
100 Mile Bike Courier
James Greig

Issue 32 January 2013

Accept payments online.

http://stripe.com

Accept payments online.

Now you can hack on DuckDuckGo

Create instant answer plugins for DuckDuckGo

duckduckhack.com

Now you can hack on DuckDuckGo

Create instant answer plugins for DuckDuckGo

DuckDuckHackDuckDuckHack

package DDG::Goodie::Unidecode;# ABSTRACT: return an ASCII version of the search query use
DDG::Goodie; use Text::Unidecode; zci is_cached => 1; zci answer_type => "convert to ascii"; triggers
startend => "unidecode"; handle remainder => sub { my $u = unidecode $_; # unidecode output some-
times contains trailing spaces $u =~ s/\s+$//; return $u; }; 1; package DDG::Goodie::Rot13; #
ABSTRACT: Rotate chars by 13 letters use DDG::Goodie; triggers start => 'rot13'; handle remainder =>
sub { if ($_) { $_ =~ tr[a-zA-Z][n-za-mN-ZA-M]; return "ROT13: $_"; }; return }; zci is_cached => 1; 1;
package DDG::Goodie::Base64; use DDG::Goodie; use MIME::Base64; use Encode; triggers startend =>
"base64"; zci answer_type => "base64_conversion"; zci is_cached => 1; handle remainder => sub {
return unless $_ =~ /^(encode|decode|)\s*(.*)$/i; my $command = $1 || ''; my $str = $2 || ''; if ($str) { if (
$command && $command eq 'decode') { $str = decode_base64($str); $str = decode("UTF-8", $str);
return "Base64 decoded: $str"; } else { $str = encode_base64(encode("UTF-8", $str)); return "Base64
encoded: $str"; } } return; }; 1; package DDG::Goodie::Chars; # ABSTRACT: Give the number of charac-
ters (length) of the query. use DDG::Goodie; triggers start => 'chars'; zci is_cached => 1; zci
answer_type => "chars"; handle remainder => sub { return "Chars: " .length $_ if $_; return; }; 1; pack-
age DDG::Goodie::ABC; use DDG::Goodie; triggers any => "or"; zci answer_type => "rand"; handle
query_parts => sub { my @choices; my @collected_parts; while (my $part = shift) { if (lc($part) eq 'or') {
return unless @collected_parts; push @choices, join(' ', @collected_parts); my $length =
@collected_parts; return if $length > 1; @collected_parts = (); } elsif ($part) { push @collected_parts,
$part; } } push @choices, join(' ', @collected_parts) if @choices && @collected_parts; return if
scalar(@choices) <= 1; my $choice = int(rand(@choices)); if (my @duck = grep { $_ eq 'duckduckgo' || $_
eq 'duck' || $_ eq 'ddg' } @choices) { return $duck[0]." (not random)", answer_type => 'egg'; } return
$choices[$choice]." (random)"; return; }; 1; package DDG::Goodie::PublicDNS; use DDG::Goodie; use

sub { if ($_) { $_ =~ tr[a-zA-Z][n-za-mN-ZA-M]; return "ROT13: $_"; }; return }; zci is_cached => 1; 1;
package DDG::Goodie::Base64; use DDG::Goodie; use MIME::Base64; use Encode; triggers startend =>
"base64"; zci answer_type => "base64_conversion"; zci is_cached => 1; handle remainder => sub {
return unless $_ =~ /^(encode|decode|)\s*(.*)$/i; my $command = $1 || ''; my $str = $2 || ''; if ($str) { if (
$command && $command eq 'decode') { $str = decode_base64($str); $str = decode("UTF-8", $str);
return "Base64 decoded: $str"; } else { $str = encode_base64(encode("UTF-8", $str)); return "Base64
encoded: $str"; } } return; }; 1; package DDG::Goodie::Chars; # ABSTRACT: Give the number of charac
ters (length) of the query. use DDG::Goodie; triggers start => 'chars'; zci is_cached => 1; zci
answer_type => "chars"; handle remainder => sub { return "Chars: " .length $_ if $_; return; }; 1; pack
age DDG::Goodie::ABC; use DDG::Goodie; triggers any => "or"; zci answer_type => "rand"; handle
query_parts => sub { my @choices; my @collected_parts; while (my $part = shift) { if (lc($part) eq 'or') {
return unless @collected_parts; push @choices, join(' ', @collected_parts); my $length =
@collected_parts; return if $length > 1; @collected_parts = (); } elsif ($part) { push @collected_parts,
$part; } } push @choices, join(' ', @collected_parts) if @choices && @collected_parts; return if
scalar(@choices) <= 1; my $choice = int(rand(@choices)); if (my @duck = grep { $_ eq 'duckduckgo' || $_

http://stripe.com
http://duckduckhack.com

4  ﻿

Curator
Lim Cheng Soon

Contributors
James Greig
Joel Runyon
Gabriel Weinberg
Barry Steyn
Luc Gommans
Greg Lehey
Kalid Azad
Carlos Bueno
Dan Ariely
Alex MacCaw

Proofreaders
Emily Griffin
Sigmarie Soto

Printer
MagCloud

Hacker Monthly is the print magazine ver-
sion of Hacker News — news.ycombinator.com, a
social news website wildly popular among program-
mers and startup founders. The submission guide-
lines state that content can be “anything that grati-
fies one’s intellectual curiosity.” Every month, we
select from the top voted articles on Hacker News
and print them in magazine format.
For more, visit hackermonthly.com

Advertising
ads@hackermonthly.com

Contact
contact@hackermonthly.com

Published by
Netizens Media
46, Taylor Road,
11600 Penang,
Malaysia.

Hacker Monthly is published by Netizens Media and not affiliated with Y Combinator in any way.

Cover Photographs by James Greig

http://news.ycombinator.com
http://hackermonthly.com
mailto:ads@hackermonthly.com
mailto:contact@hackermonthly.com

  5

For links to Hacker News dicussions, visit hackermonthly.com/issue-32

Pale Blue Dot

Contents
FEATURES

06  100 Mile Bike Courier
By James Greig

14  An Unexpected Ass Kicking
By Joel Runyon

STARTUPS

17  Traction Mistakes
By Gabriel Weinberg

PROGRAMMING

20  JavaScript: Function Invocation
Patterns
By Barry Steyn

25  How Does SSL Work?
By Luc Gommans

30  Hacking ls -l
By Greg Lehey

36  An Intuitive Guide to Linear Algebra
By Kalid Azad

SPECIAL

45  Pascal’s Apology
By Carlos Bueno

48  Understanding Ego Depletion
By Dan Ariely

54  Small
By Alex MacCaw

http://hackermonthly.com/issue-32

6  FEATURES

FEATURES

When I started selling
CycleLove t-shirts, I made
a quiet promise to myself:

that I would deliver my first order in
person, and by bike.

It seemed like a simple way of cele-
brating this small but important mile-
stone in my new venture.

CycleLove is the first thing in a long
time that I really care about; something
I quit my job to do. And so making
the effort to meet my first customer
seemed like the very least I could do.

As I’m based in London, I figure this
as-yet-nameless-customer won’t be too
far away, so you can imagine my mixed
emotions when this email lands in my
inbox a few weeks later:

100 Mile Bike Courier

By James Greig

Why I cycled a hundred miles to meet my first customer

  7

 Plugging the Peterborough postcode
into Google Maps quickly confirms
my hunch: to keep my promise, I must
cycle over a hundred miles to deliver a
t-shirt.

For a few days I chew the idea over in
my head. I’ve completed the 120-odd
miles of the Dunwich Dynamo over-
night and raced 80 miles in Scotland on
the Etape Caledonia. How hard could
a hundred-odd miles on my own be?
(First mistake: cycling long distances
alone plays tricks on the mind).

Still unsure if I have the required
huevos to do the ride, I email Peter to
explain it may be a while before the
t-shirt is delivered.

He fires back a quick response:

“I’ve purchased this tee for my broth-
er’s birthday (in November) so there’s
a bit of time to play with ;)”

This is the sucker punch. The t-shirt
is a birthday present and I’ve got two
months to deliver it. I resolve to stick
to my plan and deliver it by bike, what-
ever it takes.

 Best-laid plans (or not)
I set a few ground rules for myself:

1.	No training — this is not to be a
race.

2.	No visible lycra — I am not, and do
not intend to become, a mamil.

3.	No fancy gear, cleats or hi-vis — I
will make the journey as a human on
a bike, not a “cyclist.”

The first half of the route I already
know well from my training for the
Etape Caledonia — the quiet country
roads and softly rolling hills between
Epping Forest and Cambridge. The
second half between Cambridge and
Peterborough is unknown territory, and
I decide to keep it that way. (Second
mistake: always know your route).

Now it’s a matter of waiting for good
weather. October passes. I am ill on
and off. November rolls in, tempera-
tures drop, and I start to regret wait-
ing so long. Had I left it for too late?
Would anyone join me on the ride?

With time running out, I spot a full
day of sunshine in the forecast, and the
date is set. Sunday 11th November is
the day I will become a one-hundred
mile bike courier.

I arrange with Pete to meet him and
his brother Rob in a pub that Sunday
afternoon, pack as light a bag as pos-
sible with an SLR camera, and set my
alarm for 4.30am.

 It’s a cold, dark morning, but I’m
excited to start my journey after weeks
of planning.

Sunday at 5am marks an overlap of
worlds. Revelers are heading home
whilst workers head out. A young
couple is scaling a fence into Brock-
well Park, whilst somber figures wait
alone at bus stops. Traffic on London
Bridge is reduced to less than a trickle.
Drunken kids hang like monkeys from
scaffolding in Leyton, howling with
laughter.

By James Greig

Why I cycled a hundred miles to meet my first customer

8  FEATURES

After ten miles or so, I’m sweating
and stop to remove a layer. (Third mis-
take: cities generate heat. The country-
side doesn’t, as I will soon remember).

As the light imperceptibly increases,
I finally break out of Epping Forest
into open countryside, and the tem-
perature plummets towards freezing.
I feel obliged to make use of the light
by taking photos, even though it means
removing both sets of gloves.

 By this point, I’m feeling the cold
however fast I ride, and I stop to put
everything I’ve got in my bag back on.

I’m also cursing my decision not
to wear overshoes. (Fourth mistake:
extremities suffer first). Luckily I have
some spare socks, intended for the
journey home, and put them on over
my long wooly socks. A mouth full
of chocolate and a sausage roll is no
comfort to my toes but settles a now-
hungry stomach.

