
Issue 36  May 2013

Hacking Strength
Matt Might

Engineers rebuilding the infrastructure
that powers finance. careers.addepar.com

http://careers.addepar.com

Now you can hack on DuckDuckGo

Create instant answer plugins for DuckDuckGo

duckduckhack.com

Now you can hack on DuckDuckGo

Create instant answer plugins for DuckDuckGo

DuckDuckHackDuckDuckHack

package DDG::Goodie::Unidecode;# ABSTRACT: return an ASCII version of the search query use
DDG::Goodie; use Text::Unidecode; zci is_cached => 1; zci answer_type => "convert to ascii"; triggers
startend => "unidecode"; handle remainder => sub { my $u = unidecode $_; # unidecode output some-
times contains trailing spaces $u =~ s/\s+$//; return $u; }; 1; package DDG::Goodie::Rot13; #
ABSTRACT: Rotate chars by 13 letters use DDG::Goodie; triggers start => 'rot13'; handle remainder =>
sub { if ($_) { $_ =~ tr[a-zA-Z][n-za-mN-ZA-M]; return "ROT13: $_"; }; return }; zci is_cached => 1; 1;
package DDG::Goodie::Base64; use DDG::Goodie; use MIME::Base64; use Encode; triggers startend =>
"base64"; zci answer_type => "base64_conversion"; zci is_cached => 1; handle remainder => sub {
return unless $_ =~ /^(encode|decode|)\s*(.*)$/i; my $command = $1 || ''; my $str = $2 || ''; if ($str) { if (
$command && $command eq 'decode') { $str = decode_base64($str); $str = decode("UTF-8", $str);
return "Base64 decoded: $str"; } else { $str = encode_base64(encode("UTF-8", $str)); return "Base64
encoded: $str"; } } return; }; 1; package DDG::Goodie::Chars; # ABSTRACT: Give the number of charac-
ters (length) of the query. use DDG::Goodie; triggers start => 'chars'; zci is_cached => 1; zci
answer_type => "chars"; handle remainder => sub { return "Chars: " .length $_ if $_; return; }; 1; pack-
age DDG::Goodie::ABC; use DDG::Goodie; triggers any => "or"; zci answer_type => "rand"; handle
query_parts => sub { my @choices; my @collected_parts; while (my $part = shift) { if (lc($part) eq 'or') {
return unless @collected_parts; push @choices, join(' ', @collected_parts); my $length =
@collected_parts; return if $length > 1; @collected_parts = (); } elsif ($part) { push @collected_parts,
$part; } } push @choices, join(' ', @collected_parts) if @choices && @collected_parts; return if
scalar(@choices) <= 1; my $choice = int(rand(@choices)); if (my @duck = grep { $_ eq 'duckduckgo' || $_
eq 'duck' || $_ eq 'ddg' } @choices) { return $duck[0]." (not random)", answer_type => 'egg'; } return
$choices[$choice]." (random)"; return; }; 1; package DDG::Goodie::PublicDNS; use DDG::Goodie; use

sub { if ($_) { $_ =~ tr[a-zA-Z][n-za-mN-ZA-M]; return "ROT13: $_"; }; return }; zci is_cached => 1; 1;
package DDG::Goodie::Base64; use DDG::Goodie; use MIME::Base64; use Encode; triggers startend =>
"base64"; zci answer_type => "base64_conversion"; zci is_cached => 1; handle remainder => sub {
return unless $_ =~ /^(encode|decode|)\s*(.*)$/i; my $command = $1 || ''; my $str = $2 || ''; if ($str) { if (
$command && $command eq 'decode') { $str = decode_base64($str); $str = decode("UTF-8", $str);
return "Base64 decoded: $str"; } else { $str = encode_base64(encode("UTF-8", $str)); return "Base64
encoded: $str"; } } return; }; 1; package DDG::Goodie::Chars; # ABSTRACT: Give the number of charac
ters (length) of the query. use DDG::Goodie; triggers start => 'chars'; zci is_cached => 1; zci
answer_type => "chars"; handle remainder => sub { return "Chars: " .length $_ if $_; return; }; 1; pack
age DDG::Goodie::ABC; use DDG::Goodie; triggers any => "or"; zci answer_type => "rand"; handle
query_parts => sub { my @choices; my @collected_parts; while (my $part = shift) { if (lc($part) eq 'or') {
return unless @collected_parts; push @choices, join(' ', @collected_parts); my $length =
@collected_parts; return if $length > 1; @collected_parts = (); } elsif ($part) { push @collected_parts,
$part; } } push @choices, join(' ', @collected_parts) if @choices && @collected_parts; return if
scalar(@choices) <= 1; my $choice = int(rand(@choices)); if (my @duck = grep { $_ eq 'duckduckgo' || $_

http://duckduckhack.com

4  ﻿

Curator
Lim Cheng Soon

Contributors
Matt Might
JR Heard
Kris Jordan
Allison Kaptur
Caleb Doxsey
Clay Allsopp
Svarichevsky Mikhail
Sean Gransee

Illustrator
Ben Mounsey

Proofreaders
Emily Griffin
Sigmarie Soto

Ebook Conversion
Ashish Kumar Jha

Printer
MagCloud

Hacker Monthly is the print magazine version
of Hacker News — news.ycombinator.com, a social news
website wildly popular among programmers and startup
founders. The submission guidelines state that content
can be “anything that gratifies one’s intellectual curios-
ity.” Every month, we select from the top voted articles
on Hacker News and print them in magazine format.
For more, visit hackermonthly.com

Advertising
ads@hackermonthly.com

Contact
contact@hackermonthly.com

Published by
Netizens Media
46, Taylor Road,
11600 Penang,
Malaysia.

Hacker Monthly is published by Netizens Media and not affiliated with Y Combinator in any way.

Cover Illustration: Ben Mounsey

http://news.ycombinator.com
http://hackermonthly.com
mailto:ads@hackermonthly.com
mailto:contact@hackermonthly.com

  5

For links to Hacker News dicussions, visit hackermonthly.com/issue-36

Contents
FEATURES

07  Hacking Strength
By Matt Might

PROGRAMMING

14  Getting Started With Clojure
By JR Heard

18  Hacking on HTTP from the Command-Line
By Kris Jordan

22  There’s No Magic: Virtualenv Edition
By Allison Kaptur

26  Go & Assembly
By Caleb Doxsey

30  How A Pull Request Rocked My World
By Clay allsopp

SPECIAL

32  How To Open A Microchip And
What’s Inside
By Svarichevsky Mikhail

36  Using Parkinson’s Law to Kick
Procrastination’s Ass
By Sean Gransee

74HC595 — 8-bit shift register

http://hackermonthly.com/issue-36

6  FEATURES

FEATURES

  7

After my daughter was
born, I made a commit-
ment to get “in shape.”

I lost close to 50 pounds (23 kg)
in six months.

Eight inches came off my waist.
Then, after realizing I was too

weak to lift my son and his wheel-
chair in and out of the car, I spent
just over a year gaining strength and
muscle.

I gained about 35 pounds (16kg).
My waist size increased, but only

by an inch.
My strength exploded.
I feel like a different human being.
Having spent the prior three

decades of my life mostly out of
shape and inert, I found “fitness cul-
ture” foreign, and to some extent, I
still do.

I exercise three days a week and
only for 30 minutes each day.

I only exercise at home.
I did not radically alter my feed-

ing habits (but I did alter them).
In keeping with my “least

resistance” philosophy, I created
a flexible plan and crafted an

environment that left little room
for excuses.

Friends, colleagues and family
keep asking me how I did it.

I’m describing what I learned, my
experience and my fitness journey
below.

While my exact path may not be
the right fit for everyone, there is
value in the philosophy of making
exercise as easy and as accessible as
possible.

Applying least resistance to
gaining muscle
The least-resistance philosophy
dictates that you should mold your
environment so that the path of
least resistance is the path of maxi-
mum productivity.

The core principles are eliminat-
ing barriers to engaging in produc-
tive behavior and erecting barriers
to engaging in counter-productive
behavior.

Admittedly, this philosophy
is tricky to apply to an activity
that stresses reaching “maximum
resistance.”

But, the principles still work.
Going to the gym is a major

transaction cost.
Putting on gym clothes is a

barrier.
Finding a consecutive block of

time to work out induces opportu-
nity costs.

If you set up your equipment at
home so that you can walk in, do
a set and walk out, you are at the
gym whenever you’re home.

There are mixed opinions as to
whether concentrated or dispersed
exercise leads to faster muscle
growth.

Whatever the case may be, it is
clearly the case that both styles
work.

The key to success is choosing
compact equipment with low per-
use overhead that can still target
any muscle group with an arbitrary
load.

If you make exercise easy and
accessible, you are more likely to
exercise.

Hacking Strength
Gaining Muscle With Least Resistance

By Matt Might

8  FEATURES

Why muscle grows
Before I did anything, I did some
research.

I looked for consistent advice
backed by the scientific literature.

A few core principles emerged:

1.	 To gain weight, you must eat
more calories than you burn.

2.	 When you gain weight, some
will be fat and some will be
muscle.

3.	 To gain muscle, you must eat
protein.

4.	 To boost the ratio of muscle to
fat gain, you must exercise.

5.	 To gain muscle and strength,
you must engage in resistance
exercise.

6.	 To prioritize strength over size
gains, aim for 2-6 repetitions per
exercise, where failure occurs on
the last repetition.

7.	 To prioritize size over strength
gains, aim for 8-12 repetitions
per exercise, where failure
occurs on the last repetition.

