

Curator
Lim Cheng Soon

Contributors
Nikos
Michalakis
Andrew Chen
Chris Strom
David Valdman
Justin
Kan
Alexandru Nedelcu
Harvey Green
Hynek Schlawack
James
Hague
Andreas Zwinkau
Joe Peacock
Tommy MacWilliam
Lou
Montulli

Proofreaders
Emily
Griffin
Sigmarie Soto

Printer
MagCloud

Advertising

ads@hackermonthly.com

Contact

contact@hackermonthly.com

Published by
Netizens Media

46, Taylor Road,
11600 Penang, Malaysia.

Hacker Monthly is the print magazine version of Hacker News —
news.ycombinator.com,
a social news website wildly popular among programmers and startup
founders. The submission guidelines state that content can be
“anything that gratifies one’s intellectual curiosity.” Every
month, we select from the top voted articles on Hacker News and print
them in magazine format.
For more, visit hackermonthly.com

On
Entrepreneurship

By ELON MUSK

I actually originally came to
California to study energy physics at Stanford, but I ended up
putting it on hold in 1995 to start Zip2. I’ll tell you a little
about the process and exactly what happened there. In 1995, it wasn’t
at all clear that the internet was going to be a big commercial
thing. In fact, most of the venture capitalists that I talked to
hadn’t even heard of the internet, which sounds bizarre on Sand
Hill Road. However, I wanted to do something there, and I thought it
would be a pretty huge thing. It was one of those things that came
along once in a very long while, so I got a deferment at Stanford and
thought I’d give the idea a couple of quarters. If it didn’t work
out, which I thought it probably wouldn’t, then I’d go back to
school. When I told one of my professors this, he said, “Well, I
don’t think you’ll be coming back.” And that was the last
conversation I had with him.

The only way I could think to get
involved in the internet in 1995 was by starting a company. Apart
from Netscape and one or two others, there weren’t a lot of
companies specializing in this area. Since I didn’t have any money,
I decided to create something that would return money very, very
quickly. So, we thought the media industry would need help converting
its content from print to electronic media, and they clearly had the
money. We decided that finding a way to help them root their media to
the internet would be a sure way to generate revenue. There was no
advertising revenue on the internet at the time.

That was really the basis of Zip2. We
ended up pulling quite a bit of software for the media industry and
primarily, the print media industry. We had plenty of investors and
customers, such as Hearst Corporation, Knight Ridder, and most of the
major US print publishers. We grew the company and then had the
opportunity to sell it to Compaq in early 1999. And basically, we
sold it for a little over $300 million dollars in cash. That’s the
currency I highly recommend.

I started Zip2 by writing a program
that allowed you to keep maps and directions on the internet and a
tool that allowed you to do online manipulation of content; kind of a
really advanced blogging system. Once we started talking to small
newspapers and media companies, we started gaining some interest and
getting a little bit of money from them. There were only six of us at
Zip2: three sales people we hired on contingency by putting an ad in
a newspaper; myself; my brother, who I convinced to come down from
Canada; and a friend of my Mom’s.

Things were pretty tough in the
beginning because I didn’t have any money. In fact, I had negative
money because of huge student debts. At one point, I had to choose
between renting a place to live or an office, so I rented the office
instead because it was cheaper than renting a place to stay. For
awhile, I slept on the futon and shouted the YMCA on Paige Mullen. It
was the best shape I’ve ever been in.

There was a small ISP on the floor
below us, so we drilled a hole through the floor and connected to the
main cable, which gave us our internet connectivity for like a
hundred bucks a month. So we had just an absurdly tiny burn rate as
well as a really tiny revenue stream. However, since we actually had
more revenue than expenses, we were able to say we had positive cash
flow when we talked to VPs. That helped, I think.

Founding of PayPal

I automatically wanted to do something
more after Zip2. Immediately after the sale, I’d normally take time
off, but I wanted to find other opportunities in the internet since
it was early 1999. I noticed there hadn’t been a lot of innovation
in the financial services sector. And when you think about it, money
is low bandwidth. You don’t need some sort of big infrastructure
improvement to do things with it. It’s really just an entry in the
database.

Since the paper form of money is really
only a small percentage of all the money that’s out there, why not
innovate financial services on the Internet? So, we thought of a
couple of different things we could do. One of the things was to
combine all consumers’ financial services needs into one website,
such as banking, brokerage, and insurance. And that was actually
quite a difficult problem to solve, but we solved most of the issues
associated with that.

Then, we had a little feature that took
us about a day. It was about emailing money from one customer to
another. Basically, you could type in an email address or, actually,
any unique identifier, and transfer funds or conceivably stocks or
mutual funds from one account holder to another. If you tried to
transfer money to somebody who didn’t have an account in the
system, it would forward them an email inviting them to open an
account.

When we would pitch the idea to
investors for a central financial services portal for consumers, we’d
tell them how much effort it took to develop the convenient features.
And people would go, “Hmmm.” We would throw the email payment
feature in as an afterthought and they would say, “Wow!” After
this reaction, we focused the company’s business on email payments.

In the early days, our company was
called X.com. There was also another company called Confinity, which
started out from a different area. Confinity had Palm Pilot
cryptography and the demo application they were using had the ability
to beam token payments from one Palm Pilot to another via the
infrared port. They also had a website named PayPal where users could
reconcile the beamed payments. It didn’t take too long for them to
notice the website portion was actually far more interesting to users
than the Palm Pilot cryptography.

They started leaning their business in
that direction, and in early 2000, X.com acquired Confinity. About a
year later, we changed the company name to PayPal. And that’s a
summary of the evolution of the company.

Success through Viral Marketing

PayPal is really a perfect case example
of viral marketing, just like Hotmail. In this case, customers act
like a sales person for you by bringing in other customers. In
PayPal’s case, they would send money to a friend and, essentially,
recruit that friend into the network, so we had this exponential
growth. The more customers, the faster it grew. It was like bacteria
in a Petri dish; it just keeps going like an S-curve.

I ran PayPal for about the first two
years of its existence. By the end of year two, we had a million
customers. It gives you a sense of how fast things grow in that
scenario. And we didn’t have a sales force. Actually, we didn’t
even have a VP of Sales or a VP of Marketing. And we didn’t spend
any money on advertising.

Selling PayPal

In 2002, PayPal went public. We were
the only internet company to go public in the first part of that
year. It went reasonably well, although I think we had more SEC
rewrites than any company I can imagine. I think we set a record on
SEC rewrites. This was right around the time when there were all
sorts of corporate scandals. So, they put us through the ringer.
Shortly thereafter, about June or July, we struck a deal and sold the
company to eBay for over $4 billion. But that was when eBay’s stock
price was about $55 and they hadn’t split. So, I guess, in today’s
dollars we were about $3 billion. So it worked out pretty well.

Comparing Zip2 and PayPal

 I guess both Zip2 and PayPal involved
software as the heart of the technology, even though Zip2 was
servicing the media sector and PayPal was servicing the financial
sector. However, the heart of it was really the software and the
internet Both companies were also in Palo Alto, where I live.

We also took a similar approach to
building both companies by having a small group of very talented
people and keeping it small. PayPal, at its height, probably had 30
engineers for a system that, I would say, is more sophisticated than
the Federal Reserve clearing system. I’m pretty sure it is actually
because the Federal Reserve clearing system sucks.

So, what else is there? Generally, both
Zip2 and PayPal operated as your canonical “Silicon Valley” start
up. You know, a pretty flat hierarchy. And anyone could talk to
anyone. We have to go for the best idea as opposed to a person
proposing an idea that is considered to be a winner just because of
who they are.

Obviously, everyone was an equity stake
holder. If there were two paths that, let’s say, we had to choose
between and one wasn’t obviously better than the other, then
instead of spending a lot of time trying to figure out which one was
slightly better, we would just pick one and do it. Sometimes we’d
be wrong and we’d pick ourselves up. But often it’s better to
pick a path and do it than to just vacillate endlessly on a choice.
We didn’t worry too much about intellectual property, paperwork, or
legal stuff. We were really just focused on building the best product
that we possibly could.

Both Zip2 and PayPal were very
product-focused companies. We were incredibly obsessive about
creating something that would provide the best possible customer
experience. And that was a far more effective selling tool than
having a giant sales force or thinking of marketing gimmicks or
twelve-step processes, or whatever.

The Right Time to Sell

We had several offers from a number of
different entities for PayPal, and in fact, the closer we got to IPO,
the more offers we got. However, we always felt that those offers
undervalued the company and subsequently we went public. I think the
public markets kind of indicated the value of the company, and that’s
one of the good things about public markets. It’s difficult for
private companies to say how much they’re worth because they need
some kind of metric. Are you going to go for future earnings? Are you
going to base it on revenue? What are your comparables going to be?
There are all sorts of questions and the value of a company is really
up for debate. When you’re public, however, you’re worth what the
market says you’re worth. Yes, eBay made a number of offers prior
to our IPO that would substantially blown the value once we went
public.

eBay initially had Billpoint and then
there was eBay Payments. It was a really tough, long running battle
of PayPal versus eBay’s payment system. It was certainly very
challenging. There were times when it felt like we were trying to win
a land war in Asia and they kind of set the ground rules, or trying
to beat Microsoft in their own operating system. It’s really pretty
hard and it took a lot of our effort to actually beat eBay on their
own system. One of the long-term risks for the company was that eBay
would one day prevail, and one way to retire that risk obviously was
to sell to eBay.

Qualities of an Entrepreneur

Successful entrepreneurs probably come
in all sizes, shapes, and flavors. I’m not sure there’s any one
particular critical quality. For me, some of the things I’ve
described already are very important, such as an obsessive nature
with respect to the quality of the product. Being obsessive
compulsive is a good thing in this context. Also, really liking what
you do is important because even if you’re the best of the best,
there’s always a chance of failure, so I think it’s important
that you really like whatever you’re doing. If you don’t like it,
life is too short. And if you really like what you’re doing, you
think about it even when you’re not working. It’s something that
your mind is drawn to and if you don’t like it, you just really
can’t make it work. §

Elon Musk is the co-founder of
SpaceX, Tesla Motors and PayPal.

Originally
appeared on Stanford Technology Ventures Program (STVP)
Entrepreneurship Corner in video format: hn.my/elon
(ecorner.stanford.edu)

How To Train
Your Robot

By NIKOS MICHALAKIS

Last Sunday, I taught 6 kids ages 5 to
7 how to program. “In what programming language?” you may ask.
Well…I didn’t use a programming language, at least none that you
know of. In fact, I didn’t even use a computer. Instead, I devised
a game called “How To Train Your Robot.” Before I explain how the
game works, let me tell my motivation.