Switching my camera-phone lens
around, a blue face peers back at
me from the screen. I wish I had the
Michelin Man’s insulation to keep me
warm.

Giro/Vulpine/Specialized/Brixton Cycles/
Canon/Knog/Her Majesty’s Treasury 4:42am Breakfast and last minute route check

5:35am London Bridge 6:56am Epping Forest

  9

I may be riding alone, but I know
that a few people are following my
progress on Twitter, and I realize they
can offer the support I need. I’m not
sure if my phone battery will last the
distance if I keep refreshing my feed,
but it’s worth the risk. Sure enough,
Twitter offers me some badly needed
words of encouragement:

Oh. How are your feet doing then? :)
How much longer have you got?
— Discerning Cyclist
(@discerningcyclist)

Keep going. Hope you warm up and
have a great ride.
— Belinda Scott (@Condorbee)

Belinda is right. The only way to get
warm is to speed up.

I know this part of England well
from training rides, and familiar place
names are now flashing by: Roydon.
Much Hadham. Little Hadham. Pat-
more Heath.

A handful of lycra-clad cyclists are
already out for their Sunday spin, and I
bob my head in acknowledgement, not
really caring if they respond or not.

7:09am Winding roads and freezing fog

8:29am Cold feet

10  FEATURES

Two hours later, I roll over the M11
into Newport, twenty miles south of
Cambridge, and can’t help but think:
maybe this isn’t going to be so tough
after all? (Fifth mistake: it’s not over
until it’s over, James).

 After a short stop in Newport, I
head out north from the village.

Suddenly cars are buzzing by uncom-
fortably close. The road surface is
rough like three-day stubble, and my
speed drops.

Confused I pull into the first layby to
check my location. I’m on the fucking
A1301! (Sixth mistake: avoid fast roads
at all cost).

 For the first time on the ride, I’m
angry. What the hell am I doing? Why
didn’t I plan my route better? Why
didn’t I do some training?

Of course it’s too late to be asking
these kinds of questions, so I ease
gently back onto my bike, and force
myself to press on.

10:22am Newport

10:46am Audley End House 11:35am Shouldn’t be here

  11

Fortunately, signs of civilization have
started to appear in the form of cycle
paths. They’re not marked on my map
(thanks, Apple), but I’m sure they must
be headed to my checkpoint of Cam-
bridge. An hour later I’m there, tucking
into what tastes like the best fish and
chips in the world.

68 miles completed. 38 to go.
 With a full belly, I start off slowly

on the second leg of the journey. I’m
under no pretentions that it’s going to

be easy — especially consid-
ering I have no idea how flat
or hilly the road ahead is.

Each town and village on
the route now becomes a
target.

I memorize a few at a
time and chant them to
myself on repeat, like a
mantra, before stopping to
learn a new batch of place
names.

I’m taking another break
for food when, out of

nowhere, a recumbent bike appears,
and I find myself smiling again. Look-
ing at the photo now at full size, its
owner seems to be wearing green wel-
lington boots. Chapeau!

 It’s now several hours since lunch,
and my energy levels are flagging. Even
the smallest of hills seem to grind on
relentlessly.

11:47am Where does this go, iOS6? 12:38pm Lunch, Cambridge

13:53pm Chance encounter with a recumbent

12  FEATURES

Thankfully I have the cure for the
problem and am soon tripping on an
awesome wave of sugar and caffeine.
Time is running out though — I need
to get to my destination before the hit
wears off — and as if to heighten the
sense of urgency, the sun is dipping
towards the horizon.

At this point I get lucky, hitting
the smoothest, straightest and flattest
stretch of road I’ve ever seen…

If you’re reading this B1040, I love
you. Let’s do it again sometime soon.

With fifteen or so miles covered at
top speed, I’m feeling more positive.
The first road sign for Peterborough
appears, and there’s no doubt in my
mind that I’m going to make it.

I allow myself the luxury of stopping
to get out my camera and document
the last rays of sun for the day.

 As the light fades, I hit the outskirts
of Peterborough, knowing that Pete
and his brother Rob will already be
at our rendezvous point, a floating
bar moored on the River Nene in the
center of town.

By the time I arrive there, the novelty
of the location escapes me — all I can
think about is getting my lips around a
cold beer.

Sitting down with the pint that Pete
has just bought me, I grab the pack-
aged CycleLove t-shirt out of my bag.
I search for the best words to explain
to his brother who this sweaty and
exhausted-looking man sitting across
from him at the table is.

The B1040

14:08pm Magic potion

  13

I turn to Rob and find myself
saying…

“Well, I’ve got this blog about
cycling… and…” n

Distance ridden: 105 miles
Total time: 11.5 hours
Resting time: 2.5 hours approx.
Photos taken: 112
Ales drunk: 2
Happy customers: 1

James Greig trained as a graphic designer
at Glasgow School of Art in Scotland before
returning to London in 2009 to pursue his
career as a graphic designer. In the spring of
2012 he quit his job to travel across America,
and began working (almost) full-time on
CycleLove.

Reprinted with permission of the original author.
First appeared in hn.my/cycle (cyclelove.com)

15:52pm Twilight

16:42pm Peterborough

16:57pm My first customer: Rob

http://hn.my/cycle

14  FEATURES

By Joel Runyon

An Unexpected Ass Kicking

I sat down at yet another coffee
shop in Portland determined to get
some work done, catch up on some

emails and write another blog post.
About 30 minutes into my working,

an elderly gentleman at least 80 years
old sat down next to me with a hot
coffee and a pastry. I smiled at him and
nodded and looked back at my com-
puter as I continued to work.

“Do you like Apple?” he asked as he
gestured to the new Macbook Air I had
picked up a few days prior.

“Yea, I’ve been using them for a
while,” I said, wondering if I was going
to get suckered into a Mac vs. PC
debate in a Portland coffee shop with
an elderly stranger.

“Do you program on them?”
“Well, I don’t really know how to

code, but I write quite a bit and spend
a lot of time creating online projects
and helping clients run their busi-
nesses,” I replied.

“I’ve been against Macintosh com-
pany lately. They’re trying to get

everyone to use iPads and when people
use iPads they end up just using tech-
nology to consume things instead of
making things. With a computer you
can make things. You can code, you can
make things and create things that have
never before existed and do things that
have never been done before.”

“That’s the problem with a lot of
people,” he continued, “They don’t
try to do stuff that’s never been done
before, so they never do anything, but
if they try to do it, they find out there’s
lots of things they can do that have
never been done before.”

I nodded my head in agreement and
laughed to myself — mostly because
that would be something that I would
say and because of the coincidence that
out of all the people in the coffee shop
I ended up talking to, it was this guy.
What a way to open a conversation.

The old man turned back to his
coffee, took a sip and then looked back
at me.

  15

“In fact, I’ve done lots of things that
haven’t been done before,” he said
half-smiling.

Not sure if he was simply toying with
me or not, I let my curiosity get the
better of me.

“Oh, really? Like what types of
things?” I asked, all the while half-
thinking he was going to make up
something fairly non-impressive.

“I invented the first computer,” he
said.

Um, Excuse me?
“I created the world’s first internally

programmable computer. It used to
take up a space about as big as this
whole room and my wife and I used to
walk into it to program it.”

“What’s your name?” I asked, think-
ing that this guy was either another
crazy homeless person in Portland or
legitimately who he said he was.

“Russell Kirsch,” he answered.
Sure enough, after .29 seconds, I

found out he wasn’t lying to my face.
Russell Kirsch indeed invented the

world’s first internally programmable
computer [hn.my/russell] as well as a
bunch of other things, and he definitely
lives in Portland. As he talked, I began
googling him.

He read my mind and volunteered,
“Here, I’ll show you.”

He stood up and directed me to a
variety of websites and showed me
through the archives of what he’d
created while every once in a while
dropping some minor detail like, “I also
created the first digital image. It was a
photo of my son.”

At this point, I learned better
than to call Russell’s bluff, but sure
enough, a few more Google searches
[hn.my/newborn] showed that he did
just what he said he did.

 As he showed me through the old
history archives of what he did (and
while any hope of productivity vacated
my mind), I listened to his stories and
picked his brain.

“Nothing is withheld from us
which we have conceived to do.”

http://hn.my/russell
http://hn.my/newborn

16  FEATURES

At some point in the conversation, I
said to him, “You know Russell, that’s
really impressive.”

“I guess. I’ve always believed that noth-
ing is withheld from us which we have
conceived to do. Most people think the
opposite — that all things are withheld
from them which they have conceived
to do and they end up doing nothing.”

“Wait,” I said, pausing at his last sen-
tence, “What was that quote again?”

“Nothing is withheld from us which
we have conceived to do.”

“That’s good. Who said that?”
“God did,” he said.
“What?”
“God said it and there were only

two people who believed it. You know
who?”

“Nope. Who?” I asked.
“God and me, so I went out and did

it,” he replied.

Well then, I thought as he finished
showing me the archives, I’m not going
to argue with the guy who invented
the computer. After about 20 minutes
of walking me through his contribu-
tions to technology, he sat down,
finished his coffee, glanced at his half-
eaten pastry now-cold, checked his
watch and announced, “Well, I have to
go now.”

With that, we shook hands, he got
up, walked to his car and drove off
as I just sat there trying to figure out
what exactly had just happened. As I
sat there thinking, two things he said
reverberated in the back of my mind:

■■ Nothing is withheld from us which
we have conceived to do.

■■ Do things that have never been done.

The first meaning: If you have con-
ceived something in your mind, have
decided to do it and are willing to put
in the work, then nothing can stop you.

The second is fairly self-explanatory
but carries the extra weight of coming
from the guy who invented the very
thing that’s letting me type these
words out on the internet. n

Joel Runyon is the author of the Blog of
Impossible Things & Impossible HQ, where
he writes about pushing your limits and doing
the impossible through physical challenges,
adventure and service.

Want to mess with your mind? Without
the man in the photo, the photo of this
man wouldn’t exist.

Reprinted with permission of the original author.
First appeared in hn.my/kick (joelrunyon.com)

STARTUPS

http://hn.my/kick

  17

By Gabriel Weinberg

Traction Mistakes

Most startups don’t fail at
building a product. They fail
at acquiring customers.

The biggest mistakes I see over and
over again when startups try to get
traction are as follows (in order of
importance).

