
What If Hemingway

Angus Croll

Wrote JavaScript?

Issue 30
November 2012

http://duckduckhack.com
http://careers.addepar.com

http://duckduckhack.com
http://careers.addepar.com

4 

Curator
Lim Cheng Soon

Contributors
Sau Sheong Chang
Angus Croll
Dave McClure
Matt Swanson
Boris Wertz
Joshua Gross
Noah Sussman
Eli Bendersky
Chris Eppstein
Alan O’Donnell
Nicholas C. Zakas
Dan Schultz
Alex Hillman

Proofreaders
Emily Griffin
Sigmarie Soto

Printer
MagCloud

Hacker Monthly is the print magazine ver-
sion of Hacker News — news.ycombinator.com, a
social news website wildly popular among program-
mers and startup founders. The submission guide-
lines state that content can be “anything that grati-
fies one’s intellectual curiosity.” Every month, we
select from the top voted articles on Hacker News
and print them in magazine format.
For more, visit hackermonthly.com

Advertising
ads@hackermonthly.com

Contact
contact@hackermonthly.com

Published by
Netizens Media
46, Taylor Road,
11600 Penang,
Malaysia.

Hacker Monthly is published by Netizens Media and not affiliated with Y Combinator in any way.

Illustration: Kevin O’Brien

http://news.ycombinator.com
http://hackermonthly.com
mailto:ads@hackermonthly.com
mailto:contact@hackermonthly.com

  5

Contents
FEATURES

06  Getting Your Heart Rate Using R and Ruby
By Sau Sheong CHANG

12  If Hemingway Wrote JavaScript
By Angus Croll

For links to Hacker News dicussions, visit hackermonthly.com/issue-30

STARTUPS

20  Late Bloomer, Not A Loser
By Dave Mcclure

24  Move Your Feet
By Matt Swanson

26  The Only Two Ways to Build a $100
Million Business
By Boris Wertz

29  The “Work” Trap
By Joshua Gross

PROGRAMMING

30  Falsehoods Programmers Believe
About Time
By Noah Sussman

33  How Statically Linked Programs Run
on Linux
By Eli Bendersky

40  Learning C with GDB
By Alan O’Donnell

46  The Innovations of Internet Explorer
By Nicholas C. Zakas

53  A Software Architect
By Chris Eppstein

SPECIAL

54  How I Learned to Defrag My Brain
By Alex Hillman

56  A Tor of the Dark Web
By Dan Schultz

http://hackermonthly.com/issue-30

6  FEATURES

FEATURES

The heart rate, or the rate at
which your heart beats, is one
of the measurements you’ve

probably heard most about in rela-
tion to exercise. It’s also often a good
indication of your health, because a
heart rate that is too high or low could
indicate an underlying health issue. The
heart rate is usually measured in beats
per minute (bpm) and varies from 40
to 220 bpm. An average healthy person
at rest has a heart rate of 60–90 bpm,
while conditioned athletes have a rest-
ing heart rate of 40–60 bpm.

A popular and fast way to effectively
get the heart rate is pulse oximetry. A
pulse oximeter is a device placed on
a thin part of a person’s body, often a
fingertip or earlobe. Light of different

wavelengths (usually red and infrared)
is then passed through that part of the
body to a photodetector. The oximeter
works by measuring the amounts of
red and infrared light absorbed by the
hemoglobin and oxyhemoglobin in the
blood to determine how oxygenated
the blood is. Because this absorption
happens in pulses as the heart pumps
oxygenated blood throughout the body,
the heart rate can also be determined.

We are not going to build an oxim-
eter, but in this post we’ll use the same
concepts used in oximetry to deter-
mine the heart rate. We will record
a video as we pass light through our
finger for a short duration of time.
With each beat of the heart, more or
less blood flows through our body,

Getting Your Heart Rate
Using R and Ruby

By Sau Sheong CHANG

  7

including our finger. The blood flowing
through our finger will block differ-
ent amounts of the light accordingly. If
we calculate the light intensity of each
frame of the video we captured, we
can chart the amount of blood flowing
through our finger at different points in
time, therefore getting the heart rate.

Homemade Pulse Oximeter
Creating a homemade oximeter is
really simple. You can use any of the
following techniques, or even try your
own methods. It doesn’t really matter,
as long as you can capture the video.
Record for about 30 seconds. (Record-
ing for a longer time can be more accu-
rate, but not significantly so.)

Finger on a webcam
Place your finger directly on your
computer’s webcam (I used the iSight
on my Mac). Shine a small light (pen-
light or table lamp; it doesn’t matter
much) through your finger. Then use
any video recording software to record
what’s on the webcam (I used Quick-
Time video recording).

Finger on the phone camera
Place your finger directly on your
phone camera. Turn on the flash or use
a small light and shine it through your
finger. Then use your phone’s video
recording software to record what’s on
the phone camera.

Finger on a digital video camera
This is slightly harder because the
camera lens is normally larger than
your finger. The parts that aren’t cov-
ered don’t really matter, but you need
to position your finger so that the
image captured is consistent through-
out your recording. A trick is to use a
lamp as the background, so you can
have the light shining through your
finger and maintain a consistent back-
ground at the same time.

In the following example, I used the
phone camera method with my iPhone.
That’s the easiest for me, because the
flash on the phone is very effective. If
you did things right, you’ll end up with
a video filled with a red blotch that’s
your finger.

Extracting Data from Video
Assuming that you have a nice video
file now (it doesn’t really matter what
format it is in; you’ll see why soon),
let’s dig in a bit deeper to see how we
can extract information from it. For
the sake of convenience, I’ll assume the
file is called heartbeat.mov. Next we’ll
be using FFmpeg, a popular free video
library and utility, to convert the video
into a series of individual image files.

8  FEATURES

Let’s take a look at some Ruby code.

 require 'csv'
 require 'rmagick'
 require 'active_support/all'
 require 'rvideo'
 vid = RVideo::Inspector.new(:file => "heartbeat.mov")
 width, height = vid.width, vid.height
 fps = vid.fps.to_i
 duration = vid.duration/1000
 if system("/opt/local/bin/ffmpeg -i heartbeat.mov -f image2
'frames/frame%03d.png'")
 CSV.open("data.csv","w") do |file|
 file << %w(frame intensity)
 (fps*duration).times do |n|
 img = Magick::ImageList.new("frames/
frame#{sprintf("%03d",n+1)}.png")
 ￼￼￼￼￼ ch = img.channel(Magick::RedChannel) i= 0
 ch.each_pixel {|pix| i += pix.intensity} file << [n+1, i/
(height*width)]
 end end
 end

It doesn’t look complicated, does it?
The most complex part you’ll probably
have to tackle is installing the necessary
Ruby libraries. In the case of both RMa-
gick and RVideo, described next, you
need native developer tools support
in order to compile the native compo-
nents of the gem for your platform.

We start off the code by inspecting
the video and getting some attributes
from it. These will be useful later on
in the code. Specifically, we will need
the number of frames per second, the
duration of the video, and the height
and width of the video. You can obtain
these through RVideo, but if you didn’t

succeed in getting it installed, you can
still find the information by simply
opening up the video with any player
and viewing its properties.

Next, we use the system method to
issue a command to the underlying
shell, and return either true or false
depending on whether it succeeds or
not:

system("/opt/local/bin/ffmpeg -i
heartbeat.mov -f image2 'frames/
frame%03d.png'")

This runs ffmpeg, taking in the input
file heartbeat.mov and converting it
frame by frame into a set of images
ordered by number. This is the reason
why the video format is unimport-
ant. As long as FFmpeg has the cor-
rect library to support the codecs,
it will convert the video file to a
series of PNG image files, numbered
sequentially.

In this example, we specify that
there are three digits to this series of
numbers. How do we know this? In
my case, I have a 30-second video with
a frame rate of 30 frames per second,
so the number of still frames that will
be created by FFmpeg is 30×30, or 900
frames. Slightly more frames could be
created — some video players round
off the duration — but the total would
not be more than 999 frames. If the
command runs successfully, we will
get a set of frames in the frames folder,
each named framennn.png, where nnn
runs from 001 to 900 or so.

Next, we create a CSV file to store
the data and enter the column names,
which are the frame number and the
average frame intensity:

file << %w(frame intensity)

Then, for every frame image, we
create the RMagick Image object that
represents that frame and extract the
red channel (the file uses the RGB
colorspace):

ch = img.
channel(Magick::RedChannel)

We iterate through each pixel in the
red channel and add up their intensi-
ties, then divide the sum of pixel inten-
sities by the total number of pixels:

i= 0
ch.each_pixel {|pix| i += pix.
intensity}
file << [n+1, i/(height*width)]

This is the value we consider to be
the average frame intensity. Finally, we
store the frame number and intensity
in the CSV file.

Once we have done this, we will end
up with a data file with two columns.
The first is the frame number, and the
second is the corresponding frame’s
average intensity.

Generating the Heartbeat Waveform
and Calculating the Heart Rate
Generating the heartbeat waveform is
trivial, so we’ll combine both creating
the waveform and calculating the heart
rate into a single R script.

If you enjoyed this
article, we recommend
picking up Exploring
Everyday Things with R
and Ruby: Learning About
Everyday Things.

[hn.my/everyday]

http://hn.my/everyday

library(PROcess)
 library(ggplot2)
 data <- read.csv(file='data.csv', header=T)
 png("heartbeat.png")
 qplot(data=data, frame, intensity, geom="line")
 dev.off()
 peaks <- peaks(data$intensity,span=10)
 peak_times <- which(peaks==T, arr.in=T)
 intervals <- c()
 i <- 1
 while (i < length(peak_times)) {
 intervals <- append(intervals, peak_times[i+1] - peak_times[i])
 i <- i + 1
 }
 average <- round(mean(intervals))
 print(paste("Average interval between peak intensities is", average))
 heartbeat_rate <- round(60 * (30/average))
 print(paste("Heartbeat rate is",heartbeat_rate))

10  FEATURES

All it takes to generate the waveform
is a single line that calls qplot with the
frame and the intensity and uses the
line geom.

 As you can see from the chart, the
light intensity changes over time. Each
pulse corresponds with a heartbeat. To
find the heart rate, we need to find the
number of frames between two peaks
of the wave. We know that there are 30
frames in one second. Once we know
the number of frames between the
two peaks, we’ll know how much time
it takes to go from peak to peak, and
therefore can calculate the number of
beats per minute.

To calculate the distance from peak
to peak, we need to first determine
where the peaks are in the chart. For
this, we will be using an R package
that was originally designed to pro-
cess protein mass spectrometry data,
found in the Bioconductor library.

  11

The Bioconductor library is a free/
open source project that provides tools
for analyzing genomic data. It’s based
primarily on R, and most of the Bio-
conductor components are R pack-
ages. The package we will be using is
called PROcess. Once we include the
library in our script, we can start using
the peaks() function, which, true to
its name, determines which values are
peaks in data.

The input parameter to the peaks()
function is the intensity data and a
span value. This span value determines
how many of its neighboring values it
must exceed before it can be consid-
ered a peak. This is useful to filter off
noise, though not perfectly.

