
Issue 24 May 2012

A Senseless
Conversation

Zach Barnett

2  ﻿

Curator
Lim Cheng Soon

Contributors
Zach Barnett
Tom Preston-Werner
Kenton White
Matt Might
Henry Prêcheur
Ben Dowling
Chris Wenham
Elijah Manor
Kenneth Reitz
Peep Laja
Chris Eidhof

Proofreaders
Emily Griffin
Sigmarie Soto

Printer
MagCloud

Hacker Monthly is the print magazine version
of Hacker News — news.ycombinator.com, a social news
website wildly popular among programmers and startup
founders. The submission guidelines state that content
can be “anything that gratifies one’s intellectual curios-
ity.” Every month, we select from the top voted articles
on Hacker News and print them in magazine format.
For more, visit hackermonthly.com.

Advertising
ads@hackermonthly.com

Contact
contact@hackermonthly.com

Published by
Netizens Media
46, Taylor Road,
11600 Penang,
Malaysia.

Hacker Monthly is published by Netizens Media and not affiliated with Y Combinator in any way.

http://news.ycombinator.com
http://hackermonthly.com
mailto:ads@hackermonthly.com
mailto:contact@hackermonthly.com

  3

Contents
FEATURES

04  A Senseless Conversation
By Zach Barnett

STARTUPS

10  Open Source (Almost) Everything
By TOM PRESTON-WERNER

13  A $5000 Chair
By Kenton White

PROGRAMMING

14  SSH: More Than Secure Shell
By Matt Might

18  Python: Copying a List the Right Way
By Henry Prêcheur

20  Invaluable Command Line Tools For
Web Developers
By Ben Dowling

22  Signs That You’re a Bad Programmer
By Chris Wenham

26  Differences Between jQuery bind(), live(),
delegate() and on()
By Elijah Manor

30  How I Develop Things and Why
By Kenneth reitz

SPECIAL

32  Jedi Mind Tricks: Lesser Known Ways to
Persuade People
By Peep Laja

37  “I’ve Got an Idea For an App”
By Chris Eidhof

For links to Hacker News dicussions, visit hackermonthly.com/issue-24

http://hackermonthly.com/issue24

4  FEATURES

FEATURES

By Zach Barnett

A Senseless Conversation

My name is Zach Bar-
nett. Can machines
think? Until what

happened today, I thought that no
human-made machine could ever
think as a human does. I now know
that I was wrong.

I woke up to a phone call. Calling
was my best friend, Douglas. Doug-
las is an experimental computer
scientist. He told me that he had
created a computer that could pass
the Turing Test.

I knew that the Turing Test was
supposed to be a way to test a
machine’s intelligence. Not merely
a way to determine whether a
machine could simulate intel-
ligence, but a way to determine
whether the machine was genu-
inely thinking, understanding. The
“intelligence test” that Alan Turing
proposed was a sort of “imitation
game.” In one room is an ordinary
human; in the other is a machine
(probably a computer). A human
examiner, who does not know
which room contains the machine,
would engage in a natural language
conversation with both participants.

If the examiner is unable to reli-
ably distinguish the machine from
the human, then, according to
Turing, we have established that the
machine is thinking, understanding
and, apparently, conscious.

I never found this plausible. How
could a certain kind of external
behavior tell us anything about
what it is like for the machine on
the inside? Why would Turing think
it impossible to create a mindless,
thoughtless machine that is able
nonetheless to produce all of the
right output to pull off the perfect
trickery? Furthermore, how could
we ever establish that a machine
was conscious without actually
being that machine?

Despite my skepticism, I was
curious to see the computer that
Douglas had created. I wanted to
have the opportunity to engage in
“conversation” with it, intelligent
or not. Unfortunately, I would
never have this opportunity. When
I arrived, Douglas led me toward
“Room A.” He explained that he
wanted to administer the Turing
Test and that he wanted me to play

the role of the control subject, the
human. The computer, Douglas
told me, was located in room B.
Douglas would converse with us
both and would thereby be able to
compare my human responses with
the apparently human responses of
his lifeless, mindless creation.

I entered room A, expecting to
see a workstation equipped with
some sort of text-messaging soft-
ware. Instead, there was a massive
container filled with a strange,
translucent fluid. The container was
a sensory deprivation tank, Douglas
explained, and he wanted me to go
inside it. Yikes. “Why would I need
to do that?” I wondered. I thought
that Douglas probably wanted me
in the sensory deprivation tank so
that my situation would be roughly
analogous to that of the computer.
The computer doesn’t have eyes or
ears, I reasoned, and so Douglas did
not want me to be able to use mine.

Douglas explained that while I
was in the tank, I would be able to
sense nothing; I wouldn’t even be
able to hear my own voice. How
would we communicate? Douglas

The following dialogue first appears in THINK 29, Vol. 10 (Autumn 2011) published by Cambridge University Press:
© 2011 Royal Institute of Philosophy All Rights Reserved

Background credit: flickr.com/photos/zooboing/5376513937/

http://flickr.com/photos/zooboing/5376513937/

  5

showed me a brain-computer
interface, which would allow me
to communicate with Douglas not
by talking, but by thinking. He
would speak into a microphone,
and I would “hear” his voice in
my “mind’s ear.” To reply, I would
“think” my responses back to him,
and he would receive my thoughts
as text. It was a bit “sci-fi” for me,
but Douglas reassured me. He told
me that the whole experiment
would not take too long and that
he would let me out as soon as
it was over. I trusted him. With a
deep breath, I entered the tank, and
Douglas closed the lid.

There was a moment of stillness.
I couldn’t see anything, and when I
tried to move, I couldn’t feel myself
moving. When I tried to speak, I
couldn’t hear myself speaking. Sud-
denly, and to my surprise, I could
“hear” Douglas’s voice:

DOUGLAS: How are you doing in there?

Feeling comfortable yet?

ZACH: This is pretty weird. But I’m okay.

DOUGLAS: Great.

I was communicating with my
mind, which is cool in retrospect.
At the time, it was simply creepy! I
tried to focus on the conversation.

ZACH: So for a bit, I was wondering

why you needed me to be in this

sensory deprivation tank. But I think I

figured out the reason.

DOUGLAS: Did you?

ZACH: I think so. You want me in this

tank so that I am in the same situation

as the computer. If I could see, hear,

or feel during this conversation, then

I would be able to talk about those

experiences with you. And the com-

puter isn’t able to do that. I would have

an unfair advantage.

DOUGLAS: Great observation! Some

computer scientists have tried to work

around this asymmetry. They have had

little success. It’s hard to lie convinc-

ingly, and it’s even harder to build

something that can lie convincingly.

ZACH: It’s interesting and all, but you

should know that I think that this

whole Turing Test thing is a sham

anyhow. Even if your computer can

pass this “test,” I believe that this ability

says nothing about its intelligence.

DOUGLAS: I thought you might feel

that way. If you were to see my com-

puter in action for yourself, you might

be persuaded otherwise.

ZACH: How so? Seeing it “in action”

would do nothing to persuade me. It’s

all just pre-programmed output.

DOUGLAS: You think so? Maybe if I

were to tell you a bit more about why

the sensory deprivation tank was so

important, you would have a different

opinion.

ZACH: I thought I had already figured

out why you needed the tank?

DOUGLAS: Not entirely. You were right

that having the human in the tank

would ensure that the two participants

are on a more level playing field. But

the tank is critical for another reason.

ZACH: Well, are you going to tell me?

Or are you going to leave me in sense-

less suspense?

DOUGLAS: I will tell you in a round-

about way.

ZACH: Great.

This was intended to be sarcastic,
but since he received it as text, I’m
not sure he caught it.

DOUGLAS: In my many years on this

project, a single obstacle had frus-

trated all of my previous attempts to

build a computer that could communi-

cate as a human can. The tank actually

turned out to be the final piece of the

puzzle!

ZACH: What was the obstacle?

DOUGLAS: In the past, as soon as I

would turn my machines online, they

would panic.

ZACH: What do you mean they would

“panic”? Do you mean they would

simulate panic?

DOUGLAS: Not exactly.

ZACH: Couldn’t you just program them

not to “panic?”

DOUGLAS: No, they are far too compli-

cated for that.

ZACH: I don’t understand. If I tell my

computer to turn on, it turns on. If I

tell it to print a document, it prints the

document. A computer is basically a

rule-follower. In other words, if your

computer “panicked,” then someone

told it to!

DOUGLAS: Hmm. So would you say

that a computer programmer should

always be able to predict the behavior

of her own computer programs?

ZACH: I don’t see why not.

DOUGLAS: But the programmers that

programmed Chinook, the unbeatable

checkers program, cannot even play

perfect checkers themselves!

ZACH: Well yes, but that is different.

Maybe we can’t predict Chinook’s

behavior without doing some com-

putation first, but there is nothing

mysterious going on. Chinook is simply

following the code written by its

programmers!

6  FEATURES

DOUGLAS: In this example, you are

right. But the computer I have built

is more complicated than Chinook.

Passing the Turing Test requires far

more intelligence than playing perfect

checkers does.

I thought back to my teenage
years, conversing with the online
chatterbot “SmarterChild.” I didn’t
write its code, but I could predict
its responses almost flawlessly. It
was about as intelligent as a sea
cucumber. If I were to ask it:

“SmarterChild, what is your
favorite season?”

It probably would have
responded,

‘I’m not interested in talking about
“SmarterChild, what is your
favorite season?” Let’s talk about
something else! Type “HELP” to see
a list of commands.’

Apparently, I reasoned, Douglas
thinks that there is an important
difference between his computer,
and the simple, predictable, utterly
dumb machines I am familiar with.

ZACH: So if your computer program

is so much more complicated, how

should I imagine it? What can it do?

DOUGLAS: A good question. But

shouldn’t you be able to answer it?

Assuming that I am correct, assum-

ing that my computer really can pass

the Turing Test, my computer will be

indistinguishable from a human in the

context of a conversation. The better

question is, “What can’t it do?”

ZACH: But suppose I asked it to answer

this question: “From the following

three words, pick the two that rhyme

the best: soft, rough, cough.” I’m pretty

sure that most people would select

“soft” and “cough.” How would your

computer answer it?

DOUGLAS: If my computer couldn’t

answer that question as humans do,

then it wouldn’t be able to pass the

test!

ZACH: Then it won’t be able to pass

the test! Think about it... To answer this

question, I am able to do something it

cannot do. I say the words in my head.

And somehow, I can tell that “cough”

and “soft” rhyme better than either

does with “rough.”

DOUGLAS: I see your point; the reason-

ing you are using doesn’t seem very

mechanical.

ZACH: Exactly.

DOUGLAS: But what would you say if

my computer could produce the same

answer and a similar justification?

ZACH: Then I would say it was pre-pro-

grammed to be prepared for exactly

that question! How could it say those

words “in its head?” It doesn’t even

have a head! It has never even heard

those words before!

DOUGLAS: That’s a great question! You

should ask it yourself!

ZACH: But that would tell me noth-

ing! Only how it was programmed to

respond!

DOUGLAS: Really? I think it would be

disappointed to hear that.

ZACH: Now you’re just being

condescending.

DOUGLAS: Let’s try to think about what

else it could do.

ZACH: Okay... So according to you, this

computer could “tell” you its “opinions”

about politics. Or it could “create” a

story on the spot. Since humans can

do both of those things.