➊
They don’t pursue traction
in parallel with product

development.
The benefits of parallel customer
acquisition cannot be understated.
First and foremost, you can use initial
customer development to inform your
product roadmap and literally prevent
yourself from a) building something
people don’t really want, and b) build-
ing something people want but not
enough to form a business around it.
Second, you can launch with a nice
base of initial users. Third, you’re pre-
pared to scale to the next step because
you’ve been testing messaging and dis-
tribution channels since the beginning
and thus have a great idea of where to
focus post-launch.

➋
They didn’t spend enough time
pursuing traction.

I believe distribution is equally impor-
tant as product. That means quite
literally you should be spending 50%
of your time on it. For tech people, you
should probably bias it to 75% so you
end up getting to equal in the end.

At 50%, it competes with being at
the top of your mind, which means
you can actually make real headway
and be creative. Otherwise, it becomes
an afterthought and progress drops off
exponentially.

Note I’m not a fan of doing this
50/50 split between a tech and non-
tech co-founder. You will maximize
success probabilities if each co-founder
does both. The other problem with
the split is the non-tech guy ends up
picking up all sorts of other stuff (QA,
paperwork, etc.) and 50% starts to
become 25%.

STARTUPS

18  STARTUPS

➌
They were biased towards
or against certain traction

verticals.
There are many verticals that startups
have used to get traction. Usually in a
given growth stage, one ends up mat-
tering the most, but which one is a bit
unpredictable.

The biggest bias here is availability
bias. Startups generally just don’t think
of things like billboards and infomer-
cials because they’re out of their vision.
Another large bias is a negative bias
towards things people find icky, e.g.
sales, affiliates — but they don’t have
to be icky at all. A third bias is the
general bias against schlep — business
development is in this category for
sure.

The point is that you should consider
all traction verticals in the pursuit of
traction. I’m not saying actually act on
all of them at all, but at least consider
them.

➍
They didn’t take a systematic
approach to getting traction.

People have established processes for
product development, but less so for
distribution. The usual approach is to
build the product, then frantically try
to figure out how startups promote
things, then haphazardly attempt vari-
ous obvious things in serial (try to get
press coverage, buy some Adwords,
Facebook ads, etc.).

You can do better, however. What
I like to see is an educated guess at a
few traction verticals that are likely to
work based on product type, market
approach and stage of company. List
them all out in order of potential
usefulness.

Then approach the most promising
verticals (say five) with small but effec-
tive tests using something like quant
based marketing (i.e. with numbers). If
one or two out of the initial five seem
promising, focus hard on them. If they
turn out not to work, then back up and
pick the next set of verticals.

  19

➎
They didn’t take advantage of
micro-opportunities.

Startup micro-opportunities are little
moments that pop up every now and
again that can give you a nice blip in
traction if you move fast on them.
Two common examples are respond-
ing to stuff in the press or memes in
an interesting way and trying out new
tactics within traction verticals that
appear (e.g. Pinterest ads if they come
out with them).

To take advantage of these opportu-
nities you have to be watching, flexible
and creative. What this means in prac-
tice is that you generally need #2, i.e.
to be spending enough time on pursu-
ing traction to recognize one when you
see it.

For what it’s worth, I’ve made all
these mistakes myself. My first com-
pany was a disaster in this regard. My
second one swung like a pendulum
in the other direction and I spent too
much time getting traction and not
enough on product development to
build a long-term sustainable company.
At DuckDuckGo I’ve tried to avoid
these mistakes as best I can. n

Gabriel Weinberg is the founder of Duck-
DuckGo, a search engine. He is also an active
angel investor, based out of Valley Forge, PA.

Reprinted with permission of the original author.
First appeared in hn.my/mistrack (gabrielweinberg.com)

http://hn.my/mistrack

20  PROGRAMMING

JavaScript has been described as
a Functional Oriented Language
(this as opposed to Object Ori-

ented Language). The reason is because
functions in JavaScript do more than
just separate logic into execution units;
functions are first class citizens that
also provide scope and the ability to
create objects. Having such a heavy
reliance upon functions is both a bless-
ing and a curse: It’s a blessing because
it makes the language lightweight and
fast (the main goal of its original devel-
opment), but it is a curse because you
can very easily shoot yourself in the
foot if you don’t know what you are
doing.

One concern with JavaScript func-
tions is how different invocation pat-
terns can produce vastly different
results. This article explains the four
patterns, how to use them and what to
watch out for. The four invocation pat-
terns are:

1.	Method Invocation

2.	Function Invocation

3.	Constructor Invocation

4.	Apply And Call Invocation

Function Execution
JavaScript (like all languages these
days) has the ability to modular-
ize logic in functions which can be
invoked at any point within the execu-
tion. Invoking a function suspends
execution of the current function,
passing controls and parameters to the
invoked function. In addition, a param-
eter called this is also passed to the
function. The invocation operator is a
pair of round brackets (), that can con-
tain zero or more expressions separated
by a comma.

Unfortunately, there is more than
one pattern that can be used to invoke
functions. These patterns are not nice-
to-know: They are absolutely essential

By Barry Steyn

JavaScript: Function
Invocation Patterns

PROGRAMMING

  21

to know. This is because invoking a
function with a different pattern can
produce a vastly different result. I
believe that this is a language design
error in JavaScript, and had the lan-
guage been designed with more
thought (and less haste), this would
not have been such a big issue.

The Four Invocation Patterns
Even though there is only one invoca-
tion operator (), there are four invoca-
tion patterns. Each pattern differs in
how the this parameter is initialized.

Method Invocation
When a function is part of an object, it
is called a method. Method invocation
is the pattern of invoking a function
that is part of an object. For example:

var obj = {
 value: 0,
 increment: function() {
 this.value+=1;
 }
};
obj.increment();
//Method invocation

Method invocation is identi-
fied when a function is preceded by
object., where object is the name
of some object. JavaScript will set the
this parameter to the object where
the method was invoked on. In the
example above, this would be set to
obj. JavaScript binds this at execution
(also known as late binding).

Function Invocation
Function invocation is performed by
invoking a function using ():

add(2,3); //5

When using the function invocation
pattern, this is set to the global object.
This was a mistake in the JavaScript
language! Blindly binding this to the
global object can destroy its current
context. It is noticeable when using an
inner function within a method func-
tion. An example should explain things
better:

var value = 500; //Global variable
var obj = {
 value: 0,
 increment: function() {
 this.value++;

 var innerFunction = function()
 {
 alert(this.value);
 }
 innerFunction();
 //Function invocation pattern
 }
}
obj.increment();
//Method invocation pattern

What do you think will be printed
to screen? For those that answered 1,
you are wrong (but don’t be too hard
on yourselves, this is because JavaS-
cript does not do things very well). The
real answer is 500. Note that inner-
Function is called using the function

22  PROGRAMMING

invocation pattern, therefore this is set
to the global object. The result is that
innerFunction (again, it is important
to note that it is invoked with func-
tion pattern) will not have this set to
current object. Instead, it is set to the
global object, where value is defined
as 500. I stress that this is bad language
design; the increment function was
invoked with the method invocation
pattern, and so it is natural to assume
the this should always point to the
current function when used inside it.

There is an easy way to get round
this problem, but it is in my opinion a
hack. One gets around this problem by
assigning a variable (by convention, it is
named that) to this inside the func-
tion (aside: This works because func-
tions in JavaScript are closures):

var value = 500; //Global variable
var obj = {
 value: 0,
 increment: function() {
 var that = this;
 that.value++;
 var innerFunction = function()
 {
 alert(that.value);
 }
 innerFunction();
 //Function invocation pattern
 }
}
obj.increment();

If this could be bound to the current
object whose scope it is called in, func-
tion and method invocations would be
identical.

Constructor Invocation
Warning: This is another JavaScript
peculiarity! JavaScript is not a classical
object oriented language. Instead, it is a
prototypical object oriented language,
but the creators of JavaScript felt that
people with classical object orienta-
tion experience may be unhappy with
a purely prototype approach. This
resulted in JavaScript being unsure of
its prototypical nature and the worst
thing happened: it mixed classical
object orientation syntax with its pro-
totypical nature. The result: a mess!

In classical object orientation, an
object is an instantiation of a class. In
C++ and Java, this instantiation is per-
formed by using the new operator. This
seems to be the inspiration behind the
constructor invocation pattern....

The constructor invocation pattern
involves putting the new operator just
before the function is invoked. For
example:

var Cheese = function(type) {
 var cheeseType = type;
 return cheeseType;
}

cheddar = new Cheese("cheddar");
//new object returned, not the
//type.

  23

Even though Cheese is a function
object (and intuitively, one thinks
of functions as running modularized
pieces of code), we have created a new
object by invoking the function with
new in front of it. The this parameter
will be set to the newly created object
and the return operator of the func-
tion will have its behavior altered.
Regarding the behavior of the return
operator in constructor invocation,
there are two cases:

1.	If the function returns a simple
type (number, string, Boolean, null,
or undefined), the return will be
ignored and instead this will be
returned (which is set to the new
object).

2.	If the function returns an instance
of Object (anything other than a
simple type), then that object will be
returned instead of returning this.
This pattern is not used that often,
but it may have utility when used
with closures.

For example:

var obj = {
 data : "Hello World"
}
var Func1 = function() {
 return obj;
}
var Func2 = function() {
 return "I am a simple type";
}

var f1 = new Func1();
//f1 is set to obj

var f2 = new Func2();
//f2 is set to a new object

We might ignore this, and just use
object literals to make objects, except
that the makers of JavaScript have
enabled a key feature of their language
by using this pattern: object creation
with an arbitrary prototype link. This
pattern is unintuitive and also poten-
tially problematic. There is a remedy
which was championed by Douglas
Crockford: augment Object with a
create method that accomplishes what
the constructor invocation pattern tries
to do. I am happy to note that as of
JavaScript 1.8.5, Object.create is a
reality and can be used. Due to legacy,
the constructor invocation is still used
often, and for backward compatibility,
will crop up quite frequently.

Apply And Call Invocation
The apply pattern is not as badly
thought out as the preceding pat-
terns. The apply method allows
manual invocation of a function with a
means to pass the function an array of
parameters and explicitly set the this
parameter. Because functions are first
class citizens, they are also objects and
hence can have methods (functions)
run on it. In fact, every function is
linked to Function.prototype, and so
methods can very easily be augmented

24  PROGRAMMING

to any function. The apply method is
just an augmentation to every function
as, I presume, it is defined on Func-
tion.prototype.
Apply takes two parameters: the first

parameter is an object to bind the this
parameter to, the second is an array
which is mapped to the parameters:

var add = function(num1, num2) {
 return num1+num2;
}

array = [3,4];
add.apply(null,array); //7

In the example above, this is bound
to null (the function is not an object, so
it is not needed) and array is bound to
num1 and num2. More interesting things
can be done with the first parameter:

var obj = {
 data:'Hello World'
}

var displayData = function() {
 alert(this.data);
}

displayData(); //undefined
displayData.apply(obj);
//Hello World

The example above uses apply to
bind this to obj. This results in being
able to produce a value for this.data.
Being able to explicitly assign a value
to this is where the real value of apply
comes about. Without this feature,
we might as well use () to invoke
functions.