8.	 To maximize gains per unit of
exercise, do not work the same
muscle group two days in a row.

There are a few corollaries to
these principles:

1.	 To continue gaining strength,
you must increase resistance.

2.	 To optimize strength and size
gains, vary repetitions over time.

3.	 To improve body fat percent-
age and gain weight, you must
cycle through phases of gaining
muscle and losing fat.

4.	 Rest thoroughly.

A word on the scientific
literature
The scientific literature on fit-
ness varies in quality and, at times,
misleads.

There are many seemingly
contradictory findings about the
(non-?)importance of protein, resis-
tance exercise, supplements, etc.

Two problems plague the
literature:

1.	 Sample sizes too small to draw
meaningful conclusions.

2.	 Subsequent misinterpretations
of statistical significance.

There are articles cited as evi-
dence that “X does not improve
muscle growth,” where upon
further inspection, the data might
actually show a positive correlation
between X and muscle growth.

Because the finding was not
“statistically significant,” it was
misinterpreted as “there is no
correlation.”

A lack of “statistical signifi-
cance” does not mean there is no
correlation.

A lack of “statistical significance”
means the sample size was too
small to render judgment at the
desired level of confidence (usually
chosen by the experimenter some-
what arbitrarily to be 90%, 95% or
99%).

The presence of a correlation
but a lack of statistical significance
should be interpreted as “pre-
liminary research is promising, but
more experimentation is needed to
render judgment.”

The bottom line is that you must
interpret the data yourself.

“Choose compact equipment with low
per-use overhead that can still target any
muscle group with an arbitrary load.”

  9

Form the habit first
Initially, developing an exercise
habit is more important than the
specific exercise you do.

Do push-ups, weights, sit-
ups, jogging, cycling, pull-ups or
whatever.

At first, it doesn’t matter.
You need the habit so that when

injury strikes or travel interrupts,
you know you’ll go back to your
routine.

Do it on three non-consecutive
days a week for about half an hour.

Bodyweight exercises are good
enough for building the habit
because they don’t need any
equipment. The transaction cost to
exercise is near zero.

A detachable pull-up bar is a
cheap and effective way to expand
your options with bodyweight
exercises.

Diet
Gaining weight, whether fat or
muscle, requires over-eating.

To gain a pound of muscle or fat
takes over-eating by about 3500
calories.

It’s challenging to gain even a
50/50 ratio of muscle/fat, so be sure
to supply your body with protein
on all days to capture the lasting
effects of resistance training as a
stimulus to muscle growth.

There’s a mixture of opinions as
to whether the timing of protein
ingestion matters, and to what
extent it matters if it matters.

There are claims and counter-
claims that the body can absorb
only up to 30g of protein “at a
time.”

I never resolved these debates.
I recommend eating protein with

every meal, and before and after
exercise.

Eating six meals stretched across
the day probably does improve
muscle growth at the margins, but
it is certainly inconvenient and, in
my experience, unnecessary.

Recommended amounts of
protein vary from 0.8 grams per
kilogram of bodyweight per day to
2 grams per kilogram.

I aimed for roughly 1.5 grams per
kilogram, but not stringently.

Whey protein makes it easy to
hit the target you set:

■■ I use hydrolized whey, since it is
“pre-digested.” It absorbs rapidly
and avoids some of the socially
problematic “side effects” of high-
protein diets.

■■ Whey is a complete protein: it
contains every essential amino
acid, and beyond that, it is an
abundant source of the branch-
chain amino acids critical to
muscle growth.

A blender bottle avoids the need
for a blender (thereby lowering
transaction costs to consuming pro-
tein), and makes a shake with water
or milk. It takes about a minute to
make a shake, drink it and rinse out
the bottle.

MyFitnessPal makes it easy to
track calories and hit a 500 - 1000
calorie surplus on workout days,
and a 200-500 calories surplus on
rest days.

Track your weight carefully, and
adjust your surplus as needed.

An RMR calculator can estimate
daily caloric expenditure.

Routines
Since rest is important to growth
and healing, lifting on consecutive
days is sub-optimal from a growth
per unit of exercise perspective.

It also increases the likelihood of
injury.

There are routines that lift on
consecutive days. These achieve rest
by hitting strictly different muscles
on consecutive days.

Find the split that works for you.
If you’re looking for a starting

point, BodyBuilding.com’s workout
planning page has a variety of plans
based on specific goals.

In my current routine, each day
has a different upper-body theme:
arms; shoulders and back; and chest.
I do a few leg exercises on each
lifting day.

I saw good results on just 3 days
a week.

I’ll consider a new routine if
I plateau and still need more
strength.

While gaining weight, I aim for
about 20 sets of 8-12 reps to failure.

While cutting fat, I aim for about
15 sets of 4-8 reps to failure.

Listen to your body.
If it can handle more sets, do

more sets. If you’re sore days letter,
do less.

On each lifting day, pick an
assortment of exercises that target
the muscle group for that day, with
some variation week to week.

10  FEATURES

Dumbbells first
Dumbbells are a great way to
tiptoe into resistance training,
because they’re a versatile piece of
resistance equipment, and they’re
relatively safe.

From a least resistance perspec-
tive, their real strength, however, is
their compactness and low transac-
tion cost.

That ease of use is why I moved
to dumbbells after bodyweight.

Anyone can fit dumbbells in their
home or office.

I began with a simple, 40-Pound
adjustable dumbbell set. But these
are poorly suited to a least resis-
tance approach because it takes
about two minutes to unscrew all
four caps and change the plates
each time.

And, my small workout room
filled with plates as I gained
strength.

I borrowed a PowerBlock Elite
set from a friend:

To select a new weight on these,
you pull and re-insert a two-prong
peg on the side. It’s a much lower
transaction cost than cap-and-plate
dumbbells, but you do have to
crouch down to face the side and
get both pegs to line up. It takes
about 10-20 seconds to adjust each
one.

Aiming to entirely eliminate
that per-lift set-up time, I bought
two SelectTech 1090 adjustable
dumbbells.

With the flip of the dials, these
select between 10 and 90 pounds
per hand in 2.5 pound increments.

I wish I’d had these at the start
instead of the cumbersome cap and
plates.

To reduce the transaction cost
to engaging in exercise, I mounted
them on the SelectTech dumbbell
stand in a room about the size of
a walk-in closet. When they were
on the floor, the cost of engaging
in every dumbbell exercise was an
implicit deadlift.

After a month of dumbbell exer-
cises, I added an adjustable bench
to my setup to increase the range of
exercises I could do. It takes about
20 seconds to set up and begin any
exercise.

My favorite dumbbell exercises
are:

■■ Flat chest press.

■■ Seated overhead shoulder press.

■■ Chest fly.

■■ Hammer curls.

■■ Overhead tricep extension.

■■ Lateral raises.

■■ Upright rows.

■■ Weighted lunges.

■■ Weighted calf raises.

Of course, there are dozens more
you can do with dumbbells. Body-
Building.com has 123 different
dumbbell exercises. Try them all
(or the ones that look fun to you).

Safety
Even with dumbbells, I was able
to put loads on my back that felt
uncomfortable within about three
months.

As a precaution, I bought a lifting
belt to stabilize my core on these
lifts.

I also found it easy to put loads
on my wrists that coupled with my
propensity for typing all day started
to cause some pain.

Padded lifting gloves with wrist
support helped keep my wrists in
a stable, safe position and alleviated
wrist pain.

It’s helpful to schedule at least
one session with a personal trainer
to review proper form. You can
only learn so much from YouTube
videos.

Pressing
About five months after I started
lifting, I hit 90 pounds per hand on
the flat bench press (up from 25
per hand at the start).

To increase resistance on the
bench press, I had to buy a pressing
system.

I considered a traditional barbell
system.

While I enjoy using barbells in
hotel gyms, safety was my prime
concern, and I had no one at home
to spot me with a traditional
barbell.

Eventually, I picked the Marcy
PRO Compact Strength Trainer.

  11

This system is small and it fits
in the same small room as my
dumbbells.

Critically, it is impossible to
crush yourself with this system.

From a least resistance perspec-
tive, the per-lift transaction cost
is very low after the weights are
adjusted for the first lift of the day.

It accepts standard olympic
plates up to 500 pounds, so it
should be good for a lifetime of lift-
ing needs for the average person.

It supports performing many
compound lifts safely and quickly.

It won’t engage the stabilizers as
well as a traditional barbell, but I
was willing to make the sacrifice for
safety and efficiency.

The relative position of the
handles and the plates does create a
3:2 mechanical advantage, e.g., 300
pounds of plates yields 200 pounds
of resistance.

If you’re willing to tolerate some
additional transaction cost and have
a workout room larger than a walk-
in closet, you can lift safely with a
barbell and power rack, and that
will engage stabilizers.

Cutting
There is no way to avoid gaining
some fat while building muscle.

As a result, it will be necessary to
periodically “cut” fat.

Rest days are critical while cut-
ting and injuries take longer to heal.

Strength gains (except for
nervous system adaptations) are
unlikely during cutting, so the goal
is to maintain rather than gain
strength.

If your strength is stable (or
decreases only slightly) during a
cut, you are preserving muscle and
cutting fat.

If your strength is dropping
quickly, you may be cutting too fast.

1.5 pounds per week is widely
recommended as a safe amount to
cut.

Be sure to continue protein sup-
plementation so that the body does
not have to break down muscle to
meet its nutritional demands.

I’ve found no harm in aerobic
exercise on non-lifting days while
cutting.

Supplements
There are countless supplements
available that purport to help.

Supplements have the big-
gest effect when they correct
deficiencies.

