
Issue 27 August 2012

How I Helped Destroy
Star Wars Galaxies

2  ﻿

Curator
Lim Cheng Soon

Contributors
Daniel Tenner
Patrick Desjardins
Nate Kontny
Matthew Wensing
Sacha Greif
Jason Winder
Tom Kleinpeter
Matt Might
Reginald Braithwaite
Larry Osterman
David Peter
Dann Berg

Proofreaders
Emily Griffin
Sigmarie Soto

Printer
MagCloud

Hacker Monthly is the print magazine version
of Hacker News — news.ycombinator.com, a social news
website wildly popular among programmers and startup
founders. The submission guidelines state that content
can be “anything that gratifies one’s intellectual curios-
ity.” Every month, we select from the top voted articles
on Hacker News and print them in magazine format.
For more, visit hackermonthly.com

Advertising
ads@hackermonthly.com

Contact
contact@hackermonthly.com

Published by
Netizens Media
46, Taylor Road,
11600 Penang,
Malaysia.

Hacker Monthly is published by Netizens Media and not affiliated with Y Combinator in any way.

http://news.ycombinator.com
http://hackermonthly.com
mailto:ads@hackermonthly.com
mailto:contact@hackermonthly.com

  3

For links to Hacker News dicussions, visit hackermonthly.com/issue-27

Contents
FEATURES

04  The Salesman and the Developer
By Daniel Tenner

06  How I Helped Destroy Star Wars Galaxies
By Patrick Desjardins

STARTUPS

10  I Have No Idea What I’m Doing
By Nate Kontny

12  The Anatomy of Profitable Freemium
By Matthew Wensing

15  Why Cheap Customers Cost More
By Sacha Greif

16  Everything I’ve Learned About Selling
SaaS in Japan
By Jason Winder

PROGRAMMING

20  Consistent Hashing
By Tom Kleinpeter

22  Relational Shell Programming
By Matt Might

28  Williams, Master of the “Come From”
By RegINALD Braithwaite

31  Why is the DOS Path Character “ \ ” ?
By Larry Osterman

SPECIAL

32  Being Deaf
By David Peter

36  Body Hacking: My Magnetic Implant
By Dann Berg

Illustration by Jaime G. Wong

http://hackermonthly.com/issue-27

4  FEATURES

FEATURES

By Daniel Tenner

A salesman and a developer
go on a bear hunting trip.

They arrive at the cabin
in the woods and start unpacking the
car, moving stuff into the cabin, and
getting things ready for a week of
bear hunting in the wilderness. The
salesman quickly gets bored of this
and says, “Tell you what, you con-
tinue unpacking and getting every-
thing ready, and I’m going to go find
us a bear.”

The developer sighs and nods (he’s
used to salesmen) and continues set-
ting up while the salesman vanishes
into the woods.

Half an hour later, as the developer
is about three quarters done get-
ting things ready (the cabin is now
all neat and tidy at last), he hears a
very loud growl as he comes out of
the cabin. Twenty meters away, the
bushes start shaking. Out shoots the
salesman. Right behind him, a huge,
snarling, drooling, roaring monster of
a bear. It’s twice the size of a normal
bear, and it’s very, very angry.

The Salesman and
the Developer

  5

As the developer hides behind a
chair, the salesman runs right up to
the cabin with the bear on his heels,
and just as he’s about to go through
the door, he quickly leaps to the
side. The bear crashes past him
right into the cabin, and the sales-
man deftly closes the door right it,
locking the bear in. Loud noises can
be heard as the bear begins trashing
the inside of the cabin.

The developer emerges from
behind the chair. The salesman
cheers and says, “Woohoo! That’s
the first one. Now, you kill him and
skin him, I’ll go find us another!”

Two perspectives
There are two ways to understand
this story, and which way you
favored largely depends on whether
you’re a “builder” type or a “sales”
type.

If you’re a builder type, you see
this as a great story that illustrates a
common problem with salespeople:
they don’t seem to care about what
happens after they make the sale.
Actually delivering the project is
hard work, but by then the sales
guys have moved on to something
else, so they don’t care (and, as an
additional problem in some indus-
tries, the salespeople will sell stuff
that can’t be realistically delivered).

However, if you’re a sales type
(like my cofounder, Paulina), you
have a different perspective on this
story. It’s yet another story that
makes fun of salespeople while
completely discounting just how
hard it is to not only find that damn
bear, but bring it back and get it
through the door.

Who’s right, then? Both, of
course. In business, you need both
to find and sell clients, and the abil-
ity to then deliver what you sold
them. One without the other is not
a business.

Sales is not optional
Many people who “do startups”
these days are from a technology
background. In other words, they’re
builders rather than salespeople.
And, like all builders, they tend
to disregard sales as something
that can happen later, something
secondary that we’ll solve when we
get to it.

Well, sales isn’t secondary. Speak-
ing as a builder type myself, and
having experienced businesses both
with competent sales and without,
I now believe that having some-
one who can find clients willing to
give you money from day one is so
important that I would not start any
company without such a person.

Sales don’t happen without
someone energetically pushing the
product, service, or whatever it is
you’re intending to sell. Some may
dream of products that sell them-
selves, like Dropbox or the original
Apple II, but even awesome prod-
ucts like those took serious sales
effort to get off the ground. Apple
had Steve Jobs, one of the master
salesmen of his generation, pushing
the product everywhere he could
and striking bold deals to get the
company off the ground. Dropbox
endlessly tweaked their referral
scheme before they went viral.

A few businesses, like Google,
Facebook, and Instagram, get to
figure out the business model later.
They can do without sales, per-
haps. But this model only works in
one place in the world, and unless
you’re starting up in the Silicon
Valley bubble, your business is not a
business without sales. n

Daniel Tenner is the founder of Woobius
and GrantTree. Known as “swombat” on
Hacker News and Twitter, he is now pro-
ducing swombat.com, a daily updated
resource for people who like to read
startup articles like this one.

“Sales don’t happen without someone
energetically pushing the product.”

Reprinted with permission of the original author.
First appeared in hn.my/salesman (swombat.com)

Illustration by Jaime G. Wong

http://swombat.com
http://hn.my/salesman

6  FEATURES

I sat in front of my laptop at work,
watching the videos from the previ-
ous night. While logically I knew

this was Star Wars Galaxies, I recognized
nothing on the screen. It was like watch-
ing a completely different game. In that
video, I saw the end to what could have
been an amazing game, and I saw it end
with a whimper. It was like a bloated
corpse, already long dead and unaware of
it. It was depressing.

In summer 2001, I started reading
up on the upcoming game. It sounded
awesome. We were still a long way from
public betas, but I took a real interest in
the online community that had already
formed. We talked constantly, speculated,
made suggestions, argued about how
Jedi should work; we were two years
from ever even playing and we already
had deep and powerful opinions about a
game that didn’t exist yet. It was unprec-
edented. Many of us had already played

EQ or UO. We knew what we wanted.
We all had a deep love for the source
material. We fantasized about force
lightning and saber throws. We wanted
to fly the Kessel Run with Han Solo and
Chewie. We imagined arguing bounties
with Jabba, fighting Darth Vader. We
wanted it all, and Sony knew it.

I was 21 and had just sold my first
business. Flush with cash and ready for
my next adventure, I had no idea what it
would be.

Spring 2002: The first sandbox alpha
builds were being tested. Over the
course of spring and summer, they got a
little more advanced, and I could see the
game starting to take shape. I got into the
friends and family alpha tests from my
involvement in the online community.
I made copious suggestions, everything
from combat to social aspects. I com-
plained for a week about how the zabrak
horns should look. I got involved, deep.

How I Helped Destroy
Star Wars Galaxies
By Patrick Desjardins

  7

One day, I inquired as to how the
economy would be structured. The
answer I got very literally changed
my life.

“We haven’t really planned for
much of anything. I think the play-
ers will structure it organically.”

I was dumbstruck. I didn’t
respond and started taking notes. I
took a lot of notes — entire compo-
sition books sat next to my monitor.
In hindsight, 90% of what I noted
was useless, but that 10% — that
was worth something.

Early 2003: Beta is in full swing.
We got our first real look at how
things were going to work, and I
saw the opening. The giant hole
that no one in development saw,
or cared about if they did. More so
than anything else, this game would
be about real estate and ease of use
for crafters. Supply a convenient
place for everyone to go and they
will go there, even if that means
paying a premium.

I spent a lot of time in starports,
counting players arriving and leav-
ing and establishing traffic patterns.
Corillia, Naboo, Tattooine — the
big three. I started running projec-
tions: where would I go first? Tat.
Surely Tat, but…where would I
want to live? Not in the desert. No
way. Naboo, lush and green, pretty
scenery, Fambas walking in the
distance. Yes, this is where I would
live. But there is also Coronet, the
central hub for travel. If you want
to go anywhere, you have to go
through Coronet. That’s the meet-
ing place, the staging point; Coro-
net would be the key to power. If I
wanted to hold the cards, I needed
to hold Coronet. I started looking
at the most efficient way to place
buildings outside the c-net starport.

I was placing them for hours, plot-
ting the perfect placement to not
only have the closest buildings, but
also to force other players to build
elsewhere.

I started thinking a lot about
human nature. I started thinking
about exploiting laziness and sloth.
I started thinking of this game as a
business model and less as a hobby.
This was now something to be
mastered and exploited. I scoured
forum posts for shortcuts, for
exploits, for bugs that would most
likely make it through to release.

I started thinking about the
crafting and the shortcuts there.
I created timetables based on the
initial samples we had. How many
hours to master this, how many
hours to master that? How many
supplement accounts would I need
to supply myself? If there are only
24 hours in a day, how could I best
utilize each one?

I started building extra comput-
ers. I spent every spare moment
preparing for day one.

On release day I was at EB
games, cash in hand for eight copies
of SWG, and I was home in a flash.
I took a week’s vacation. I had the
spare bedroom stocked with food
and drink, my computers arrayed in
a half moon.

Those first two weeks are a blur.
I don’t remember details; I just
remember the accomplishments. I
remember when I mastered the first
handful of professions. I remember
screaming in frustration when my
math wouldn’t work due to slight
changes in crafting between beta
and release. I remember my wife
growing increasingly concerned.

Slowly, steadily the credits
started building. I kept a tally on a

whiteboard leaned against the wall.
Your first million is the hardest,
they say. Bullshit. Your first 100,000
is the hardest. But I kept work-
ing, kept pulling 12, 14, 18 hour
shifts in front of keyboards and tiny
screens.

Little by little, my plan came
together. Mistakes buried under
accomplishments. Vendors multi-
plying like rabbits. Small houses, big
houses, entire malls and cantinas.
Credits piling up, stacks on stacks.
Professions mastered, exploited,
and dropped to master new ones.

I spent more credits in a day than
most people would all year. At first
my “competition” didn’t get it, but I
paid and they didn’t care.

They were standing on a track
and couldn’t see the train. I wasn’t
slowing down. If anything, I just
went faster.

I clearly remember the day that I
realized I had done it. It was maybe
two or three months in, and I
controlled not only the land around
Coronet, but Theed as well. It was
mine. People used my vendors
because they were closer, and for
no other reason. Slowly I increased
my prices, 2%, 5%, 10%… and
they lined up to buy. People were
holo-grinding and didn’t care what
it cost. It was a full-time gig just
keeping the vendors supplied.

Six months in and I realized I had
more money than I could ever pos-
sibly spend. I needed to off-load it,
and I needed help. Enter the Thai.

His name was Tan, and he needed
a reliable stream of credits. See, Tan
worked for a re-seller and my little
enterprise was making his job dif-
ficult. He had no problem on other
servers, but on those that I was on,
his percentages were way down.

8  FEATURES

Why not work together? Why not
indeed. After a week of negotiations
and arrangements we were set and
money was changing hands with an
interesting side-effect.

The same people who were
buying my credits from Tan were
turning around and using them at
my vendors, usually with more of
their own credits as well.

I was now making real-world
money for making virtual money by
making real money. It was amazing,
and it worked perfectly. I would
transfer 10 million credits to Tan;
he would pay me via bank transfer.
He would then sell the fake money
for real money at around a 100%
mark-up. The player would get his
500,000 or million and turn around
and buy my merchandise for 1.5
million. This happened across the
board, at all levels.

I remember with crystal clarity
when I realized I was making more
money from this enterprise than I
was at my full-time job. I quickly
decided to expand and hired four
guys in Singapore to play 24/7. I
paid them unreasonably well for
the time, almost 3x as much as
they would for other re-sellers;
this bought me loyalty, and in this
enterprise, loyalty is everything.

Soon the money was stacking fast
and I needed to expand again, and
again. At the peak, I employed 12
men and women. I controlled, for
the most part, the economy on four
servers, and I was bringing in almost
a six-figure salary.