I learned how to program during my
freshman year at MIT when I was 19. It’s not because I didn’t
have a computer at home or I hadn’t heard about programming
languages. It was because (a) I thought programming was boring, and
(b) no one had told me why I should bother. In fact, my computer
teacher in high school had told me “you don’t need to waste your
time learning how to program. Now we have visual tools to build
programs. Programming languages are already obsolete.” That was in
1994 and he was referring to Visual Basic. Luckily for me, MIT wiped
all that nonsense away in a matter of weeks. But does one need to
wait to go to college to get the proper education?

Learning how to program is going to be
the most useful new skill we can teach our kids today. More than ever
our lives depend on how smart we are when we instruct computers. They
hold our personal data and they make decisions for us. They
communicate for us, and they are gradually becoming an extension of
our brains. If we don’t learn programming as part of our childhood,
we will never evolve. As the famous futurist, Ray Kurzweil, put it
“The only second language you should worry about your kids learning
is programming.”

How To Train Your Robot

The game works as follows: every kid is
turned into a “robot master” and their mom or dad becomes their
“robot.” I give each kid a “Robot Language Dictionary” and
explain to them that this is the language their robot understands.
The dictionary has symbols for “move left leg forward,” “turn
left,” “grab,” “drop,” etc.

The goal is for the robots to go
through an obstacle course, pick up a ball, and bring it back. The
kids have to write a program that will tell the robot how to do all
that. Every time they write a program, they hand it to their robot,
and the robot executes it. To do that, I give each kid a pen and
paper where they copy symbols from the dictionary to write their
programs and off their robots go!

The
fun part begins when each robot retrieves the ball. Now I let kids
invent their own moves and symbols that they add to their dictionary
and then teach their robots. There is no limit to what the kids come
up with.

This is my favorite program (written by
a five year old girl):

I designed the class to teach some very
basic principles of computer science and programming:

•	Programming
languages are just another way to communicate to an entity (via
programs).

•	Programs
are recipes for automating stuff.

However, I was pleasantly surprised on
how much more the kids learned. On their own they figured out the
following things (in a 30-min session):

•	Program
Parameterization: Instead of putting a forward step ten times, they
put a 10 in front of the “step” symbol (A five-year-old figure it
out and asked me if she could do it).

•	Composition:
Grouping of a set of moves (“move left leg forward, then move right
leg forward and do this combo 10 times”)

•	Abstraction:
“Run in a circle, then say “I’m dizzy!”, then call this the
“Run Dizzy” program and do it 100 times. (For some reason, kids
loved making their parents repeat stuff 100 times over.)

•	Unit
testing: They’d write a test program to get the parents moving a
few steps, have their parents run it, then fix it and run it again,
and then add a few more steps until they reach the goal.

I’ve ran the class
twice now and I’ve seen the same patterns, which support my belief
that when kids have fun, they get very smart and creative about
programming. Many of the parents plan to play the game at birthday
parties. If you have questions about how to set up the game, don’t
hesitate to write. You can find my contact info at
facebook.com/drtechniko
You
can also find instructions on how to teach the class as well as
materials I used here [hn.my/robotm].

I hope we learned something useful
today,

DrTechniko §

Nikos Michalakis graduated from MIT
with a degree in Electrical Engineering and Computer Science. As
DrTechniko, in his spare time he teaches kids about computer science
and technology through storytelling and games. He lives in
Brooklyn with his wife and their son and works for Knewton, an
education technology startup.

First appeared in
hn.my/drtechniko

Why You’ll
Always Think Your Product Is Shit

By ANDREW CHEN

You’ve said this before. We all have.

Anyone working on getting their first
product out to market will often have the feeling that their product
isn’t quite ready. Or even once it’s out and being used, nothing
will seem as perfect as it could be, and if you only did X, Y, and Z,
then it would be a little better. In a functional case, this leads to
a great roadmap of potential improvements, and in a dysfunctional
case, it leads to unlaunched products that are endlessly iterated
upon without a conclusion.

About a year ago I visited Pixar’s
offices and learned a little about this product, and I wanted to
share this story:

Over at Pixar…

Matt Silas, a long-time Pixar employee
offered to take me on a tour of their offices and I accepted his
gracious offer. After an hour-long drive from Palo Alto to
Emeryville, Matt showed up while I was admiring a glass case full of
Oscars, and started a full tour.

I’ve always been a huge
fan of Pixar — not just their products, but also their process and
culture. There’s a lot to say about Pixar and their utterly
fascinating process for creating movies, and I’d hugely recommend
this book: To Infinity and Beyond [hn.my/pixarbook].
It gave me a kick to know that Pixar uses some very collaborative and
iterative methods for making their movies — after all, a lot of
what they do is software. Here are some quick examples:

•	Pixar’s
teams are ultimately a collaboration of creative people and software
engineers. This is reflected at the very top by John Lasseter and Ed
Catmull.

•	The
process of coming up with a Pixar movie starts with the story, then
the storyboard, then many other low-fidelity methods to prototype
what they are ultimately make.

•	They have
a daily “build” of their movies in progress so they know where
they stand, with sketches and crappy CGI filling holes where needed.
Compare this to traditional moviemaking where it’s only at the end.

•	Sometimes,
as with the original version of Toy Story, they have to stop doing
what they’re doing and restart the entire moviemaking process since
the whole thing isn’t clicking. Sound familiar, right?

The other connection to the tech world
is that Steve Jobs personally oversaw the design of their office
space. Here’s a great little excerpt on this, from director Brad
Bird (who directed The Incredibles):

“Then there’s our building. In
the center, he created this big atrium area, which seems initially
like a waste of space. The reason he did it was that everybody goes
off and works in their individual areas. People who work on software
code are here, people who animate are there, and people who design
are over there. Steve put the mailboxes, the meetings rooms, the
cafeteria, and, most insidiously and brilliantly, the bathrooms in
the center — which initially drove us crazy — so that you run
into everybody during the course of a day. [Jobs] realized that when
people run into each other, when they make eye contact, things
happen. So he made it impossible for you not to run into the rest of
the company.”

Anyway, I heard a bunch of stories like
this and more. As expected, the tour was incredible, and near the
end, we stopped at the Pixar gift shop.

There, I asked Matt a casual question
that had an answer I remember well, a year later:

Me: “What’s your favorite Pixar
movie?”

Matt: *SIGH*

Me: “Haha! Why the sigh?”

Matt: “This is such a tough
question, because they are all good. And yet at the same time, it can
be hard to watch one that you’ve worked on, because you spend so
many hours on it. You know all the little choices you made, and all
the shortcuts that were taken. And you remember the riskier things
you could have tried but ended up not, because you couldn’t risk
the schedule. And so when you are watching the movie, you can see all
the flaws, and it isn’t until you see the faces of your friends and
family that you start to forget them.”

Wow! So profound.

A company like Pixar, who undoubtedly
produces some of the most beloved and polished experiences in the
world, ultimately still cannot produce an outcome where everyone on
the team thinks it is the best. And after thinking about why, the
reason is obvious and simple: to have the foresight and the skill to
refine something to the point of making it great also requires the
ability to be hugely critical. More critical, I think, than your
ability to even improve or resolve the design problems fast enough.
And because design all comes to making a whole series of tradeoffs,
ultimately you don’t end up having what you want.

The lesson: You’ll always be
unhappy

What I took away from this conversation
is that many of us working to make our products great will never be
satisfied. A great man once said, your product is shit, and maybe you
will always think it is. Yet at the same time, it is our creative
struggle with what we do that ultimately makes our creations better
and better. And one day, even if you still think your product stinks,
you’ll watch a customer use it and become delighted.

And for a brief moment, you’ll forget
what it is that you were unhappy about. §

Andrew Chen is a blogger and
entrepreneur focused on consumer internet, metrics and user
acquisition. He is an advisor/angel for early-stage startups and is
also a 500 Startups mentor.

First appeared in
hn.my/shit

How I Tricked
Myself into Being Awesome

By CHRIS STROM

Like most developers, I am an
introvert, so it is hard to say this:

I am awesome.

Fuuuuuu.... I can’t even leave it at
that. I look at so many amazing people in the Ruby, Javascript, and
other communities that actually are amazing, and I feel like I
haven’t done anything. But even so, looking back at the 366 days of
the last year, what I did was, well... amazing.

I wrote three books on very different
technologies that I knew nothing about.

I wrote The SPDY Book, which is still
the only book on SPDY:

Three months later, I co-authored
Recipes with Backbone.js with Nick Gauthier:

Three months later, I wrote the first
book on Dart, Dart for Hipsters:

Each of these technologies has two
things in common:

1.	They are game changing (or at least
possibly).

2.	I knew nothing about them before I
started writing them.

What business did I have writing books
on topics about which I knew nothing? Well, let me put it this way: I
did it, so why shouldn’t I (or anyone else)?

How did I do it?

I blogged every single day. For one
full year. 366 days. Every day. No matter what.

I honestly don’t know why I started
doing this. One night I had a brilliant idea and before I stopped and
thought about how stupid it was, I publicly committed myself to doing
it.

And it worked. Every night, I ask a
question to which I don’t know the answer, and I try my damnedest
to answer it.

Every
time I do this, I learn. The daily deadline forces me to learn.
Blogging about it challenges my assumptions and makes me learn even
more.

And
then, doing it again the next day reinforces the learning. As does
writing the book. And the second edition.

I
am proud that I didn’t let this get in the way of what’s
important. I still took vacations with the family — drove to the
beach and Disney World. Birthdays, anniversary, sickness — I was
there for it all.

And in the end, what did I learn? Well
aside from a ton about coos technologies, I learned that:

I tricked myself into being awesome.

I heard a story on RadioLab about a
lady named Zelda. She tricked herself into quitting smoking by
swearing that she would donate $5,000 to the KKK if she ever smoked
another cigarette. And she never did. Would she have really donated
that money if she had given in? Maybe not, but it was enough for her
to have convinced herself that it would happen.

And, in the end, I did the same. Would
the world have ended if I missed a day? Of course not. Very few, if
any people would have noticed. But I would have noticed because I
committed to doing this. And, after 366 days, I have more than not
smoking to show for it. I have three books, the last of which is
being published by The Pragmatic Programmers. §

Chris is an author and web developer
at EEE Computes LLC with more than 10 years professional experience
in a variety of domains. Despite this extensive background, you could
fill a book with what he does not know, which is rather the point.