I’ve experimented with many,
but only a handful had a noticeable
impact.

Before trying anything, I recom-
mend checking it out on examine.
com first. The site has thoroughly
reviewed the scientific literature
on almost every supplement you’ll
encounter.

Whey protein
Whey protein does not have an
immediate impact on strength, but
it does make it easy to hit protein
targets and maintain steady gains.

It is notable for its fast rate of
absorption by the body, and its high
concentration of amino acids criti-
cal to muscle protein synthesis.

These days, I strictly prefer
hydrolyzed whey, since it absorbs
rapidly and has no socially prob-
lematic “side effects.”

I did have great results early on
with a whey isolate blend. But, I
had to take it with psyllium husk
fiber every time.

Creatine
In terms of impact, creatine stands
out.

With one teaspoon a day, I saw
exceptionally rapid gains in strength
for several weeks.

Discontinuing creatine did not
cause a reversal in strength.

Creatine does cause water reten-
tion, and hydration is critical to
avoid cramps.

Discontinuing creatine will also
end the water retention, resulting in
temporarily rapid “weight” loss.

Brain-chain amino acids (BCAAs)
After creatine, branch chain amino
acids stand out as useful for blunt-
ing hunger and fueling muscles
while cutting or fasting.

Small amounts of BCAAs (up to
20g) do not seem to interfere with
the benefits of fasting.

There is no need to take BCAAs
simultaneously with whey protein,
since whey protein contains all
three BCAAs.

If you take BCAAs, I recommend
the BCAA capsules , since the
powder tastes wretched.

Casein protein
Casein protein is a complete pro-
tein useful for its uniquely slow rate
of absorption.

I don’t use it currently, but in the
past I used it after my last workout
or before bed to provide a steady
trickle of protein all night long.

I have also used it to dampen
hunger right before a fast.

I discontinued its use not because
it was ineffective, but because I felt
that micromanaging my proteins
at this level was cutting against the
least resistance philosophy.

To simplify, I use only whey for
protein supplementation.

12  FEATURES

Vitamin D
Programmers, by nature, tend to
have lower sun exposure and lower
levels of vitamin D.

Vitamin D deficiency can cause
low testosterone.

Modest supplementation with
vitamin D can correct that and raise
testosterone. Or, you can go outside
more often.

Dealing with injury
Good form and adequate rest will
help avoid injury.

But, when an injury happens
during a workout, end the work-
out. Exercise on that body part is
suspended until recovery.

It’s tempting to “power through”
an injury.

Just don’t do it.
If treated quickly, minor injuries

will heal in a day or two.
Taking an entire week off from

exercise every couple months also
gives your body a chance to fully
recover from accumulated stress.

Measuring progress
Keep a spreadsheet to track 1, 5, 8,
10 and 12 rep maximums.

For each exercise, record the
weight at which the muscle fails for
the given number of reps.

Track maximums to ensure pro-
gressive overload.

If you hit 12 reps, it’s time to
increase the weight.

Track values like cholesterol,
blood pressure, blood glucose and
triglycerides annually or semi-annu-
ally, as these values may rise while
gaining weight.

I was able to track my body fat
percentage using a “bod pod” at the
university health science center:

Tracking body fat percentage is
important because you can com-
pute how much you’re gaining as
fat and how much as lean mass.

According to bod pod measure-
ments, about 14 pounds of my
weight gain over my first year of
lifting was lean mass.

Close to 20 pounds of what I
gained was fat.

I’ve carefully dropped 10 pounds
since then, losing one pound of lean
mass and nine pounds of fat in the
process.

The next time I start gaining, I
can safely lower my caloric surplus.

My 10-rep bench press went
from 50 pounds to 220 pounds in
one year.

I had 3x-5x improvements in lifts
across the board.

Due to diminishing returns, I will
not be able to add 14 pounds (or
even 10 pounds) of muscle and that
much strength over the next year.

Initial gains are much easier, and I
was starting from a very blank slate.

But, at this point, it doesn’t
matter.

I can already lift my son and his
wheelchair up a flight of stairs. n

Matt Might is a professor of Computer Sci-
ence at the University of Utah. His research
interests include programming language
design, static analysis and compiler optimi-
zation. He blogs at matt.might.net/articles
and tweets from @mattmight

Reprinted with permission of the original author.
First appeared in hn.my/strength (might.net)

Illustration by Ben Mounsey.

http://matt.might.net/articles
http://twitter.com/mattmight
http://mandrill.com
http://hn.my/strength

  13

http://mandrill.com

14  PROGRAMMING

PROGRAMMING

By JR Heard

I’m about to try to teach a bunch of people (pri-
marily Python devs running OS X) how to use
Clojure, and I’m not satisfied with any of the

currently existing documentation on how to get up
and running from scratch. When I was going through
all this myself a few months back, there was a weird
period of a good few weeks when I had basically no
mental map of the Clojure ecosystem and had no idea
how to assemble one.

My goal is to create the resource I wish I had six
months ago. I’ll assume that you’re running on OS
X and have a non-zero amount of programming
experience.

The Clojure Book
Your first step should be to buy and begin reading
Clojure Programming [clojurebook.com]. There’s
another book called (confusingly enough) Program-
ming Clojure, and I can’t vouch for whether it’s better
or worse, but I used Clojure Programming and liked it
very much, so it’s what I recommend. It’s written by
people whose names you’re going to get used to seeing
everywhere as you explore the Clojure ecosystem; all
the main figures in the Clojure community seem to be
inhumanly prolific.

Let’s Get Started
Now, let’s start getting your environment assembled.
Get Homebrew , “the missing package manager for OS
X,” if you don’t have it already, and then run:

brew install leiningen

Congratulations, now you have Leiningen! (Make
sure you ended up with version 2.0 or greater — you
can check that by running lein --version.)

So what the hell is Leiningen?
Leiningen’s the main tool you’ll be using for:

■■ starting up a REPL

■■ downloading+installing libraries

■■ running your programs

■■ starting a server to run the webapps you’ve written

Go ahead and run lein repl. You’ve now got a
working Clojure REPL! In addition, if you run that
command from the top-level directory of one of your
Clojure projects, it’ll deal with wiring up classpaths
and whatnot so that you’ll be able to import and play
around with your project’s code and the libraries that
it depends on. We’ll get to that later. Right now, let’s
create a skeleton project for us to play around with by
running:

lein new foo

When that’s done, cd into foo and you’ll see that it’s
already got some files and directories:

Getting Started With Clojure

http://clojurebook.com

  15

[jrheard@jrheard-air:~/dev/foo] $ ll
total 16
-rw-r--r-- 1 jrheard Jan 5 15:17 README.md
-rw-r--r-- 1 jrheard Jan 5 15:17 project.clj
drwxr-xr-x 3 jrheard Jan 5 15:17 src
drwxr-xr-x 3 jrheard Jan 5 15:17 test

Whenever you write a Clojure library/program/any-
thing, your source code will live in the src directory
and your tests will live in the test directory. Straight-
forward enough. Let’s take a look around in src:

[jrheard@jrheard-air:~/dev/foo] $ cat src/foo/
core.clj
(ns foo.core)

(defn foo
 "I don't do a whole lot."
 [x]
 (println x "Hello, World!"))

Looks like Leiningen’s already created a file called
src/foo/core.clj. It’s a Clojure program that defines a
namespace called foo.core and then declares that that
namespace contains a function called foo. Let’s check
it out. Start up a repl with lein repl and poke around.
Remember when I mentioned earlier that leiningen
takes care of setting up your classpath and associated
goop such that you’re able to access your project’s
code from the REPL? Check this out:

user=> (use 'foo.core)
nil
user=> foo
#<core$foo foo.core$foo@6ad591a6>
user=> (foo "jrheard")
jrheard Hello, World!
nil

Awesome, we were able to import our code and run
it. The use function basically serves the same purpose
as from foo.core import * would in Python, and its
use in source code is similarly discouraged for the same
reasons that import * is discouraged. Like import *,
though, It’s pretty useful to have when you’re poking
around in the REPL.

So that’s cool: we’ve created a project, it’s got code
in it, and we’ve found out how to start up a working
REPL that can play around with that code. Bullet point
1: accomplished.

Let’s take a look at the second bullet point.

Downloading and installing libraries
You’re probably used to getting your libraries by
running something from the command-line, e.g. pip
install this_great_library_i_found, which would
download the specified library and install it either glob-
ally or within your current virtualenv. Things work a
little bit differently in Clojure.

First, you’ve got to find a library that looks useful.
The Clojure Toolbox [clojure-toolbox.com] is a
fantastic tool for this, and is the best such resource
I’ve found. Let’s choose a library to play around with:
making HTTP requests is fun; let’s go down to the
“HTTP Clients” section and see what our options are.
Looks like we’ve got to pick between clj-http [hn.my/
cljhttp] and http.async.client [hn.my/httpasync], but
how do we choose?

Currently, my favorite way of deciding between
competing libraries is: pull up their respective github
repos, compare the number of stars+forks, and give
bonus points to any libraries that have commits from
within the past month or two. Not exactly scientific,
but it has served me well so far as a good proxy for the
strength of the library’s community/influence/adop-
tion. As of this writing, clj-http has 242 stars to http.
async.client’s 127, so let’s pick clj-http.