The returned result is a logical vector
that is the same length as the data. This
means we have a vector of TRUEs and
FALSEs, where the TRUEs indicate a
peak:

[1] FALSE FALSE FALSE FALSE FALSE
FALSE FALSE FALSE FALSE FALSE
FALSE FALSE
 [13] FALSE FALSE FALSE FALSE
FALSE FALSE FALSE FALSE FALSE
FALSE FALSE FALSE
 [25] FALSE FALSE FALSE TRUE
FALSE FALSE FALSE FALSE FALSE
FALSE FALSE FALSE

While this vector is informative, it’s
not really the answer we want, so we
pass it through the which() function,
and it returns a vector of the indices
where the element is TRUE:

 [1] 28 50 73 96 119 142
167 190 213 236 259 282 306 330
353 374 397 420 445
 [20] 469 494 517 540 563 586
610 632 656 678 701 723 746 769
791 812 836 859 882

As before, we want to find the dis-
tance between the two peaks, so we take
two consecutive elements and subtract
the first from the second. This gives us a
new vector that contains the differences:

[1] 22 23 23 23 23 25 23 23 23 23
23 24 24 23 21 23 23 25 24 25 23
23 23 23 24
 [26] 22 24 22 23 22 23 23 22
21 24 23 23

The final two steps are the same as in
the previous section. First, we find the
average distance using the mean() func-
tion. Then, from that, we know that
there are 23 frames between two peaks,
meaning each heartbeat takes 23 frames
or 23/30 seconds (since each second
has 30 frames). From that, we calculate
that the heart rate is 78 bpm. n

Sau Sheong is the Director of HP Labs in Sin-
gapore, and manages a team of engineers and
research scientists focusing on research on how
people use cloud computing. He is also an active
programmer, technology enthusiast and a fre-
quent speaker at technology-related confer-
ences. Sau Sheong has written 3 books on Ruby
and the latest is “Exploring Everyday Things with
R and Ruby” published by O’Reilly Media.

Reprinted with permission of the original author.
First appeared in hn.my/everydayruby (airbrake.io)

http://hn.my/everydayruby

I loved literature long before I ever
wrote a line of code. Now I
write JavaScript — lots of it —
and I’m writing a book about it.

What is it about JavaScript that
attracts so many literature devotees? I
have a few half-baked theories relating
to the expressive potential of a limited
syntax, but that’s for another time.
What about the great writers? What
would they have made of JavaScript?

Even as a long-time Hemingway nut,
I’d be the first to admit that Papa
would probably have loathed pro-
gramming (and programmers). Yet I’m
betting that amongst all that general
contempt there would have lurked a
soft spot for JavaScript, because it’s his
kind of language, am I right? A spare
and deceptively plain surface, masking
substance and drama beneath.

12  FEATURES

If Hemingway Wrote
JavaScript
By Angus Croll

  13

The Mother of All Code Reviews
 Recently, I had a dream in which I
asked Hemingway and four other liter-
ary luminaries to write some JavaScript
for me; specifically a function that
returned a fibonacci series of a given
length. Interestingly each author chose
to solve the problem in a different way.
They did pretty well actually — as far
as I can tell, every solution works as
advertised (yes, even Andre Breton’s).
Here’s what I got:

Ernest Hemingway
function fibonacci(size) {

 var first = 0, second = 1, next, count = 2, result = [first, second];

 if(size < 2)
 return "the request was made but it was not good"

 while(count++ < size) {
 next = first + second;
 first = second;
 second = next;
 result.push(next);
 }
 return result;
}

No surprises here. Code reduced to
its essentials with no word or variable
wasted. It’s not fancy; maybe it’s even
a little pedantic, but that’s the beauty
of Hemingway’s writing. No need for
elaborate logic or clever variable names.

It’s plain and it’s clear and it does what
it has to — and nothing more.

Hemingway didn’t suffer fools gladly,
so if you ask for a series with less than
two numbers he’ll just ignore you. “I’m
tired and this question is idiotic.”

14  FEATURES

William Shakespeare
function theSeriesOfFIBONACCI(theSize) {

 //a CALCKULATION in two acts.
 //employ'ng the humourous logick of JAVA-SCRIPTE

 //Dramatis Personae
 var theResult; //an ARRAY to contain THE NUMBERS
 var theCounter; //a NUMBER, serv'nt to the FOR LOOP

 //ACT I: in which a ZERO is added for INITIATION
 //[ENTER: theResult]
 //Upon the noble list bestow a zero
 var theResult = [0];
 //ACT II: a LOOP in which the final TWO NUMBERS
 //are QUEREED and SUMM'D
 //[ENTER: theCounter]
 //Commence at one and venture o'er the numbers
 for (theCounter = 1; theCounter < theSize; theCounter++) {
 //By divination set adjoining members
 theResult[theCounter] = (theResult[theCounter-1]||1) +
theResult[Math.max(0, theCounter-2)];
 }
 //'Tis done, and here's the answer.
 return theResult;
 //[Exeunt]
}

The Bard gets a little wordy here but
we wouldn’t have it any other way.
Notice how the comments (other than
titular captions and stage directions)
are written in iambic pentameter — a
meter of ten paired syllables with the
stress falling on the second syllable of
each pair (or foot). In his plays, Shake-
speare often adds dramatic emphasis

by deviating from strict iambic pen-
tameter — he might add an extra syl-
lable or use an alternate stress. It looks
as though he’s using the same trick in
this coding exercise. Way to go, Will.

  15

Andre Breton
function Colette(umbrella) {
 var staircase = 0, galleons = 0,
brigantines = 1, armada = [galleons, brigantines], bassoon;
 Array.prototype.embrace = [].push;
 while(2 + staircase++ < umbrella) {
 bassoon = galleons + brigantines;
 armada.embrace(brigantines = (galleons = brigantines, bassoon));
 }
 return armada;
}

As a founding member of the sur-
realist movement, Breton believed
dreams were more interesting than
reality and should form the basis of
our creative endeavors. Nouns are
chosen accordingly. Although it’s easy
to knock Breton, his work has aged
well and is invariably heartfelt and
beautiful — an unconscious upwelling
of imagery folded into his own con-
scious expression. Here’s a translation

of the gorgeous poem Facteur Cheval
[hn.my/cheval].

Breton has most likely named his
fibonacci exercise after an old flame,
while he imagines the resulting collec-
tion as a fleet of ancient vessels. The
solution is underscored by character-
istically elegant logic — he’s using a
comma operator to simultaneously
shift elements between galleons, brig-
antines and bassoons. Hats off, Andre!

Roberto Bolano
function LeonardoPisanoBigollo(l) {
 if(l < 0) {
 return "I'd prefer not to respond. (Although several replies occur
to me)"
 }
 /**/

 //Everything is getting complicated.
 for (var i=2,r=[0,1].slice(0,l);i<l;r.push(r[i-1]+r[i-2]),i++)
 /**/

http://hn.my/cheval

16  FEATURES

 //Here are some other mathematicians. Mostly
 //it's just nonsense.

 rationalTheorists = ["Archimedes of Syracuse", "Pierre de Fermat
(such margins, boys!)", "Srinivasa Ramanujan", "Rene Descartes",
"Leonhard Euler", "Carl Gauss", "Johann Bernoulli", "Jacob Bernoulli",
"Aryabhata", "Brahmagupta", "Bhaskara II", "Nilakantha Somayaji",
"Omar Khayyám", "Muhammad ibn Mūsā al-Khwārizmī", "Bernhard Riemann",
"Gottfried Leibniz", "Andrey Kolmogorov", "Euclid of Alexandria",
"Jules Henri Poincaré", "Srinivasa Ramanujan", "Alexander Grothendieck
(who could forget?)", "David Hilbert", "Alan Turing", "von Neumann",
"Kurt Gödel", "Joseph-Louis Lagrange", "Georg Cantor", "William Rowan
Hamilton", "Carl Jacobi", "Évariste Galois", "Nikolay Lobachevsky",
"Rene Descartes", "Joseph Fourier", "Pierre-Simon Laplace", "Alonzo
Church", "Nikolay Bogolyubov"]
 /**/
 //I didn't understand any of this, but here it
 //is anyway.
 return r
 /**/
 //Nothing happens here and if it does I'd
 //rather not talk about it.
}

If you don’t read at least one Bolano
book before you die then you’ve
wasted your life. Bolano’s writing is
remarkable; at once effortlessly sophis-
ticated and charmingly naive, his nar-
rative style is characterized by a dis-
armingly winsome honesty. No aspect
of human frailty is off limits, but the
warmth and humor with which every
foible is conveyed is both engaging and
uplifting.

True to form, Roberto’s exam paper
is peppered with admissions of insecu-
rity, embarrassment and ignorance. The

solution, though rather brilliant, is pre-
sented as something of an afterthought.
Always the obsessive, always tangential,
he’s much happier offering us a mildly
interesting but ultimately useless list of
mathematical genii.

There are other Bolano traits here
— the juxtaposition of long and short
paragraphs, the absence of semico-
lons (mirroring the absence of quota-
tion marks in his novels), and the use
of implicit globals that suggest each
variable is destined to make further
appearances in subsequent chapters.

  17

Charles Dickens
function mrFibbowicksNumbers(enormity) {
 var assortment = [0,1,1], tally = 3, artfulRatio = 1.61803;

 while(tally++ < enormity) {
 //here is an exceedingly clever device
 assortment.push(Math.round(assortment[tally-2] * artfulRatio));
 }
 //should there be an overabundance of
 //elements, a remedy need be applied
 return assortment.slice(0, enormity);
}

I’m not a fan of Dickens. Mostly
I agree with Henry James’ damning
assessment:

“If we might hazard a definition of his
literary character, we should, accord-
ingly, call him the greatest of superficial
novelists. We are aware that this defi-
nition confines him to an inferior rank
in the department of letters which he
adorns; but we accept this consequence
of our proposition. It were, in our
opinion, an offense against humanity
to place Mr. Dickens among the great-
est novelists. For, to repeat what we
have already intimated, he has created
nothing but figure. He has added noth-
ing to our understanding of human
character.”
– Henry James on Charles Dickens, in
a review of Our Mutual Friend, in The
Nation (December 21, 1865).

Boz’s superficiality is borne out by
his fibonacci solution. Yes, there are
some mildly amusing names, but a
complete lack of substance and under-
standing at its heart. He has failed to
appreciate the underlying philosophy
of the fibonacci series and has instead
resorted to bludgeoning his way
through the problem with multiplica-
tion. Sigh.

18  FEATURES

Closing Thoughts
Whether it’s Crockford’s protective
albumen or the dry and narrow minded
confines of computer science classes,
doctrine and dogma are the enemies
of good JavaScript. Some developers
like rulebooks and boilerplate, which
is why we have Java. The joy of JavaS-
cript is rooted in its lack of rigidity and
the infinite possibilities that this allows
for. Natural languages hold the same
promise. The best authors and the best
JavaScript developers are those who
obsess about language, who explore
and experiment with language every
day, and in doing so, develop their own
style, their own idioms, and their own
expression.

That’s all. Hope you enjoyed it. It’s
mostly nonsense. n

Angus Croll is a literature junkie and front end
developer on the twitter web core team and
author of the JavaScript JavaScript blog [javas-
criptweblog.wordpress.com]. He’s writing an
advanced JavaScript book for No Starch Press
(for release in 2013) and is a regular confer-
ence speaker.

Reprinted with permission of the original author.
First appeared in hn.my/hemingway (byfat.xxx)

Illustration by Kevin O'Brien [poeticoddity.deviantart.com]

http://javascriptweblog.wordpress.com
http://javascriptweblog.wordpress.com
http://hn.my/hemingway
http://poeticoddity.deviantart.com

http://kiurma.com/products_magazine

STARTUPS

20  STARTUPS

By Dave Mcclure

Late Bloomer,
Not A Loser

Most of the time I think of
myself as a failure.

When I’m optimistic, I
think maybe I’m just a late bloomer.

I know a lot of folks won’t under-
stand this perspective, but when I was
growing up, I was always the smart-
est kid around. It was expected that I
would do great things, by my mom, by
my teachers, and most importantly, by
me. I don’t know whether that’s a good
thing or bad thing, but high expecta-
tions were always around me, and for
the first 10–15 years, the results would
seem to indicate that I likely would do
great things.