First appeared in
hn.my/tricked

The Psychology
of Tackling Hard Problems

By DAVID VALDMAN

The thing about hard problems is that
there are many difficulties and few solutions. Sounds obvious, but
what’s often overlooked is the psychological component to this
asymmetry. There’s a simple reason why tackling a hard problem can
lead to depressive symptoms: you’re necessarily wrong 99% of the
time.

I’m getting my PhD in math, and
developing a web app/startup on the side. I can tell you one thing
from my PhD research that I can carry over to my entrepreneurial
ambitions: you only have to be right 1% of the time. The hard part
is, you need to be psychologically prepared to be wrong all other
times.

I haven’t seen much discussion of
this idea, but I’ve faced it repeatedly myself, and I often see it
in others. I’ve seen it so often I’m convinced of its
pervasiveness. Here’s an example. One of my peers tells me his
numerics code isn’t working:

Me: Have you tried this test
case?
Him: No, actually.
Me: Well that may isolate the
bug.
Him: But I’m afraid that it won’t work.

Sound silly and contrived? It isn’t,
and I have complete sympathy for this situation. So many times in my
work I’ve fantasized about the solution to an idea, and have been
too afraid to implement it because of the subliminal fear that I will
be, yet again, wrong. It’s a Pavlovian response to the track record
of being repeatedly disappointed. Meanwhile, I delight in having new
ideas, and enjoy brainstorming them. But without implementing them,
the process is worthless.

The point is to be aware. If you find
yourself resisting an obvious step due to an irrational fear, step
back and force yourself to push onward. You only need to be right 1%
of the time. §

David Valdman is finishing his PhD
in applied math at UC Santa Barbara this summer. Soon to be “not
that kind of doctor”. He’s also the founder of Quip Video, a web
app for annotating online video. Follow David on twitter at
@dmvaldman

First appeared in
hn.my/psych

What Good is
Experience?

By JUSTIN KAN

When I didn’t have any experience, I
thought that experience was totally worthless. Emmett and I taught
ourselves how to build web applications in a few months in college
and built the first version of Kiko pretty quickly. I did the front
end by piecing together JavaScript tutorials until we had something
that resembled a calendar.

We thought we were pretty awesome. If
we could build a web app that easily and drum up a bunch of public
interest, then it seemed to us that everyone should be starting
startups right out of college, and that anyone who wasn’t was just
too scared. What was the point of waiting? You aren’t getting any
younger.

When I think about that first codebase
today I want to vomit in my own mouth. I am glad that I no longer
have access because I want to deny it ever existed. It was a mess of
spaghetti code, and even though we built it quickly, it took a lot
longer than it should have.

Ironically, now that I have experience,
I think experience is priceless. What’s made me change my mind?

•	Experience makes
you move more quickly. It turns out I’m still not a wonderful
programmer. I am, however, a pretty decent web developer, and this is
entirely due to experience. Need a Rails CRUD app with an API? Boom,
I’ve been doing that for seven years now. I built the entire
backend, frontend, and API for Exec myself in three weeks in January.

•	Experience helps you focus on
the right things. When you don’t know what’s important, it is
easy to think every decision is important. Most of them aren’t.
Having experience helps you know what decisions you can ignore,
postpone, or delegate (almost all of them), and what things you
actually need to do right now.

•	Experience gives you confidence.
We’ve raised venture money for our companies before; I know I
can do it again. I’ve built web apps before; I know I don’t need
to hire a programmer to replace myself unless we find someone who is
really excellent. In the meantime, I can wait. When you’ve done
something before, you aren’t worried you can’t do it again.

I still think there are some potential downsides to having experience
that are worth watching out for:

•	Experience tends to pre-empt
innovation. It’s been said before, but when you have a lot of
experience in a certain area, you generally think of solutions and
approaches that have worked for you in the past. Sometimes this
prevents you from taking a fresh approach which ultimately would work
out better.

•	Experience takes time to get.
Waiting for experience is also an excuse not to get started. By
the time you feel comfortable and confident enough to jump off, the
moment might have passed.

•	You know some things to be
impossible. Most things that were impossible or impractical years
ago became possible or will become possible some time later. Your
experience might tell you that something you want to do can’t be
done. Other people will go on to do them.

And lastly, something I’ve been
wondering: is it possible to fake experience by getting advice?
Perhaps for highly specialized topics, like how to scale your
exploding website. However, I think that there are a great many
things that people are destined to learn themselves the hard way. So,
don’t worry too much about trying to find a hack to get experience,
when you get enough experience you’ll be experienced enough to know
one doesn’t exist.§

Justin Kan is the founder and CEO of
Exec, your on demand work force. Previously he founded Justin.tv,
TwitchTV and Socialcam. He is a part time partner at Y Combinator.

First appeared in hn.my/exp

How to Build a
Naive Bayes Classifier

By ALEXANDRU NEDELCU

Some
use-cases for building a classifier:

•	Spam detection; for example, you
could build your own Akismet API.

•	Automatic assignment of categories
to a set of items.

•	Automatic detection of the primary
language (e.g. Google Translate).

•	Sentiment analysis, which in simple
terms refers to discovering if an opinion is about love or hate for a
certain topic.

In general, you can do a lot better
with more specialized techniques, however the Naive Bayes classifier
is general-purpose, simple to implement, and good-enough for most
applications. And while other algorithms give better accuracy, I
discovered that having better data in combination with an algorithm
that you can tweak gives better results for less effort.

In this article I’m describing the
math behind it. Don’t fear the math, as this is simple enough that
a high-schooler could understand. And even though there are a lot of
libraries out there that already do this, you’re far better off
understanding the concept behind it. Otherwise, you won’t be able
to tweak the implementation in response to your needs.

0. The Source Code

I published the
source-code associated at github.com/alexandru/stuff-classifier.
The implementation itself is at lib/bayes.rb, with the corresponding
test/test_002_naive_bayes.rb.

1. Introduction to Probabilities

Let’s start by
refreshing forgotten knowledge. Again, this is very basic stuff, but
if you can’t follow the theory here, you can always go to the
probabilities section on Khan Academy [hn.my/proba].

1.1. Events and Event Types

An “event” is a set of outcomes (a
subset of all possible outcomes) with a probability attached. So when
flipping a coin, we can have one of these two events: tail or head.
Each of them has a probability of 50%. Using a Venn diagram, this
would look as follows:

The
example below clearly shows the dependence between “rain” and
"cloud formation” since rain can only happen if there are
clouds:

The
relationship between events is very important, as you’ll see next:

•	2 events are disjoint (exclusive)
if they can’t happen at the same time (a single coin flip cannot
yield a tail and a head at the same time). For Bayes classification,
we are not concerned with disjoint events.

•	2 events are independent when they
can happen at the same time, but the occurrence of one event does not
make the occurrence of another more or less probable. For example,
the second coin-flip you make is not affected by the outcome of the
first coin-flip.

•	2 events are dependent if the
outcome of one affects the other. In the example above, clearly it
cannot rain without a cloud formation. Also, in a horse race, some
horses have better performance on rainy days.

What we are concerned with here is the
difference between dependent and independent events because
calculating the intersection (both happening at the same time)
depends on it. So, for independent events, calculating the
intersection is easy:

Some
examples:

•	If you have 2 hard-drives, each of
them having a 0.3 (30%) probability of failure within the next year,
that means there’s a 0.09 (9%) probability of them failing both
within the next year.

•	If you flip a coin 4 times, there’s
a 0.0625 probability of getting a tail 4 times in a row (0.5 ^ 4).

Things are not so simple for dependent
events, which is where the Bayes Theorem comes into play.

1.2. Conditional Probabilities and
the Bayes Theorem

Let’s take one example with the
following stats:

•	30 emails out of a total of 74 are
spam messages.

•	51 emails out of those 74 contain
the word “penis.”

•	20 emails containing the word
“penis” have been marked as spam.

So the question is: what is the
probability that the latest received email is a spam message, given
that it contains the word “penis”?

These 2 events are clearly dependent,
which is why you must use the simple form of the Bayes Theorem:

With
the solution being:

The
above example is simple so you can see the result without
complicating yourself with the Bayes formula.

1.3. The Naive Bayes Approach

Let us complicate the problem above by
adding to it:

•	25 emails out of the total contain
the word “viagra.”

•	24 emails out of those have been
marked as spam.

What’s the probability that an email
is spam, given that it contains both “viagra” and “penis”?

Shit just got more complicated, because
now the formula is this one:

And
you definitely don’t want to bother with it if we keep adding
words. But what if we simplified our assumptions and just say that
the occurrence of penis is totally independent from the occurrence of
viagra? Then the formula just got much simpler:

To classify an email as spam, you’ll
have to calculate the conditional probability by taking hints from
the words contained. And the Naive Bayes approach is exactly what I
described above: we make the assumption that the occurrence of one
word is totally unrelated to the occurrence of another, to simplify
the processing and complexity involved.

This does highlight the flaw of this
method of classification, because clearly the 2 events we picked
(viagra and penis) are correlated and our assumption is wrong. But
this just means our results will be less accurate.

2. Implementation

I’ll mention it
again: you can take a look at the source-code published at
github.com/alexandru/stuff-classifier

2.1. General Algorithm

You simply get the probability for a
text to belong to each of the categories you test against. The
category with the highest probability for the given text wins:

Do
note that above I also eliminated the denominator from our original
formula because it is a constant that we do not need (called
evidence).

2.2. Avoiding Floating Point
Underflow

Because of the underlying limits of
floating points, if you’re working with big documents (not the case
in this example), you do have to make one important optimization to
the above formula:

•	Instead of the probabilities of
each word, you store the (natural) logarithms of those probabilities.

•	Instead of multiplying the numbers,
you add them instead.

So instead of the above formula, if you need this optimization, then
use this one:

2.3. Training

Your implementation must have a
training method. Here’s how mine looks like:

 def train(category, text)
 each_word(text) {|w| increment_word(w, category)}
 increment_cat(category)
 end

And its usage:

 classifier.train :spam, "Grow your penis to 20 inches in just 1 week"
 classifier.train :ham, "I'm hungry, no I don't want your penis"

For the full implementation, take a
look at base.rb

2.4. Getting Rid of Stop Words /
Stemming

First of all, you must get rid of the
junk. Every language has words that are so commonly used that they
become meaningless for any kind of classification you may want to do.
For instance, in English, you can safely strip out such words as
“the,” “to,” “you,” “he,” “only,” “if,” and
“it” from the text.

I’ve compiled a list of such words in
this file: stop_words.rb. You can compile such a list by yourself if
you’re using a language other than English. Head over to Project
Gutenberg [gutenberg.org],
download some books in the language you want, count the words in
them, sort by popularity in descending order, and keep the top words
as words that you can safely ignore.