So…how do we get it?
Let’s go to clj-http’s github repo. Check out how the
README’s installation section has this block of code:

[clj-http "0.6.3"]

That’s the information we need: it’s a Clojure vector
with two items, the first of which is the name of the
library, and the second of which identifies the most up-
to-date stable version available. We’re going to add this
to our project.clj, which you saw earlier when we
looked at the contents of the foo directory. Open up
project.clj, it’ll look like this:

(defproject foo "0.1.0-SNAPSHOT"
 :description "FIXME: write description"
 :url "http://example.com/FIXME"
 :license {:name "Eclipse Public License"
 :url "http://www.eclipse.org/legal/
epl-v10.html"}
 :dependencies [[org.clojure/clojure "1.4.0"]])

http://clojure-toolbox.com
http://hn.my/cljhttp
http://hn.my/cljhttp
http://hn.my/httpasync

16  PROGRAMMING

Note the :dependencies section; it’s a Clojure vector
containing one item, and that item is itself a Clojure
vector containing two items. This vector indicates to
Leiningen that we want our project to run on version
1.4.0 of Clojure. Fair enough; now let’s add the clj-http
vector we saw earlier. Our project.clj should now
look like this:

(defproject foo "0.1.0-SNAPSHOT"
 :description "FIXME: write description"
 :url "http://example.com/FIXME"
 :license {:name "Eclipse Public License"
 :url "http://www.eclipse.org/legal/
epl-v10.html"}
 :dependencies [[org.clojure/clojure "1.4.0"]
 [clj-http "0.6.3"]])

And that’s it! We’ve now specified to Leiningen that
we want the clj-http library, and which version we
need. Let’s try it out. Start a REPL with lein repl, and
let’s play around with our fancy new library. Notice
that Leiningen will first download clj-http before start-
ing up the REPL. That’s because it first runs lein deps
behind the scenes any time you ask it to do basically
anything, and that causes it to scan your project.clj
and make sure that it’s already fetched all the depen-
dencies you’ve asked it to.

Okay, back to our REPL session. Looks like clj-http’s
github repo’s README suggests that you require it in
the REPL by running

(require '[clj-http.client :as client])

So let’s do that. It’s the same thing as from clj.http
import client in Python (as opposed to from clj.
http.client import *, which is again what the use
function does.)

user=> (require '[clj-http.client :as client])
nil
user=> (client/get "http://www.yelp.com")
;; a big huge blob of data pops out!

Okay, wow, looks like that worked! That’s sort of
hard to read. You’ll notice that the big huge blob of
data ends with a “}”, which is a hint that it might be a
Clojure map. Let’s try poking at it:

user=> (def resp (client/get "http://www.yelp.
com"))
#'user/resp
user=> (type resp)
clojure.lang.PersistentArrayMap
user=> (keys resp)
(:cookies :trace-redirects :request-time :status
:headers :body)
user=> (:status resp)
200
user=> (:headers resp)
{"server" "Apache", "content-encoding" "gzip",
"x-proxied" "lb2",
"content-type" "text/html; charset=UTF-8",
"date" "Sun, 06 Jan 2013 00:02:58 GMT",
"cache-control" "private", "vary" "Accept-
Encoding,User-Agent",
"transfer-encoding" "chunked", "x-node" "wsgi,
web40, www_all",
"x-mode" "ro", "connection" "close"}

And there you have it: we’ve found an HTTP client
library, downloaded it, and figured out how to use it
interactively in the REPL!

It took me a while to figure this all out. After beating
my head against a wall for a day, I eventually had to
jump into the #clojure IRC channel and plead for help.
Now you don’t have to!

Putting it all together
Let’s finish up by figuring out how to actually run a
Clojure program. Let’s try a good old lein run:

[jrheard@jrheard-air:~/dev/foo] $ lein run

No :main namespace specified in project.clj.

Okay, that didn’t work. Referring back to the Leini-
ngen tutorial mentioned earlier and doing a search for
:main, we see that you can define a :main key in your
project.clj definition that specifies the namespace
that lein run will run, and that said namespace has
to contain a -main function, which serves as the entry
point into your program.

Let’s add this line to our project.clj spec:

:main foo.core

  17

And finally let’s modify src/foo/core.clj so that it looks like
this:

(ns foo.core
 (:require [clj-http.client :as client]))

(defn -main
 "Prints the first 50 characters of the HTML source of
yelp.com."
 [& args]
 (println (apply str
 (take 50
 (:body (client/get "http://www.
yelp.com"))))))

Here we go — let’s try it out with lein run!

[jrheard@jrheard-air:~/dev/foo] $ lein run
Compiling foo.core
<!DOCTYPE HTML>

<!--[if lt IE 7]> <html xmlns:fb

It works!
That’s it for now! You now have a working REPL to play

around with, the ability to install and use libraries, the knowledge
to give your programs access to those libraries and run them, and
a really good book that’ll take you through everything else you
need to know about the Clojure language.

The reason I had to write this
Clojure’s still a pretty young language. The community is
extremely small relative to e.g. Python’s, and although the core
language’s API is (I’m told) remarkably stable, a lot of the tools
around it are new and in a state of rapid change. Add on top of
that the fact that most of the up-to-date documentation you’ll
find has poor SEO — to the degree that a lot of your Google
searches will turn up documentation on richhickey.github.com
that’s years out of date and deprecated — and you’ll find that
getting started from scratch can be a little tricky.

I hope that this article has helped save you the few weeks of
bewilderment that I went through when I was getting started. I
promise that the joy of actually programming in Clojure is well
worth putting up with these growing pains. n

JR Heard dreams about computer programs. He lives in foggy San Francisco,
where he writes Python code for Yelp, which helps millions of people across
the world find great local businesses. He has some pamphlets about pure
functions that he’d like to give to you.

Reprinted with permission of the original author. First appeared in hn.my/startclojure (jrheard.tumblr.com)

http://richhickey.github.com
http://hn.my/startclojure

18  PROGRAMMING

By Kris Jordan

Working with HTTP from the command-
line is a valuable skill for HTTP archi-
tects and API designers. The cURL

library [curl.haxx.se] and curl command give you
the ability to design a Request, put it on the pipe, and
explore the Response. The downside to the power of
curl is how much breadth its options cover. Running
curl --help spits out 150 different flags and options.
This article demonstrates nine basic, real-world applica-
tions of curl.

In this tutorial we’ll use the httpkit echo service
[echo.httpkit.com] as our end point. The echo server’s
Response is a JSON representation of the HTTP
request it receives.

➊ Make a Request
Let’s start with the simplest curl command

possible.

Request
curl http://echo.httpkit.com

Response
{
 "method": "GET",
 "uri": "/",
 "path": {
 "name": "/",
 "query": "",
 "params": {}
 },
 "headers": {
 "host": "echo.httpkit.com",
 "user-agent": "curl/7.24.0 ...",
 "accept": "*/*"
 },
 "body": null,
 "ip": "28.169.144.35",
 "powered-by": "http://httpkit.com",
 "docs": "http://httpkit.com/echo"
}

Hacking on HTTP from the
Command-Line
9 Uses for cURL Worth Knowing

http://curl.haxx.se
http://echo.httpkit.com

  19

Just like that we have used curl to make an HTTP
Request. The method, or “verb,” curl uses by default
is GET. The resource, or “noun,” we are requesting is
addressed by the URL pointing to the httpkit echo
service, http://echo.httpkit.com

You can add path and query string parameters right
to the URL.

Request
curl http://echo.httpkit.com/path?query=string

Response
{ ...
 "uri": "/path?query=string",
 "path": {
 "name": "/path",
 "query": "?query=string",
 "params": {
 "query": "string"
 }
 }, ...
}

➋ Set the Request Method
The curl default HTTP method, GET, can be

set to any method you would like using the -X option.
The usual suspects POST, PUT, DELETE, and even custom
methods, can be specified.

Request
curl -X POST echo.httpkit.com

Response
{
 "method": "POST",
 ...
}

As you can see, the http:// protocol prefix can be
dropped with curl because it is assumed by default.
Let’s give DELETE a try, too.

Request
curl -X DELETE echo.httpkit.com

Response
{
 "method": "DELETE",
 ...
}

➌ Set Request Headers
Request headers allow clients to provide servers

with meta information about such things as authoriza-
tion, capabilities, and body content-type. OAuth2 uses
an Authorization header to pass access tokens, for
example. Custom headers are set in curl using the -H
option.

Request
curl -H "Authorization: OAuth 2c4419d1aabeec" \
 http://echo.httpkit.com

Response
{...
"headers": {
 "host": "echo.httpkit.com",
 "authorization": "OAuth 2c4419d1aabeec",
 ...},
...}

Multiple headers can be set by using the -H option
multiple times.

Request
curl -H "Accept: application/json" \
 -H "Authorization: OAuth 2c3455d1aeffc" \
 http://echo.httpkit.com

Response
{ ...
 "headers": { ...
 "host": "echo.httpkit.com",
 "accept": "application/json",
 "authorization": "OAuth 2c3455d1aeffc"
 }, ...
}

➍ Send a Request Body
Many popular HTTP APIs today POST and PUT

resources using application/json or application/xml
rather than in an HTML form data. Let’s try PUTing
some JSON data to the server.

Request
curl -X PUT \
 -H 'Content-Type: application/json' \
 -d '{"firstName":"Kris",
"lastName":"Jordan"}'
 echo.httpkit.com

20  PROGRAMMING

Response
{
 "method": "PUT", ...
 "headers": { ...
 "content-type": "application/json",
 "content-length": "40"
 },
 "body": "{\"firstName\":\"Kris\",\"lastName\":
\"Jordan\"}",
 ...
 }

➎ Use a File as a Request Body
Escaping JSON/XML at the command line can

be a pain and sometimes the body payloads are large
files. Luckily, cURL’s @readfile macro makes it easy
to read in the contents of a file. If we had the above
example’s JSON in a file named example.json we
could have run it like this, instead:

Request
curl -X PUT \
 -H 'Content-Type: application/json' \
 -d @example.json
 echo.httpkit.com

➏ POST HTML Form Data
Being able to set a custom method, like POST,

is of little use if we can’t also send a request body
with data. Perhaps we are testing the submission of an
HTML form. Using the -d option, we can specify URL
encoded field names and values.

