
The Slow Web
Jack Cheng

Issue 28
September 2012

http://careers.addepar.com

4 

Curator
Lim Cheng Soon

Contributors
Jack Cheng
Kent Nerburn
Avery Pennarun
Adam Wiggins
Elaine Wherry
Sondra Eklund
Teddy Worcester
Emma Coats
Steve Hanov
Fernando Meyer
Andy Boothe
Joe Zim

Proofreaders
Emily Griffin
Sigmarie Soto

Printer
MagCloud

Hacker Monthly is the print magazine ver-
sion of Hacker News — news.ycombinator.com, a
social news website wildly popular among program-
mers and startup founders. The submission guide-
lines state that content can be “anything that grati-
fies one’s intellectual curiosity.” Every month, we
select from the top voted articles on Hacker News
and print them in magazine format.
For more, visit hackermonthly.com

Advertising
ads@hackermonthly.com

Contact
contact@hackermonthly.com

Published by
Netizens Media
46, Taylor Road,
11600 Penang,
Malaysia.

Hacker Monthly is published by Netizens Media and not affiliated with Y Combinator in any way.

Cover Photo by: Jenny Downing

http://news.ycombinator.com
http://hackermonthly.com
mailto:ads@hackermonthly.com
mailto:contact@hackermonthly.com

  5

Contents
FEATURES

06  The Slow Web
By Jack Cheng

14  The Cab Ride I’ll Never Forget
By Kent Nerburn

STARTUPS

18  A Profitable, Growing, Useful, Legal,
Well-Loved...Failure
By Avery Pennarun

26  How To Scale a Development Team
By Adam Wiggins

32  The Recruiter Honeypot
By Elaine Wherry

SPECIAL

43  My Prime Factorization Sweater
By Sondra Eklund

46  Hacking the iPod
By Teddy Worcester

48  The Rules of Story Telling
By emma Coats

For links to Hacker News dicussions, visit hackermonthly.com/issue-27

Photo by: Ben Fredericson

PROGRAMMING

50  20 Lines of Code That Will Beat A/B
Testing Every Time
By Steve Hanov

54  Evolution of a Python Programmer.py
By Fernando Meyer

59  Complication is What Happens
When You Try to Solve a Problem You
Don’t Understand
By Andy Boothe

62  The Lazy Man’s URL Parsing in
JavaScript
By Joe Zim

http://hackermonthly.com/issue-27

6  FEATURES

FEATURES

One of the better spots to
enjoy a bowl of ramen
noodles here in New York is

Minca, in the East Village. Minca is the
kind of place just enough out of the
way that as you’re about to get there,
you start wondering if you’ve already
passed it. A bowl of noodles at Minca
isn’t quite as neatly put together as
those of other ramen establishments
in the city, but it is without a doubt
among the tastiest. There’s a home-
cooked quality to a bowl of noodles
at Minca, and there’s a homey vibe to

the restaurant. Minca is a good place to
meet a friend and sit and talk and eat
and drink, and eat and talk and sit and
drink some more.

The last time I was at Minca, I had
an especially enjoyable conversation
with Walter Chen. Walter is the CEO
of a company called iDoneThis, a quiet
little service that helps you catalog the
things you’ve accomplished each day.
iDoneThis sends you a daily email at
your specified time, and you simply
reply with a list of things you did that
day. It’s useful for teams who want to

By Jack Cheng

The Slow Web

Photo by: Jenny Downing [flickr.com/photos/jenny-pics/6908438828]

http://flickr.com/photos/jenny-pics/6908438828

  7

By Jack Cheng

The Slow Web

keep track of what everyone is working
on, and for individuals who just want
to keep track.

I first reached out to Walter because
I was mesmerized by this koan at the
bottom of the daily emails:

iDoneThis is a part of the slow web
movement. After you email us, your
calendar is not updated instanta-
neously. But rest up, and you’ll find an
updated calendar when you wake.

iDoneThis is a part of the slow web
movement. The Slow Web Move-
ment. I had never heard that phrase
before. I immediately started digging
around — and by that I mean I googled
“Slow Web Movement” — and the
lone relevant search result was a blog
post from two years ago. If you run the
search again today, you’ll find Walter’s
writeup on his company blog, which
reflects a lot of what he told me over
dinner.

As we talked further, I said to Walter
that as soon as I saw “the slow web
movement,” I assigned my own mean-
ing to it. Because it’s a great name, and
great names are like knots — they’re
woven from the same stringy material
as other words, but in their particu-
lar arrangement, they catch, become
junctions to which new threads arrive
and from which other threads depart.
For me, “The Slow Web” neatly tied
together a slew of dangling thoughts.

 Slow Web and Slow Food
The Slow Web Movement is a lot like
the Slow Food Movement, in that
they’re both blanket terms that mean a
lot of different things. Slow Food began
in part as a reaction to the opening of
a McDonald’s in Piazza di Spagna in
Rome, so from its very origin, it was
defined by what it’s not. It’s not Fast
Food, and we all know what Fast Food
is… right?

Yet, if you ask a bunch of people to
describe to you the qualities of Fast
Food, you’re likely to get a bunch of
different answers: it’s made from low-
grade ingredients, it’s high in sugar,
salt and fat, it’s sold by multinational
corporations, it’s devoured quickly and
in overlarge portions, it’s McDonalds/
TacoBell/Subway, even though Subway
has spent a lot of money marketing
fresh bread and ingredients — it’s still
Fast Food albeit “healthy” Fast Food.

Fast Food has an “I’ll know it when
I see it” quality, and it has this qual-
ity because it’s describing something
greater than all of its individual traits.
Fast Food, and consequently, Slow
Food, describes a feeling that we get
from food.

Slow Web works the same way. Slow
Web describes a feeling we get when
we consume certain web-enabled
things, be it products or content. It is
the sum of its parts, but let’s start by
describing what it’s not: the Fast Web.

8  FEATURES

The Fast Web
What is the Fast Web? It’s the out-of-
control web. The oh-my-god-there’s-
so-much-stuff-and-I-can’t-possibly-
keep-up web. It’s the spend-two-
dozen-times-a-day-checking web. The
in-one-end-out-the-other web. The
web designed to appeal to the basest
of our intellectual palettes — the salt-
sugar-and-fat-of-online-content web.
It’s the scale-hard-and-fast web. The
create-a-destination-for-billions-of-peo-
ple web. The you-have-two-hundred-
twenty-six-new -updates web. Keep up
or be lost. Click me. Like me. Tweet
me. Share me. The Fast Web demands
that you do things and do them now.
The Fast Web is a cruel wonderland of
shiny, shiny things.

Timely vs. Real-Time
One of the centerpieces of the Fast
Web is this notion of real-time. Your
friend listens to a song, and you find
out about it. The smaller the gap
between these two, the closer it is to
real-time.

Real-time interactions happen as
they happen. Timely ones, on the other
hand, happen as you need them to
happen. Some real-time interactions,
like breaking news about an earth-
quake, can be timely. But not all timely
interactions are real-time. I’d argue that
most are not. And where the Fast Web
is built around real-time-ness, the Slow
Web is built around timeliness.

A great example of a Slow Web
product is Instapaper. Instapaper takes
the process of discovering a long article
and reading it on the spot (real-time).
It breaks it apart, deferring the act of
reading until later when we have an
extended moment to read (timely).
I may be stretching my analogy a bit
here, but it’s kind of like boxing up a
meal and putting it away in the fridge
for when you’re hungry, except in this
case, it doesn’t lose as much of its taste.

Likewise, iDoneThis takes a pretty
standard interaction of creating an item
in a database and then reading it back
— one that might normally take less
than a few seconds to execute — and
blows it apart.

A typical app might work like this:
there’s a text field for you to type in
what you did. You type it in and hit
submit. The database gets updated and
almost instantly you see the submitted
text displayed back to you. iDoneThis
takes those last two steps — the update
and the review — and stretches them
out from a few milliseconds to half a day.
The database gets updated sometime
overnight and the display-back happens
the next morning in your inbox.

  9

Another name for this is turn-based,
as in turn-based gaming. A traditional
game of Scrabble or Pictionary is
relatively demanding in real-time: it
requires two or more people in the
same place with the both desire and
freedom to play these games. Decon-
structing the real-time experience gives
you the Words With Friends and Draw
Somethings of the world. An activity
that would otherwise be impractical
can now carry on in a manner more
timely for each participant. Instapaper
is turn-based reading. iDoneThis is
turn-based data tracking.

But timeliness alone doesn’t make
something Slow Web. Email, after all,
is turn-based communication, and
our email inboxes are probably one
of the biggest sources of Fast Web
distress. Those turn-based games can
also quickly get overwhelming if we
have too many of them going at once.
What’s missing in these cases is an
inherent sense of rhythm.

Rhythm vs. Random
Let’s say I told you there was a new
HBO drama that aired for one hour
from 9-10pm every Wednesday night.
Once you decide it’s a show you’re
interested in and can make room
for, the act of watching takes over. It
becomes about the show. Now, let’s say
I told you there’s a new HBO drama
that’s sometimes times an hour, some-
times half an hour, sometimes two
hours, that may or may not air every
Tuesday, Wednesday, and Thursday
night, between 6 and 11pm. Suddenly
it’s no longer just about the show. It’s
about whether or not the show will be
on. What next? becomes When next?

In the Fast Web, we’re faced with
this proposition numerous times a day.
The randomness and frequency of the
updates in our inboxes and on our
dashboards stimulate the reward mech-
anisms in our brain. While this can give
us a boost when we come across some-
thing unexpectedly great, dependency
leads to withdrawal, resulting in a roller
coaster of positive and negative emo-
tions. The danger of unreliable rhythms
is too much reward juice.

Reliable rhythms lead to predictable
outcomes, and rhythm is an expression
of moderation. Apps like iDoneThis
have this moderation: you receive your
email prompt at the same time each
day, and each interaction is similarly
demanding. Unlike your inbox, where
there can be a large range of demands:
there are newsletters you can scan
and trash, personal emails that require
lengthy responses, and everything
in between. The lack of moderation
means sometimes you spend a few
minutes going through your inbox, and
other times you spend a few hours.

That’s why most email productiv-
ity systems are concerned with a form
of moderation: standardization. They
encourage you to standardize the
size and demands of the interaction
(archive or delete messages and move
on, transfer email requiring lengthy fol-
low-ups to a to-do list, limit responses
to three sentences [three.sentenc.es])
and standardizing the frequency (limit
checking email to x times a day, at
specified times).

A great example of rhythm and
moderation in practice is the rollout
of Wander [onwander.com]. For the
weeks leading up to their beta launch,
Keenan and crew took what could have
been a first-run experience on another
site and stretched it out over the
course of four weeks into something
akin to an advent calendar. Every week
there is a similarly demanding interac-
tion: give a place, pick a photo, type a
reason.

 Another service that does this well
is Budge [bud.ge] from Buster and
the team at Habit Labs. Budge is built
around notifications reminding you to
do the daily things that improve your
life in small but beneficial ways, like
flossing, meditating, or tracking your
weight. Once you’ve signed up, you
can interact with Budge solely through
their notifications. In the past I’ve gone
for weeks without visiting their site or
app while still happily using the service
just by replying to the timed texts I get
on my phone.

10  FEATURES

http://three.sentenc.es
http://bud.ge

  11

This is a tremendously important
distinction between Slow Web and
Fast Web. Fast Web is destination-
based. Slow Web is interaction-based.
Fast Web is built around homepages,
inboxes, and dashboards. Slow Web is
built around timely notifications. Fast
Web companies often try to rack up
page views, since page views mean ad
impressions. Slow Web companies tend
to put effectiveness first. Here’s the
crazy thing about Budge: the better it
works, the less I use it. Once I get in
the habit of flossing, my brain takes
over, and I no longer need the notifica-
tions. Walter describes this credo well
in the aforementioned blog post:

Behavior change, not growth. Behavior
change is about improving the lives of
others, scale is about ego. Getting scale
after nailing behavior change is easier
than nailing behavior change (and
thus having a shot at durability) after
hitting scale.

It doesn’t mean Slow Web compa-
nies can’t grow. It simply means that
they put effectiveness before growth.
And effectiveness leads to a sense of
gratitude — I may be done flossing
with Budge, but there are other things
I could improve, and having been
through it once, I trust the company
even more.

Knowledge vs. Information
Timeliness. Rhythm. Moderation.
These things dovetail into what I con-
sider the biggest difference between
Slow Web and Fast Web. Fast Web is
about information. Slow Web is about
knowledge. Information passes through
you; knowledge dissolves into you. And
timeliness, rhythm, and moderation are
all essential for memory and learning.

 Again, iDoneThis serves as a fitting
example. After you use it for a few
days, you start seeing at the bottom
of your daily emails the things you’ve
done in the past, a day or a week
before. It’s kind of a contained version
of Timehop [timehop.com], Benny
and Jon’s product that, once you’ve
connected it to your various social
accounts, sends you a daily — get ready
for this word — digest with everything
you did a year ago on that day.