Also, our classifier is really dumb in
the sense that it does not care about the meaning or context of a
word. So there’s a problem: consider the word “running.” What
you want is to treat this just as “run”, which is the
morphological root of the word. You also want to treat “parenting”
and “parents” as “parent.”

This process is called stemming and
there are lots of libraries for it. I think currently the most
up-to-date and comprehensive library for stemming is Snowball. It’s
a C library with lots of available bindings, including for Ruby and
Python, and it even has support for my native language (Romanian).

Take a look at what I’m doing in
tokenizer.rb, where I’m getting rid of stop words and stemming the
remaining words.

 each_word('Hello world! How are you?')

 # => ["hello", "world"]

 each_word('Lots of dogs, lots of cats!
 This is the information highway')

 # => ["lot", "dog", "lot", "cat", "inform",
 # "highwai"]

 each_word("I don't really get what you want to accomplish. There is a class TestEval2, you can do test_eval2 = TestEval2.new afterwards. And: class A ... end always yields nil, so your output is ok I guess ;-)")

 # => ["really", "want", "accomplish", "class",
 # "testeval", "test", "eval", "testeval",
 # "new", "class", "end", "yields", "nil",
 # "output", "ok", "guess"]

2.5. Implementation Guidelines

When classifying emails for spam, it is
a good idea to be sure that a certain message is a spam message.
Otherwise, users may get pissed by too many false positives.

Therefore it is a good idea to have
thresholds. This is how my implementation looks:

 def classify(text, default=nil)
 # Find the category with the highest probability

 max_prob = 0.0
 best = nil

 scores = cat_scores(text)
 scores.each do |score|
 cat, prob = score
 if prob > max_prob
 max_prob = prob
 best = cat
 end
 end

 # Return the default category in case the
 # threshold condition was not met. For
 # example, if the threshold for :spam is 1.2
 #
 # :spam => 0.73, :ham => 0.40 (OK)
 # :spam => 0.80, :ham => 0.70 (Fail, :ham
 # is too close)

 return default unless best
 threshold = @thresholds[best] || 1.0

 scores.each do |score|
 cat, prob = score
 next if cat == best
 return default if prob * threshold > max_prob
 end

 return best
 end

Final Words

My example involved spam
classification, but this is not how modern spam classifiers work.
Because the independence assumptions are often inaccurate, this type
of classifier can be gamed by spammers to trigger a lot of false
positives, which will make the user eventually turn the feature off.

But it is general purpose, being useful
not only for spam detection, but also for lots of other use-cases,
and it’s enough to get you started. §

Alexandru is an experienced software
developer that ventured across anything he found interesting. Besides
trying to make people’s lives better, he also enjoys cooking and
spending time with his toddler. He lives in Romania and works
remotely for U.S. based startups.

First appeared in hn.my/bayes

Coding Tricks
of Game Developers

By HARVEY GREEN

If you’ve got any real world
programming experience, then no doubt at some point you’ve had to
resort to some quick and dirty fix to get a problem solved or a
feature implemented while a deadline loomed large. Game developers
often experience a horrific “crunch” (also known as a “death
march”), which happens in the last few months of a project leading
up to the game’s release date. Failing to meet the deadline can
often mean the project gets cancelled or even worse, you lose your
job. So what sort of tricks do they use while they’re under the
pump, doing 12+ hour days for weeks on end?

Below are some classic
anecdotes and tips (many thanks to Brandon Sheffield who originally
put together this article [hn.my/dirty]
on Gamasutra). I have included a few of his stories and also added
some more from newer sources.

The Programming Antihero –Noel
Llopis

I was fresh out of college, still wet
behind the ears, and about to enter the beta phase of my first
professional game project, a late-90s PC title. It had been an
exciting rollercoaster ride, as projects often are. All the content
was in and the game was looking good. There was one problem though:
we were way over our memory budget.

Since most memory was taken up by
models and textures, we worked with the artists to reduce the memory
footprint of the game as much as possible. We scaled down images,
decimated models, and compressed textures. Sometimes we did this with
the support of the artists, and sometimes over their dead bodies.

We cut megabyte after megabyte, and
after a few days of frantic activity, we reached a point where we
felt there was nothing else we could do. Unless we cut some major
content, there was no way we could free up any more memory.
Exhausted, we evaluated our current memory usage. We were still 1.5
MB over the memory limit!

At this point one of the most
experienced programmers in the team, one who had survived many years
of development in the “good old days,” decided to take matters
into his own hands. He called me into his office, and we set out upon
what I imagined would be another exhausting session of freeing up
memory.

Instead, he brought up a source file
and pointed to this line:

 static char buffer[1024*1024*2];

“See this?” he said. And then
deleted it with a single keystroke. Done!

He probably saw the horror in my eyes,
so he explained to me that he had put aside those two megabytes of
memory early in the development cycle. He knew from experience that
it was always impossible to cut content down to memory budgets, and
that many projects had come close to failing because of it. So now,
as a regular practice, he always put aside a nice block of memory to
free up when it’s really needed.

He walked out of the office and
announced he had reduced the memory footprint to within budget
constraints. He was toasted as the hero of the project.

As horrified as I was back then about
such a “barbaric” practice, I have to admit that I’m warming up
to it. I haven’t gotten into the frame of mind where I can put it
to use yet, but I can see how sometimes, when you’re up against the
wall, having a bit of memory tucked away for a rainy day can really
make a difference. Funny how time and experience changes everything.

Cache It Up –Andrew Russell

To improve performance when you are
processing things in a tight loop, you want to make the data for each
iteration as small as possible, and as close together as possible in
memory. That means the ideal is an array or vector of objects (not
pointers) that contain only the data necessary for the calculation.

This way, when the CPU fetches the data
for the first iteration of your loop, the next several iterations
worth of data will get loaded into the cache with it.

There’s not really much
you can do with using fewer and faster instructions because the CPU
is as fast as it’s going to get, and the compiler can’t be
improved. Cache coherence is where it’s at. This article
[hn.my/coherence] contains a
good example of getting cache coherency for an algorithm that doesn’t
simply run through data linearly.

Plan Your Distractions –Jay
Barnson

The Internet is one of the greatest
tools ever invented for both improving and destroying productivity.
Twitter and forums and blogs and instructional websites can be
extremely motivational and educational, but they can also be a
distraction that completely destroys all hope of ever getting
anything done. One thing I’ve done in the past which has proven
pretty successful is to stick to a plan for when I can spend some
minutes checking email and Twitter, or play a quick game or
something. Either at the completion of a task, or after a period of
time (say one five-minute break every hour). Otherwise, the browser’s
only use is for reading reference manual pages, if necessary. That
way I turn a potential distraction into a motivating tool.

Collateral damage –Jim Van Verth

Don’t know how many remember Force
21, but it was an early 3D RTS which used a follow cam to observe
your current platoon. Towards the end of the project we had a strange
bug where the camera would stop following the platoon — it would
just stay where it was while your platoon moved on and nothing would
budge it. The apparent cause was random because we couldn’t find a
decent repro case. Until, finally, one of the testers noticed that it
happened more often when an air strike occurred near your vehicles.
Using that info I was able to track it down.

Because the camera was using velocity
and acceleration and was collidable, I derived it from our
PhysicalObject class, which had those characteristics. It also had
another characteristic: PhysicalObjects could take damage. The air
strikes did enough damage in a large enough radius that they were
quite literally “killing” the camera.

I did fix the bug by ensuring that
cameras couldn’t take damage, but just to be sure, I boosted their
armor and hit points to ridiculous levels. I believe I can safely say
we had the toughest camera in any game.

The Blind Leading the Blind
–Maurício Gomes

At university, there was a team that
made a FPS flash game. For some bizarre reason, the programmer,
instead of checking if the character was colliding with the wall to
keep you from going there, he did the inverse: he checked if there
was a wall, and only allowed you to move parallel to it!

This sparked a bizarre bug: in
crossings or T junctions in the level, you could not actually cross,
only turn to the passage on your left or right. The deadline was
closing, and they had no idea on how to fix it.

Then the team writer fixed the issue;
he told the artist to add an animation of hands touching the walls,
and then he added in the background story that the main character was
blind and needed to constantly touch the walls to know where he was
going.

You Wouldn’t Like Me When I’m
Angry –Nick Waanders

I once worked at THQ studio Relic
Entertainment on The Outfit, which some may remember as one of the
earlier games for the Xbox 360. We started with a PC engine
(single-threaded), and we had to convert it to a complete game on a
next-gen multi-core console in about 18 months. About 3 months before
shipping, we were still running at about 5 FPS on the 360. Obviously
this game needed some severe optimization.

When I did some performance
measurements, it became clear that as much as the code was slow and
very “PC,” there were also lots of problems on the content side
as well. Some models were too detailed, some shaders were too
expensive, and some missions simply had too many guys running around.

It’s hard to convince a team of 100
people that the programmers can’t simply “fix” the performance
of the engine, and that some of the ways people had gotten used to
working needed to change. People needed to understand that the
performance of the game was everybody’s problem, and I figured the
best way to do this is with a bit of humor that had a bit of hidden
truth behind it.

The solution took maybe an hour. A
fellow programmer took 4 pictures of my face: one really happy, one
normal, one a bit angry, and one where I am pulling my hair out. I
put this image in the corner of the screen, and it was linked to the
frame rate. If the game ran at over 30fps, I was really happy, if it
ran below 20, I was angry.

After this change, the whole FPS issue
transformed from, “Ah, the programmers will fix it.” to, “Hmm,
if I put this model in, Nick is going to be angry! I’d better
optimize this a little first.” People could instantly see if a
change they made had an impact on the frame rate, and we ended up
shipping the game at 30fps.

It’s Not a Bug,It’s a Feature!
–Philip Tan

I worked on an RPG in which we were
trying to get the NPCs (Non-player Characters) to spot when you were
in range, walk up to you, and strike up a conversation with you by
activating the dialog system.

We forgot to add code to distinguish
NPCs from PCs (Player Characters), so we’d walk into town and all
the NPCs would be talking with each other. Because all NPC AI code
used the same dialog template, they actually got a few sentences in
before the conversations became nonsensical. And because character
dialog was broadcast, you could read everything they said if you were
in range.

We decided to turn that bug into a
major feature.

Dirty Deeds –Tim Randall

The engine team at Gremlin Interactive
used to keep a single glove in their office. When someone asked why
it was there, they were told it was only used when someone was about
to type some really dirty code. It wasn’t so much a case of not
wanting to leave fingerprints but rather not wanting to actually
touch the dirtiest fixes!