JavaScript also has another invoker
called call, that is identical to apply
except that instead of taking an array
of parameters, it takes an argument list.
If JavaScript would implement func-
tion overriding, I think that call would
be an overridden variant of apply.
Therefore one talks about apply and
call in the same vein.

Conclusion
For better or worse, JavaScript is about
to take over the world. It is therefore
very important that the peculiarities of
the language be known and avoided.
Learning how the four function invoca-
tion methods differ and how to avoid
their pitfalls is fundamental to anyone
who wants to use JavaScript. I hope
this post has helped people when it
comes to invoking functions. n

Barry is an entrepreneur in the tech space
and loves building programs. He also loves
the building process that is inherent with
entrepreneurism.

Reprinted with permission of the original author.
First appeared in hn.my/invo (doctrina.org)

http:// hn.my/invo

25  PROGRAMMING

By Luc Gommans

How Does SSL Work?

SSL (and its successor, TLS) is a
protocol that operates directly
on top of TCP (although there

are also implementations for datagram-
based protocols, such as UDP). This
way, protocols on higher layers (such
as HTTP) can be left unchanged while
still providing a secure connection.
Underneath the SSL layer, HTTP is
identical to HTTPS.

When using SSL/TLS correctly, all an
attacker can see on the cable is which
IP and domain you are connected to,
roughly how much data you are send-
ing, and what encryption and compres-
sion is used. He can also terminate the
connection, but both sides will know
that the connection has been inter-
rupted by a third party.

High-level description of the
protocol
After building a TCP connection, the
SSL handshake is started by the client.
The client (which can be a browser
as well as any other program, such as
Windows Update or PuTTY) sends a
number of specifications: which version
of SSL/TLS it is running, what cipher-
suites it wants to use, and what com-
pression methods it wants to use. The
server checks for the highest SSL/TLS
version that is supported by them both,
picks a ciphersuite from one of the cli-
ent’s options (if it supports one), and
optionally picks a compression method.

After this basic setup is done, the
server sends its certificate. This cer-
tificate must be trusted by either the
client itself or a party that the client
trusts. For example, if the client trusts
Thawte, then the client can trust the
certificate from Google.com because
Thawte cryptographically signed
Google’s certificate.

26  PROGRAMMING

After the client verifies the certificate
and is certain this server really is who
he claims to be (and not a man in the
middle), a key is exchanged. This can
be a public key, a “PreMasterSecret”
or simply nothing, depending on the
chosen ciphersuite. Both the server and
the client can now compute the key
for the symmetric encryption whynot
PKE?. The client tells the server that all
communication will be encrypted from
now on, and sends an encrypted and
authenticated message to the server.

The server verifies that the MAC
(used for authentication) is correct
and that the message can be correctly
decrypted. It then returns a message,
which the client verifies as well.

The handshake is now finished
and the two hosts can communicate
securely.

To close the connection, a close_
notify “alert” is used. If an attacker
tries to terminate the connection by
finishing the TCP connection (inject-
ing a FIN packet), both sides will
know the connection was improperly
terminated. The connection cannot be
compromised by this though, merely
interrupted.

Some more details
Why can you trust Google.com by
trusting Thawte?
Consider that a website wants to com-
municate with you securely. In order to
prove its identity and make sure that
it is not an attacker, you must have the
server’s public key. However, you can
hardly store all keys from all websites
on earth; the database would be huge
and updates would have to run every
hour!

The solution to this is Certificate
Authorities, or CA for short. When
you installed your operating system or
browser, a list of trusted CAs probably
came with it. This list can be modi-
fied at will; you can remove whom you
don’t trust, add others, or even make
your own CA (though you will be the
only one trusting this CA, so it’s not
much use for public website). In this
CA list, the CA’s public key is also
stored.

When Google’s server sends you its
certificate, it also mentions it is signed
by Thawte. If you trust Thawte, you
can verify (using Thawte’s public key)
that Thawte really did sign the server’s
certificate. To sign a certificate yourself,
you need the private key, which is only
known to Thawte. This way an attacker
cannot sign a certificate himself and
incorrectly claim to be Google.com.
When the certificate has been modified
by even one bit, the sign will be incor-
rect and the client will reject it.

  27

So if I know the public key, the server
can prove its identity?
Yes. Typically, the public key encrypts
and the private key decrypts. Encrypt
a message with the server’s public key,
send it, and if the server can tell you
what it originally said, it just proved
that it got the private key without
revealing the key.

This is why it is so important to be
able to trust the public key: anyone,
including an attacker, can generate a
private/public key pair. You don’t want
to end up using the public key of an
attacker!

If one of the CAs that you trust is
compromised, an attacker can use the
stolen private key to sign a certificate
for any website they like. When the
attacker can send a forged certificate
to your client, signed by himself with
the private key from a CA that you
trust, your client doesn’t know that the
public key is a forged one, signed with
a stolen private key.

But a CA can make me trust any server
they want!
Yes, and that is where the trust comes
in. You have to trust the CA not to
make certificates as they please. When
organizations like Microsoft, Apple
and Mozilla trust a CA though, the CA
must have audits during which another
organization periodically checks on
them to make sure things are still run-
ning according to the rules.

Issuing a certificate is done if, and
only if, the registrant can prove they
own the domain that the certificate is
issued for.

What is this MAC for message
authentication?
Every message is signed with a so-
called Message Authentication Code,
or MAC for short. If we agree on a key
and hashing cipher, you can verify that
my message comes from me, and I can
verify that your message comes from
you.

For example, with the key “correct
horse battery staple” and the message
“example,” I can compute the MAC
“58393.” When I send this message
with the MAC to you (you already
know the key), you can perform the
same computation and match up the
computed MAC with the MAC that I
sent.

An attacker can modify the message,
but does not know the key. He cannot
compute the correct MAC, and you
will know the message is not authentic.

By including a sequence number
when computing the MAC, you can
eliminate replay attacks. SSL does this.

28  PROGRAMMING

You said the client sends a key, which
is then used to setup symmetric
encryption. What prevents an attacker
from using it?
The server’s public key does. Since
we have verified that the public key
really belongs to the server and no one
else, we can encrypt the key using the
public key. When the server receives
this, he can decrypt it with the private
key. When anyone else receives it, they
cannot decrypt it.

This is also why key size matters: The
larger the public and private key, the
harder it is to crack the key that the
client sends to the server.

How to crack SSL
In summary:

■■ Try if the user ignores certificate
warnings;

■■ The application may load data from
an unencrypted channel (e.g., http),
which can be tampered with;

■■ An unprotected login page that sub-
mits to HTTPS may be modified so
that it submits to HTTP;

■■ Unpatched applications may be vul-
nerable for exploits like BEAST and
CRIME;

■■ Resort to other methods, such as a
physical attack.

In detail:
There is no simple and straight-forward
way; SSL is secure when done correctly.
An attacker can try if the user ignores
certificate warnings though, which
would break the security instantly.
When a user does this, the attacker
doesn’t need a private key from a CA
to forge a certificate; he merely has to
send a certificate of his own.

Another way would be by a flaw
in the application (server- or client-
side). An easy example is in websites:
if one of the resources used by the
website (such as an image or a script)
is loaded over HTTP, the confidenti-
ality cannot be guaranteed anymore.
Even though browsers do not send the
HTTP Referer header when request-
ing non-secure resources from a secure
page, it is still possible for someone
eavesdropping on traffic to guess where
you’re visiting from. For example, if
they know images X, Y, and Z are used
on one page, they can guess you are
visiting that page when they see your
browser request those three images
at once. Additionally, when load-
ing JavaScript, the entire page can be
compromised. An attacker can execute
any script on the page, modifying for
example to whom the bank transaction
will go.

When this happens (a resource being
loaded over HTTP), the browser gives
a mixed-content warning: Chrome,
Firefox, Internet Explorer 9.

  29

Another trick for HTTP is when the login
page is not secured, and it submits to an
https page. “Great,” the developer prob-
ably thought, “now I save server load and
the password is still sent encrypted!” The
problem is sslstrip, a tool that modifies the
insecure login page so that it submits some-
where so that the attacker can read it.

There have also been various attacks in
the past few years, such as the TLS rene-
gotiation vulnerability, sslsniff, BEAST, and
very recently, CRIME. All common brows-
ers are protected against all of these attacks
though, so these vulnerabilities are no risk
if you are running an up-to-date browser.

Last but not least, you can resort to
other methods to obtain the information
that SSL denies you to obtain. If you can
already see and tamper with the user’s
connection, it might not be that hard to
replace one of his/her .exe downloads
with a keylogger or simply to physically
attack that person. Cryptography may be
rather secure, but humans and human error
are still a weak factor. According to this
paper [hn.my/breach] by Verizon, 10% of
the data breaches involved physical attacks
(see page 3), so it’s certainly something to
keep in mind. n

Luc Gommans is a software development student
from Eindhoven, The Netherlands. He is interested
in coding, computer networking, security, and is a
regular contributor to security.stackexchange.com

Reprinted with permission of the original author.
First appeared in hn.my/ssl (stackexchange.com)

http://hn.my/breach
http://security.stackexchange.com
http://hn.my/ssl

30  PROGRAMMING

Hacking ls -l

Once upon a time, files were small. The first edition of
Unix had a maximum file size of 64 KB, and even today
we see the effect of the ancient 2 GB limit in the Linux

O_LARGEFILE flag to open. But the truth is much larger. I back up
my systems to disk, and looking at them is something like:

By Greg Lehey

=== grog@eureka (/dev/pts/14) ~ 29 -> ls -l /src/dump/boskoop/
total 168169
-rw-r--r-- 1 grog wheel 4173914809 Jul 20 2006 boskopp.tar.gz
-rw-r--r-- 1 root wheel 10273920512 Mar 18 2012 delicious-image
-rw-r--r-- 1 root wheel 28968755200 Mar 16 2012 root.tar

What are those values? How big are the files? Your eyes go funny
just trying to count the digits. How much easier would this be:

=== grog@eureka (/dev/pts/14) ~ 32 -> ls -l, /src/dump/boskoop/
total 168169
-rw-r--r-- 1 grog wheel 4,173,914,809 20 Jul 2006 boskopp.tar.gz
-rw-r--r-- 1 root wheel 10,273,920,512 18 Mar 2012 delicious-image
-rw-r--r-- 1 root wheel 28,968,755,200 16 Mar 2012 root.tar

Then again, I have the source, so I can do it. But the “how” is
interesting. There are a number of steps.