But after lots of good grades and
academic achievements (I skipped 8th
grade and another in high school), that
kind of stopped happening. I went
to college early, and found out that

performing well wasn’t always based
on being smart. Hard work and regular,
consistent effort was also required…
and I wasn’t really very good at those
things. I also had a lot of trouble in
college with too many fun things to do,
many of which didn’t involve school.
I got really good at playing foosball,
pool, frisbee, going to lots of parties,
and making friends, but I kind of barely
made it to graduation. Although I did
make Dean’s list later in college, I was
also on probation a few times, and I
spent a lot of time doing “recreational
activities” (ahem) which caused a lot
of pain and hassle for me, and probably
even more for my family. I got through
those times, but I started to think
about all the things I was supposed to
be, and the reality was that I wasn’t
quite getting to the goals that had been

  21

expected. I didn’t become an astronaut,
or an astrophysicist, or a great singer
or dancer or pianist, I didn’t end up in
politics, I didn’t join the peace corps,
I didn’t get a PhD or even a masters
degree. By my mid-twenties, I had
headed west to California in search
of myself. barely managed to become
a decent programmer who bounced
around a few jobs, and wasn’t really
sure where I was going next.

By my late twenties, I stumbled into
running my own consulting firm, which
sort of became my first startup. We had
a lot of ups and downs, and although
we won a few awards and did some
interesting and innovative work, after
five-to-six years of trials and tribula-
tions and serious questioning of my
own ability as an entrepreneur and
leader, I barely escaped bankruptcy
multiple times and ended up with only
a very small and desperate acquisition
that was hardly anything to brag about.
I didn’t take the job with Microsoft
or Intel in the early ‘90s, and I didn’t
join Yahoo or Netscape in the late ‘90s.
I had applied to business school at
Stanford, but didn’t get in. I was fortu-
nate to get a job at PayPal in 2001 after
the first dot-com blowup, but it wasn’t
with any fanfare, and I was struggling
to adjust to a new career in marketing,
working with people ten years younger
than me from Stanford and MIT who
seemed to have their shit together a
lot more than I did. After three years’

hard work at PayPal, I made some
progress, but didn’t get any promotions
and mostly got shuffled around work-
ing with three different bosses who
really didn’t know what to do with me.
In fact, I felt lucky I didn’t get fired
during my time there, and as I walked
out the door I was relieved no one had
figured out I was a lame duck who
didn’t know where the hell I was going.

Don’t get me wrong: PayPal was a
great place and I made some wonderful
friendships and learned a hell of a lot.
My own startup had been a comedy
of errors, but I did learn a lot about
running a business (mostly what not
to do) and learned a lot about myself
in the process. I also ran a lot of user
groups and events, and realized I was
pretty good at marketing, and I really
loved technology and the Silicon Valley
culture. But I still felt like an unfocused
underachiever, and at forty I hadn’t
accomplished much other than find-
ing a good woman foolish enough to
marry me, and somehow managing to
father two wonderful children I was
vastly unqualified to raise. I joined
Simply Hired for a few years and did
some work I was proud of there, but
then continued bouncing around at
consulting gigs with oDesk, Mint.com,
O’Reilly Media, and others where I
still felt like I didn’t quite fit in and
wasn’t making the impact I had hoped.
At Mint, I was again fortunate to work
with some amazing people, but Aaron

22  STARTUPS

correctly assessed I wasn’t really the
right guy for the job, and I felt lucky
to just play a small part in a decent
success story. (Aaron did let me invest
some money in the company, which
worked out pretty well for me; thanks
Aaron!)

So after twenty years in the valley,
I had made only a little bit of money,
had some modest accomplishments as
a programmer, an entrepreneur, and
a marketer. Meanwhile my peers at
PayPal had gone on to create incred-
ible businesses like LinkedIn, YouTube,
Yelp, and Yammer, and other kids half
my age were seemingly even more
ambitious. Most folks thought I was a
decent fellow, but over the hill with
my best days behind me…and I guess
I thought so, too. I watched as other
friends helped make companies like
Google and Facebook and Twitter into
juggernauts, but mostly I was on the
sidelines, only peripherally involved
in their big ideas. But I had started
doing some angel investing when I left
PayPal in 2004, and after finding Mint.
com, SlideShare, and Mashery, I figured
maybe I had some talent as an inves-
tor — since it seemed like I was only a
half-assed entrepreneur.

So after some small notoriety in
2007 teaching a class on Facebook at
Stanford (strangely, a school where I
wasn’t good enough to get accepted as
a student, somehow let me become a
visiting lecturer), I decided I’d try to

become a venture capitalist. My timing
was of course impeccable, and as I was
attempting to raise a small fund in the
summer of 2008, the next huge finan-
cial crisis hit and the bottom fell out
of the market. Again I was fortunate,
and my plan B was to humbly say yes
to a job offer by Sean Parker to help
do some marketing and investing at
Founders Fund. I was likely the only
person hired in the entire venture
industry in Q4 of 2008 (thanks, Sean,
I owe you one). I threw myself into
the job, and after a year and a half had
made some decent picks investing in
Twilio, SendGrid, Wildfire, and Task-
Rabbit among others. Along the way,
I also got the opportunity to run the
Facebook fbFund for a short time, and
made some friends at Accel, Redpoint,
and BlueRun. These folks, along with
Founders Fund, Mitch Kapor, Michael
Birch, Fred Wilson, Brad Feld, Marc
Andreessen, and several other generous
souls helped me to finally and barely
raise a small fund in 2010 that I bra-
zenly named 500 Startups. [500.co]

It would have been easy at any point
in this journey to rationalize my lim-
ited success, and accept being a small
cog in a bigger wheel, at likely much
better pay and much less stress. But
I was still hoping I had a little fire in
the belly, and maybe some gas left in
the tank to make something more of
myself, before I ended up with just a
broken spirit and a comfortable life.

http://500.co

  23

And so here I am: still standing in the
arena, in hand-to-hand combat with
demons mostly of my own making,
aiming to make a small dent in the
universe. Nowhere near a great suc-
cess story, yet fighting the good fight
and perhaps helping others to achieve
greatness as I attempt a bit of my own.
I’ll be forty-six in a month, well past
the age when most folks have already
shown what they’re made of. But I’m
still grasping for that brass ring.

I don’t mean to whine or bemoan
my lot in life — I’ve been far more
than lucky, and I’ve had a great time
on this planet. I have nothing to com-
plain about, nor will it be the end of
the world if all I get to do in the next
thirty-to-forty years is to breathe in the
air. All things said, it’s been a wonder-
ful life.

But I’m not giving up yet.
I’m still betting my epitaph will read

“late bloomer,” and not “failure.”
Wish me luck! n

Dave McClure is a geek, startup investor, former
software developer & entrepreneur, occasional
tech blogger and internet marketing nerd.
He’s lived in Silicon Valley for over 20 years
and loved every minute. Dave is the found-
ing partner of 500 Startups, an Internet seed
fund and startup incubator that has invested
in ~400 companies all over the world.

Reprinted with permission of the original author.
First appeared in hn.my/bloom (500hats.com)

“Nowhere near a great success story, yet
fighting the good fight and perhaps
helping others to achieve greatness as
I attempt a bit of my own.”

http://hn.my/bloom

24  STARTUPS

■■ Four books. 28 hours of screencasts.
Two online courses.

Result: 0 specs in my Rails project.

■■ Old pair of shoes. Treadmill. One
mile in 20 minutes, 23 seconds.

Result: 866 miles traveled by foot
this year.

Why did I fail so hard at one activity
and succeed at the other? With a bit
of hindsight, I am starting to figure out
the answer.

The first activity (doing TDD in a
Rails project of mine) suffered from
extreme analysis paralysis. After work-
ing as a professional developer for two
years, it is so hard for me to just dive in
and start sucking at something. I want
to learn the best practices so I don’t
“waste” time doing it incorrectly.

But in this case, best practices are a
poison; a hindrance that prevents me
from even writing the first spec in my
project until I have a perfect vision and
roadmap for achieving some mystical
TDD nirvana.

In contrast, I was able to ignore this
mental roadblock in the second activ-
ity. Like many before me, I started the
New Year wanting to get into better
shape. But instead of finding a book or
reading posts on reddit.com/r/running
for 2 months, I did something different.

I found an old pair of shoes, got on
the treadmill, and just started running.
And man, did I really suck at running.

But I didn’t care. I could see my
improvement every week — the time
to run a mile went down, the speed
and distance went up (slowly!).

In the software domain, I struggled
to convince myself that it was okay
to regress in an area as I learned and
improved. Instead of starting from the
beginning, I tried to skip straight to
mastery. With running, my activities
were directly related to practicing and
improving. Instead of reading guides
or spending hours on Amazon trying
to find the perfect shoes, I was actually
running.

A few weeks ago, I finally went to
get some proper running shoes. Once I
got to the store, I reverted back to full
“Engineer Mode” — trying to deter-
mine which brand of shoe was optimal,
how many pairs of wicking socks I
would need, etc. — when the trainer
looked over and made a comment that
really resonated with me:

“Want to know the secret to improving
your running? Move your feet.” n

Matt Swanson is a software engineer from
Indiana and he ships code at SEP. When he’s not
hacking on side projects, Matt writes about his
thoughts on software and personal develop-
ment at swanson.github.com and tries to make
jokes on Twitter (@_swanson).

Move Your Feet
By Matt Swanson

Reprinted with permission of the original author. First
appeared in hn.my/feet (swanson.github.com)

http://reddit.com/r/running
http://swanson.github.com
http://twitter.com/@_swanson
http://hn.my/feet
http://mandrill.com

  25

http://mandrill.com

26  STARTUPS

With tens of thousands
of new startups being
created every year, the

potential of a company to truly scale
and become a large, standalone busi-
ness is more crucial than ever before.
A great product is always the founda-
tion, but a clear distribution strategy
becomes essential to cut through the
noise. So most early-stage VCs have
started to evaluate investment oppor-
tunities with an imaginary benchmark
in mind: can this company become a
$100 million opportunity?

Generally speaking, there are two
ways (and only two ways) to scale
a business to hit that $100 million
threshold:

■■ Your business has a high Life Time
Value (LTV) per user, giving you
the freedom to spend a significant
amount of money in customer acqui-
sition. High LTV can usually be
found in transactional or subscription
businesses.

■■ Your business has a high viral co-
efficient (or perhaps even a network
effect) that lets you amass users
cheaply without worrying too much
about the monetization per user or
spending money on paid acquisition.

The Only Two Ways
to Build a $100

Million Business
By Boris Wertz

  27

Route ➊  High LTV Per User
The exact definition of a “high” user
LTV depends on the specific vertical, so
it’s typically better to analyze the ratio
between Customer Acquisition Costs
(CAC) and the LTV of the customer.
In my experience, having an LTV that’s
three to four times greater than CAC
makes a business interesting.

The biggest driver for high LTV is
repeat purchase behavior (in an e-com-
merce business) and a respectively low
churn rate (in a SaaS company). Com-
panies that score highest in this area
are typically: e-commerce businesses
that fulfill regular needs and offer a
differentiated experience or SaaS busi-
nesses that help businesses or individu-
als manage core activities.

As a VC, the biggest challenge in
evaluating LTV models is that metrics
can dramatically change at scale. For
example, CACs often increase once the
more efficient marketing channels are
maxed out and the company needs to
find new users through less efficient
means. In addition, churn tends to rise
as a company grows. Early users of a
product are often strong advocates and
company ambassadors, while those
users acquired through paid marketing
channels down the road show far less
loyalty.