Request
curl -d "firstName=Kris" \
 -d "lastName=Jordan" \
 echo.httpkit.com

Response
{
 "method": "POST", ...
 "headers": {
 "content-length": "30",
 "content-type":"application/x-www-form-
urlencoded"
 },
 "body": "firstName=Kris&lastName=Jordan", ...
}

Notice the method is POST even though we did not
specify it. When curl sees form field data it assumes
POST. You can override the method using the -X flag
discussed above. The “Content-Type” header is also
automatically set to “application/x-www-form-urlen-
coded” so that the web server knows how to parse the
content. Finally, the request body is composed by URL
encoding each of the form fields.

➐ POST HTML Multipart / File Forms
What about HTML forms with file uploads? As

you know from writing HTML file upload form, these
use a multipart/form-data Content-Type, with the
enctype attribute in HTML. In cURL we can pair the
-F option and the @readFile macro covered above.

Request
curl -F "firstName=Kris" \
 -F "publicKey=@idrsa.pub;type=text/plain" \
 echo.httpkit.com

Response
{
 "method": "POST",
 ...
 "headers": {
 "content-length": "697",
 "content-type": "multipart/form-data;
 boundary=------------------488327019409",
 ... },
 "body": "--------------------488327019409\r\n
 Content-Disposition: form-data;
 name=\"firstName\"\r\n\r\n
 Kris\r\n
 --------------------488327019409\r\n
 Content-Disposition: form-data;
 name=\"publicKey\";
 filename=\"id_rsa.pub\"\r\n
 Content-Type: text/plain\r\n\r\n
 ssh-rsa AAAAB3NzaC1yc2EAAAABI-
wAAAQEAkq1lZYUOJH2
 ... more [a-zA-Z0-9]* ...
 naZXJw== krisjordan@gmail.com\n\r\n
 --------------------488327019409
 --\r\n",
...}

  21

Like with the -d flag, using -F curl will auto-
matically default to the POST method, the multipart/
form-data content-type header, calculate length, and
compose the multipart body for you. Notice how
the @readFile macro will read the contents of a file
into any string; it’s not just a standalone operator. The
“;text/plain” specifies the MIME content-type of the
file. Left unspecified, curl will attempt to sniff the
content-type for you.

➑ Test Virtual Hosts, Avoid DNS
Testing a virtual host or a caching proxy before

modifying DNS and without overriding hosts is useful
on occasion. With cURL, just point the request at your
host’s IP address and override the default Host header
cURL sets up.

Request
curl -H "Host: google.com" 50.112.251.120

Response
{
 "method": "GET", ...
 "headers": {
 "host": "google.com", ...
 }, ...
}

➒ View Response Headers
APIs are increasingly making use of response

headers to provide information on authorization, rate
limiting, caching, etc. With cURL you can view the
headers and the body using the -i flag.

Request
curl -i echo.httpkit.com

Response
HTTP/1.1 200 OK
Server: nginx/1.1.19
Date: Wed, 29 Aug 2012 04:18:19 GMT
Content-Type: application/json; charset=utf-8
Content-Length: 391
Connection: keep-alive
X-Powered-By: http://httpkit.com

{
 "method": "GET",
 "uri": "/", ...
}

n

Kris Jordan is a Founder and the Technology Director of
NewMediaCampaigns.com, an interactive agency out of North
Carolina. He is the creator of Wiretap [httpkit.com/wiretap], a
hosted HTTP proxy for debugging REST API interactions. Contact
him anytime at @KrisJordan

Reprinted with permission of the original author.
First appeared in hn.my/curl (httpkit.com)

http://NewMediaCampaigns.com
http://httpkit.com/wiretap
http://twitter.com/KrisJordan
http://hn.my/curl

22  PROGRAMMING

By Allison Kaptur

The more programming
I do, the more often I
find myself thinking,

“Ah, that’s not magic.” I had one
of these moments recently when
dealing with a python virtual
environment created by virtualenv
[virtualenv.org]. Virtualenv creates
a sandboxed python environment
with its own installation directories,
separate from the system python
and other virtual environments on
your machine. This makes it a great
way to test on multiple versions of
python or to explore a new package
that could break other things you
care about.

How does it work? Well, the
“magic” works like this:

■■ Create a virtual environment
with virtualenv my_env

■■ Chant the magic incantation
source bin/activate

■■ Watch as your previously-failing
installation of pygame goes
smoothly!

■■ To “turn off” your virtualenv, the
magic incantation is deactivate

Of course, it’s not actually magic.
Virtualenv is a fairly simple (though
clever) bash script that does only a
couple of things. You don’t have to
understand much bash scripting to
see what’s going on. In fact, if you
only know python, I’ll teach you all
the bash you need to understand
virtualenv right now.

I’m going to skip the actual cre-
ation of a virtual environment, and
just focus on what happens when
you activate and deactivate that
environment. If you’d like to play
along, pip install virtualenv,
create a new virtual environment
with virtualenv testenv, and then
cd into the testenv/ directory that
was created. (Don’t run source
bin/activate just yet.)

First, let’s look at that incanta-
tion, source bin/activate. What’s
going on here? source is a bash
command that runs a file, the same
way you’d use import to run your
python module. bin/activate is
the bash script being run.

One other detail of source will
be important. source runs the file
provided in your current shell,
not in a subshell. Thus it keeps

the variables it creates or modifies
around after the file is done execut-
ing. Since (almost) all that virtua-
lenv does is modify environmental
variables, this matters.

OK, now let’s look at bin/acti-
vate. Fire up the activate file in
your favorite text editor.

The first thing to notice is that
it’s only ~80 lines! Cool, we can
handle this.

(The activate script is generated
automatically by the virtualenv
installation, and has some system-
specific parameters, so your copy
may be slightly different from
mine..)

The first thing we find is a
comment:

This file must be used with
"source bin/activate"
from bash you cannot run it
directly

We already know why this is
true: it’s because of the behavior of
source that we just learned. Run-
ning a bash file directly (e.g., calling
activate from bin/) runs the script
in a subshell — not what we want.

There’s No Magic:
Virtualenv Edition

Photo: Jürgen Schiller García [flickr.com/photos/schillergarcia/2934384422]

http://virtualenv.org
http://flickr.com/photos/schillergarcia/2934384422

  23

Onward:

deactivate () {
...
}

This is just a bash function definition. Function calls
work just like commands in bash. Now we know that
the commands included in this block are what runs
when we say deactivate in our virtual environment.

The meat of the activate file is in lines 42 – 47:

unset irrelevant variables
deactivate nondestructive

VIRTUAL_ENV="/Users/afk/examples/testenv"
export VIRTUAL_ENV

_OLD_VIRTUAL_PATH="$PATH"
PATH="$VIRTUAL_ENV/bin:$PATH"
export PATH

Starting with a call to deactivate ensures that any
existing virtual environment is deactivated before a
new one is created. Virtual environments are separate
from each other; they can’t be nested.

The rest of this is pretty straightforward. export is
the only other bash command we need to know, and
it’s really simple: it just exports a variable into your
current environment. It also ensures that environmen-
tal variables in processes spawned from the current
one get the same values. Since we’re running the file
via source, the effect is to set variables and then keep
them after the activate script finishes running.

So the activate script does three primary things:

1.	 Sets a VIRTUAL_ENV bash environmental variable
containing the virtual environment directory

2.	 Prepends that directory to your PATH

3.	 Sets the new PATH.

What is PATH? The PATH is an environmental vari-
able representing a list of directories. Your system will
look for programs and scripts in the order that directo-
ries are listed. The list is separated by colons.

Let’s see this in action. To see what your PATH looks
like before you run the activate file, hop into your ter-
minal and type echo $PATH. This prints out the value
of PATH to the terminal. Mine looks in part like this
(I’ve inserted line breaks for clarity):

/usr/local/bin:
/usr/local/sbin:
/usr/bin

All this says is that when I type a command like
python, my system looks first in /usr/local/bin for
python. If it can’t find it, it moves on to /usr/local/
sbin, then to /usr/bin, and so on.

Now let’s run the activate file and see what
changed. (Again, I’ve inserted line breaks for clarity.)

testenv\ $ source bin/activate
(testenv)testenv\ $ echo $PATH
/Users/afk/examples/testenv/bin:
/usr/local/bin:
/usr/local/sbin:
/usr/bin

Sure enough, that testenv directory has been pre-
pended to my PATH. Now bash will look for python,
or any other system command, first in the bin/ direc-
tory here in my testenv. What’s in there? Let’s take a
look:

testenv\ $ ls bin/
activate easy_install python
activate.csh easy_install-2.7 python2
activate.fish pip python2.7
activate_this.py pip-2.7

There’s our activate file that we’ve been examining,
plus a version of python! So this is the python instal-
lation that will get modified if we install packages, and
the python that will be run by python. For easy confir-
mation of this, we can use which:

(testenv)testenv\ $ which python
/Users/afk/examples/testenv/bin/python

We’re using the testenv python, not the system
python (which is found in usr/bin/).

Notice that activate also modified my bash prompt
(PS1). We’ll skip some of the details here — the
important point is that this code stores your old PS1
and inserts the name of the virtualenv into the new
one.	