 Timehop and iDoneThis both help
us remember and reflect, and this
gives us perspective. It grounds us in
the flow of time, or perhaps lifts us up
above the treetops. iDoneThis is the
only task management tool I’ve come
across with the potential to help you
realize you’re working on the wrong

http://timehop.com

Now you can hack on DuckDuckGo

Create instant answer plugins for DuckDuckGo

duckduckhack.com

Now you can hack on DuckDuckGo

Create instant answer plugins for DuckDuckGo

DuckDuckHackDuckDuckHack

package DDG::Goodie::Unidecode;# ABSTRACT: return an ASCII version of the search query use
DDG::Goodie; use Text::Unidecode; zci is_cached => 1; zci answer_type => "convert to ascii"; triggers
startend => "unidecode"; handle remainder => sub { my $u = unidecode $_; # unidecode output some-
times contains trailing spaces $u =~ s/\s+$//; return $u; }; 1; package DDG::Goodie::Rot13; #
ABSTRACT: Rotate chars by 13 letters use DDG::Goodie; triggers start => 'rot13'; handle remainder =>
sub { if ($_) { $_ =~ tr[a-zA-Z][n-za-mN-ZA-M]; return "ROT13: $_"; }; return }; zci is_cached => 1; 1;
package DDG::Goodie::Base64; use DDG::Goodie; use MIME::Base64; use Encode; triggers startend =>
"base64"; zci answer_type => "base64_conversion"; zci is_cached => 1; handle remainder => sub {
return unless $_ =~ /^(encode|decode|)\s*(.*)$/i; my $command = $1 || ''; my $str = $2 || ''; if ($str) { if (
$command && $command eq 'decode') { $str = decode_base64($str); $str = decode("UTF-8", $str);
return "Base64 decoded: $str"; } else { $str = encode_base64(encode("UTF-8", $str)); return "Base64
encoded: $str"; } } return; }; 1; package DDG::Goodie::Chars; # ABSTRACT: Give the number of charac-
ters (length) of the query. use DDG::Goodie; triggers start => 'chars'; zci is_cached => 1; zci
answer_type => "chars"; handle remainder => sub { return "Chars: " .length $_ if $_; return; }; 1; pack-
age DDG::Goodie::ABC; use DDG::Goodie; triggers any => "or"; zci answer_type => "rand"; handle
query_parts => sub { my @choices; my @collected_parts; while (my $part = shift) { if (lc($part) eq 'or') {
return unless @collected_parts; push @choices, join(' ', @collected_parts); my $length =
@collected_parts; return if $length > 1; @collected_parts = (); } elsif ($part) { push @collected_parts,
$part; } } push @choices, join(' ', @collected_parts) if @choices && @collected_parts; return if
scalar(@choices) <= 1; my $choice = int(rand(@choices)); if (my @duck = grep { $_ eq 'duckduckgo' || $_
eq 'duck' || $_ eq 'ddg' } @choices) { return $duck[0]." (not random)", answer_type => 'egg'; } return
$choices[$choice]." (random)"; return; }; 1; package DDG::Goodie::PublicDNS; use DDG::Goodie; use

sub { if ($_) { $_ =~ tr[a-zA-Z][n-za-mN-ZA-M]; return "ROT13: $_"; }; return }; zci is_cached => 1; 1;
package DDG::Goodie::Base64; use DDG::Goodie; use MIME::Base64; use Encode; triggers startend =>
"base64"; zci answer_type => "base64_conversion"; zci is_cached => 1; handle remainder => sub {
return unless $_ =~ /^(encode|decode|)\s*(.*)$/i; my $command = $1 || ''; my $str = $2 || ''; if ($str) { if (
$command && $command eq 'decode') { $str = decode_base64($str); $str = decode("UTF-8", $str);
return "Base64 decoded: $str"; } else { $str = encode_base64(encode("UTF-8", $str)); return "Base64
encoded: $str"; } } return; }; 1; package DDG::Goodie::Chars; # ABSTRACT: Give the number of charac
ters (length) of the query. use DDG::Goodie; triggers start => 'chars'; zci is_cached => 1; zci
answer_type => "chars"; handle remainder => sub { return "Chars: " .length $_ if $_; return; }; 1; pack
age DDG::Goodie::ABC; use DDG::Goodie; triggers any => "or"; zci answer_type => "rand"; handle
query_parts => sub { my @choices; my @collected_parts; while (my $part = shift) { if (lc($part) eq 'or') {
return unless @collected_parts; push @choices, join(' ', @collected_parts); my $length =
@collected_parts; return if $length > 1; @collected_parts = (); } elsif ($part) { push @collected_parts,
$part; } } push @choices, join(' ', @collected_parts) if @choices && @collected_parts; return if
scalar(@choices) <= 1; my $choice = int(rand(@choices)); if (my @duck = grep { $_ eq 'duckduckgo' || $_

thing. Fast Web derives value from the
just-happened or the soon-to-happen.
Slow Web unlocks value from deeper
in the past.

The Slow Web
Timely not real-time. Rhythm not
random. Moderation not excess.
Knowledge not information. These are
a few of the many characteristics of the
Slow Web. It’s not so much a checklist
as a feeling, one of being at greater ease
with the web-enabled products and
services in our lives.

Like Slow Food, Slow Web is con-
cerned as much with production as it
is with consumption. We as individu-
als can always set our own guidelines
and curb the effect of the Fast Web,
but as I hope I’ve illustrated, there are
a number of considerations the cre-
ators of web-connected products can
make to help us along. And maybe the
Slow Web isn’t quite a movement yet.
Maybe it’s still simmering. However, I
do think there is something distinctly
different about the feeling that some
of these products impart on their users,
and that feeling manifests from the
intent of their makers.

Fast Web companies want to be our
lovers, they want to be by our sides
at all times, want us to spend every
moment of our waking lives with them.
Sometimes that’s not what we really
need. Sometimes what we really need
are friends we can meet once every few

months for a bowl of ramen noodles at
a restaurant in the East Village. Friends
with whom we can sit and talk and
eat and drink and maybe learn a little
about ourselves in the process. And at
the end of the night get up and go our
separate ways until next time.

Until next time. n

Jack Cheng is writer, designer and entrepre-
neur living in Brooklyn. He co-founded Dis-
rupto, a digital product development studio,
and Memberly, a platform for subscription
services.

12  FEATURES

Reprinted with permission of the original author.
First appeared in hn.my/slow (jackcheng.com)

http://duckduckhack.com
http://hn.my/slow

Now you can hack on DuckDuckGo

Create instant answer plugins for DuckDuckGo

duckduckhack.com

Now you can hack on DuckDuckGo

Create instant answer plugins for DuckDuckGo

DuckDuckHackDuckDuckHack

package DDG::Goodie::Unidecode;# ABSTRACT: return an ASCII version of the search query use
DDG::Goodie; use Text::Unidecode; zci is_cached => 1; zci answer_type => "convert to ascii"; triggers
startend => "unidecode"; handle remainder => sub { my $u = unidecode $_; # unidecode output some-
times contains trailing spaces $u =~ s/\s+$//; return $u; }; 1; package DDG::Goodie::Rot13; #
ABSTRACT: Rotate chars by 13 letters use DDG::Goodie; triggers start => 'rot13'; handle remainder =>
sub { if ($_) { $_ =~ tr[a-zA-Z][n-za-mN-ZA-M]; return "ROT13: $_"; }; return }; zci is_cached => 1; 1;
package DDG::Goodie::Base64; use DDG::Goodie; use MIME::Base64; use Encode; triggers startend =>
"base64"; zci answer_type => "base64_conversion"; zci is_cached => 1; handle remainder => sub {
return unless $_ =~ /^(encode|decode|)\s*(.*)$/i; my $command = $1 || ''; my $str = $2 || ''; if ($str) { if (
$command && $command eq 'decode') { $str = decode_base64($str); $str = decode("UTF-8", $str);
return "Base64 decoded: $str"; } else { $str = encode_base64(encode("UTF-8", $str)); return "Base64
encoded: $str"; } } return; }; 1; package DDG::Goodie::Chars; # ABSTRACT: Give the number of charac-
ters (length) of the query. use DDG::Goodie; triggers start => 'chars'; zci is_cached => 1; zci
answer_type => "chars"; handle remainder => sub { return "Chars: " .length $_ if $_; return; }; 1; pack-
age DDG::Goodie::ABC; use DDG::Goodie; triggers any => "or"; zci answer_type => "rand"; handle
query_parts => sub { my @choices; my @collected_parts; while (my $part = shift) { if (lc($part) eq 'or') {
return unless @collected_parts; push @choices, join(' ', @collected_parts); my $length =
@collected_parts; return if $length > 1; @collected_parts = (); } elsif ($part) { push @collected_parts,
$part; } } push @choices, join(' ', @collected_parts) if @choices && @collected_parts; return if
scalar(@choices) <= 1; my $choice = int(rand(@choices)); if (my @duck = grep { $_ eq 'duckduckgo' || $_
eq 'duck' || $_ eq 'ddg' } @choices) { return $duck[0]." (not random)", answer_type => 'egg'; } return
$choices[$choice]." (random)"; return; }; 1; package DDG::Goodie::PublicDNS; use DDG::Goodie; use

sub { if ($_) { $_ =~ tr[a-zA-Z][n-za-mN-ZA-M]; return "ROT13: $_"; }; return }; zci is_cached => 1; 1;
package DDG::Goodie::Base64; use DDG::Goodie; use MIME::Base64; use Encode; triggers startend =>
"base64"; zci answer_type => "base64_conversion"; zci is_cached => 1; handle remainder => sub {
return unless $_ =~ /^(encode|decode|)\s*(.*)$/i; my $command = $1 || ''; my $str = $2 || ''; if ($str) { if (
$command && $command eq 'decode') { $str = decode_base64($str); $str = decode("UTF-8", $str);
return "Base64 decoded: $str"; } else { $str = encode_base64(encode("UTF-8", $str)); return "Base64
encoded: $str"; } } return; }; 1; package DDG::Goodie::Chars; # ABSTRACT: Give the number of charac
ters (length) of the query. use DDG::Goodie; triggers start => 'chars'; zci is_cached => 1; zci
answer_type => "chars"; handle remainder => sub { return "Chars: " .length $_ if $_; return; }; 1; pack
age DDG::Goodie::ABC; use DDG::Goodie; triggers any => "or"; zci answer_type => "rand"; handle
query_parts => sub { my @choices; my @collected_parts; while (my $part = shift) { if (lc($part) eq 'or') {
return unless @collected_parts; push @choices, join(' ', @collected_parts); my $length =
@collected_parts; return if $length > 1; @collected_parts = (); } elsif ($part) { push @collected_parts,
$part; } } push @choices, join(' ', @collected_parts) if @choices && @collected_parts; return if
scalar(@choices) <= 1; my $choice = int(rand(@choices)); if (my @duck = grep { $_ eq 'duckduckgo' || $_

http://duckduckhack.com

14  FEATURES

There was a time in my life
twenty years ago when I was
driving a cab for a living. It

was a cowboy’s life, a gambler’s life, a
life for someone who wanted no boss,
constant movement and the thrill of
a dice roll every time a new passenger
got into the cab.

What I didn’t count on when I took
the job was that it was also a ministry.
Because I drove the night shift, my cab
became a rolling confessional. Passen-
gers would climb in, sit behind me in
total anonymity and tell me of their
lives.

We were like strangers on a train, the
passengers and I, hurtling through the
night, revealing intimacies we would
never have dreamed of sharing during

the brighter light of day. I encountered
people whose lives amazed me, enno-
bled me, made me laugh and made me
weep. And none of those lives touched
me more than that of a woman I
picked up late on a warm August night.

I was responding to a call from a
small brick fourplex in a quiet part of
town. I assumed I was being sent to
pick up some partiers, or someone who
had just had a fight with a lover, or
someone going off to an early shift at
some factory for the industrial part of
town.

When I arrived at the address, the
building was dark except for a single
light in a ground-floor window. Under
these circumstances, many drivers
would just honk once or twice, wait a

By Kent Nerburn

The Cab Ride I’ll
Never Forget

  15

short minute and then drive away. Too
many bad possibilities awaited a driver
who went up to a darkened building at
2:30 in the morning.

But I had seen too many people
trapped in a life of poverty who
depended on the cab as their only
means of transportation. Unless a situa-
tion had a real whiff of danger, I always
went to the door to find the passenger.
It might, I reasoned, be someone who
needs my assistance. Would I not want
a driver to do the same if my mother
or father had called for a cab?

So I walked to the door and knocked.
“Just a minute,” answered a frail and

elderly voice. I could hear the sound
of something being dragged across
the floor. After a long pause, the door

opened. A small woman somewhere in
her 80s stood before me. She was wear-
ing a print dress and a pillbox hat with
a veil pinned on it, like you might see
in a costume shop, in a Goodwill store
or in a 1940s movie. By her side was
a small nylon suitcase. The sound had
been her dragging it across the floor.

The apartment looked as if no one
had lived in it for years. All the furni-
ture was covered with sheets. There
were no clocks on the walls, no knick-
knacks or utensils on the counters. In
the corner was a cardboard box filled
with photos and glassware.