My wife went from hating the
fact that I was obsessed with the
game to helping me run the books
and check on the numbers. She
made suggestions on rates and

agreements, and in turn, I bought
her a car and we bought a house.

After almost two years, I could
see that this would not last. Player
counts were dropping; the game
was being mishandled more and
more. When they did away with the
holo-grinding, it wrecked a large
part of my business model. And
again, when the Jedi-village went
live, it was the final nail. No one
needed to spend vast amounts on
anything anymore. You could just
become a Jedi from a quest chain.

I started shutting down my
enterprise. I had bought and sold
dozens and dozens of accounts,
billions of credits; for the remaining
players on my servers, my accounts
were fixtures. They were how they
functioned, they were how they
survived. Most had no clue it was
one person pulling all these strings,
and in the end, I liked it that way.
I stopped “playing” the day I was
killed in Theed starport by a fresh
new Jedi who didn’t understand
how to even play the game.

I couldn’t even bring myself
to fight back. I just stood there. I
was one of the few true Dark Jedi
Masters, and I let him kill me. That
very act illustrated perfectly what
SOE did wrong. Those of us who
had faithfully put in the hours and
weeks and months required to earn
those lightsabers were spit on and
betrayed by the very architects of
the game we loved.

Now obviously I did my share
of exploiting the game, and your
share, and his, and hers. But I put
in the work to holo-grind. I put in
the work to move my way up end-
lessly grinding on fambas in Naboo,
cats in Corrilea, and rancors on

Dathomir. I didn’t buy my personal
Jedis; I earned them. I knew the
game, I knew the struggle, and I
knew what it took to get them.

And in the end? On my last day
playing? You could start a new toon
who was already a Jedi. I walked
away and I never looked back. That
moment at my desk, 10 years after
it started, I sadly closed the window
and went back to work.

Because it wasn’t the game I
loved. That game died in 2005 with
the NGE/CU. It died when devel-
opers turned their backs on the
gamers who had spent the effort
and instead listened to the lazy,
whining voices who wanted it all
given to them.

Ironically, those voices were the
same people who happily handed
Tan money for the credits I pro-
vided. Happily handed me stacks of
cash for Jedi accounts. Did I help
in the demise of SWG? Yes. That is
something I accepted long ago. The
game that I loved so much, I helped
to destroy. n

Patrick Desjardins is an American program-
mer and graphic artist.

Reprinted with permission. First appeared in Medium
Difficulty: hn.my/starwars (mediumdifficulty.com)

Founded by Karl Parakenings, Dinosaur McDowall,
Nico Dicecco, and Kyle Carpenter in late 2011,
Medium Difficulty is supported by a staff of a diverse
variety of writers, all with an interest in critical
analysis of games and their place in a larger cultural
context.

http://hn.my/starwars

  9

Now you can hack on DuckDuckGo

Create instant answer plugins for DuckDuckGo

duckduckhack.com

Now you can hack on DuckDuckGo

Create instant answer plugins for DuckDuckGo

DuckDuckHackDuckDuckHack

package DDG::Goodie::Unidecode;# ABSTRACT: return an ASCII version of the search query use
DDG::Goodie; use Text::Unidecode; zci is_cached => 1; zci answer_type => "convert to ascii"; triggers
startend => "unidecode"; handle remainder => sub { my $u = unidecode $_; # unidecode output some-
times contains trailing spaces $u =~ s/\s+$//; return $u; }; 1; package DDG::Goodie::Rot13; #
ABSTRACT: Rotate chars by 13 letters use DDG::Goodie; triggers start => 'rot13'; handle remainder =>
sub { if ($_) { $_ =~ tr[a-zA-Z][n-za-mN-ZA-M]; return "ROT13: $_"; }; return }; zci is_cached => 1; 1;
package DDG::Goodie::Base64; use DDG::Goodie; use MIME::Base64; use Encode; triggers startend =>
"base64"; zci answer_type => "base64_conversion"; zci is_cached => 1; handle remainder => sub {
return unless $_ =~ /^(encode|decode|)\s*(.*)$/i; my $command = $1 || ''; my $str = $2 || ''; if ($str) { if (
$command && $command eq 'decode') { $str = decode_base64($str); $str = decode("UTF-8", $str);
return "Base64 decoded: $str"; } else { $str = encode_base64(encode("UTF-8", $str)); return "Base64
encoded: $str"; } } return; }; 1; package DDG::Goodie::Chars; # ABSTRACT: Give the number of charac-
ters (length) of the query. use DDG::Goodie; triggers start => 'chars'; zci is_cached => 1; zci
answer_type => "chars"; handle remainder => sub { return "Chars: " .length $_ if $_; return; }; 1; pack-
age DDG::Goodie::ABC; use DDG::Goodie; triggers any => "or"; zci answer_type => "rand"; handle
query_parts => sub { my @choices; my @collected_parts; while (my $part = shift) { if (lc($part) eq 'or') {
return unless @collected_parts; push @choices, join(' ', @collected_parts); my $length =
@collected_parts; return if $length > 1; @collected_parts = (); } elsif ($part) { push @collected_parts,
$part; } } push @choices, join(' ', @collected_parts) if @choices && @collected_parts; return if
scalar(@choices) <= 1; my $choice = int(rand(@choices)); if (my @duck = grep { $_ eq 'duckduckgo' || $_
eq 'duck' || $_ eq 'ddg' } @choices) { return $duck[0]." (not random)", answer_type => 'egg'; } return
$choices[$choice]." (random)"; return; }; 1; package DDG::Goodie::PublicDNS; use DDG::Goodie; use

sub { if ($_) { $_ =~ tr[a-zA-Z][n-za-mN-ZA-M]; return "ROT13: $_"; }; return }; zci is_cached => 1; 1;
package DDG::Goodie::Base64; use DDG::Goodie; use MIME::Base64; use Encode; triggers startend =>
"base64"; zci answer_type => "base64_conversion"; zci is_cached => 1; handle remainder => sub {
return unless $_ =~ /^(encode|decode|)\s*(.*)$/i; my $command = $1 || ''; my $str = $2 || ''; if ($str) { if (
$command && $command eq 'decode') { $str = decode_base64($str); $str = decode("UTF-8", $str);
return "Base64 decoded: $str"; } else { $str = encode_base64(encode("UTF-8", $str)); return "Base64
encoded: $str"; } } return; }; 1; package DDG::Goodie::Chars; # ABSTRACT: Give the number of charac
ters (length) of the query. use DDG::Goodie; triggers start => 'chars'; zci is_cached => 1; zci
answer_type => "chars"; handle remainder => sub { return "Chars: " .length $_ if $_; return; }; 1; pack
age DDG::Goodie::ABC; use DDG::Goodie; triggers any => "or"; zci answer_type => "rand"; handle
query_parts => sub { my @choices; my @collected_parts; while (my $part = shift) { if (lc($part) eq 'or') {
return unless @collected_parts; push @choices, join(' ', @collected_parts); my $length =
@collected_parts; return if $length > 1; @collected_parts = (); } elsif ($part) { push @collected_parts,
$part; } } push @choices, join(' ', @collected_parts) if @choices && @collected_parts; return if
scalar(@choices) <= 1; my $choice = int(rand(@choices)); if (my @duck = grep { $_ eq 'duckduckgo' || $_

http://duckduckhack.com

10  STARTUPS

STARTUPS

I Have No Idea
What I’m Doing

Justin Kan recently posed the
question: What good is expe-
rience? [hn.my/exp]

The ultimate good that comes
from experience is that it teaches
you this:

You’ll constantly find yourself
in situations where you have no
experience and you have absolutely
no idea what you’re doing.

 But here’s the thing. You don’t
need the experience. You just need
some grit.

Grit: courage and resolve; strength
of character.

In other words, you can figure it
out.

See, no matter how much expe-
rience I get, I continuously find
myself in situations where I have
no idea what I’m doing. I have
countless personal tales of being
neck deep in some type of problem
or subject and being completely
baffled about how I’m going to
figure it out.

There was my fresh-
man year honor’s Algebra
class. Before the first day
I wondered if someone
made a mistake placing me
in a class like this. I mean, I
was a pretty good student,
but I didn’t even have a
decent pre-algebra class

to prepare me. My suspicions were
further confirmed on the first day.

The entire class was able to yell
out the answer to this question:
Expand the following expression:

(1 + 2x) * (3 + 4x)

Hold on, what!?
The class yells out, “FOIL!” and

chants, “First…Outer…Inner…
Last…”

I had no idea what I was doing.
After many nights of my mom

trying to teach herself and me
these types of problems, I was still
totally f*&^ing baffled. It came to
the point where I approached my
Algebra teacher and fessed up that
I’d only be a bit more lost if he was
teaching the class in Italian and that
maybe I should change classes.

By Nate Kontny

“Everything will be okay in the end.
If it’s not okay, it’s not the end.

— Somebody pretty wise
”

http://hn.my/exp

  11

Thank god for that Algebra
teacher. I will always remember Mr.
James G. Serpe. As he sucked on
some Luden’s cough drops (that
man was addicted to Luden’s cough
drops), he told me it was fine to
move to a lower level math class, if
that’s what I really wanted, but he
warned, “I think you can figure this
out.”

Mr. Serpe had enough experience
to have seen enough folks just as
lost as I was eventually figure this
stuff out. All it takes is some grit.
Mr. Serpe said I could come over to
his office hours after school.

I went every single day.
Eventually I figured the crap out

of Algebra.
So much so, that I had the high-

est grade point average of my entire
freshman class (over 400 students)
at the end of my freshman year.

But the thing is I continuously
found myself drowning in the
subjects in high school. In college, it
just got worse of course. And then
after college? Oh my God. :)

There was the case of getting my
first job after college. I wanted to be
a software developer, but I got stuck
doing really terrible stuff. My com-
pany didn’t think I had the educa-
tion to be a developer, so I basically
had to collect things people talked
about in meetings that represented
“requirements” and stick them
into Word documents. I hated it. I
wanted to be a developer, but…

I had no idea what I was doing.
So I would stay after work, suck-

ing down information from the
internet on how to create websites
and program software until the
building would shut its lights off.
Actually, I stayed even after that.

I downloaded Java so I could
install it at home.

It took about 12 floppy disks. :)

In the end, I finagled my way
into a new career as a software
developer at that same company. I
became a pretty good Java devel-
oper and then moved on to a senior
engineer role at my next job. Then,
I went on to be the technical co-
founder of my own business, Inkling
[inklingmarkets.com], in the second
class of Y Combinator, where again,
I found out…

I had no idea what I was doing.
There was the day when we

realized the simple algorithm I was
using to “score” people’s use of our
tool wasn’t working. That “score”
was the fundamental point of our
business. And now, a guy had fig-
ured out how to completely game
our system. My original algorithm
was incredibly naive of course. I had
never created something like that
before, so I dug even further into
the literature than ever before, find-
ing algorithms from the best minds
in the industry we were in (predic-
tion markets).

I was looking at papers like these
[hanson.gmu.edu/mktscore.pdf]
from Robin Hanson, a pioneer in
prediction markets. And I thought
algebra was tough? Jesus, was I
completely lost.

But I worked at turning Robin’s
equations and papers into some-
thing I could understand. Some-
thing I could put into Ruby code to
fuel our software.

After weeks and weeks and
weeks of battle, including a vacation
weekend where my wife and I went
camping, I just sat with a calcula-
tor and a notebook on our campsite
looking to make all these algorithms
and choices make some kind of
sense.

I finally figured this thing out.
Then there was the time CNN

was a client and stuck a link to

Inkling on CNN.com for multiple
days in a row. I had never expe-
rienced creating a dynamic web-
site that could handle millions of
people every single day (let alone
using Ruby on Rails to do this).

I had no idea what I was doing.
But of course, I figured something

out. I figured out the bottlenecks
and performance problems to keep
the few servers we had from melt-
ing down.

Fast forward to today. I’ve had
over 6 years of experience helping
to start and run my own profitable
software business. Over those years,
I’ve wanted to give up a countless
number of times. These were just
a few stories of dozens where I
couldn’t possibly fathom how we
were going to figure out how to get
through our next challenge. But we
did.

Now I find myself in the middle
of starting a new project and a new
business. And…

I have no idea what I’m doing.
My first attempts at products

in this new business haven’t quite
gone right. I’m working on the next
“something” that I have some hope
might be it, but I’m baffled at how
it’s going to work out and I have
some insane competition in what I
want to achieve. How am I possibly
going to get through this?

But if experience has taught me
anything…

I’ll figure this out.
And you will too. n

Nathan Kontny is the co-founder of two
companies that have graduated from
Y Combinator: Inkling and Cityposh. He
likes to share stuff that inspires him at
ninjasandrobots.com

Reprinted with permission of the original author.
First appeared in hn.my/noidea (ninjasandrobots.com)

http://inklingmarkets.com
http://hanson.gmu.edu/mktscore.pdf
http://ninjasandrobots.com
http://hn.my/noidea

12  STARTUPS

By Matthew Wensing

The Anatomy of
Profitable Freemium

Choosing the freemium
business model can be
either brilliant or deadly.