We’re done with our virtualenv for now — let’s
come back to deactivate.

Photo: Jürgen Schiller García [flickr.com/photos/schillergarcia/2934384422]

http://flickr.com/photos/schillergarcia/2934384422

24  PROGRAMMING

deactivate () {
 unset pydoc

 # reset old environment variables
 if [-n "$_OLD_VIRTUAL_PATH"] ; then
 PATH="$_OLD_VIRTUAL_PATH"
 export PATH
 unset _OLD_VIRTUAL_PATH
 fi
 if [-n "$_OLD_VIRTUAL_PYTHONHOME"] ; then
 PYTHONHOME="$_OLD_VIRTUAL_PYTHONHOME"
 export PYTHONHOME
 unset _OLD_VIRTUAL_PYTHONHOME
 fi

 #[special case omitted for brevity]

 if [-n "$_OLD_VIRTUAL_PS1"] ; then
 PS1="$_OLD_VIRTUAL_PS1"
 export PS1
 unset _OLD_VIRTUAL_PS1
 fi

 unset VIRTUAL_ENV
 if [! "$1" = "nondestructive"] ; then
 # Self destruct!
 unset -f deactivate
 fi
}

deactivate calls export to restore the old environmental vari-
ables, then calls unset to remove unneeded variables from the
environment. (You can verify this from the terminal by using the
command env to view all your environmental variables.) Finally,
deactivate calls unset -f deactivate to remove the deacti-
vate function itself. (-f removes a function.) The function is
now gone from the environment, which you can easily verify:

(testenv)testenv\ $ deactivate
testenv\ $ deactivate
-bash: deactivate: command not found

Our PS1, PATH, and PYTHONHOME end up with their
original values.

There you have it — no magic, and just a tiny bit of bash
scripting to understand the power of a virtual environment. n

Allison is a facilitator at Hacker School, a writer’s retreat for experienced
programmers in New York City. She studied astrophysics and dabbled in
finance before diving in to programming at Hacker School.

Reprinted with permission of the original author. First appeared in hn.my/virtualenv (hackerschool.com)

http://hn.my/virtualenv

Accept payments online.

http://stripe.com

26  PROGRAMMING

One of my favorite parts about Go is its
unwavering focus on utility. Sometimes
we place so much emphasis on language

design that we forget all the other things programming
involves. For example:

■■ Go’s compiler is fast.

■■ Go comes with a robust standard library.

■■ Go works on a multitude of platforms.

■■ Go comes with a complete set of documentation
available from the command line/a local web server/
the internet.

■■ All Go code is statically compiled so deployment is
trivial.

■■ The entirety of the Go source code is available for
perusal in an easy online format.

■■ Go has a well-defined (and documented) grammar
for parsing (unlike C++ or Ruby).

■■ Go comes with a package management tool. go
get X (for example, go get code.google.com/p/
go.net/websocket).

■■ Like all languages Go has a set of style guidelines,
some enforced by the compiler (like uppercase vs.
lowercase) and others that are merely conventional,
but it also has a tool to clean up code: gofmt name_
of_file.go

■■ And there’s also go fix, which can automatically con-
vert Go code designed for earlier versions to newer
versions.

■■ Go comes with a tool to test packages: go test /
path/to/package. It can do benchmarks too.

■■ Go is debuggable and can be profiled.

■■ Did you know there’s a playground [play.golang.org]
to try Go online?

■■ Go can interact with C libraries via cgo.

Those are just a few examples, but I want to focus on
one that’s not generally well known: Go can seamlessly
use functions written in Assembly.

How to Use Assembly in Go
Suppose we want to write an assembly version of a sum
function. First, create a file called sum.go that contains
this:

package sum

func Sum(xs []int64) int64 {
 var n int64
 for _, v := range xs {
 n += v
 }
 return n
}

By Caleb Doxsey

Go & Assembly

http://play.golang.org

  27

This function just adds a slice of integers and
gives you the result. To test it, create a file called
sum_test.go that contains this:

package sum

import (
 "testing"
)

type (
 testCase struct {
 n int64
 xs []int64
 }
)

var (
 cases = []testCase{
 { 0, []int64{} },
 { 15, []int64{1,2,3,4,5} },
 }
)

func TestSum(t *testing.T) {
 for _, tc := range cases {
 n := Sum(tc.xs)
 if tc.n != n {
 t.Error("Expected", tc.n, "got", n, "for",
tc.xs)
 }
 }
}

Writing tests for your code is generally a good idea,
but it turns out that for library code (anything not
package main) it also makes for a good way to experi-
ment. Just type go test from the command line and it
will run your tests.

Now let’s replace this function with one written in
assembly. We can start by examining what the Go com-
piler produces. Instead of go test or go build, run this
command: go tool 6g -S sum.go (for a 64-bit binary).
You should see something like this:

--- prog list "Sum" ---
0000 (sum.go:3) TEXT Sum+0(SB),$16-24
0001 (sum.go:4) MOVQ $0,SI
0002 (sum.go:5) MOVQ xs+0(FP),BX
0003 (sum.go:5) MOVQ BX,autotmp_0000+-16(SP)

0004 (sum.go:5) MOVL xs+8(FP),BX
0005 (sum.go:5) MOVL BX,autotmp_0000+-8(SP)
0006 (sum.go:5) MOVL xs+12(FP),BX
0007 (sum.go:5) MOVL BX,autotmp_0000+-4(SP)
0008 (sum.go:5) MOVL $0,AX
0009 (sum.go:5) MOVL autotmp_0000+-8(SP),DI
0010 (sum.go:5) LEAQ autotmp_0000+-16(SP),BX
0011 (sum.go:5) MOVQ (BX),CX
0012 (sum.go:5) JMP ,14
0013 (sum.go:5) INCL ,AX
0014 (sum.go:5) CMPL AX,DI
0015 (sum.go:5) JGE ,20
0016 (sum.go:5) MOVQ (CX),BP
0017 (sum.go:5) ADDQ $8,CX
0018 (sum.go:6) ADDQ BP,SI
0019 (sum.go:5) JMP ,13
0020 (sum.go:8) MOVQ SI,.noname+16(FP)
0021 (sum.go:8) RET ,
sum.go:3: Sum xs does not escape

Assembly can be quite difficult to understand and
we will take a look at this in more detail in a bit, but
first let’s go ahead and use this as a template. Create
a new file called sum_amd64.s in the same folder as
sum.go, which contains this:

// func Sum(xs []int64) int64
TEXT ·Sum(SB),$0
 MOVQ $0,SI
 MOVQ xs+0(FP),BX
 MOVQ BX,autotmp_0000+-16(SP)
 MOVL xs+8(FP),BX
 MOVL BX,autotmp_0000+-8(SP)
 MOVL xs+12(FP),BX
 MOVL BX,autotmp_0000+-4(SP)
 MOVL $0,AX
 MOVL autotmp_0000+-8(SP),DI
 LEAQ autotmp_0000+-16(SP),BX
 MOVQ (BX),CX
 JMP L2
L1: INCL AX
L2: CMPL AX,DI
 JGE L3
 MOVQ (CX),BP
 ADDQ $8,CX
 ADDQ BP,SI
 JMP L1
L3: MOVQ SI,.noname+16(FP)
 RET

28  PROGRAMMING

Basically all I did was replace the hardcoded line
numbers for jumps (JMP, JGE) with labels and added a
middle dot (·) before the function name. (Make sure to
save the file as UTF-8.) Next, we remove our function
definition from our sum.go file:

package sum

func Sum(xs []int64) int64

Now you should be able to run the tests again with
go test, and our custom assembly version of the func-
tion will be used.

How it Works
This type of assembly is described in more detail here
[hn.my/asm]. I will briefly explain what it’s doing.

MOVQ $0,SI

First, we put 0 in the SI register, which is used to
represent our running total. The Q means quadword,
which is 8 bytes, and later we’ll see L, which is for 4
bytes. The parameters are in (source, destination) order.

MOVQ xs+0(FP),BX
MOVQ BX,autotmp_0000+-16(SP)
MOVL xs+8(FP),BX
MOVL BX,autotmp_0000+-8(SP)
MOVL xs+12(FP),BX
MOVL BX,autotmp_0000+-4(SP)

Next, we take the parameter passed in and store its
value on the stack. A Go slice is made up of 3 parts: a
pointer to its location in memory, a length and a capac-
ity. The pointer is 8 bytes while the length and capac-
ity are 4 bytes each. So this code copies those values
through the BX register.

MOVL $0,AX
MOVL autotmp_0000+-8(SP),DI
LEAQ autotmp_0000+-16(SP),BX
MOVQ (BX),CX

Next, we put 0 in AX, which we’ll use as an iterator
variable. We load the length of the slice into DI and
load xs’ elements pointer into CX.

 JMP L2
L1: INCL AX
L2: CMPL AX,DI
 JGE L3

Now we get to the meat of the code. First, we jump
down to L2 where we compare AX and DI. If they’re
equal, we’ve consumed all the items in the slice so we
go to L3. Basically i == len(xs).

MOVQ (CX),BP
ADDQ $8,CX
ADDQ BP,SI
JMP L1

This does the actual addition. First, we get the value
of CX and store it in BP. Then, we move CX 8 bytes
ahead. Finally, we add BP to SI and jump to L1. L1
increments AX and starts the loop again.

L3: MOVQ SI,.noname+16(FP)
 RET

After we’ve completed our summation, we store
the result after all the arguments to the function (so
16 bytes ahead because a slice is 16 bytes). Then we
return.