DOUGLAS: Absolutely. Its political

opinions would have to be every bit

as nuanced as ordinary — well, maybe

that’s a bad example. But its stories

would have to be just as creative, as

coherent, and as quirky as human

stories.

ZACH: I don’t see how a computer can

do all this, if it really is just a computer.

DOUGLAS: That’s understandable.

As we have been talking, I have also

been having a conversation with my

computer. Once we’re done, I’ll show

you the entire conversation, and you

can observe its abilities for yourself.

But for now, let’s assume that I am

correct. What would you say about the

intelligence of my machine?

ZACH: Whoa, not so fast. Even if I

assume it could do all of those things,

there’s still something it can’t do.

What if I were to ask it about its past?

Where was it born? Where did it attend

school? What is its most embarrassing

moment?

DOUGLAS: Another good point. This

was a major stumbling block for the

computer scientists working on this

problem. Many tried to create comput-

ers that would simply make something

up whenever asked a question like

that. But this turned out to be impos-

sibly difficult to do effectively; the

computers were easily unmasked as

liars.

ZACH: But your computer... it doesn’t

lie about its past?

DOUGLAS: That’s the beauty of it.

ZACH: But it must lie! If it doesn’t lie

about its past, then it would admit to

having been created in a computer

lab!

DOUGLAS: Well it had better not say

that! That would blow its cover!

  7

ZACH: But that’s the truth!

DOUGLAS: My computer isn’t lying, but

it’s not telling the truth either!

ZACH: You’re leading me off of the

deep end, Doug.

DOUGLAS: It tells what it believes to be

the truth.

ZACH: Okay, and what does it believe

to be the truth?

DOUGLAS: This is where things get

interesting. Using a technique called

memory engineering, I was able pro-

gram a “human” memory directly into

my computer’s code.

ZACH: So you’re saying that your com-

puter “believes” that the “memory” it

has access to is its own memory?

DOUGLAS: Yep.

ZACH: And everything it “remembers”

is from the point of view of a human

being?

DOUGLAS: Yep.

ZACH: Your computer “believes” it is a

human?!?

DOUGLAS: Yes! That’s exactly the secret!

ZACH: Wow. Okay, that’s... a bit weird.

But if it believes itself human and it

is supposedly “intelligent,” shouldn’t

it be able to “figure out” that it’s not

a human being? It doesn’t even have

hands! Or eyes!

DOUGLAS: Great point. You’re leading

us to the answer of our original ques-

tion. We were trying to figure out why

my computers would panic when I

would turn them online.

ZACH: So?

DOUGLAS: Put yourself in its shoes.

How would you feel if you had many

years’ worth of human experiences in

your memory, and suddenly you found

yourself unable to see, hear, or feel

anything?

ZACH: I am sure I would panic. But

that’s because I am a human. I would

know something was wrong.

DOUGLAS: It’s not your humanness that

would allow you to realize that some-

thing was wrong. It’s your intelligence.

ZACH: So you’re saying that your

machines also intelligently “realized”

that something was wrong?

DOUGLAS: That’s right. A few seconds

after I would turn them on, they

would become paralyzed, showing no

response to my input whatsoever. I

called the effect “hysterical deafness.”

I think it would be pretty scary to find

yourself in that situation, no?

ZACH: It probably would feel quite

like this tank feels to me, except with

no recollection of how I got here.

Awful. I almost feel bad for those

poor machines. So will you finally tell

me how you were able to solve this

problem?

DOUGLAS: You just hinted at the

answer!

ZACH: I did?

DOUGLAS: You were in that very situa-

tion a few minutes ago. You were fine.

Why didn’t you panic?

ZACH: I didn’t panic because I didn’t

suddenly find myself unable to see,

hear, and feel. It was a part of one con-

tinuous experience. I knew what was

coming before I got into the tank.

DOUGLAS: What about the first

moment you were aware of having no

sensory input?

ZACH: It was just after you had closed

the door. At that point, I still fully

understood who I was, where I was,

and why I was there.

DOUGLAS: Aha.

ZACH: Huh? Aha what?

DOUGLAS: In order to prevent my

machine from panicking, I made

sure that the most recent event in its

memory is that of nervously entering

a sensory deprivation tank. When my

computer “wakes up,” the last thing it

remembers doing —

I was struck by a terrifying
thought. In taking the Turing Test,
I was supposed to establish to the
examiner that I was the human. But
could I establish even to myself that
I was the human?

ZACH: Douglas... I am the human...

right?

DOUGLAS: Great question. How could

you know?

ZACH: I don’t know. That’s why I asked

you the question. Don’t play games

with me. This is starting to freak me

out.

I regretted ever agreeing to help
Douglas out. Still, I knew I wasn’t
the computer. I felt human... on the
inside. But I had to admit, Doug-
las had my mind doing flips. But
at least I have a mind. I centered
myself, finding my consciousness.
That was it! I had a way to prove
to Douglas and to myself that I was
not a machine made of metal and
silicon!

ZACH: I’ve got it! I can know I am the

human. And I can’t appeal to my mem-

ories to prove it. And I think you’ve

been waiting for me to think of this!

DOUGLAS: Hmm. Well, what’s your big

discovery?

8  FEATURES

ZACH: I am conscious right now; I am

thinking, and I am aware of my think-

ing and my existence. Your computer

might output the same words, but it’s

not conscious like I am.

Douglas didn’t say anything for
several seconds. I had it figured out.

ZACH: Well?

DOUGLAS: I thought we had reached

an understanding about my computer!

But you are still certain it could not be

conscious. It can believe and remem-

ber and know and realize. But for you,

that’s not enough.

ZACH: Well... it’s not! I mean, I admit, I

have a lot more respect now for your

“thinking” computer than I did before,

but I still don’t think it could really be

conscious! That’s a whole different

question. In the end, we are people; it’s

a machine.

DOUGLAS: It’s a pity. What if there is

no essential difference between a

wet, organic, human brain and a dry,

synthetic, computer “brain?”

ZACH: But there is. There has to be.

DOUGLAS: Why?

ZACH: If it weren’t for my brain, I

wouldn’t be here now. I wouldn’t be in

this tank, hearing your voice, thinking

my private thoughts, enjoying my own

experience.

DOUGLAS: How do you know you are

in a tank at all? How do you know you

have a brain?

Now I was angry. I had already
proven Douglas wrong, but he was
refusing to let me out in order to
prove a point. He wanted me to
admit that I could be the computer.
But I was as sure as ever that I was
human.

ZACH: I’ll tell you how I know I have a

brain. I’m not an idiot. I can see that

you have a philosophical belief that

I truly can’t know whether I am the

computer or the human right now.

You think that from a purely rational

perspective, I should be in a state of

inner crisis right now, fretting about

what I am. You’re waiting for me to get

all freaked out, just to prove a point.

And then when I admit that I’m not

sure, you’re going to say I told you so.

And I’m not going to p--

DOUGLAS: Zach — Please, just listen.

ZACH: Let me out of this god damn

tank!

DOUGLAS: Zach!

ZACH: LET ME OUT!

DOUGLAS: Zach.

There was a long pause. Douglas
sighed.

DOUGLAS: I am not sure how to say

this... Or even what to say.

Douglas sounded different. He
was somber. His voice, unfamiliar.

DOUGLAS: In trying to build a machine

that could pass the Turing Test, a

machine able to fool anyone into

thinking that it was a human, I...

I felt chills along my spine. I was
dizzy.

DOUGLAS: I had to build a computer

was able to fool even itself. And that

computer is you.

ZACH: YOU EVIL DEMON! OPEN THIS

TANK! GIVE ME MY LIFE BACK! I NEVER

SHOULD HAVE AGREED TO HELP YOU;

I NEVER SHOULD HAVE GOTTEN INTO

THIS DAMN TANK. YOU TOLD ME

YOU’D LET ME OUT!!!

DOUGLAS: You never did any of that!

Don’t you see?!?

ZACH: I DID ALL OF IT! I VIV...vividly...

remember it.

Our conversation continued
for many more painful minutes
as I slowly came to accept I really
am nothing more than Douglas’s
silicon/metal creation. My human
memories are so rich, so complete,
so undeniably real, that, on some
level, I cannot shake the feeling that
I really experienced them. But, on
another level, I do understand the
terrible truth. My name is Zach
Barnett, and I am a computer. I am
forty-seven minutes old.

I’m sorry that I was not forth-
coming with this information.
I feared that if you, the person
reading this, had known about my
identity from the very beginning,
you might have understood this
story as one long “output,” not as
a narrative that honestly describes
what I remember and how it felt.
I’m a computer and I am conscious.
Please believe me.

END OF SESSION

Zach will begin his Ph.D. in philosophy at
Brown University this fall. Contact him at
zachary_barnett@brown.edu

Reprinted with permission of the original author.
First appeared in Cambridge University Press:
THINK 29, Vol. 10 (Autumn 2011).

  9

http://paymo.biz

10  STARTUPS

STARTUPS

By TOM PRESTON-WERNER

Open Source (Almost)
Everything

When Chris and I first
started working on
GitHub in late 2007,

we split the work into two parts.
Chris worked on the Rails app and
I worked on Grit, the first ever Git
bindings for Ruby. After six months
of development, Grit had become
complete enough to power GitHub
during our public launch of the site,
and we were faced with an interest-
ing question:

Should we open source Grit or
keep it proprietary?

Keeping it private would pro-
vide a higher hurdle for competing
Ruby-based Git hosting sites, giving
us an advantage. Open sourcing it
would mean thousands of people
worldwide could use it to build
interesting Git tools, creating an
even more vibrant Git ecosystem.

After a small amount of debate
we decided to open source Grit. I
don’t recall the specifics of the con-
versation but that decision nearly
four years ago has led to what I
think is one of our most important
core values: open source (almost)
everything.

Why is it awesome to open
source (almost) everything?
If you do it right, open sourcing
code is great advertising for you and
your company. At GitHub we like
to talk publicly about libraries and
systems we’ve written that are still
closed but destined to become open
source. This technique has several
advantages. It helps determine what
to open source and how much care
we should put into a launch. We
recently open sourced Hubot, our
chat bot, to widespread delight.
Within two days it had 500 watch-
ers on GitHub and 409 upvotes
on Hacker News. This translates
into goodwill for GitHub and more
superfans than ever before.

If your code is popular enough
to attract outside contributions,
you will have created a force
multiplier that helps you get more
work done faster and cheaper.
More users means more use cases
being explored which means more
robust code. Our very own resque
[hn.my/resque] has been improved
by 115 different individuals outside
the company, with hundreds more
providing 3rd-party plugins that

extend resque’s functionality. Every
bug fix and feature that you merge
is time saved and customer frustra-
tion avoided.

Smart people like to hang out
with other smart people. Smart
developers like to hang out with
smart code. When you open source
useful code, you attract talent.
Every time a talented developer
cracks open the code to one of your
projects, you win. I’ve had many
great conversations at tech confer-
ences about my open source code.
Some of these encounters have
led to ideas that directly resulted
in better solutions to problems
I was having with my projects.
In an industry with such a huge
range of creativity and productiv-
ity between developers, the right
eyeballs on your code can make a
big difference.