  31

➊ How do you get printf to print
the commas? Does it even work?

Clearly a case for RTFM, which tells
me:

`''	 Decimal conversions (d, u,
or i) or the integral portion of
a floating point conversion (f or
F) should be grouped and sepa-
rated by thousands using the non-
monetary separator returned by
localeconv(3).

What’s that character? It looks like a
quote (`) or apostrophe ('), but so does
the character after it, and they don’t
look the same. But they are: it’s just in
what passes for bold font on an xterm.
But further up other confusing charac-
ters (zero and space) are explained, so
this one’s a candidate, too.

On my to-do list: Update man page
to explain that the character is an
apostrophe.

➋ Find the code and do a quick-and-
dirty modification. ls is /bin/ls,

so the source should be in /usr/src/
bin/ls/, and it is. It was relatively trivial
to find the place: it’s in print.c. For
test purposes, I just added an apostro-
phe (') to the format, which of course
would always print the commas:

--- print.c (revision 241498)
+++ print.c (working copy)
@@ -612,7 +612,7 @@
- (void)printf("%*jd ", (u_int)
width, bytes);
+ (void)printf("%*j'd ", (u_int)
width, bytes);

But that came up with an unex-
pected problem:

cc -O2 -pipe -DCOLORLS -std=gnu99
-fstack-protector -Wsystem-headers
-Werror -Wall -Wno-format-y2k -W
-Wno-unused-parameter -Wwrite-
strings -Wswitch -Wshadow -Wre-
dundant-decls -Wold-style-defini-
tion -Wno-pointer-sign -c /usr/
src/bin/ls/print.c
cc1: warnings being treated as
errors
/usr/src/bin/ls/print.c: In func-
tion 'printsize':
/usr/src/bin/ls/print.c:615:
warning: unknown conversion type
character ''' in format
/usr/src/bin/ls/print.c:615: warn-
ing: too many arguments for format
*** [print.o] Error code 1

32  PROGRAMMING

What’s that? Who’s right, the man page or the com-
piler? In this case, the man page is right. The compiler
tries to second-guess what should be in a format, and
it’s wrong. But it only does that if the format is a string
literal. The next attempt was:

@@ -611,8 +611,10 @@
- } else
- (void)printf("%*jd ", (u_int)width, bytes);
+ } else {
+ const char *format = "%*j'd ";
+ (void)printf(format, (u_int)width, bytes);
+ }
 }

And that worked. Well, it compiled anyway.

To-do list: Fix compiler’s format parsing.

➌ So, run ls -l again. No change.
It seems that printf is ignoring

the format specifier. Back to RTFM:

`'' Decimal conversions
(d, u, or i) or the integral por-
tion of a floating point conversion
(f or F) should be grouped and
separated by thousands using the
non-monetary separator returned by
localeconv(3).

Locales rearing their ugly head again.
OK, how do I find out what my non-
monetary separator is? localeconv()
is a library function, so I can’t use that
to look. What commands are there?
It proves that there’s only locale(1)
and mklocale(1). locale(1) seems the
obvious one to choose:

DESCRIPTION The locale util-
ity is supposed to provide most
locale specific information to the
standard output.

That “supposed” didn’t exactly fill me
with confidence. But still, all I wanted
to do was print the contents of my cur-
rent locale. How do you do that? Run
locale(1) with no options:

=== grog@eureka (/dev/pts/7) ~ 20
-> locale
LANG=
LC_CTYPE="C"
LC_COLLATE="C"
LC_TIME="C"
LC_NUMERIC="C"
LC_MONETARY="C"
LC_MESSAGES="C"
LC_ALL=

  33

Not quite what I was looking for. I
wanted to know what values I had set,
and for that I needed keywords. The -k
option looked like a possibility:

-k Print the names and values
of all selected keywords.

But that’s the wrong way: it wants
me to tell it which keywords, and I
want it to tell me all keywords. There
doesn’t seem to be a way to get it to
show all of them.

To-do list: Modify locale(1) to print
all keywords if no argument is passed
to the -k option.

➍ I carried on searching in locale-
conv(3), which gave me the con-

tents of struct lconv, conveniently with
comments that are missing from the
header file /usr/include/locale.h.

To-do list: Add comments to /usr/
include/locale.h.

The name of the struct member is
thousands_sep, and locale(1) under-
stands that:

=== grog@eureka (/dev/pts/9) ~/
fbbg/www/BGIS 48 -> locale -k
thousands_sep
thousands_sep=""

Not quite what I was hoping for,
but at least it explains part of the
problem. But why isn’t it set? I have
LC_NUMERIC="C". Does that not allow
commas? How do I find out? I still
don’t know. Round about this time,
Callum Gibson was trying his own
experiments and established that set-
ting the variable LC_ALL changes things:

export LC_ALL=en_AU.ISO8859-1

That’s not as obvious as it seems. The
output of locale(1) looks like these
environment variables, but the only
one that seems to make any difference
is LC_ALL. After that, my test version of
ls finally worked:

=== grog@eureka (/dev/pts/14) ~ 32
-> /usr/obj/usr/src/bin/ls/ls -l
/src/dump/boskoop/
total 168169
-rw-r--r-- 1 root wheel
36,211,690,564
20 Mar 2012 boskoop.disk0-1.bz2
-rw-r--r-- 1 root wheel
16,596,907,252
24 Dec 2009 boskoop.disk0.bz2
-rw-r--r-- 1 root wheel
28,968,755,200
16 Mar 2012 root.tar

To-do list: Review documentation of
how to set locales; possibly fix.

34  PROGRAMMING

➎ Next, I had to do things prop-
erly by adding an option for the

commas, rather than printing them
all the time. That’s relatively trivial,
but which option? ls doesn’t have too
many option characters left, and there’s
the consideration of compatibility
with POSIX.2, the other BSDs and
Linux. In many ways it’s a lost cause,
of course. The options for GNU ls vary
wildly from those for BSD ls, including
lots of long options such as --show-
control-chars, a verbose way of
representing FreeBSD’s -w option. And
others, such as -T, have completely
unrelated meanings.

Still, it’s good not to add more
entropy than necessary, and I’m going
to have to investigate this one.

To-do list: Choose a good option
character.

For now, the most obvious one seems
to be the comma (,) character. That
works, but it’s possible that POSIX
doesn’t like that, and it’s liable to stir
up a bikeshed when I commit.

➏ So, finally I’m done. Or am I?
No, there’s more:

To-do list: Update man page and
usage() function.

➐ But then we’re done! Well, no.
Callum Gibson reported that

it still didn’t work for his program,
so I wrote a little one that just called
printf with the apostrophe (') format
modifier. And it didn’t work. We traced
the problem to the difference in ls: at
the start of the program there’s a:

(void)setlocale(LC_ALL, "");

And this appears to be necessary. Is it
adequately documented? There’s some-
thing in setlocale(3) (obviously), but
I managed to miss it. So:

To-do list: Investigate setlocale()
documentation.

But then I’m really done — I hope.
It’s amazing how much work there is
apart from just hacking the code. n

Greg Lehey is an independent computer con-
sultant specializing in UNIX. In the course of
over 20 years in the industry he has performed
most jobs you can think of, ranging from kernel
support to product marketing, systems pro-
gramming to operating, processing satellite
data to programming gasoline pumps.

Reprinted with permission of the original author.
First appeared in hn.my/ls (lemis.com)

http://hn.my/ls

http://the-mobile-book.com

36  PROGRAMMING

By Kalid Azad

An Intuitive Guide to
Linear Algebra

Despite two linear algebra
classes, my knowledge con-
sisted of “Matrices, determi-

nants, Eigen something something.”
Why? Well, let’s try this course

format:

■■ Name the course “Linear Algebra”
but focus on things called matrices
and vectors

■■ Label items with similar-looking
letters (i/j), and even better, similar-
looking-and-sounding ones (m/n)

■■ Teach concepts like Row/Column
order with mnemonics instead of
explaining the reasoning

■■ Favor abstract examples (2d vectors!
3d vectors!) and avoid real-world
topics until the final week

The survivors are physicists, graphics
programmers, and other masochists. We
missed the key insight:

Linear algebra gives you mini-spread-
sheets for your math equations.

We can take a table of data (a
matrix) and create updated tables from
the original. It’s the power of a spread-
sheet written as an equation.

Here’s the linear algebra introduction
I wish I had, with a real-world stock
market example.

What’s In A Name?
“Algebra” means, roughly, “relation-
ships.” Grade-school algebra explores
the relationship between unknown
numbers. Without knowing x and y, we
can still work out that (x + y)^2 = x^2
+ 2xy + y^2.

“Linear Algebra” means, roughly,
“line-like relationships.” Let’s clarify a
bit.

Straight lines are predictable. Imagine
a rooftop: move forward 3 horizontal

  37

feet (relative to the ground), and you
might rise 1 foot in elevation (the
slope! Rise/run = 1/3). Move forward 6
feet, and you’d expect a rise of 2 feet.
Contrast this with climbing a dome:
each horizontal foot forward raises you
a different amount.

Lines are nice and predictable:

■■ If 3 feet forward has a 1-foot rise,
then going 10x as far should give a
10x rise (30 feet forward is a 10-foot
rise)

■■ If 3 feet forward has a 1-foot rise, and
6 feet has a 2-foot rise, then (3 + 6)
feet should have a (1 + 2) foot rise

In math terms, an operation F is
linear if scaling inputs scales the
output, and adding inputs adds the
outputs:

 In our example, F(x) calculates
the rise when moving forward x feet.
F(10*3) = 10 * F(3) = 10 and F(3+6) =
F(3) + F(6) = 3.

Linear Operations
An operation is a calculation based
on some inputs. Which operations are
linear and predictable? Multiplication,
it seems.

Exponents (F(x) = x^2) aren’t pre-
dictable: 10^2 is 100, but 20^2 is 400.
We doubled the input but quadrupled
the output.

Surprisingly, regular addition isn’t
linear either. Consider the “add three”
function:

 We doubled the input and did not
double the output. (Yes, F(x) = x +
3 happens to be the equation for an
offset line, but it’s still not “linear”
because F(10) isn’t 10 * F(1). Fun.)