Explicit Conditional Hinting
–ZorbaTHut

A very, very low-level tip, but one
that can come in handy: most compilers support some form of explicit
conditional hinting. GCC has a function called __builtin_expect which
lets you inform the compiler what the value of a result probably is.
GCC can use that data to optimize conditionals to perform as quickly
as possible in the expected case, with slightly slower execution in
the unexpected case.

 if(__builtin_expect(entity->extremely_unlikely_flag, 0)) {
 // code that is rarely run
 }

I’ve seen a 10-20% speedup with
proper use of this.

Objective Oriented Programming
–Anonymous

Back at a game studio, I think it was
near the end of the project, we had an object in one of the levels
that needed to be hidden. We didn’t want to re-export the level and
we did not use checksum names. So right smack in the middle of the
engine code we had something like the following:

 if(level==10 && object==56)
 {
 HideObject();
 }

The game shipped with this in.

Maybe a year later, an artist using our
engine came to us very frustrated about why an object in their level
was not showing up after exporting. The level they had a problem with
resolved to level 10. I wonder why?

Stack vs. Heap –Torbjörn
Gyllebring

Stack allocation is much faster than
heap allocation since all it really does is move the stack pointer.
Using memory pools, you can get comparable performance out of heap
allocation, but that comes with a slight added complexity and its own
headaches.

Also, stack vs. heap is not only a
performance consideration; it also tells you a lot about the expected
lifetime of objects. The stack is always hot, and the memory you get
is much more likely to be in cache than any far heap allocated
memory.

The downside of the stack is that it is
actually a stack. You can’t free a chunk of memory used by the
stack unless it is on top of it. There’s no management — you push
or pop things on it. On the other hand, the heap memory is managed:
it asks the kernel for memory chunks, maybe splits them, merges them,
reuses them, and frees them. The stack is really meant for fast and
short allocations.

I’m a Programmer, Not an Artist
–Damian Connolly

For indie/solo developers who are
working on an iPhone or Android game on their own, while you’re
looking for an artist, you should be developing your game at the same
time. Use programmer art, stand-ins, free sprites — anything. Most
of the time, before even thinking about final assets, I just want
something up and running quickly to see if it’s fun. Prototype the
crap out of it and find the game. Then, when the gameplay’s locked
down, you can start putting in the proper art. Doing it the other way
around leads to lost money, and work that needs to be redone multiple
times, which aside from harming your project, sucks your motivation
to finish it (and if you’re making a game to get a job, showing
that you can finish a project is a good thing). Another tip if you’re
lacking upfront finance is to find a freelance game artist who will
accept a revenue sharing deal, e.g. typically something like 30% of
game revenue, payable once it gets published to the AppStore.

Remove Unnecessary Branches –tenpn

On some platforms and with some
compilers, branches can throw away your whole pipeline, so even
insignificant if() blocks can be expensive.

The PowerPC architecture (PS3/x360)
offers the floating-point select instruction, fsel. This can be used
in the place of a branch if the blocks are simple assignments:

 float result = 0;
 if(foo > bar){ result = 2.0f; }
 else { result = 1.0f; }

Becomes:

 float result = fsel(foo-bar, 2.0f, 1.0f);

When the first parameter is greater
than or equal to 0, the second parameter is returned, else the third.
The price of losing the branch is that both the if{} and the else{}
block will be executed, so if one is an expensive operation or
dereferences a NULL pointer, this optimization is not suitable.
Sometimes your compiler has already done this work, so check your
assembly first.

Hack the Stack –Steve DeFrisco

I was one of a few interns at IMAGIC in
1982-83. We were all doing Intellivision carts. One of the
programmers had to leave to go back to school, and I was chosen to
fix the random crash bug in his game. It turned out to be a stack
overflow in the timer interrupt handler. Since the only reason for
the handler was to update the *display* of the on-screen timer, I
added some code to test the depth of the stack at the beginning of
the interrupt routine. If we were in danger of overflowing the stack,
return without doing anything. Since the handler was called multiple
times per second, the player never noticed, and the crash was fixed.

Meet My Dog, “Patches” –Mick
West

There’s an old joke that goes
something like this:

Patient:
“Doctor, it hurts when I do this.”

Doctor:
“Then stop doing it.”

Funny, but are these also wise words
when applied to fixing bugs? Consider the load of pain I found myself
in when working on the port of a 3D third person shooter from the PC
to the original PlayStation.

Now, the PS1 has no support for
floating point numbers, so we were doing the conversion by basically
recompiling the PC code and overloading all floats with fixed point.
That actually worked fairly well, but where it fell apart was during
collision detection.

The level geometry that was supplied to
us worked reasonably well in the PC version of the game, but when
converted to fixed point, all kinds of seams, T-Junctions, and other
problems were nudged into existence by the microscopic differences in
values between fixed and floats. This problem would manifest itself
in one case with the main character touching a particular type of
door in a particular level in a particular location; rather than fix
the root cause of the problem, I simply made it so that if he ever
touched the door, then I’d move him away, and pretend it never
happened. Problem solved.

Looking back I find this code quite
horrifying. It was patching bugs and not fixing them. Unfortunately
the real fix would have been to go and rework the entire game’s
geometry and collision system specifically with the PS1 fixed point
limitations in mind. The schedule was initially aggressive, and since
we always seemed close to finishing, the quick patch option won over
against a comprehensive (but expensive) fix.

But it did not go well. Hundreds of
patches were needed, and then the patches themselves started causing
problems, so more patches were added to turn off the patches in
hyper-specific circumstances. The bugs kept coming, and I kept
beating them back with patches. Eventually I won, but at a cost of
shipping several months behind schedule, and working 14 hour days for
all of those several months.

That experience soured me against “the
patch.” Now I always try to dig right down to the root cause of a
bug, even if a simple, and seemingly safe, patch is available. I want
my code to be healthy. If you go to the doctor and tell him “it
hurts when I do this,” then you expect him to find out why it
hurts, and to fix that. Your pain and your code’s bugs might be
symptoms of something far more serious. The moral: treat your code
like you would want a doctor to treat you; fix the cause, not the
symptoms.

Identity Crisis –Noel Llopis

This scene is familiar to all game
developers: It’s the day we’re sending out the gold candidate for
our Xbox 1 game. The whole team is playtesting the game all day long,
making sure everything looks good. It’s fun, it’s solid, it’s
definitely a go in our minds.

In the afternoon, we make the last
build with the last few game-balancing tweaks, and do one last
playthrough session when disaster strikes: the game crashes hard! We
all run to our workstations, fire up the debugger, and try to figure
out what’s going on. It’s not something trivial, like an assert,
or even something moderately hard to track down, like a divide by
zero. It looks like memory is garbage in a few places, but the memory
reporting comes out clean. What’s going on?

One dinner and many hours later, our
dreams of getting out on time shattered, we manage to track it down
to one data file being loaded in with the wrong data. The wrong data?
How’s that possible? Our resource system boiled down every asset to
a 64-bit identifier made out of the CRC32 of the full filename and
the CRC32 of all the data contents. That was also our way of
collapsing identical resource files into a single one in the game.
With tens of thousands of files, and two years of development, we
never had a conflict. Never.

Until now, that is.

It turns out that one of the innocent
tweaks the designers had checked in that afternoon made it so a text
file had the exact same filename and data CRC as another resource
file, even though they were completely different!

Our hearts sank to our feet when we
recognized the problem. There’s no way we could change the resource
indexing system in such a short period of time. Even if we pulled an
all-nighter, there was no way to know for sure that everything would
be stable in the morning.

Then, as quickly as despair swept over
us, we realized how we could fix this on time for the gold candidate
release. We opened up the text file responsible for the conflict,
added a space at the end, and saved it. We looked at each other with
huge grins on our faces and said:

“Ship it!”

The extra space meant the CRC32
checksum of the text file was altered and therefore no longer
conflicted with the other resource.

HexEdit to the Rescue –Ken
Demarest

Back on Wing Commander 1 we were
getting an exception from our EMM386 memory manager when we exited
the game. We’d clear the screen and a single line would print out,
something like “EMM386 Memory manager error. Blah blah blah.” We
had to ship ASAP. So I hex edited the error in the memory manager
itself to read “Thank you for playing Wing Commander.”

8-bit Audio Stomper –Toonse

For a launch product of a certain
console I had a nasty bug report from QA that took 20+ hours to
reproduce. Finally (with 24 hours left to go to hit console launch)
tracked it down to some audio drivers in the firmware that were
erroneously writing 1 random byte “somewhere” at random times
where the “somewhere” was always in executable code space. I
finally figured out that any given run of the game that “somewhere”
was always the same place, luckily. 1st party said sorry, can’t fix
it in time as we don’t know why it’s being caused! So I shipped
that game with stub code at the very start of main that immediately
saved off the 1 byte from the freshly loaded executable in the place
I knew it would overwrite for that particular version of the exe.
There was then code that would run each frame after audio had run and
restore that byte back to what it should be just in case it had been
stomped that frame. Good times! We hit launch.

To this day I still feel very, very
dirty about this hack, but it was needed to achieve the objectives
and harmed no one.

Rainy Day Server Pool –Potatolicious

I used to work for a company that had a
horrific hardware requisition policy. If your team needed a server,
it had to go through a lengthy and annoying approvals process — and
even then, it took months before Infrastructure would actually
provide said servers.

In other words, when a project gets
handed down from above to launch in, say, 3 months, there’s no way
in hell you can get the servers requisitioned, approved, and
installed in that time. It became standard practice for each team to
slightly over-request server capacity with each project and throwing
the excess hosts into a rainy day pool, immediately available and
repurposeable as required.

New servers will still get requested
for these projects, but since they took so long to approve, odds are
they’d go right into the pool whenever they actually arrived, which
sometimes took up to a year.

Of course, it was horrifyingly
inefficient. Just on my team alone I think we had easily 50 boxes
sitting around doing nothing (and powered on to boot) waiting to pick
up the slack of a horrendously broken bureaucracy.

Bit Shifting Magic –Steven Pigeon

In order to avoid stalls in the
processor pipeline due to branching, one can often use a branchless
equivalent, that is, code transformed to remove the if-then-else’s
and therefore jump prediction uncertainties. For example, a
straightforward implementation of abs() in C might be:

 inline int abs(int x)
 {
 return (x<0) ? -x : x;
 }

Which is simple enough but contains an
inline if-then-else. As the argument, x, isn’t all that likely to
follow a pattern that the branch prediction unit can detect, this
simple function becomes potentially costly as the jump will be
mispredicted quite often.