Rewritten
Here’s my rewrite of the code:

// func Sum(xs []int64) int64
TEXT ·Sum2(SB),7,$0
 MOVQ $0, SI // n
 MOVQ xs+0(FP), BX // BX = &xs[0]
 MOVL xs+8(FP), CX // len(xs)
 MOVLQSX CX, CX // len as int64
 INCQ CX // CX++

start:
 DECQ CX // CX--
 JZ done // jump if CX = 0
 ADDQ (BX), SI // n += *BX
 ADDQ $8, BX // BX += 8
 JMP start

done:
 MOVQ SI, .noname+16(FP) // return n
 RET

Hopefully it’s a little easier to understand.

http://hn.my/asm

  29

Caveats
It’s pretty cool that you can do this, but it’s not with-
out its caveats:

■■ Assembly is hard to write and especially hard to
write well. Compilers will often write faster code
than you will (and going forward the Go compiler
will get better at this).

■■ Assembly only runs on one platform. In this case, the
code I wrote will only work on amd64. One solution
to this problem is to supply a Go version of the code
and call it from x86 and arm.

■■ Assembly ties you down in ways standard Go code
won’t. For example, the length of slice is currently
a 32-bit int, but it won’t be for long. This code will
break when that change is made (and it will break in
nasty ways the compiler can’t detect).

■■ Currently the Go compiler will not inline functions
written in Asembly, but it will inline small Go func-
tions. So counterintuitively you can actually make
your program slower by using Assembly.

Still it’s useful for at least two reasons:

1.	 Sometimes you need the power Assembly can give
you, either for performance reasons or the need for
some highly specialized operation available in the
CPU. The Go source code includes several good
examples of when it’s appropriate to use.

2.	 This is actually a great way to learn Assembly, since
it’s very easy to get started. n

Caleb is a Software Developer at SendHub and the author of the
book An Introduction to Programming in Go [golang-book.com].
He blogs haphazardly at doxsey.net

Reprinted with permission of the original author.
First appeared in hn.my/goassembly (doxsey.net)

http://golang-book.com
http://doxsey.net
http://hn.my/goassembly

30  PROGRAMMING

By Clay allsopp

This is a story about Pull Request #2 and how
it made me rethink my code. This isn’t really
a story about the code itself; it’s about how

even a small refactoring can multiply value and pro-
ductivity. But hey, let’s not get ahead of ourselves.

Long ago, there was some code in an iOS library called
Formotion [hn.my/formotion] that looked like this:

if row.submit_button?
 make_submit_cell(row, cell)
elsif row.switchable?
 make_switch_cell(row, cell)
elsif row.checkable?
 make_check_cell(row, cell)
elsif row.editable?
 make_text_field(row, cell)
end

Basically, it configures this cell object based on
properties of the row. That serpentine if/elsif chain
did the trick and didn’t seem alarmingly unreasonable
at the time, so the code shipped with the first version
of Formotion. It all worked out, the project got some
watchers and star-ers, and folks generally had great
feedback. All was well.

But then a little pull request [hn.my/pull2] appears
a few days later.

I get an email about it, and am immediately excited
because, hey, someone liked my little project enough to
contribute! So I command-click the link open in a new
tab and have a look.

The request is labeled Refactoring & Multiline Text
Type. So usually when someone comes up to you and
says like, “Hey, I did some refactoring, check it out,”
the implicit understanding is that the original thing
just wasn’t so hot. And about nine times out of ten you
agree and know that it’s true, but it is a little awkward
when someone beats you to fixing it.

Anyway, I inhale whatever pride I have about my
work and click the “Files Changed" tab to investigate.
I take a gander, and basically what the request does is
replace that big fat if/elsif block with this one line:

row.object.build_cell(cell)

Whoa, what is this new row.object? Well, elsewhere
in the refactor, this line appeared:

@object = Formotion::RowType.for(type).new(self)

What’s all this about? Turns out that the refac-
tor took the various row configurations (switch,
submit, check) and created new subclasses of
Formotion::RowType for each:SwitchRow, SubmitRow,
CheckRow, etc. In those objects, the build_cell method
now dictates how the cell is configured, taking the
place of the old make_submit_cell methods.

And that RowType.for() method? It actually does
a little metaprogramming to grab the appropriate
subclass:

How A Pull Request
Rocked My World

http://hn.my/formotion
http://hn.my/pull2

  31

type == :switch or :submit etc
string = "#{type.to_s.downcase}_row".camelize
string == 'SwitchRow', 'SubmitRow' etc
return Formotion::RowType.const_get(string)

So instead of some if tree and hard-coded methods,
everything is dynamic and decided at run-time, plus
you get a great plug-in architecture if you do some
polymorphic tricks with these RowTypeobjects. And all
of these benefits came from just one simple refactor-
ing. The power of small refactors is absolutely crazy.
Brilliant.

All of this blew me away. Like this “@mordaroso”
fellow strolled on up, cocked his knee skyward, and
jettisoned his leg into the rickety wooden door that
previously sheltered my mind.

So there I am, hunched over my laptop, eyebrows
furrowed to the point where my forehead folds in over
itself, just stupefied by this code. And the ramifica-
tions, like how it allows for extensibility and plugins
and testing and a generally more robust codebase, are
just gushing into the void Fabio Kuhn exposed in said
cranium.

With just that one refactor, the value of my little
library had grown tremendously! If you wanted to
make a plug-in, there was no messy monkey-patch-
ing: simply create your new RowType subclass, like
MyWidgetRow, and you’re done. It just works.

Not a day goes by where I’m shin-deep in a project
and don’t think about what that pull request revealed:
reorganizing your code (in the right way) can create
cascading growth in productivity and value. In Formo-
tion’s case, that pattern of dynamic-class-lookup is now
used in other parts of the codebase and allows for a
project-wide plug-in architecture. Big win all around.
This sort of stuff really is worth being diligent about.

So thanks, Fabio, for blowing my mind. n

Clay Allsopp is a hacker, Thiel Fellow, and internet enthusiast. An
iOS developer since day one, Clay has crafted beautiful mobile
apps with over a million cumulative downloads for startups like
Circle. He is currently building Propeller [usepropeller.com], the
best way for anyone to build a mobile app.

“Reorganizing your code (in the
right way) can create cascading
growth in productivity and value.”

Reprinted with permission of the original author.
First appeared in hn.my/pull (clayallsopp.com)

http://twitter.com/mordaroso
http://usepropeller.com
http://hn.my/pull

32  SPECIAL

SPECIAL

By Svarichevsky Mikhail

Microchips can indeed be considered a
black box: as long as it’s working you
normally don’t look inside.

But what if you want to?
Today we’ll demonstrate how to “open” chips and

show you what’s inside.

WARNING! All operations with concentrated (and espe-
cially hot) acids are extremely dangerous. Only trained
persons should work with them using required protective
equipment (acid-proof gloves, protection glasses, protective
suit, fume hood and more). Remember that you only have
2 eyes!

This article is for educational purposes only, do not try to
repeat!

Opening Microchips
Take some microchips of interest and add concentrated
sulfuric acid. Container should be closed, but not
airtight, so that fumes can escape (that is extremely
important). Heat it to boiling point (300 °C). The
white substance at the bottom is baking soda; it’s here
to neutralize accidental spills and some of the fumes.

After 30-40 minutes, acid “burns” plastic to carbon:

 After it cools down, we can sort what is ready for
the next step and what needs another acid bath (thick,
bulky packages usually need 2-3 rounds):

 If pieces of carbon stick to the microchip itself and
cannot be removed mechanically, one can remove them
in hot concentrated nitric acid (temperature is much
lower, ~110-120 °C):

How To Open A Microchip
And What’s Inside

  33

By Svarichevsky Mikhail

Taking a Look
Colors are enhanced; in reality they are much less saturated.

PL2303HX — USB<>RS232 converter, chips like this are used in Arduino-like
boards for example.

LM1117 — low-dropout linear regulator.

74HC595 — 8-bit shift register.

NXP 74AHC00 — quad 2-input NAND gate.
This is a nice example that “old” tech nodes (1µm and older) are still in use.
Also, note how many spare via are there for improved yield...

Micron MT4C1024 — 1 mebibit (220 bit) dynamic ram.
Widely used in 286- and 386-era computers in the early ‘90s.

34  SPECIAL

AMD Palce16V8h GAL is an 32x64 array of AND elements.
GAL(Generic array logic) microchips are FPGA and CPLD grandfathers.

ATtiny13A — one of the smallest Atmel’s microcontrollers: only 1kb of flash
and 32 bytes of SRAM.

ATmega8 — one of the most popular 8-bit microcontrollers.

KR580IK80A (later renamed to KR580VM80A) - one of the most widespread
Soviet processors. Contrary to popular belief, it appeared to be not an Intel
8080A (or 8080) clone, but a code-compatible redesign (while several parts are
quite similar, routing is different as well as pad placement).

  35

n

Mikhail is a self-taught electronics engineer. He left his IT job
years ago to start fabless startup Zeptobars — hopefully will be
making microcontrollers.

STM32F100C4T6B — is the smallest microcontroller made by STMicroelectron-
ics based on ARM Cortex-M3 core.

Altera EPM7032 — Altera EPM7032 - CPLD that have seen a lot... One of the
last using 5V supply.

MIFARE chip, used in Moscow’s subway RFID tickets.

Reprinted with permission of the original author.
First appeared in hn.my/microchip (zeptobars.com)

http://hn.my/microchip

36  SPECIAL

I’ve recently made four lifestyle
changes that have allowed
me to get more done and put

much more effort into everything I
do, all while feeling great with very
little stress.