Our only hope is to multiply by a
constant: F(x) = ax (in our roof exam-
ple, a=1/3). However, we can still
combine linear operations to make a
new linear operation:

 G is made of 3 linear subpieces: if
we double the inputs, we’ll double the
output.

We have “mini arithmetic”: multiply
inputs by a constant, and add the
results. It’s actually useful because we
can split inputs apart, analyze them
individually, and combine the results:

 If the inputs interacted like expo-
nents, we couldn’t separate them —
we’d have to analyze everything at
once.

F (ax) = a · F (x)

F (x + y) = F (x) + F (y)

F (x) = x + 3

F (10) = 13

F (20) = 23

G(x, y, z) = F (x + y + z) = F (x) + F (y) + F (z)

G(x, y, z) = G(x, 0, 0) + G(0, y, 0) + G(0, 0, z)

38  PROGRAMMING

Organizing Inputs and Operations
Most courses hit you in the face with
the details of a matrix. “Ok kids, let’s
learn to speak. Select a subject, verb
and object. Next, conjugate the verb.
Then, add the prepositions….”

No! Grammar is not the focus.
What’s the key idea?

■■ We have a bunch of inputs to track

■■ We have predictable, linear
operations to perform (our
“mini-arithmetic”)

■■ We generate a result, perhaps trans-
forming it again

Ok. First, how should we track a
bunch of inputs? How about a list:

x
y
z

Not bad. We could write it (x, y, z)
too — hang onto that thought.

Next, how should we track our
operations? Remember, we only have
“mini arithmetic”: multiplications, with
a final addition. If our operation F
behaves like this:

We could abbreviate the entire func-
tion as (3, 4, 5). We know to multiply
the first input by the first value, the
second input by the second value, etc.,
and add the result.

Only need the first input?

 Let’s spice it up: how should we
handle multiple sets of inputs? Let’s
say we want to run operation F on both
(a, b, c) and (x, y, z). We could try this:

 But it won’t work: F expects 3
inputs, not 6. We should separate the
inputs into groups:

1st Input 2nd Input

a x
b y
c z

Much neater.
And how could we run the same

input through several operations? Have
a row for each operation:

F: 3 4 5
G: 3 0 0

Neat. We’re getting organized: inputs
in vertical columns, operations in hori-
zontal rows.

F (x, y, z) = 3x + 4y + 5z

G(x, y, z) = 3x + 0y + 0z = (3, 0, 0)

F (a, b, c, x, y, z) =?

  39

Visualizing The Matrix
Words aren’t enough. Here’s how I
visualize inputs, operations, and
outputs:

 Imagine “pouring” each input along
each operation:

 As an input passes an operation, it
creates an output item. In our example,
the input (a, b, c) goes against opera-
tion F and outputs 3a + 4b + 5c. It goes
against operation G and outputs 3a + 0
+ 0.

Time for the red pill. A matrix is a
shorthand for our diagrams:

A matrix is a single variable rep-
resenting a spreadsheet of inputs or
operations.

Trickiness #1: The reading order
Instead of an input => matrix =>
output flow, we use function notation,
like y = f(x) or f(x) = y. We usually
write a matrix with a capital letter (F),
and a single input column with lower-
case (x). Because we have several
inputs (A) and outputs (B), they’re
considered matrices too:

MA = B

[
3 4 5
3 0 0

]


a x
b y
c z


 =

[
3a + 4b + 5c 3x + 4y + 5z

3a 3x

]

Operations = M =

[
operation1
operation2

]
=

[
3 4 5
3 0 0

]

Inputs = A =
[
input1 input2

]
=




a x
b y
c z




40  PROGRAMMING

Trickiness #2: The numbering
Matrix size is measured as RxC: row
count, then column count, and abbre-
viated mxn. Items in the matrix are
referenced the same way: aij is the ith
row and jth column. Mnemonics are ok
with context, and here’s what I use:

■■ RC, like Roman Centurion or RC
Cola

■■ Use an “L” shape. Count down the L,
then across

Why does RC ordering make sense?
Our operations matrix is 2×3 and our
input matrix is 3×2. Writing them
together:

[Operation Matrix] [Input Matrix]
[operation count x operation size]
[input size x input count]
[m x n] [p x q] = [m x q]
[2 x 3] [3 x 2] = [2 x 2]

Notice the matrices touch at the “size
of operation” and “size of input” (n =
p). They should match! If our inputs
have 3 components, our operations
should expect 3 items. In fact, we can
only multiply matrices when n = p.

The output matrix has m opera-
tion rows for each input, and q inputs,
giving a “m x q” matrix.

Fancier Operations
Let’s get comfortable with operations.
Assuming 3 inputs, we can whip up a
few 1-operation matrices:

■■ Adder: [1 1 1]

■■ Averager: [1/3 1/3 1/3]

The “Adder” is just a + b + c. The
“Averager” is similar: (a + b + c)/3 = a/3
+ b/3 + c/3.

Try these 1-liners:

■■ First-input only: [1 0 0]

■■ Second-input only: [0 1 0]

■■ Third-input only: [0 0 1]

And if we merge them into a single
matrix:

[1 0 0]
[0 1 0]
[0 0 1]

Whoa — it’s the “identity matrix”,
which copies 3 inputs to 3 outputs,
unchanged. How about this guy?

[1 0 0]
[0 0 1]
[0 1 0]

He reorders the inputs: (x, y, z)
becomes (x, z, y).

And this one?

[2 0 0]
[0 2 0]
[0 0 2]

  41

He’s an input doubler. We could
rewrite him to 2*I (the identity matrix)
if we were so inclined.

And yes, when we decide to treat
inputs as vector coordinates, the opera-
tions matrix will transform our vectors.
Here are a few examples:

■■ Scale: make all inputs bigger/smaller

■■ Skew: make certain inputs bigger/
smaller

■■ Flip: make inputs negative

■■ Rotate: make new coordinates based
on old ones (East becomes North,
North becomes West, etc.)

These are geometric interpretations
of multiplication, and how to warp a
vector space. Just remember that vec-
tors are examples of data to modify.

A Non-Vector Example: Stock Market
Portfolios
Let’s practice linear algebra in the real
world:

■■ Input data: stock portfolios with dol-
lars in Apple, Google, and Microsoft
stock

■■ Operations: the changes in company
values after a news event

■■ Output: updated portfolios

And a bonus output: let’s make a
new portfolio listing the net profit/loss
from the event.

Normally, we’d track this in a spread-
sheet. Let’s learn to think with linear
algebra:

■■ The input vector could be ($Apple,
$Google, $Microsoft), showing the
dollars in each stock. (Oh! These
dollar values could come from
another matrix that multiplied the
number of shares by their price.
Fancy that!)

■■ The 4 output operations should be:
Update Apple value, Update Google
value, Update Microsoft value, Com-
pute Profit

Visualize the problem. Imagine run-
ning through each operation:

The key is understanding why we’re
setting up the matrix like this, not
blindly crunching numbers.

Got it? Let’s introduce the scenario.
Suppose a secret iDevice is launched:

Apple jumps 20%, Google drops 5%,
and Microsoft stays the same. We want
to adjust each stock value, using some-
thing similar to the identity matrix:

New Apple [1.2 0 0]
New Google [0 0.95 0]
New Microsoft [0 0 1]

42  PROGRAMMING

The new Apple value is the origi-
nal, increased by 20% (Google = 5%
decrease, Microsoft = no change).

Oh wait! We need the overall profit:

Total change = (.20 * Apple) + (-.05 *
Google) + (0 * Microsoft)

Our final operations matrix:

New Apple [1.2 0 0]
New Google [0 0.95 0]
New Microsoft [0 0 1]
Total Profit [.20 -.05 0]

Making sense? Three inputs enter,
four outputs leave. The first three
operations are a “modified copy” and
the last brings the changes together.

Now let’s feed in the portfolios for
Alice ($1000, $1000, $1000) and Bob
($500, $2000, $500). We can crunch
the numbers by hand, or use a Wolfram
Alpha:

(Note: Inputs should be in columns, but
it’s easier to type rows. The Transpose
operation, indicated by t (tau), converts
rows to columns.)

The final numbers: Alice has $1200
in AAPL, $950 in GOOG, $1000 in
MSFT, with a net profit of $150. Bob
has $600 in AAPL, $1900 in GOOG,
and $500 in MSFT, with a net profit of
$0.

What’s happening? We’re doing math
with our own spreadsheet. Linear alge-
bra emerged in the 1800s yet spread-
sheets were invented in the 1980s. I
blame the gap on poor linear algebra
education.

Historical Notes: Solving Simultane-
ous Equations
An early use of tables of numbers (not
yet a “matrix”) was bookkeeping for
linear systems:

becomes

We can avoid hand cramps by
adding/subtracting rows in the matrix
and output, vs. rewriting the full equa-
tions. As the matrix evolves into the
identity matrix, the values of x, y and z
are revealed on the output side.

This process, called Gauss-Jordan
elimination, saves time. However, linear
algebra is mainly about matrix transfor-
mations, not solving large sets of equa-
tions (It’d be like using Excel for your
shopping list).

x + 2y + 3z = 3

2x + 3y + 1z = −10

5x + −y + 2z = 14




1 2 3
2 3 1
5 −1 2







x
y
z


 =




3
−10
14




Input interpretation:

Result:

  43

Terminology, Determinants, and
Eigenstuff
Words have technical categories
to describe their use (nouns, verbs,
adjectives). Matrices can be similarly
subdivided.

Descriptions like “upper-triangular,”
“symmetric,” and “diagonal” are the
shape of the matrix, and influence their
transformations.

The determinant is the “size” of the
output transformation. If the input
was a unit vector (representing area or
volume of 1), the determinant is the
size of the transformed area or volume.
A determinant of 0 means matrix is
“destructive” and cannot be reversed
(similar to multiplying by zero: infor-
mation was lost).

The eigenvector and eigenvalue are
the “axes” of the transformation.

Consider a spinning globe: every
location faces a new direction, except
the poles.

An “eigenvector” is the input that
doesn’t change direction after going
through the matrix (it points “along
the axis”). And although the direction
doesn’t change, the size might. The
eigenvalue is the amount the eigenvec-
tor is scaled up or down when going
through the matrix.

Matrices As Inputs
A funky thought: we can treat the
operations matrix as inputs!

Think of a recipe as a list of com-
mands (Add 2 cups of sugar, 3 cups of
flour…).