Route ➋   The Viral Effect
The other way to scale a business is
through a strong viral and/or network
effect that lets businesses grow to tens
or even hundreds of millions of users.
With this model, user acquisition is
generally close to free and monetiza-
tion per user is often low (advertising-
based or freemium businesses).

Many businesses built in the early
days of the Facebook platform (like
Zynga) benefitted from a huge viral co-
efficient and scaled very rapidly. (As we
all know, this is no longer the case as
Facebook has essentially removed most
of the free viral channels and busi-
nesses must now pay for most of their
user acquisition via Facebook.)

Even more interesting are businesses
that create network effects like market-
places or social networks. Not only do
they acquire lots of users for free due to
viral effects but also create important
barriers to entry and lock-in effects as
the network grows over time.

Startup Purgatory: No Man’s Land
Unfortunately, many consumer internet
startups find themselves stuck in the
middle of these two strategies: they
have a low monetization per user and
limited viral effects. That unfortunate
combination makes it rather difficult to
reach the $100 million mark.

28  STARTUPS

As the consumer internet space
becomes more and more crowded,
every startup founder needs to think
about these two ways to scale a busi-
ness. Too often I have seen entrepre-
neurs believe that customers will auto-
matically flock to their cool new ser-
vice, completely underestimating how
tough it is to cut through the noise and
build an audience.

To build a standalone company and
capture the attention of investors, you
need a viable way to scale your busi-
ness. The earlier you figure this out
the better, since it may require you to
build your product differently. While
the $100 million mark may seem far
away in those early days, it’s important
to begin thinking about paths to reach
this threshold from the start. n

Boris Wertz is one of the top tech early-stage
investors in North-America and the founding
partner of version one ventures. His portfolio
encompasses over 35 early-stage consumer
internet and mobile companies. Boris is a
venture partner of Munich-based Acton Capi-
tal Partners, a consumer Internet fund that
is focused on later stage companies with an
established track record of revenues and profit-
ability. He is also one of the founders of Grow-
Lab, a Vancouver-based start-up accelerator.

Reprinted with permission of the original author.
First appeared in hn.my/100mil (versiononeventures.com)

http://hn.my/100mil

  29

The “Work” Trap
By Joshua Gross

I find that I — as well as many
people I know — fall into a very
dangerous trap. I call it The “Work”

Trap. What is it? It’s both a procrasti-
nation technique and a way of staying
in your comfort zone while feeling or
seeming productive.

You fall into the trap when you
forgo other, perhaps beneficial, activi-
ties because you have “too much work
to do.” You turn down a coffee with
someone new, avoid going to an inter-
esting meetup, or put off replying to
(or initiating) important emails.

How many times have you made that
excuse? How many more times have
you made that excuse, then failed to
even actually do any work?

For many people, “doing work” is easy
in comparison to these activities: it’s
known, familiar, expected, and the best
part is that it’s also time consuming
and “productive.” In reality, doing these
things could be equally — if not more
— beneficial than just attempting to
get more work done.

I’m not going to make a bulleted
five-point list of things you can do to
avoid this trap — everyone justifies it
differently. Just recognize when you’re
falling into the trap out of comfort, as
opposed to a true, driving need to get
something done. n

Joshua Gross is a freelance web developer and
designer based out if Brooklyn, NY. Beyond
creating fun stuff for the web (Kerning.js &
more), he spends way too much time playing
with Polaroid cameras.

Reprinted with permission of the original author.
First appeared in hn.my/trap (unwieldy.net)

30  PROGRAMMING

Over the past couple of years
I have spent a lot of time
debugging other engineers’

test code. This was interesting work,
occasionally frustrating but always
informative. One might not immedi-
ately think that test code would have
bugs, but of course all code has bugs
and tests are no exception.

I have repeatedly been confounded
to discover just how many mistakes
in both test and application code
stem from misunderstandings or

misconceptions about time. By this
I mean both the interesting way in
which computers handle time, and
the fundamental “gotchas” inherent in
how we humans have constructed our
calendar — daylight savings being just
the tip of the iceberg.

In fact I have seen so many of these
misconceptions crop up in other
people’s (and my own) programs that
I thought it would be worthwhile to
collect a list of the more common
problems here.

By Noah Sussman

Falsehoods Programmers
Believe About Time

PROGRAMMING

  31

All of these assumptions are wrong
■■ There are always 24 hours in a day.

■■ Months have either 30 or 31 days.

■■ Years have 365 days.

■■ February is always 28 days long.

■■ Any 24-hour period will always begin
and end in the same day (or week, or
month).

■■ A week always begins and ends in the
same month.

■■ A week (or a month) always begins
and ends in the same year.

■■ The machine that a program runs
on will always be in the GMT time
zone.

■■ Ok, that’s not true. But at least the
time zone in which a program has to
run will never change.

■■ Well, surely there will never be a
change to the time zone in which a
program has to run in production.

■■ The system clock will always be set
to the correct local time.

■■ The system clock will always be set
to a time that is not wildly different
from the correct local time.

■■ If the system clock is incorrect, it will
at least always be off by a consistent
number of seconds.

■■ The server clock and the client clock
will always be set to the same time.

■■ The server clock and the client clock
will always be set to around the same
time.

■■ Ok, but the time on the server clock
and time on the client clock would
never be different by a matter of
decades.

■■ If the server clock and the client
clock are not in synch, they will at
least always be out of synch by a con-
sistent number of seconds.

■■ The server clock and the client clock
will use the same time zone.

■■ The system clock will never be set to
a time that is in the distant past or
the far future.

■■ Time has no beginning and no end.
[hn.my/2038]

■■ One minute on the system clock has
exactly the same duration as one
minute on any other clock. [hn.my/
atomic]

■■ Ok, but the duration of one minute
on the system clock will be pretty
close to the duration of one minute
on most other clocks.

■■ Fine, but the duration of one minute
on the system clock would never be
more than an hour.

■■ You can’t be serious.

■■ The smallest unit of time is one
second.

■■ Ok, one millisecond.

http://hn.my/2038
http://hn.my/atomic
http://hn.my/atomic

32  PROGRAMMING

■■ It will never be necessary to set the
system time to any value other than
the correct local time.

■■ Ok, testing might require setting the
system time to a value other than the
correct local time, but it will never
be necessary to do so in production.

■■ Time stamps will always be specified
in a commonly understood format
like 1339972628 or 133997262837.

■■ Time stamps will always be specified
in the same format.

■■ Time stamps will always have the
same level of precision.

■■ 3A time stamp of sufficient precision
can safely be considered unique.

■■ A timestamp represents the time that
an event actually occurred.

■■ Human-readable dates can be speci-
fied in universally understood for-
mats such as 05/07/11.

 Wait, There’s More!
That thing about a minute being longer
than an hour was a joke, right?

No.
There was a fascinating bug in older

versions of KVM [hn.my/kvm] on
CentOS. Specifically, a KVM virtual
machine had no awareness that it was
not running on physical hardware. This
meant that if the host OS put the VM
into a suspended state, the virtualized
system clock would retain the time
that it had had when it was suspended.

For example, if the VM was suspended
at 13:00 and then brought back to an
active state two hours later (at 15:00),
the system clock on the VM would still
reflect a local time of 13:00. The result
was that every time a KVM VM went
idle, the host OS would put it into a
suspended state and the VM’s system
clock would start to drift away from
reality, sometimes by a large margin
depending on how long the VM had
remained idle.

There was a cron job that could be
installed to keep the virtualized system
clock in line with the host OS’s hard-
ware clock. But it was easy to forget to
do this on new VMs and failure to do
so led to much hilarity. The bug has
been fixed in more recent versions. n

Noah Sussman has been helping bricks-and-
mortar businesses to leverage the Web since
1999. Thus he has had had ample opportunity
to think about the discrepancies between how
computers and people see the world. He lives
in New York with his wife and two cats.

Reprinted with permission of the original author.
First appeared in hn.my/falsetime (infiniteundo.com)

http://hn.my/kvm
http://hn.my/falsetime

  33

In this article I want to explore
what happens when a statically
linked program gets executed on

Linux. By statically linked I mean a
program that does not require any
shared objects to run, even the ubiq-
uitous libc. In reality, most programs
encountered on Linux aren’t statically
linked and do require one or more
shared objects to run. However, the
running sequence of such programs is
more involved, which is why I want to
present statically linked programs first.
It will serve as a good basis for under-
standing, allowing me to explore most
of the mechanisms involved with less
details getting in the way.

The Linux kernel
Program execution begins in the Linux
kernel. To run a program, a process will
call a function from the exec family.
The functions in this family are all very

similar, differing only in small details
regarding the manner of passing argu-
ments and environment variables to the
invoked program. What they all end up
doing is issuing the sys_execve system
call to the Linux kernel.
sys_execve does a lot of work to pre-

pare the new program for execution.
Explaining it all is far beyond the scope
of this article — a good book on kernel
internals can be helpful to understand
the details. I’ll just focus on the stuff
useful for our current discussion.

As part of its job, the kernel must read
the program’s executable file from disk
into memory and prepare it for execu-
tion. The kernel knows how to handle
a lot of binary file formats and tries to
open the file with different handlers
until it succeeds (this happens in the
function search_binary_handler in fs/
exec.c). We’re only interested in ELF
here, however. For this format the action

How Statically Linked
Programs Run on Linux

By Eli Bendersky

34  PROGRAMMING

happens in function load_elf_binary
(in fs/binfmt_elf.c).

The kernel reads the ELF header of
the program and looks for a PT_INTERP
segment to see if an interpreter was
specified. Here the statically linked vs.
dynamically linked distinction kicks in.
For statically linked programs, there
is no PT_INTERP segment. This is the
scenario this article covers.

The kernel then maps the program’s
segments into memory, according to
the information contained in the ELF
program headers. Finally, it passes the
execution, by directly modifying the
IP register, to the entry address read
from the ELF header of the program
(e_entry). Arguments are passed to the
program on the stack (the code respon-
sible for this is in create_elf_tables).
Here’s the stack layout when the pro-
gram is called, for x64:

 At the top of the stack is argc, the
amount of command-line arguments.
It is followed by all the arguments
themselves (each a char*), terminated
by a zero pointer. Then, the environ-
ment variables are listed (also a char*
each), terminated by a zero pointer.
The observant reader will notice that
this argument layout is not what one
usually expects in main. This is because
main is not really the entry point of
the program, as the rest of the article
shows.

Program entry point
So, the Linux kernel reads the pro-
gram’s entry address from the ELF
header. Let’s now explore how this
address gets there.

Unless you’re doing something very
funky, the final program binary image
is probably being created by the system
linker — ld. By default, ld looks for a
special symbol called _start in one of
the object files linked into the program
and sets the entry point to the address
of that symbol. This will be simplest to
demonstrate with an example written
in assembly (the following is NASM
syntax):

  35

section .text
 ; The _start symbol must be declared for the linker (ld)
 global _start

_start:
 ; Execute sys_exit call. Argument: status -> ebx
 mov eax, 1
 mov ebx, 42
 int 0x80

This is a very basic program that simply returns 42. Note that it has the _start
symbol defined. Let’s build it, examine the ELF header and its disassembly:

$ nasm -f elf64 nasm_rc.asm -o nasm_rc.o
$ ld -o nasm_rc64 nasm_rc.o
$ readelf -h nasm_rc64
ELF Header:
 Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00
 Class: ELF64
 ...
 Entry point address: 0x400080
 ...
$ objdump -d nasm_rc64

nasm_rc64: file format elf64-x86-64

Disassembly of section .text:

0000000000400080 <_start>:
 400080: b8 01 00 00 00 mov $0x1,%eax
 400085: bb 2a 00 00 00 mov $0x2a,%ebx
 40008a: cd 80 int $0x80

As you can see, the entry point address in the ELF header was set to 0x400080,
which also happens to be the address of _start.
ld looks for _start by default, but this behavior can be modified by either

the --entry command-line flag or by providing an ENTRY command in a custom
linker script.