The difference lies not only in the
execution of the marketing, but also
in the nature of your product and
the design of your business. Can
you coordinate all three to become
sustainably freemium by making a
profit?

Summary
■■ Freemium requires a business to
maintain two value propositions
with a well-designed interaction
between the two.

■■ The premium offering can deliver
different kinds of value. You
should choose the most profit-
able one you can under your
constraints, which best fits the
value your product delivers.

■■ Using a free car analogy, the kinds
of premium value (types of free-
mium) include: Cargo Freemium,
Airbag Freemium, Bomb Free-
mium, Cruise Control Freemium,
and Bells & Whistles Freemium.

■■ Each type of freemium has
unique risks as well as market
and funding requirements to be
sustainably profitable.

■■ Any of these types of freemium
can be poorly implemented, and
some types may not work with
your product. Correct implemen-
tation requires a deep under-
standing of your product’s value.

■■ Entrepreneurs should be con-
vinced that freemium is the right
choice for their product/market,
choose their type of freemium
out of knowledge (not fear or
ignorance), and re-evaluate this
decision regularly.

■■ Freemium can be extremely ben-
eficial for gaining market share,
but if it can’t create sufficient
conversions to a premium offer-
ing, it isn’t sustainable.

Not One, but Two
Your value proposition is the
proposal you make to a prospec-
tive user or buyer, wherein they
exchange their time or resources

for the life-changing experiences
(for better and for worse) your
product provides. The freemium
business model actually contains
two such proposals — one set of
experiences the user can get for
free and another set of experiences
that can only be acquired through
purchase. To be successful (profit-
able), we need to understand when
and in what manner (constructive
or destructive) these proposi-
tions touch. In familiar terms:
how, when, and why does the user
“convert”?

Kinds of Premium Value
For illustration, let’s imagine the
free component of your offering is
a basic car. We should choose the
Everyman Car because one element
of a profitable freemium is having a
massive addressable market (prefer-
ably “every human on the planet” or
“every business on the planet”).

So what kinds of paid offerings
can we provide to the drivers of
our free vehicles? Let’s look at 5, in
order from most to least desirable
and even dangerous.

  13

Cargo Freemium
Your free car comes with 2 seats
and a very small trunk. This is fine
when you have no kids or 1 kid, but
once you have 2 kids and their car
seats and a stroller, trips to Costco
become a circus of arranging and
folding seats and jockeying diaper
bags around your feet before head-
ing to the warehouse for your 10
lbs. of oatmeal.

 The paid offering says that for
just $X per year you can add a roof
rack or a trailer to your car (or a
limousine extension), which will
make all of these problems go away.
Stubborn and frugal drivers will
continue to struggle and shove and
jam and limit themselves to the
free capacity, but every week the
pain comes again and every time
you think of incrementing your
offspring count you have to wonder
if this is sane. Most people will
eventually get the extra capacity.

Examples: Dropbox, iCloud.
Notice the change that takes

place in the value of the free offer-
ing between 1 and 2 kids. At 0
and 1 child, the value of the free
offering is constant. Once we reach
2, there’s actually a decrease in the
value of the free offering relative
to the paid because of the constant
hassle of dealing with the limita-
tion. This is a subtle but critical way
to rig the contest between the free
and paid offering and help encour-
age people to convert.

Key characteristics:
■■ Inevitability of upgrade for most
people as long as they keep using
the product.

■■ The premium value is “more of
the same” — the free car offer-
ing’s primary benefit is moving
people from point A to point B.
The premium offering extends
this primary benefit.

■■ Regular, repeated temptation to
upgrade through normal usage of
the product.

■■ Decrease in the value of the
free offering (even) if user stays
within the confines of free.

Ways this can go wrong:
■■ You choose the wrong dimension
to limit and violate the “more of
the same” requirement. It can be
tempting to choose to throttle
your user’s storage space (bytes)
but unless storage is the primary
benefit / value of your product,
you should choose a different
dimension. (See comments at
the end of this article about
Flickr).

■■ You choose the right dimension
but the wrong place to draw the
line between free and paid.

Airbag Freemium
Every man wants a car, but every
man has a different risk tolerance.
You can sell him a car that has a
certain level of safety (a minimum
viable level, perhaps?), and offer
him an upgrade that provides risk
mitigation. Depending on what
you offer, this premium value may
offset risk only under extreme cases
(e.g. a dedicated technician in the
event of a server meltdown), or
simply offer more around-the-clock
safety and peace of mind (e.g. an
uptime guarantee).

Example: Wordpress, Red Hat.

Key characteristics:
■■ Some people by nature will be
interested in the premium offer-
ing. This might be through cor-
porate or government mandate or
in a B2C setting, a paranoia that
requires it.

■■ Some people will be perfectly
content with the free offering
until something bad happens to
them or someone they know.

■■ Some people will never upgrade
because they like living on the
edge.

Ways this can go wrong:
■■ Your product is used in a low-
stakes setting where failure is
OK. People don’t upgrade.

■■ Your market doesn’t contain
enough people that will use the
product in a high-stakes setting.

■■ Another company figures out
how to sell the safety and secu-
rity as an add-on that doesn’t
involve you.

Bomb Freemium
You know that scene in Speed
where the bomb gets activated once
the bus goes over 50 mph, and then
they can’t ever let it go below 50
mph or the bus will explode? Not
everyone will want an airbag (see
above), and not everyone will nec-
essarily go 55 mph, but the people
that do find themselves going 51+
mph will find themselves desperate
to convert to your paid offering to
defuse your well-designed bomb.

Example: Yammer, Salesforce to a
lesser extent.

Most companies will never care
that their employees are chatting
away on yet another social media
site, but some companies will see
this as a disaster waiting to happen.
Premium offering appeals to CIOs
who can defuse the bomb by enact-
ing controls that keep the usage of
the product within certain accept-
able/manageable boundaries.

Key characteristics:
■■ Product is easy to adopt in a
high-stakes setting.

14  STARTUPS

■■ Once the product has infected
the high-stakes setting, its usage
spreads virally.

■■ The more the product gets
used, the more dependent the
company becomes on its proper
performance and usage.

■■ The premium value gives the
company control over the
product.

Ways this can go wrong:
■■ Your customers feel extorted.

■■ Your product never goes viral.

■■ Your product never gets used in a
way that creates an exposed risk
for the organization.

Cruise Control Freemium
A favorite feature of the long road
trip is cruise control. Who wants to
keep their foot pressed evenly on
the gas for 3 hours at a time? Then
again, if the driver only plans to
use your car as a commuter, you’ll
never get him to buy in.

Example: GitHub.

Key characteristics:
■■ The free product is good enough
for anyone that can avoid certain
usage patterns or needs.

■■ Even the people that can’t avoid
these usage patterns or needs will
not necessarily need the upgrade
on day 1.

Ways this can go wrong:
■■ The people that can’t avoid these
usage patterns worm their way
out of the pain or put up with it
while it lasts.

■■ You don’t retain users long
enough for them to ever hit a
point in time where they need
cruise control.

■■ Your cruise control is a vitamin
and not a painkiller.

Bells & Whistles Freemium
The fallback and default state for
all freemium offerings (the state
wherein you don’t know enough
about the users to know better) is
to offer shiny things and upgrades
that may be appealing but will
never be a need for the vast major-
ity of your users. In these cases your
best chance is to turn the bells and
whistles into needs (through mar-
keting that convinces them of the
great value) or to learn more about
the market so you can graduate to a
different kind of premium offering
(see above).

Examples: pre-2012 Stormpulse
(before we shifted to free trials/
paid only) and many other startups.

Key characteristics:
■■ Startup founders don’t know
much about the market but
understand that power users
always exist.

■■ Premium offering tries to sell
features to power users.

■■ Product gets clogged with fea-
tures that “oooh” and “ahhh” but
are very hard to quantify in terms
of ROI.

■■ Marketing messages focus on the
cost of running the business and
the need to monetize to support
operations rather than the value
of the premium offering.

Risks:
■■ You run out of money because
your conversion rate is low and
your retention is poor (once
people realize they don’t need
the upgrade they downgrade or
don’t renew).

Talking Points
What kind of freemium are you?
Can you re-design your offering to
get higher on the value ladder? Do
you have enough funding to sup-
port yourself until your users start
to convert? These are all important
questions that will determine the
fate of your business, and ignorance
will not shield you from failure. n

Matt Wensing is the Co-founder & CEO
of Stormpulse, a web-based platform for
companies to manage their weather risk.
Matt grew up in South Florida, studied
information design at the University of Chi-
cago, and currently lives in Jupiter, Florida
with his wife and four children.

Reprinted with permission of the original author.
First appeared in hn.my/profree (wensing.tumblr.com)

http://hn.my/profree

  15

Why Cheap Customers
Cost More

I was listening to Patrick McK-
enzie’s podcast (with Amy Hoy
as a guest) [hn.my/patio], and

they touched on something that I
had heard before: when you offer
multiple plans for a service, the
cheapest plan’s customers tend to
require the most support.

Now, at first this seems counter-
intuitive. You’d expect the opposite:
that the people who pay the most
feel more entitled to support, and
thus ask for more of it.

So if the cheapest customers
truly require the most support,
why is that? At first, I intuitively
assumed it was a matter of char-
acter: like people who pinch hotel
slippers and airline blankets, they
simply wanted to extract the most
value out of any situation. In other
words, it’s not so much that they
need more support, they just abuse
it because it’s free.

The Better Explanation
But then I looked at my own exam-
ple: when I do contact support, it’s
not because I enjoy it. It’s because
I don’t have a choice. So I gave this
matter more thought, and decided
there’s a better explanation.

I think cheap plans dispropor-
tionately attract a special category
of users: dummies.

Now, being a dummy is not the
same thing as being dumb. Being a
dummy simply means that you’re
not well-versed in a particular
domain, and you might benefit
from reading a “* for dummies”

book. In this way every one of us is
a dummy at some things.

So let’s assume I’m not well-
versed in cars. I don’t know the
first thing about pistons, gearboxes,
propellers, or drive shafts (can you
tell I’m not pretending?). When it
comes time to choose a car, what’s
the only rational factor that will
drive (heh) my decision?

That’s right, price.
And since I’m a dummy, when

my car breaks down (or just runs
out of gas…) I won’t have a clue
what happened and will be inca-
pable of fixing the problem myself.

On the other hand, savvy cus-
tomers consider many other factors
besides price (otherwise, there
wouldn’t be much of a market for
BMWs). And being savvy, these
people are more likely to be able to
troubleshoot their own problems.

So it’s not that cheap people
require more support. It’s that
people who require more sup-
port are more likely to make their
purchasing decision based on price
alone.

So once you’ve understood this,
what can you do?

Educate Your Customers
 Well, first of all you can try to
educate your customers. Adding
tooltips, wizards, help, and a FAQ
will probably greatly reduce the
amount of support requests you
receive. After all, according to the
80/20 rule, the same 20% of issues
probably cause 80% of requests.

Drive Dummies Away
Another possibility is to drive dum-
mies away. In other words, make
your service attractive to savvy cus-
tomers who (like everybody else) are
also looking for a bargain without
attracting dummies in the process.

You can do that through “child-
proofing”: for example, Amazon’s
EC2 hosting offering is one of the
cheapest around, but the amount
of technical knowledge required to
use it ensures that no dummy will
inadvertently sign up.

Embrace Dummies
Lastly, you can embrace the dum-
mies. This is a strategy used by Inter-
net providers everywhere: advertise
cheap prices to get that grandma
demographic, but then make money
on support and installation.

This strategy gets a bad rap
because a lot of the companies who
use it provide bad, expensive sup-
port. But there’s no reason why you
can’t offer great expensive support.

Conclusion
No matter which strategy you
choose, remember to consider the
impact pricing will have on your
customer base and your support
costs. For example, a good strategy
might be to start off with high
prices, and then only lower them
once you’re ready to scale your sup-
port infrastructure.

In any case, remember that
people simply respond to incen-
tives, and that there’s a very valid
reason why your cheapest custom-
ers are asking the most questions! n

Sacha is a user designer and entrepreneur
from Paris, currently living in Kyoto. He has
worked with startups such as Hipmunk,
Codecademy, and Intercom. He’s now focus-
ing on Folyo, his own startup that helps
companies find great freelance designers.

By Sacha Greif

Reprinted with permission of the original author. First appeared in hn.my/cheap (sachagreif.com)

http://hn.my/patio
http://hn.my/cheap

16  STARTUPS

By Jason Winder

Japan is a notoriously difficult
market to crack. Successful,
established businesses enter-

ing Japan from overseas that do
not bother to tailor their marketing
and product for Japan regularly fail
here.