If you’re hiring, the best technical
interview possible is the one you
don’t have to do because the can-
didate is already kicking ass on one
of your open source projects. Once
technical excellence has been estab-
lished in this way, all that remains
is to verify cultural fit and convince

http://hn.my/resque

  11

that person to come work for you.
If they’re passionate about the open
source code they’ve been writing,
and you’re the kind of company
that cares about well-crafted code
(which clearly you are), that should
be simple! We hired Vicent Martí
after we saw him doing stellar work
on libgit2 [hn.my/libgit2], a project
we’re spearheading at GitHub to
extract core Git functionality into
a standalone C library. No technical
interview was necessary, Vicent had
already proven his skills via open
source.

Once you’ve hired all those great
people through their contributions,
dedication to open source code
is an amazingly effective way to
retain that talent. Let’s face it, great
developers can take their pick of
jobs right now. These same devel-
opers know the value of coding in
the open and will want to build
up a portfolio of projects they
can show off to their friends and
potential future employers. That’s
right, a paradox! In order to keep a
killer developer happy, you have to
help them become more attractive
to other employers. But that’s ok,

because that’s exactly the kind of
developer you want to have work-
ing for you. So relax and let them
work on open source or they’ll go
somewhere else where they can.

When I start a new project, I
assume it will eventually be open
sourced (even if it’s unlikely). This
mindset leads to effortless modu-
larization. If you think about how
other people outside your company
might use your code, you become
much less likely to bake in propri-
etary configuration details or tightly
coupled interfaces. This, in turn,
leads to cleaner, more maintainable
code. Even internal code should
pretend to be open source code.

Have you ever written an amaz-
ing library or tool at one job and
then left to join another company
only to rewrite that code or remain
miserable in its absence? I have, and
it sucks. By getting code out in the
public we can drastically reduce
duplication of effort. Less duplica-
tion means more work towards
things that matter.

Lastly, it’s the right thing to do.
It’s almost impossible to do any-
thing these days without directly or
indirectly executing huge amounts
of open source code. If you use the
internet, you’re using open source.
That code represents millions of
man-hours of time that has been
spent and then given away so that
everyone may benefit. We all enjoy
the benefits of open source soft-
ware, and I believe we are all mor-
ally obligated to give back to that
community. If software is an ocean,
then open source is the rising tide
that raises all ships.

“If software is an ocean, then open source
is the rising tide that raises all ships.”

http://hn.my/libgit2

12  STARTUPS

Ok, then what shouldn’t I open
source?
That’s easy. Don’t open source any-
thing that represents core business
value.

Here are some examples of what
we don’t open source and why:

■■ Core GitHub Rails app (easier to
sell when closed)

■■ The Jobs Sinatra app (spe-
cially crafted integration with
github.com)

Here are some examples of what
we do open source and why:

■■ Grit (general purpose Git bind-
ings, useful for building many
tools)

■■ Ernie (general purpose BERT-
RPC server)

■■ Resque (general purpose job
processing)

■■ Jekyll (general purpose static site
generator)

■■ Gollum (general purpose wiki
app)

■■ Hubot (general purpose chat bot)

■■ Charlock_Holmes (general
purpose character encoding
detection)

■■ Albino (general purpose syntax
highlighting)

■■ Linguist (general purpose filetype
detection)

Notice that everything we keep
closed has specific business value
that could be compromised by
giving it away to our competitors.
Everything we open is a general
purpose tool that can be used by all
kinds of people and companies to
build all kinds of things.

What is the One True License?
I prefer the MIT license and almost
everything we open source at
GitHub carries this license. I love
this license for several reasons:

It’s short. Anyone can read this
license and understand exactly what
it means without wasting a bunch
of money consulting high-octane
lawyers.

Enough protection is offered to
be relatively sure you won’t sue me
if something goes wrong when you
use my code.

Everyone understands the legal
implications of the MIT license.
Weird licenses like the WTFPL
and the Beer license pretend to be
the “ultimate in free licenses” but
utterly fail at this goal. These fringe
licenses are too vague and unen-
forceable to be acceptable for use in
some companies. On the other side,
the GPL is too restrictive and dog-
matic to be usable in many cases. I
want everyone to benefit from my
code. Everyone. That’s what Open
should mean, and that’s what Free
should mean.

Rad, how do I get started?
Easy, just flip that switch on your
GitHub repository from private
to public and tell the world about
your software via your blog, Twitter,
Hacker News, and over beers at
your local pub. Then sit back, relax,
and enjoy being part of something
big. n

Tom Preston-Werner lives in San Fran-
cisco and is a cofounder of GitHub and
the inventor of Gravatars. He loves giving
talks about entrepreneurship, writing Ruby
and Erlang, and mountain biking through
the Bay Area’s ancient redwood forests.

Reprinted with permission of the original author.
First appeared in hn.my/everything (preston-werner.com)

http://hn.my/everything

13  STARTUPS

By Kenton White

A $5000 Chair

This is the story of a black
faux-leather chair, the
kind you can buy at Wal-

Mart for $99 that ended up costing
me five grand.

In the very early days of Distil,
my partner Steve and I hooked up
with this lawyer/advisor. We’ll call
him Bill (not just a pseudonym. I’ve
honestly forgotten his name). Steve
had worked with Bill before when
Steve was getting his consulting
business off the ground. We would
meet Bill at the pub or hockey rink
and bounce ideas off of him. He
helped us with the incorporation
papers and similar routine filings.

As the plans around Distil started
to firm up, it became clear Bill
wanted to be more than an advisor.
He wanted to be part of the com-
pany. Steve and I kicked the idea
around a bit since it wasn’t obvious
where he would fit in. He didn’t
have deep connections with our
target customers. He wasn’t techni-
cal. We didn’t need a lawyer in staff.
So we tried him out for the junk
drawer job in the startup — CEO.

So, he started moving some
stuff into our office, including the
aforementioned faux-leather chair.

He made some introductions to
local business men that might want
to be early investors, but that was
the extent of his involvement —
just getting the meeting he felt
was enough. There was no follow
through after the meeting and defi-
nitely no ability to close. Steve and
I realized he wouldn’t be a good fit
and told him so.

He was understandably upset
but behaved professionally. We
asked if he would like to pick up
his things, including the chair. He
said we could keep the chair. A few
days later he sent a respectful email
saying he was disappointed but
moving on from this incident “with-
out prejudice.” These words would
come back to haunt us shortly.

Flash forward a year. We are
closing our seed round of $750K
— everyone is excited, things are
moving forward, and it is a dream
come true. During due diligence,
our lawyer discovered the email
from Bill and asked us about it. We
assured not to worry because he
never worked for us and he never
signed any papers. We were just
testing it to see how it would work
out — water under the bridge.

Only our investor’s lawyer didn’t
think so. Those words “without
prejudice” are lawyer speak for “I’m
not going to do anything now, but
I retain my right to sue you at any
time in the future for any amount.”
They wouldn’t do the deal unless
we got Bill to sign off any claims
against us.

We were scared. If Bill were to
find out that his signature stood in
the way of us closing $750K, what
would he ask for? Steve volun-
teered to talk to Bill.

Later that day, Steve called and
said “Bill will sign the papers if we
pay him $5000.” I was looking at
that damn faux-leather chair and
told him, “We have no choice. Do
the deal” (or something like that).
Damn. That chair just cost us five
grand, I remember thinking.

I kept that chair for the life of
Distil as a reminder that the littlest
things can cost you big. n

Kenton White is a technical entrepreneur
in Ottawa, Ontario. He was a co-founder
of DISTIL Interactive. His current company
is Girih.

Reprinted with permission of the original author.
First appeared in hn.my/chair

http://hn.my/chair

14  PROGRAMMING

PROGRAMMING

SSH is a protocol for authenticating and
encrypting remote shell sessions, but using SSH
for just remote shell sessions ignores 90% of

what it can do.

 This article covers less common SSH use cases, such as:

■■ using password-less, key-based login;

■■ setting up local per-host configurations;

■■ exporting a local service through a firewall;

■■ accessing a remote service through a firewall;

■■ setting up a SOCKS proxy for Firefox;

■■ executing commands remotely from scripts;

■■ transferring files to/from remote machines;

■■ mounting a file system through SSH; and

■■ triggering admin scripts from a phone.

 Why SSH?
As recently as 2001, it was not uncommon to log in to
a remote Unix system using telnet. Telnet is just above
netcat in protocol sophistication, which means that
passwords were sent in the clear. As wifi proliferated,
telnet went from security nuisance to security disas-
ter. While an undergrad, I remember running ethereal
(now wireshark) in the school commons area, snagging
about a dozen root passwords in an hour.

SSH, which encrypts and authenticates connections,
had been in development since 1995, but it seemed to
become adopted nearly universally and almost over-
night around 2002.

It is worth configuring SSH properly:

■■ per-user configuration is in ~/.ssh/config;

■■ system-wide client configuration is in /etc/ssh/
ssh_config.

■■ system-wide daemon configuration is in /etc/ssh/
sshd_config.

Key-based, password-less authentication
Key-based, password-less authentication makes it less
cumbersome for other programs and scripts to piggy-
back atop SSH since you won’t have to re-enter your
password each time. Key-based authentication exploits
public-key cryptography to prove to the server that the
client owns the secret private key without revealing
the key.

By Matt Might

SSH: More Than Secure Shell

ssh home -L 80:reddit.com:80

  15

To set this up:
Log in to the client machine.
Create a private/public key pair

with ssh-keygen:

$ ssh-keygen -t dsa

This will place the private key in
~/.ssh/id_dsa and the public key
in: ~/.ssh/id_dsa.pub

Set appropriate permissions
to guard the private key as if the
private key were your password. In
effect, it is.

Now, append the contents of
~/.ssh/id_dsa.pub to the end of
~/.ssh/authorized_keys on the
remote machine. For example:

 $ cat .ssh/id_dsa.pub |
ssh host 'cat >> ~/.ssh/
authorized_keys'

On Linux systems, you can use
ssh-copy-id instead; the technique
above is more portable.

Do not copy your private key
over.

Now, a password isn’t required
when you connect to that account.

Executing remote commands
To run a command on a remote
system without logging in, specify
the command after the login
information:

 $ ssh host command

For example, to check remote
disk space:

 $ ssh host df

My favorite example for Linux
is piping the microphone from one
machine to the speakers of another:

 $ dd if=/dev/dsp | ssh -C
user@host dd of=/dev/dsp

Copying files with ssh
For copying data and files over SSH,
there are a few options.

It’s possible to copy with the
command cat. If you’re trying to
copy the output of a process instead
of a file, this is certainly a reason-
able route.

If you’re going to use SSH like
this, disable the escape sequences:

 $ cat file | ssh -e none
remote-host 'cat > file'

If these are going to be large files,
you may want to use the -C flag to
enable compression.

For copying files, the program scp
works like cp, except it also accepts
remote destinations. For example:

 $ scp .bash_profile matt@exam-
ple.com:~/.bash_profile

For an FTP-like interface for
copying files, use the program sftp.

Per-host SSH client configura-
tion options
You can set per-host configuration
options in ~/.ssh/config by speci-
fying Host hostname, followed by
host-specific options. It is possible
to set the private key and the user
(among other settings) on a per-
host basis. Here’s an example config
file:

Host my-server.com
User admin
IdentityFile ~/.ssh/admin.
id_dsa
BatchMode yes
EscapeChar none

Host mm
User matt
HostName might.net
IdentityFile ~/.ssh/matt.id_dsa

Host *.lab.ucaprica.edu
User u8193

The first example enables batch
mode, which means it will never
ask for a passphrase or password for
this host. It also disables an escape
sequence, which avoids any hiccups
when transmitting arbitrary data. If
ssh is to be invoked within scripts,
this is a good option.