36  PROGRAMMING

The entry point in C code
We don’t, however, usually write our
code in assembly. The situation is dif-
ferent for C/C++ because the entry
point familiar to users is the main func-
tion and not the _start symbol. Now
it’s time to explain how these two are
related.

Let’s start with this simple C pro-
gram, which is functionally equivalent
to the assembly shown above:

int main() {
 return 42;
}

I will compile this code into an
object file and then attempt to link it
with ld, like I did with the assembly:

$ gcc -c c_rc.c
$ ld -o c_rc c_rc.o
ld: warning: cannot find entry
symbol _start; defaulting to
00000000004000b0

Whoops, ld can’t find the entry
point. It tries to guess using a default,
but it won’t work — the program will
segfault when run. ld obviously needs
some additional object files where it
will find the entry point. But which
object files are these? Luckily, we can
use gcc to find out. gcc can act as a
full compilation driver, invoking ld
as needed. Let’s now use gcc to link
our object file into a program. Note
that the -static flag is passed to force

static linking of the C library and the
gcc runtime library:

$ gcc -o c_rc -static c_rc.o
$ c_rc; echo $?
42

It works. So how does gcc manage to
do the linking correctly? We can pass
the -Wl, -verbose flag to gcc, which
will spill the list of objects and librar-
ies it passed to the linker. By doing this,
we’ll see additional object files like
crt1.o and the whole libc.a static
library (which has objects with telling
names like libc-start.o). C code does
not live in a vacuum. To run, it requires
some support libraries, such as the gcc
runtime and libc.

Since it obviously linked and ran cor-
rectly, the program we built with gcc
should have a _start symbol at the
right place. Let’s check:

  37

$ readelf -h c_rc
ELF Header:
 Magic: 7f 45 4c 46 02 01 01 03 00 00 00 00 00 00 00 00
 Class: ELF64
 ...
 Entry point address: 0x4003c0
 ...

$ objdump -d c_rc | grep -A15 "<_start"
00000000004003c0 <_start>:
 4003c0: 31 ed xor %ebp,%ebp
 4003c2: 49 89 d1 mov %rdx,%r9
 4003c5: 5e pop %rsi
 4003c6: 48 89 e2 mov %rsp,%rdx
 4003c9: 48 83 e4 f0 and $0xfffffffffffffff0,%rsp
 4003cd: 50 push %rax
 4003ce: 54 push %rsp
 4003cf: 49 c7 c0 20 0f 40 00 mov $0x400f20,%r8
 4003d6: 48 c7 c1 90 0e 40 00 mov $0x400e90,%rcx
 4003dd: 48 c7 c7 d4 04 40 00 mov $0x4004d4,%rdi
 4003e4: e8 f7 00 00 00 callq 4004e0 <__libc_start_
main>
 4003e9: f4 hlt
 4003ea: 90 nop
 4003eb: 90 nop

Indeed, 0x4003c0 is the address
of _start and it’s the program entry
point. However, what is all that code at
_start? Where does it come from, and
what does it mean?

Decoding the start sequence of C
code
The startup code shown above comes
from glibc — the GNU C library,
where for x64 ELF it lives in the file

sysdeps/x86_64/start.S. Its goal is to
prepare the arguments for a function
named __libc_start_main and call it.
This function is also part of glibc and
lives in csu/libc-start.c. Here is its
signature, formatted for clarity and with
added comments to explain what each
argument means:

38  PROGRAMMING

int __libc_start_main(
 /* Pointer to the program's main function */
 (int (*main) (int, char**, char**),
 /* argc and argv */
 int argc, char **argv,
 /* Pointers to initialization and finalization functions*/
 __typeof (main) init, void (*fini) (void),
 /* Finalization function for the dynamic linker */
 void (*rtld_fini) (void),
 /* End of stack */
 void* stack_end)

Anyway, with this signature and the AMD64 ABI in hand, we can map the
arguments passed to __libc_start_main from _start:

main: rdi <-- $0x4004d4
argc: rsi <-- [RSP]
argv: rdx <-- [RSP + 0x8]
init: rcx <-- $0x400e90
fini: r8 <-- $0x400f20
rdld_fini: r9 <-- rdx on entry
stack_end: on stack <-- RSP

You’ll also notice that the stack is
aligned to 16 bytes and some garbage
is pushed on top of it (rax) before
pushing rsp itself. This is to conform
to the AMD64 ABI. Also note the hlt
instruction at address 0x4003e9. It’s a
safeguard in case __libc_start_main
did not exit (as we’ll see, it should).
hlt can’t be executed in user mode, so
this will raise an exception and crash
the process.

Examining the disassembly, it’s easy
to verify that 0x4004d4 is indeed main,
0x400e90 is __libc_csu_init and
0x400f20 is __libc_csu_fini. The kernel

also passes another argument to _start
— a finish function for shared libraries
to use (in rdx).

The C library start function
Now that we understand how it’s being
called, what does __libc_start_main
actually do? Ignoring some details
that are probably too specialized to be
interesting in the scope of this article,
here’s a list of things that it does for a
statically linked program:

1.	Figure out where the environment
variables are on the stack.

  39

Reprinted with permission of the original author.
First appeared in hn.my/slinked (eli.thegreenplace.net)

2.	Prepare the auxiliary vector, if
required.

3.	Initialize thread-specific functionality
(pthreads, TLS, etc.).

4.	Perform some security-related book-
keeping (this is not really a separate
step, but it is trickled all through the
function).

5.	Initialize libc itself.

6.	Call the program initialization func-
tion through the passed pointer
(init).

7.	Register the program finalization
function (fini) for execution on exit.

8.	Call main(argc, argv, envp).

9.	Call exit with the result of main as
the exit code.

Digression: init and fini
Some programming environments
(most notably C++, to construct and
destruct static and global objects)
require running custom code before
and after main. This is implemented
by means of cooperation between
the compiler/linker and the C library.
For example, the __libc_csu_init
(which, as you can see above, is called
before the user’s main) calls into spe-
cial code that’s inserted by the linker.
The same goes for __libc_csu_fini and
finalization.

You can also ask the compiler to reg-
ister your function to be executed as
one of the constructors or destructors.

For example:

#include <stdio.h>

int main() {
 return 43;
}

__attribute__((constructor))
void myconstructor() {
 printf("myconstructor\n");
}

myconstructor will run before main.
The linker places its address in a spe-
cial array of constructors located in the
.ctors section. __libc_csu_init goes
over this array and calls all functions
listed in it.

Conclusion
This article demonstrates how a stati-
cally linked program is set up to actu-
ally run on Linux. In my opinion, this
is a very interesting topic to study
because it demonstrates how several
large components of the Linux eco-sys-
tem cooperate to enable the program
execution process. In this case, the
Linux kernel, the compiler and linker,
and the C library are involved. n

Eli Bendersky is an Israeli programmer cur-
rently living and working in the Silicon Valley.
He likes to disassemble software systems,
understanding how they work deep down.

http://hn.my/slinked

40  PROGRAMMING

By Alan O’Donnell

Learning C with GDB

Coming from a background in
higher-level languages like
Ruby, Scheme, and Haskell,

learning C can be challenging. In
addition to having to wrestle with
C’s lower-level features like manual
memory management and pointers,
you have to make do without a REPL.
Once you get used to exploratory
programming in a REPL, having to deal
with the write-compile-run loop is a
bit of a bummer.

It occurred to me recently that I
could use GDB as a pseudo-REPL for
C. I’ve been experimenting with using
GDB as a tool for learning C, rather
than merely debugging C, and it’s a lot
of fun.

My goal in this post is to show you
that GDB is a great tool for learning C.
I’ll introduce you to a few of my favor-
ite GDB commands, and then I’ll dem-
onstrate how you can use it to under-
stand a notoriously tricky part of C: the
difference between arrays and pointers.

An introduction to GDB
Start by creating the following little C
program, minimal.c:

int main()
{
 int i = 1337;
 return 0;
}

Note that the program does nothing
and has not a single printf statement.1
Behold the brave new world of learning
C with GDB! Compile it with the -g
flag so that GDB has debug informa-
tion to work with, and then feed it to
GDB:

$ gcc -g minimal.c -o minimal
$ gdb minimal

You should now find yourself at a
rather stark GDB prompt. I promised
you a REPL, so here goes:

(gdb) print 1 + 2
$1 = 3

  41

Amazing! print is a built-in GDB
command that prints the evaluation
of a C expression. If you’re unsure of
what a GDB command does, try run-
ning help name-of-the-command at the
GDB prompt.

Here’s a somewhat more interesting
example:

(gbd) print (int) 2147483648
$2 = -2147483648

I’m going to ignore why 2147483648
== -2147483648; the point is that even
arithmetic can be tricky in C, and GDB
understands C arithmetic.

Let’s now set a breakpoint in the
main function and start the program:

(gdb) break main
(gdb) run

The program is now paused on line
3, just before i gets initialized. Interest-
ingly, even though i hasn’t been initial-
ized yet, we can still look at its value
using the print command:

(gdb) print i
$3 = 32767

In C, the value of an uninitialized
local variable is undefined, so GDB
might print something different for
you!

We can execute the current line with
the next command:

(gdb) next
(gdb) print i
$4 = 1337

Examining memory with x
Variables in C label contiguous chunks
of memory. A variable’s chunk is char-
acterized by two numbers:

1.	The numerical address of the first
byte in the chunk.

2.	The size of the chunk, measured in
bytes. The size of a variable’s chunk
is determined by the variable’s type.

One of the distinctive features of C is
that you have direct access to a vari-
able’s chunk of memory. The & opera-
tor computes a variable’s address, and
the sizeof operator computes a vari-
able’s size in memory.

You can play around with both con-
cepts in GDB:

(gdb) print &i
$5 = (int *) 0x7fff5fbff584
(gdb) print sizeof(i)
$6 = 4

In words, this says that i’s
chunk of memory starts at address
0x7fff5fbff5b4 and takes up four
bytes of memory.

I mentioned above that a variable’s
size in memory is determined by its
type, and indeed, the sizeof operator
can operate directly on types:

(gdb) print sizeof(int)
$7 = 4
(gdb) print sizeof(double)
$8 = 8

42  PROGRAMMING

This means that, on my machine at
least, int variables take up four bytes
of space and double variables take up
eight.

GDB comes with a powerful tool
for directly examining memory: the
x command. The x command exam-
ines memory, starting at a particular
address. It comes with a number of
formatting commands that provide
precise control over how many bytes
you’d like to examine and how you’d
like to print them; when in doubt, try
running help x at the GDB prompt.

The & operator computes a variable’s
address, so that means we can feed &i
to x and thereby take a look at the raw
bytes underlying i’s value:

(gdb) x/4xb &i
0x7fff5fbff584: 0x39 0x05
0x00 0x00

The flags indicate that I want to
examine 4 values, formatted as hex
numerals, one byte at a time. I’ve
chosen to examine four bytes because
i’s size in memory is four bytes; the
printout shows i’s raw byte-by-byte
representation in memory.

One subtlety to bear in mind with
raw byte-by-byte examinations is that
on Intel machines, bytes are stored in
“little-endian” order: unlike human
notation, the least significant bytes of a
number come first in memory.