“Would you carry my bag out to the
car?” she said. “I’d like a few moments
alone. Then, if you could come back
and help me? I’m not very strong.”

Photo by: Ben Fredericson [flickr.com/photos/xjrlokix/4379281690]

http://flickr.com/photos/xjrlokix/4379281690

16  FEATURES

I took the suitcase to the cab, and
then returned to assist the woman. She
took my arm, and we walked slowly
toward the curb. She kept thanking me
for my kindness.

“It’s nothing,” I told her. “I just try to
treat my passengers the way I would
want my mother treated.”

“Oh, you’re such a good boy,” she
said. Her praise and appreciation were
almost embarrassing.

When we got in the cab, she gave me
an address and then asked, “Could you
drive through downtown?”

“It’s not the shortest way,” I answered.
“Oh, I don’t mind,” she said. “I’m in

no hurry. I’m on my way to a hospice.”
I looked in the rearview mirror. Her

eyes were glistening. “I don’t have any
family left,” she continued. “The doctor
says I should go there. He says I don’t
have very long.”

I quietly reached over and shut off
the meter. “What route would you like
me to go?” I asked.

For the next two hours we drove
through the city. She showed me the
building where she had once worked as
an elevator operator. We drove through
the neighborhood where she and her
husband had lived when they had first
been married. She had me pull up in
front of a furniture warehouse that
had once been a ballroom where she
had gone dancing as a girl. Sometimes
she would have me slow in front of a
particular building or corner and would

sit staring into the darkness, saying
nothing.

As the first hint of sun was creasing
the horizon, she suddenly said, “I’m
tired. Let’s go now.”

 We drove in silence to the address
she had given me. It was a low build-
ing, like a small convalescent home,
with a driveway that passed under a
portico. Two orderlies came out to the
cab as soon as we pulled up. Without
waiting for me, they opened the door
and began assisting the woman. They
were solicitous and intent, watching
her every move. They must have been
expecting her; perhaps she had phoned
them right before we left.

I opened the trunk and took the
small suitcase up to the door. The
woman was already seated in a
wheelchair.

“How much do I owe you?” she
asked, reaching into her purse.

“Nothing,” I said.
“You have to make a living,” she

answered.
“There are other passengers,” I

responded.
Almost without thinking, I bent and

gave her a hug. She held on to me
tightly. “You gave an old woman a little
moment of joy,” she said. “Thank you.”

There was nothing more to say. I
squeezed her hand once and then
walked out into the dim morning light.
Behind me, I could hear the door shut.
It was the sound of the closing of a life.

  17

I did not pick up any more passen-
gers that shift. I drove aimlessly, lost
in thought. For the remainder of that
day, I could hardly talk. What if that
woman had gotten an angry driver
or one who was impatient to end his
shift? What if I had refused to take
the run or had honked once and then
driven away? What if I had been in a
foul mood and had refused to engage
the woman in conversation? How
many other moments like that had I
missed or failed to grasp?

We are so conditioned to think
that our lives revolve around great
moments. But great moments often
catch us unawares. When that woman
hugged me and said that I had brought
her a moment of joy, it was possible to
believe that I had been placed on earth
for the sole purpose of providing her
with that last ride.

I do not think that I have ever done
anything in my life that was any more
important. n

Kent Nerburn is the highly acclaimed author
of over a dozen books on Native American
issues and spirituality. The Cab Driver story is
excerpted from his book, Make Me an Instru-
ment of Your Peace: Living in the Spirit of the
Prayer of St. Francis. It is published here in its
original form with permission of the author.
Visit his website atkentnerburn.com to learn
more about Kent Nerburn’s life and work and
to purchase books.

Reprinted with permission of the original author.
First appeared in hn.my/cab (zenmoments.org)

“We are so conditioned to think that our
lives revolve around great moments. But
great moments often catch us unawares.”

http://atkentnerburn.com
http://hn.my/cab

STARTUPS

18  STARTUPS

By Avery Pennarun

A Profitable, Growing,
Useful, Legal,

Well-Loved...Failure

Since before graduating from
college and up until taking my
current job, I’ve initiated several

things that could be called startups.
That is, we incorporated companies,
we had a small number of people that
got paid wages, we collected Canada
SR&ED tax credits, etc. Every one of
these startups turned a profit and more
than one had outside financing. One of
them we sold to IBM.

I’m telling you this not to show off,
but as a setup for the rest of this story.
What I want to explain is that I fail
strangely. Or at least, it feels like I do.
Maybe it’s not so strange; maybe you
should just go read Paul Graham’s
How Not to Die article [hn.my/die],
where he advises us that “Startups
rarely die in mid keystroke. So keep
typing!”

Because that’s really the moral of
this story; or maybe it isn’t. Maybe this
story is about how that advice hasn’t
actually worked for me because inside
each of those successes is a story of
failure. It’s interesting that by leaving
out some details I can honestly make
any one of the companies I’ve started
sound like resounding successes or
resounding messes. If I include all the
details, then, well they’re just confus-
ing. So you’ll usually hear just one side
or the other, depending what point I’m
trying to make.

Today I’ll tell you both sides though
for just one of those companies. I’m
not going to name the company here
but it’s still alive, it’s still making
money, and my co-founder is still
working his butt off to keep it from
falling over. Given the details I’m about

  19

to share, it’s trivially easy to find the
company name with a little Googling,
and I encourage you to do so. I just
don’t want to name it here because
I really don’t want this article to be
the first one that comes up when you
Google it.

So anyway, here’s what happened.
We started the company back in 2008.
We wanted to do something in the
world of databases because we fig-
ured databases were ripe for disrup-
tion, what with SQL being SO VERY
SUCKY in so many ways. We wanted
to create a new variant of SQL based
on the analogy that our “new thing” is
to SQL as C is to assembly language.
That is, C is little more than a portable
assembly language, so we need a por-
table version of SQL. (If you’ve used
more than one SQL variant, you know
the analogy is apt.) Oh, and maybe
we’ll throw in functions and variable
assignment and loop control structures
while we’re there. Yeah, I know, crazy.
But if you’ve written stored procedures
in MS SQL, those are the things you
know you need.

Why did we want the C of database
query languages, instead of something
modern, like the Python of database
query languages? We thought this
was the clever part of the analogy: it’s
because people already *tried* the
high-level query languages. They’re
called ORMs (object relational map-
pings), and sure enough, they’re just

like high-level languages were in 1975:
slow, bloated, wasteful, unreliable,
non-portable, and nobody can agree
which one is best. C changed all that.
Sure, there were non-portable features
in C (there still are), but dammit, +
was just always +, and for loops were
for loops, and the world made one big
step forward. People still use C today.
High-level languages are much better
now, but they’re almost all still built on
top of C. How much better could the
world be if we could do that for SQL?

Anyway, that seemed really hard, and
we were just two guys who wanted to
get a minimal product launched in, say,
4 months. So we decided to trim down
the idea. What’s the minimal idea that
would get us in that direction, but with
a product in 4 months? Well, first of all,
to invent C you don’t need multiple
assembly language variants; you just
need one to start with. Let’s pick one.
Why not the simplest one we can find?
A bit of searching around revealed the
obvious candidate: Microsoft Access.
It’s even dumber than MySQL.

Okay then, what will we build on
top of Access? Well, we want to make
a portable, slightly-higher-level query
language. What will be its initial use
case? Forgetting about other databases
for now, what do Access developers
need most? ... Ah, to publish their data
on the web, of course. Access totally
sucks for web development. Even now
it does. They keep claiming to have

20  STARTUPS

finally added web support, but it’s
nearly useless every single time. Still is.

So we would write code to let you
easily query Access tables using web
tools, like AJAX or JSON or whatever.
Excellent, that justifies writing our
query parser, but it doesn’t have to be
feature-complete on day 1. We can add
more database engine plug-ins later. We
can get a few customers, launch, and
iterate. Perfect!

Just one little problem. You have to
actually get that data to the web server.
Access sucks for web apps because
Access databases are a single .mdb file
on your desktop machine. Multi-user
access means multiple clients accessing
the .mdb file using a samba file share.
But how do you get the data onto the
web?

Well, the .mdb file format is undocu-
mented. Reverse-engineering it will
take forever, so we figured we’d write
a plug-in for Access that reads through
your data, exports it to text, and
uploads it to our server. That turned
out to be a fair bit of work, of course,
but whatever. I do love replicating data,
and we figured the ability to replicate
SQL databases could be a big deal, so
it’s certainly not a waste of time.

Once we were well under way writ-
ing the replication system, we thought
about it some more and realized that
the minimal product for our 4-month
launch target didn’t have to include a
query language at all; just replicating

the databases was surely enough to
please some user somewhere, as long
as it would sync in two directions.
Ta-da, Internet-enabled Access replica-
tion! We stopped after writing only the
barest minimum query parser.

We got the basic Access web replica-
tion engine working, which was a huge
amount of work, don’t get me wrong,
and the code is singularly awesome,
but I’m going to skip over it here. We
gave it a convincing-sounding version
number with the word BETA in it,
put it up on a web site I designed with
my super lame web design skills, and
waited for the world to beat a path to
our door.

Okay, you know how this goes, right?
You can’t just do that. Nobody will
come.

Well, this time you’re wrong. People
came. We had stumbled onto a huge
unsolved problem and unaddressed
market. There are lots, and lots, and
lots, and lots of legacy Access data-
bases in places you don’t even want to
think about. If you find our web site
and go to Testimonials and scroll to the
bottom, you’ll see what I mean. The
actual CIO of a huge pharmaceuti-
cal company called us out of the blue
and asked us to solve their problem
because they had thousands of Access
databases they wanted to share across
their tens of thousands of seats.

But I’m jumping ahead of myself.
Not all those people called us on day 1.

  21

On day 1, our website sucked because
it was talking about Access Replication.

And what the bloody hell is replica-
tion? Most Access users with Access
problems didn’t have a clue. They cer-
tainly weren’t searching for it.

That didn’t stop some of them from
finding us and calling anyway. See,
we also had a couple of pages talk-
ing about our query engine, and they
contained phrases like “Access on the
Web.” Turned out a lot of people were
searching for that. They still are. Micro-
soft caught on with Access 2010 and
marketed the heck out of that search
phrase, so if you search for it now,
you’ll find them and not us, which is
funny because Access 2010 is still basi-
cally useless for the web. But it shows
what marketing dollars can do.

Now, I’m badmouthing Access 2010
a lot here, but here’s how I know it’s
useless: because people keep on click-
ing and searching, and I don’t even
know what keywords they search any-
more, but they keep finding us. They
use Access 2010. They’re not dumb;
they’re real programmers and they
know what features Access 2010 has.
Even if they were dumb, God knows
Microsoft has marketed them to death.
And these people still want to pay us
to put Access on the web.

Anyway, I’ve gotten ahead of myself
again. The important part of the story
is, we had a web site all about Access
replication and nobody had any clue
what we were talking about, but they

called and emailed and the message
was clear: We want Access on the web.
How much money can we pay you to
provide it?

Um, well, look, the on-the-web part
is kind of sucky and...

...and the customer is always
right. So, back to the drawing board.
One day, a customer called me and
explained his very specific and immedi-
ate problem. He had just billed a cus-
tomer many thousands of dollars over
many months to build a custom Access
application. Right at the end, the cus-
tomer said they were happy. Now...he
should just publish it on the web and
they’ll be done.

Oh. Crap. The guy was really in
trouble. Serious trouble. They hadn’t
specified the requirement up front; he
was an Access-only developer, so he
couldn’t rewrite it. Even if he knew
how, it would be months more work.
So he had a serious problem, and let
me tell you, our 5%-finished JSON
query language was not going to solve
it. Neither was “replication,” but that
day on the phone, we came up with an
idea.

What if we could run Access on our
servers and display it over VNC in a
web browser? What if we ran Access
under Wine on Linux so we could
squeeze more instances onto a single
box? What if changes to the database
in these VNC sessions could be repli-
cated back down to your desktop copy
of Access using our plug-in?

22  STARTUPS

What if, indeed. Turns out there’s a
cool program called Flashlight-VNC
that’s an implementation of VNC in
Flash, which runs in virtually any web
browser (this was before there was an
iPad and before Apple dropped Flash
out of Safari). Turns out recent versions
of Wine can actually run some versions
of Access. Turns out...well, let’s just say
it worked. And that, my friends, is the
product we have today, more or less.
Sure, since then we’ve added perfor-
mance optimizations and reliability
improvements. We store the database
contents in git and use a custom merge
algorithm for resolving changes made
while in disconnected mode. (It’s neat;
git can store the whole revision history
in less space than the original .mdb.)
But fundamentally, that’s the product.

And people want it. No, I take that
back; the product is a magnificent heap
upon heaps of insane hackery. I mean,
we are running Access in Wine in X11
on Linux in an isolated user account on

our server slice that revision controls
your Access database in git, and we’re
displaying it using VNC in your web
browser in Flash. People can’t possibly
want that, but they need it, which is
better.