What if we want the metric version?
Take the instructions, treat them like
text, and convert the units. The recipe
is “input” to modify. When we’re done,
we can follow the instructions again.

An operations matrix is similar: com-
mands to modify. Applying one opera-
tions matrix to another gives a new
operations matrix that applies both
transformations, in order.

If N is “adjust for portfolio for news”
and T is “adjust portfolio for taxes”
then applying both:

TN = X

means “Create matrix X, which first
adjusts for news, and then adjusts
for taxes”. Whoa! We didn’t need an
input portfolio, we applied one matrix
directly to the other.

The beauty of linear algebra is repre-
senting an entire spreadsheet calcula-
tion with a single letter. Want to apply
the same transformation a few times?
Use N^2 or N^3.

44  PROGRAMMING

Can We Use Regular Addition,
Please?
Yes, because you asked nicely. Our
“mini arithmetic” seems limiting: mul-
tiplications, but no addition? Time to
expand our brains.

Imagine adding a dummy entry of 1
to our input: (x, y, z) becomes (x, y, z,
1).

Now our operations matrix has an
extra, known value to play with! If we
want x + 1 we can write:

[1 0 0 1]

And x + y - 3 would be:

[1 1 0 -3]

Huzzah!
Want the geeky explanation? We’re

pretending our input exists in a
1-higher dimension, and put a “1” in
that dimension. We skew that higher
dimension, which looks like a slide
in the current one. For example: take
input (x, y, z, 1) and run it through:

[1 0 0 1]
[0 1 0 1]
[0 0 1 1]
[0 0 0 1]

The result is (x + 1, y + 1, z + 1,
1). Ignoring the 4th dimension, every
input got a +1. We keep the dummy
entry, and can do more slides later.

Mini-arithmetic isn’t so limited after
all.

Onward
I’ve overlooked some linear algebra
subtleties, and I’m not too concerned.
Why?

These metaphors are helping me
think with matrices, more than the
classes I “aced.” I can finally respond
to “Why is linear algebra useful?” with
“Why are spreadsheets useful?”

They’re not, unless you want a tool
used to attack nearly every real-world
problem. Ask a businessman if they’d
rather donate a kidney or be banned
from Excel forever. That’s the impact
of linear algebra we’ve overlooked:
efficient notation to bring spreadsheets
into our math equations.

Happy math. n

Kalid is a YC alum living in Seattle. He loves to
simplify complex ideas, blog aha! moments
at BetterExplained, and do math with
instacalc.com

Reprinted with permission of the original author.
First appeared in hn.my/linear (betterexplained.com)

SPECIAL

http://instacalc.com
http://instacalc.com
http://hn.my/linear

  45

By Carlos Bueno

Pascal’s Apology

Blaise Pascal once famously
ended a letter with an apology:
I’m sorry that this was such a

long letter, but I didn’t have time to write
you a short one. Computer science has
pretty much the same problem. It’s a
young field, and young fields are, by
their nature, messy. As we race to gen-
erate new knowledge, we also gener-
ate excess jargon. There are multiple
names for the same ideas, and the ideas
themselves are often tangled together.
What’s worse is that because that’s
the way things are now, we assume
that’s the way they are always going to
be. It’s a complicated science because
we haven’t taken the time to make a
simple one.

Let me show you what I mean:

A Von Neumann randomness extrac-
tor takes as input a Bernoulli sequence
with p not necessarily equal to 1/2,
and outputs a Bernoulli sequence
with p equal to 1/2. More generally, it
applies to any exchangeable sequence

relying on the fact that for any pair, 01
and 10 are equally likely.

And now you know about as much
as you did before. Let me try that
again. Imagine that you have a coin
that is unfair. It’s biased. If you flip
it you’ll get heads seventy percent of
the time. If you wanted to make a fair,
fifty-fifty choice, what do you do?

Well, one way is to get a coin that
doesn’t suck. Another way, discovered
by John von Neumann, is to use the
bias against itself. You can flip it two
times. If you get a heads and then a
tails, you say heads is your answer. If
you get a tails and then a heads, you
say tails. If you get anything else, you
just start over. And that’s it. This works
because no matter what the bias hap-
pens to be, the odds of getting a heads
and then tails will always be exactly
the same as the odds of getting a tails
and then heads. This is for the same
reason that seven times three is equal
to three times seven.

SPECIAL

46  SPECIAL

 That’s all very interesting, but why
should you care? This algorithm was
invented to ensure that you can get a
clean source of random numbers even
if you are stuck with buggy hardware,
which happens all the time. Quality
randomness is essential for cryptog-
raphy. Cryptography is essential for
secure communications, which is the
basis of our entire modern life. With-
out this little coin trick there would
be no Facebook, no Gmail, no Skyp-
ing grandma, no PIN numbers on your
credit cards, no buying books online,
no banking from your mobile phones.
And, no mobile phones. It’s fundamen-
tal, and it turns out that it’s also easy
to understand. You could teach it to a
child. So, why don’t we?

My overall complaint here,
and the reason I wrote this book
[laurenipsum.org], is a little nuanced.
I’m not just saying, “Hey everyone!
Guess what — computer science is
hard!” Anything worth doing is going
to be hard, and I can’t change that. But
some parts are harder than others. My
complaint is that if the hard stuff is
messy and complicated, and we allow
the easy stuff to be messy and compli-
cated too, then you can’t really tell the
difference.

That means, as teachers, we’re prob-
ably starting in the wrong place.

I don’t think it has to be this way.
What do we expect children to under-
stand about math? Negative numbers,
zero, exponents, the square root of two,
pi, etc. In those boring little facts I see
hope, precisely because they are boring
little facts. It wasn’t always like that.
Once upon a time, the existence of
negative numbers was considered the
most difficult question in the world.
People died arguing about the hypot-
enuse, for God’s sake. The fact that we
can teach this to innocent children is
evidence of progress — real, measur-
able, personally empowering progress.
It’s the kind of progress we haven’t had
time to make in computer science.

If the mathematicians are making fun
of you for being too complicated, you
know there’s work to do.

I started writing Lauren Ipsum by
looking for ideas that I understood well
enough to explain to a nine-year-old
child, without regard for how suppos-
edly hard they were. If I found some-
thing I couldn’t clearly explain, then I
tried to break it down further to learn
why. Sometimes it worked, sometimes
not. I learned a lot from this.

Early on I decided that I wasn’t actu-
ally writing a book about how to pro-
gram. I was writing a book about how
programmers think. Once you get past
the first hump and really start to learn
this stuff, you develop some mental
habits to help you cope. So, I figured,
let’s write those down. Start there.

http://laurenipsum.org

  47

The book starts with a character
called the Wandering Salesman. He’s
lost, but only mostly lost. He actu-
ally knows where he is, and he knows
where he’s going. He’s still lost because
he doesn’t know how to get there. This
is the essence of effective problem
solving. It’s about having a clear goal
and knowing where you stand. Instead
of giving in to that instinct to do the
first thing that comes to mind, you
try to imagine all the possible ways to
solve the problem, compare them, and
choose one.

 This is a big part of what computer
science actually studies. It’s not about
computers; they are just a tool. It’s
about how to generate those possible
answers and those algorithms; how to
characterize them so they can be com-
pared; and how to choose.

As the hero, a little girl named
Lauren, goes through her adventures,
she learns not just that she is respon-
sible for her own decisions, but that
there may be better ways to make
them. And, by the way, here are some
tools to help you do that.

So far the response has been pretty
good. It’s a start. A small start. But
I think this is a rich vein to explore.
Think about it this way: if you leave
this world as complicated as you found
it and if the next generation takes just
as long to learn what you’ve learned,
then they’ll never have time to do
better than you.

So, wherever you can, don’t just
transmit knowledge. Simplify it.
Take the time. Write the short let-
ters. Because that’s how we make
progress.n

Carlos Bueno is an engineer at Facebook. He
writes occasionally about programming, per-
formance, internationalization, and why every-
one should learn computer science.

Reprinted with permission of the original author.
First appeared in hn.my/pascal (bueno.org)

http://hn.my/pascal

48  SPECIAL

By Dan Ariely

Understanding
Ego Depletion

From your own experience, are you
more likely to finish half a pizza by
yourself on a) Friday night after a long
work week, or b) Sunday evening after
a restful weekend? The answer that
most people will give, of course, is “a.”
And in case you hadn’t noticed, it’s on
stressful days that many of us give in
to temptation and choose unhealthy
options. The connection between
exhaustion and the consumption of
junk food is not just a figment of your
imagination.

And it is the reason why so many
diets bite it in the midst of stressful
situations, and why many resolutions
derail in times of crisis.

How do we avoid breaking under
stress? There are six simple rules.

➊
Acknowledge the tension,
don’t ignore it.

Usually in these situations, there’s an
internal dialogue (albeit one of varying
length) that goes something like this:

“I’m starving! I should go home and
make a salad and finish off that leftover
grilled chicken.”

“But it’s been such a long day. I don’t
feel like cooking.” [Walks by popular
spot for Chinese takeout] “Plus, beef lo
mein sounds amazing right now.”

“Yes, yes it does, but you really need to
finish those vegetables before they go bad,
plus, they’ll be good with some Dijon
vinaigrette!”

“Not as good as those delicious noodles
with all that tender beef.”

  49

“Hello, remember the no carbs resolution?
And the eat vegetables every day one,
too? You’ve been doing so well!”

“Exactly, I’ve been so good! I can have
this one treat…”

And so the battle is lost. This is the
push-pull relationship between reason
(eat well!) and impulse (eat that right
now!). And here’s the reason we make
bad decisions: we use our self-control
every time we force ourselves to make
the good, reasonable decision, and that
self-control, like other human capaci-
ties, is limited.

➋
Call it what it is: ego-depletion.
Eventually, when we’ve said “no”

to enough yummy food, drinks, and
potential purchases, and forced our-
selves to do enough unwanted chores,
we find ourselves in a state that Roy
Baumeister calls “ego-depletion,” where
we don’t have any more energy to
make good decisions. So, back to our
earlier question: when you contem-
plate your Friday versus Sunday night
selves, which one is more depleted?
Obviously, the former.

You may call this condition by other
names (stressed, exhausted, worn
out, etc.) but depletion is the psycho-
logical sum of these feelings, of all the
decisions you made that led to that
moment. The decision to get up early
instead of sleeping in, the decision to
skip pastries every day on the way to

work, the decision to stay at the office
late to finish a project instead of leav-
ing it for the next day (even though
the boss was gone!), the decision not
to skip the gym on the way home, and
so on, and so forth. Because when you
think about it, you’re not actually too
tired to choose something healthy for
dinner (after all, you can just as easily
order soup and sautéed greens instead
of beef lo mein and an order of fried
gyoza), you’re simply out of will power
to make that decision.