One way to clarify the issue would be
to give i a more interesting value and
then re-examine its chunk of memory:

(gdb) set var i = 0x12345678
(gdb) x/4xb &i
0x7fff5fbff584: 0x78 0x56
0x34 0x12

Examining types with ptype
The ptype command might be my
favorite command. It tells you the type
of a C expression:

(gdb) ptype i
type = int
(gdb) ptype &i
type = int *
(gdb) ptype main
type = int (void)

Types in C can get complex, but
ptype allows you to explore them
interactively.

Pointers and arrays
Arrays are a surprisingly subtle concept
in C. The plan for this section is to
write a simple program and then poke
it in GDB until arrays start to make
sense.

  43

Code up the following arrays.c
program:

int main()
{
 int a[] = {1,2,3};
 return 0;
}

Compile it with the -g flag, run it in
GDB, and then next over the initializa-
tion line:

$ gcc -g arrays.c -o arrays
$ gdb arrays
(gdb) break main
(gdb) run
(gdb) next

At this point you should be able to
print the contents of a and examine its
type:

(gdb) print a
$1 = {1, 2, 3}
(gdb) ptype a
type = int [3]

Now that our program is set up cor-
rectly in GDB, the first thing we should
do is use x to see what a looks like
under the hood:

(gdb) x/12xb &a
0x7fff5fbff56c: 0x01 0x00 0x00
0x00 0x02 0x00 0x00 0x00
0x7fff5fbff574: 0x03 0x00 0x00
0x00

This means that a’s chunk of memory
starts at address 0x7fff5fbff5dc. The
first four bytes store a[0], the next
four store a[1], and the final four
store a[2]. Indeed, you can check that
sizeof knows that a’s size in memory
is twelve bytes:

(gdb) print sizeof(a)
$2 = 12

At this point, arrays seem to be quite
array-like. They have their own array-
like types and store their members in
a contiguous chunk of memory. How-
ever, in certain situations, arrays act a
lot like pointers! For instance, we can
do pointer arithmetic on a:

(gdb) print a + 1
$3 = (int *) 0x7fff5fbff570

In words, this says that a + 1 is a
pointer to an int and holds the address
0x7fff5fbff570. At this point you
should be reflexively passing pointers
to the x command, so let’s see what
happens:

(gdb) x/4xb a + 1
0x7fff5fbff570: 0x02 0x00 0x00
0x00

Note that 0x7fff5fbff570 is four
more than 0x7fff5fbff56c, the address
of a’s first byte in memory. Given
that int values take up four bytes, this
means that a + 1 points to a[1].

44  PROGRAMMING

In fact, array indexing in C is syntac-
tic sugar for pointer arithmetic: a[i]
is equivalent to *(a + i). You can try
this in GDB:

(gdb) print a[0]
$4 = 1
(gdb) print *(a + 0)
$5 = 1
(gdb) print a[1]
$6 = 2
(gdb) print *(a + 1)
$7 = 2
(gdb) print a[2]
$8 = 3
(gdb) print *(a + 2)
$9 = 3

We’ve seen that in some situations
a acts like an array and in others it
acts like a pointer to its first element.
What’s going on?

The answer is that when an array
name is used in a C expression, it
“decays” to a pointer to the array’s first
element. There are only two excep-
tions to this rule: when the array name
is passed to sizeof and when the array
name is passed to the & operator.

The fact that a doesn’t decay to a
pointer when passed to the & operator
brings up an interesting question: is
there a difference between the pointer
that a decays to and &a?

Numerically, they both represent the
same address:

(gdb) x/4xb a
0x7fff5fbff56c: 0x01 0x00 0x00
0x00
(gdb) x/4xb &a
0x7fff5fbff56c: 0x01 0x00 0x00
0x00

However, their types are different.
We’ve already seen that the decayed
value of a is a pointer to a’s first ele-
ment; this must have type int *. As
for the type of &a, we can ask GDB
directly:

(gdb) ptype &a
type = int (*)[3]

In words, &a is a pointer to an array
of three integers. This makes sense: a
doesn’t decay when passed to &, and a
has type int [3].

You can observe the distinction
between a’s decayed value and &a by
checking how they behave with respect
to pointer arithmetic:

(gdb) print a + 1
$10 = (int *) 0x7fff5fbff570
(gdb) print &a + 1
$11 = (int (*)[3]) 0x7fff5fbff578

Note that adding 1 to a adds four
to a’s address, whereas adding 1 to &a
adds twelve!

The pointer that a actually decays to
is &a[0]:

(gdb) print &a[0]
$11 = (int *) 0x7fff5fbff56c

  45

Conclusion
Hopefully I’ve convinced you that
GDB is a neat exploratory environ-
ment for learning C. You can print the
evaluation of expressions, examine raw
bytes in memory, and tinker with the
type system using ptype.

If you’d like to experiment further
with using GDB to learn C, I have a
few suggestions:

1.	Use GDB to work through
the Ksplice pointer challenge.
[hn.my/ksplice]

2.	Investigate how a struct is stored in
memory. How does this compare to
arrays?

3.	Use GDB’s disassemble command
to learn assembly programming! A
particularly fun exercise is to inves-
tigate how the function call stack
works.

4.	Check out GDB’s “tui” mode, which
provides a graphical ncurses layer on
top of regular GDB. On OS X, you’ll
likely need to install GDB from
source. n

Alan is a self-taught programmer who works at
Hacker School, where he helps people (includ-
ing himself) get better at programming. His
interests include math, concurrency, program-
ming languages, and the art of learning. He
lives in Brooklyn and enjoys Crossfit and play-
ing fetch with his cat.

Reprinted with permission of the original author.
First appeared in hn.my/gdb (hackerschool.com)

http://hn.my/ksplice
http://hn.my/gdb

46  PROGRAMMING

The Innovations of
Internet Explorer

Long before Internet Explorer
became the browser everyone
loves to hate, it was the driv-

ing force of innovation on the Inter-
net. Sometimes it’s hard to remember
all of the good Internet Explorer did
before Internet Explorer 6 became the
scourge of web developers everywhere.
Believe it or not, Internet Explorer 4-6
is heavily responsible for web develop-
ment as we know it today. A number
of proprietary features became de facto
standards and then official standards,
with some ending up in the HTML5
specification. It may be hard to believe
that Internet Explorer is actually to
thank for a lot of the features that we
take for granted today, but a quick walk
through history shows that it’s true.

DOM
If Internet Explorer is a browser that
everyone loves to hate, the Document
Object Model (DOM) is the API that
everyone loves to hate. You can call
the DOM overly verbose, ill-suited for
JavaScript, and somewhat nonsensical,
and you would be correct on all counts.
However, the DOM gives develop-
ers access to every part of a webpage
through JavaScript. There was a time
when you could only access certain
elements on the page through JavaS-
cript. Internet Explorer 3 and Netscape
3 only allowed programmatic access
to form elements, images, and links.
Netscape 4 improved the situation
by expanding programmatic access to
the proprietary <layer> element via
document.layers. Internet Explorer 4
improved the situation even further by
allowing programmatic access of every
element on the page via document.all.

By Nicholas C. Zakas

  47

In many regards, document.all was
the very first version of document.
getElementById(). You still used
an element’s ID to access it through
document.all, such as document.all.
myDiv or document.all["myDiv"]. The
primary difference was that Internet
Explorer used a collection instead of
the function, which matched all other
access methods at the time, such as
document.images and document.forms.

Internet Explorer 4 was also the
first browser to introduce the abil-
ity to get a list of elements by tag
name via document.all.tags(). For
all intents and purposes, this was the
first version of document.getEle-
mentsByTagName() and worked the
exact same way. If you want to get
all <div> elements, you would use
document.all.tags("div"). Even in
Internet Explorer 9, this method still
exists and is just an alias for document.
getElementsByTagName().

Internet Explorer 4 also introduced
us to perhaps the most popular pro-
prietary DOM extension of all time:
innerHTML. It seems that the folks
at Microsoft realized what a pain it
would be to build up a DOM pro-
grammatically and afforded us this
shortcut, along with outerHTML, both
of which proved to be so useful that
they were standardized in HTML5.
The companion APIs dealing with
plain text, innerText, and outer-
Text, also proved influential enough
that DOM Level 3 introduced

textContent, which acts in a similar
manner to innerText.

Along the same lines, Internet Explorer
4 introduced insertAdjacentHTML(), yet
another way of inserting HTML text into
a document. This one took a little longer,
but it was also codified in HTML5 and is
now widely supported by browsers.

Events
In the beginning, there was no event
system for JavaScript. Both Netscape
and Microsoft took a stab at it and
each came up with different models.
Netscape brought us event capturing,
the idea that an event is first delivered
to the window, then the document, and
so on until finally reaching the intended
target. Netscape browsers prior to ver-
sion 6 supported only event capturing.

Microsoft took the opposite approach
and came up with event bubbling. They
believed that the event should begin at
the actual target and then fire on the
parents and so on up to the document.
Internet Explorer prior to version 9 only
supported event bubbling. Although
the official DOM events specification
evolved to include both event capturing
and event bubbling, most web develop-
ers use event bubbling exclusively, with
event capturing being saved for a few
workarounds and tricks buried deep
down inside of JavaScript libraries.

In addition to creating event bub-
bling, Microsoft also created a bunch
of additional events that eventually
became standardized:

48  PROGRAMMING

■■ contextmenu – Fires when you use
the secondary mouse button on an
element. First appeared in Internet
Explorer 5 and later codified as part
of HTML5. Now supported in all
major desktop browsers.

■■ beforeunload – Fires before the
unload event and allows you to block
unloading of the page. Originally
introduced in Internet Explorer 4
and now part of HTML5. Also sup-
ported in all major desktop browsers.

■■ mousewheel – Fires when the mouse
wheel (or similar device) is used. The
first browser to support this event
was Internet Explorer 6. Just like the
others, it’s now part of HTML5. The
only major desktop browser to not
support this event is Firefox (which
does support an alternative DOMMous-
eScroll event).

■■ mouseenter – A non-bubbling ver-
sion of mouseover, introduced by
Microsoft in Internet Explorer 5 to
help combat the troubles with using
mouseover. This event became for-
malized in DOM Level 3 Events.
Also supported in Firefox and Opera,
but not in Safari or Chrome (yet?).

■■ mouseleave – A non-bubbling version
of mouseout to match mouseenter.
Introduced in Internet Explorer 5
and also now standardized in DOM
Level 3 Events. Same support level as
mouseenter.

■■ focusin – A bubbling version of
focus to help more easily manage
focus on a page. Originally intro-
duced in Internet Explorer 6 and
now part of DOM Level 3 Events.
Not currently well supported, though
Firefox has a bug opened for its
implementation.

■■ focusout – A bubbling version of
blur to help more easily manage
focus on a page. Originally intro-
duced in Internet Explorer 6 and
now part of DOM Level 3 Events.
As with focusin, not well supported
yet, but Firefox is close.

<iframe>
Frames were initially introduced by
Netscape Navigator 2 as a propri-
etary feature. This included <frame-
set>, <frame>, and <noframes>. The
idea behind this feature was pretty
simple: at the time, everyone was using
modems and roundtrips to the server
were quite expensive. The main use
case was to provide one frame with
navigational elements that would only
be loaded once and another frame that
could be controlled by the navigation
and changed separately. Saving server
render time and data transfer by having
navigation as a separate page was a
huge win at the time.