That’s the other neat thing. They
need it because nobody else has ever
created something like this. I don’t
think anybody ever will. I mean, how
many people know Linux, Flash,
C++ (for the plug-in), Python (for
the server), and Microsoft Access, of
all things, and are willing to combine
them all with a healthy knowledge of
streaming network protocols and data-
base replication? And even if you could
find a whacko like that, would that
person be willing to enter the market,
starting from scratch, knowing some-
one else got there first?

Every month, we have more revenue.
And our costs are tiny, so that means
more profit.

“The customers need it because nobody
else has ever created something like
this. I don’t think anybody ever will.”

  23

Customers need this so badly that
they’re willing to pay a lot for it. Like
$35/user/month/database for the basic
plan. In case you’re counting, in a
year, that’s much more than a copy of
Access. And just to be safe, because we
want to avoid lawyers, we tell custom-
ers to make sure all their users already
have an Access license on their desktop
(in addition to the legally required ones
we have for our servers). This isn’t so
bad; turns out big companies — the
kind with lots of Access databases —
pretty much all buy Microsoft Office
Professional for everybody anyway. So
no, in case you were wondering, our
business model is not about cheating
on Access licensing. If anything, people
are buying more licenses than they
strictly need, and I don’t feel like get-
ting on Microsoft’s bad side, and nei-
ther do they, so everybody wins.

No, it’s not about cheating. It’s just
about providing something people
want and are willing to pay for. What
do they want? They want to not
rewrite legacy apps. Please, please, let
us just keep running the app we spent
the last 10 years building, but let us
run it outside our office because we all
have laptops now.

How much money will people pay to
keep their app going? About as much
as the cost of rewriting it in a web
language. More, even, since it lowers
their risk. You do the math. As a bonus,
it’s a small monthly expense, not a big
capital expenditure.

And yes, every month, our profit is
more than the last one.

“Eventually I realized that there is no
windfall big enough to rationalize
spending 3-5 years of my life writing
compatibility layers for Microsoft Access.”

24  STARTUPS

But all that was the good news.
I’ve already given you a hint about

the bad news. Remember when I asked
what whacko, with all those skills,
would want to do this? I now know
one of the answers, and it’s OH GOD
NOT ME. Eventually I realized that
there is no windfall big enough to
rationalize spending 3-5 years of my
life, working full time, writing compat-
ibility layers for Microsoft Access. In
the ideal world, if we were successful,
my days would involve on-site visits
to huge bureaucratic companies of the
sort that...well, let’s be honest, the sort
that would run mission-critical Access
databases.

Really, on a rational level, I know
that’s unfair. I know these are good
people. I think Access developers are
great, actually. I love the fact that they
know a good thing when they see it.
Access *is* the easiest, most rapid of
rapid development environments I’ve
ever seen. I think almost all database
developers have terrible tast, because
they can use Access and compare it to,
say, MS SQL, and not see what makes
Access great and MS SQL suck, even
knowing perfectly well the develop-
ment in MS SQL + C# or Java will
take something like 10x as many man-
hours. For some apps, it’s worth it for
the higher quality; for a random inter-
nal business process app, it’s not, but
people spend it anyway because they
“heard Access isn’t industrial strength.”

So don’t get me wrong. I like Access
users. Access developers, in particular,
are the anti-IT department, the rebels,
the people who aren’t willing to wait
for the system administrators to pro-
vision them a server, and they don’t
have to because they can just share an
Access file on the fileserver. IT depart-
ments hate them, which is how I know
they’re on to something. These are the
kind of people I want to help. This is
the sort of thing that’s the reason I do
the work that I do. No kidding.

But, Lord, no, don’t make me actu-
ally code Access plug-ins. Don’t make
me work with Windows anymore. Just
don’t.

It’s so lame when I write it down.
Actually, it’s been lame for months,
every time I even think it. I can’t
believe I have that kind of lack of
follow-through. I don’t want to think
that about myself. It’s a travesty. A ter-
rible embarrassment. Something that
makes me question my self-worth. If
I can’t take something that’s so obvi-
ously working, and milk it for all it’s
worth, then what kind of human am
I, anyway? I think I suck at capitalism.
Maybe that’s it.

You know the truth? I don’t know.
I just don’t know. I am a completely
irrational human being, and I hate it,
but deep inside me there’s a voice that
just says, “No. Get the hell out. If you
continue doing this, you will die.”

  25

So I got the hell out. I “stopped
typing,” as Paul Graham might say.
Nowadays I have a pretty great “real
job” where I can spend all night hack-
ing the Linux kernel, programming
embedded systems, and working on
highly parallel build systems. And even
though the potential upside is much
less, I like it. For now, at least. I’m
happy.

And that’s my failure. Every day, my
co-founder keeps working away, keeping
the systems running with as little effort
as he can spare. He’s got a day job now
for various reasons; among them, he’s
an extravert and he needs co-workers.
I still own half the shares, but I told
him to keep the operating profits; the
least I could offer, literally, I guess. That
huge pharma deal is still in the pipeline
and needs another callback, but there’s
nobody willing to do it. We don’t opti-
mize the web site for Google anymore;
we haven’t updated the news page since
2010 and even I can’t find our site in
Google using any generic keywords.
I guess I’m not looking hard enough
because new customers still find it, sign
up, and subscribe. Virtually nobody ever
cancels once they’ve started. There is no
competition and nothing to switch to.
There never will be. Where would they
go if they stopped?

I know I’ve let my co-founder down.
If the company would just die — if it
would only be so simple, and nobody
would want the product, or the users

got angry at us and quit, or it were
impossible to run it at a profit and we
finally ran out of cash — then stop-
ping would be easy. But no. They love
it instead. They need it. There’s an
opportunity cost in continuing, but
there’s a sentimental cost in shutting
it down — to say nothing of the users
who have no other options.

In short, I learned that I don’t have
what it takes. Someone probably does,
now that the actual insane part has
already been invented, but I don’t
know who.

What would you do? n

Avery founded his first startup, Nitix, making
Linux-based server appliances while at the Uni-
versity of Waterloo. The company was acquired
by IBM and is now called Lotus Foundations. He
wrote wvdial, netselect, git-subtree, sshuttle,
bup, and redo, and now lives in New York.

Reprinted with permission of the original author.
First appeared in hn.my/fail (apenwarr.ca)

http://hn.my/fail

26  STARTUPS

As hackers, we’re familiar with
the need to scale web servers,
databases, and other software

systems. An equally important chal-
lenge in a growing business is scaling
your development team.

Most technology companies hit a
wall with development team scalabil-
ity somewhere around ten developers.
Having navigated this process fairly
successfully over the last few years at
Heroku, this post will present what
I see as the stages of life in a devel-
opment team and the problems and
potential solutions at each stage.

Stage 1: Homebrewing
In the beginning, your company is two
to four guys/gals working in someone’s
living room, a cafe, or a coworking
space. Communication and coordina-
tion is easy: with just a few people sit-
ting right next to each other, everyone
knows what everyone else is working
on. Founders and early employees tend

to be very self-directed, so the need
for management is nearly non-existent.
Everyone is a generalist and works on
a little bit of everything. You have a
single group chat channel and a single
all@yourcompany.com mailing list.
There’s no real need to track any tasks
or even bugs. A full copy of the state of
the entire company and your product
is easily contained within everyone’s
brain.

At this stage, you’re trying to create
and vet your minimum viable product,
which is a fancy way of saying that
you’re trying to figure out what you’re
even doing here. Any kind of struc-
ture or process at this point will be
extremely detrimental. Everyone has
to be a generalist and able to work on
any kind of problem — specialists will
be (at best) somewhat bored and (at
worst) highly distracting because they
want to steer product development
into whatever realm they specialize in.

By Adam Wiggins

How To Scale a
Development Team

  27

Stage 2: The first hires
Once you’ve gotten a little funding and
been able to hire a few more devel-
opers, for a total of five to nine, you
may find that the ad-hoc method of
coordination (expecting to overhear
everything of importance by sitting
near teammates) starts to break down.
You have both too much communica-
tion (keeping tabs on six other people’s
work is time-consuming) and too little
communication (you end up colliding
on trying to fix the same bug, answer
the same support email, or respond to
the same Nagios page).

At this point, you want to add just
a sprinkle of structure: maybe an
iteration planning on Monday, daily
standups, and tracking big to-do items
and bugs on a whiteboard or in a
simple tool like Lighthouse. Perhaps
you switch to a support system like
Zendesk where incoming support
requests can be assigned and you add
a simple on-call rotation for pages via
Pagerduty. Your single internal chat and
email channels continue to work fine.

Resist the urge to introduce too
much structure and process at this
point. Some startups, on reaching this
stage, declare “we’ve got to grow up
and act like a real company now” and
immediately try to switch to heavy-
handed tactics. For example: full-
fledged SCRUM, heavyweight tools
like Jira, or hiring a project manager
or engineering manager. Don’t do that
stuff. You’ve got a team that works

well together in an ad-hoc way. You
probably have some natural leaders on
the team who direct a lot of the work
while still being hands-on themselves.
And while your product is launched
and in the hands of users, in many ways
you’re still trying to figure out what
your company is really all about. Intro-
ducing bureaucracy into this environ-
ment is almost guaranteed to block you
from doing what you’re really sup-
posed to be doing, which is pivoting in
search of your scalable business model.

Focus at this stage is key. Everyone is
still a generalist, but the whole devel-
opment team should be aligned behind
a single goal (aka milestone) at a time.
If you try to attack multiple battle-
fronts at once, you’ll do everything
badly. Great companies are more likely
to die of indigestion from too much
opportunity than starvation from too
little. Pick your battles carefully and
stay focused.

Crisis on the brink of Stage 3
Grow to 10-15 developers, and you’re
on the verge of a major team structure
change. I’ve been told that many prom-
ising startups have been killed by fail-
ing to weather the transition between
these stages.

With this many developers, itera-
tion planning, standups, or any other
kind of development-team meeting has
become so big that the attendees spend
most of their time bored. Any indi-
vidual developer will find it difficult

28  STARTUPS

to find a sense of purpose or shared
direction in the midst of trudging
through laundry lists of details on other
people’s work.

In programming, when a class or
sourcefile gets to big, the solution is
to break it down into smaller pieces.
The same principle holds for scaling a
development organization. You need to
break into targeted teams.

Stage 3: Breaking into teams
Dividing your single team of general-
ists is harder than it sounds. Draw the
fences in the wrong place, and you’ll
create coordination problems that
make things even worse. Find the right
places to divide, and you’ll see a mas-
sive increase in focus, happiness, and
productivity.

The key to a good team is a well-
defined sphere of authority, with clear
interfaces to other teams. The team
should own the vision and direction
for the part of your product that it
works on. It should be able to operate
with maximum autonomy on every-
thing it owns without having to ask for
permission or information from other
teams, except for the infrequent case
of a feature or bug that crosses team
boundaries.

A close mapping between your
software architecture and your team
architecture will be a big help here. By
this time you have probably already
converted your monolithic application

into a distributed system of multiple
components communicating over
REST, AMQP, or other RPC mecha-
nism. (And if not, you should strongly
consider doing so, coincident with your
dev team split.) There should be an
obvious mapping between software
components — each of which has their
own source repository and deploy-
ment location/procedure — and your
nascent teams.

Deciding what person goes on what
team will be somewhat arbitrary at
first. My approach was to sit down
with each developer and dig in to
understand what parts of the system
they were most passionate about work-
ing on. From there I divided up the
teams as best I could. Some people
found perfect homes on their first team
assignment; others were dissatisfied
and needed to transfer to another team
fairly quickly. Over time, the team
territories became very well-defined,
so it became much easier to slot new
hires in the right place. Let developers
follow their own passions and they will
gravitate toward the team where they
will do the best work.

Separately, you should have found
your product/market fit by this point.
If you’ve grown to this size and are still
figuring out your company’s meaning
for existence, you’ve got big problems.
If that’s the case, stop growing and
scale back down until you nail the
product/market fit.

  29

Specialization
Another reason to break into teams
is specialization. Types of engineering
specialists include ops engineers/sysad-
mins, infrastructure developers, front-
end web developers, back-end web
developers, business engineers / data
analysts, and developers who focus on
a particular language. Language spe-
cialists are becoming more common,
because many internet-scale companies
write high-concurrency components
in functional programming like Erlang,
Scala, or Clojure, generally handled by
a different set of developers than the
authors of the Ruby, Python, or PHP
web components.

Early on, specialists are rarely desir-
able. There are too many different
layers to work on in delivering a soft-
ware product relative to the number
of people available to contribute, so
everyone pitches in on everything. This
may put a developer doing such far-
ranging work from projects like kernel
updates on the OS to front-end proj-
ects like writing JQuery effects for the
UI.

Once you reach the point where
you’ve got a dozen developers, your
product has reached a level of usage
and maturity where the problems
are getting much harder. Scaling the
database is something that is not only
a full-time job, but requires a deep
level of specialized knowledge that
can’t be acquired if that person is also

simultaneously learning to be a JQuery
expert and an iOS expert and an
Erlang expert.