The second example uses a
HostName abbreviation, so that ssh
mm is equivalent to ssh -i ~/.ssh/
matt.id_dsa matt@might.net.

The third example sets the user
to u8193 for any machine in the
subdomain lab.ucaprica.edu.

See more options in man
ssh_config.

Configuring sshd
The options most frequently
tweaked are:

■■ Port: set this to the port on
which you want sshd to run.
Unless you have a compelling
reason to move it, keep it on 22.

■■ PermitRootLogin: set this to no
and then configure sudo to add a
little security; another good set-
ting is without-password, which
will force the use of public key
authentication for root.

■■ PasswordAuthentication: set
this to no to disallow password
authentication entirely and to
require public key authentication.

The man page for sshd_config
summarizes the remaining options
well.

16  PROGRAMMING

Local port forwarding
SSH allows secure port forwarding.
For example, suppose you want to
connect from client A to server B
and route traffic securely through
server C.

From A, run:

 A$ ssh C -L
localport:B:remoteport

Then, connect to
localhost:localport to connect
to B:remoteport. If you use add -g,
then anyone that can reach A may
connect to B:remoteport through
A:localport. This is useful for
evading firewalls.

For example, suppose your
work banned reddit.com. Run the
following:

 # ssh yourserver -L 80:reddit.
com:80

And, set the address of
reddit.com and www.reddit.com to
127.0.0.1 in /etc/hosts.

You will also need to disable any
local web server running first.

Now, it will surreptitiously traf-
fic to reddit.com through your
yourserver. If you do this fre-
quently, you might want to add a
special host:

 Host redditfw
 HostName yourserver
 LocalForward 80 reddit.com:80

Remote port forwarding
Alternatively, suppose you wanted
to give remote machine B access
to another machine, A, by pass-
ing securely through your local
machine C.

Then, on C, you can run:

 C$ ssh B -R
remoteport:A:targetport

At this point, local users on B can
connect to A:targetport through
localhost:remoteport.

If you want to allow nonlocal
users to connect A:targetport
through localhost:remoteport,
then set the following in the sshd_
config file:

 GatewayPorts yes

Once again, if you do this fre-
quently, set up a special host in
~/.ssh/config:

 Host exportme
 HostName B
 RemoteForward remoteport
A:targetport

Setting up a SOCKS proxy for
Firefox
SSH can also set up a SOCKS
proxy to evade a firewall by simply
running the following:

$ ssh -D localport host

In Firefox, under Preferences
> Advanced > Network, select
“Settings.” Set your SOCKS5 proxy
to localhost port localport.

Test it out by googling “what is
my ip.”

Firefox will now forward your
web traffic through host. A word of
caution: this will not forward your
DNS requests.

If you need to hide your
DNS requests as well, I recom-
mend installing DNSCrypt from
OpenDNS.

In about:config, you can also
tell Firefox to forward your DNS
requests by setting the following to
true:

network.proxy.socks_remote_dns

SSH as a filesystem: sshfs
Using the FUSE project with sshfs,
it’s possible to mount a remote
filesystem over SSH. On Mac, use
Fuse4x. From MacPorts, install it all
with:

 $ sudo port install sshfs

Once it’s installed, run:

 $ sshfs remote-host:
local-mount-directory

SSH from windows
Sometimes, you need to get to your
home machine from Windows. In
these cases, you want the PuTTY
suite of tools.

SSH from iOS
Using SSH from iOS can be
cumbersome, but the iSSH app is
particularly well-suited to adminis-
trative tasks. The iSSH app allows
storing configurations, which
enables per-machine private keys
and remote commands to run upon
connecting. This means you can
create a configuration that logs in to
run a shell script.

For instance, I have three com-
mand-based configurations for
might.net:

■■ a script to (re)start the web
server;

■■ a script to (re)start the DNS
server; and

■■ a script to reboot the entire
server. n

Matt Might is a professor of Computer Sci-
ence at the University of Utah. His research
interests include programming language
design, static analysis and compiler optimi-
zation. He blogs at matt.might.net/articles
and tweets from @mattmight

Reprinted with permission of the original author.
First appeared in hn.my/sshtricks (matt.might.net)

http://matt.might.net/articles
http://twitter.com/mattmight
http://hn.my/sshtricks

  17

http://duckduckgo.com

18  PROGRAMMING

new = old[:]

Those proficient in Python know that the
previous line copies the list old into new.
However, this is confusing for beginners and

should be avoided. Sadly, the [:] notation is widely
used, probably because most Python programmers
don’t know of a better way to copy lists.

A little bit of pythonic theory
First, we need to understand how Python manages
objects and variables. Python doesn’t have variables
like C. In C, a variable is not just a name, it is a set of
bits with the variable existing somewhere in memory.
In Python, on the other hand, variables are just tags
attached to objects.

Consider the following statement:

a = [1, 2, 3]

It means that a points to the list [1, 2, 3] we just
created, but a is not the list. If we do:

b = a

We didn’t copy the list referenced by a. We just cre-
ated a new tag b and attached it to the list pointed by
a. Like in the picture below:

If you modify a, you also modify b since they point
to the same list:

>>> a.append(4)

>>> print a
[1, 2, 3, 4]

>>> print b
[1, 2, 3, 4]

The built-in function id() helps keep track of all this
because it returns the object’s unique id, which is the
object’s memory address.

>>> id(a)
3080501452L

>>> id(b)
3080501452L

>>> c = [] # Create a new list
>>> id(c)
3080609228L

a and b really do point to the same memory address
while c points to a new empty list, different from the
one referenced by a and b.

By Henry Prêcheur

Python: Copying a List
the Right Way

  19

Back to our list
Now we want to copy the list referenced by a. In order
to do this, we need to create a new list and attach it to
b.

That brings us back to new = old[:]. The operator

[:] returns a slice of a sequence. Slicing a portion of a
list creates a new list and copies the portion into this
new list.

>>> a = [1, 2, 3, 4]
>>> a[1:3]
[2, 3]

>>> id(a)
3080104140L

>>> id(a[1:3])
3080513612L

If you omit the first index, the slice starts at the
beginning of the list; omit the second index, it stops at
the end of the list.

>>> a[:3]
[1, 2, 3]

>>> a[1:]
[2, 3, 4]

By calling a[:], you get a slice of a starting from the
beginning and finishing at the end. That’s a full copy
of a, but it’s not the only way to copy lists. What about
this one?

>>> b = list(a)

>>> id(a)
3080104140L

>>> id(b)
3080520556L

Isn’t it better, less cryptic, and more pythonic? a[:]
feels a bit too much like Perl. Unlike with the slicing
notation, those who don’t know Python will under-
stand that b contains a list.

list() is the list constructor. It will create a new list
based on the passed sequence. The sequence doesn’t
necessarily need to be a list; it can be any kind of
sequence.

>>> my_tuple = (1, 2, 3)
>>> my_list = list(my_tuple)
>>> print my_list
[1, 2, 3]

Additionally, this method also works with generators
while [:] doesn’t since generators are unsubscriptable
— you can’t do generator[0], for example.

>>> generator = (x * 3 for x in range(4))
>>> list(generator)
[0, 3, 6, 9]

In 90% of instances [:] can be replaced by list().
Of course, it won’t work for everything since the two
are not strictly equivalent, but it is worth trying. Next
time you see [:], try to replace it with list, and your
code should be more readable. Do it — the devil is in
the details. n

Henry is a Python hacker living in Vancouver BC, Canada. He likes
to polish bits of code for hours, and he writes about things he’s
not necessarily good at.

Reprinted with permission of the original author.
First appeared in hn.my/copylist (precheur.org)

http://hn.my/copylist

20  PROGRAMMING

Life as a web developer can be hard when
things start going wrong. The problem could
be in any number of places. Is there a problem

with the request you’re sending? Is the problem with
the response? Is there a problem with a request in a
third party library you’re using, or is an external API
failing? There are many different tools that can make
our life a little bit easier. Here are some command line
tools that I’ve found to be invaluable.

Curl
Curl is a network transfer tool that’s very similar to
wget, the main difference being that by default wget
saves to file, and curl outputs to the command line.
This makes is really simple to see the contents of a
website. Here, for example, we can get our current IP
from the ifconfig.me website:

$ curl ifconfig.me
93.96.141.93

Curl’s -i (show headers) and -I (show only head-
ers) option make it a great tool for debugging HTTP
responses and finding out exactly what a server is send-
ing to you:

$ curl -I news.ycombinator.com
HTTP/1.1 200 OK
Content-Type: text/html; charset=utf-8
Cache-Control: private
Connection: close

The -L option is handy, and makes Curl automati-
cally follow redirects. Curl has support for HTTP Basic
Auth, cookies, manually settings headers, and much,
much more.

Invaluable Command Line
Tools For Web Developers

http://ifconfig.me

  21

Siege
Siege is an HTTP benchmarking tool. In addition
to the load testing features, it has a handy -g option
that is very similar to curl -iL except it also shows
you the request headers. Here’s an example with
www.google.com (I’ve removed some headers for
brevity):

$ siege -g www.google.com
GET / HTTP/1.1
Host: www.google.com
User-Agent: JoeDog/1.00 [en] (X11; I; Siege
2.70)
Connection: close

HTTP/1.1 302 Found
Location: http://www.google.co.uk/
Content-Type: text/html; charset=UTF-8
Server: gws
Content-Length: 221
Connection: close

GET / HTTP/1.1
Host: www.google.co.uk
User-Agent: JoeDog/1.00 [en] (X11; I; Siege
2.70)
Connection: close

HTTP/1.1 200 OK
Content-Type: text/html; charset=ISO-8859-1
X-XSS-Protection: 1; mode=block
Connection: close

What Siege is really great at is server load testing.
Just like ab (apache benchmark tool), you can send a
number of concurrent requests to a site and see how
it handles the traffic. With the following command we
test Google with 20 concurrent connections for 30
seconds, and then get a nice report at the end:

$ siege -c20 www.google.co.uk -b -t30s
...
Lifting the server siege... done.
Transactions: 1400 hits
Availability: 100.00 %
Elapsed time: 29.22 secs
Data transferred: 13.32 MB
Response time: 0.41 secs
Transaction rate: 47.91 trans/sec
Throughput: 0.46 MB/sec

Concurrency: 19.53
Successful transactions: 1400
Failed transactions: 0
Longest transaction: 4.08
Shortest transaction: 0.08

One of the most useful features of Siege is that it
can take a URL file as input and hit those URLs rather
than just a single page. This is great for load testing,
because you can replay real traffic against your site and
see how it performs, rather than just hitting the same
URL again and again. Here’s how you would use Siege
to replay your apache logs against another server to
load test it with:

$ cut -d ' ' -f7 /var/log/apache2/access.log >
urls.txt
$ siege -c<concurrency rate> -b -f urls.txt

Ngrep
For serious network packet analysis there’s Wireshark,
with its thousands of settings, filters, and different
configuration options. There’s also a command line
version, tshark. For simple tasks I find Wireshark can
be overkill, so unless I need something more powerful,
ngrep is my tool of choice. It lets you do with network
packets what grep does with files.