Internet Explorer 3 supported frames
as well, since they were becoming quite
popular on the web. However, Micro-
soft added its own proprietary tag to

  49

that functionality: <iframe>. The basic
idea behind this element was to embed
a page within another page. Whereas
Netscape’s implementation required
you to create three pages to have static
navigation (the navigation page, the
content page, and the frameset page),
you could create the same functional-
ity in Internet Explorer using only two
pages (the primary page including navi-
gation, and the content page within the
<iframe>). Initially, this was one of the
major battlegrounds between Internet
Explorer and Netscape Navigator.

The <iframe> started to become
more popular because it was less work
than creating framesets. Netscape
countered by introducing <ilayer>
in version 4, which had very simi-
lar features to <iframe>. Of course,
the <iframe> won out and is now an
important part of web development.
Both Netscape’s frames and Micro-
soft’s <iframe> were standardized
in HTML4, but Netscape’s frames
were later obsoleted (deprecated) in
HTML5.

XML and Ajax
Although XML isn’t used nearly
as much in the web today as many
thought it would be, Internet Explorer
also led the way with XML support. It
was the first browser to support client-
side XML parsing and XSLT transfor-
mation in JavaScript. Unfortunately, it
did so through ActiveX objects rep-
resenting XML documents and XSLT

processors. The folks at Mozilla clearly
thought there was something there
because they invented similar function-
ality in the form of DOMParser, XMLSe-
rializer, and XSLTProcessor. The first
two are now part of HTML5. Although
the standards-based JavaScript XML
handling is quite different than Inter-
net Explorer’s version, it was undoubt-
edly influenced by Internet Explorer.

The client-side XML handling was
all part of Internet Explorer’s imple-
mentation of XMLHttpRequest, first
introduced as an ActiveX object in
Internet Explorer 5. The idea was to
enable retrieval of XML documents
from the server in a webpage and
allow JavaScript to manipulate that
XML as a DOM. Internet Explor-
er’s version requires you to use new
ActiveXObject("MSXML2.XMLHttp"),
also making it reliant upon version
strings and making developers jump
through hoops to test and use the most
recent version. Once again, Firefox
came along and cleaned up the mess
up by creating a then-proprietary XML-
HttpRequest object that duplicated the
interface of Internet Explorer’s version
exactly. Other browsers then copied
Firefox’s implementation, ultimately
leading to Internet Explorer 7 creat-
ing an ActiveX-free version as well.
Of course, XMLHttpRequest was the
driving force behind the Ajax revolu-
tion that got everybody excited about
JavaScript.

50  PROGRAMMING

CSS
When you think of CSS, you prob-
ably don’t think much about Internet
Explorer. After all, it’s the one that
tends to lag behind in CSS support
(at least up to Internet Explorer 10).
However, Internet Explorer 3 was the
first browser to implement CSS. At
the time, Netscape was pursuing an
alternate proposal, JavaScript Style
Sheets (JSSS). As the name suggested,
this proposal used JavaScript to define
stylistic information about the page.
Netscape 4 introduced JSSS and CSS,
a full version behind Internet Explorer.
The CSS implementation was less than
stellar, often translating styles into JSSS
in order to apply them properly. That
also meant that if JavaScript was dis-
abled, CSS didn’t work in Netscape 4.

While Internet Explorer’s imple-
mentation of CSS was limited to font
family, font size, colors, backgrounds,
and margins, the implementation was
solid and usable. Meanwhile, Netscape
4’s implementation was buggy and
hard to work with. Yes, in some small
way, Internet Explorer led to the suc-
cess of CSS.

The box model, an important foun-
dation of CSS, was heavily influenced
by Internet Explorer. Their first imple-
mentation in Internet Explorer 5
interpreted width and height to mean
that the element should be that size
in total, including padding and border.
This came to be known as border-
box sizing. The W3C decided that

the appropriate box sizing method
was content-box, where width and
height specified only the size of the
box in which the content lived so
that padding and border added size to
the element. While Internet Explorer
switched its standards mode to use the
content-box approach to match the
standard, Internet Explorer 8 intro-
duced the box-sizing property as a
way for developers to switch back to
the border-box model. Of course, box-
sizing was standardized in CSS3 and
some, most notably Paul Irish, recom-
mend that you should change your
default box-sizing to border-box.

Internet Explorer also brought us
other CSS innovations that ended up
being standardized:

■■ text-overflow – Used to show
ellipses when text is larger than its
container. First appeared in Internet
Explorer 6 and standardized in CSS3.
Now supported in all major browsers.

■■ overflow-x and overflow-y – Allows
you to control overflow in two sepa-
rate directions of the container. This
property first appeared in Internet
Explorer 5 and later was formalized
in CSS3. Now supported in all major
browsers.

■■ word-break – Used to specify line-
breaking rules between words. Origi-
nally in Internet Explorer 5.5 and
now standardized in CSS3. Sup-
ported in all major browsers except
Opera.

  51

■■ word-wrap – Specifies whether or
not the browser should break lines in
the middle of words. First created for
Internet Explorer 5.5 and now stan-
dardized in CSS3 as overflow-wrap,
although all major browsers support
it as word-wrap.

Additionally, many of the new CSS3
visual effects have Internet Explorer to
thank for laying the groundwork. Inter-
net Explorer 4 introduced the propri-
etary filter property making it the first
browser capable of:

■■ Generating gradients from CSS
instructions (CSS3: gradients).

■■ Creating semitransparent elements
with an alpha filter (CSS3: opacity
and RGBA).

■■ Rotating an element an arbitrary
number of degrees (CSS3: transform
with rotate()).

■■ Applying a drop shadow to an ele-
ment (CSS3: box-shadow).

■■ Applying a matrix transform to an
element (CSS3: transform with
matrix()).

Additionally, Internet Explorer 4
had a feature called transitions, which
allowed you to create some basic ani-
mation on the page using filters. The
transitions were mostly based on the
transitions commonly available in Pow-
erPoint at the time, such as fading in or
out, checkerboard, and so on.

All of these capabilities are featured
in CSS3 in one way or another. It’s
pretty amazing that Internet Explorer
4, released in 1997, had all of these
capabilities and we are now just start-
ing to get the same capabilities in other
browsers.

Other HTML5 contributions
There is a lot of HTML5 that comes
directly out of Internet Explorer and
the APIs introduced. Here are some
that have not yet been mentioned in
this post:

■■ Drag and Drop – One of the cool-
est parts of HTML5 is the definition
of native drag-and-drop. This API
originated in Internet Explorer 5 and
has been described, with very few
changes, in HTML5. The main differ-
ence is the addition of the draggable
attribute to mark arbitrary elements
as draggable (Internet Explorer used
a JavaScript call, element.drag-
Drop() to do this). Other than that,
the API closely mirrors the original
and is now supported in all major
desktop browsers.

■■ Clipboard Access – Now split out
from HTML5 into its own spec.
It grants the browser access to the
clipboard in certain situations. This
API originally appeared in Internet
Explorer 6 and was then copied by
Safari, who moved clipboardData
off of the window object and onto the
event object for clipboard events.

52  PROGRAMMING

Safari’s change was kept as part of
the HTML5 version and clipboard
access is now available in all major
desktop browsers except for Opera.

■■ Rich Text Editing – Rich text editing
using designMode was introduced in
Internet Explorer 4 because Micro-
soft wanted a better text editing
experience for Hotmail users. Later,
Internet Explorer 5.5 introduced
contentEditable as a lighter weight
way of doing rich text editing. Along
with both of these came the dreaded
execCommand() method and its asso-
ciated methods. For better or worse,
this API for rich text editing was
standardized in HTML5 and is cur-
rently supported in all major desktop
browsers as well as Mobile Safari and
the Android browser.

Conclusion
While it’s easy and popular to poke
at Internet Explorer, in reality, we
wouldn’t have the web as we know it
today if not for its contributions. Where
would the web be without XMLHttpRe-
quest and innerHTML? Those were the
very catalysts for the Ajax revolution
of web applications, upon which a lot
of the new capabilities have been built.
It seems funny to look back at the
browser that has become a “bad guy” of
the Internet and see that we wouldn’t
be where we are today without it.

Yes, Internet Explorer ha its flaws,
but for most of the history of the
Internet it was the browser that was
pushing technology forward. Now that
were in a period with massive browser
competition and innovation, it’s easy
to forget where we all came from. So,
the next time you run into people who
work on Internet Explorer, instead
of hurling insults and tomatoes, say
thanks for helping to make the Internet
what it is today and for making web
developers one of the most important
jobs in the world. n

Nicholas C. Zakas is a web technologist, consul-
tant, author, and speaker. He worked at Yahoo!
for almost five years, where he was front-end
tech lead for the Yahoo! homepage and a con-
tributor to the YUI library. He blogs regularly
at nczonline.net and can be found on Twitter
via @slicknet

Reprinted with permission of the original author.
First appeared in hn.my/ie (nczonline.net)

http://nczonline.net
http://twitter.com/slicknet
http://hn.my/ie

  53

By Chris Eppstein

A Software Architect

A software architect lives to
serve the engineering team
— not the other way around.

A software architect is a mentor.
A software architect is a student.
A software architect is the code jani-

tor, happily sweeping up after the big
party is over.

A software architect helps bring
order where there is chaos, guidance
where there is ambiguity, and decisions
where there is disagreement.

A software architect codes the parts
of the system that are the most pre-
cious and understands them through
and through.

A software architect creates a vocab-
ulary to enable efficient communica-
tion across an entire company.

A software architect reads far more
code than he or she writes, catching
bugs before they manifest as systems
change.

A software architect provides tech-
nological and product vision without
losing sight of the present needs.

A software architect admits when he
or she is wrong and never gloats when
right.

A software architect gives credit
where it is due and takes pride simply
in a job well done. n

Husband & Father, Software Architect for
@Caring, Rubyist, Creator of the Compass
stylesheet framework, Sass Core Developer,
Beer Drinker, Alumnus of Caltech.

Reprinted with permission of the original author.
First appeared in hn.my/architect (coderwall.com)

http://twitter.com/Caring
http://hn.my/architect

54  SPECIAL

By Alex Hillman

How I Learned to
Defrag My Brain

Steven Johnson is one of my
favorite authors. I wish I could
remember who introduced me

to him so I could thank them. The first
book of his I read was The Invention of
Air, and his most recent Where Good
Ideas Come From.

Recently, Steven started a
series called “The Writers Room.”
[hn.my/wroom] Truth be told, his
last post is nearly a month old but has
moved me so hard for the last month
that I wanted to share.

Enter the Spark File
The Spark File, Steven describes, is
a process/tool that he uses to collect
“half-baked ideas” and then revisit
them. For 8 years, he has maintained a
single document with notes and ideas
with zero organization or taxonomy;
simply a chronology of thoughts. He
calls this document his Spark File.

Once a month, he reviews the
ENTIRE Spark File from top to
bottom, revisiting old ideas and poten-
tially combing them with newer ideas.

I’ve adopted this process for the
last 30 days and it’s had a remark-
able effect. The most astounding part
is how often I find myself writing the
same thing in different ways. I’ve taken
that pattern as a clue to explore a con-
cept further and see if it merits more
investigation.

Your Crippling Compulsion, and the
Solution
I was sharing this process with one of
my co-conspirators, Tony Bacigalupo,
while working with him last week
and he said “this process is amazing, it
sounds like a defragmentation for your
brain.”

And it is.

SPECIAL

http://hn.my/wroom

  55

This is particularly important
because, as Tony pointed out, we don’t
have ideas all at once and we certainly
don’t have them in any particular
order. Perhaps more importantly, we
tend to either have a compulsion to act
on our ideas immediately or not at all.

This compulsion is blocking your
greatest work.

By using a Spark File, I’m able to
“act” on an idea simply by writing it
down at the bottom of the document.
Compulsion fulfilled. But unlike the
process without Spark File assistance,
the idea’s destiny isn’t written yet. It
has the potential to become something
greater than an idea, and I’d argue
something greater than most 99.9% of
all execution.