You need people who can and are
willing to focus on just a few closely
related areas so that they can build
very deep knowledge in those areas.
Some of these will be your existing
generalists deciding to specialize, and
some will be new hires. You can now
hire for the kind of specialist that
would not have been appropriate when
your company was smaller. General-
ists are always useful to have around,
and some of them may move into
management — filling business owner
roles for a team, rather than hands-on
development.

Heroku’s first teams
Heroku’s initial team breakdown
looked like this:

■■ API: Owns our user-facing web app
and the matching Heroku client gem.

■■ Data: Builds and runs our Post-
greSQL-as-a-service database
product.

■■ Ops: Shepherds and protects availabil-
ity of the production system.

■■ Routing: Manages everything neces-
sary to get HTTP requests routed to
user web processes.

■■ Runtime: Handles packaging code for
deploy and starting/stopping/manag-
ing user processes.

30  STARTUPS

Each of these teams owns between
one and five components. For example,
the API team owns the Rails app,
which runs at api.heroku.com, and the
Heroku client gem. The Data team
owns the provisioning and monitoring
tool for our database service, as well as
all of the individual running databases.

Team size and roles
For us, the ideal team layout has been
two developers and one business
owner. One developer is not enough
over the long term (they need a second
pair of eyes on the code, and besides,
one is a lonely number). Three devel-
opers works fine as well. Get to four
or five and things start to become a bit
crowded; there may not be enough sur-
face area for them to all work without
stepping on each others’ toes con-
stantly. Almost all of Heroku’s teams
have two developers.

“Business owner” is a somewhat
clumsy term, but it’s the best we’ve
come to describe the person doing
some combination of product man-
agement, project management, and
general management for the team. The
business owner fills the important role
of knowing the business value of the
team’s work to the company and how
it fits in with the larger product. They
can broker cross-team communica-
tion, help prioritize projects and tasks
by business value, and may provide
status reports on the team’s progress or

presentations to the senior executives
and/or the entire company to justify
the team’s ongoing existence.

I’m a fan of hacker-entrepreneurs in
the business owner role: a strong tech-
nical background means they have an
in-depth understanding of the work
being done and are able to command
huge respect from those whose work
they are directing. This sort of person is
not necessarily available for all teams,
but find them when you can. In many
cases it involves quite a bit of convinc-
ing to get a hacker to give up coding as
their primary function.

Avoid having developers belong to
more than one team. They are makers
and need to be able to focus their full
attention on their team’s current proj-
ects without distractions or attempts
at multitasking. Business owners, how-
ever, can sometimes belong to multiple
teams. It’s not always a full-time job,
and there are benefits to cross-team
communication by having one person
as the business owner for two or more
related teams.

  31

Cohesion
In the earlier stages, you should avoid
attacking on multiple battlefronts, and
instead keep all developers focused on
a single goal for the company. With
creation of fiefdoms for each team, this
has changed. Now you can and should
attack on multiple battlefronts. Each
team should be executing indepen-
dently against its own goals and not
worrying too much about what other
teams are doing.

It’s awesome to be able to pursue
three, four, five big goals simultane-
ously. A few months after breaking into
teams at Heroku, we had a day where
three different teams were all releasing
major new features. It’s an incredible
feeling.

But now you have a new problem:
lack of cohesion. Your decentralized
teams are setting their own roadmaps
and deciding on features indepen-
dently. To avoid fragmentation in your
product, someone needs to decide an
overall direction and set of product
values. More succinctly: you need a
strategy. n

Adam is a hacker, technology entrepreneur,
and occasional rapscallion. He’s co-founder
and CTO at Heroku, and author of The Twelve-
Factor App [12factor.net]. Follow his work via
adam.heroku.com or @hirodusk

Reprinted with permission of the original author.
First appeared in hn.my/devteam (adam.heroku.com)

http://12factor.net
http://adam.heroku.com
http://twitter.com/hirodusk
http://hn.my/devteam

32  STARTUPS

In late 2009, I created an online
persona named Pete London, a
self-described JavaScript ninja, to

help attract and hire the best JavaS-
cript recruiters. While I never hired
a recruiter from the experiment, I
learned a ton about how to compete
in today’s Silicon Valley talent war.
Based upon two years of non-scientific
research, here’s what you should
know…

The recruiting crisis
In late 2009, my desk was piled with
JavaScript resumes. Our homegrown
JavaScript framework edged us over
competitors but maintaining our
technical advantage meant carefully
crafting a lean, delta-force Web team.
Though I averaged two interviews a
day, we had only grown the team by
three or four engineers each year.

However, in 2010, that had to
change. It was our first year with a real
revenue target and also the first time
we planned to pivot from our original

IM product. We charted our end-of-
year goals and quarterly milestones,
and we eventually backtracked to our
team and hiring priorities. To meet
our 2010 goals, I needed to double the
JavaScript team in just one quarter.
If I didn’t, innovation would stall and
without revenue, our business would
be in serious jeopardy.

 I had very little more to give. Over
the previous four years, I had already
spent my personal networks, seeded
every nook of the Web with job
descriptions, and experimented with
guerilla recruiting tactics like hosting
JavaScript meetups across the country,
planting hand-written congratula-
tory notes on the seats of CS Stanford
students who’d just finished their
finals, coding a spidering engine to find
online JavaScript resumes, and even
buying Google AdWords for relevant
terms like xmlhttp, opendatabase, and
localstorage.

By Elaine Wherry

The Recruiter Honeypot

  33

 But then my recruiting problem
went from serious to heart-stopping
dire. In the final months of 2009, every
female on Meebo’s recruiting team
became pregnant within a month of
each other. Our expectant mothers
were searching for contract replace-
ments, but as winter crept closer, find-
ing someone who could temporarily
step up to our extraordinary JavaScript
challenges during our most critical
hiring quarter looked unlikely. I was
truly on my own.

Pete London is born
I desperately needed amazing recruit-
ers. After the third expectant mother
relayed her good news, I sunk into to
my chair overwhelmed with urgency
and stared blankly at my monitor
thinking over and over, Oh my god,

what do I do now? My first impulse
was to look at the recruiters in my
Inbox — specifically those who had
pinged me for a JavaScript role and
presumably had prior JavaScript
recruiting experience. However, I also
needed a recruiter who was smart
enough not to poach a founder.

 The honeypot idea emerged slowly,
If only I weren’t a founder! Which
recruiters would have contacted me as
an engineer? I stewed on the idea of
posting my resume online with a ficti-
tious name for days. Then one sleepless
night, without telling anyone, I woke up
and posted a small three-page website
[petelondon.com] with an about page,
resume, and blog for a supposed Pete
London whose interests and engineer-
ing persona mirrored my own except
he wasn’t a founder. I swapped out
my post-graduate experience with my
husband so it wouldn’t be too easy to
trace back to me. I returned to bed with
a small glimmer of hope — I had been
hunting for recruiters for months, but
now the recruiters would come to me!

http://petelondon.com

34  STARTUPS

Last resort — Linkedin
My hopes sank pretty quickly.
PeteLondon.com sat alone in Internet
ether for weeks with absolutely nada
activity. I was about to pull down the
entire site when I thought, I’ll just post
the resume on LinkedIn as a last resort.

Bam. It was as if I’d finally stumbled
upon the door to the party.

 On December 10th, 2009, the
first LinkedIn message arrived from
Google. Mozilla followed on December
15th. Ning and Facebook followed in
January. Since then, Pete averaged a
recruiter ping every 40 hours and saw
530 emails from 382 recruiters across
172 organizations.

What I learned
After two and a half years, I learned
less about recruiting recruiters and
more about recruiting engineers. Here
are my eight biggest take-aways to find-
ing the best talent online…

Lesson 1: Recruiters rely exclusively
on Linkedin

You might be thinking, Really? This
is obvious! But understand the con-
text. I was interviewing tech recruit-
ers who said they had “moved beyond
LinkedIn.” LinkedIn was a “crutch for
everyone else” but them. When I asked
what techniques they used to fulfill
JavaScript roles, they’d describe com-
plex Boolean queries, highway 101
billboards, and obscure search engines.
I ate it up! But at the same time, I
wondered, Wait, if this is all true, why
hasn’t anyone found Pete London yet?

To further my confusion, LinkedIn
wasn’t how Meebo found its ini-
tial superstar JavaScript team. From
2005-2011, only one JavaScript team
member was hired via LinkedIn — the
rest came from personal networking,
meetups, blog scouting, and other gue-
rilla recruiting approaches.

 I also assumed that a professional
who made their living from recruiting
would want to optimize their response
rate and would seek out ways to contact

  35

Pete London beyond LinkedIn. Though
Pete London’s website and personal
email address were just one click from
his LinkedIn profile page, the majority
of emails still arrived via LinkedIn —
especially from larger companies.

 Surprisingly, very few recruiters
tried more than one communication
channel.

TIP #1: If you’re a start-up who always
feels like you’re scraping the bottom of the
LinkedIn barrel, you’re probably right
— LinkedIn is incredibly competitive.
Recruit latent talent off the grid.

TIP #2: Recruiters usually flock to Linke-
dIn first, if not always. To increase your
personal opportunities, join LinkedIn.

Lesson 2: Fear the Silicon Valley long
tail

 When I wrote to potential engineers,
I always imagined my email landing
next to recruiting giants like Google
or Facebook. As a result, I was careful
to emphasize Meebo’s unique start-up
learning opportunities, amazing culture,
and the opportunity to make impact.

However, my strategy was mis-
guided. The Silicon Valley companies
that drew TechCrunch headlines from
2010-2012 (i.e. Adobe, Amazon, AOL,
Apple, Facebook, Google, LinkedIn,
Netflix, Microsoft, Mozilla, Skype,
Twitter, Yahoo, Zynga) only repre-
sented 15% of the landscape.

 But I should have been more scared
than I was — the emails from start-
ups and mid-sized companies sounded
nearly identical (my own included):
“We’re a fast-growing start-up disrupt-
ing a lucrative space where your tal-
ents will shine and your efforts will be
amply rewarded.” By emphasizing the
classic start-up experience, everyone
sounded exactly the same:

36  STARTUPS

Start-up in Mountain View: “We’ve
assembled a world class team. Our
monthly uniques have already
exceeded [###] million and continue
to trend higher at a rapid pace. We’ve
reached an inflection point where we’re
looking to scale, and with your back-
ground I wanted to speak with you
about our engineering hiring.”

Start-up in San Francisco: “There are
a variety of interesting technical chal-
lenges in front of us including scaling
for millions of users, developing appli-
cations, building a sophisticated data
platform, securing user data and, most
importantly, ensuring an incredible
experience for our users. Aside from
our plethora of awesome technical proj-
ects, this is also a great place to work.
Everyone on the team benefits from free
meals and tremendous organizational
transparency (weekly all hands, daily
stand ups, etc.)”

Larger companies employed an
entirely different strategy and anec-
dotally, I saw terser, canned emails
from larger companies than start-ups.
To quantitatively compare strategies,
I went through all emails and noted
whether the recruiter included role
details, company information, or if the
email was personalized specifically to
Pete. I was incredibly lenient and gave
points whenever I could. By almost
every metric, the larger companies

performed weakest: smallest word
count (114 vs. 148 words per email),
least likely to describe the company
mission or personalize email, and least
likely to use a personal email address.
However, large companies hired triple
the number of recruiters and made up
for their shortcomings in volume. Pete
heard from an average of 1.4 recruiters
at each start-up and 4.6 recruiters at
each large company.

 You might assume that with more
internal recruiters, big companies
would do better than start-ups that
depend more on external recruiters.
After all, big companies have had more
time, resources, and infrastructure to
make this a key strategic asset. But
it turns out you don’t want to emu-
late the big guys and you also don’t
want to assume they are your stiffest
competition.

TIP #3: Your real recruiting nemesis is
the start-up down the street. Pitch your
job opportunities with more specificity
than “fast-paced, innovative startup.”

  37

Lesson 3: The recruiting landscape
isn’t just filled with recruiters

 Only 97% of the recruiting emails can
be attributed to traditional recruiting.
So who represents the remaining 3%?

Surprise! VCs — specifically early-
stage angel investors.

Though they are a small lot, they
are a super lethal bunch with an eye
on your jugular artery — your revered
first engineers who built your system
from scratch. The charming VCs know
that your prized engineers could fulfill
a similar role at their future portfolio
companies and set their hooks early. In
most cases they don’t have a specific
company or role in mind but are just
proactively networking and hoping to
be top-of-mind in the future. Given
how interconnected and fast-moving
the start-up world is, this might be
inevitable but woah! good to know.

“I’m with [a VC firm] and my char-
ter is to build out their talent services
capabilities. What that means is we
are looking for high caliber individuals
that would be interested in potentially
exploring opportunities with our portfo-
lio companies.

Your experience is exceptional and
you have the type of background that
should be a part of the network. If you
are interested in learning more I would
love the opportunity to speak with you
in more detail. What we are looking
to establish is a “go to” network of top
notch individuals that would be a
value add to our portfolio of companies.
I hope to hear from you soon.”

