s not around. She’ll
bring cookies in for the office, she
will remember birthdays, she will
make people feel better when
they’re down, and she will make
people do great things because
she’s just so lovable. People
want to come to work to see
this person everyday. Just having
people look forward to showing
up every day is a huge productiv-
ity boost.

These personalities all play off
each other. For example, a Teacher
loves working with an Energizer
Bunny because there is some-
one around to soak up all of that
knowledge she shares. Or a Hustler
and Lead Engineer can combine to
uncover a new distribution chan-
nel because they iterate fast and are
ruthless. As a result of having these
people, you get massive produc-
tivity gains from complementary
personalities and abilities. Combine
these with your favorite/appropri-
ate software development method-
ologies and you’ve got a killer team.

I’m sure there are other people
who have techniques for building
10x teams. And the dynamics of
what makes for a great team are
going to be different across indus-
tries and stages of a company. n

Avichal is the co-founder and CEO of Spool,
a tool to capture and download any web
content to any device. He was previously
Co-Founder & CTO of PrepMe, an online
education company acquired in 2011, and
a product manager at Google on Search
Quality and Ads Quality. Avichal has a B.S.
and M.S. from Stanford University.

Reprinted with permission of the original author.
First appeared in hn.my/10x (avichal.wordpress.com)

In this diagram, each color
is a team-member rated
from 1-10 on these charac-
teristics. You can see that
there’s a big hole with no
color. I would gladly say no
to a traditional 10x engi-
neer to get one person with
tremendous grit/determi-
nation on this team.

A balanced team will have
a diversity of personalities

Technical Ability (Lead Engineer will have 10 here)

Charisma
(The Heart of your team will have 10 here)

Grit/Determination
(Little Engine = 10)

Work Ethic
(Energizer Bunny = 10)

Honesty & Sincerity
(Pinocchio = 10)

Hustle Ability
(Hustler = 10)

Teaching Ability (Teacher = 10)

http://hn.my/10x

  13

http://paymo.biz

14  STARTUPS

By Rob Fitzpatrick

After a brief, failed
experiment paying me to
do chores, my dad tried

something really neat. It clearly
took a bit of legwork, but maybe
there are some transferrable lessons
for parents who want to lay an
entrepreneurial foundation.

He gave me a vending machine.
He rented the machine, found a

location in a local workshop, and
installed it. And then he told me
two things.

1.	That this would be the last time I
was given allowance.

2.	And that if I wanted to have any
pocket money next week, I’d
better spend this week’s on some
inventory.

I ran the machine for about four
years from the time I was seven
or eight. At first, my only agency
was inventory management. We
drove to Costco in his big van, and
I decided what to buy. Stocking an
empty soda machine is easy: you
buy four cases of each soda you
want to carry.

But then the Coca-Cola runs out
first and the Sunkist is half empty
and nobody has bought even a
single Grape Soda. And should I cut
my margins paying more per-unit
for individual cans, or do I buy full
cases and find somewhere to store
the extras — and why am I doing
algebra on the weekend!?

Looking back on it, I’m certain
this whole endeavor operated at a
loss. Dad subsidized it like crazy so
I would have a safe — but real —
environment to learn in.

At first, it was pure profit: he
covered the expenses and I pock-
eted the take. As long as I did the
work each week to buy inventory,
count the revenue, and refill the
change drawer, I was set.

That didn’t last.

Pricing, Cashflow, Operating
Costs, and Capital Expenditure
Once I was sitting pretty with my
weekly soda profits, it was time for
a change.

He let slip that, you know,
maybe I could make more money
if I raised the prices? After a week
of brow-furrowing deliberation, I
raised the price per can from $0.50
to $0.55. He told me that some of
the customers were angry about the
price increase.

I freaked out.
I tried to figure out whether I was

earning more now or previously.
Why hadn’t I been writing all this
down? And even if I was making
more, how safe was I? Would com-
petition move in and undercut me
by that crucial nickel? Would my
customers walk across the street to
make their soda purchase? Was I
being greedy?

My Dad Taught Me Cashflow
with a Soda Machine

  15

He began charging me for the gas
we used to drive to Costco. Suddenly I
couldn’t afford to make re-stocking trips
every week — grape soda was cut for an
extra column of Coca-Cola. I lost some
niche customers. I invested increasing
amounts into inventory to reduce gas
costs. Our garage became my warehouse.

He wondered aloud if it might be
worth buying one of those automated
coin-counting machines to speed up my
weekly bank trip. I saved up and invested.

And he gave me a taste of the joys and
vanities of ownership. Watching someone
drop a couple coins into my machine.

And then walking up to it, turning the
key, unscrewing the lock, and opening the
front. “That’s right. I’ll be getting my soda
for free. I own the joint.”

Twenty Year Retrospective
The vending machine didn’t magically
make me want to be an entrepreneur. I
wanted to be a video game designer, then
an engineer, then a video game designer
again, and then an academic.

I get the impression kids are a bit slip-
pery in that regard.

But when I stumbled into the startup
world two decades later, the dots began
to connect. Cashflow wasn’t a new con-
cept. Inventory tradeoffs made a bit of
sense.

This thing with the internet is like that
thing with the sodas.

Thanks, Dad. n

Rob is a tech entrepreneur who moved his first
company to London from the valley. He has suc-
cessfully bankrupted 3 companies, is a YC alum
(summer 07), has built products used globally by
brands like MTV & Sony, and has raised funding
in the US & UK. He blogs about learning (and
doing) entrepreneurship at thestartuptoolkit.com

Ever wonder how some people accomplish so
much? They run marathons, write novels, start
companies…without making it seem like a big

deal?
Well, it is a big deal. And in spite of how effortless these

accomplishments may appear, people work harder than
you likely realize to make these things happen. There is,
however, one thing they know — at least in practice —
that you don’t.

Most of us want to finish the race, but see running as
a chore. A few dream about being great authors, but find
the writing itself to be slow and difficult. Some of us learn
all we can about starting a company, only to hit a wall
when it comes time to get down to work.

Self-help books and workshops arm us with ways to
trick ourselves into doing things we perhaps should do
but generally don’t want to. I ask whether this lack of will
might actually be the universe trying to tell us something?

Maybe you aren’t supposed to bother with the tedious
stuff. Perhaps the reason you haven’t done it yet is that
you weren’t meant to. Might achievement as a goal unto
itself be pointless? Could this need to have done some-
thing notable, simply be greed in a more socially-accept-
able form?

More than all of the rest, though: what if the missing
part of the puzzle is not a lack of willpower, but instead a
lack of love?

The runner discovers tranquility on the road, forgetting
the pain. The writer gives in to the joy of playing with
words, moving past the aggravation. The entrepreneur
finds purpose in making something and stops noticing the
long days.

You can spend your life fretting about how healthy,
interesting, or successful you are. In fact, a whole industry
depends upon this and is eager to help you make plans to
change.

On the other hand, you might consider simply finding
what you love and letting the rest take care of itself. n

Eric Karjaluoto is Creative Director at smashLAB [smashlab.com] and
writes at Deliberatism [deliberatism.com].

By Eric Karjaluoto

Forget Self-Improvement

Reprinted with permission of the original author.
First appeared in hn.my/soda (thestartuptoolkit.com)

Illustration by Geona Demyun (gungriffon-geona.deviantart.com)

Reprinted with permission of the original author.
First appeared in hn.my/forget (deliberatism.com)

http://thestartuptoolkit.com
http://smashlab.com
http://deliberatism.com
http://hn.my/soda
http://gungriffon-geona.deviantart.com
http://hn.my/forget

16  STARTUPS

By Rohin Dhar

Minimum Viable SEO

As a startup you only
need to be minimally
good at SEO right out of

the gate. Your goal should be simply
“let Google access and understand
the pages on my site.” You’re not
going to displace TripAdvisor on
day one, but you can position
yourself to get traffic from Google
early on (or at least not hurt your
chances of getting traffic later).

SEO is easiest when you think
about it before you start coding.
About 2 hours of upfront thought
can save you weeks of frustration in
the future. Think about SEO when
you are sketching out the basic nav-
igational structure of your site on
a sheet of paper. There are literally
hundreds of “advanced tips” that
are best ignored at this stage unless
you’ve done this before. That stuff
will eventually matter, but avoid
SEO “feature creep” for now.

Priceonomics just launched, and
we spent a fair amount of time
thinking about SEO before we
wrote any code. We did this work
up front not just because people
look up prices on Google, but also
because we remembered the pain-
ful lessons of past screw-ups. What

we realized was some things matter
a lot, and other things don’t matter
too much right in the beginning but
can drive you to distraction.

As we built our site, we focused
on 3 basic things to make sure our
content would be accessible to
Google. If you want a minimally
SEO friendly site, copy these
3 things and then you can stop
thinking about SEO and focus on
your company’s core product. It’s
just one way of doing things, but
sometimes it’s useful to hear from
someone “just do it this way.”

3 things that will get you to
Minimum Viable SEO so you can
launch

1. Decide if you’re a “long tail” or
“head” site.
If you’re a “long tail” site, you want
to show up in Google search results
when people infrequently type
in seemingly obscure queries like
“seagate 7200.7 160gb pn#9w2734-
133” If you’re a head site, you’re
trying to show up for terms that
people search for millions of times
a month like “how to ride a bike.”

If you’re a long tail site the good
news is there is a lot of room for
you to get traffic early because
you’re targeting less competitive
search terms. The bad news is that
how you design your site is a lot
more complex because you’re going
to be creating tens of thousands
of pages right from the beginning.
Truila, Indeed, and Yelp are long tail
sites par excellence worth imitating.