Any of your half-baked ideas can
contribute to the development of
better answers.

Where Better Answers Come From
Once a month (or any time I wish), I
revisit my Spark File notes and look
for patterns and clues. I can find inspi-
ration and most importantly, I can
find answers — sometimes answers to
questions I didn’t even know how to
ask while I was jotting down my half-
baked ideas.

I’ve found that the inspiration and
answers I’m gleaning from my Spark
File tend to be more complete, overall
deeper and more thorough than if I sit
down to work on a single idea “in the
moment” that I’m having that idea.

Homework
Your homework, should you choose to
accept it:

■■ Read The Invention of Air.
[hn.my/invention]

■■ Read Where Good Ideas Come From.
[hn.my/goodideas]

■■ Read Steven’s post on his Spark File.
[hn.my/sparkfile]

■■ Start a Spark File of your own. Write
in it every day.

■■ Read through your entire Spark File
every few weeks (but not every day)
looking for links and patterns.

You can defrag your brain too. n

Alex Hillman is the co-founder of Indy Hall
[indyhall.org], one of the world’s most
respected coworking communities with hun-
dreds of active members and thousands of par-
ticipants annually from around the world. He
publishes the Coworking Weekly email news-
letter [coworkingweekly.com] every Thursday.
And he teaches people how to build amazing
communities in the Community Builder Mas-
terclass [masterclass.indyhall.org].

Reprinted with permission of the original author.
First appeared in hn.my/defrag (alexhillman.com)

http://hn.my/invention
http://hn.my/goodideas
http://hn.my/sparkfile
http://indyhall.org
http://coworkingweekly.com
http://masterclass.indyhall.org
http://hn.my/defrag

56  SPECIAL

A Tor of the Dark Web
By Dan Schultz

Tell me if you’ve been in this sit-
uation: you’re chatting about
online anonymity with your

wife and the other Knight-Mozilla Fel-
lows over a pizza in Florence. A quiet-
spoken stranger sitting across the room
walks up to your table and asks, “Are
you all here for the Tor hackathon?”
You respond, “Why yes, yes we are!”

He goes on to explain that he is a
journalist writing about Tor. He also
tells us that he bets that the CIA and
the Italian Secret Service are going to
have moles there. What he obviously
meant to say was, “I work for the CIA
and I’ve been watching you for quite
some time now.”

It’s possible that he didn’t actually
work for the CIA. His name and photo
checked out under the website he
claimed to write for. It was probably
just a one-time job. Even if this isn’t
true, even if a network of government
spies didn’t track my position across

Europe just to meet us in a restaurant,
his comment set the tone for my week-
end in Florence.

Tor is serious business.

What the hell is Tor?
Tor [torproject.org] is a program that
makes you anonymous. This means
that, for better or for worse, the big
brothers, neighborhood hackers, and ad
agencies of the world can’t tell what
you are doing on the Internet with-
out going through a lot of effort and
expense.

Is that too abstract? Here are some
illustrative statements. *Taps the
microphone*

■■ A Tor user walks into a bar and the
bartender asks, “Who are you?”

■■ How many Tor users does it take to
screw in a light bulb? Only a few, but
you’ll never know who did it.

http://torproject.org

  57

■■ I used Tor last night and now my
wife says that she doesn’t even know
who I am any more.

I’ll be here all night.
If you use Tor you become Spartacus.

Tor takes everything you do, makes it
look exactly like what everyone else is
doing, and gets random computers on
their network to do the talking for you.
Ta-da! Now it is practically impossible
to pin an action on you.

The Original Need
I bet you wouldn’t have guessed that
this idea was invented by the U.S.
Navy. You would have? Oh.

Put on your paper sailor hat and I’ll
explain. Imagine you are the king of
the Navy and you’re going to war with
your fleet of a thousand brand new
Navy cars (I don’t really know how the
Navy works). Being king, you are in
the most important car of all because
you’re calling the shots. You don’t want
the enemy to know which vehicle is
yours. You also don’t want them to
know who is receiving orders because
that could give away your tactics.

“I know,” you say, “I’ll encrypt every-
thing so that they can’t see the content.
Then they won’t be able to tell that my
broadcasts are more important than
others.”

Unfortunately for you, the enemy has
fancy technology. They can’t decrypt
messages, but they are able to track
where everything comes from and

where it is going. They can’t tell what
you’re saying, but they have all they
need.

After about 5 minutes you think
you’re doing well. Half of the enemy
cars are already on fire! Yours explodes.
“How did they do that?” you ask in the
afterlife. “Easy,” responds God, “they
were able to see that your car was
sending out the most messages. They
knew exactly where you were.” Then
he slaps you with a piece of linguini
and drifts away.

To prevent this from ever happening
again, the Navy decided to invent the
concept of an “Onion Network” (not
to be confused with The Onion Net-
work). Now instead of having pack-
ets go directly from point A to point
B, each one randomly hops around
the fleet first. Because of encryption,
the enemy can’t tell the difference
between a new message and a “hop”
message — they all look the same. It’s
like running an invisible sprinkler in a
thunderstorm.

Suddenly, nobody but the sender and
the recipient can figure out the end
points of a message chain. Even the
middle men (the ones doing the hops)
don’t know the path. Each piece of the
hop — each “layer” of the message — is
encrypted with a different key, so the
only thing a relay knows is who gave
them the package and where it should
go next.

58  SPECIAL

Onions have layers too, that’s why
this setup is called an Onion Network.
Get it? It’s like Shrek!

What’s it Good For?
Tor has applications in the real world.
You can buy drugs and guns, share
illegal pictures, and hire assassins. Oh
wait, I’m just describing Tor’s reputa-
tion (more on that later). Seriously,
there are a lot of important situations
where people have moral and compel-
ling reasons to want anonymity.

Here are a few:

■■ Protecting witnesses and victims of
domestic abuse. Anyone who wants
to be able to access the Internet
without being discovered by a third
party can use Tor to defend against
their stalkers.

■■ If you don’t like being tracked by
your government, Internet Service
Providers, or search engines.

■■ Providing truly anonymous tips.
There are times when people need or
want to share information against the
wishes of powerful and potentially
dangerous forces (e.g., mafias, govern-
ments, corporations).

■■ Safely bypassing censorship. If you
live in Syria, China, or The United
States of RIAA/MPAA, you might
use Tor to access content from the
outside world more safely.

These kinds of reasons explain why
organizations with very good reputa-
tions, like the Knight Foundation, are
devoting resources to Tor.

The Dark Web
What I’ve just described is a spin on
the way people access normal informa-
tion online. If you point Tor Browser
to Google you will see the same old
Google. It’s just that now Google
doesn’t know who you are. That’s
powerful enough, but there’s more: Tor
also lets you see hidden content on the
Internet.

Using Tor is like entering a cheat
code into real life and playing the lost
levels. It is the digital equivalent of
platform 9 and 3/4 [hn.my/platform9].
This secret section of the Internet is
possible because Tor users can serve
content anonymously too.

Trolls use the Internet, Ogres use Tor

(Illustration by Anne Buckwalter)

http://hn.my/platform9

  59

If you don’t know much about how
the Internet works, believe me when I
say that if a website’s location is hidden
it becomes essentially impossible to
access. It would be like trying to visit
someone’s house without knowing
anything about where they live — not
even the country. Tor gives you a blind-
fold and leads you there. You still don’t
know where the house is, but at least
you can visit.

Anonymous sites are accessed
through something called an “onion
address,” which is made up of a series
of random letters and numbers. For
instance, this is a “clean” version of
Tor’s wikipedia: 3suaolltfj2xjksb.onion
[hn.my/onion]. Feel free to try going
to the link; it won’t work (unless, of
course, you are using the Tor browser
[hn.my/torbrowser]).

That random looking string is used to
find the server within the Tor network.
Because the addresses don’t point to a
real address on the Internet, there is no
way to fully access this content with-
out Tor. There are services [onion.to]
you can use to get there without using
Tor, but you lose all benefits of ano-
nymity and content is often censored.

Onion addresses are the most fas-
cinating part of Tor, albeit the most
potentially disturbing. Rest assured
that they don’t all lead to child
porn, guns, and drugs. For example
there is a secret version of Twitter
[hn.my/twitteronion], a bunch of blogs
[hn.my/blogonion], a search engine

[hn.my/searchonion], and an email ser-
vice [hn.my/emailonion]. There is even
a secret version of 4chan (called Tor-
chan), which I won’t link to because
that one does lead to child porn and
drugs.

These types of content networks
— ones that are served on top of the
normal web so that you need special
programs to reach them — are known
as the Dark Web. Not necessarily
because the content is darker (it is),
but because it is hidden from view and
can’t really be searched and scraped as
reliably.

Implications of the Dark Web
Most uses for Tor become more potent
with onion addresses. Anonymous serv-
ers are just as protected from higher
powers as anonymous users. If Amazon
suddenly started selling illegal drugs
they would get in trouble. If a Tor mar-
ketplace started selling illegal drugs,
the law would have to figure out a way
to find them first.

This power applies to legitimate uses
as well. If a government official wanted
to contact The Boston Globe with a
corruption leak, he or she could use
Tor to create a gmail account anony-
mously. The government could then
subpoena Google, and Google might
be willing to give away the information
they have. They won’t know much, but
now things like account access patterns
and full email logs would be fair game.

http://hn.my/onion
http://hn.my/torbrowser
http://onion.to
http://hn.my/twitteronion
http://hn.my/blogonion
http://hn.my/searchonion
http://hn.my/emailonion

60  SPECIAL

If the official had used Tormail, then
even Google wouldn’t know what hap-
pened. The government would have no
course of action because there would be
no service provider to ask. Every journal-
ist in the world should be able to agree
that there is no good reason for a watch-
dog to trust the organizations they are
watching. Why should you trust corpora-
tions and governments to keep sources
safe?

Tor has a reputation because it has a
lot of criminal content, but the social
good that it supports is just so important
(criminals will always be criminals). I’m
working on a game called Torwolf [hn.
my/torwolf] to simulate a few situations
where Tor would be effective (if you have
played Werewolf or Mafia, you can start
to imagine what the game will be like). In
the mean time, read up on Tor if you’re
curious [hn.my/torfaq]. Better yet, go try
it out. n

Dan Schultz (@slifty) is a 2012 Knight-Mozilla
Fellow at the Boston Globe developing open
code and exploring innovation in journalism.
He recently graduated from the MIT Media Lab,
where he designed and prototyped Truth Gog-
gles, an automated bullshit detector for the Inter-
net. Before coming to the lab Dan was trained
to think in terms of systems at Carnegie Mellon
University, and was awarded a Knight News Chal-
lenge grant to write about “Connecting People,
Content, and Community” on the PBS Idea Lab.

Reprinted with permission of the original author.
First appeared in hn.my/tor (slifty.com)

http://hn.my/torwolf
http://hn.my/torwolf
http://hn.my/torfaq
http://twitter.com/slifty
http://hn.my/tor

http://memset.com

	FEATURES
	Getting Your Heart Rate Using R and Ruby
	If Hemingway Wrote JavaScript

	STARTUPS
	Late Bloomer, Not A Loser
	Move Your Feet
	The Only Two Ways to Build a $100 Million Business
	The “Work” Trap

	PROGRAMMING
	Falsehoods Programmers Believe About Time
	How Statically Linked Programs Run on Linux
	Learning C with GDB
	The Innovations of Internet Explorer
	A Software Architect

	SPECIAL
	How I Learned to Defrag My Brain
	A Tor of the Dark Web