➌
Understand ego-depletion.
Enter Baba Shiv (a professor at

Stanford University) and Sasha Fedor-
ikhin (a professor at Indiana Uni-
versity) who examined the idea that
people yield to temptation more read-
ily when the part of the brain respon-
sible for deliberative thinking has its
figurative hands full.

In this seminal experiment, a group
of participants gathered in a room and
were told that they would be given
a number to remember and which
they were to repeat to another experi-
menter in a room down the hall. Easy
enough, right? Well, the ease of the
task actually depended on which of
the two experimental groups you were
in. You see, people in group 1 were
given a two-digit number to remember.
Let’s say, for the sake of illustration,
that the number is 62. People in group
two, however, were given a seven-digit

50  SPECIAL

number to remember, 3074581. Got
that memorized? Okay!

Now here’s the twist: half way to
the second room, a young lady was
waiting by a table upon which sat a
bowl of colorful fresh fruit and slices
of fudgy chocolate cake. She asked
each participant to choose which snack
they would like after completing their
task in the next room, and gave them
a small ticket corresponding to their
choice. As Baba and Sasha suspected,
people laboring under the strain of
remembering 3074581 chose chocolate
cake far more often than those who
had only 62 to recall. As it turned out,
those managing greater cognitive strain
were less able to overturn their instinc-
tive desires.

 This simple experiment doesn’t
really show how ego-depletion works,
but it does demonstrate that even a
simple cognitive load can alter deci-
sions that could potentially have an
effect on our lives and health. So con-
sider how much greater the impact of
days and days of difficult decisions and
greater cognitive loads would be.

➍
Include and consider the moral
implications.

Depletion doesn’t only affect our
ability to make good decisions, it also
makes it harder for us to make honest
ones. In one experiment that tested the
relationship between depletion and
honesty, my colleagues and I split par-
ticipants into two groups and had them
complete something called a Stroop
task, which is a simple task requiring
only that the participant name aloud
the color of the ink a word (which is
itself a color) is written in. The task,
however, has two forms: in the first,
the color of the ink matches the word,
called the “congruent” condition, in
the second, the color of the ink differs
from the word, called the “incongru-
ent” condition. Go ahead and try both
tasks yourself…

The congruent condition: color
matches word.

  51

The incongruent condition: color con-
flicts with word.

 As you no doubt observed, naming
the color in the incongruent version is
far more difficult than in the congru-
ent. Each time you repressed the word
that popped instantly into your mind
(the word itself) and forced yourself
to name the color of the ink instead,
you became slightly more depleted as a
result of that repression.

As for the participants in our experi-
ment, this was only the beginning.
After they finished whichever task they
were assigned to, we first offered them
the opportunity to cheat. Participants
were asked to take a short quiz on
the history of Florida State University
(where the experiment took place),
for which they would be paid for the
number of correct answers. They were
asked to circle their answers on a sheet
of paper, then transfer those answers to

a bubble sheet. However, when partici-
pants sat down with the experimenter,
they discovered she had run into a
problem. “I’m sorry,” the experimenter
would say with exasperation, “I’m
almost out of bubble sheets! I only
have one unmarked one left, and one
that has the answers already marked.”
She explained to participants that she
did her best to erase the marks but that
they’re still slightly visible. Annoyed
with herself, she admits that she had
hoped to give one more test today after
that one, then asks a question: “Since
you are the first of the last two partici-
pants of the day, you can choose which
form you would like to use: the clean
one or the premarked one.”

So what do you think participants
did? Did they reason with themselves
that they’d help the experimenter out
and take the premarked sheet, and be
fastidious about recording their acci-
dents accurately? Or did they realize
that this would tempt them to cheat,
and leave the premarked sheet alone?
Well, the answer largely depended
on which Stroop task they had done:
those who had struggled through the
incongruent version chose the pre-
marked sheet far more often than the
unmarked. What this means is that
depletion can cause us to put ourselves
into compromising positions in the first
place.

52  SPECIAL

And what about the people, in either
condition, who chose the premarked
sheet? Once again, those who were
depleted by the first task, once in a
position to cheat, did so far more often
than those who breezed through the
congruent version of the task.

What this means is that when we
become depleted, we’re not only more
apt to make bad and/or dishonest
choices, we’re also more likely to allow
ourselves to be tempted to make them
in the first place. Talk about double
jeopardy.

➎
Evade ego-depletion.
There’s a saying that nothing

good happens after midnight, and
arguably, depletion is behind this bit
of folk wisdom. Unless you work the
third shift, if you’re up after midnight
it’s probably been a pretty long day
for you, and at that point, you’re more
likely to make sub-optimal decisions, as
we’ve learned.

So how can we escape depletion?
A friend of mine named Dan Silver-

man once suggested an interesting
approach during our time together at
the Institute for Advanced Study at
Princeton, which is a delightful place
for researchers to take a year off to
think, plan, and eat very well. Every
day, after a rich lunch, we were plied
with nigh-irresistible desserts: cheese-
cake, chocolate tortes, profiteroles,
beignets — you name it. It was difficult

for all of us, but especially for poor
Dan, who was forever at the mercy of
his sweet tooth.

It was a daily dilemma for my friend.
Dan, who was an economist with high
cholesterol, wanted dessert. But he also
understood that eating dessert every
day was not a good decision. He con-
templated this problem (along with his
other academic interests), and con-
cluded that when faced with tempta-
tion, a wise person should occasionally
succumb. After all, by doing so, said
person can keep him- or herself from
becoming overly depleted, which will
provide strength for whatever unex-
pected temptations lie in wait. Dan
decided that giving in to daily dessert
would be his best defense against being
caught unawares by temptation and
weakness down the road.

In all seriousness though, we’ve all
heard time and time again that if you
restrict your diet too much, you’ll
likely to go overboard and binge at
some point. Well, it’s true. A crucial
aspect of managing depletion and
making good decisions is having ways
to release stress and reset, and to plan
for certain indulgences. In fact, I think
one reason the Slow-Carb Diet seems
to be so effective is because it advises
dieters to take a day off (also called
a “cheat” day — see item 4 above),
which allows them to avoid becom-
ing so deprived that they give up
entirely. The key here is planning the

  53

indulgence rather than waiting until you
have absolutely nothing left in the tank.
It’s in the latter moments of desperation
that you throw yourself on the couch
with the whole pint of ice cream, not
even making a pretense of portion con-
trol, and go to town while watching your
favorite TV show.

Regardless of the indulgence, whether
it’s a new pair of shoes, some “me time”
where you turn off your phone, an ice
cream sundae, or a night out — plan it
ahead. While I don’t recommend daily
dessert, this kind of release might help
you face down challenges to your will
power later.

➏
Know Thyself.
 The reality of modern life is that

we can’t always avoid depletion. But that
doesn’t mean we’re helpless against it.
Many people probably remember the
G.I. Joe cartoon catch phrase: “Knowing
is half the battle.” While this served in
the context of PSAs of various stripes, it
can help us here as well. Simply knowing
you can become depleted, and moreover,
knowing the kinds of decisions you might
make as a result, makes you far better
equipped to handle difficult situations
when and as they arise. n

Dan Ariely is also the author of several excellent
books, including Predictably Irrational and, most
recently, The Honest Truth About Dishonesty.

Reprinted with permission of the original author.
First appeared in hn.my/ego (danariely.com)

http://hn.my/ego

54  SPECIAL

Small
By Alex MacCaw

Looking down from his perch
on the edge of space, Felix
Baumgartner remarked:

Sometimes you have to be really high,
to see how small you really are.

It turns out that this feeling is a well
documented phenomena dubbed the
Overview effect. When a person gazes
upon Earth from outer space, they
have a profound sense of perspective,
a realization of fragility, that humanity
and all life as we know it is completely
dependent on a single planet and its
thin atmosphere.

It suddenly struck me that that tiny
pea, pretty and blue, was the Earth.
I put up my thumb and shut one eye,
and my thumb blotted out the planet
Earth. I didn’t feel like a giant. I felt
very, very small.
— Neil Armstrong

So while the first astronauts to the
moon went as technicians, they came
back as humanitarians. In the words
of William Anders, “We came all this
way to explore the moon, and the most
important thing is that we discovered
the Earth.”

The view of the Earth from the
Moon fascinated me — a small disk,
240,000 miles away. It was hard to
think that that little thing held so many
problems, so many frustrations. Raging
nationalistic interests, famines, wars,
pestilence don’t show from that dis-
tance.
— Frank Borman, Apollo 8

As Voyager 1 was approaching the
edge of our Solar System, Carl Sagan
convinced the team at NASA to rotate
the probe and send one last photo-
graph back. A photograph portraying
the earth as a tiny blue dot contrasted
against the emptiness of space.

  55

 This photograph wasn’t taken for
purely scientific reasons, but had a
deeper significance which Sagan elabo-
rated on in his book Pale Blue Dot:

There is perhaps no better a demon-
stration of the folly of human conceits
than this distant image of our tiny
world.

Look again at that dot. That’s here,
that’s home, that’s us. On it everyone
you love, everyone you know, everyone
you ever heard of, every human being
who ever was, lived out their lives. The
Earth is a very small stage in a vast
cosmic arena.

It’s no coincidence that the word
small is endemic to experiences of
space. In all these quotes from astro-
nauts, the word comes up time and
time again. Compared against the
vastness of space, all our quarrels,
conceits and concerns fade away into
insignificance.

It’s for this reason, the Overview
effect, that I am extremely excited
about the prospects of Space Tourism.
With more people viewing the Earth
from afar, perhaps the world will gain
a little more perspective, and a better
sense of proportion. n

Alex MacCaw is a JavaScript programmer,
O’Reilly author and open source developer.
He currently works at Stripe.

Reprinted with permission of the original author. First
appeared in hn.my/small (alexmaccaw.com)

http://hn.my/small

http://memset.com
http://mandrill.com

  57

http://memset.com
http://mandrill.com

	FEATURES
	100 Mile Bike Courier
	An Unexpected Ass Kicking

	STARTUPS
	Traction Mistakes

	PROGRAMMING
	JavaScript: Function Invocation Patterns
	How Does SSL Work?
	Hacking ls -l
	An Intuitive Guide to Linear Algebra

	SPECIAL
	Pascal’s Apology
	Understanding Ego Depletion
	Small