If you’re a “head site” you really
just need to focus on optimizing
your homepage and optimizing for
a particular search term like “print
online checks,” “SF real estate,” and
“Christmas photocards.” Typically
it’s very hard to rank well for these
terms if you’re targeting an attrac-
tive market. You should pick a term
is that is achievable.

 As a gross simplification, most
mobile apps, social apps, and SAAS
companies are “head sites.” For
example Bump, Farmville, and
inDinero are likely focused on a
few big important terms. Most
“scalable web content companies”
like Zillow, AirBnB, and Gogobot
live and breathe on the long tail.

  17

2. Use bread crumb navigation
Think of Google as a curious tod-
dler who keeps clicking through
each link on your site to satisfy her
unquenchable desire to make sense
of your website. From any one
page that Googlebot is perusing,
you want to make it dead simple
for it to click through and discover
almost all of your content.

One easy way to let Google
quickly access any page on your
site with the fewest clicks is using
a bread crumb navigation. Using
this form of navigation forces you
to structure your entire website in
a way that Google will like. In this
form of navigation your content is
organized in a browseable hierarchy
like:

Home > Category > Sub-Category
> Product

 You’ll have clean URLs with
important keywords in them, and
it will be easy for both users and
Googlebot to understand what’s
going on. If the user removes the
last directory from the URL, it
should take them the prior direc-
tory in the hierarchy seamlessly.
Using breadcrumbs forces you to
organize your content in a logi-
cal and scalable fashion. You’ll be
happy you did it later when it
comes to basic things like maintain-
ing your sitemap or more compli-
cated things like how you spread
your link equity across your site.

3. Page Titles
The act of titling the page is more
important than the actual page
titles (because it’s easy to tweak
page titles later). It’s like learning
to write an essay where you have
really good topic sentences. By
doing so, the reader (Google) can
quickly get the gist of what’s going
on and dive in deeper if they’re
intrigued.

When you do a Google search,
the Big Blue Underlined Links
are almost always the site’s page
titles. They matter because they
tell Google “this is what my site is
about, please show it if you think
it’s relevant.” Not having accurate
page titles is like writing a 5,000
word essay in one paragraph: it’s
not advisable.

It seems today that search engine
results have been taken over by
the unscrupulous, but it doesn’t
have to be that way. You make nice
web stuff and it should be acces-
sible to the public through Google.
Start with the easy things that
make intuitive sense, and get you
80% of the way to being search
engine friendly. After you nail
that, you’re off to the races with
analyzing Google webmaster tools
account, submitting a kickass seg-
mented sitemap, creating a robots.
txt file, building embed widgets,
using rel tags where appropriate,
setting uniqueness and reading
level thresholds for your content,
optimizing the anchor text on your
inbound links, using advanced tags,
and on and on and on.

Don’t let perfect be the enemy of
good. Go forth and conquer. n

Rohin Dhar is the co-founder of
Priceonomics [priceonomics.com].
He is also the co-founder of Person-
force job boards [personforce.com]
and has an MBA from Stanford and
BA from Dartmouth. You can follow
him @rohindhar

Reprinted with permission of the original author.
First appeared in hn.my/mvs (priceonomics.com)

http://priceonomics.com
http://personforce.com
http://twitter.com/rohindhar
http://hn.my/mvs

18  SPECIAL

SPECIAL

By Ed Weissman

I recently received an inquiry
from a Hacker News newcomer
on how to best participate

in the community. I was ready to
reply, “Just follow the guidelines
and be yourself.” Then I realized
that it was actually a very good
question that deserved a much
better answer.

So here is my more detailed
answer, based upon many years of
hard knocks.

First of all, follow the guidelines!
[hn.my/guidelines] This is a neces-
sary, but not sufficient condition.

There are literally hundreds of
discussions about Hacker News par-
ticipation just a search away, with
much to learn. Hopefully, I can add
something new here:

➊ Be yourself.
I know that sounds lame, but

think about it for a moment. Who
else are you going to be? I see no
need for “personas.” Just be yourself.
Talk to others just as if you were
in the room with them. Let others
see you as your genuine self, full
of strengths and areas primed for
learning. We can all grow together.

Many of us will meet our future in
this community.

➋ Participate!
I never understood why

people lurked so long. No need to
be shy here. If you have something
to say, say it. If not, then just lurk
and learn. But everybody has some-
thing of value to share. This is one
of the best places to do it.

➌ Be positive.
This can really be hard

when smart people debate, but try
it anyway. Notice the difference
between:

Person A: Water is dry.
Person B: No, it’s not. You’re full of
shit.

and

Person C: Water is dry.
Person D: Not in my experience.
What data have you encountered
to cause you to arrive at that
conclusion?

I realize that this is an extreme
trivial example, but try to be more
like Person D than Person B.

➍ Make friends.
Harness the power of the

internet! You are not restricted by
geography, circumstances, or time
period (to some degree). There are
many incredible people here who
you would likely never meet most
other places. Take advantage to
the opportunity to meet them, in
Hacker News discussion threads,
off-line via email, and even in
person. Put your contact info in the
“about” section of your profile (the
“email” is private). Organize and
participate in local Hacker News
get-togethers. Who knows, your
next co-founder, investor, or friend
for life may be one or two clicks
away.

➎ Have something to add.
Again, this may sound obvi-

ous and lame, but think about it
for a minute. Which comments do
you like the most? The ones that
add data (which very often trans-
late into value). The key words are
“add,” “data,” and “value”. If you
have something interesting to add,
then please add it. It’s not just
your right, it’s your responsibility!

How to Participate in
Hacker News

http://hn.my/guidelines

  19

Everyone wins when you do this:
the community gets richer, some-
one gets value, and you get a bit
of a following as an expert in
something.

➏ Know when to talk and
when to listen.

If you have experience doing
something being discussed, then
by all means, share it! If not then
read, listen, and learn. If you have a
theory about something but aren’t
too sure, fine. Just say so. Shock-
ing, but just because you read
something on the internets doesn’t
necessarily mean it’s true. And most
of all, please never start a sentence
with, “It seems to me....” Many of us
already get too much of that from
our PHBs.

➐ The articles may be
valuable, but the real gold

is in the comments.
If an interesting article posted on
Hacker News fell in the forest and
no one commented, did it make an
impact? Sometimes I post some-
thing interesting just to see what
you guys will say about it.

Remember:

Good umpire: I call ’em as I see ’em.

Better umpire: I call ’em as they are.

Best umpire: They aren’t anything
until I call ’em.

Similarly:

Good article: I write ’em as I see ’em.

Better article: I write ’em as they are.

Best article: I’m nothing until the
Hacker News community comments
on me.

➑ Try to focus on your work.
I know this is controversial,

but our work is what makes this
community what it is. There are
debates about all kinds of things
here and elsewhere, but remember,
our work is our common thread.
Frankly, I’m much more inter-
ested in what you built, what you
encountered when you built it, and
what you learned than your opinion
about SOPA.

Another old story:

Husband: I am the head of the
household! I make all of our fam-
ily’s critical policy decisions on the
world’s major economic, political,
and industrial issues!

Wife: I decide the little things like
where we’ll live, what we’ll eat,
and where the kids go to school.

Similarly:

Commenter 1: This major issue
can have profound impact on our
technological future.

Commenter 2: I don’t know much
about that, but here’s how it took
me 9 tries to get my app just right
for my audience.

Notice that everyone is right,
but I still prefer reading the com-
ments of the second person in each
example.

➒ Be nice.
Life’s too short for anything

less. There are many other places
any of us could be, but we’re here.
When people aren’t nice to me, I
just close my browser and come
back another day. I know that
sounds silly, but dealing with not
nice people is just a big waste of
time, and everybody loses. Please
don’t be that person. n

Ed Weissman is a programmer, widely
known as “edw519” on Hacker News. Check
out his free ebook, a compilation of his
favorite 256 Hacker News contributions
here: hn.my/edw519

Reprinted with permission of the original author.
First appeared in hn.my/hnhow (edweissman.com)

http://hn.my/edw519
http://hn.my/hnhow

20  SPECIAL

By Rob Ousbey

Early on in my professional
life, I was given some fairly
terrible career advice: make

yourself indispensable.
For decades, this has been the

Standard Operating Procedure for
people in a variety of roles and
industries, from the developer
aiming to be the only one capable
of maintaining his own code, to
the Project Manager who insists
that certain processes couldn’t
run without his oversight. Half a
century ago, this kind of behav-
ior might have guaranteed one’s
lifelong employment. Today, it will
harm their career. Worse still, the
knock-on effect can undermine the
company and even the industry.

I didn’t take this advice, but it
wasn’t until a few years later that
I realized why: all along, I’d been
working with a different set of
assumptions and towards a different
goal: to make myself redundant.

My First Job
My first full-time job was working
for Shell at their research facility
in the North of England. My main
responsibility was to run a par-
ticular type of test to assess Shell’s
basic gasoline for its ability to clean
your engine whilst you’re using it.
We would try different additives at
different concentrations to improve
the fuel. The test that I ran gave a
relatively quick indication of the
formulation’s performance; the
best candidates would be tested in
a much more rigorous, expensive,
time-consuming test.

The test setup I inherited could
test 4 samples at a time, and took
about 4.5 hours to run. I wasn’t
asked to improve the process, but
my precocious 18-year-old self
noticed a few things, including the
fact that there was always a backlog
of work and that making the test
more efficient wouldn’t put me
straight out of a job.