Notably however, Japan’s SaaS
market is bigger than every other
SaaS market in Asia combined. If
you put in the time and effort to
battle through the adversity, there is
a wide range of fantastic opportuni-
ties here generated by criminally
under-served market segments.

For the last 2 years, we’ve been
building MakeLeaps, a tool to help
businesses in Japan create, manage
and send their invoices and quotes.

We soft-launched 7 months ago
to almost zero fanfare — to our
great relief. Unlike our other local
competitors that have popped up
in the last few months, we made
an active decision to not issue press
releases or seek media attention
until we were confident we had
both a deep understanding of our
users requirements and a product
they would find both useful and
compelling.

Sending invoices and business
documents in Japan is deeply
ingrained with various cultural
nuances and is ruled by a series of
business manners and traditions.
We had no idea if businesses would
actually use an online system to
send their invoices since you cannot
get less “traditional” than using an
online system to send invoices.

Having said that, 99% of all
small/medium sized businesses in
Japan are using Word and Excel to
send their invoices. There’s a strong
argument that says “Word and
Excel” are not exactly traditional
Japanese software either, which
gave us hope.

In the beginning, I would go to
people’s offices, put MakeLeaps
in front of them on my laptop,
and explain why we thought the
software would be so great for
them, both to practice my pitch
and to garner some feedback. While
many of these initial users were
friends and acquaintances, I also
cold-called a bunch of businesses,
including accountants, to get deep
level feedback about the system
from as many actual potential users
as possible.

After countless cycles of listen-
ing to these few initial customers
I managed to get using the system
and iterating on their feedback,
things really started to take off
around 2 months ago.

I feel like we’re now in a good
position to talk about our experi-
ences and what we’ve learned.

You’re a foreigner, and that’s ok.
If you’re a startup/company trying
to enter Japan, you are very liter-
ally foreign in Japan. The kanji
for foreigner literally translates to
“outside.” Being an “outsider” in
the perspective of Japanese culture
comes with drawbacks and benefits.

Benefits
■■ You have a degree of freedom
because you’re expected to be
different. Japanese are under-
standably proud of their fantas-
tic traditions and culture. They
expect that most foreigners
have no clue about the history,
nuances and traditions that make
up their country and, for the
most part, they’re correct.

Everything I’ve Learned
About Selling SaaS in Japan

  17

This means that as a person
attempting to introduce a prod-
uct or service to Japan, you’re
not expected to be perfect in
your knowledge of local cus-
toms, although of course, you’re
expected to try.

Drawbacks
■■ This “foreign-ness” is typically not
a problem if you’re selling a low-
risk service, such as say, a social
photo-taking application. In fact,
it can even be cool for Japa-
nese consumers to use a foreign
application or tool. However, if
you’re selling a business-critical
application, such as an invoicing
tool, your foreign-ness becomes
an issue.

To a Japanese company, there
are very real business and repu-
tation risks in using a foreign
tool for something as critical as
invoicing. It’s a human trait to
trust people who are similar to
you and who have shared experi-
ences. It’s important for you to
discover whether or not your
foreign-ness is an issue.

Here’s how we got around this:
■■ One strategy we’re using, is the
“feature what you can’t fix” idea.
On our Q&A page we make it
very clear, who we are (essen-
tially, not Japanese!), why we’re
in Japan, and why we’re working
in this problem space.

Since this is a big issue, I go into
further detail on various additional
strategies we’ve used to beat this in
the section below titled “Japanese
consumers make buying decisions
in different ways.”

It’s really, really hard to get
feedback.
The concept of social harmony and
saving face in Japan is baked into
every relationship in Japan, whether
they’re personal or business. In fact
in Japan, there’s often no difference
between these two concepts.

This creates a tricky dichotomy
where:

1.	A user with no personal connec-
tion to you will feel no obligation
to providing you with feedback,
preferring to simply close the tab
and move on if software doesn’t
suit their needs.

2.	A user with a personal connec-
tion to you will rarely provide
you with “real” feedback because
that could disturb the social
harmony in your relationship
and could cause you to lose face.
Both terrible outcomes for your
thoughtful Japanese friend.

This means that it’s almost
impossible to garner feedback in
Japan.

Here’s how we got around this:
■■ We openly ask for comments in
our welcome email, our support
page, and also on Twitter and
Facebook.

■■ We often email regular users and
new users from a “real person,”
asking how things are going and
politely requesting any feedback
or comments the user might
have.

■■ We do our best to build relation-
ships with our users who are
bilingual. The idea of dissenting
opinions and openly discuss-
ing/disagreeing with people is
typically more accepted overseas
and in international companies.
We find that bilingual users

with experience in international
companies are often quite open
to sharing their feedback and
comments.

■■ When a user does provide us
with feedback, we:

Instantly reply to them explain-
ing how grateful we are to
receive this feedback.

Explain that we take their
feedback and comments very
seriously.

We explain that even though
we cannot implement every
suggestion, we promise to
discuss it with the team and
get back to them if there’s an
update on their issue.

This approach hopefully commu-
nicates our willingness to listen to
feedback and leaves the door open
for future communication.

Japanese consumers make buying
decisions in different ways.
Japan has a culture based on per-
sonal networks and connections,
so Japanese consumers typically
look for consensus and poll their
network while making a buying
decision. This can lead to a pleasant
snowball effect, where if enough
customers start using a product/ser-
vice, critical mass kicks in and the
product/service achieves extraordi-
nary success.

A recent example is Apple. You
can’t get on a train and sit down
without seeing 20-30+ iPhones,
iPads or white earbuds leading to
iPhones/iPads/iPods.

The flip-side of this is that no
matter how good your product/
service is, people won’t use it unless
they see other people using it, or
unless their friends introduce them
to it.

18  STARTUPS

If it’s a business service, this is
doubly true since there’s real risk in
using a “non-consensus approved”
product/service.

How we got around it:
This is a big one, so we’ve come up
with a lot of strategies to battle this.

■■ Avoid the English/Japanese
content problems by creating
separate social media accounts
that are 100% Japanese for your
potential customers in Japan.

■■ We don’t recommend you begin
in Japan with posting blog con-
tent. We had one very popular
article on the MakeLeaps blog
that was shared a lot in Japan,
and we got about 60,000 views.
Grand result: 0 signups. We
haven’t given up on blog content
and we’ve got a bunch of ideas
on how to increase conversion
here, but I recommend build-
ing up to blog content instead of
starting with it.

■■ When a user talks about us pub-
licly, we feature it on our Face-
book page with a public and per-
sonal message from us to them,
saying, “Thank you very much
for using the service. We’re really
happy you’re getting benefit from
it!” It has been critically impor-
tant to show Japanese businesses
that other Japanese businesses are
using our software.

■■ To further reinforce the idea
that many companies in Japan
are using our service, we printed
MakeLeaps stickers and made
them available for free to all our
users. When a user is nice enough
to send a photo of their PC/
Mac/iPad with the MakeLeaps
sticker, we upload the photo to
Facebook.

■■ We’ve had a lot of success with
our Facebook page in Japan.
Facebook is exploding in Japan,
and to some degree we’ve man-
aged to ride this wave of growth.
Facebook is our primary tool for
regular communication with our
users.

■■ We do everything we can to
promote our regular users, which
benefits us both. We offer many
of our regular users the following
mini-package:

Featured quote on the front
page.

Featured blog post where we
come to their office, ask them
some questions, take some
photos, publish it on our blog
and promote it by FB/Twitter/
Blog/Newsletter.

■■ We treat every customer support
ticket with the utmost impor-
tance. Not only is it good business
practice, but the business benefit
of one “happy tweet”(Japanese)
from a satisfied customer far
outweighs the effort on our side
to ensure they’re extraordinarily
happy with the support they
receive.

Japanese consumers are
extremely sensitive to “Japa-
nese-ness.” And rightfully so.
Ever read something “Google
Translated” into your language? In
Japanese, it sounds about 10 times
worse.

To a Japanese consumer, if you
can’t get basics like the language
copy right, chances are pretty good
you’re not going to get the more
fundamental things right either, like
the value proposition to Japanese
consumers.

How we get around this:
■■ There is no way around this. You
need staff on the ground in Japan
who can communicate effectively
to your customers through the
website copy, and the language
in the application itself. Not to
mention collecting feedback on
the features and the application
itself.

■■ Another tip: Japanese consumers
favor websites with very dense
content, and little whitespace.
This hurts the latte drinking
minimalist designer inside us, but
we’re not here to argue.

Here are some examples of very
popular Japanese sites:

Here’s the more “spaced out” Eng-
lish MakeLeaps Site:

  19

Here’s the more dense Japanese
MakeLeaps site:

“Insanely great” customer
service.
First-time visitors to Japan are
always amazed at the incredible ser-
vice they receive here. The service
levels are probably the best in the
world.

The thing is that your custom-
ers will expect a similar level of
service from you. Failure to pro-
vide this high level of service gives
your customer an instant feeling
of disconnection from you, and
you’re quickly cemented into the
“outsider” box since you don’t get
the Japanese customs regarding
customer service.

How we get around this:
■■ We do our best to provide a fan-
tastic level customer service (in
both English and Japanese).

■■ We provide a phone number
for people to call. Interestingly,
we are currently the only online
invoicing tool in Japan that does
this. Even more interestingly, we
get a lot of phone calls to this
number.

■■ All of our sales/support staff are
on Twitter. We tried connecting
with our customers through the
@MakeLeaps_JP twitter account,
with very little success. Once
we changed to personal twitter
accounts, our customer engage-
ment on Twitter shot up.

■■ Another avenue where we’ve had
a lot of success is having direct
founder engagement with users.
I’ve had some very pleasant con-
versations from surprised users
when I’ve sent tweets in Japanese
from @JasonWinder.

Campaign!
Japanese companies commonly
use the concept of campaigns
when marketing. We’ve had a lot
of success with the following 2
campaigns:

■■ Our “Spring” campaign: Offer-
ing incentives for: providing us
feedback we can use to improve
our system, introducing their
friends to MakeLeaps, and tweet-
ing about us.

■■ A 24 Hour signup campaign: We
provide our Facebook follow-
ers with a registration code that
provides them with 3 free “mail
points.” A mail point allows users
to have one invoice printed and
sent by Japan Post by us. We saw
a huge spike in signups during
and after this 24-hour campaign.

Summary
Much of what we’ve learned has
only been possible because we’re
on the ground and able to directly
contact and interact with our
customers.

For a SaaS product targeting the
Japanese market, you will abso-
lutely need a team on the ground to
get you the information you need
for your build/measure/learn cycle
because success in Japan is very
rarely achieved accidentally.

In our experience, your realistic
options are either to build a team in
Japan or to partner with a company
in Japan experienced in market
entry. Although typically, compa-
nies that offer market entry services
have price tags that are prohibitive
for early stage startups. n

Jason Winder has been in Japan since
2001, and set up an IT services business
in Tokyo in 2003 called Webnet IT. After
getting snowed in by general admin work
and sending an ever increasing number
of quotes and invoices every month, he
built some software to automate some of
these workflows such as invoicing, payroll,
expenses and reporting. In 2010, Jason
co-founded a SaaS startup catering to busi-
nesses in Japan called MakeLeaps.

Reprinted with permission of the original author.
First appeared in hn.my/japan (makeleaps.jp)

http://hn.my/japan

20  PROGRAMMING

Let’s say you’re a hot
startup and your database
is starting to slow down.

You decide to cache some results
so that you can render web pages
more quickly. If you want your
cache to use multiple servers (scale
horizontally, in the biz), you’ll
need some way of picking the right
server for a particular key. If you
only have 5 to 10 minutes allocated
for this problem on your develop-
ment schedule, you’ll end up using
what is known as the naïve solution:
put your N server IPs in an array
and pick one using key % N.

I kid, I kid — I know you don’t
have a development schedule.
That’s OK. You’re a startup.

Anyway, this ultra simple solu-
tion has some nice characteristics
and may be the right thing to do.
But your first major problem with
it is that as soon as you add a server
and change N, most of your cache
will become invalid. Your databases
will wail and gnash their teeth as
practically everything has to be
pulled out of the DB and stuck
back into the cache. If you’ve got a
popular site, what this really means
is that someone is going to have
to wait until 3am to add servers
because that is the only time you
can handle having a busted cache.
Poor Asia and Europe — always
getting screwed by late night server
administration.

You’ll have a second problem
if your cache is read-through or
you have some sort of processing

occurring alongside your cached
data. What happens if one of your
cache servers fails? Do you just fail
the requests that should have used
that server? Do you dynamically
change N? In either case, I recom-
mend you save the angriest tweets
about your site being down. One day
you’ll look back and laugh. One day.