How can we remove the if-then-else,
then? One solution is to use the right shift operator (>>) and
the bitwise XOR operator (^) as following:

 inline int abs_no_branch(int x)
 {
 int m = (x >> (8 * sizeof(int)-1));
 return ((x ^ m) - m);
 }

Where the expression (8 * sizeof(int) -
1) evaluates to 15, 31, or 63 depending on the size of integers on
the target computer. §

Harvey Green has spent the past few
years developing in .NET and C# for the Oil & Gas and related
industries. He believes that core language skills plus good domain
knowledge has been the key to most of the projects he’s worked on.

First appeared in
hn.my/game

Python
Deployment Anti-Patterns

By HYNEK SCHLAWACK

Deploying web applications is hard. No
shiny continuous deployment talk and no DevOps coolness can change
that. Or to use DevOp Borat’s words: “Is all fun and game
until you are need of put it in production.” There are some
mistakes I see people making again and again, so I’d like to
address them here.

My background

Before I start preaching, let me tell
you a bit about me and what I do in order to give you some
perspective from which I’m writing.

I work for a German web
hoster and domain registrar. And I’m deploying Python-based
applications all the time. Most parts of our infrastructure are built
using Python. And those that aren’t, will be eventually.

The sizes range from tiny
glue to mission-critical APIs. We have legacy Pylons
[pylonsproject.org],
new Pyramid, some Django, & a lot of Twisted apps
[twistedmatrix.com]. And
everything is seasoned with a hint of Celery [celeryproject.org].

So if I say “application,” I don’t
mean just some Django CRUD front end. Python lives in all layers
here. And all layers have to be deployed somehow.

Deploying so many diverse applications
requires solid and consistent deployment standards if you don’t
want to go crazy. The main mantra is to go
for simple solutions, not for easy ones. Something
that is easy now, can become a major PITA down the road.

Don’t use ancient system
Python versions

Every time someone whines about lack of
support for Python 2.4 in recent packages, I hear Kenneth
Reitz saying:

Python 2.4 is not supported. It came
out 8 years ago. That’s older than YouTube. Upgrade.

If you’re serious about using Python
you should be prepared to roll your own RPMs/DEBs. We’re even
running RHEL 4 on some of our servers; but we’re a Python
company, so we use the best thing we can get — even if it means
extra work.

We also have to compile our own Apaches
and MySQLs for our customer servers (we don’t use any of them for
our own systems, but our customers demand a solid LAMPstack)
because we need that fine-grained control. Why should Python be an
exception? Rolling an own DEB/RPM is a lot less of a nuisance than
writing code for Python < 2.6.

This works both ways. It’s entirely
possible that you have some mission-critical web app that isn’t
compatible with Python newer than 2.4. Are you going to install a
single server with an ancient OS, just to accommodate? Key
infrastructure must not be dictated by third parties.

On the other hand I’m not saying
that you have to compile Python yourself! Oneiric and later
have Python 2.7 on board — there’s absolutely no reason to build
it for yourself. The stress is on “ancient,” not on “system”
in this caption.

Use virtual environments

Gentlepeople, if you’re deploying
software, always use virtualenv. Actually, the same
goes for local development: look into virtualenvwrapper which
makes handling them a breeze. So never install into your global site
packages! The only exception is the aforementioned virtualenv, which
in turn installs pip in each environment it installs to.

Test your software against certain
versions of packages, pinpoint them using pip freeze and be
confident that the identical Python environment is just a pip
install -r requirements.txt away. For the record, I split up my
requirement files; more on that in the next installment.

Also, use real version pinning
like package==1.3. Don’t do package>=1.3, it will bite
you eventually, just as it has bitten me and many others.

Never use Python packages from
your distribution

This one is in fact an extreme version
of the previous anti-pattern.

First of all, there’s no reason to
succumb to a dictate of your distribution which version of a package
to use. They don’t know your application. Maybe you need the latest
version, maybe you need a slightly older one.

1.	If I write and test software, I do it against certain packages.
Packages tend to change APIs, introduce bugs, etc.

2.	My software is supposed to run on any UNIXy platform as long as
the Python it’s written against is present.

What if the next Ubuntu ships with a
different SQLAlchemyby default? Do I have to fix all my
applications before upgrading our servers? Or what if I need to
deploy an app to an older server? Do I have to rewrite it so it runs
with older packages? I prefer not to.

I really wish the Linux distributions
wouldn’t ship anything more than the Python interpreter and
virtualenv. Anything else just leverages bad behavior.

The only good they may be doing is
automatically updating packages with security vulnerabilities that
you may have missed. That said, I’m convinced that if you deploy
software to the net, you have the responsibility to
monitor them yourself anyway. Relying on your distribution gives you
just a false sense of security; if your customer’s data gets
hacked, they don’t care that Ubuntu was to slow to issue
a security update.

Don’t run your daemons in
a tmux/screen

It seems to be part of everyone’s
evolution to do it, so be the first one to skip it!

Yes, tmux is full of awesome
(and way better than screen), but please don’t just ssh
on your host and start the service in a tmux or screen. You have
nothing that brings the daemon back up if it crashes. You can’t
restart it on 10 servers without ssh’ing on 10 servers, get the
screen and Ctrl-C it. Granted, it’s easy in the beginning, but it
doesn’t scale and lacks basic features that simple-to-use tools
have to offer.

My favorite one
is supervisord [supervisord.org].
A definition for a service looks as simple as:

 [program:yourapp]
 command=/path/to/venv/bin/gunicorn_django --config deploy/gunicorn-config.py settings/production.py
 user=yourapp
 directory=/apps/yourapp

You add the file
to /etc/supervisor/conf.d/, make a supervisorctl update and
your service is up and running. It’s a no-brainer and much easier
than juggling rc.d scripts. Crash recovery and optional web
interface included.

Configuration is not part of
the application

Your production
configuration doesn’t belong in the (same) source repository.
There are configuration management tools
like Puppet [puppetlabs.com]
or Chef [opscode.com/chef]
that do exactly that for you — just better and more
reliably. While installing the configuration, Puppet can make
sure that the directories always have certain permissions.
Configuration templates make it perfect for mass deployments. Some
service IP changed? Just fix it in Puppet’s repo and deploy the
changes. Eventually all services will catch up. If you want, you can
always trigger a run, for example using a simple Fabric [fabfile.org]
script.

But don’t use Fabric for actual
deployments! This is the perfect example of the battle between
“simple” and “easy.” At first, it’s easier to put
everything inside of the repo and run a Fabric script that does a git
pull and restarts your daemon. In the long run, you’ll regret
it like many before you did.

Just to stress this point: I love
Fabric and couldn’t live without it. But it’s not the right tool
for orchestrating deployments — that’s where Puppet and Chef
step in.

Look into alternatives to Apache +
mod_wsgi setups

Many people go for Apache and mod_wsgi
by default, because everybody has already heard about Apache.

To me, Apache feels like
a big ball of mud, and I find the modular combination
of gunicorn [gunicorn.org]
or uwsgi [hn.my/uwsgi]
together with nginx much more pleasing and easier to control.

Enough negativity

I don’t claim that I’ve discovered
the sorcerer’s stone. However, I’ve developed a system for us
that proved solid and simple in the long run.

The trick is to build a debian package
(but it can be done using RPMs just as well) with the application and
the whole virtualenv inside. The configuration goes into Puppet, and
Puppet also takes care that the respective servers always have the
latest version of the DEB.

The advantage is that such a DEB is
totally self-contained, doesn’t require having to build tools and
libraries on the target servers, and, paired with solid Puppet
configuration, it makes consistent deployments over a wide range of
hosts easy, fast, and reliable. But you have to do your
homework first. §

Hynek is a
wine-loving software engineer from Berlin/Germany, creating robust
systems for a living at Variomedia and hacking FOSS for fame at home.
He occasionally blogs at hynek.me
and regularly tweets as @hynek

First appeared in
hn.my/pydev

This is Why You
Spent All that Time Learning to Program

By JAMES HAGUE

There’s
a standard format for local TV news broadcasts that’s easy to
criticize.

There’s an initial shock-value teaser
to keep you watching. News stories are read in a dramatic,
sensationalist fashion by attractive people who fill most of the
screen. There’s an inset image over the shoulder of the reader.
Periodically there’s a cutaway to a reporter in the field; it’s
often followed-up with side-by-side images of the newscaster and
reporter while the former asks a few token questions to latter.
There’s pretend banter between newscasters after a feel-good story.

You get the idea. Now what if I wanted
to change this entrenched structure?

I could get a degree in journalism and
try to get a job at the local TV station. I’d be the new guy with
no experience, so it’s not likely I could just step-in and make
sweeping reforms. All the other people there have been doing this for
years or decades, and they’ve got established routines. I can’t
make dozens of people change their schedules and habits because I
think I’m so smart. To be perfectly fair, a drastic reworking of
the news would result in people who had no issues with old
presentation getting annoyed and switching to one of the other
channels that does things the old way.

When I sit down to work on a personal
project at home, it’s much simpler.

I don’t have to follow the familiar
standards of whatever kind of app I’m building. I don’t have to
use an existing application as a model. I can disregard history. I
can develop solutions without people saying “That’s not how it’s
supposed to work!”

That freedom is huge. There are so many
issues in the world that people complain about, and there’s little
chance of fixing the system in a significant way. Even something as
simple as reworking the local news is out of reach. But if you’re
writing an iOS game, an HTML 5 web app, a utility that automates work
so you can focus on the creative fun stuff, then you don’t have to
fall back on the existing, comfortable solutions that developers
before you chose simply because they, too, were trapped by the
patterns of the solutions that came before them.

You can fix things. You can make new
and amazing things. Don’t take that ability lightly. §

James Hague has been Design Director
for Red Faction: Guerrilla, editor of “Halcyon Days: Interviews
with Classic Computer and Video Game Programmers,” co-founder of an
indie game studio, and a published photographer. He started his blog
“Programming in the 21st Century,” in 2007.

First appeared in hn.my/spent

Faster than C

By ANDREAS ZWINKAU

Judging the performance of programming
languages, usually C is called the leader, though Fortran is often
faster. New programming languages commonly use C as their reference,
and they are really proud to be only so much slower than C. Few
language designer try to beat C.

What does it take for a language to be
faster than C?

Better Aliasing Information

Aliasing describes the fact that two
references might point to the same memory location. For example,
consider the canonical memory copy (not memcpy from stdlib.h!):

 void* memcopy(void* dst, const void* src, size_t count) {
 while (count--) *dst++ = *src++;
 return dst;
 }

Depending on the target architecture, a
compiler might perform a lot of optimizations with this code. For
example, on a modern x86 with the SSE instruction MOVDQU, it could
copy 16 Byte blocks instead of 4 Byte (sizeof(void*)). Unfortunately,
no. Due to aliasing, dst could for example be src+1. In this case,
the result must be the first word *src repeated count times at dst.
The compiler is not allowed to use MOVDQU due to the semantics of C.