I pitched my ideas carefully.
To the team that requested test
runs, I offered the opportunity for
faster turnaround. To the team that
owned the test, I pitched that I
could increase throughput and reve-
nue. (Internal billing was a Big Deal

at my campus, and presumably the
rest of Shell as well.) Everyone was
on board; my boss (let’s call him
“Chris”) offered to provide any nec-
essary resources I needed. I didn’t
know what this meant.

I loved how simple the first
proposed change was. I currently
ran 1 test a day (it took ~4.5 hours,
remember) so I asked if I could
work more flexible hours. Working
just a 9-hour instead of an 8-hour
day, I was able to run 2 tests per
day, and take every other Friday off.
I had just improved my throughput
from 10 tests every two weeks to
18 tests.

 Having experienced the buzz of
excitement from my first process
improvement, I looked for more
inefficiencies. There were a few
changes that made my life easier —
a quicker setup, improved results
analysis, etc. — which freed my
time up to focus on other things,
but I wanted another opportunity
to make as big an impact as the
flexi-time suggestion. I suggested to
Chris (who, to his credit, was just
letting me run with all of this) that
we rebuild the test apparatus, so
that it was twice the size, and could
test twice as many samples per run.

Make Yourself Redundant

  21

He told me to get a quote from
engineering, which I did, and they
told us it would cost something like
£4000. I forget the exact number,
but it was a huge amount to me.
(I was earning about £10,000 at
the time. I realize now that for a
company with R&D budgets like
Shell, this was not an amount to
trouble over.) I assumed this would
never happen, but, to my surprise,
Chris said he had no objection, and
that I should get it built. He put me
in touch with a statistician who was
able to help me check that both
devices gave reliably similar results.

The personal benefits to me
of the changes I instigated were
worthwhile. It freed up time for me
to work on ’more interesting’ proj-
ects. I got to spend time & budget
on personal development through
training (Shell was excellent at
providing resources to learn about
things beyond our core activities). I
was awarded a prize (with cash!) by
the EDT, and was invited back to
work for the company in the future.

What did not happen? I didn’t
lose my job. I wasn’t asked to take
on some menial role. I wasn’t told
to stop being so productive because
I was making other people look bad.

In large part, this is because the
organization was supportive and
championed this type of activity.
I made my colleagues look good.
Chris was an enlightened boss. I’d
worked, in a small way, to make
myself redundant, and had ben-
efited from it. And now I was keen
to do it again.

Radio
Next, I wanted to work in broad-
casting. After university, I went to
work for a small radio station. As
a Production Assistant, I did some
audio editing, a little research, and

other “get onto the bottom rung”
tasks. In my first week, I designed
a batch file to bulk-convert audio
files, which saved me enough time
to start recording a few voiceovers
and station idents.

One impressive opportunity
came when our Managing Direc-
tor (let’s call him “Simon”) walked
me through the process we used
for calculating and paying royalties
to content owners; the process was
done once per quarter and required
a week or two’s worth of work
from the PA plus a couple of days
of time from an external consultant.

“A VBA macro could do this,” I
said. It took me about as long to
write the program as it would to
have just calculated the royalties
— it saved no time. However, next
quarter it saved weeks of time. And
the quarter after. Even the external
consultant didn’t mind that she
wasn’t needed for this process; we
used the same budget to hire her to
do more interesting work instead.
And the time it freed up for me? I
began producing my own shows. It
wasn’t a huge station, but there I
was, still 22 and producing national
radio programs with tens of thou-
sands of listeners — all because I
saw an opportunity to write a VBA
script.

Perhaps obviously, the code was
horrible (after all, it was VBA!),
but it did the job, and I was free
to pursue more ways in which to
make myself redundant. I wrote
a few lines of bash that removed
the necessity for anyone to cover
the morning shift (since the only
task required was to log on to an
FTP server and download a file), I
bought a £20 piece of software that
did lots of tiresome bulk process-
ing for me, and I persuaded my
boss to let me get a new PC (again,

a huge expense in my mind) that
converted audio about 5-10 times
as fast as the p.o.s. I had been using
so far.

I freed up enough time to end up
presenting my own shows, sitting
on pitch planning sessions for BBC
programming, and contributing to
the group’s “future technologies”
team.

Did I have a great boss? Yes,
absolutely — and his boss (the
CEO) was very supportive as well.
There were a couple of people
like me, and I was pleased to see
how they were moved up as they
deserved it.

Interestingly, throughout the
company as a whole, there were
plenty of people working to make
themselves “indispensable.” At best,
their careers had stalled. At worst,
they were the cause of some of the
company’s most fundamental prob-
lems. Had they instead worked to
make themselves redundant, I have
no doubt they would have been
twice as happy.

Do it.
How you “make yourself redun-
dant” depends very much on your
industry, your role, your responsi-
bilities, etc.

However, I’d offer a few general
pieces of advice:

■■ Tell your boss what you’re up to
(“I’d like to eliminate this aspect
of my role by doing xyz”).

■■ Figure out who might not be
happy about what you’re up to,
and use it as an opportunity to
get them on your side.

■■ Tell your boss what you want to
do with the time you free up, and
make sure you all talk honestly
about what the options are.

22  SPECIAL

■■ Most tools (software, computers,
gasoline testing apparatus) aren’t
that expensive in the scheme of
things (even if it costs a multiple
of your monthly salary), and
accountants know good ways to
amortize that stuff over a period
of 2-5 years, so it doesn’t really
cost that much.

With this mindset throughout
my professional life so far, I’ve
probably ended up being under-
paid for the work I was actually
doing, but that work has always
been more interesting and more
complex than what my “business
card” implied, and I’ve loved every
minute of it.

Epilogue
The anecdotes above are ancient
history. For 3 years now I’ve been
working for Distilled. Though I
came in on the bottom rung, I now
run an office and a team of 13.
I’m in a similar role to Chris and
Simon, the middle-managers who
I looked up to and who helped me
realize my endeavors. (Except that
I’m younger, less experienced, and
have more hair than the two of
them put together.)

I’m not convinced that this
strategy is equally applicable as
you work your way up the “cor-
porate ladder.” But I do believe it
is now my turn to help my most

junior employees make themselves
redundant and get promoted in the
process. Give it a couple of years,
and I’ll write about how the process
goes from this side of the table. n

Rob Ousbey is VP Operations at Distilled
[distilled.net], where he is working to make
himself redundant. He is a co-founder of
Linkstant.com, an instant back-link alert
tool for webmasters.

I make sure to start every day as
a producer, not a consumer.
When you get up, you may

start with a good routine, like show-
ering and eating, but as soon as you
find yourself with some free time
you probably get that urge to check
Reddit, open that game you were
playing, see what you’re missing on
Facebook, etc.

Put all of this off until “later.”
Start your first free moments of
the day with thoughts of what
you really want to do; those long-
term things you’re working on or
even the basic stuff you need to do
today, like cooking, getting ready for
exercise, etc. This keeps you from
falling into the needy consumer
mindset where you find yourself

endlessly surfing Reddit, Facebook,
etc., trying to fill a void in yourself,
trying to find out what you’re miss-
ing, but never feeling satisfied.

When you’ve started your day
with doing awesome (not neces-
sarily difficult) things for yourself,
these distractions start to feel like a
waste of time. You check Facebook
just to make sure you’re not miss-
ing anything important directed at
you, but scrolling down and reading
random stuff in your feed feels like
stepping out into the Disneyland
parking lot to listen to what’s play-
ing on the car radio — a complete
waste of time compared to what
you’re really doing today.

It sounds subtle, but these are
the only days where I find myself

getting anything done. I either start
my day like this and feel normal
and productive, or I look up and
realize it’s early evening, I haven’t
accomplished anything, and I can’t
bring myself to focus no matter
how hard I want to. n

Aceex has been a redditor for over one
year. He frequents /r/Paleo, /r/fitness, /r/
vim and /r/GetMotivated.

By aceex

Producer vs. Consumer

Reprinted with permission of the original author.
First appeared in hn.my/redundant (ousbey.com)

Reprinted with permission of the original author.
First appeared in hn.my/producer

http://distilled.net
http://Linkstant.com
http://hn.my/redundant
http://hn.my/producer

  23

These are the only things
you need to do to be suc-
cessful.You can get away

with just doing one of the two, but
that’s rare, and usually someone
else is doing the other part for you.

If you don’t have any marketable
skills, learn some. It’s the future. We
have Khan Academy and Wikipedia
and Codecademy and almost the
entire world’s collective knowledge
at your fingertips. Use it.

Then make something that you
can talk about. Make something
cool. Something interesting. Spend
time on it. Go crazy. Even if it’s
the least useful thing you’ve ever
made, if you can talk about it, make
it. This part is easy, because you’re
doing something you think is cool,
and interesting, and if it’s useless,
great, because you won’t need to
support it much either!

Next, find events where the
people you want to work with are.
Then get a drink into you (or don’t)
and talk to them about it. Relax.
It’s probably interesting to them,
too. Even if it’s not, because you’ve
made it, you sound like you know
what the hell you’re talking about.
That’s the important part. This is
easy, too, because you’re talking

about something you’ve made that
you think is cool and interesting. As
an added bonus, many people go to
these events just to talk about cool
and interesting things, so you’ll fit
right in.

You would not believe how
much opportunity is out there
for those who do things and tell
people. It’s how you travel the
entrepreneurial landscape. You
do something interesting and you
tell everyone about it. Then you
get contacts, business cards, email
addresses. Then you get contracts,
job offers, investors, whatever. You
make friends who think what you
do is cool. You make a name for
yourself as “the person who did that
cool thing.” Then, the next time
someone wants to do something in
any way related to that cool thing,
they come to you first.