As I said, though, that might be
OK. You may be trying to crank this
whole project out over the week-
end and simply not have time for a
better solution. That is how I wrote
the caching layer for Audiogalaxy
searches, and that turned out OK.
The caching part, at least. But if
had known about it at the time, I
would have started with a simple
version of consistent hashing. It
isn’t that much more complicated
to implement, and it gives you a lot
of flexibility down the road.

The technical aspects of con-
sistent hashing have been well
explained in other places, and
you’re crazy and negligent if you
use this as your only reference. But,
I’ll try to do my best. Consistent
hashing is a technique that lets you
smoothly handle these problems:

■■ Given a resource key and a list
of servers, how do you find a
primary, second, tertiary (and
on down the line) server for the
resource?

■■ If you have different size servers,
how do you assign each of them
an amount of work that corre-
sponds to their capacity?

■■ How do you smoothly add capac-
ity to the system without down-
time? Specifically, this means
solving two problems:

How do you avoid dumping
1/N of the total load on a new
server as soon as you turn it on?

How do you avoid rehash-
ing more existing keys than
necessary?

In a nutshell, here is how it
works. Imagine a 64-bit space. For
bonus points, visualize it as a ring,
or a clock face. Sure, this will make
it more complicated when you try
to explain it to your boss, but bear
with me:

 That part isn’t very complicated.
Now imagine hashing resources

into points on the circle. They could
be URLs, GUIDs, integer IDs, or
any arbitrary sequence of bytes.
Just run them through a good hash
function (e.g., SHA1) and shave off
everything but 8 bytes. Now, take
those freshly minted 64-bit num-
bers and stick them onto the circle:

Consistent Hashing

PROGRAMMING

By Tom Kleinpeter

  21

 Finally, imagine your servers.
Imagine that you take your first
server and create a string by append-
ing the number 1 to its IP. Let’s call
that string IP1-1. Next, imagine you
have a second server that has twice
as much memory as server #1. Start
with server #2’s IP, and create 2
strings from it by appending 1 for
the first one and 2 for the second
one. Call those strings IP2-1 and
IP2-2. Finally, imagine you have a
third server that is exactly the same
as your first server, and create the
string IP3-1. Now, take all those
strings, hash them into 64-bit num-
bers, and stick them on the circle
with your resources:

 Can you see where this is
headed? You have just solved the
problem of which server to use
for resource A. You start where
resource A is and head clockwise
on the ring until you hit a server. If
that server is down, you go to the
next one, and so on and so forth. In
practice, you’ll want to use more
than 1 or 2 points for each server,
but I’ll leave those details as an
exercise for you, dear reader.

Now, allow me to use bullet
points to explain how cool this is:

■■ Assuming you’ve used a lot more
than 1 point per server, when one
server goes down, every other
server will get a share of the new
load. In the case above, imagine
what happens when server #2

goes down. Resource A shifts to
server #1, and resource B shifts
to server #3 (Note that this
won’t help if all of your servers
are already at 100% capacity.
Call your VC and ask for more
funding).

■■ You can tune the amount of load
you send to each server based on
that server’s capacity. Imagine
this spatially: more points for a
server means it covers more of
the ring and is more likely to get
more resources assigned to it.

You could have a process try
to tune this load dynamically, but
be aware that you’ll be stepping
close to problems that control
theory was built to solve. Control
theory is more complicated than
consistent hashing.

■■ If you store your server list in a
database (2 columns: IP address
and number of points), you can
bring servers online slowly by
gradually increasing the number
of points they use. This is par-
ticularly important for services
that are disk bound and need
time for the kernel to fill up its
caches. This is one way to deal
with the datacenter variant of
the Thundering Herd Problem
[hn.my/thunder].

Here I go again with the con-
trol theory — you could do this
automatically. But adding capac-
ity usually happens so rarely that
just having somebody sitting
there watching top and running
SQL updates is probably fine. Of
course, EC2 changes everything,
so maybe you’ll be hitting the
books after all.

■■ If you are really clever, when
everything is running smoothly
you can go ahead and pay the

cost of storing items on both
their primary and secondary
cache servers. That way, when
one server goes down, you’ve
probably got a backup cache
ready to go.

Pretty cool, eh?
I want to hammer on point #4

for a minute. If you are building a
big system, you really need to con-
sider what happens when machines
fail. If the answer is “we crush the
databases,” congratulations: you will
get to observe a cascading failure.
I love this stuff, so hearing about
cascading failures makes me smile.
But it won’t have the same effect
on your users.

Finally, you may not know this,
but you use consistent hashing
every time you put something in
your cart at Amazon.com. Their
massively scalable data store,
Dynamo [hn.my/dynamo], uses this
technique. Or if you use Last.fm,
you’ve used a great combination:
consistent hashing + memcached.
They were kind enough to release
their changes, so if you are using
memcached, you can just use their
code without dealing with these
messy details. But keep in mind
that there are more applications to
this idea than just simple caching.
Consistent hashing is a powerful
idea for anyone building services
that have to scale across a group of
computers. n

Tom Kleinpeter is the CTO and cofounder
of Audiogalaxy, where he is working to
build a better experience for music lovers.
He lives near Seattle with his family.

Reprinted with permission of the original author.
First appeared in hn.my/conhash (tomkleinpeter.com)

http://hn.my/thunder
http://hn.my/dynamo
http://hn.my/conhash

22  PROGRAMMING

By Matt Might

No one would mistake the average shell
script for principled software.

Yet, if we look at how scripts are used,
patterns emerge.

Unix is a bestiary of ad hoc databases: comma-,
colon-, tab- and space-separated tables. Think of /etc/*
or /var/log/*, or of columnar commands.

Shell scripts commonly, if unknowingly, compose
five (of six) primitive relational-algebraic operations
on these tables: union, difference, projection, selection,
and renaming:

■■ cat acts like union
■■ sed and grep act like selection
■■ cut acts like projection
■■ awk can perform renaming
■■ diff acts (almost) like difference

Relational algebra (whose sixth primitive operation
is Cartesian product) is equivalent to both relational
calculus and SQL.

Cartesian product (and equijoin) are not difficult to
create in bash.

If you find yourself stumbling into a relational design
pattern in a shell script, consider making that relation-
ality rigid and explicit.

Read on to learn a little more about databases, shell
scripts, or both.

Representing relations
In mathematics, a relation is a set of tuples.

[A tuple is an ordered collection of values, (v1,…,vn).]

For example, {(Bob,31),(Judy,32)} is a relation.
In database theory, a relation is a set of tuples with

an assigned name for each column; that is, a relation is
a table.

For the earlier relation, we could define a header
tuple (name,age) that names each column.

We could then represent the relation explicitly as a
table:

name age

Bob 31

Judy 32

Relational algebra is a theory for manipulating rela-
tions whose power is equivalent to SQL and relational
calculus.

Remarkably, relational algebra has only six primitive
operations.

I define the six primitives below, but if you’re look-
ing for a comprehensive work on relational theory, par-
ticularly as it relates to modern databases, I recommend
Date’s SQL and Relational Theory [hn.my/sqlrel].

Relational Shell
Programming

http://hn.my/sqlrel

  23

Relations in Unix
Many Unix commands interpret files like relations: each line is a
tuple.

CSV or “comma-separated value” files are a crude, generic
way to encode a relation. For example, see the MaxMind GeoIP
database [hn.my/maxmind]:

"1.0.0.0","1.0.0.255","16777216","16777471","Australia"
"1.0.1.0","1.0.3.255","16777472","16778239","China"

The password and group files for a Unix system (/etc/passwd
and /etc/group), which store account and login information, are
relations with elements of individual tuples separated by colons (:):

nobody:*:-2:-2:Unprivileged User:/var/empty:/usr/bin/false
root:*:0:0:System Administrator:/var/root:/bin/sh
daemon:*:1:1:System Services:/var/root:/usr/bin/false

The /etc/hosts file, which can fix a hostname to an IP address,
is a space-separated relation:

 127.0.0.1 localhost
 255.255.255.255 broadcasthost
 ::1 localhost
 fe80::1%lo0 localhost

The /etc/resolv.conf file, which specifies domain name infor-
mation, is a space-separated relation:

 domain hsd1.ut.comcast.net.
 nameserver 208.67.220.220
 nameserver 208.67.222.222

The command netstat -nr produces tables of routing
information.

Destination Gateway Flags Refs Use Netif
127 127.0.0.1 UCS 0 0 lo0
127.0.0.1 127.0.0.1 UH 5 151051 lo0
224.0.0/4 lo0 UmCS 1 0 lo0
224.0.0.251 lo0 UHmW3I 0 0 lo0

The command traceroute produces relation-like data:

 5 69.139.247.14 16.560 ms 26.933 ms 11.521 ms
 6 68.86.90.125 74.433 ms 40.330 ms 57.565 ms
 7 68.86.87.30 54.590 ms 52.155 ms 55.322 ms

Many log files are, in effect, giant relations as well.

Union
Mathematically, union (υ) combines the con-
tents of two sets:

A υ B = { x | x∈ A or x∈ B }

In the shell, union is straightforward — it’s
cat:

 $ cat relation-1 relation-2 >
unioned-relation

After any operation in which duplicate
entries are a possibility, compose with sort
and uniq:

 $ cat relation-1 relation-2 | sort |
uniq > unioned-relation

Since a relation is a set, duplicate entries
are not allowed.

Many other programs accept multiple files
as arguments and print out their contents:
sed, grep, cut, awk.

Thus, these commands can combine selec-
tion (and projection) with union.

To “union” the output of one command
with another, use a sequencing semicolon
with an append:

 $ command-1 > relation; command-2 >>
relation

Selection
Mathematically, selection (σΦ) is a filtering
operation that applies a predicate Φ to each
member of a set, retaining only those for
which the predicate is true:

σ Φ (A) = { x | x∈ A and Φ (x) is true }

Many Unix commands serve as selectors
(and simultaneously as union); that is, many
programs can filter a file, line by line.

The most common selectors are sed, grep,
and awk.

For example, awk can select entries from
/etc/passwd where the user ID and the pri-
mary group ID are not equal:

 awk -F ":" '{ if ($3 != $4) print }'
/etc/passwd

http://hn.my/maxmind

24  PROGRAMMING

Projection
Mathematically, projection (πc1,…,cn) is a reduction
operator that retains the specified columns (c1,…,cn) in
a relation and discards the rest.

If a relation is table, then c1,…,cn can be the names
of the columns (and the order in which to preserve
them).

Otherwise, c1,…,cn can be column numbers so that:

πi1,…, in(R)={(x i1,…,x in) |(x1,…,xn)∈R}

The Unix command cut is a projection-like
command.

For example, cut can project just the user names and
shells out of /etc/passwd:

 $ cut -d ":" -f 1,7 /etc/passwd

The Unix commands sed and awk also behave like
projectors.

For example, cut cannot reorder columns, but awk
can:

 $ awk -F":" '{ print $7 ":" $1 }' /etc/passwd

If the syntactic structure of each tuple is more
complex, then sed can pull it apart with a regular
expression.

Rename
For tables, the rename operation (ρc/c’) changes the
name of column c’ to c.

Since most Unix tables don’t specify headers, or the
structure is implicit, there is no equivalent of or need
to rename.

Columns are implicitly named positionally.
awk can easily reorder columns.

Cartesian product
Cartesian product is the source of much power for
relational algebra, since it is the key ingredient in joins
— the primitive operation that combines two tables
together.

Relational Cartesian product (χ) fully combines two
relations:

AχB={(a1,…,an,b1,…,bm) |(a1,…,an)∈A and
(b1,…,bm)∈B}

Surprisingly, there is no shell equivalent of Cartesian
product.

Fortunately, it’s not hard to write a cartesian script:

#!/bin/bash

delim="," # CSV by default

Parse flagged arguments:
while getopts "td:" flag
do
 case $flag in
 d) delim=$OPTARG;;
 t) delim="\t";;	
 ?) exit;;
 esac
done

Delete the flagged arguments:
shift $(($OPTIND -1))

Remaining args now in $*

Now join $1 and $2
while read a;
 do while read b;
 do echo "a{delim}$b";
 done < $2;
 done < $1

Difference
Mathematically, set difference (−) removes the ele-
ments of a set that are present in another set:

A−B={a|a∈A and a∉B}

The command diff reports the difference between
two files, but it does not perform relational set
difference.

We need to implement relational set difference.
It is simpler to implement difference if we assume

the existence of a membership tester, memberp.
The command memberp file line exits successfully if

the file file contains the line line, and it fails otherwise.
With access to memberp, difference becomes:

#!/bin/bash

while read a;
 do
 if ! memberp $2 "$a"; then
 echo "$a"
 fi
 done < $1

  25

Membership
A membership script, memberp, searches line by line:

#!/bin/bash

Usage: memberp file line

file=$1

shift

while read a;
 do
 if ["$a" = "$*"]; then
 exit 0
 fi
 done < $file

exit -1

Join
A join is a synthetic operation composed of selection,
projection, and product.