1.	 I sleep 8 hours a day.

2.	 I work out for an hour every
weekday.

3.	 I hide all clocks while I’m
working.

4.	 I don’t do anything related to
academics on Saturdays and past
5pm on weekdays.

My main focus of this post is the
last two, but I’ll briefly address the
first two because I think they’re
very important.

Sleep
I read a lot of what tech entrepre-
neurs have to say, and I’ve noticed
a trend. The ones who are most
successful seem to be the ones who
value their physical and mental
health. I feel like every few months
I see a new study about how get-
ting adequate sleep makes you

perform better. It’s almost common
knowledge at this point, yet so few
students take that research to heart.

Working more hours in a day
doesn’t necessarily correlate with
getting more done. I find that I’m
much more efficient and productive
if I’ve slept well the night before.
Therefore, I’ve been putting myself
on a consistent sleep schedule from
1am – 9am every weeknight. After
a few days, I started being able to
fall asleep much faster and wake up
refreshed in the morning… some-
thing I haven’t consistently felt in
months.

Exercise
I also made a habit of going to the
gym every day from 5 – 6pm. In
the beginning this was a pain, and I
felt like it was taking an hour away
from me getting work done. I used
to feel like I didn’t have time to
exercise, but now I feel like I don’t
have time NOT to exercise. By
forming a habit, it feels like some-
thing I need to do every day, just
like eating and showering. I don’t
think twice about it anymore.

Parkinson’s Law
But my real trick for getting more
done with much less stress is in the
things that I don’t do. It all stems
directly from Parkinson’s Law:

Work expands so as to fill the time
available for its completion.
— Cyril Northcote Parkinson

The idea has been around since
1955, and taking advantage of it
has completely changed the way
I work. Parkinson’s Law, in other
words, states that if you have a
certain amount of time to complete
something, that’s how long it will
generally take.

Usually this means that if you
have more time than you need to
get something done, you’ll use that
extra time because it’s available
to you. From personal experience
I’ve found the reverse to be true as
well. If I give myself less time to do
something, I’ll still manage to get it
done in that limited time.

By Sean Gransee

Using Parkinson’s Law to
Kick Procrastination’s Ass

  37

Focus
Scott H. Young wrote in his email
newsletter that time usually isn’t
the bottleneck when it comes
to getting things done. The real
bottleneck is focus. I found that to
be absolutely true when it came to
my study habits. Everything I did
took 3-4 times longer than it should
because I would distract myself
every few minutes by Facebook,
email, text messages, Hacker News,
or any number of other distractions.

But the real time costs when it
comes to these distractions aren’t
the distractions themselves. It’s
the context switching that occurs
every time I’m distracted. Thirty
seconds on Facebook may seem
harmless, but the real time cost
comes from the time it takes me to
become mentally re-engaged with a
task after a distraction. Read up on
context switching, and the findings
may surprise you.

Everything up until this point led
me to believe that I would be much
more productive if I eliminated
distractions. If I could frequently
achieve flow (being fully immersed
in a task), then I’d be able to get

things done more than twice as fast,
right? So now comes the mission of
eliminating distractions.

Distractions
The biggest distraction in my life
(and potentially yours) isn’t Face-
book, email, friends, or anything
remotely related. It’s the clock.
Whenever a clock is in my field of
vision, I find myself constantly look-
ing at it. Every time I look at the
clock, some sort of thought about
how much time I have left enters
my head. Every time that happens,
I waste time because of context
switching.

Cover the clocks
So I eliminate clocks whenever
I’m working. I disabled the clock
in the corner of my laptop. Since
you can’t disable the clock on an
iPad, I ripped the sticky part off a
post-it note and covered the clock.
My phone isn’t a problem because
I usually have that on “do not dis-
turb” mode when I’m working.

The only genuinely useful thing
about clocks when I’m working is
that they tell me when I have to

be somewhere. But I don’t need
a clock for that. All I need is an
alarm. If I don’t have to be some-
where until noon, I’m much better
off not knowing what time it is
until it’s 11:45. I’m able to get by
without ever looking at the clock
because I set an alarm before I have
to be anywhere. I use an app called
Brrrr Alarm [hn.my/alarm], which
vibrates your phone instead of
making noise, all the time when I’m
working in a quiet space.

Let’s think back to Parkinson’s
Law: “Work expands so as to fill the
time available for its completion.”
The no-clocks thing works great
for short tasks. When I don’t know
how much time I have to complete
a task, I naturally work as quickly as
possible the entire time.

But aside from eliminating
some context switching, this alone
doesn’t really do much to help
me efficiently complete long-term
tasks. What harm can a little Reddit
break do when I’m working on
something that’s due next week?

“Time usually isn’t the bottleneck
when it comes to getting things
done. The real bottleneck is focus.”

http://hn.my/alarm

Tealeaf Academy
an online school for developers

{
 join: 'Intensive Online Bootcamp',
 learn: 'Web Development',
 goto: 'http://www.gotealeaf.com'
}

Learn Ruby on Rails | Level up Skills | Launch Products | Get a Job

38  SPECIAL

No studying after 5pm
The answer is simple. It might
sound crazy, but rigorously fol-
lowing this rule has forced me to
completely focus most of the time
and start things long before they’re
due. I don’t do anything related to
academics on Saturdays and past
5pm on weekdays.

I like to think of this as reverse-
procrastination. Think of how
procrastination works. You put a
task off as long as possible, and then
complete it hours before it’s due.
In a way, you’re utilizing Parkin-
son’s Law when you procrastinate.
You’re limiting the time you have
to do something, and therefore
you’re able to complete it in much
less time than it would normally
take you. In a way, procrastinators
are very efficient when it comes to
how long it takes them to get things
done. But this comes at a great cost:
stress.

If I give you a week to complete [a
short] task, it’s six days of making
a mountain out of a molehill. If I
give you two months, God forbid, it
becomes a mental monster. The end
product of the shorter deadline is
almost inevitably of equal or higher
quality due to greater focus.
— Timothy Ferriss

It’s stressful to do everything
at the last minute. So I’ve taken
procrastination and turned it on its
head. I tell myself that the due date
for everything I need to do each
day is at 5pm. This forces me into
consistent periods of ultra-efficient
productivity because I’m constantly
racing against time to get every-
thing done by 5pm. I find myself
not even wanting to take those
quick breaks because they might
stop me from completing every-
thing I need to do by 5pm.

This constraint I’ve imposed on
myself has also caused me to start
tasks long before I need to. Before
I started imposing this constraint,
I generally wouldn’t start anything
until the day before it was due.
Now, if I’ve finished everything I
need to get done for tomorrow, I’ll
go ahead and start something that’s
not due until next week. Why?
Because I don’t want to get stuck in
a situation a week from now where
that task isn’t done by 5pm. I now
spend almost every moment before
5pm in my day actually working.

Here’s what a typical week looks
for me now:

Weekdays
10am – 5pm: Homework, studying,
going to class.
5pm – 6pm: Gym.
6pm – 1am: Whatever I want, as
long as it has nothing to do with
academics.
1am – 9am: Sleep.

Saturdays:
Whatever I want, as long as it has
nothing to do with academics.

Sundays
No constraints. I can use this as a
catch-up day if I absolutely need it.

I’ll occasionally make exceptions
to those constraints for group work
or scheduled school events like
review sessions and exams. Other
than that, I stick to this schedule
pretty rigorously.

By constraining the amount of
time I have to study and do home-
work, I force myself to completely
focus and put more effort into my
studies with much less stress. This,
combined with getting adequate
sleep and exercise, has made me
much happier and more efficient
these past few weeks. It may or may
not work for you, but this combina-
tion of lifestyle choices has been
tremendously beneficial for me. n

Sean is an alumnus of the hackNY summer
fellowship program and a total sucker for
startup culture. He didn’t always plan on
being a hacker, but the appeal of being
able to quickly implement new ideas was
simply too much to avoid. He currently
resides in Chicago.

Reprinted with permission of the original author.
First appeared in hn.my/parkinsons (seangransee.com)

http://gotealeaf.com
http://hn.my/parkinsons

Tealeaf Academy
an online school for developers

{
 join: 'Intensive Online Bootcamp',
 learn: 'Web Development',
 goto: 'http://www.gotealeaf.com'
}

Learn Ruby on Rails | Level up Skills | Launch Products | Get a Job

  39

Tealeaf Academy
an online school for developers

{
 join: 'Intensive Online Bootcamp',
 learn: 'Web Development',
 goto: 'http://www.gotealeaf.com'
}

Learn Ruby on Rails | Level up Skills | Launch Products | Get a Job

http://gotealeaf.com
http://gotealeaf.com

Rent your IT infrastructure from
Memset and discover the incredible
bene�ts of cloud computing.

Find out more about us at
www.memset.com

hosting

HOSTING

HOSTING

SCAN THE CODE FOR
MORE INFORMATION

$0.091/GByte/month or less
99.999999% object durability
99.995% availability guarantee
RESTful API, FTP/SFTP and CDN Service

From $0.020/hour
to 4 x 2.9 GHz Xeon cores
31 GBytes RAM
2.5TB RAID(1) disk

or chat to our sales team on
0800 634 9270.

C

M

Y

CM

MY

CY

CMY

K

http://memset.com

	Contents
	FEATURES
	Hacking Strength

	PROGRAMMING
	Getting Started With Clojure
	Hacking on HTTP from the Command-Line
	There's No Magic: Virtualenv Edition
	Go & Assembly
	How A Pull Request Rocked My World

	SPECIAL
	How To Open A Microchip And What's Inside
	Using Parkinson’s Law to Kick Procrastination’s Ass