Ciarán McCann and I (mostly
him) started working on a HTML5
game engine and blog [flax.ie]
when we were in first year of col-
lege. We never even finished it, but
because of Flax, we landed intern-
ships at Ericsson in the summer of
our second year. Now I’m on my
way to Game Closure, and Ciarán
is going to Demonware. We just did
things and told people. n

Carl is a computer games development
student from Ireland, currently working
for Game Closure in Mountain View. In
his spare time, he tries to make interest-
ing and mostly useless things, and likes
to bore people on twitter as @csl_

By Carl Lange

Do Things, Tell People

Reprinted with permission of the original author.
First appeared in hn.my/dothings (carl.flax.ie)

http://flax.ie
http://twitter.com/@csl_
http://hn.my/dothings

24  PROGRAMMING

PROGRAMMING

By Salvatore Sanfilippo

Part of my work on Redis is
reading blog posts, forum
messages, and the twitter

time line for the “Redis” search. It
is very important for a developer to
understand what users and non-
users think about the product he is
developing. And my feeling is that
there is no Redis feature that is as
misunderstood as its persistence.

In this article I’ll make an effort
to be truly impartial: no advertis-
ing for Redis and no attempt to
skip the details that may put Redis
in a bad light. All I want is simply
to provide a clear, understandable
picture of how Redis persistence
works, how reliable it is, and how it
compares to other database systems.

The OS and the disk
The first thing to consider is what
we can expect from a database in
terms of durability. In order to do
so, we can visualize what happens
during a simple write operation:

1.	The client sends a write com-
mand to the database (data is in
client’s memory).

2.	The database receives the write
command (data is in server’s
memory).

3.	The database calls the system call
that writes the data on disk (data
is in the kernel’s buffer).

4.	The operating system transfers
the write buffer to the disk con-
troller (data is in the disk cache).

5.	The disk controller actually
writes the data into a physical
media (a magnetic disk, a Nand
chip, etc.).

Note: The above is an oversim-
plification in many ways because
there are more levels of caching and
buffers.

Step 2 is often implemented as
a complex caching system inside
the database implementation, and
sometimes writes are handled by a
different thread or process. How-
ever, sooner or later, the database
will have to write data to disk, and
this is what matters from our point
of view. That is, data from memory
has to be transmitted to the kernel
(step 3) at some point.

Step 3 is also more complex since
most advanced kernels implement
different layers of caching, which is
usually the file system level caching
(called the page cache in Linux)
and a smaller buffer cache that
contains the data that waits to be
committed to the disk. It is pos-
sible to bypass both using special
APIs (see for instance O_DIRECT
and O_SYNC flags of the open
system call on Linux). However, we
can consider this a unique layer of
opaque caching (that is, we don’t
know the details). Often the page
cache is disabled when the database
implements its caching to avoid that
both the database and the kernel
try to do the same work at the same
time (with bad results). The buffer
cache is usually never turned off
because this means that every write
to the file will result in data being
committed to the disk, which is too
slow for almost all applications.

What databases usually do
instead is call system calls that will
commit the buffer cache to the disk
only when absolutely needed, as
we’ll see later in more detail.

Redis Persistence
Demystified

  25

When is our write safe along the
line?
If we consider a failure that
involves just the database software
(the process gets killed by the
system administrator or crashes)
and does not touch the kernel, the
write can be considered safe just
after step 3 is successfully com-
pleted (after the write (2) system
call or any other system call used to
transfer data to the kernel returns
successfully). After this step, the
kernel will take care of transferring
data to the disk controller even if
the database process crashes.

With a more catastrophic event,
such as a power outage, we are safe
only at step 5 completion, which
is when the data is actually trans-
ferred to the physical device that
will memorize it.

We can summarize that the
important stages in data safety are
steps 3, 4, and 5:

■■ How often the database software
will transfer its user-space buffers
to the kernel buffers using the
write (or equivalent) system call.

■■ How often the kernel will flush
the buffers to the disk controller.

■■ And how often the disk control-
ler will write data to the physical
media.

Note: When we refer to disk
controller, we actually mean the
caching performed by the control-
ler or the disk itself. In environ-
ments where durability is impor-
tant, system administrators usually
disable this layer of caching.

Disk controllers by default only
perform a write through caching
for most systems (i.e. only reads
are cached, not writes). It is safe to
enable the write back mode (cach-
ing of writes) only when you have
batteries or a super-capacitor device
protecting the data in case of power
shutdown.

POSIX API
The path the data follows before
being actually written to the physi-
cal device is interesting, but even
more interesting is the amount of
control the programming API pro-
vides along the path.

Let’s start from step 3. We can
use the write system call to transfer
data to the kernel buffers, which
provides good control using the
POSIX API. However, we don’t
have much control over how much
time this system call will take
before returning successfully. The
kernel write buffer is limited in
size; if the disk is not able to cope
with the application write band-
width, the kernel write buffer will
reach its maximum size and the
kernel will block our write. When
the disk can receive more data, the
write system call will finally return.
After all, the goal is to, eventually,
reach the physical media.

In step 4, the kernel transfers
data to the disk controller. By
default it will try to avoid doing
it too often because it is faster to
transfer it in bigger pieces. For
instance, by default Linux will actu-
ally commit writes after 30 seconds.
This means that if there is a failure,
all the data written in the latest 30
seconds can potentially be lost.

The POSIX API provides a
family of system calls to force the
kernel to write buffers to the disk.
The most well-known of the family

is probably the fsync system call
(see also msync and fdatasync for
more information). Using fsync, the
database system has a way to force
the kernel to actually commit data
on disk, but it is a very expensive
operation. Additionally, fsync will
initiate a write operation every
time it is called and there is some
data pending on the kernel buffer.
fsync() also blocks the process
for for the length of time needed
to complete the write. If this is
not enough, it will also block all
the other threads that are writing
against the same file on Linux

What we can’t control
So far, we learned that we can
control steps 3 and 4, but what
about step 5? Well, formally speak-
ing we don’t have control from
this point of view using the POSIX
API. In some cases, a kernel imple-
mentation may try to tell the drive
to actually commit data on the
physical media. On the other hand,
maybe the controller will instead
re-order writes for the sake of speed
and will not really write data on
disk ASAP, but will instead wait a
couple of milliseconds more. This is
simply out of our control.

The rest of this article will sim-
plify our scenario to two data safety
levels:

■■ Data written to kernel buffers
using the write(2) system call
(or equivalent) that gives us data
safety against process failure.

■■ Data committed to the disk
using the fsync(2) system call (or
equivalent) that gives us, virtu-
ally, data safety against complete
system failure, like a power
outage. Although there is no
guarantee because of the possible
disk controller caching, this is an

26  PROGRAMMING

invariant among all the common
database systems. Also, system
administrators can use specialized
tools to control the exact behav-
ior of the physical device.

Note: Not all the databases use
the POSIX API. Some proprietary
databases use a kernel module that
allows a more direct interaction
with the hardware. However, the
main shape of the problem remains
the same. You can use user-space
buffers and kernel buffers, but
sooner or later there is need to
write data on disk to make it safe
(and this is a slow operation). A
notable example of a database using
a kernel module is Oracle.

Data corruption
In the previous paragraphs, we ana-
lyzed the problem of ensuring data
is actually transferred to the disk by
the higher level layers: the applica-
tion and the kernel. However, this is
not the only concern about durabil-
ity. Specifically, if the internal struc-
ture of a database is unreadable
or corrupted after a catastrophic
event, it requires a recovery step in
order to reconstruct a valid repre-
sentation of data.

For instance, many SQL and
NoSQL databases implement
some form of on-disk tree data
structure that is used to store data
and indexes. This data structure
is manipulated on writes. If the
system stops working in the middle
of a write operation, is the tree
representation still valid?

In general there are three levels
of safety against data corruption:

■■ Databases that write to the disk
representation not caring about
what happens in the event of
failure, asking the user to use a
replica for data recovery, and/or

providing tools that will try to
reconstruct a valid representation
if possible.

■■ Database systems that use a
log of operations (a journal) so
they’ll be able to recover to a
consistent state after a failure.

■■ Database systems that never
modify already written data, but
only work in append only mode,
so that no corruption is possible.

Now we have all the elements we
need to evaluate a database system
in terms of reliability of its persis-
tence layer. It’s time to check how
Redis scores in this regard. Redis
provides two different persistence
options, which are analyzed below.

Snapshotting
Redis snapshotting is the simplest
Redis persistence mode. It produces
point-in-time snapshots of the
dataset when specific conditions are
met. For instance, if the previous
snapshot was created more than 2
minutes ago and there are already
at least 100 new writes, a new snap-
shot is created. This condition can
be controlled by the user configur-
ing the Redis instance and can also
be modified at runtime without
restarting the server. Snapshots are
produced as a single .rdb file that
contains the whole dataset.

The durability of snapshotting is
limited to what the user specified
as save points. If the dataset is saved
every 15 minutes, then in the event
of a Redis instance crash or a more
catastrophic event, up to 15 min-
utes of writes can be lost. From the
point of view of Redis transactions,
snapshotting guarantees that either
a MULTI/EXEC transaction is fully
written into a snapshot or that
it is not present at all (as already

stated above, RDB files represent
exactly point-in-time images of the
dataset).