A common join is equijoin, where the product of
two relations is filtered based on the equality of two
columns.

To perform an equijoin, we need two relations and
columns to compare.

The command equijoin [-d <delim> | -t] rel1
rel2 col1 col2 uses awk to combine and compare two
tables:

#!/bin/bash

delim="," # CSV by default

Parse flagged arguments:
while getopts "td:" flag
do
 case $flag in
 d) delim=$OPTARG;;
 t) delim="\t";;
 ?) exit;;
 esac
done

Delete the flagged arguments:
shift $(($OPTIND -1))

f1=$1
f2=$2
col1=$3
col2=$4

cols=`awk -F "${delim}" '{ print NF ; exit }'
$f1`

while read a
 do while read b
 do
 echo "a{delim}$b"
 done < $f2
 done < $f1 |
 awk -F "${delim}" "{ if (\$${col1} == \$$((
col2 + cols))) print }"

Example: Deleting a list of bad users
We’re given a list of bad users to remove from
/etc/passwd.

They’re in the file bad.db:

matt
bob

Let’s use a simplified /etc/passwd for this example:

root:*:0:0:The Admin:/root:/bin/sh
matt:*:500:500:Matt:/home/matt:/bin/bash
john:*:501:501:John:/home/john:/bin/bash
bob:*:502:502:Bob:/home/bob:/bin/bash

How can we delete them relationally?
Start with a product, cartesian -d ":" bad.db /

etc/passwd > badpasswd.db:

matt:root:*:0:0:The Admin:/root:/bin/sh
matt:matt:*:500:500:Matt:/home/matt:/bin/bash
matt:john:*:501:501:John:/home/john:/bin/bash
matt:bob:*:502:502:Bob:/home/bob:/bin/bash
bob:root:*:0:0:The Admin:/root:/bin/sh
bob:matt:*:500:500:Matt:/home/matt:/bin/bash
bob:john:*:501:501:John:/home/john:/bin/bash
bob:bob:*:502:502:Bob:/home/bob:/bin/bash

Then, select rows where the bad user matches the
account name, with awk -F: '{ if ($1 == $2)
print }' badpasswd.db > offenders.db :

matt:matt:*:500:500:Matt:/home/matt:/bin/bash
bob:bob:*:502:502:Bob:/home/bob:/bin/bash

26  PROGRAMMING

Now, project out the columns that make the result
compatible with the format of /etc/passwd with cut
-d ":" -f2- offenders.db > kill.db:

matt:*:500:500:Matt:/home/matt:/bin/bash
bob:*:502:502:Bob:/home/bob:/bin/bash

Finally, use difference /etc/passwd kill.db to generate
a new password file sans malefactors:

root:*:0:0:The Admin:/root:/bin/sh
john:*:501:501:John:/home/john:/bin/bash

Exercise
Some of these scripts have quadratic time complexity.

■■ Add a -s flag to equijoin and difference that
assumes the inputs have been sorted by sort and
produces a sorted output.

■■ Show that -s can achieve better time complexity.

■■ Then, rewrite the account-deletion example to
eliminate Cartesian product and use fast equijoin
instead.

Good resources
Sed and awk have become a lost art.
They’re the only languages I know
that frequently beat Perl in semantic
density. If you haven’t learned them
yet, you’ll be impressed with what
they can do for you.

I recommend the O’Reilly classic,
sed & awk [hn.my/sedawk].

I also recommend spending an hour
or two going through the advanced
bash scripting guide [hn.my/abs]
and bash pitfalls [hn.my/pitfalls]. It’s
worth the time invested.

If you want a solid theoretical
understanding of databases, I recom-
mend Date’s SQL and Relational
Theory [hn.my/sqlrel]. n

Matt Might is a professor of Computer Science
at the University of Utah. His research inter-
ests include programming language design,
staticanalysis and compiler optimization. He
blogs at matt.might.net/articles and tweets
from @mattmight

Reprinted with permission of the original author. First appeared in hn.my/sqlshell (matt.might.net)

http://hn.my/sedawk
http://hn.my/abs
http://hn.my/pitfalls
http://hn.my/sqlrel
http://matt.might.net/articles/
http://twitter.com/mattmight
http://hn.my/sqlshell

http://getharvest.com/hackers

28  PROGRAMMING

In this business, you meet more
than your fair share of eccen-
tric developers with their own

idiosyncratic ideas about software
development. If you’re like me, you
need go no further than a mirror to
see what one looks like. One of the
most iconoclastic fellows I ever met
was a grizzled veteran named Jim
Kelly. For reasons of interest only in
cultural antiques, everyone called
him “Williams.”

Williams claimed to have gotten
started when using punch cards
and random access memory was
considered effete by the drum
memory wizards of the previous
generation [hn.my/mel]. Like many
retro-grouches, he would fondly
recall rites of passage, such as
booting computers by toggling the
three bootstrap instructions into
a CPU’s front panel. If his eccen-
tricity stopped at recounting tales
from days of yore, I’d probably have
forgotten him years ago.

However, Williams was unique.
Most veterans cling to whatever
beliefs about software development
were in vogue when they were
cutting their teeth. Be it the utility
of Lisp, the superiority of the VAX
architecture, or the string-theory-like

perfection of Smalltalk, most vet-
erans cling to technology and ideas
that were cutting edge back in their
day. Not Williams. Williams had
invented his own software develop-
ment methodology, and he espoused
it with the fervor of an evangelist on
a street corner.

He had long ago accepted that
the rest of the world was not about
to change to do things the “right
way,” but he likewise refused to
submit to fashion, no matter what
the costs to his reputation or career.
So he bounced from job to job, con-
stantly being let go for “lack of fit
with the team,” until he wound up
at ThinkWare, a contracting firm.
The partners at ThinkWare special-
ized in finding ways for square pegs
to write software that fit in round
holes, and they carefully walled
Williams off so that he could write
software his own way with very
little interference from anyone else.

Williams had a style that Think-
Ware described as “unorthodox, but
effective.”

I’ll take you, darling. And you.
And you. And. You.
Typically, ThinkWare would give
Williams a list of features to

implement. Williams was very big
on dependencies, and he would
very carefully draw a graph of
feature dependencies. For example,
if he was going to write a Facebook
Clone, his diagram would show
that commenting on a wall post
depended on wall posts, which in
turn depended on walls.

Williams would then work along
the graph, not starting any fea-
ture until all of its dependencies
were fully implemented. And he
would work on a single feature at
a time, completing the feature in
its entirety before starting another.
Williams loathed developing infra-
structure that would “pay off later;”
he preferred to write the simplest
and least amount of code required
to get the current feature to work.

In that respect, his style resem-
bled that of many agile develop-
ers. And in another respect, he
appeared “agile” to those who never
read his code: Williams loved to
write tests. When Williams deliv-
ered a feature, there was much,
much more test code than work-
ing code. He had been taught to
write automated unit tests at a time
when the standard architecture for
making code “testable” consisted of

By RegINALD Braithwaite

Williams, Master of the
“Come From”

http://hn.my/mel

  29

writing a command-line wrapper so that the tests
could be baked into a shell script, and he never
wavered from his belief that if you haven’t tested it,
it doesn’t work.

So Williams’ process was simple: Work on fea-
tures one at a time, write the minimum amount of
code to get the feature to work, practice YAGNI,
and write comprehensive tests for each feature.

Too busy looking good.
Although Williams’ style seemed contemporary,
it was his heterodox practices that drove a wedge
between him and his colleagues. Unlike every
other agilist on this or any planet, Williams dis-
dained refactoring. It wasn’t that he saw no value in
refactoring: Scrolling through his check-ins revealed
that he would write and rewrite the code for each
feature numerous times.

However, once Williams delivered a feature, he
liked to move on to the next feature and leave the
code for existing features unchanged as much as
possible. For example, if he delivered a wall post
feature, it might include an ActiveRecord model
class:

 # wall_post.rb
 class WallPost < ActiveRecord::Model
 # ...
 end

Once the Wall Posts were delivered with tests, he
might work on comments. But instead of changing
wall_post.rb to read:

 # wall_post.rb
 class WallPost < ActiveRecord::Model
 has_many :comments
 # ...
 end

Williams would isolate all of the code for com-
ments into a module or plug-in, and “monkey
patch” the WallPost class:

 # vendor/plugins/comments/lib/railtie.rb
 WallPost.class_eval do
 has_many :comments
 # ...
 end

Since none of the code written so far needed to know
that a wall post could have comments, he saw no value
in cluttering up those files with comment-handling code.
Instead, he put the relationship between wall posts and
comments in the code that was responsible for doing
something with comments. His code was uniformly orga-
nized so that the code dependencies were exactly isomor-
phic to the feature dependencies.

Williams used every decoupling technique in the book
and several he invented himself, from monkey-patching to
method combinators to writing observers on classes. Inex-
perienced developers would often be completely bewil-
dered as to how anything worked at all and would search
in vain for signs of a heavyweight Dependency-Injection
framework.

Features are fairly coarse-grained, so after getting over
the shock of Williams’ style, most developers could adjust.
However, Williams also used these decoupling techniques
for fine-grained cross-cutting concerns as well. So instead
of writing:

 # wall_post.rb
 class WallPost < ActiveRecord::Model
 def doSomething
 WallPost.transaction do
 # ...
 end
 end
 end

Williams would write:

 # wall_post.rb
 class WallPost < ActiveRecord::Model
 def do_something
 # ...
 end
 end

And:

 # wall_post_persistence.rb
 WallPost.class_eval do
 def do_something_with_db_transaction
 WallPost.transaction do
 do_something_without_db_transaction
 end
 end
 alias_method_chain :do_something, :db_trans-
action
 end

30  PROGRAMMING

The net result was that his
models were always small and
directly concerned with business
logic, while implementation details
like error handling and persistence
were moved out into separate mod-
ules and plug-ins.

How sloppy your man works.
Of course, his colleagues rioted at
the thought of working with his
code.

In Smalltalk, everything happens
somewhere else. –Adele Goldberg

When looking at one of Williams’
model classes, all you would see
is the basic, bare bones minimum
functionality. Other features would
be entirely implemented elsewhere,
often in plug-ins of one kind or
another. That made following the
code annoying for developers used
to the “one model class to rule
them all” style of coding.

And the one or two folks
who prayed at the Big Church
[springsource.org] were aghast at
the lack of an Injection Container
and the complete absence of XML
configuration. As one educated wag
put it:

Williams has elevated the com-
puted, non-local COMEFROM to
an art form.

Worse, Williams’ style made it
obvious how little work he really did.
His methods were short and simple
and to the point. It looked as if he
was bored and making work for him-
self with all the decoupling because
the decoupling was easily the most
advanced code in any of his projects.

It seemed like a code smell to
have infrastructure code that was
more advanced than the domain
code, as if he was an architecture
astronaut intent on making life hard
for himself and his colleagues.

Unorthodox, but effective.
Meanwhile, the ThinkWare partners
had adopted a tolerant attitude
towards Williams and his code.
Despite the objections from his
colleagues, they had noticed that
his code really did work and kept
working, mostly because it really
was decoupled. New features could
always be backed out simply by
removing their plug-ins or modules.

This was most evident when
examining his mountains of test
code. Very little of it was concerned
with mocking and stubbing func-
tionality because he could always
test his models without persistence
layers or error handling frameworks
to stub in.

Williams, they had discovered,
was a good developer...within his
limitations. Despite how well he
worked and how well his code
worked, his dependency decou-
pling would invariably erode
when handed off to someone else.
Entropy would rot his architecture
as developers would work around it
to get things done quickly.

Ghettoes are the same all over
the world.
It wasn’t that his colleagues were
unimaginative or lazy, but Williams’
style clashed with an environ-
ment that celebrates YAGNI and
refactoring. Decoupling was, most
developers reasoned, something
they weren’t going to need, and if
they did, it could be re-factored in
later.

So the ThinkWare partners put
Williams in charge of small projects
where he could practice his own
brand of architecture in peace and
largely left him to his own devices.
The clients were happy, and he was
happy. Once in a while another
developer would work with him on
a limited basis, and after getting up

to speed on how things worked in
his particular corner of the uni-
verse, they’d fall in line and get a lot
of stuff done.

Sometimes they’d return to
another project and try to imple-
ment some of his ideas, with mid-
dling success. But as long as the
developers learned something from
the experience, the ThinkWare
partners figured that pairing Wil-
liams with a colleague from time to
time was a win.

The last time I saw Williams, he
had grown an afro and was carry-
ing a tennis racket, obviously on
his way to a game. We chatted for
a while, and he excitedly told me
about a framework he was develop-
ing for implementing really light-
weight decoupling in some weird
dialect of JavaScript.