In C99 the restrict keyword was added,
which we could use here to encode that src and dst are different from
all other references. This mechanism helps in some cases, but not in
our example.

Fortran semantics say that function
arguments never alias and there is an array type, where in C arrays
are pointers. This is why Fortran is often faster than C. This is why
numerical libraries are still written in Fortran. However, it comes
at the cost of pointer arithmetic.

A language which wants to be faster
than C should provide semantics where aliasing can be better analyzed
by the compiler.

Push Computation to Compile-Time

Doing things at compile time reduces
the run time. Of course, C compilers do this for trivial cases like
1+2, where the addition is already handled at compile time.

However, languages with nice
meta-programming support enable the programmer to do similar
application specific optimizations. A simple example, we could
optimize fib(20) to 6765, without the compiler knowing about
Fibonacci numbers.

For a real example, the
Eigen C++ library for linear algebra uses C++ templates to avoid
copies and be lazy about computations. Of course, Lisp is the
grandfather of this technique with its macro system. For example,
there is a nice anecdote [hn.my/jsobel]
about a student using Scheme for an assignment. Basically, the
programmer can modify the abstract syntax tree during compilation.
The trade-off with such meta programming features is complexity.
Programmers underestimate the difficulty to write correct macros like
they underestimate the difficulty to write correct concurrent
programs.

A language designer should think about
meta programming. Something Turing-complete like C++ templates, seems
to be beneficial for performance.

Runtime Optimization

At runtime there is dynamic information
which is not available to a static compiler. Any specific example
could be duplicated by a C program, but usually it is not feasible.
The trick of profile-guided optimizations solves only a small part of
the problem.

What becomes especially easy at runtime
is whole-world optimization. While this is possible statically, the C
semantics (compilation units) and the mandatory preprocessor make it
difficult for the compiler. Even Python can beat C by inlining across
file borders.

Of course, there are downsides to using
a JIT and especially in systems and embedded programming it is not
appropriate. So there might be examples where Java, C#, or others
beat C, but they do not threaten C’s niche.

Conclusion

Aliasing information is the only one
where I am certain about speed improvements, because it is impossible
to reach Fortran-speed in C. The other ideas are more about making it
easier to write faster programs. §

Andreas Zwinkau is a doctoral
researcher at the IPD Snelting since 2010. He is working on the
libFirm compiler within the InvasIC project. However, this is only
true, while he is not occupied with managing and teaching students at
the KIT, Germany’s finest university for computer science.

First appeared in hn.my/fasterc

“That’s Why
You Don’t Have Any Friends.”

By JOE PEACOCK

Yesterday, I was at the gym. I was
working out, as I am usually doing while I’m at the gym. And as it
happens over the years spent going to the same gym, relationships
form and people get to know each other, and groups form and jokes are
shared and camaraderie takes place. And it was the same this day.

I was talking with a group of folks who
are regularly in during the afternoons on Saturdays. Among them was a
14-year-old boy named Bradley (not his real name). He’s a great
kid. He’s been coming to the gym with his parents for the past two
or so years. While his parents walk around the track upstairs, he
spends his time learning how to lift weights with us big guys. When
he first started, he was wiry and awkward. He’s still pretty
awkward; being a teenager and all. But us big guys set him on a good
path to maintain a healthy level of fitness.

We were cutting up and laughing. The
guys made fun of me for liking hockey. “That’s a Canadian sport,
isn’t it?” one asked. “What are you, part Canadian?”

“Only the part that likes real
sports,” I replied. “And maple syrup.”

“I still don’t get why you don’t
like college football,” another asked. “You’re in Georgia. SEC
is bigger than NFL here.”

“What can I say?” I asked.
“Southerners like their little league sports. I prefer watching
pros.”

And so it goes, about the same way
every Saturday. The topics change — what cars are best, what sports
are better than other sports, what teams are better than other teams,
what shows are better than other shows (but never politics or
religion — something you learn really fast in a gym is to never
bring up the two topics most likely to incite violence in a building
filled with metal bars and heavy plates). Someone has a divergent
interest, everyone else jumps on it, and laughs are had. And
invariably, the topic turns to girls.

Husbands laugh about the young singles
and their stories about weekend endeavors. Singles laugh at the guys
stuck at home with their ball and chain. Whispers are shared about
which girls in the gym are hot; warnings are issued by the more
experienced about the dangers of dating people from your gym or your
job (short version: it doesn’t matter how hot the guy or girl is,
it’s stupid. Unless marriage is assured, don’t do it.)

One of the guys asked Bradley if he had
a girlfriend. If there were dirt on the gym floor, he’d have been
kicking it.

“Nah, no girlfriend,” he replied.

“Young strapping lad like you?
Nonsense,” I said, knowing full well that not only did he not have
a girlfriend, he’d have absolutely no clue what to do with one if
he did because I was him once. But as a grown up looking out for a
younger kid, you have to act like it’s completely ridiculous that
girls don’t flock to him. It’s the right thing to do.

“I asked a girl out to the spring
dance,” he said. He then said something that hit me hard. “She
called me lame and said, ‘That is why you don’t have any friends.
Because you’re weird.’”

The words rang in my head. Those exact
words — I remembered hearing them. A lot. He didn’t explain why
she thought he was weird. He didn’t have to. I knew the feeling
very, very well.

“Come on now,” one of the guys
said. “Don’t let her get to you.”

“No, she’s right,” he said. “I
don’t have any friends. Not at school, anyway.” His face got
really sad. “I really am weird.”

I was weird, back before I realized I
wasn’t. And it resulted in some extremely lonely times in my young
life. My entire elementary and junior high school tenure was spent
with no friends. In tenth grade, I found my tiny group of four
friends.

I dated the wrong girl (they’re all
wrong, until you find the right one). The four of us fractured into
two groups of two — Mike and I split off from Walter and Rod.

Then one day, Mike got tired of my
bullshit and said those words to me. “That’s why you don’t have
any friends,” he said at very high volume. He deserved to say it —
I’d just told him to go fuck himself when he tried to explain why
my girlfriend at the time was screwing someone behind my back. I
called him every name in the book, so he bailed and joined up with
Walter and Jay while I spent the last few weeks of high school
career. Even the furry had more friends than I did.

And now, 17 years later, life is
fantastic. I belong to a studio full of amazing people who were all
weird, just like me. I get to meet freaks from across the nation who
all love anime and comics, just like me. I get to talk to people who
read my weird stories about my weird life and relate to it because,
just like me, they’re weird.

There are thousands — no, hundreds of
thousands — of us. All weird. All strange. All over, everywhere.

We all went to school and hated
everyone because they didn’t understand us. We dealt with the
bullying and the isolation and the feeling that we were the weird
ones. You want to know what’s weird? Spending hundreds of dollars
on clothes and shoes and purses that everyone else thinks are cool.
Spending hours of your life doing things that everyone else is doing
because it’s cool. Liking the bands that everyone else likes
because you’re a loser if you don’t.

You want to know what’s weird? Hiding
who you are just to have the company of people you don’t even like.
That’s weird.

I looked him straight in the eye. My
normally grinning mouth turned stern. With as serious a tone as I
could muster, I said “Listen to me, okay? What I’m about to say
is something I want you to take in and think about and really hold on
to.”

He nodded. "Okay,” he said.

“This isn’t just conversation, this
is important,” I said. “You listening?”

He nodded again. “I’m listening,”
he replied with a look that convinced me that he was.

I took a deep breath. “Right now,
you’re in high school in a small suburban town,” I started.

He nodded.

“Everyone you know looks the same and
acts the same,” I explained. "They may dress differently from
each other or belong to different crowds, but they’re all the same.
Hipsters, brainiacs, jocks, so-called “geeks” — they’re all
so caught up with not being left out that they’re changing who they
are to fit in with whoever it is that will accept them.

“When you show up and you’re not
like that, it scares them,” I continued. "They don’t know
what to do with you, because they have no idea what it’s like to
think for themselves. So they try to make YOU feel like the loser,
because there are more of them doing what they’re doing than there
are of you. In such a small group of small minds, the nail that
sticks up gets hammered down.

“To them, you are weird,” I said.
“But weird is good. No, screw that — weird is great! Being weird
to someone just proves that you are being you, which is the most
important thing you can ever be. There’s nothing wrong with you.
There’s something wrong with them. They can’t understand what
it’s like to be themselves, much less what it’s like to be you.”

He smiled a little. “You really think
that?” he asked.

I laughed. “Dude, look at me!” I
said. “I’m 300 pounds of ex-football player covered in cartoon
and comic book tattoos, who builds websites and tours the world
talking to people about his anime cel collection. Trust me, I know
all about being weird.”

He shrugged and said, “It just sucks,
you know?”

“Oh, I know,” I said with a smile.
"And here’s the little bit of bad news — It’s gonna suck
for a little while longer. But one day, you’ll get out of school
and go somewhere besides the small town you’re in and you’re
going to discover that there are groups of people just like you —
not that they do what you do or act how you act, but that they
refused to change who they are to fit in, and that makes them just
like you. And when you find them, you’re finally going to feel at
home.

“It might be college, or it might be
visiting another city. Hell, it might even be on the internet. But at
some point you’re going to find them. And it’s going to be
great.”

He smiled. “That would be awesome,”
he said.

“It WILL be awesome!” I replied.
“But until then, it’s going to be lonely and frustrating. You’re
going to do stupid things thinking it’s going to impress them or
change their opinion of you, and it won’t, and you’re going to
get sad. Just know that it does end. It ends the day you realize that
you never wanted to be them in the first place because they are
losers. They lost the battle to be themselves. You’re the winner.”

I paused for a second, because it had
just occurred to me that, at some point during my little motivational
speech, his parents had walked up and were waiting a short distance
behind him. I presumed it was to give him enough space to let the
conversation be his own, but I knew they had heard me because when I
looked at them, they both nodded and smiled.

So I put the cap on the whole thing.
“And I know your parents are right there, but I’m going to say it
anyway: Fuck. Them.”

I kept my eyes on him, but could see
just behind him that his mom reacted a little to my vulgarity. His
dad placed his hand on her shoulder and just let it be.

The guys in the group all nodded and
agreed with me and began talking to him about their perspectives on
the situation (which, in previous conversations over the years, I
knew to be similar to mine). His parents came up to me and thanked me
for talking to him.