TIP #4: Keep your engineers happy (i.e.
free food, great people, & amazing chal-
lenges). When the VCs come knocking,
make sure your MVPs are glued in.

Lesson 4: Can a start-up rely on
external recruiting?

 As a start-up, you are inevitably
resource-starved. When you have the
good fortune to gain traction, you have
the setback of suffering infrastructure
growing pains while realizing the only
way to get ahead is to find time to
recruit, interview, and close candidates.
In the early days, external recruiters
appeared on Meebo’s doorstep and
promised to screen and pass along

38  STARTUPS

qualified candidates so I could turn my
attention back to Friday’s release — it
seemed like a dream come true!

However, the first people you hire
set your engineering and cultural DNA
for the lifetime of the organization
and while you desperately need to
hire well, can you depend on external
recruiters to step up to the task? Once
the scaling challenges strike, does it
make more sense to proactively hire a
superstar in-house recruiter or to rely
on external recruiters to scale the engi-
neering team?

The answer is surprising — exter-
nal and internal recruiters perform
similarly in start-up environments.
Internal recruiters are 14% more likely
to describe the position but 14% less
likely to personalize the email.

However, larger companies don’t
have a viable external recruiting
option. External recruiters at the top
companies were much weaker over-
all — 340% less likely to include a
description of the role, 140% less likely
to personalize their email, and 88%
less likely to include detailed company
information. Though larger company
recruiters were relatively weak overall,
in-house recruiters are their only viable
option.

 Given this significant performance
difference, it’s no surprise that larger
companies also employ far more inter-
nal recruiters than start-ups.

TIP #5: As a start-up, you can sleep
easier knowing that external recruiters
are a fantastic resource. Find your super-
star engineers first and your superstar
in-house recruiters second.

TIP #6: Contingency recruiting firms are
financially incentivized to hire for less
selective companies. For difficult roles, a
dedicated contract recruiter may be your
only realistic option.

However, before you get too
excited about external recruiters, read
further…

Lesson 5: Be careful whom you
invite into your house

 Unfortunately, it’s not all about the
numbers. Though external recruit-
ers perform well for start-ups, there’s
another side to this story. It pains me to
write this, but I think it’s important to
share…

Meebo employed lots of external
recruiters when we were getting off
the ground. We had standard 18-month
no-poach restrictions with all of our
contractors specifying that those

  39

recruiters were not allowed to contact
Meebo employees within 18 months
of our contract expiring. Most of those
contracts expired in 2008-2009.

However, every recruiter and firm
we’d worked with who was still in the
recruiting business tried to poach Pete
London.

Every single one!
It’s impossible to know whether our

former recruiters were pinging employ-
ees during the no-poach period prior
to 2009 but I wouldn’t be surprised.
However, I doubt they were being
malicious — it’s more likely they were
just disorganized and didn’t communi-
cate an off-limits list to their staff.

In addition to pings from too-familiar
recruiters, there were two cases that
left me especially uneasy. In the first
case, a former recruiting agency tried
to poach Pete London and then 15
minutes later, wrote to me offering
recruiting services! I was being pulled
on both ends! When I didn’t respond,
they repeated the stunt again six
weeks later. I got wind that they’d sent
recruiting emails to everyone on our
Engineering teams and I called them on
it (without referencing Pete London). I
never heard from them again.

May 13th, 2:20pm

“Hi Peter,

I am a recruiter who works with high-
growth, top-tier start ups and industry

leaders. I came across your informa-
tion and was impressed with your
background. I’m guessing you may not
be actively looking for a new job right
now, but I’m sure you plan on continu-
ing to advance your career in the long
term, and would be open to hear about
opportunities that may accelerate that
advancement.

I’d like to get a better idea of your
interests and goals, so that I can iden-
tify and present to you a few of the
most attractive opportunities in the
market both now and in the future.
You may be pleasantly surprised at
what is out there for you. Let me know
a good time and number to call you…”

May 13th, 2:35pm (15 mins later)

“Hi Elaine,

I’m a recruiter… We specialize in the
placement of technology professionals.
I’ve been working with many excel-
lent candidates from the space and
researching companies for them. meebo
came up in my search as a good com-
pany to consider, so I’d like to present
some of these candidates to you for
interviews.

Please call me or email me a good time
and # to reach you…
Thanks and I look forward to working
with you!”

40  STARTUPS

The second case that made me
uneasy involved a contractor recruiter
who worked from Meebo’s office for
nearly a year. During this time, the
recruiter went to lunch with the team,
participated in hackdays, and became
close with many folks. Two years later,
that recruiter poached Pete London
and a few hours later, showed up at
Meebo’s informal Friday happy hour!
I was definitely in a queasy gray zone
where there wasn’t a strong divide
between our personal and professional
relationship. Technically, it was hard
to nail down any real grievances, but
I was certainly aware that our teams
were constantly under former recruiter
attack.

External recruiters are an inevitable
necessity for start-ups. But after seeing
all of the emails that those external
recruiters generated in subsequent
years, I wish Meebo had switched to
in-house recruiting sooner.

The external recruiters you work
with today are good, but they will
learn your strengths and your team,
and you’ll probably be uncomfortably
top-of-mind later on.

TIP #7: External recruiters are a mixed
blessing — be selective and switch to
internal recruiters as soon as you can.

TIP #8: Push for at least 18-month no-
poach policies with external recruiters.

Lesson #6: The most common little
white lie is…

 With very few exceptions, recruiter
emails were well-written, smarmy-free,
and didn’t smell of phishing. I expected
far worse. However, if a little white
lie is going to sneak into an email, it’s
going to look like this…

“I was referred to you as a possible
source for a position I am working on
here” – Large company

“I previously worked with [Bob] &
[Andrew] and have heard great things
about you and feel you’d be a great
fit…” – Startup

“I understand that you may not be
actively looking at this point, but we
have heard that you are very good
and wanted to see if you might con-
sider looking into a position with [us]”
– Startup

“I’m reaching out to you because
I’ve been an admirer of your work
at Meebo and believe you could be
the perfect founding engineer to lead
front-end engineering for our product.”
– Startup

  41

Little white lies appeared across all
recruiting groups and generally took
the form, “I was referred to you” or “I’ve
heard very good things.” While even
unfounded flattery feels good, I learned
to be suspicious of vague recruiter
compliments.

TIP #9: Flattery will get you everywhere!
Take recruiter praises with a healthy
pinch of salt.

Lesson #7: It’s time to buy more
hoodies

If you are a JavaScript engineer, you
know that the talent market is increas-
ingly competitive and you are inevi-
tably feeling the pull of San Francisco.
The demand for engineers has intensi-
fied over the last two years and recruit-
ing activity has exploded in the foggy
north.

 It’s impossible to ignore the momen-
tum that is growing in San Francisco.
If I were a start-up getting off the
ground today, I would start in San
Francisco. In 2011, Meebo saw more

of its JavaScript engineers hailing from
SF than from Mountain View for the
first time. While it’s exciting that there
are more geographic options to start a
tech company, it’s also time to recog-
nize that companies need strategies for
geographically dispersed teams and for
recruiting from different areas of the
Peninsula.

TIP #10: As the city of Palo Alto or
Mountain View, I would make sure
that resident tech companies are happy
and that public transportation is a top
priority.

TIP #11: When writing to candidates,
specify where your office is located — it’s
no longer assumed that an opportunity
is south of San Mateo unless otherwise
specified.

TIP #12: The entrepreneurial epicenter is
no longer Palo Alto. If you’re south of San
Mateo, figure out your SF strategy now.

Lesson #8: Who’s the best in the
valley?
You are.

There were 19 emails from managers,
execs, founders, and board members
who presumably had no professional
background in recruiting. However,
those non-recruiters collectively out-
performed every other professional
recruiting segment — scoring just as
high or higher by every metric: email

42  STARTUPS

quality, outreach technique, and word
count. No matter how many recruit-
ers you hire, there is no substitute for a
heart-felt note from a future manager.

 However, managers have responsi-
bilities beyond recruiting and it’s not
realistic to spend eight hours a day
reading resumes and penning candidate
emails — professional recruiters are
a necessity. However, most managers
probably hope to hire a recruiter who
does the job better than themselves.
Of all of the emails Pete received, only
40% of the recruiter emails scored
better than the average manager who
actively sought out Pete London. And
within this top 40%, there were pro-
portionately more start-up recruiters
than any other segment.

TIP #13: Look for recruiters with
start-up backgrounds rather than large
companies.

TIP #14: Hire the best recruiters and
treat them like gold. If a product is only
as good as its team, then the product is
only as good as its recruiting team.

Summary
Of the 382 recruiters, there was only
one recruiter who actually figured it
out. To do so, he did one thing that no
other recruiter did — picked up the
phone and called someone who should
have been connected to Pete to ask
for an introduction. And that’s where
the ruse unraveled. If there were one
recruiter I would have partnered with
during my toughest hiring crunch ever,
it would have been him.

However, that recruiter had also
recruited for Meebo the prior year and
he shouldn’t have been poaching Pete
London from our team. He apologized.
In the end, the honeypot ended up
identifying the one amazing recruiter I
already knew about but couldn’t justify
working with again.

Ultimately, our recruiting challenge
was solved by hiring more JavaScript
managers who could help recruit too. n

Elaine Wherry co-founded Meebo in 2005 and
served as Meebo’s Chief Experience Officer
and Vice President of Product. Prior to Meebo,
Elaine Wherry served as Manager of Usability &
Design at Synaptics. At Stanford, she majored
in Symbolic Systems with a concentration in
Human-Computer Interaction. Her unmar-
ketable interests include seeing the world via
rented bicycles, playing the violin, and perfect-
ing homemade ice cream recipes.

Reprinted with permission of the original author.
First appeared in hn.my/honeypot (ewherry.com)

http://hn.my/honeypot

  43

I wore my Prime Factorization Sweater
to KidlitCon09, and it shows up in
all my pictures, so I think it’s time

for me to explain it.
This is the sweater that proves that I

am a Certified Math Nut.
Okay, here’s how it works. You have

to start in the bottom left-hand corner,
because the mathematician in me
couldn’t bear to start anywhere except
where the origin would be on Carte-
sian coordinates. Naturally, the num-
bers go from left to right and from low
to high.

I’ll post a picture of the front of the
sweater:

 Okay, look at the bottom row. It
looks like there is a blank space on the
left. That represents 1, because 1 is the
background color, because 1 is a factor
of every number.

SPECIAL

My Prime Factorization
Sweater
By Sondra Eklund

44  SPECIAL

Next is a blue square, which repre-
sents 2.

Next is a red square, for 3.
Then comes 4. 4 = 2 x 2. So 4 is rep-

resented by two blue rectangles.
Then comes 5. 5 is prime, so 5 gets a

new color, yellow.
Next is 6. 6 = 2 x 3. So 6 is repre-

sented by a blue rectangle and a red
rectangle.

7 gets a new color, purple.
8 comes next. 8 = 2 x 2 x 2. So 8 is in

a square with three blue rectangles.
Then comes 9. 9 = 3 x 3. Two red

rectangles.
Last on the bottom row is 10. 10 =

2 x 5, so we have blue and yellow.The
second row starts with 11, which is
given the color pink.

12 has three factors, since 12 = 2 x 2
x 3, so two blues and a red.

Get the idea? This sweater presents
a chart giving the color-coded prime
factorization of every number from 2
to 100.

The patterns are wonderful and fas-
cinating. You’ll quickly notice that the
yellows and the blues line up, because
5 and 2 are factors of 10. You also
might notice that all perfect squares
are symmetrical. Multiples of 11 go
in a lovely pink diagonal across the
sweater. There are hundreds more pat-
terns. It would be a lovely visual aid for
teaching number theory. Fun to quietly
wear to Math competitions, too!

What’s more, you can use this as a
quick conversion table to convert to
Octal (Base 8), because on the back I
did the same thing with rows of 8:

 The fun thing about rows of 8 is that
the patterns are all different! Notice
how the last column is full of blue
squares because every number there is
a multiple of 8 and has at least three
factors of 2. And now 9 (two reds)
acts like 11, going diagonally up the
sweater, as does 7 (purple) in the oppo-
site direction.

On the sleeves, I did rows of 2 and
rows of 3. The rows of 3 is the only one
where the blues do not line up, because
2 and 3 are relatively prime.

Isn’t it just the coolest thing in the
world?!!!

Okay, I warned you: this is the item
that proves I am a Certified Math Nut.
I can get hugely excited and animated
talking about this sweater.

  45

I have already done a library program
called “Puzzles and Patterns” show-
ing kids how they can make simple
codes using the ideas from this sweater.
There’s definitely a children’s book in
there, but I haven’t gotten around to
writing it yet. I definitely plan to some
day!

One of the cool things about this
sweater is that it works in any language
and on any planet!!! You see, even if
an alien race had only four fingers on
each hand, they could look at the back
of the sweater and all their numbers
would work. For that matter, a number
system with a base of 7 or some other
strange base would still work, even
though it might not be in neat rows for
that base. The chart is entirely indepen-
dent of the symbols used to represent a
number, and based only on color.