The RDB file cannot be cor-
rupted because it is produced by
a child process in an append-only
way, starting from the image of data
in the Redis memory. A new RDB
snapshot is created as a temporary
file and is renamed into the destina-
tion file using the atomic rename(2)
system call once it is successfully
generated by a child process (and
only after it gets synched on disk
using the fsync system call).

Redis snapshotting does NOT
provide good durability guaran-
tees if losing up to a few minutes
of data is not acceptable in case
of incidents. Its usage is limited
to applications and environments
where losing recent data is not very
important.

However, even when using the
more advanced persistence mode
provided by Redis, called “AOF”
(Append Only File), it is still
advisable to turn on snapshotting.
Having a single compact RDB file
with the whole dataset is extremely
useful to perform backups, send
data to remote data centers for
disaster recovery, or easily roll-back
to an old version of the dataset in
the event of a dramatic software
bug that compromises the contents
of the database in a serious way.

It’s worth noting that RDB
snapshots are also used by Redis
when performing a master -> slave
synchronization.

One of the additional benefits
of RDB is the fact that for a given
database size, the number of I/Os
on the system is bound, despite the
activity on the database. This is a
property that most traditional data-
base systems (and the Redis other
persistence, the AOF) do not have.

  27

AOF
The AOF is the main Redis persistence option. The
way it works is extremely simple: every time a write
operation that modifies the dataset in memory is per-
formed, the operation gets logged. The log is produced
exactly in the same format used by clients to commu-
nicate with Redis, so the AOF can even be piped via
netcat to another instance or easily parsed if needed. At
restart Redis re-plays all the operations to reconstruct
the dataset.

To show how the AOF works in practice, I’ll provide
a simple example, setting up a new Redis 2.6 instance
with AOF enabled:

./redis-server --appendonly yes

Now it’s time to send a few write commands to the
instance:

redis 127.0.0.1:6379> set key1 Hello
OK
redis 127.0.0.1:6379> append key1 " World!"
(integer) 12
redis 127.0.0.1:6379> del key1
(integer) 1
redis 127.0.0.1:6379> del non_existing_key
(integer) 0

The first three operations actually modified the data-
set, but the fourth did not because there was no key
with the specified name. This is what the AOF looks
like:

$ cat appendonly.aof
*2
$6
SELECT
$1
0
*3
$3
set
$4
key1
$5
Hello
*3
$6
append
$4
key1

$7
 World!
*2
$3
del
$4
key1

As you can see, the final DEL is missing because it
did not produce any modification to the dataset.

New commands received will be logged into the
AOF, but only if they have some effect on actual data.
However, not all the commands are logged as they are
received. For instance, blocking operations on lists are
logged for their final effects as normal non-blocking
commands. Similarly, INCRBYFLOAT is logged as SET,
using the final value after the increment as payload, so
that differences in the way floating points are handled
by different architectures will not lead to different
results after reloading an AOF file.

So far we know that the Redis AOF is an append-
only business, so corruption isn’t possible. However,
this desirable feature can also be a problematic. In the
above example, our instance is completely empty after
the DEL operation, but the AOF still holds a few bytes
worth of data. The AOF is an always growing file, so
how do we deal with it when it gets too big?

AOF rewrite
When an AOF is too big Redis will simply rewrite it
from scratch in a temporary file. The rewrite is NOT
performed by reading the old one, but by directly
accessing data in memory. This allows Redis to create
the shortest AOF that is possible to generate and will
not require read disk access while writing the new one.

Once the rewrite is terminated, the temporary file is
synched on disk with fsync and is used to overwrite the
old AOF file.

You may wonder what happens to data that is writ-
ten to the server while the rewrite is in progress. This
new data is simply written to the old (current) AOF
file. At the same time, it is queued into an in-memory
buffer so that when the new AOF is ready we can
write this missing part to it and finally replace the old
AOF file with the new one.

As you can see, everything is still append-only, and
when we rewrite the AOF, we still write everything
inside the old AOF file for all the time needed for the
new file to be created. For our analysis, this means we

28  PROGRAMMING

can simply avoid the fact that the
AOF in Redis gets rewritten at all.
So the real questions are: how often
do we write(2) and how often we
fsync(2)?

AOF rewrites are generated only
using sequential I/O operations, so
the whole dump process is effi-
cient even with rotational disks (no
random I/O is performed). This is
also true for RDB snapshots genera-
tion. The complete lack of Random
I/O accesses is a rare feature among
databases and is possible mostly
because Redis serves read opera-
tions from memory, so data on disk
does not need to be organized for a
random access pattern, but just for
a sequential loading on restart.

AOF durability
This article was written to discuss
AOF durability. I’m glad I’m here,
and I’m even gladder you are still
here with me.

The Redis AOF uses a user-space
buffer that is populated with new
data as new commands are exe-
cuted. The buffer is usually flushed
on disk every time we return back
into the event loop, using a single
write(2) call against the AOF file
descriptor. However, there are actu-
ally three different configurations
that will change the exact behav-
ior of write(2), and especially, of
fsync(2) calls.

These three configurations are
controlled by the appendfsync
configuration directive, which can
have three different values: no,
everysec, always. This configuration
can also be queried or modified at
runtime using the CONFIG SET
command to alter it every time you
want without stopping the Redis
instance.

appendfsync no
In this configuration Redis does
not perform fsync(2) calls at all.
However, it will make sure that
clients not using pipelining (clients
that wait to receive the reply of a
command before sending the next
one) will receive a message that the
command was executed correctly
only after the change is transferred
to the kernel by writing the com-
mand to the AOF file descriptor
using the write(2) system call.

Because in this configuration
fsync(2) is not called at all, data will
be committed to disk at the kernel’s
wish, which is every 30 seconds in
most Linux systems.

appendfsync everysec
In this configuration data will
be both written to the file using
write(2) and flushed from the
kernel to the disk using fsync(2)
once every second. Usually the
write(2) call will actually be
performed every time we return
to the event loop, but this is not
guaranteed.

If the disk can’t cope with the
write speed and the background
fsync(2) call is taking longer than 1
second, Redis may delay the write
up to an additional second (in
order to avoid that the write will
block the main thread because of
an fsync(2) running in the back-
ground thread against the same file
descriptor). If a total of two seconds
elapsed, Redis finally performs a
(likely blocking) write(2) to transfer
data to the disk at any cost.

In this mode Redis guarantees
that, in the worst case, everything
you write is going to be commit-
ted to the operating system buffers
and transferred to the disk within
2 seconds. In the average case, data
will be committed every second.

appednfsync always
In this mode, if the client does not
use pipelining, data is both writ-
ten to the file and synched on disk
using fsync(2) before an acknowl-
edge is returned to the client.

This is the highest level of
durability you can get, but it is also
slower than the other modes.

The default Redis configuration
is appendfsync everysec, which pro-
vides a good balance between speed
and durability and is almost as fast
as appendfsync no).

Why is pipelining different?
The reason for handling clients
using pipelining differently is that
clients using pipelining with writes
are sacrificing the ability to read
what happened with a given com-
mand before executing the next
one in order to gain speed. There is
no point in committing data before
replying to a client uninterested
in the replies before going for-
ward. However, even if a client is
using pipelining, writes and fsyncs
(depending on the configuration)
always happen when returning to
the event loop.

AOF and Redis transactions
AOF guarantees correct MULTI/
EXEC transactions semantic and
will refuse to reload a file that
contains a broken transaction at the
end of the file. A utility shipped
with the Redis server can trim the
AOF file to remove the partial
transaction at the end.

Note: Since the AOF is populated
using a single write(2) call at the
end of every event loop iteration,
an incomplete transaction can only
appear if the disk where the AOF
resides is full while Redis is writing.

  29

Comparison with PostgreSQL
So how durable is Redis with its
main persistence engine (AOF) in
its default configuration?

■■ Worst case: It guarantees that
write(2) and fsync(2) are per-
formed within two seconds.

■■ Normal case: It performs write(2)
before replying to client and per-
forms an fsync(2) every second.

What is interesting is that in
this mode Redis is still extremely
fast for a two reasons: fsync is
performed on a background
thread, and Redis only writes in
append-only mode, which is a big
advantage.

However, if you need maximum
data safety and your write load is
not high, you can still obtain the
best durability in any database
system using fsync always.

How does this compare to Post-
greSQL, which, with good reasons,
is considered a good and very reli-
able database?

Let’s read some PostgreSQL
documentation together (Note: I’m
only citing the interesting pieces,
you can find the full documentation
here [hn.my/pgsql] in the Post-
greSQL official site).

fsync (boolean)

If this parameter is on, the Post-
greSQL server will try to make
sure that updates are physically
written to disk by issuing fsync()
system calls or various equivalent
methods (see wal_sync_method).
This ensures that the database
cluster can recover to a consistent
state after an operating system or
hardware crash.

[snip]

In many situations, turning off
synchronous_commit for noncritical
transactions can provide much of
the potential performance benefit of
turning off fsync without the atten-
dant risks of data corruption.

So PostgreSQL needs to fsync
data in order to avoid corrup-
tions. Fortunately with Redis AOF,
we don’t have this problem at all
because no corruption is possible.
So let’s check the next parameter,
which is the one that more closely
compares with Redis fsync policy,
even if the name is different:

synchronous_commit (enum)

Specifies whether transaction
commit will wait for WAL records
to be written to disk before the com-
mand returns a “success” indication
to the client. Valid values are on,
local, and off. The default, and safe,
value is on. When off, there can be
a delay between when success is
reported to the client and when the
transaction is really guaranteed
to be safe against a server crash.
(The maximum delay is three times
wal_writer_delay.) Unlike fsync,
setting this parameter to off does
not create any risk of database
inconsistency: an operating system
or database crash might result in
some recent allegedly-committed
transactions being lost, but the
database state will be just the same
as if those transactions had been
aborted cleanly.