I never saw him again, but I
like to imagine that he’s still at
ThinkWare, writing solid code and
evangelizing his ideas to anyone
who will listen. n

Reginald is a software developer and
development lead with Unspace Inter-
active. He writes code and words about
code in homoiconic. Follow him on Twitter
@raganwald

Reprinted with permission of the original author.
First appeared in hn.my/comefrom

http://twitter.com/raganwald
http://hn.my/comefrom

  31

Many, many months ago,
Declan Eardly asked
why the \ character

was chosen as the path separator.
The answer is from before my

time, but I do remember the origi-
nal reasons.

It all stems from Microsoft’s rela-
tionship with IBM. For DOS 1.0,
DOS only supported floppy disks.

Many of the DOS utilities
(except for command.com) were
written by IBM, and they used
the “/” character as the “switch”
character for their utilities. The
“switch” character is the character
that’s used to distinguish command
line switches: on *nix, it’s the “-”
character, on most DEC operating
systems (including VMS, the DEC-
System-20 and DECSystem-10),
it’s the “/” character.

The fact that the “/” character
conflicted with the path charac-
ter of another relatively popular
operating system wasn’t particularly
relevant to the original develop-
ers — after all, DOS didn’t support
directories, just files in a single root
directory.

Then along came DOS 2.0.
DOS 2.0 was tied to the PC/XT,
whose major feature was a 10M
hard disk. IBM asked Microsoft
to add support for hard disks, and
the MS-DOS developers took this
as an opportunity to add support
for modern file APIs. They added a
whole series of handle-based APIs

to the system (DOS 1.0 relied on
an application-controlled structure
called an FCB). They also had to
add support for hierarchical paths.

Now historically there have been
a number of different mechanisms
for providing hierarchical paths.
The DecSystem-20, for example
represented directories as: “<volum
e>:”<“<Directory>[.<Subdirectory
>”>“FileName.Extension[,Version]”
(“PS:<SYSTEM>MONITR.
EXE,4”). VMS used a similar
naming scheme, but instead of <
and > characters it used [and]
(and VMS used “;” to differentiate
between versions of files). *nix
defines hierarchical paths with a
simple hierarchy rooted at “/”. In
*nix’s naming hierarchy, there’s no
way of differentiating between files
and directories, etc (this isn’t bad,
btw, it just is).

For MS-DOS 2.0, the designers
of DOS chose a hybrid version.
They already had support for drive
letters from DOS 1.0, so they
needed to continue using that. And
they chose to use the *nix style
method of specifying a hierarchy:
instead of calling the directory out
in the filename (like VMS and the
DEC-20), they simply made the
directory and filename indistin-
guishable parts of the path.

But there was a problem. They
couldn’t use the *nix form of path
separator of “/”, because the “/” was
being used for the switch character.

So what were they to do? They
could have used the “.” character
like the DEC machines, but the “.”
character was being used to differ-
entiate between file and extension.
So they chose the next best thing,
the “\” character, which was visually
similar to the “/” character.

And that’s how the “\” character
was chosen.

Here’s a little known secret about
MS-DOS. The DOS developers
weren’t particularly happy about
this state of affairs. Heck, they all
used Xenix machines for email and
stuff, so they were familiar with the
*nix command semantics. So they
coded the OS to accept either “/” or
“\” character as the path character
(this continues today, by the way .
Try typing “notepad c:/boot.ini” on
an XP machine if you’re an admin).
And they went one step further.
They added an undocumented
system call to change the switch
character. And updated the utilities
to respect this flag.

And then they went and finished
out the scenario: they added a
config.sys option, SWITCHAR=
that would let you set the switch
character to “-”.

Which flipped MS-DOS into a
*nix style system where command
lines used “-switch”, and paths were
/ delimited.

I don’t know the fate of the
switchar API, it’s been long gone
for many years now.

 So that’s why the path character
is “\”. It’s because “/” was taken. n

Larry Osterman is a Principal Software
Design Engineer at Microsoft where he
has worked since 1984. He lives in the
Seattle area.

Why is the DOS Path
Character “ \ ” ?
By Larry Osterman

Reprinted with permission of the original author.
First appeared in hn.my/dos (blogs.msdn.com)

http://hn.my/dos

32  SPECIAL

By David Peter

SPECIAL

At 21, I’m the young-
est employee at the
startup 1000memories.

I’m also their first deaf employee.
At a startup, I likely always will be
the first. For a startup to succeed,
the team must communicate well
together. Since I can’t hear, that
presents a major challenge for my
employers.

On top of that, there are certain
things about being deaf that people
have never considered, understate,
or are mistaken about — so I must
clear up exactly what being deaf
means. Not understanding what it
means risks my productivity and
personal happiness. Being a pro-
grammer is my current profession,
so there will be concrete examples
about how being deaf affects me
professionally as well as personally.

Solitude
I’ve been with 1000memories for
almost a year, and I leave in two
weeks to attend Hacker School. I
still feel lonely sometimes. If your
reflex is “everyone feels lonely
sometimes,” you would be right.
But you would also be understating
the loneliness we feel.

Deafness means I don’t under-
stand anyone. When someone talks

at lunch, I want to know what they
say. I miss out on the daily con-
versation, the back-and-forth, the
friendships made after propinquity.
And the worst part is that I don’t
have a choice in the matter.

Five years ago, I received a
cochlear implant: a tiny techno-
logical machine implanted into my
cochlea that fires electric bursts
to help me hear. I had to learn
sound all over again. I almost didn’t
qualify for the cochlear implant
operation because, even at 16, I
was considered too old. Teaching a
child language gets exponentially
harder as they grow. It’s the same
with hearing. I still can’t tell the dif-
ference between “b” and “g,” among
many others. I might never, but
there’s no point in not trying.

In the past few months, I’ve felt
like I’m the last person to know
about things. I’m constantly sur-
prised when something happened
or changed. Once, an engineer left
to work from Seattle the same
week the two other engineers
on the team left to present at
RailsConf 2012. When I discovered
that I would be the only engineer
in the office the entire week, it was
after everyone else had all gone.

It seems like a solution is just
to ask more questions. I knew the
engineer who was presenting at
RailsConf Wednesday, but maybe
I should have asked who else was
going and how long he’d be gone?
Maybe. I need to work on getting
these questions to occur to me.
It’s hard when I still don’t know
these people very well, and haven’t
learned the social norms because
I’ve never heard them.

Another solution is to somehow
know what everyone else is doing.
The engineers use Google docs to
store priorities and to-do lists. We
started using Yammer to keep the
team up-to-date. That one isn’t
working too well — we get an
email about every two weeks by
a cofounder to use Yammer more.
But the idea is to keep everyone
up-to-date. Basically, company-wide
toilet tweeting.

Group Conversations
In an open office like this, it’s very
easy to drop in on a conversation
and add something. But without
understanding what people say, the
chances of doing that drop to zero.
This is especially problematic in
company meetings. The only way I
can participate is with access services.

Being Deaf

  33

1000memories is still a startup,
so we can’t afford full-time access
services. But for our most impor-
tant meetings, the cofounders went
through considerable expense to get
me transcribers. With them, meet-
ings are a bit better.

Since we work in an open office,
parts of the team often chat with
each other, especially at lunch.
I always miss out on these talks,
which are full of snippets of infor-
mation no matter how bad the sig-
nal-to-noise ratio. This is really taken
for granted. Any off-topic comment
hints at an entire life to discover.

My best friend, then interning
at Causes, kept telling me about
random tips he picked up from
other programmers because they
were always chatting about new
tricks they learned. This is how I
learned about git log -S.

Have I told anyone about these
problems? Have I taught anyone
how to communicate with me? Yes
to both. The result is no one uses
the communication method after
the initial novelty. The excuse my
coworkers use for not practicing is
“I need to practice.” And then they
keep on talking to you online rather
than real life because it’s easier and
more familiar. That’s because we’re
human, really.

I should have made it clear that
Cued Speech was important to
me. Startups are busy as bees, and
people have other priorities. And I
suspect I taught them too far down
the line, because it was two months
before I would be gone. Something
I’ll take away from this experience.

In a chat with a cofounder, I told
him that I felt like I didn’t have
friends. I became jealous whenever

a coworker talked to another and
not me. It felt like a girlfriend
talking to another guy. When they
laugh and I’m unable to understand
why, it feels like a punch in the
gut, a giant inside joke I’m not part
of. Maybe I should ask to explain
the joke, even though most of the
humor would be lost, because at
least I would know.

I participate in conversations less
than the quietest person I’ve met —
not by choice, entirely. You should
never want to be average — unless
you are below average. This is a cry
for normalcy, when so many others
wish to be abnormal.

34  SPECIAL

Love
Being deaf especially sucks when it
comes to love. You can’t ever love
someone unless you’ve talked to
them. So how do you communicate
effectively? Everything I’ve ever
thought of is awkward, because
none of them are ever normal.
Social norms are norms because
they are what people expect.

I’ve talked to people “normally.”
It’s hard, it’s error-prone, and we
have to repeat a lot. That’s never
a good recipe for love. It’s hard
to have awesome conversations
when you have to repeat every
other thing you say and are never
sure whether the other person
understood.

I could use an online dating site,
like OKCupid. However, these are
self-selected pools of people. There
is a specific audience that goes to
each site, and you still have to learn
subtle communication skills which I
currently lack.

I could do many other things
(and am!) — exercise, dress well,
maximize exposure. But in the end,
I’m deaf. The most important thing
is that I find someone who commu-
nicates well with me.

Job Interviews
Let me tell you a story in the pres-
ent tense.

This morning, I get my fifth or
sixth email from a large company in
Washington. The second recruiter’s
trying to clarify some things, and
she tells me that she’ll be looking
for an “interrupter” [sic] for my
over-the-phone interview.

I ask to clarify this point. Since
I’m deaf, having an interpreter for a
phone interview wouldn’t be very
useful since the interpreter would
be in Washington and I’m not,
right? Would they actually be hiring

an interpreter in San Francisco?
How was this going to work?

In her next email, the recruiter
delegates me to her manager, the
third recruiter. At the end of the
email is a copy-pasted message to
be sure to fill out the necessary
application for the interview. All
interns have seen this application.
I do not want to fill it out if they
botch the interpreter.

Her manager tells me that she’ll
contact my college for access ser-
vices and that we’ll be using Live
Meeting for the interview. She’ll
even do a test with me.

Unfortunately I have no idea
what Live Meeting is. A quick
search on Google tells me Live
Meeting is basically Skype, but with
no clues on how to download it.

I end up never starting the
interview.

Accessibility in Interview
Applications
For most company interview
applications, they ask for a phone
number without alternatives. I put
a random note where I can. Some-
thing like “Since I’m deaf, I can’t
do a phone interview, but you can
reach me at…” at the end of the
“Why do you want to work for us?”
question. I never hear back from
these. I don’t know if it’s whether
they never saw my note, whether
they rejected my resume silently, or
whether they attempted calling my
phone number (which doesn’t take
calls).

Last time I applied, even Google
didn’t provide alternatives. It was
a beta application, though when I
emailed a recruiter in charge of my
college about it, she was very help-
ful and understanding.

HR is behind the times. There
is no reason interviewing over the

phone is better than interviewing
on video with typewith.me, Skype,
or Gmail chat. I’ve done all of these,
and it’s always turned out that the
programmers preferred to conduct
those interviews this way.

Screencasts, Talks, and Video
Tutorials
When I was trying to learn Rails, I
soon found out that a large chunk
of popular tutorials were uncap-
tioned screencasts or videos — a
huge body of knowledge I’m unable
to tap into. Even Khan Academy
went uncaptioned until recently
when an independent group helped
out. So many uncaptioned videos
exist because minorities are not
prioritized.

Since I can’t listen to talks, I
have to make-do with slides. Slides
almost never go into the depth a
talk does: it’s all surface knowledge.

In the end, I learned program-
ming by a combination of getting
lucky, enrolling in formal classes,
poring over books, Googling, finding
Stack Overflow, and making things,
making things, making things.

Access Services
There are three layers involved in
translation: the messenger herself,
the interpreter, and me. I hear what
someone says through the lens of
someone who probably doesn’t
know programming.

As university subjects get harder,
access services get worse. In Prob-
ability class a year ago, we learned
about second derivatives and
gamma probability functions, and
the typist that my college hired for
this class was typing a transcription
indistinguishable from a novel writ-
ten by a chimpanzee. Typists are
not required to learn the prereq-
uisites, nor do they have to learn

  35

along with the student. They just
type what they think they hear.

It’s like playing a game of
Telephone — the classic example
of lousy communication. Which
means it is never, ever as good.