So we had a family joke that if an
alien ever came to our door, we’d run
and get the sweater to prove that we
are intelligent life.

I only hope the aliens are not color
blind!

Of course I also like to tell the story
that when I was knitting this sweater,
I brought it along to visit my family
and friends one Christmas. Most of my
family are Math Geeks, too, so they
were impressed. But one friend had a
young son who listened to my explana-
tion and responded, “That’s just weird!”

What can I say? He does have a
point. Call me weird, but I still think
it’s one of the coolest things in the
world! n

Sondra taught college math for 10 years, then
switched careers and am currently a children’s
librarian who loves getting kids excited about
reading — and math. She knits mathematical
objects for fun.

Reprinted with permission of the original author.
First appeared in hn.my/prime (sonderbooks.com)

Check out Sondra’s CafePress Store [cafepress.com/
sonderbooks], where you can order t-shirts using this
idea.

http://hn.my/prime
http://cafepress.com/sonderbooks
http://cafepress.com/sonderbooks

46  SPECIAL

After a long day at school, the
house phone rang and my
mother answered. “It’s Apple

and they want to have a word with
you,” she said. At the time, I was 16
and I had been hustling iPod parts to
all parts of the world.

“I’m not telling you this as an author-
ity but as say, an uncle figure: you
need to stop what you’re doing.” – An
undisclosed Apple attorney

When I was 15, my third-generation
iPod had broken. This was a tragedy as
music has been a huge part of my life
for as long as I can remember. With
no funds to purchase a new iPod, I
was determined to fix it. After scour-
ing eBay, I purchased a logic board
and read countless tutorials on how
to crack open my iPod and surgically
replace the logic board. The operation
was successful and I felt triumphant

— functioning iPod, new awesome skill
as iPod-surgeon, and none of my music
was `lost. I grew very curious as to how
frequently out-of-warranty iPods mal-
functioned and simply required a new
part or two. Everyone knows that out-
of-warranty Apple repairs are absurdly
expensive, often costing as much as
a new iPod. I found that second- and
third-generation iPods broke a lot and
people rarely bothered fixing them.
Word spread amongst my friends that
I could fix broken iPods and soon after,
people flocked to me to fix their iPods.
The supply for parts was scant and as a
result, prices were very high. I started
buying broken iPods by the bulk,
salvaging the functioning parts and
accumulating a surplus of parts to fix
friends’ iPods.

A hobby and good deed turned into
an obsession and I started buying huge
bulk orders of broken iPods and selling
the parts on eBay. By the time I was

Hacking the iPod

By Teddy Worcester

How I Earned $65K in High School

  47

17, I had purchased over a hundred
iPods, turning a spare room in my house
into an iPod graveyard. From 2005
to 2008 (15-18), I had taken in more
than $65,000 in revenue from my iPod
and eBay ventures before I could even
legally hold a Paypal account.

I saw the third-generation iPod evolve
into the fourth-generation and then the
fourth-generation color, and eventually
the beautiful fifth- generation, arguably
the biggest leap in technology of any of
the iPod generations. Generation after
generation, as the components shrank,
repairs became harder and harder. I
hated working on iPod Minis. Nanos?
Forget about it. The parts became so
integrated and hard to replace that the
market for parts deteriorated. I had a
good two-year run, but I wasn’t making
much money off of parts anymore.
Instead of buying and selling parts, I
started to buy broken iPods that were
still under warranty, mailing them
back to Apple and receiving brand
new refurbished iPods for the cost of
shipping. This was the most lucrative
venture of all, but it was the primary

reason why an
Apple lawyer had
called me that
day. Understand-
ably so, they did
not like me taking
advantage of
their transferrable
warranties. They
knew that I was

a kid and let me off the hook, but it
hurt to have Apple crush your income
stream, the income that had allowed
me to avoid a high school job while my
cohort was slaving away at part-time
jobs.

I learned so much peddling iPod parts.
From customer service, to accounting,
to shipping logistics; it was my foray
into how a business functioned. I made
a lot of silly mistakes, but they were
all part of the learning experience. My
profit margin was not monstrous, but
the hard work and the lessons learned
were invaluable. I differentiated myself
by offering international shipping, a
service that few sellers bothered with at
the time. Receiving orders from China,
Eastern Europe, Australia, and numer-
ous far flung regions was incredibly
exciting and eye-opening. The power
of e-commerce allowed a high school
student to offer an affordable way for
someone across the world to repair their
iPod. It fascinated the hell out of me.
Once you experience this power first-
hand, it becomes addicting. The internet
had won me over one iPod at a time. n

Teddy Worcester is a 22-year old product
manager living and working remotely in San
Francisco. In his spare time, he rides bicycles
and writes about travel. You can follow him on
Twitter at @teddy

Reprinted with permission of the original author.
First appeared in teddy.is/ipod

http://twitter.com/teddy
http://teddy.is/ipod

48  SPECIAL

01 You admire a character for
trying more than for their

successes.

02 You’ve got to keep in mind
what’s interesting to an audi-

ence, not what’s fun to do as a writer.
They can be very different.

03 Trying for theme is important,
but you won’t see what the

story is actually about till you’re at the
end of it. Now rewrite.

04 Once upon a time there was
___. Every day, ___. One day

___. Because of that, ___. Because of
that, ___. Until finally ___.

05 Simplify. Focus. Combine char-
acters. Hop over detours. You’ll

feel like you’re losing valuable stuff
but it sets you free.

06 What is your character good
at, comfortable with? Throw

the polar opposite at them. Challenge
them. How do they deal?

07 Come up with your ending
before you figure out your

middle. Seriously. Endings are hard,
get yours working up front.

08 Finish your story, let go even
if it’s not perfect. In an ideal

world you have both, but move on. Do
better next time.

09 When you’re stuck, make a list
of what WOULDN’T happen

next. Lots of times the material to get
you unstuck will show up.

10 Pull apart the stories you like.
What you like in them is a

part of you; you’ve got to recognize it
before you can use it.

The Rules of
Story Telling

By emma Coats

  49

11 Putting it on paper lets you
start fixing it. If it stays in your

head, a perfect idea, you’ll never share
it with anyone.

12 Discount the 1st thing that
comes to mind. And the 2nd,

3rd, 4th, 5th — get the obvious out of
the way. Surprise yourself.

13 Give your characters opinions.
Passive/malleable might seem

likable to you as you write, but it’s
poison to the audience.

14 Why must you tell THIS story?
What’s the belief burning

within you that your story feeds off of?
That’s the heart of it.

15 If you were your character,
in this situation, how would

you feel? Honesty lends credibility to
unbelievable situations.

16 What are the stakes? Give us
reason to root for the character.

What happens if they don’t succeed?
Stack the odds against.

17 No work is ever wasted. If it’s
not working, let go and move

on. It’ll be useful later.

18 You have to know yourself: the
difference between doing your

best and fussing. Story is testing, not
refining.

19 Coincidences to get charac-
ters into trouble are great;

coincidences to get them out of it are
cheating.

20 Exercise: take the building
blocks of a movie you dislike.

How do you rearrange them into what
you DO like?

21 You’ve got to identify with your
situation/characters; you can’t

just write “cool.” What would make
YOU act that way?

22 What’s the essence of your
story? What’s the most eco-

nomical telling of it? If you know that,
you can build out from there. n

Emma Coats worked as a storyboard artist at
Pixar for over five years, and has been writing
& directing live-action short films almost as
long. She recently left Pixar to pursue a career
in the liveaction film industry. You can follow
her on Twitter: @lawnrocket

Reprinted with permission of the original author.

http://twitter.com/lawnrocket

50  PROGRAMMING

20 Lines of Code That
Will Beat A/B Testing

Every Time

A/B testing is used far too often, for
something that performs so badly.
It is defective by design: segment

users into two groups. Show the A group the
old tried-and-true stuff. Show the B group
the new whiz-bang design with the bigger
buttons and slightly different copy. After a
while, take a look at the stats and figure out
which group presses the button more often.
Sounds good, right? The problem is staring
you in the face. It is the same dilemma faced
by researchers administering drug studies.
During drug trials, you can only give half the
patients the life saving treatment. The others
get sugar water. If the treatment works, group
B lost out. This sacrifice is made to get good
data. But it doesn’t have to be this way.

By Steve Hanov

PROGRAMMING

  51

In recent years, hundreds of the
brightest minds of modern civiliza-
tion have been hard at work not curing
cancer. Instead, they have been refining
techniques for getting you and me to
click on banner ads. It has been work-
ing. Both Google and Microsoft are
focusing on using more information
about visitors to predict what to show
them. Strangely, anything better than
A/B testing is absent from mainstream
tools, including Google Analytics and
Google Website optimizer. I hope to
change that by raising awareness about
better techniques.

With a simple twenty-line change to
how A/B testing works, that you can
implement today, you can always do
better than A/B testing— sometimes,
two or three times better. This method
has several good points:

■■ It can reasonably handle more than
two options at once, e.g., A, B, C, D,
E, F, G….

■■ New options can be added or
removed at any time.

But the most enticing part is that you
can set it and forget it. If your time is
really worth $1000/hour, you really
don’t have time to go back and check
how every change you made is doing
and pick options. You don’t have time
to write rambling blog entries about
how you got your site redesigned and
changed this and that and it worked or
didn’t work. Let the algorithm do its

job. These twenty lines of code auto-
matically find the best choice quickly,
and then uses it until it stops being the
best choice.

The Multi-armed Bandit Problem
 The multi-armed bandit problem takes
its terminology from a casino. You are
faced with a wall of slot machines,
each with its own lever. You suspect
that some slot machines pay out more
frequently than others. How can you
learn which machine is the best, and
get the most coins in the fewest trials?

Like many techniques in machine
learning, the simplest strategy is hard
to beat. More complicated techniques
are worth considering, but they may
eke out only a few hundredths of a
percentage point of performance. One
strategy that has been shown to per-
form well time after time in practical
problems is the epsilon-greedy method.
We always keep track of the number
of pulls of the lever and the amount
of rewards we have received from that
lever. We choose a lever at random10%
of the time. The other 90% of the time,
we choose the lever that has the high-
est expectation of rewards.

52  PROGRAMMING

def choose():
 if math.random() < 0.1:
 # exploration!
 # choose a random lever 10% of the time.
 else:
 # exploitation!
 # for each lever,
 # calculate the expectation of
 # reward. This is the number of
 # trials of the lever divided by the
 # total reward given by that lever.
 # choose the lever with the greatest
 # expectation of reward.
 # increment the number of times the chosen
 # lever has been played.
 # store test data in redis, choice in
 # session key, etc..

def reward(choice, amount):
 # add the reward to the total for the given
 # lever.

Why Does This Work?
Let’s say we are choosing a color for
the “Buy now!” button. The choices are
orange, green, or white. We initialize all
three choices to one win out of one try.
It doesn’t really matter what we initial-
ize them to, because the algorithm will
adapt. So when we start out, the inter-
nal test data looks like this.

Orange Green White

1/1 = 100% 1/1 = 100% 1/1 = 100%

Then a website visitor comes along
and we have to show them a button.
We choose the first one with the high-
est expectation of winning. The algo-
rithm thinks they all work 100% of the
time, so it chooses the first one: orange.
But, alas, the visitor doesn’t click on
the button.

Orange Green White

1/2 = 50% 1/1 = 100% 1/1 = 100%

  53

Another visitor comes along. We defi-
nitely won’t show them orange, since
we think it only has a 50% chance of
working. So we choose Green. They
don’t click. The same thing happens
for several more visitors, and we end
up cycling through the choices. In
the process, we refine our estimate of
the click through rate for each option
downwards.

Orange Green White

1/4 = 25% 1/4 = 25% 1/4 = 25%

But suddenly, someone clicks on
the orange button! Quickly, the
browser makes an Ajax call to our
reward function $.ajax(url:"/
reward?testname=buy-button"); and
our code updates the results:

Orange Green White

2/5 = 40% 1/4 = 25% 1/4 = 25%

When our intrepid web developer
sees this, he scratches his head. What
the F*? The orange button is the worst
choice. Its font is tiny! The green
button is obviously the better one.
All is lost! The greedy algorithm will
always choose it forever now!

But wait, let’s see what happens if
Orange is really the suboptimal choice.
Since the algorithm now believes it is
the best, it will always be shown. That
is, until it stops working well. Then the
other choices start to look better.

Orange Green White

2/9 = 22% 1/4 = 25% 1/4 = 25%

After many more visits, the best
choice, if there is one, will have been
found, and will be shown 90% of the
time. Here are some results based on
an actual web site that I have been
working on. We also have an estimate
of the click through rate for each
choice. n

Orange Green White

114/4071 = 2.8% 205/6385 = 3.2% 59/2264 = 2.6%

Steve Hanov has worked on everything from
embedded wireless protocol stacks to natu-
ral language processing and web apps. In his
spare time, Steve works on websequencedia-
grams.com and rhymebrain.com and blogs
about computer science topics from his home
base in Waterloo, Ontario.