Here we have something much
similar to what we can tune with
Redis. Basically, the PostgreSQL
guys are telling you that if you want
speed, it is probably a good idea to
disable synchronous commits. Simi-
larly, if you want speed in Redis,
it is probably a good idea to avoid
using appendfsync always.

If you disable synchronous com-
mits in PostgreSQL, you are in a
very similar affair as with Redis
appendfsync everysec because, by
default, wal_writer_delay is set to
200 milliseconds. The PostgreSQL
documentation states that you need
to multiply it by three to get the
actual delay of writes (600 milli-
seconds), very near to the 1-second
Redis default.

Long story short: even if Redis
is an in-memory database, it offers
good durability compared to other
on-disk databases.

From a more practical point of
view, Redis provides both AOF
and RDB snapshots, which can
be enabled simultaneously (this is
the advised setup, when in doubt),
while offering ease of operations
and data durability.

Everything discussed here about
Redis durability can be applied
not only when Redis is used as a
datastore, but also when it is used to
implement queues that need to per-
sist on disk with good durability. n

Salvatore Sanfilippo aka antirez is an Ital-
ian computer programmer. He is currently
the lead developer of Redis and works for
VMware. In the past he focused on security
and programming languages.

Reprinted with permission of the original author.
First appeared in hn.my/redis (antirez.com)

http://hn.my/pgsql
http://hn.my/redis

30  PROGRAMMING

By Jeff atwood

Hashes are a bit like
fingerprints for data.

A given hash uniquely represents
a file, or any arbitrary collection of
data. At least in theory. This is a
128-bit MD5 hash you’re looking
at above, so it can represent at most
2128 unique items, or 340 trillion
trillion trillion. In reality the usable
space is substantially less; you can
start seeing significant collisions
once you’ve filled the square root
of the space, but the square root of
an impossibly large number is still
impossibly large.

Back in 2005, I wondered about
the difference between a checksum
[hn.my/checksums] and a hash. You
can think of a checksum as a per-
son’s full name: Eubediah Q. Horse-
feathers. It’s a shortcut to unique-
ness that’s fast and simple, but easy
to forge, because security isn’t really

the point of naming. You don’t walk
up to someone and demand their
fingerprints to prove they are who
they say they are. Names are just
convenient disambiguators, a way
of quickly determining who you’re
talking to for social reasons, not
absolute proof of identity. There
can certainly be multiple people in
the world with the same name, and
it wouldn’t be too much trouble to
legally change your name to match
someone else’s. But changing your
fingerprint to match Eubediah’s is
another matter entirely; that should
be impossible except in the movies.

Secure hashes are designed to
be tamper-proof
A properly designed secure hash
function changes its output radically
with tiny single bit changes to the
input data, even if those changes are
malicious and intended to cheat the
hash. Unfortunately, not all hashes
were designed properly, and some,
like MD5, are outright broken [hn.
my/md5] and should probably be
reverted to checksums.

If you could mimic another
person’s fingerprint or DNA at will,
you could do some seriously evil
stuff. MD5 is clearly compromised,

and SHA-1 is not looking too great
these days [hn.my/sha1].

The good news is that hashing
algorithms (assuming you didn’t
roll your own, God forbid) were
designed by professional mathema-
ticians and cryptographers who
knew what they were doing. Just
pick a hash of a newer vintage than
MD5 (1991) and SHA-1 (1995),
and you’ll be fine — at least as far
as collisions and uniqueness are
concerned. But keep reading.

Secure hashes are designed to
be slow
Speed of a checksum calculation is
important, as checksums are gener-
ally working on data as it is being
transmitted. If the checksum takes
too long, it can affect your trans-
fer speeds. If the checksum incurs
significant CPU overhead, that
means transferring data will also
slow down or overload your PC.
For example, imagine the sort of
checksums that are used on video
standards like DisplayPort, which
can peak at 17.28 Gbit/sec.

But hashes aren’t designed for
speed. In fact, quite the opposite:
hashes, when used for security,
need to be slow. The faster you can

Speed Hashing
Photo credit: flickr.com/photos/cantchangerandy/2561476943

http://hn.my/checksums

  31

calculate the hash, the more viable it is to use
brute force to mount attacks. Unfortunately,
“slow” in 1990 and 2000 terms may not be
enough. The hashing algorithm designers may
have anticipated predicted increases in CPU
power via Moore’s Law, but they almost cer-
tainly did not see the radical increases in GPU
computing power coming.

How radical? Well, compare the results of
CPU powered hashcat with the GPU powered
oclHashcat when calculating MD5 hashes:

Radeon 7970	 8213.6 M c/s
6-core AMD CPU	 52.9 M c/s

The GPU on a single modern video card
produces over 150 times the number of hash
calculations per second compared to a modern
CPU. If Moore’s Law anticipates a doubling of
computing power every 18 months, that’s like
peeking 10 years into the future. Pretty amazing
stuff, isn’t it?

Hashes and passwords
Let’s talk about passwords, since hashing and
passwords are intimately related. Unless you’re
storing passwords incorrectly, you always store
a user’s password as a salted hash, never as plain
text. Right? Right? This means if your database
containing all those hashes is compromised or
leaked, the users are still protected — nobody
can figure out what their password actually is
based on the hash stored in the database. Yes,
there are of course dictionary attacks that can be
surprisingly effective, but we can’t protect users
dead-set on using “monkey1” for their password
from themselves. And anyway, the real solution
to users choosing crappy passwords is not to
make users remember ever more complicated
and longer passwords, but to do away with pass-
words altogether.

This has one unfortunate ramification for
password hashes: very few of them were
designed with such massive and commonly
available GPU horsepower in mind. Here are
my results on my current PC, which has two
ATI Radeon 7970 cards generating nearly 16000
M c/s with MD5. I used oclHashcat-lite with
the full range of a common US keyboard — that
is, including uppercase, lowercase, numbers, and
all possible symbols:

all 6 character password MD5s		 47 seconds
all 7 character password MD5s		 1 hour, 14 minutes
all 8 character password MD5s		 ~465 days
all 9 character password MD5s		 fuggedaboudit

The process scales nearly perfectly as you add GPUs, so
you can cut the time in half by putting four video cards in
one machine. It may sound crazy, but enthusiasts have been
doing it since 2008. And you could cut it in half again by
building another PC with four more video cards, splitting the
attack space. (Keep going if you’re either crazy, or working for
the NSA.) Now we’re down to a semi-reasonable 117 days to
generate all 8 character MD5s. But perhaps this is a worst-
case scenario, as a lot of passwords have no special characters.
How about if we try the same thing using just uppercase,
lowercase, and numbers?

all 6 character password MD5s		 3 seconds
all 7 character password MD5s		 4 minutes
all 8 character password MD5s		 4 hours
all 9 character password MD5s		 10 days
all 10 character password MD5s		 ~625 days
all 11 character password MD5s		 fuggedaboudit

If you’re curious about the worst case scenario, a 12 charac-
ter all lowercase password is attainable in about 75 days on
this PC. Try it yourself; here’s the script I used:

set BIN=oclHashcat-lite64
set OPTS=--gpu-accel 200 --gpu-watchdog 0 --outfile-
watch 0 --restore-timer 0 --pw-min 6 --pw-max 6
--custom-charset1 ?l?d?s?u

%BIN% %OPTS% --hash-type 0 aaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaa ?1?1?1?1?1?1?1?1?1?1?1?1?1

Just modify the pw-min, pw-max and the custom-charset
as appropriate. Or, if you’re too lazy to try it yourself, browse
through the existing oclHashcat benchmarks others have
run. This will also give you some idea how computationally
expensive various known hashes are on GPUs relative to each
other, such as:

MD5		 23070.7 M/s
SHA-1		 7973.8 M/s
SHA-256	 3110.2 M/s
SHA-512	 267.1 M/s
NTLM		 44035.3 M/s
DES		 185.1 M/s
WPA/WPA2	 348.0 k/s

32  PROGRAMMING

What about rainbow tables?
Rainbow tables are huge pre-
computed lists of hashes, trad-
ing off table lookups to massive
amounts of disk space (and poten-
tially memory) for raw calculation
speed. They are now utterly and
completely obsolete. Nobody who
knows what they’re doing would
bother. They’d be wasting their
time. I’ll let Coda Hale explain
[hn.my/codahale]:

Rainbow tables, despite their recent
popularity as a subject of blog posts,
have not aged gracefully. Imple-
mentations of password crackers
can leverage the massive amount
of parallelism available in GPUs,
peaking at billions of candidate
passwords a second. You can liter-
ally test all lowercase, alphabetic
passwords which are ≤7 characters
in less than 2 seconds. And you
can now rent the hardware which
makes this possible to the tune of
less than $3/hour. For about $300/
hour, you could crack around
500,000,000,000 candidate pass-
words a second.

Given this massive shift in the
economics of cryptographic attacks,
it simply doesn’t make sense
for anyone to waste terabytes of
disk space in the hope that their
victim didn’t use a salt. It’s a lot
easier to just crack the passwords.
Even a “good” hashing scheme of
SHA256(salt + password) is still
completely vulnerable to these
cheap and effective attacks.

But when I store passwords I use
salts so none of this applies to
me!
Hey, awesome, you’re smart enough
to not just use a hash, but also to
salt the hash. Congratulations.