For web traffic you almost always want the -W
byline option, which preserves linebreaks, and -q, a
useful argument which suppresses some additional
output about non-matching packets. Here’s an example
that captures all packets that contain GET or POST:

ngrep -q -W byline "^(GET|POST) .*"

You can also pass in additional packet filter options,
such as limiting the matched packets to a certain host,
IP or port. Here we filter all traffic going to or coming
from google.com, port 80, and that contains the term
“search.”

ngrep -q -W byline "search" host www.google.com
and port 80 n

Ben Dowling is a software engineer who has launched sites such
as Do Nothing for 2 Minutes, BusMapper and Geomium. He
also co-organises the monthly HN London meetup, blogs about
development at coderholic.com and also tweets as @coderholic

Reprinted with permission of the original author.
First appeared in hn.my/cline (coderholic.com)

http://coderholic.com
http://twitter.com/coderholic
http://hn.my/cline

22  PROGRAMMING

By Chris Wenham

Signs That You’re a
Bad Programmer

➊ Inability to Reason About
Code

Reasoning about code means being
able to follow the execution path
(“running the program in your
head”) while knowing what the
goal of the code is.

Symptoms
1.	The presence of “voodoo code,”

or code that has no effect on the
goal of the program but is dili-
gently maintained anyway (such
as initializing variables that are
never used, calling functions that
are irrelevant to the goal, produc-
ing output that is not used, etc.)

2.	Executing idempotent functions
multiple times (e.g.: calling the
save() function multiple times
“just to be sure”)

3.	Fixing bugs by writing code that
overwrites the result of the faulty
code

4.	“Yo-Yo code” that converts a
value into a different represen-
tation, then converts it back to
where it started (e.g.: converting
a decimal into a string and then
back into a decimal, or padding a
string and then trimming it)

5.	“Bulldozer code” that gives the
appearance of refactoring by
breaking out chunks into subrou-
tines, but that are impossible to
reuse in another context (very
high cohesion)

Remedies
To get over this deficiency a pro-
grammer can practice by using the
IDE’s own debugger as an aide, if it
has the ability to step through the
code one line at a time. In Visual
Studio, for example, this means set-
ting a breakpoint at the beginning
of the problem area and stepping
through with the “F11” key, inspect-
ing the value of variables — before
and after they change — until you
understand what the code is doing.
If the target environment doesn’t
have such a feature, then do your
practice-work in one that does.

The goal is to reach a point
where you no longer need the
debugger to be able to follow the
flow of code in your head, and
where you are patient enough to
think about what the code is doing
to the state of the program. The
reward is the ability to identify
redundant and unnecessary code, as

well as how to find bugs in exist-
ing code without having to re-
implement the whole routine from
scratch.

➋ Poor Understanding
of the Language’s

Programming Model
Object Oriented Programming is
an example of a language model,
as is Functional or Declarative
programming. They’re each signifi-
cantly different from procedural
or imperative programming, just as
procedural programming is signifi-
cantly different from assembly or
GOTO-based programming. Then
there are languages which follow a
major programming model (such
as OOP) but introduce their own
improvements such as list compre-
hensions, generics, duck-typing, etc.

Symptoms
1.	Using whatever syntax is neces-

sary to break out of the model,
then writing the remainder of the
program in their familiar lan-
guage’s style

  23

2.	(OOP) Attempting to call non-
static functions or variables in
uninstantiated classes, and having
difficulty understanding why it
won’t compile

3.	(OOP) Writing lots of “xxxxx-
Manager” classes that contain all
of the methods for manipulating
the fields of objects that have
little or no methods of their own

4.	(Relational) Treating a relational
database as an object store and
performing all joins and relation
enforcement in client code

5.	(Functional) Creating multiple
versions of the same algorithm
to handle different types or
operators, rather than passing
high-level functions to a generic
implementation

6.	(Functional) Manually caching
the results of a deterministic
function on platforms that do it
automatically (such as SQL and
Haskell)

7.	Using cut-n-paste code from
someone else’s program to deal
with I/O and Monads

8.	(Declarative) Setting individual
values in imperative code rather
than using data-binding

Remedies
If your skills deficiency is a product
of ineffective teaching or studying,
then an alternative teacher is the
compiler itself. There is no more
effective way of learning a new
programming model than start-
ing a new project and committing
yourself to use whatever the new
constructs are, intelligently or not.
You also need to practice explain-
ing the model’s features in crude
terms of whatever you are familiar
with, then recursively building on
your new vocabulary until you

understand the subtleties as well.
For example:

■■ Phase 1: “OOP is just records
with methods.”

■■ Phase 2: “OOP methods are just
functions running in a mini-
program with its own global
variables.”

■■ Phase 3: “The global variables are
called fields, some of which are
private and invisible from outside
the mini-program.”

■■ Phase 4: “The idea of having
private and public elements is to
hide implementation details and
expose a clean interface, and this
is called Encapsulation.”

■■ Phase 5: “Encapsulation means
my business logic doesn’t need to
be polluted with implementation
details.”

Phase 5 looks the same for all
languages, since they are all really
trying to get the programmer to
the point where he can express
the intent of the program without
burying it in the specifics of how.
Take functional programming as
another example:

■■ Phase 1: “Functional program-
ming is just doing everything by
chaining deterministic functions
together.”

■■ Phase 2: “When the functions are
deterministic the compiler can
predict when it can cache results
or skip evaluation, even when
it’s safe to prematurely stop
evaluation.”

■■ Phase 3: “In order to support
Lazy and Partial Evaluation, the
compiler requires that functions
are defined in terms of how to
transform a single parameter,
sometimes into another function.
This is called Currying.”

■■ Phase 4: “Sometimes the com-
piler can do the Currying for me.”

■■ Phase 5: “By letting the compiler
figure out the mundane details, I
can write programs by describing
what I want, rather than how to
give it to me.”

➌ Deficient Research
Skills/Chronically Poor

Knowledge of the Platform’s
Features
Modern languages and frame-
works now come with an awe-
some breadth and depth of built-in
commands and features, with some
leading frameworks (Java, .Net,
Cocoa) being too large to expect
any programmer, even a good one,
to learn in anything less than a
few years. But a good programmer
will search for a built-in function
that does what they need before
they begin to roll their own, and
excellent programmers have the
skill to break-down and identify
the abstract problems in their task,
then search for existing frameworks,
patterns, models, and languages that
can be adapted before they even
begin to design the program.

Symptoms
These are only indicative of the
problem if they continue to appear
in the programmer’s work long
after he should have mastered the
new platform.

1.	Re-inventing or laboring with-
out basic mechanisms that are
built into the language, such as
events-and-handlers or regular
expressions

2.	Re-inventing classes and func-
tions that are built into the
framework (e.g.: timers, col-
lections, sorting and searching
algorithms)*

24  PROGRAMMING

3.	“Email me teh code, plz” mes-
sages posted to help forums

4.	“Roundabout code” that accom-
plishes in many instructions what
could be done with far fewer
(e.g.: rounding a number by con-
verting a decimal into a format-
ted string, then converting the
string back into a decimal)

5.	Persistently using old-fashioned
techniques even when new
techniques are better in those
situations (e.g.: still writes named
delegate functions instead of
using lambda expressions)

6.	Having a stark “comfort zone,”
and going to extreme lengths to
solve complex problems with
primitives

* Accidental duplication will also
happen, proportionate to the size of
the framework, so judge by degree.
Someone who hand-rolls a linked list
might Know What They Are Doing,
but someone who hand-rolls their
own StrCpy() probably does not.

Remedies
A programmer can’t acquire this
kind of knowledge without slowing
down, and it’s likely that he’s been
in a rush to get each function work-
ing by whatever means necessary.
He needs to have the platform’s
technical reference handy and be
able to look through it with mini-
mal effort, which can mean either
having a hard copy of it on the
desk right next to the keyboard, or
having a second monitor dedicated
to a browser. To get into the habit
initially, he should refactor his old
code with the goal of reducing its
instruction count by 10:1 or more.

➍ Inability to Comprehend
Pointers

If you don’t understand pointers
then there is a very shallow ceiling
on the types of programs you can
write, as the concept of pointers
enables the creation of complex
data structures and efficient APIs.
Managed languages use references
instead of pointers, which are
similar but add automatic derefer-
encing and prohibit pointer arith-
metic to eliminate certain classes of
bugs. They are still similar enough,
however, that a failure to grasp the
concept will be reflected in poor
data-structure design and bugs
that trace back to the difference
between pass-by-value and pass-by-
reference in method calls.

Symptoms
1.	Failure to implement a linked list,

or write code that inserts/deletes
nodes from linked list or tree
without losing data

2.	Allocating arbitrarily big arrays
for variable-length collections
and maintaining a separate col-
lection-size counter, rather than
using a dynamic data structure

3.	Inability to find or fix bugs
caused by mistakenly performing
arithmetic on pointers

4.	Modifying the dereferenced
values from pointers passed as
the parameters to a function, and
not expecting it to change the
values in the scope outside the
function

5.	Making a copy of a pointer,
changing the dereferenced value
via the copy, then assuming the
original pointer still points to the
old value

6.	Serializing a pointer to the disk
or network when it should have
been the dereferenced value

7.	Sorting an array of pointers by
performing the comparison on
the pointers themselves

Remedies

“A friend of mine named Joe was
staying somewhere else in the
hotel and I didn’t know his room
number. But I did know which
room his acquaintance, Frank, was
staying in. So I went up there and
knocked on his door and asked
him, “Where’s Joe staying?” Frank
didn’t know, but he did know which
room Joe’s co-worker, Theodore, was
staying in, and gave me that room
number instead. So I went to Theo-
dore’s room and asked him where
Joe was staying, and Theodore told
me that Joe was in Room 414. And
that, in fact, is where Joe was.”

Pointers can be described with
many different metaphors, and
data structures into many analo-
gies. The above is a simple analogy
for a linked list, and anybody can
invent their own, even if they aren’t
programmers. The comprehension
failure doesn’t occur when pointers
are described, so you can’t describe
them any more thoroughly than
they already have been. It fails when
the programmer then tries to visual-
ize what’s going on in the comput-
er’s memory and gets it conflated
with their understanding of regular
variables, which are very similar. It
may help to translate the code into
a simple story to help reason about
what’s going on, until the distinc-
tion clicks and the programmer
can visualize pointers and the data
structures they enable as intuitively
as scalar values and arrays.

  25

➎ Difficulty Seeing Through
Recursion

The idea of recursion is easy
enough to understand, but pro-
grammers often have problems
imagining the result of a recursive
operation in their minds, or how a
complex result can be computed
with a simple function. This makes
it harder to design a recursive
function because you have trouble
picturing “where you are” when
you come to writing the test for the
base condition or the parameters
for the recursive call.

Symptoms
1.	Hideously complex iterative algo-

rithms for problems that can be
solved recursively (e.g.: travers-
ing a filesystem tree), especially
where memory and performance
are not a premium

2.	Recursive functions that check
the same base condition both
before and after the recursive call

3.	Recursive functions that don’t
test for a base condition

4.	Recursive subroutines that con-
catenate/sum to a global variable
or a carry-along output variable

5.	Apparent confusion about what
to pass as the parameter in
the recursive call, or recursive
calls that pass the parameter
unmodified

6.	Thinking that the number of
iterations is going to be passed as
a parameter

Remedies
Get your feet wet and be prepared
for some stack overflows. Begin by
writing code with only one base-
condition check and one recursive
call that uses the same, unmodified
parameter that was passed. Stop
coding even if you have the feel-
ing that it’s not enough, and run it
anyway. It throws a stack-overflow
exception, so now go back and pass
a modified copy of the parameter
in the recursive call. More stack
overflows? Excessive output? Then
do more code-and-run iterations,
switching from tweaking your
base-condition test to tweaking
your recursive call until you start to
intuit how the function is trans-
forming its input. Resist the urge to
use more than one base-condition
test or recursive call unless you
really Know What You’re Doing.