Reprinted with permission of the original author.
First appeared in hn.my/bandits (stevehanov.ca)

http://websequencediagrams.com
http://websequencediagrams.com
http://rhymebrain.com
http://hn.my/bandits

54  PROGRAMMING

#Newbie programmer
def factorial(x):
 if x == 0:
 return 1
 else:
 return x * factorial(x - 1)
print factorial(6)

#First year programmer, studied
Pascal
def factorial(x):
 result = 1
 i = 2
 while i <= x:
 result = result * i
 i = i + 1
 return result
print factorial(6)

#First year programmer, studied C
def fact(x): #{
 result = i = 1;
 while (i <= x): #{
 result *= i;
 i += 1;
 #}
 return result;
#}
print(fact(6))

Evolution
of a Python
Programmer.py
By Fernando Meyer

  55

#First year programmer, SICP
@tailcall
def fact(x, acc=1):
 if (x > 1): return (fact((x - 1), (acc * x)))
 else: return acc
print(fact(6))

#First year programmer, Python
def Factorial(x):
 res = 1
 for i in xrange(2, x + 1):
 res *= i
 return res
print Factorial(6)

#Lazy Python programmer
def fact(x):
 return x > 1 and x * fact(x - 1) or 1
print fact(6)

#Lazier Python programmer
f = lambda x: x and x * f(x - 1) or 1
print f(6)

#Python expert programmer
import operator as op
import functional as f
fact = lambda x: f.foldl(op.mul, 1, xrange(2, x + 1))
print fact(6)

56  PROGRAMMING

#Python hacker
import sys
@tailcall
def fact(x, acc=1):
 if x: return fact(x.__sub__(1), acc.__mul__(x))
 return acc
sys.stdout.write(str(fact(6)) + '\n')

#EXPERT PROGRAMMER
import c_math
fact = c_math.fact
print fact(6)

#ENGLISH EXPERT PROGRAMMER
import c_maths
fact = c_maths.fact
print fact(6)

#Web designer
def factorial(x):
 #---
 #-- Code snippet from The Math Vault --
 #-- Calculate factorial (C) Arthur Smith 1999 --
 #---
 result = str(1)
 i = 1 #Thanks Adam
 while i <= x:
 #result = result * i #It's faster
 #result = str(result * result + i)
 result str(int(result) * i)
 #result = int(str(result) * i)
 i = i + 1
 return result
print factorial(6)

  57

#Unix programmer
import os
def fact(x):
 os.system('factorial ' + str(x))
fact(6)

#Windows programmer
NULL = None
def CalculateAndPrintFactorialEx(dwNumber,
 hOutputDevice,
 lpLparam,
 lpWparam,
 lpsscSecurity,
 *dwReserved):
 if lpsscSecurity != NULL:
 return NULL #Not implemented
 dwResult = dwCounter = 1
 while dwCounter <= dwNumber:
 dwResult *= dwCounter
 dwCounter += 1
 hOutputDevice.write(str(dwResult))
 hOutputDevice.write('\n')
 return 1
import sys
CalculateAndPrintFactorialEx(6, sys.stdout, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL)

#Enterprise programmer
def new(cls, *args, **kwargs):
 return cls(*args, **kwargs)

class Number(object):
 pass

class IntegralNumber(int, Number):

58  PROGRAMMING

 def toInt(self):
 return new (int, self)

class InternalBase(object):
 def __init__(self, base):
 self.base = base.toInt()

 def getBase(self):
 return new (IntegralNumber, self.base)

class MathematicsSystem(object):
 def __init__(self, ibase):
 Abstract

 @classmethod
 def getInstance(cls, ibase):
 try:
 cls.__instance
 except AttributeError:
 cls.__instance = new (cls, ibase)
 return cls.__instance

class StandardMathematicsSystem(MathematicsSystem):
 def __init__(self, ibase):
 if ibase.getBase() != new (IntegralNumber, 2):
 raise NotImplementedError
 self.base = ibase.getBase()

 def calculateFactorial(self, target):
 result = new (IntegralNumber, 1)
 i = new (IntegralNumber, 2)
 while i <= target:
 result = result * i
 i = i + new (IntegralNumber, 1)
 return result

print StandardMathematicsSystem.getInstance(new (InternalBase, new
(IntegralNumber, 2))).calculateFactorial(new (IntegralNumber, 6))

Fernando is a brazilian software engineer
who nowadays lives in Sao Paulo and enjoys
his wife, books, gadgets and life. He blogs
at fmeyer.org

Reprinted with permission of the original author.
First appeared in hn.my/evo (github.com)

http://fmeyer.org
http://hn.my/evo

  59

Complication is What
Happens When You Try to
Solve a Problem You Don’t
Understand
By Andy Boothe

Code should be simple. Code
should be butt simple. Code
should be so simple that

there’s no way it can be misunder-
stood. Good code has no nooks. Good
code has no crannies. Good code is a
round room with no corners for bugs
to hide in.

We all know this. So why does most
code suck?

Because it’s written by people who
don’t understand the problem they’re
trying to solve.

What is a program?
To make a gross oversimplification,
a program is nothing but a model of
things (for the sake of discussion, call
them “objects”) and rules for how those
objects interact with each other.

 A factorial program is nothing but
a group of objects (those “integer”
things), and a rule that turns one inte-
ger into another (the factorial func-
tion). A word processor is nothing but
a group of objects (the “alphabet”),
and a bunch of rules that describe how
those letters can be combined and
displayed on a page. And a social net-
work is nothing but a group of objects
(“people,” usually “idiots”) and a bunch
of rules about how those people can do
stuff to annoy you.

60  PROGRAMMING

I may be an introvert.
Anyway, these objects and their

associated rules should be very simple.
In fact, as Einstein pointed out, these
objects and their associated rules
should be made as simple as possible,
but no simpler. As the model needs to
be able to do more and harder things,
the objects and the rules will start to:

■■ Increase in number

■■ Remember more data

■■ Gain more and more corner cases

This gradual accretion of nuance and
behavior is called “complexity.”

Complexity? But this is about com-
plication, you moron.
Oh. Right.

So, remember a minute ago when I
said “This gradual accretion of nuance
and behavior is called ‘complexity’”?
Well… I lied.

But just a little.
In reality, this gradual accretion of

nuance and behavior from none at all
up to and including the minimum pos-
sible simplicity is called “complexity.”
Any incremental nuance and behavior
above and beyond that minimum is
“complication.”

Complexity is a necessary evil when
building systems that do anything
useful. If you’re doing anything more
complex than putting Hello, world!
on the screen, you’re going to need
some complexity. Complication, on

the other hand, is the bane of program-
mers’ existence.

When you pick up a new code base
and it’s a Gordian mess of 1,000-line
functions, 10-deep if/else ladders,
and — shudder — gotos, you’re bear-
ing horrified witness to a monument
of complication. And when you start
adding to your own code things like
haphazard conditions, or duplicated,
slightly different exceptional cases in
6 different layers of your model, or
generally making any change to your
program just hoping that it will work
this time for the love of God with-
out understanding the changes you’re
making, you’re worshipping at compli-
cation’s altar.

So what’s a dev to do?
Ultimately, a programmer’s job is less
to actually write code, and more to
manage complexity. Obviously you
need to build features and meet dead-
lines, but the code itself is incidental.
Hypothetically, if you could build
features without writing code — such
as by making a configuration change —
then you should. When you do have to
write code, though, it’s your job to write
the simplest possible code as much as it
is to build the feature at hand.

So, since a programmer’s real job to
manage complexity, there’s only one
thing a developer can do in the face
of complication — simplify, simplify,
simplify.

  61

A good developer has a natural,
almost visceral aversion to complexity.
A good developer smells complex-
ity a mile away, and constantly shifts
the code to keep his eyes to the front
and his back upwind just so complex-
ity can’t sneak up on him. It’s only by
diligently trying to avoid all complexity
that one can in fact avoid unnecessary
complexity.

The best way to manage complica-
tion is to avoid creating it in the first
place. If you find yourself in a mindless
change → pray → run loop, you don’t
understand your code well enough to
be editing it. Stop what you’re doing,
actually get up and walk away from
the keyboard, think about what you’re
trying to do, and don’t come back to
the keyboard until you understand
exactly what you’re doing and how
to do it. Obviously there’s some slack
here for debugging, but it’s not contro-
versial to say that you shouldn’t change
code you don’t understand, even (espe-
cially?) when it’s your own.

Unfortunately, despite our best efforts,
complication always finds its way in.
The best way to deal with complica-
tion that has already found its way into
your codebase is to attack it whenever
you find it. As you’re sitting down for
a coding session and reading your code
to get it back into your head, if it takes
you longer than about 10 minutes to
really get going, your code’s too com-
plicated. Take the opportunity to make

it simpler. (If you’re unfamiliar with
refactoring, Martin Fowler’s Refactor-
ing: Improving the Design of Existing
Code is the bible. Read it, live it, love it,
thank me later.) Do that every time you
sit down, and before too long your code
will be less complicated, and you’ll hate
yourself just a little less. n

Andy Boothe has been a developer for more
than 10 years, during which time he’s written
code for everything from calculators to enter-
prise application servers. He spends his time
now as an analyst and data scientist specializ-
ing in social media analysis for the Fortune 500.
You can find Andy on his website, sigpwned.
com, or on Twitter as @sigpwned

Reprinted with permission of the original author. First
appeared in hn.my/complicate (sigpwned.com)

http://sigpwned.com
http://sigpwned.com
http://twitter.com/sigpwned
http://hn.my/complicate

62  PROGRAMMING

Have you ever needed to
parse a URL using regular
expressions? It’s not easy

to write regular expressions (for a lot
of people, including myself), and it’s
even tougher to test if that regular
expression is reliable across every
situation. You could, of course, just
copy and paste a regular expression
(or function or library) that someone
else developed and use that, but I
propose that there is a simpler and
more concise way of parsing URLs
that doesn’t require any regular
expressions.

This method — originally posted
on Github by John Long [gist.github.
com/2428561], though probably not
originally discovered by him — uses
native parsing abilities built into the
DOM to give you simple access to
the parts of a URL simply by query-
ing properties of an anchor element.

By Joe Zim

The Lazy Man’s URL
Parsing in JavaScript

Check it out:

var parser = document.
createElement('a');
parser.href = "http://
example.com:3000/
pathname/?search=test#hash";

parser.protocol; // => "http:"
parser.hostname; // => "example.com"
parser.port; // => "3000"
parser.pathname; // => "/pathname/"
parser.search; // =>
"?search=test"
parser.hash; // => "#hash"
parser.host; // => "example.
com:3000"

This code is pulled directly from the
Gist that John Long posted at the above
link. I haven’t seen any statements about
which browsers this works with, but I
assume that, at a minimum, it works with
all modern browsers. If you don’t trust it,

http://gist.github.com/2428561
http://gist.github.com/2428561

  63

parser. There is a simple workaround that
forces the HTML parser to go over it though:

function canonicalize(url) {
 var div = document.createElement('div');
 div.innerHTML = "<a>";
 div.firstChild.href = url;
 // Ensures that the href is properly
 // escaped
 div.innerHTML = div.innerHTML;
 // Run the current innerHTML back
 // through the parser
 return div.firstChild.href;
} n

Joe Zim has been doing web development for 12 years,
which may make him sound old, but since he started
in middle school, he’s still pretty young. HTML and CSS
were the coolest inventions ever. In college, Joe was
introduced to real JavaScript, starting his full addiction.
Now his addiction pushes him to continuously learn
more and spread the knowledge to the internet.

you can either test it yourself,
or use a library such as URI.js
[hn.my/URI.js].

One of the coolest things
about this method is that you
can enter a partial/relative
URL into the href property
and the browser will make it a
full URL, just like it translates
partial URLs on real HTML
links into full URLs. For
example, try this using your
browser’s console on this page:

var parser = document.
createElement('a');
parser.href = "/";

parser.href; // =>
"http://www.joezimjs.com/"

You could also just use an
empty string for the href and
it would give you your current
URL (not including the hash,
though), but this is a waste
because window.location has
the exact same properties, so
you don’t even need to create
an anchor element for that.

In all of these examples, you
still need to parse the query
string, but at least you’ve got
it pulled out of the URL.

This does not work in IE6
because the href property isn’t
parsed into a full URL unless
it is parsed by the HTML

Reprinted with permission of the original author.
First appeared in hn.my/lazy (joezimjs.com)

http://hn.my/URI.js
http://hn.my/lazy

Accept payments online.

http://stripe.com

Accept payments online.

http://stripe.com
http://memset.com

	Contents
	FEATURES
	The Slow Web
	The Cab Ride I’ll Never Forget

	STARTUPS
	A Profitable, Growing, Useful, Legal,
Well-Loved...Failure
	How To Scale a Development Team
	The Recruiter Honeypot

	SPECIAL
	My Prime Factorization Sweater
	Hacking the iPod
	The Rules of Story Telling

	PROGRAMMING
	20 Lines of Code That Will Beat A/B Testing Every Time
	Evolution of a Python Programmer.py
	Complication is What Happens When You Try to Solve a Problem You Don’t Understand
	The Lazy Man’s URL Parsing in JavaScript