$saltedpassword = sha1(SALT .
$password);

I know what you’re thinking. “I
can hide the salt, so the attacker
won’t know it!” You can certainly
try. You could put the salt some-
where else, like in a different data-
base, or put it in a configuration file,
or in some hypothetically secure
hardware that has additional layers
of protection. In the event that an
attacker obtains your database with
the password hashes, but somehow
has no access to or knowledge of
the salt it’s theoretically possible.

This will provide the illusion of
security more than any actual secu-
rity. Since you need both the salt
and the choice of hash algorithm
to generate the hash, and to check
the hash, it’s unlikely an attacker
would have one but not the other.
If you’ve been compromised to
the point that an attacker has your
password database, it’s reasonable
to assume they either have or can
get your secret, hidden salt.

The first rule of security is to
always assume and plan for the
worst. Should you use a salt, ideally
a random salt for each user? Sure,
it’s definitely a good practice, and
at the very least it lets you disam-
biguate two users who have the
same password. But these days,
salts alone can no longer save you
from a person willing to spend a
few thousand dollars on video card
hardware, and if you think they can,
you’re in trouble.

I’m too busy to read all this.
If you are a user:

Make sure all your passwords are
12 characters or more, ideally a lot
more. I recommend adopting pass
phrases, which are not only a lot
easier to remember than passwords
(if not type) but also ridiculously
secure against brute forcing purely
due to their length.

If you are a developer:
Use bcrypt or PBKDF2 exclu-

sively to hash anything you need to
be secure. These new hashes were
specifically designed to be difficult
to implement on GPUs. Do not
use any other form of hash. Almost
every other popular hashing scheme
is vulnerable to brute forcing by
arrays of commodity GPUs, which
only get faster and more parallel
and easier to program for every
year. n

Jeff Atwood lives in Berkeley, CA
with his wife, two cats, and a whole
lot of computers. He is best known
as the author of popular blog Coding
Horror and the cofounder of Stack
Overflow with Joel Spolsky.

Reprinted with permission of the original author.
First appeared in hn.my/hash (codinghorror.com)

http://hn.my/hash

  33

By Yan Pritzker

Learn to Speak Vim

Using vim is like talking to your editor in
“verb modifier object” sentences, turned into
acronyms:

■■ Learn some verbs: v (visual), c (change), d (delete), y
(yank/copy). Although there are others, these are the
most important.

■■ Learn some modifiers: i (inside), a (around), t (till..
finds a character), f (find..like, till, except, including
the char), / (search..find a string/regex).

■■ Learn some text objects: w (word), s (sentence), p
(paragraph), b (block/parentheses), t (tag, works
for html/xml). There are also other text objects
available.

To move efficiently in vim, don’t try to do anything
by pressing keys numerous times. Instead, speak to the
editor in sentences:

■■ Delete the current word: diw (delete inside word).

■■ Change current sentence: cis (change inside
sentence).

■■ Change a string inside quotes: cin" (change inside
quote).

■■ Change until next occurrence of “foo”: c/foo (change
search foo).

■■ Change everything from here to the letter X: ctX

■■ Visually select this paragraph: vap (visual around
paragraph).

If you understand the verbs and objects you’re deal-
ing adding a new plug-in and learning a new verb or
noun will exponentially increase your productivity, as
you can now apply it to all the sentences you already
know. It’s just like learning a language.

Let’s add some new text object plug-ins!

■■ Install surround.vim: vim-surround [hn.my/vims] —
You get a new noun: “surround” (s or S).

Visually select a word and surround it with quotes:
viwS"

Change “surround” from single quote to double
quote: cs'"

■■ Install vim-textobj-rubyblock [hn.my/vimr] — You
get a new noun: the “ruby block” (r).

Delete current ruby block: dir (delete inside ruby
block).

Visually select a ruby function: var (visual around
ruby block).

Visually select the innards of a function: vir (visual
inside ruby block).

■■ Install tComment [hn.my/tcom] — You get a new
verb: “go comment” (gc).

Comment the current ruby method: gcar (go com-
ment around ruby).

Now go out and learn a new verb or noun every day! n

Yan Pritzker is a Rails hacker, passionate vim user, founder of
planypus.com, creator of the YADR curated vim/zsh dotfiles project
[skwp.github.com/dotfiles], and author of the free Git Workflows
book [gitworkflows.com]. You can find him at yanpritzker.com

Reprinted with permission of the original author.
First appeared in hn.my/speakvim (yanpritzker.com)

http://hn.my/vims
http://hn.my/vimr
http://hn.my/tcom
http://planypus.com
http://skwp.github.com/dotfiles
http://gitworkflows.com
http://yanpritzker.com
http://hn.my/speakvim

34  PROGRAMMING

By Eric Naeseth

Python allows you, the program-
mer, to do some very cool things
with functions. In Python, functions

are first-class objects, which means that you
can do anything with them that you can do
with strings, integers, or any other objects.
For example, you can assign a function to a
variable:

>>> def square(n):
... return n * n
>>> square(4)
16
>>> alias = square
>>> alias(4)
16

The real power from having first-class
functions, however, comes from the fact that
you can pass them to and return them from
other functions. Python’s built-in map func-
tion uses this ability: you pass it a function
and a list, and map creates a new list by calling
your function individually for each item in
the list you gave it. Here’s an example that
uses our square function from above:

>>> numbers = [1, 2, 3, 4, 5]
>>> map(square, numbers)
[1, 4, 9, 16, 25]

A Primer on
Python Decorators

A function that accepts other function(s) as arguments and/
or returns a function is called a higher-order function. While map
simply made use of our function without making any changes to
it, we can also use higher-order functions to change the behavior
of other functions.

For example, let’s say we have a function which we call a lot
that is very expensive:

>>> def fib(n):
... "Recursively (i.e., dreadfully) calculate the nth
Fibonacci number."
... return n if n in [0, 1] else fib(n - 2) + fib(n - 1)

We would like to save the results of this calculation, so that
if we ever need to calculate the value for some n(which hap-
pens very often, given this function’s call tree), we don’t have to
repeat our hard work. We could do that in a number of ways; for
example, we could store the results in a dictionary somewhere,
and every time we need a value from fib, we first see if it is in the
dictionary.

But that would require us to reproduce the same dictionary-
checking boilerplate every time we wanted a value from fib.
Instead, it would be convenient if fib took care of saving its
results internally, and our code that uses it could simply call it as
it normally would. This technique is called memoization (note
the lack of an “r”).

We could build this memoization code directly into fib, but
Python gives us another, more elegant option. Since we can
write functions that modify other functions, we can write a
generic memoization function that takes a function and returns a
memoized version of it:

  35

def memoize(fn):
 stored_results = {}

 def memoized(*args):
 try:
 # try to get the cached result
 return stored_results[args]
 except KeyError:
 # nothing was cached for those args. 	
	 # let's fix that.
 result = stored_results[args] = 	
	 fn(*args)
 return result

 return memoized

This memoize function takes another function as an
argument, and creates a dictionary where it stores the
results of previous calls to that function: the keys are
the arguments passed to the function being memoized,
and the values are what the function returned when
called with those arguments. memoize returns a new
function that first checks to see if there is an entry in
the stored_results dictionary for the current argu-
ments; if there is, the stored value is returned; oth-
erwise, the wrapped function is called, and its return
value is stored and returned back to the caller. This
new function is often called a “wrapper” function, since
it’s just a thin layer around a different function that
does real work.

Now that we have our memoization function, we
can just pass fib to it to get a wrapped version of it that
won’t needlessly repeat any of the hard work it’s done
before:

def fib(n):
 return n if n in [0, 1] else fib(n - 2) +
fib(n - 1)
fib = memoize(fib)

By using our higher-order memoize function, we
get all the benefits of memoization without having
to make any changes to our fib function itself, which
would have obscured the real work that function did in
the midst of the memoization baggage. But you might
notice that the code above is still a little awkward, as
we have to write fib three times in the above example.
Since this pattern — passing a function to another
function and saving the result back under the name of
the original function — is extremely common in code

that makes use of wrapper functions, Python provides a
special syntax for it: decorators.

@memoize
def fib(n):
 return n if n in [0, 1] else fib(n - 2) +
fib(n - 1)

Here, we say that memoize is acting decorating fib.
It’s important to realize that this is only a syntactic
convenience. This code does exactly the same thing as
the above snippet: it defines a function called fib, passes
it to memoize, and saves the result of that as fib. The
special (and, at first, a bit odd-looking) @ syntax simply
cuts out the redundancy.