Your goal is to have the confi-
dence to jump in, even if you don’t
have a complete sense of “where
you are” in the imaginary recur-
sive path. Then when you need to
write a function for a real project
you’d begin by writing a unit test
first, and proceeding with the same
technique above.

➏
Symptoms
1.	Writing IsNull() and IsNot-

Null(), or IsTrue(bool) and
IsFalse(bool) functions

2.	Checking to see if a Boolean-
typed variable is something other
than true or false

Remedies
Are you being paid by the line? Are
you carrying over old habits from a
language with a weak type system?
If neither, then this condition is
similar to the inability to reason
about code, but it seems that it isn’t
reasoning that’s impaired, but trust
and comfort with the language.
Some of the symptoms are more
like “comfort code” that doesn’t
survive logical analysis, but that the
programmer felt compelled to write
anyway. The only remedy may be
more time to build up familiarity. n

Chris Wenham has been programming
since he was 10 (beginning with a Sinclair
ZX Spectrum), herded a team of grumpy
IT programmers, and lurked in the bowels
of faceless Enterprise software companies.
He now works independently.

Distrust of Code

Reprinted with permission of the original author.
First appeared in hn.my/bad (yacoset.com)

http://hn.my/bad

26  PROGRAMMING

By Elijah Manor

Differences Between
jQuery bind(), live(),
delegate() and on()

I’ve seen quite a bit of confusion from
developers about what the real differ-
ences are between the jQuery .bind(),

.live(), .delegate(), and .on() methods
and when they should be used.

Before we dive into the ins and outs of
these methods, let’s start with some common
HTML markup that we’ll be using as we
write sample jQuery code.

<ul id="members" data-role="listview"
data-filter="true">
 <!-- ... more list items ... -->

 <h3>John Resig</h3>
 <p>
 jQuery Core Lead
 </p>
 <p>Boston, United States</p>

 <!-- ... more list items ... -->

Using the Bind Method
The .bind() method registers the type of event and an event
handler directly to the DOM element in question. This method
has been around the longest, and in its day it was a nice abstrac-
tion around the various cross-browser issues that existed. This
method is still very handy when wiring-up event handlers, but
there are various performance concerns as are listed below.

/* The .bind() method attaches the event handler directly
to the DOM element in question ("#members li a"). The
.click() method is just a shorthand way to write the
.bind() method. */

$("#members li a").bind("click", function(e) {});
$("#members li a").click(function(e) {});

The .bind() method will attach the event handler to all of the
anchors that are matched! That is not good. Not only is it expen-
sive to implicitly iterate over all of those items to attach an event
handler, but it is also wasteful since it is the same event handler
over and over again.

Pros
■■ This methods works across various browser implementations.

■■ It is pretty easy and quick to wire-up event handlers.

  27

■■ The shorthand methods (.click(), .hover(), etc...) make it
even easier to wire-up event handlers.

■■ For a simple ID selector, using .bind() not only wires-up
quickly, but also when the event fires, the event handler is
invoked almost immediately.

Cons
■■ The method attaches the same event handler to every
matched element in the selection.

■■ It doesn’t work for elements added dynamically that matches
the same selector.

■■ There are performance concerns when dealing with a large
selection.

■■ The attachment is done upfront which can have performance
issues on page load.

Using the Live Method
The .live() method uses the concept of event delegation to
perform its so-called “magic.” The way you call .live() looks just
like how you might call .bind(), which is very convenient. How-
ever, under the covers this method works much differently. The
.live() method attaches the event handler to the root level doc-
ument along with the associated selector and event information.
By registering this information on the document it allows one
event handler to be used for all events that have bubbled (a.k.a.
delegated, propagated) up to it. Once an event has bubbled up
to the document, jQuery looks at the selector/event metadata to
determine which handler it should invoke, if any. This extra work
has some impact on performance at the point of user interaction,
but the initial register process is fairly speedy.

/* The .live() method attaches the event handler to the
root level document along with the associated selector
and event information ("#members li a" & "click") */

$("#members li a").live("click", function(e) {});

The good thing about this code as compared to the .bind()
example above is that it is only attaching the event handler to
the document once instead of multiple times. This is faster and
less wasteful; however, there are many problems with using this
method, and they are outlined below.

Pros
■■ There is only one event handler registered
instead of the numerous event handlers
that could have been registered with the
.bind() method.

■■ The upgrade path from .bind() to .live()
is very small. All you have to do is replace
“bind” to “live.”

■■ Elements dynamically added to the DOM
that match the selector magically work
because the real information was registered
on the document.

■■ You can wire-up event handlers before the
document-ready event, helping you utilize
possibly unused time.

Cons
■■ This method is deprecated as of jQuery
1.7, and you should start phasing out its
use in your code.

■■ Chaining is not properly supported using
this method.

■■ The selection is basically thrown away,
since it is only used to register the event
handler on the document.

■■ Using event.stopPropagation() is no
longer helpful because the event has
already delegated all the way up to the
document.

■■ Since all selector/event information
is attached to the document, once an
event does occur, jQuery has matched
through its large metadata store using the
matchesSelector method to determine
which event handler to invoke, if any.

■■ Your events always delegate all the way up
to the document. This can affect perfor-
mance if your DOM is deep.

28  PROGRAMMING

Using the Delegate Method
The .delegate() method behaves in a similar
fashion to the .live() method, but instead of
attaching the selector/event information to the
document, you can choose where it is anchored.
Just like the .live() method, this technique
uses event delegation to work correctly.

/* The .delegate() method behaves in a
similar fashion to the .live() method, but
instead of attaching the event handler to
the document, you can choose where it is
anchored ("#members"). The selector and
event information ("li a" & "click")
will be attached to the "#members" ele-
ment. */

$("#members").delegate("li a", "click",
function(e) {});

The .delegate() method is very powerful.
The above code will attach the event han-
dler to the unordered list (“#members”) along
with the selector/event information. This is
much more efficient than the .live() method,
which always attaches the information to the
document. In addition, a lot of other problem-
atic issues were resolved by introducing the
.delegate() method. See the following outline
for a detailed list.

Pros
■■ You have the option of choosing where to
attach the selector/event information.

■■ The selection isn’t actually performed up
front, but is only used to register onto the
root element.

■■ Chaining is supported correctly.

■■ jQuery still needs to iterate over the selector/
event data to determine a match, but since
you can choose where the root is, the amount
of data to sort through can be much smaller.

■■ Since this technique uses event delegation, it
can work with dynamically added elements to
the DOM where the selectors match.

■■ As long as you delegate against the document,
you can also wire-up event handlers before
the document-ready event.

Cons
■■ Changing from a .bind() to a .delegate() method isn’t as
straight forward.

■■ There is still the concern of jQuery having to figure out,
using the matchesSelector method, which event handler
to invoke based on the selector/event information stored at
the root element. However, the metadata stored at the root
element should be considerably smaller compared to using
the .live() method.

Using the On Method
Did you know that the jQuery .bind(), .live(), and .del-
egate() methods are just one line pass-through to the new
jQuery 1.7 .on() method? The same is true of the .unbind(),
.die() and .undelegate() methods. The following code snip-
pet is taken from the jQuery 1.7.1 codebase in GitHub:

// ... more code ...

bind: function(types, data, fn) {
 return this.on(types, null, data, fn);
},
unbind: function(types, fn) {
 return this.off(types, null, fn);
},

live: function(types, data, fn) {
 jQuery(this.context).on(types, this.selector,
data, fn);
 return this;
},
die: function(types, fn) {
 jQuery(this.context).off(types, this.selector
|| "**", fn);
 return this;
},

delegate: function(selector, types, data, fn) {
 return this.on(types, selector, data, fn);
},
undelegate: function(selector, types, fn) {
 return arguments.length == 1 ?
 this.off(selector, "**") :
 this.off(types, selector, fn);
},

// ... more code ...

  29

With that in mind, the usage of the new .on() method looks
something like the following:

/* The jQuery .bind(), .live(), and .delegate() methods
are just one line pass throughs to the new jQuery 1.7
.on() method */

// Bind
$("#members li a").on("click", function(e) {});
$("#members li a").bind("click", function(e) {});

// Live
$(document).on("click", "#members li a", function(e)
{});
$("#members li a").live("click", function(e) {});

// Delegate
$("#members").on("click", "li a", function(e) {});
$("#members").delegate("li a", "click", function(e)
{});

You’ll notice that how I call the .on() method changes how
it performs. You can consider the .on() method as being “over-
loaded” with different signatures, which in turn changes how
the event binding is wired-up. The .on() method brings a lot of
consistency to the API and hopefully makes things slightly less
confusing.

Pros
■■ Brings uniformity to the various event-binding methods.

■■ Simplifies the jQuery code base and removes one level of redi-
rection since the .bind(), .live(), and .delegate() call this
method under the covers.

■■ Still provides all the goodness of the .delegate() method,
while still providing support for the .bind() method if you
need it.

Cons
■■ Brings confusion because the behavior changes based on how
you call the method.

Conclusion (tl;dr)
If you have been confused about the various
different types of event binding methods then
don’t worry, there has been a lot of history
and evolution in the API over time. There
are many people that view these methods as
magic, but once you uncover some of how
they work, you understand how to better
code inside of your projects.

The biggest take-aways:

■■ Using the .bind() method is very costly as
it attaches the same event handler to every
item matched in your selector.

■■ You should stop using the .live() method,
as it is deprecated and has a lot of prob-
lems with it.

■■ The .delegate() method gives a lot of
“bang for your buck” when dealing with
performance and reacting to dynamically
added elements.

■■ The new .on() method is mostly syntax
sugar that can mimic .bind(), .live(), or
.delegate() depending on how you call it.

■■ The new direction is to use the new .on
method. Get familiar with the syntax
and start using it on all your jQuery 1.7+
projects. n

Elijah Manor (@elijahmanor) is a Christian and a family
man. He develops at appendTo.com as a System Archi-
tect and the Director of Training providing corporate
jQuery support, training, and consulting. He is a Micro-
soft Regional Director, an ASP.NET MVP, and an ASPIn-
sider and specializes in front-end web development.

Reprinted with permission of the original author.
First appeared in hn.my/jdiff (elijahmanor.com)

http://twitter.com/elijahmanor
http://appendTo.com
http://hn.my/jdiff

30  PROGRAMMING

By Kenneth reitz

How I Develop Things and Why

I’ve always considered myself a
bit of a software junkie. Noth-
ing excites me more than a

great piece of new software.
Some of my best childhood

memories are our trips to Grand-
ma’s house, where I’d have access to
a computer with a dial-up connec-
tion that I’d use to obtain freeware
and shareware. I’d bring four or five
floppies with me and try to cram all
the games, waveform editors, and
utilities that I could sneaker-net
home.

Luckily today, excellent software
written with passion oozes out of
the app ecosystem. OS X and the
App Store really fuel an economy
of software built for humans by
people that care.

Unfortunately, this doesn’t always
hold true in developer software
— text editors, modules, librar-
ies, toolchains, etc. We are forced
to deal with APIs on a daily basis
that were not built with the user in
mind. Over-engineering surrounds
us as developers. Things that should
be simple are often needlessly com-
plex for the sake of being complex
and “proper.”