The only good access service
I’ve ever gotten is Cued Speech.
In a basic sense, Cued Speech is a
system that uses signs for sound. It
was invented to battle the spec-
tacularly low deaf literacy rate.
(The average reading level of deaf
17- and 18-year-olds is at the fourth
grade level.) With Cued Speech,
I see exactly what the messenger
says, without ambiguity. The only
error arises when the transliterator
mishears the person. Unfortunately,
in college, I’m not offered Cued
Speech due to politics not worth
mentioning, and Cued Speech is
not widespread.

Deaf Culture
I never considered myself part of
Deaf culture. It arose because, I sus-
pect, we were lonely. It’s the same
for any minority. Except this time,
Deaf culture came together because
of a common language everyone
could understand — American Sign
Language. I’ve heard the stories.
Deaf people entering college for
the first time. Finding other deaf
students. Suddenly, during their first
sleepless night, they’re making up
for all the conversations they had
missed.

Some become angry at the
hearing world. They went so long
without feeling like they belonged.
Without feeling loved.

Some don’t think deafness is
a disability; it’s just a way of life.
After all, we can do anything
except hear. But I don’t want to
be part of the Deaf world, which
seems so cloistered sometimes.

I want to be part of the larger
world — and out here, not being
able to hear is a pretty significant
disadvantage.

Friends
Despite the constant communica-
tion barriers, I’ve really grown into
a good programmer during my time
at 1000memories. I’ve learned how
to communicate with others, what
the real world is like, how to do
behavior-driven development, mas-
tered JavaScript, and even submit-
ted a patch for Ruby on Rails. They
gave me a chance prove myself as
a programmer — and, in these past
few months, as a friend.

Nine months had passed since
my inception as a bumbling intern
before I admitted to a cofounder
that I was feeling lonely. It hap-
pened after one social bowling
night, when a scheduling mistake
caused us to wait in the alley for an
hour and a half chatting in a noisy
environment. I stood off to the
side, feeling stupid, watching my
coworkers laugh. I didn’t want to
see that. As soon as I collapsed back
in my apartment, I cried. Then a
little thought went off in my head:
shouldn’t someone know about
this? So I wrote an email.

The next morning the cofounder
read my email. He invited me for
a chat over breakfast. When he
let me into his apartment, I was
surprised and a little guilty when I
saw his eyes. That moment was the
most vulnerable I ever saw him. Of
course, you idiot, I thought right
then. Founders get lonely, too.

We had bagels on his couch. It
took a long time before either of
us started talking. I began with
what my life used to be three
years ago, when I was a completely
different person. I was so passive

and shy I couldn’t look anyone
in the eye. I blamed everything.
I depended on everyone. I was
content to live life as a cog in an
industrial machine. I just wanted
an easy life and die of old age.
Until I went to college.

In college, I was depressed and
bored. I felt like I was missing
something. Then someone I knew
died. And another. I realized I
wasn’t missing anything. Happiness
is a verb. And now, me-three-years-
ago wouldn’t be able to recognize
who I am today.

The cofounder and I went
through what we could do to make
my life at work better. Part of my
contract involved a budget for
speech therapy, something I never
took advantage of. I brought up
teaching Cued Speech. He men-
tioned that, at lunch, I could nudge
someone and ask what we were
talking about. We talked about
going back to college, living in the
adult world, and finding love.

I walked away feeling like we
could be friends. n

David Peter is a hacker who likes drawing,
writing, and reading fantasy/sci-fi. He was
the frontend engineer at 1000memories,
and is now attending Hacker School in
NYC before he returns to college in the fall.

Reprinted with permission of the original author.
First appeared in hn.my/deaf (davidpeter.me)

Photo taken by Shirmung Bielefeld.

http://hn.my/deaf

36  SPECIAL

By Dann Berg

Let’s talk about magnet
implants. I don’t really
bring it up much, but I

have a small rare earth magnet
implanted in the pinkie finger
on my right hand. I’ve had it for
around three years now.

Whenever someone finds out
that I have this implant, they’ve
always got a ton of questions. Usu-
ally the first question is “why?”
While this is a valid question, I tend
to dismiss it when asked, favoring
a continuation of the conversation
rather than a Q&A session about
my motivations and the way I view
and interact with the world. But to
be fair to those who are genuinely
curious (rather than those who
quickly ask “why?” out of shock),
I figured I’d share some of my
thoughts and experiences related to
having a magnet implant and hope-
fully answer some of the frequently
asked questions.

Initial Interest
When I first read about magnet
implants, the technology was still
in its infancy. There was an amaz-
ing article by former editor and
founder of BMEZine Shannon
Larratt that discussed a type of
“sixth sense” that these magnets
provided. But my interest in getting
the procedure myself was quickly
squashed after reading and seeing,
in graphic detail, what happened
when the silicone encasing around
these magnets broke down and the
magnet corroded inside his finger.
Even after all these years, just the
thought of those images gives me
the chills.

At that time, I wrote the proce-
dure off as a cool concept and noth-
ing more. It wasn’t until around
three years ago, in a bar with some
friends, that I learned that one of
my buddies actually had a magnet
implant. Not only did he have one,
but he had had it for a year at that
point. My interest was immediately
piqued again. No longer was this

just some procedure that someone
tried and failed. Rather, it had a bit
of staying power. I spent the rest of
the night talking to him about the
implant and watching him perform
party tricks, such as picking up
paperclips and bottle caps with the
tip of his finger.

That night, I made the decision
to get the implant. The next day,
I contacted my local experienced
implant practitioner and made an
appointment.

The Procedure
The first decision I needed to make
was which finger to get the implant.
I had already chosen to get the
implant on my right hand, as I am
left handed. I ended up settling on
my pinkie finger after performing a
bunch of routine tasks and paying
attention to which fingers I used
most. Another common finger for
the implant is the ring finger, but I
felt like I used my pinkie less, so I
opted for that one.

Body Hacking:
My Magnetic Implant

I’ve got a magnet implanted in my finger. Here’s my story.

  37

The actual implant procedure
was fairly quick. My finger was
marked in two places: where the
magnet was going to go as well as
the incision spot (around a quarter
to a half inch away from the final
resting spot for the magnet). He
then made the incision with a scal-
pel, used some tissue elevators to
separate the tissue, slid the magnet
into place, and sealed the incision
with some surgical glue. Next was a
bit of tissue compression; then my
finger was wrapped up and I was
on my way. It took about fifteen to
twenty minutes total.

Initial Reaction
Due to the tissue trauma from
cutting open my finger, it took a
while before I could really take full
advantage of having the magnet
implant. It was only a day or two
before I picked up my first paper-
clip, but it took a few months
before my finger really regained
full sensation. The tissue around

the implant all the way up to the
incision point was swollen and
fairly numb for weeks after the
procedure. This didn’t stop me
from playing with the magnet all
the time, picking up paper clips and
other small metal objects.

As the swelling went down and
the sensation in my finger tip came
back, I began to experience ele-
ments of an invisible world around
me. When people discuss magnet
implants giving a “sixth sense,” this
is what they’re talking about. I
was working retail at the time, and
I believe the first thing I noticed
was the vibrations from the fan
inside the cash register. I could
feel the invisible field, coming out
of the side of the computer in a
half-dome. The vibrations varied
in strength depending on where
I held my finger. It really did not
feel like a foreign object vibrating,
but rather my finger itself. It was
an extremely weird sensation and
fairly uncomfortable at first.

Another uncomfortable experi-
ence, which I quickly learned to
avoid, was handling other magnets
in such a way that they flipped
the magnet inside my finger. The
magnet inside my finger is round
and flat, so introducing an outside
magnet with a different polar pull
would cause my magnet to make a
quick flip inside my finger. While
this didn’t hurt, it was (and still is)
fairly uncomfortable. In addition,
sometimes the magnet would get
pulled on its side, sticking up and
down rather than settling flat in my
finger. This never hurt either, but
also proved to be quite uncomfort-
able and required a quick massage
to get the implant to lay flat again.

Experiencing the World
I quickly learned that magnetic
surfaces provided almost no sensa-
tion at all. Rather, it was movement
that caused my finger to perk up.
Things like power cord transform-
ers, microwaves, and laptop fans
became interactive in a whole
new way. Each object has its own
unique field, with different strength
and “texture.” I started holding my
finger over almost everything that
I could, getting a feeling for each
object’s invisible reach.

Portable electronics proved to
be an experience as well. There
were two fairly large electronic
items that hit the shelves around
the same time as I got my implant:
the first iPad and the Kindle 2.
Both of these items had a speaker
located at the bottom right of the
unit, almost exactly where I rested
the pinkie finger of my right hand.
Both of these speaker magnets were
powerful enough to flip the magnet
in my finger if I brushed past them
in a certain way. This was incredibly
annoying, but became a moot issue

38  SPECIAL

as soon as I put a case on either
device. No elements of the iPhone
ever posed an issue, and newer ver-
sions of the Kindle and iPad moved
this magnet to a non-intrusive
location. I was very wary of the iPad
2′s magnetic smart cover, but these
magnets are so specifically targeted
that they take a while to find even
if you’re looking for them.

The best part of having the
magnet implant was discovering
invisible magnetic fields when I
wasn’t actually looking. The first
experience I had with this was
walking through the intersection of
Broadway and Bleecker in Manhat-
tan. I passed through this intersec-
tion a few times before realizing
that my finger would tingle at a
certain spot. After paying a bit
more attention, I realized that I was
feeling something underground. At
first, I assumed it was a subway car,
but later came to the conclusion
that it was most likely the subway
power generator, or the giant fan
that was cooling these generators.
After noticing these underground
waves at Broadway and Bleecker,
I began feeling them all over
Manhattan.

Another unexpected magnetic
field is at certain store checkout
counters. Mainly at book stores
(and some clothing stores), there is
a strong unit under the counter that
removes the security tags. This unit
usually pulses, sending out magnetic
waves strong enough to be felt a
few feet away. This always leads to
interesting conversations with the
cashiers.

Downsides
There are surprisingly few down-
sides I’ve experienced in the three
years that I’ve had the magnet
implant. Luckily, the magnet is not

strong enough to wipe out credit
cards nor will it negatively affect
electronics or computer monitors.
I’ve also flown numerous times
since having the procedure done
and never had any issues.

The only real negative aspect to
having this implant is the inability
to get an MRI (if needed) without
first having the implant removed.
This is something that I thought
about before getting the proce-
dure done, and I made a conscious
decision to get the implant anyway.
I also figure that if I’m ever inca-
pacitated and put in an MRI
machine without the ability to
give the doctor any forewarning, a
tiny magnet getting ripped out of
my finger will be the least of my
concerns.

Thoughts Three Years Later
Three years after getting the
implant, my magnet is something
that I constantly forget about. It’s
not something that tends to come
up in general conversation. Even
the prompt, “Tell me something
unique about yourself” often occurs
in an environment where men-
tioning a magnet implant may be
slightly inappropriate. As far as
my personal use of the magnet, it
serves as more of a general curiosity
tool rather than having any sort of
practical use. I’m not in a profession
that requires me to tell live wires
from dead wires. Rather, if I find an
object that’s labeled “magnetic,” I’ll
generally hold my finger up to see
the exact strength of the magnet
and nothing more.

Over the years, the magnet has
lost strength as well. While I could
once hold a large paperclip, the
magnet now only supports a small
one. The combination of a weaker
magnet and the novelty wearing

off means I rarely even think about
the implant. It’s only when I sense
a fairly strong field that the magnet
will enter my consciousness, and
even then, it’s usually a quick
mental note before I continue doing
what I was doing.

Despite this, I’m still really happy
that I had this procedure done. It
has unlocked an entirely new world
for me, one that I can touch and
interact with in a very real way.
While a magnet implant doesn’t
technically count as a “sixth sense”
(it’s more of an extension of our
existing sense of touch), the way
that the body internalizes these
tiny magnetic vibrations feels truly
foreign.

If this is something that you’re
interested in getting done, by all
means continue your search. Make
sure to do your research, find
an experienced practitioner, and
know the supplier of the magnet.
Understand the risks and the
consequences of getting a magnet
implant. Once you’ve done all get,
go get the magnet and start explor-
ing the world. n

Dann Berg makes stuff. He is the co-founder
of hangalong and a writer at LAPTOP Mag-
azine. Say hi to him at @DannBerg

Reprinted with permission of the original author.
First appeared in hn.my/magnet (iamdann.com)

http://twitter.com/DannBerg
http://hn.my/magnet

http://hn.my/codeschool

http://memset.com

	Contents
	FEATURES
	The Salesman and
the Developer
	How I Helped Destroy
Star Wars Galaxies

	STARTUPS
	I Have No Idea
What I’m Doing
	The Anatomy of
Profitable Freemium
	Why Cheap Customers Cost More
	Everything I’ve learned about selling SaaS in Japan

	PROGRAMMING
	Consistent Hashing
	Relational Shell Programming
	Williams, Master of the "Come From"
	Why is the DOS Path Character “\”?

	SPECIAL
	Being Deaf
	Body Hacking:
My Magnetic Implant