You can stack these decorators on top of each other,
and they will apply in bottom-out fashion. For exam-
ple, let’s say we also have another higher-order func-
tion to help with debugging:

def make_verbose(fn):
 def verbose(*args):
 # will print (e.g.) fib(5)
 print '%s(%s)' % (fn.__name__, ',
'.join(repr(arg) for arg in args))
 return fn(*args)
 	 # actually call the decorated function

 return verbose

The following two code snippets then do the same
thing:

@memoize
@make_verbose
def fib(n):
 return n if n in [0, 1] else fib(n - 2) +
fib(n - 1)

def fib(n):
 return n if n in [0, 1] else fib(n - 2) +
fib(n - 1)
fib = memoize(make_verbose(fib))

Interestingly, you’re not restricted to simply writing
a function name after the @ symbol: you can also call a
function there, letting you effectively pass arguments
to a decorator. Let’s say that we aren’t content with
simple memoization, and we want to store the function
results in memcached. If we’ve written a memcached
decorator function, we could (for example) pass in the
address of the server as an argument:

36  PROGRAMMING

@memcached('127.0.0.1:11211')
def fib(n):
 return n if n in [0, 1] else fib(n - 2) +
fib(n - 1)

Written without decorator syntax, this expands to:

fib = memcached('127.0.0.1:11211')(fib)

Python comes with some functions that are very
useful when applied as decorators. For example, Python
has a classmethod function that creates the rough
equivalent of a Java static method:

class Foo(object):
 SOME_CLASS_CONSTANT = 42

 @classmethod
 def add_to_my_constant(cls, value):
 # Here, `cls` will just be Foo, but if 	
 # you called this method on a
 # subclass of Foo, `cls` would be that
 # subclass instead.
 return cls.SOME_CLASS_CONSTANT + value

Foo.add_to_my_constant(10) # => 52

unlike in Java, you can also call a
class method on an instance
f = Foo()
f.add_to_my_constant(10) # => 52

Sidenote: Docstrings
Python functions carry more information than just
code: they also carry useful help information, like their
name and docstring:

>>> def fib(n):
... "Recursively (i.e., dreadfully) calcu-
late the nth Fibonacci number."
... return n if n in [0, 1] else fib(n - 2) +
fib(n - 1)
...
>>> fib.__name__
'fib'
>>> fib.__doc__
'Recursively (i.e., dreadfully) calculate the
nth Fibonacci number.'

This information powers Python’s built-in help func-
tion. But when we wrap our function, we instead see
the name and docstring of the wrapper:

>>> fib = memoized(fib)
>>> fib.__name__
'memoized'
>>> fib.__doc__

That’s not particularly helpful. Luckily, Python
includes a helper function that will copy this documen-
tation onto wrappers, called functools.wraps:

import functools
def memoize(fn):
 stored_results = {}

 @functools.wraps(fn)
 def memoized(*args):
 # (as before)

 return memoized

There’s something very satisfying about using a
decorator to help you write a decorator. Now, if we
were to retry our code from before with the updated
memoize, we see the documentation is preserved:

>>> fib = memoized(fib)
>>> fib.__name__
'fib'
>>> fib.__doc__
'Recursively (i.e., dreadfully) calculate the
nth Fibonacci number.' n

Eric Naeseth is a software engineer at Thumbtack.com, a
startup of 17 employees based in San Francisco.

Reprinted with permission of the original author.
First appeared in hn.my/decorator (thumbtack.com)

http://Thumbtack.com
http://hn.my/decorator

  37

Here are ten things about numeri-
cal linear algebra that you may find
surprising if you’re not familiar with

the field.

➊ Numerical linear algebra applies very
advanced mathematics to solve prob-

lems that can be stated with high school
mathematics.

➋ Practical applications often require
solving enormous systems of equations,

millions or even billions of variables.

➌ The heart of Google is an enormous
linear algebra problem. PageRank is

essentially an eigenvalue problem.

➍ The efficiency of solving very large sys-
tems of equations has benefited at least

as much from advances in algorithms as from
Moore’s law.

➎ Many practical problems (optimization,
differential equations, signal process-

ing, etc.) boil down to solving linear systems,
even when the original problems are non-linear.
Finite element software, for example, spends
nearly all its time solving linear equations.

➏ A system of a million equations can
sometimes be solved on an ordinary PC

in under a millisecond, depending on the struc-
ture of the equations.

➐ Iterative methods, methods that in
theory require an infinite number of

steps to solve a problem, are often faster and
more accurate than direct methods, methods
that in theory produce an exact answer in a
finite number of steps.

➑ There are many theorems bounding the
error in solutions produced on real com-

puters. That is, the theorems don’t just bound
the error from hypothetical calculations carried
out in exact arithmetic but bound the error
from arithmetic as carried out in floating point
arithmetic on computer hardware.

➒ It is hardly ever necessary to compute
the inverse of a matrix.

➓ There is remarkably mature software for
numerical linear algebra. Brilliant people

have worked on this software for many years. n

John D. Cook is an applied mathematician. He lives
in Houston, Texas where he works for M. D. Anderson
Cancer Center. His interests include numerical analysis
and Bayesian statistics.

Surprises From
Numerical Linear Algebra

By John D. Cook

Reprinted with permission of the original author.
First appeared in hn.my/algebra (johndcook.com)

http://hn.my/algebra

http://www.getharvest.com/hackers
http://notismapp.com

  39

http://www.getharvest.com/hackers
http://notismapp.com

Now you can hack on DuckDuckGo

Create instant answer plugins for DuckDuckGo

duckduckhack.com

Now you can hack on DuckDuckGo

Create instant answer plugins for DuckDuckGo

DuckDuckHackDuckDuckHack

package DDG::Goodie::Unidecode;# ABSTRACT: return an ASCII version of the search query use
DDG::Goodie; use Text::Unidecode; zci is_cached => 1; zci answer_type => "convert to ascii"; triggers
startend => "unidecode"; handle remainder => sub { my $u = unidecode $_; # unidecode output some-
times contains trailing spaces $u =~ s/\s+$//; return $u; }; 1; package DDG::Goodie::Rot13; #
ABSTRACT: Rotate chars by 13 letters use DDG::Goodie; triggers start => 'rot13'; handle remainder =>
sub { if ($_) { $_ =~ tr[a-zA-Z][n-za-mN-ZA-M]; return "ROT13: $_"; }; return }; zci is_cached => 1; 1;
package DDG::Goodie::Base64; use DDG::Goodie; use MIME::Base64; use Encode; triggers startend =>
"base64"; zci answer_type => "base64_conversion"; zci is_cached => 1; handle remainder => sub {
return unless $_ =~ /^(encode|decode|)\s*(.*)$/i; my $command = $1 || ''; my $str = $2 || ''; if ($str) { if (
$command && $command eq 'decode') { $str = decode_base64($str); $str = decode("UTF-8", $str);
return "Base64 decoded: $str"; } else { $str = encode_base64(encode("UTF-8", $str)); return "Base64
encoded: $str"; } } return; }; 1; package DDG::Goodie::Chars; # ABSTRACT: Give the number of charac-
ters (length) of the query. use DDG::Goodie; triggers start => 'chars'; zci is_cached => 1; zci
answer_type => "chars"; handle remainder => sub { return "Chars: " .length $_ if $_; return; }; 1; pack-
age DDG::Goodie::ABC; use DDG::Goodie; triggers any => "or"; zci answer_type => "rand"; handle
query_parts => sub { my @choices; my @collected_parts; while (my $part = shift) { if (lc($part) eq 'or') {
return unless @collected_parts; push @choices, join(' ', @collected_parts); my $length =
@collected_parts; return if $length > 1; @collected_parts = (); } elsif ($part) { push @collected_parts,
$part; } } push @choices, join(' ', @collected_parts) if @choices && @collected_parts; return if
scalar(@choices) <= 1; my $choice = int(rand(@choices)); if (my @duck = grep { $_ eq 'duckduckgo' || $_
eq 'duck' || $_ eq 'ddg' } @choices) { return $duck[0]." (not random)", answer_type => 'egg'; } return
$choices[$choice]." (random)"; return; }; 1; package DDG::Goodie::PublicDNS; use DDG::Goodie; use

sub { if ($_) { $_ =~ tr[a-zA-Z][n-za-mN-ZA-M]; return "ROT13: $_"; }; return }; zci is_cached => 1; 1;
package DDG::Goodie::Base64; use DDG::Goodie; use MIME::Base64; use Encode; triggers startend =>
"base64"; zci answer_type => "base64_conversion"; zci is_cached => 1; handle remainder => sub {
return unless $_ =~ /^(encode|decode|)\s*(.*)$/i; my $command = $1 || ''; my $str = $2 || ''; if ($str) { if (
$command && $command eq 'decode') { $str = decode_base64($str); $str = decode("UTF-8", $str);
return "Base64 decoded: $str"; } else { $str = encode_base64(encode("UTF-8", $str)); return "Base64
encoded: $str"; } } return; }; 1; package DDG::Goodie::Chars; # ABSTRACT: Give the number of charac
ters (length) of the query. use DDG::Goodie; triggers start => 'chars'; zci is_cached => 1; zci
answer_type => "chars"; handle remainder => sub { return "Chars: " .length $_ if $_; return; }; 1; pack
age DDG::Goodie::ABC; use DDG::Goodie; triggers any => "or"; zci answer_type => "rand"; handle
query_parts => sub { my @choices; my @collected_parts; while (my $part = shift) { if (lc($part) eq 'or') {
return unless @collected_parts; push @choices, join(' ', @collected_parts); my $length =
@collected_parts; return if $length > 1; @collected_parts = (); } elsif ($part) { push @collected_parts,
$part; } } push @choices, join(' ', @collected_parts) if @choices && @collected_parts; return if
scalar(@choices) <= 1; my $choice = int(rand(@choices)); if (my @duck = grep { $_ eq 'duckduckgo' || $_

http://duckduckhack.com

	Contents
	FEATURES
	Dizzying But Invisible Depth
	How Bots Seized Control of My Pricing Strategy

	STARTUPS
	Focus on Building 10x Teams, Not on Hiring 10x Developers
	My Dad Taught Me Cashflow with a Soda Machine
	Forget Self-Improvement
	Minimum Viable SEO

	SPECIAL
	How to Participate in Hacker News
	Make Yourself Redundant
	Producer vs. Consumer
	Do Things, Tell People

	PROGRAMMING
	Redis Persistence Demystified
	Speed Hashing
	Learn to Speak Vim
	A Primer on Python Decorators
	Surprises From Numerical Linear Algebra