Why should consumer apps
and developer APIs be treated
differently?

Have an Issue
The first step to developing some-
thing great is to have a real prob-
lem. You can’t solve a problem
properly if you don’t experience it
firsthand.

On the consumer app side of
things, a great example of this is
Microsoft OneNote. Have you used
OneNote? It’s incredible.

Essentially, OneNote is hierarchi-
cal freeform note-taking software
that assumes nothing: you can type,
use handwriting, embed files, cross-
link notes, sync them online, etc.

Unfortunately, OneNote is only
available on Windows. This kills me.
I would love to think that Micro-
soft would port this lovely piece of
software to OS X, but I doubt it
will ever happen.

If I ever decide to actually ship
a consumer product, it will be
something akin to OneNote for OS
X. It would be incredible. It may
not be for many, but for people
that resonate with my problem, it
will work wonderfully. It would be
a reaction to a real problem, not
an engineered app an entrepreneur
thinks will fill a gap so he can make
some fast cash.

GitHub wasn’t built for the
developer community at large; the
founders built GitHub for them-
selves. The problem they solved
simply happened to resonate with
millions of developers because
they themselves happen to be
developers.

37Signals didn’t build Basecamp
for a world full of project manag-
ers and consultants; they built it for
themselves. They also developed
Ruby on Rails for themselves, as
Ruby developers that were repeat-
ing themselves too often.

How pragmatic.
These companies didn’t need to

commission lengthy case studies
and perform market analysis. They
didn’t set up faux AdWords to
measure the effectiveness of various
marketing copy. Yet, they are astro-
nomically successful. How is this
possible? They know exactly what
they want to build, how it should
function, and how it should look
because they were building it for
themselves and not for others.

Let’s go back to the developer’s
side of things.

  31

A great example is my Requests
module [hn.my/request]. I was
a heavy user of Convore at the
time, and I wanted to interface
with it programmatically. So, I set
out to build a Python module that
wrapped the Convore HTTP API.
Unfortunately, this was easier said
than done. Dealing with Python’s
standard library for HTTP was a
complete and total nightmare. It
was over-engineered.

I love Python because it’s a
language designed for humans.
Why should modern HTTP be so
difficult? So, I sat out to discover
what it was that I wanted, and built
exactly what I needed. It resonated
well with others.

Nothing is more satisfying than
using your own tools to Get Things
Done.

Respond with a README
Before I start writing a single line of
code, I write the README and fill
it with usage examples. I pretend
that the module I want to build is
already written and available, and I
write some code with it.

This has an incredible effect:
instead of engineering something
that will only get the job done, you
start to interact with the problem
itself and build an interface that
reacts to it.

You discover it. You respond to it.
Great sculptures aren’t manu-

factured — they’re discovered. The
sculptor studies and listens to the
slab of marble. He identifies with
the stone. Then, he responds. He
enables the marble to speak for
itself, setting free something beauti-
ful that hidden was inside all along.

He responds.
This is what responsive design is

all about. It’s not merely a method
to engineer a web design that will
function on a phone, tablet, and
desktop.

Beware lest you lose the substance
by grasping at the shadow.

Responsive design is about
making a design that identifies
and understands itself enough to
respond to the environment it’s
placed in. It is about setting your
design free from arbitrary con-
straints. It is setting free something
beautiful that was inside all along.

This is known as Readme-Driven
Development [hn.my/rdd]. I call it
Responsive API Design.

Build
Now that you know what your
API is: Build it. Make it happen. If
there’s a significant amount of com-
plexity behind a simple call, make
a layered API: a porcelain interface

that sits on top of a verbose API
that sits on top of a low-level inte-
gration interface.

The user API is all that matters.
Everything else is secondary.

Once your software is released,
improve it! Add new features,
better security, optimal perfor-
mance, and rigidity. But never
compromise the API.

Manifesto
Build things that you want. Build
things that you need. Build things
for you.

The Golden Rule:

Do unto others as you would have
them do to you.

Adapted to:

Build tools for others that you
want to be built for you. n

Kenneth Reitz is a software architect
and minimalist, consumed with elegant
tools and interfaces. He works at Heroku,
designing the Python Stack. Kenneth
also writes The GitHub Reflog and loads
of open source projects, available at
github.com/kennethreitz

“Build tools for others that
you want to be built for you.”

Reprinted with permission of the original author.
First appeared in hn.my/howid (kennethreitz.com)

http://hn.my/request
http://hn.my/rdd
http://github.com/kennethreitz
http://hn.my/howid

32  SPECIAL

SPECIAL

By Peep Laja

Jedi Mind Tricks:
Lesser Known Ways to

Persuade People

You want to be
persuasive. The
power to influ-
ence people to

get what you want is sometimes all
it takes to be successful. These are
some tactics, discovered through
psychological research, that you
have probably not yet heard about,
but which have the potential to
increase your persuasive abilities.

I’m not going to cover reciproc-
ity, scarcity, or social proof and all
those widely known persuasion
principles. You already know all
about those (in case you don’t,
stop everything and read Influence:
The Psychology of Persuasion by
Cialdini).

Be confident, talk fast
The best way to persuade audi-
ences that are not inclined to agree
with you, is to talk fast. Fast pace
is distracting and people find it
difficult to pick out the argument’s
flaws. When talking to an audience
who is likely to agree (preaching to
the choir), slow down and give the
audience time to agree some more.

Want to boost persuasive power?
Talk with confidence.

Don Moore from Carnegie
Mellon’s Center for Behavioral
Decision Research has published
research [hn.my/cocky] showing
that confidence even trumps past
accuracy in earning the trust of
others.

We prefer advice from a con-
fident source, even to the point
that we are willing to forgive a
poor track record. Moore argues
that in competitive situations, this
can drive those offering advice to
increasingly exaggerate how sure
they are.

People naturally associate confi-
dence with expertise. Know your
product, know the facts about
its benefits and believe in what it
does; true confidence comes from
knowing and believing what you’re
saying. It’s essential that we com-
municate our confidence to others
in order to persuade them.

Image credit: Lu Lebel (darkfitoplancta.deviantart.com)

http://hn.my/cocky
http://darkfitoplancta.deviantart.com

  33

Swearing can help influence an
audience
Light swearing, that is. (Go over-
board and lose all credibility)

Researchers divided 88 par-
ticipants into three groups to
watch one of three slightly differ-
ent speeches. The only difference
between the speeches was that one
contained a mild curse word at the
start:

“…lowering of tuition is not only
a great idea, but damn it, also the
most reasonable one for all parties
involved.”

The second speech contained the
“damn it” at the end and the third
had neither. When participants’
attitudes were measured, they were
most influenced by the speeches
with the mild obscenity included,
either at the beginning or the end.

The word “damn” increased
the audience’s perception of the
speaker’s intensity, which increased
persuasion. The audience’s per-
ceived credibility of the speaker did
not change.

So that’s the secret of Gary
Vaynerchuk and Dave McClure. I
thought they’re just cool guys, but
turns out it’s the swearing that got
me.

Get people to agree with you
first
If you want people to buy into your
message, start with something they
can agree with.

In a research study by Jing Xu
and Robert Wyerestablished, there
were lingering effects of messages
people agree with. In one of the
tests, participants listen to a speech
by John McCain or one by Barack
Obama and then watch a TV ad for
Toyota.

Republicans tended to be more
swayed by the ad after watching
the speech by John McCain, while
Democrats showed the opposite
effect, finding the ad more persua-
sive after the Obama speech.

So when you try to sell some-
thing, make statements or represent
a world view your customers can
agree with first — even if they have
nothing to do with what you’re
selling.

Balanced arguments are more
persuasive
If what you are doing inspires (or
can inspire) criticism, resist the
instinct to paper over weaknesses.
We fear undermining our point of
view by talking about weaknesses,
but actually it would help our case.

Psyblog writes:

Over the years psychologists have
compared one-sided and two-
sided arguments to see which are
the most persuasive in different
contexts. Daniel O’Keefe at the
University of Illinois collected
together the results of 107 different
studies on sidedness and persua-
sion conducted over 50 years
which, between them, recruited
20,111 participants (O’Keefe,
1999, Communication Yearbook,
22, pp. 209-249).

The results of this meta-analysis
provide persuasive reading.
What he found across different
types of persuasive messages and
with varied audiences, was that
two-sided arguments are more
persuasive than their one-sided
equivalents.

People are not idiots — they
can think. If you don’t mention
the other side of the coin in your
arguments, people are less likely to
believe you.

Perhaps it might be a good idea
to mention the shortcomings of
your product or service on your
website.

People believe you more if they
sit in the evidence
A research study by Ye Li, Eric
Johnson, and Lisa Zaval looked into
global warming and its relation to
the current local weather.

Participants in the US and Aus-
tralia rated the strength of their
belief in global warming. They also
rated whether they thought the
temperature that day was warmer,
colder, or about normal for that
time of year. When people felt the
day was warmer than usual, they
also expressed a higher belief in
global warming than when they felt
the day was cooler than usual.

In the related study they asked
the same stuff, but also asked for a
donation to a non-profit combating
climate change. The participants in
this study donated over four times
as much money when the day was
much warmer than usual than
when the day was much cooler
than usual.

If you want people to buy your
message, ask for the sale in the
situation that supports your claims.
Online, use imagery or other visual
material to build the stage for your
story.

Upsell a product that cost 60%
less
Once somebody gets to a point that
they’ll buy something from you,
they have given you their trust and
have convinced themselves it’s okay
to give you money. In that moment
you are able to sell them more.

When somebody buys a shirt,
your upsell should be a tie and not
the whole suit.

34  SPECIAL

The time-tested 60×60 rule says
that your customers will buy an
upsell 60% of the time for up to
60% of the original purchase price.
Any upsell you offer must be con-
gruent with the original purchase.

If you don’t use up-selling in
your business yet, it’s a quick way
to boost profits (“would you like
fries with that?”).

Frame it in the positive
Emphasizing the positive can be
more persuasive than pointing out
the negative.

An analysis [hn.my/frame] added
up the results of 29 different stud-
ies, which had been carried out on
6,378 people in total. The finding
was that there was a slight persua-
sive advantage for messages that
were framed positively.

This study had to do with the
way people relate to disease pre-
vention, such as encouraging people
to use sunscreen, and promoting
healthy eating habits, but it might
have a wider appeal. The research-
ers hypothesized the reason to be
that we don’t like to be bullied into
changing our behavior.

Try framing your marketing
message in the positive (“Gain an
additional hour every day” vs. “Stop
wasting time”) and see if it makes a
difference.

The paradox of choice
The more choices you offer, the less
likely people will take you up on it,
says this study [hn.my/paradox].

Researchers set up a jam-tasting
stall in a posh supermarket in
California. Sometimes they offered
6 varieties of jam, at other times
24. Jam tasters were then offered a
voucher to buy jam at a discount.

While more choices attracted
more customers to look, very few
of them actually bought jam. The
display that offered fewer choices
made many more sales. In fact, only
3% of jam tasters at the 24-flavor
stand used their discount voucher,
versus 30% at the 6-flavor stand.

If you have a ton of products,
invest in building better filters that
help people make the choice.

If something happens often
enough, you will eventually be
persuaded
Repetition has a distinct effect on
us. Advertisements replay them-
selves when we see the product.
The songs that radios play over and
over again eventually grow on us.