“He just thinks the world of you
guys,” his mom said. “He talks about coming here all the time to
work out with you.”

“He really needed to hear that,”
his dad said. “We try to tell him that high school is just that
way, but you know how it is...”

“No teenager wants to listen to his
parents,” I said. “Hell, I’m an adult and I still don’t.”

They both laughed.

“He’s a great kid,” I said. “He’s
going to be just fine in a few years.”

“Well, thank you,” the dad said.
“It means a lot.”

“Hey,” I said with a shrug, “That’s
what we’re here for. We’re his friends.” §

When he's not teaching the Internet
how to fist-fight, why being weird is awesome or how to self-publish
your own books, Joe Peacock tours the world, showing his extensive
"Akira" art collection. He has 13 cats and loves you.

First appeared in hn.my/friends

What I’ve
Learned about Smart People

By TOMMY MACWILLIAM

Going to Harvard means I have the
amazing opportunity to be around a lot of smart people. Now, when I
say “smart people,” I don’t mean that guy who always wins
trivia night. I mean blazingly intelligent individuals who are
regarded as the pre-eminent scholars in their field. It’s pretty
amazing to pass by Turing Award winners and leading political science
scholars grabbing a sandwich.

Before I go anywhere, let me make one
thing clear: I am not one of these smart people. This is perhaps the
biggest lesson I’ve learned after 3 years here. There is an
absolutely incredible amount of smart people in the world, and I can
name a whole bunch of students and professors alike who I know for a
fact I will never ever be as smart as, no matter how hard I try. But
honestly, that’s okay — I don’t need to be (and perhaps that’s
a story for another day). What that does mean, though, is that I
would be doing a disservice to the ever-so-generous Financial Aid
Office if I didn’t learn from them. I don’t mean learning in a
lecture hall, but I refer to a more personal sense of learning. What
is it that separates a “smart” person from me? How do they
conduct themselves? What drives them?

I can of course make no authoritative
claims here, but I have noticed one overarching theme among smart
people: they ask questions. When someone explains something new to
me, I usually just nod my head like I know what they’re talking
about. If I don’t understand something, I just Google it later.
After all, I don’t want this person to think I’m a moron. Smart
people are different. If they don’t understand something, or even
if they think they understand something, they ask questions. I
distinctly remember, as an immature and perhaps arrogant freshman, a
guest lecturer in one of my classes. After explaining what I thought
was a straightforward concept, the guest lecturer asked if anyone had
any questions. Looking around the room, every student simply nodded,
indicating everything was clear. A question, however, came from a
tenured professor who had undoubtedly been exposed to the material
before. At the time, I thought nothing of it and perhaps even thought
that I was smarter than the professor because I understood a concept
he/she didn’t. Now, I am confident that this professor did not ask
the question just to make the guest lecturer feel better, to start a
discussion, or anything else. The intonation of the question and the
intensity with which the professor listened to the response
definitively suggested that the professor’s question was genuine
and that the answer was of great importance.

Based on the research and findings of
so many of the students and professors here, it’s clear that this
trend is no accident. Not only do smart people ask questions when
they don’t understand something, but they also ask questions when
the world thinks it understands something. Smart people challenge the
very limit of human understanding, and they push the envelope of
what’s possible farther than many people would argue it’s meant
to be pushed. Smart people don’t take claims at face value, and
smart people don’t rest until they find an explanation they’re
comfortable accepting and understanding.

Smart people challenge everything. (You
know who taught me that? A smart person.)

Maybe someday, people will call me a
smart person. For now, I’m going to keep asking them questions. §

Tommy is a Computer Science major at
Harvard University known for his affinity for JavaScript. With a
passion for promoting innovation, Tommy loves teaching CS courses and
empowering students to build killer apps. He also loves cupcakes.

First appeared in hn.my/smart

The Origins of
the <Blink> Tag

By LOU MONTULLI

I am widely credited as the inventor of
the <blink> tag. For those of you who are relatively new to the
Web, the <blink> tag is an HTML command that causes text to
blink, and many, many people find its behavior to be extremely
annoying. I won’t deny the invention, but there is a bit more to
the story than is widely known.

Back in 1994, I was a founding engineer
at Netscape, and prior to that I had written the Lynx browser, which
predated all of the other popular browsers at that time. Lynx had
been and still is a text-only browser and is commonly used in a
console window on UNIX machines. At Netscape we were building
software that used a graphical user interface and could express
vastly more text styles and layouts as well as images and other
media. We spent a lot of time thinking about the future of the web
and new technologies that would enable new classes of documents,
applications, and uses. A few examples were HTML tables, SSL for
secure communications, plugins for extensions, and JavaScript to
enable dynamic HTML.

Sometime in late summer I took a break
with some of the other engineers and went to a local bar on Castro
Street in Mountain View. The bar was the St. James Infirmary and it
had a 30 ft Wonder Woman statue, among other interesting things. At
some point in the evening I mentioned that it was sad that Lynx was
not going to be able to display many of the HTML extensions that we
were proposing. I also pointed out that the only text style that Lynx
could exploit given its environment was blinking text. We had a
pretty good laugh at the thought of blinking text and talked about
blinking this and that and how absurd the whole thing would be. The
evening progressed pretty normally from there, with a fair amount
more drinking and me meeting the girl who would later become my first
wife.

Saturday morning rolled around and I
headed into the office only to find what else but blinking text. It
was on the screen blinking in all its glory and in the browser. How
could this be, you might ask? It turns out that one of the engineers
liked my idea so much that he left the bar sometime past midnight,
returned to the office, and implemented the blink tag overnight. He
was still there in the morning and quite proud of it.

At the time there were 3 versions of
the browser that ran on UNIX, Windows, and Mac operating systems. For
a short 12 hours the blinking was constrained only to the UNIX
version, but it didn’t take long for the blinking to spread to
Windows and then Mac. I remember thinking that this would be a pretty
harmless Easter egg; that no one would really use it, but I was very
wrong. When we released Netscape Navigator 1.0 we did not document
the blink functionality in any way, and for a while all was quiet.
Then somewhere, somehow the arcane knowledge of blinking leaked into
the real world and suddenly everything was blinking. “Look here,”
“buy this,” “check this out” — all blinking. Large
advertisements blinking in all their glory. It was a lot like Las
Vegas, except it was on my screen, with no way of turning it off.

In the end, much was said — most of
it in the form of flaming posts to various discussion boards, and the
<blink> tag will probably be remembered as the most hated of
all HTML tags. I would like to publicly state that at no time did I
actually write code or even seriously advocate the <blink> tag.
It is true that I put forth the initial inspiration, but it really
was merely a thought experiment. I am not going to name any names of
the people who coded the dastardly deed. If they wish to step
forward, they will need to do it themselves. In the end, the thing
that I am truly sad about is that Lynx never did get to blink. I am
also sad to report that the St James Infirmary burned to the ground
in 1997. It was a great place to hang out and will be missed.

<blink> on,

:lou §

Lou Montulli is a programmer who is
well known for his work in producing web browsers. He co-authored a
text web browser called Lynx and programmed the networking code for
the first versions of the Netscape web browser. He is currently
working on a new Enterprise class cloud storage service at a company
named Zetta.

First appeared in hn.my/blink

ebook_html_75bf863c.jpg
RECIPES WITH
BACKBONE

Strategies to accelerate development
with Backbone.

Nick Gauthier & Chris Strom

ebook_html_633bc2b0.jpg
e
ART

FAST.FLEXIBLE, STRUCTURED
CODE For THEMoDERN WEB.

CHRISSTROM

ebook_html_3e618684.jpg

ebook_html_m1bb507b7.jpg

ebook_html_702f23d2.jpg
dp‘pufl’ecuu\'m

ROBOT LANGUAGE DICTIONARY

Dr kid name
e — LEFT RIGHT

LEG FORWARD TO 'T
LEG BACKWARD $. .J’

BODY ROTATE (. .N

GRAB *
DROP :

TALK “8IT 80T*

ebook_html_5eaaf403.jpg
HARVEST

still using that rusty old Perl time tracking
script you wrote when Reagan was still in office?
Try Harvest for two weeks and let us show you
a better way to track time and get paid.

getHarvest.com/hackers

ebook_html_67de4054.jpg

ebook_html_m68ce42bd.jpg
Now you can hack on DuckDuckGo

DuckDuckHack

Create instant answer plugins for DuckDuckGo

ebook_html_m4f0fd6df.jpg

ebook_html_m714df49f.jpg

ebook_html_2147573d.jpg

cover.jpeg
Elon Musk

.kx

MONTHLY 26 Jty 20

ebook_html_73c43ece.jpg
Rent your IT infrastructure from
Memset and discover the incredible
benefits of cloud computing.

MITNIS EIRVEIR.

From £0.015p/hour
104 x 2.9 GHz Xeon cores
31 GBytes RAM
25TBRAID(1) disk

MEMSET

Find out more about us at
www.memset.com

or chat to our sales team on
0800 634 9270.

MEVIS I VUKE.
CLOUD STORAGE

£007p/GByte/month or less.
9.999999% object durabilty

99.995% availability guarantee

RESTful API, FTP/SFTP and CDN Service

SCAN THE CODE
FORMORE

INFORMATION

ebook_html_8b42c2b.png
code school

learn by doing

Join the thousands of web professionals
who are learning by doing through
interactive video + coding in the browser.

- hn.my/codeschool

ebook_html_17a8cbc3.jpg

ebook_html_m33c41445.jpg
Gp®
S

° Qo @‘%?@"
Sis925

PAYMO

Time Tracking & Billing

)
é © Manage Projects. Track Time.
0° (% Bill Online. Get Paid More.
s
(e} www.paymo.biz
o ———

Get two months of free service by tweeting:
> W

“1just learned about @Paymo time tracking & invoicing via @hackermonthly

ebook_html_6c83370c.jpg
P(ANB)=P(A)*P(B)

ebook_html_m508cbc2b.jpg
cloud

formation

ebook_html_m153c88.png
P (spam| penis) = FLPenislspam) P (spam)

P(penis)
20,30

30 7420

B =51 =039
74

ebook_html_m14b3be64.jpg
P(ANB)
P(B)

P(A|B)=

_P(B|A)P(A)
"7 P(B)

ebook_html_13bc53ee.jpg
P penis|spam)* P (spam)

P(spam|penis)= B penis]

2.3

ebook_html_24a8b49c.jpg
P(penis|spamnviagra)* P (viagra|spam)* P (spam)
P(penis|viagra)* P viagra)

ebook_html_m791cc634.jpg
classify (word,,word,...word,)=argmax P (cat)* | | P(word |cat)
.

i=1