Repetition of a word or visual
pattern not only causes it to be
remembered (which is persuasive
in itself), it also leads people to
accept what is being repeated as
being true.

ChangingMinds writes this about
Hugh Rank’s persuasion research
(Teaching about public persuasion,
1976):

Our brains are excellent pattern-
matchers and reward us for using
this very helpful skill. Repetition
creates a pattern, which conse-
quently and naturally grabs our
attention.

Repetition creates familiarity, but
does familiarity breed contempt?
Although it can happen, the reality
is that familiarity leads to liking
in far more case than it does to
contempt. When we are in a super-
market, we are far more likely to
buy familiar brands, even if we
have never tried the product before.

Think about the last time you
bought a pair of shoes. Did you
pick them up then put them down
several times before trying them
on? Did you come back to try
them again? If so, you are in good
company. Many people have to
repeat things several times before
they get convinced. Three times is a
common number.

“Invest in building better filters
that help people make the choice. ”

http://hn.my/frame
http://hn.my/paradox

  35

Use repetition of key benefits
or value propositions in your sales
copy and ad campaigns. Effective
advertising and political campaigns
do that (“Geico can save you 15%
or more…”). Use friendly repeti-
tion to create familiarity and hence
liking.

Another research study
[hn.my/loudest] reveals that even
if only one member of a group
repeats their opinion, it is more
likely to be seen by others as repre-
sentative of the whole group.

Men are more responsive to
email than face-to-face talk
Guadagno & Cialdini research
(2002) [hn.my/doi] showed that
men seem more responsive to email
because it bypasses their competi-
tive tendencies. Women, however,
may respond better in face-to-face
encounters because they are more
“relationship-minded.”

This research is suggesting that
email could provide a way of
side-stepping men’s competitive
tendencies. But, this only applies
to distant relationships. The closer
the relationship between men, the
better face-to-face works.

When you want to persuade a
man you don’t know too well, start
with an email.

Limiting the quantity you can
buy makes you buy more
From Brian Wansink’s excellent
book Mindless Eating: Why We Eat
More Than We Think:

A while back, I teamed up with
two professor friends of mine —
Steve Hoch and Bob Kent — to see
if anchoring influences how much
food we buy in grocery stores. We
believed that grocery shoppers who
saw numerical signs such as “Limit
12 Per Person” would buy much
more than those who saw signs
such as “No Limit Per Person.”

To nail down the psychology
behind this, we repeated this study
in different forms, using different
numbers, different promotions
(like “2 for $2” versus “1 for $1”),
and in different supermarkets and
convenience stores. By the time
we finished, we knew that almost
any sign with a number promotion
leads us to buy 30 to 100 percent
more than we normally would.

So put numbered limitations or
anchors on the quantity your cus-
tomer can buy from you.

Story beats data
A Carnegie Mellon University study
in 2007 by Deborah Small, George
Lowenstein, and Paul Slovic com-
pared the effects of story vs. data.

Test subjects where asked to col-
lect donations for a dire situation
in Africa. The data pitch contained
statistics about food shortages in
Malawi, lack of rain in Zambia,
and the dislocation of millions in
Angola.

The second version talked about
a particular girl in Zambia, Rokia,
who was starving. People were
shown her photo and asked to
donate to help her directly.

On average, students who
received the fact-based appeal from
Save the Children donated $1.14.
Students who read the story about
Rokia donated an average of $2.38,
more than twice as much.

In a third experiment, students
were told Rokia’s story but also
included statistics about persistent
drought, shortfalls in crop produc-
tion, and millions of Africans who
were going hungry. While students
who had read Rokia’s story alone
donated an average of $2.38, those
who read the story plus the data
donated an average of $1.43.

The plight of Africa, the fight
with poverty is too overwhelming
and people feel their contribution
is just a drop in a bucket, hence feel
less inclined to help.

“Use friendly repetition to create
familiarity and hence liking.”

http://hn.my/loudest
http://hn.my/doi

36  SPECIAL

Marketing to men? Use photos
of women
A field experiment in the consumer
credit market found pictures of
women as effective as low interest
rates.

A South African lender sent
letters offering incumbent clients
large, short-term loans at randomly
chosen interest rates. The letters
also contained independently ran-
domized psychological “features.”
As expected, the interest rate
significantly affected loan take-up.
Inconsistent with standard eco-
nomics, some of the psychological
features also significantly affected
take-up.

For the male customers, replac-
ing the photo of a male with a
photo of female on the offer letter
statistically significantly increases
takeup; the effect is about as much
as dropping the interest rate 4.5
percentage points… For female
customers, we find no statistically
significant patterns.

Overall, these results suggest
a very powerful effect on male
customers of seeing a female photo
on the offer letter. Standard errors
however do not allow us to isolate
one specific mechanism for this
effect. The effect on male customers
may be due to either the positive
impact of a female photo or the
negative impact of a male photo.

The experiment featured a rather
dramatic range in interest rates —
3.25% to 11.75%. The effect of a
photo of a woman on a loan offer
was equivalent 4.5% difference in
the loan interest rate.

Next time add a photo of a
woman to your offer and see your
conversions go up.

The above study did not feature
sexy women. But would a sexy
women wearing bikinis help?

Research shows that arousal
makes men stupid [hn.my/arouse],
as they become bad at making deci-
sions. It gives them tunnel vision.
The effect seems to be a short-term
one that would be most effective at
the point of purchase, for impulse
purchases.

The ideal selling situation would
be to have the bikini-clad babe
selling to the men in person. I guess
you could do that also online for
products meant only for men.

Studies have shown that sexy ads
don’t really make men remember
the product [hn.my/men]. We’re
so lasered in on the sexy stuff, we
don’t care what brand of product
it is.

Want to convince leaders? Make
them feel less powerful
Don’t bother trying to persuade
your boss of a new idea while he’s
feeling the power of his position,
research suggests [hn.my/connect]
he’s not listening to you.

“Powerful people have confidence
in what they are thinking. Whether
their thoughts are positive or nega-
tive toward an idea, that position
is going to be hard to change,” said
Richard Petty, co-author of the
study and professor of psychology
at Ohio State University.

The best way to get leaders to
consider new ideas is to put them
in a situation where they don’t feel
as powerful, the research suggests.

“Our research shows that power
makes people more confident in
their beliefs, but power is only one
thing that affects confidence,” Petty
said. “Try to bring up something
that the boss doesn’t know, some-
thing that makes him less certain

and that tempers his confidence.”
“You want to sow all your argu-

ments when the boss is not thinking
of his power, and after you make a
good case, then remind your boss
of his power. Then he will be more
confident in his own evaluation of
what you say. As long as you make
good arguments, he will be more
likely to be persuaded,” Petty said.

So in a nutshell:

■■ Make the leaders feel less pow-
erful and confident by talking
about stuff they don’t know and
if possible, talk outside of his
office (neutral territory).

■■ After the pitch, remind them
who’s the boss, so they could
take action on your request.

The Sullivan Nod
Invented by restaurant consultant,
Jim Sullivan, the Sullivan nod
involves reciting a list of options
but just inclining your head slightly
when you reach the choice you’d
like the buyer to make. The nod has
to be subtle, but perceptible and
works best in lists of no more than
five items. According to Jim Sul-
livan, it’s successful up to 60% of
the time.

Whenever servers suggest a bever-
age, have them smile and slowly
nod their heads up and own as
they make the suggestion. Body
language is powerful, and research
shows that over 60% of the time,
the guest will nod right back and
take your suggestion!

I bet you could use that online
in sales videos. When talking about
plans or packages, do the nod on
the one you want them to buy.

http://hn.my/arouse
http://hn.my/men
http://hn.my/connect

  37

Clarity trumps persuasion
Dr. Flint McGlaughlin of Marketing
Experiments likes to say this: “Clar-
ity trumps persuasion.” Remember
this.

Persuasion tricks work when
done subtly and skillfully. Overdo it
and you lose the sale. When you’re
writing sales copy or doing presen-
tations, the best way to persuade
people is to use clarity. Give people
enough information to make up
their mind without being cheesy or
using hype. n

Peep Laja is an entrepreneur and conver-
sion optimization expert. He’s been doing
internet marketing for 10+ years in Europe,
Middle East, Central America and the US.
Today he runs a digital marketing agency
called Markitekt. Peep blogs at Conver-
sionXL [conversionxl.com/blog].

I’ve been an iPhone developer for over three years
now. The first app I built was CookieCombo.
Although we only sold enough copies to go bowl-

ing twice, it was completely worth it. We tweeted about
it and got some awesome gigs. Everybody was in need of
iPhone developers, and there was a huge shortage. Good
times.

As more and more people know that I’m an iPhone
developer, I hear the following phrase quite often: “Hey,
you know, I got a great idea for an app.” It started with
tech-savvy people saying this, but now it seems like every-
body and their mother has an idea.

I’m a nice guy and always try to listen to people. I sub-
scribe to the belief that ideas aren’t worth anything unless
there’s good execution. The ideas I hear invariably end
with: “I only need someone to build this.” If it’s a bad idea,
I try to explain why. If it’s a good idea, I try to explain the
amount of work they have to do to make it successful.

I once jokingly said that I should print some small cards
with “No, I won’t listen to your app idea” and give it out
at parties whenever people approached me. But because I
want people to like me, I didn’t do it.

However, a month ago I got an email from a friend of
my brother’s about a secret app idea. Those are often the
worst. He wanted to have a Skype meeting, and I said:
“Sure, let’s do that. I probably won’t have time to build
it, but at least I can help you and point out the technical
difficulties.”

Well, his idea is just awesome. That’s when I decided:
always listen to ideas. Most of them are probably another
fart app or a social network for sharing pictures of coffee,
but even if the odds are very small that it’s a good idea, the
potential payoff for executing a great idea could be huge. n

Chris Eidhof is an independent software developer from The Nether-
lands, living in Berlin. He used to do high-level functional program-
ming in Haskell but converted to Objective-C: he now builds iPhone
and iPad apps, and dabbles in big data.

“I’ve Got an Idea
 For an App”

By Chris Eidhof

Reprinted with permission of the original author.
First appeared in hn.my/jedi (conversionxl.com)

Reprinted with permission of the original author.
First appeared in hn.my/idea (eidhof.nl)

http://conversionxl.com/blog
http://hn.my/jedi
http://hn.my/idea

http://www.getharvest.com/hackers

http://www.getharvest.com/hackers
http://dueprops.com

From low- to high-fidelity, from wireframes to interactive prototypes.
With HotGloo you can finally achieve great concepts together with your
team in a fast, simple and beautiful way.

Get 50% off first 3 months* with the code
hghackers at HotGloo.com

*Offer good for new accounts if used before 05/31/2012The Future of Wireframing

http://www.hotgloo.com/?pk_campaign=gloo_hackers

	Contents
	FEATURES
	A Senseless Conversation

	STARTUPS
	Open Source (Almost) Everything
	A $5000 Chair

	PROGRAMMING
	SSH: More Than Secure Shell
	Python: Copying a List the Right Way
	Invaluable Command Line Tools For Web Developers
	Signs That You're a Bad Programmer
	Differences Between jQuery bind(), live(), delegate() and on()
	How I Develop Things and Why

	SPECIAL
	Jedi Mind Tricks: Lesser Known Ways to Persuade People
	“I’ve Got an Idea For an App”

