

Curator
Lim
Cheng Soon

Contributors
Justin
Kan
Rohin Dhar
Rob Spectre
Derek Sivers
Charles
Leifer
Rob Pike
Bram Moolenaar
Clay Allsopp
Feross
Aboukhadijeh
Joel Perras
Reginald Braithwaite
Jeff Atwood

Proofreaders
Emily
Griffin
Sigmarie Soto

Printer
MagCloud

Advertising

ads@hackermonthly.com

Contact

contact@hackermonthly.com

Published by
Netizens Media

46, Taylor Road,
11600 Penang, Malaysia.

Hacker Monthly is the print magazine version of Hacker News —
news.ycombinator.com,
a social news website wildly popular among programmers and startup
founders. The submission guidelines state that content can be
“anything that gratifies one’s intellectual curiosity.” Every
month, we select from the top voted articles on Hacker News and print
them in magazine format.
For more, visit hackermonthly.com

My Entrepreneurship Story

By JUSTIN KAN

My parents were entrepreneurs in the
beginning. My mom had her own real estate agency and having that
example was really, I think, a big part of it. There are a lot of
people out there who would like to do something, but they don’t
because they’re getting a nice paycheck.

For me, I tell myself all the time, “It
doesn’t matter.” Those external things or how much money you have
isn’t really that important. The thing that’s important is that
you enjoy what you’re doing every day or every hour. I think that’s
something most people don’t get the opportunity to do. It’s easy
to make no money when you’ve never made any money. When I was at
Yale as an undergraduate, I started this company called Kiko, which
was a web calendar. Kiko was in the first class of Y Combinator
Companies, which is a seed fund created by Paul Graham, who was
investing in startups by younger entrepreneurs.

Y Combinator, at the time, was in a
building in Cambridge. We went there for an interview and they told
us they didn’t like the idea of Kiko, but they thought we might be
promising. We showed up, and I didn’t say a single thing. I said,
“Hey, I’m Justin.” And they called us back that night and said,
“Hey. Okay, we’ll take you.”

Emmett Shear, my partner, had followed
Paul for a while online. I didn’t know anything, so I just kind of
figured, “Get that money.” We took it and we moved to Boston. The
first batch of Y Combinator startups had eight companies, including
Kiko (of course, the best and first); Loopt, started by Sam Altman;
and Reddit, which was started by my friends Steve Huffman and Alexis
Ohanion. Reddit is the homepage for the web and probably the most
interesting and prolific web community today.

There was also Memamp, which was
started by a couple of other friends of mine; ClickFacts, a malware
solution company; and Infogami, a blogging software started by Aaron
Swartz. We spent a year and a couple months working at Kiko and we
realized we weren’t very good at making a calendar, probably
because we didn’t use calendars. We were college students and what
did we need to schedule? I only had class two days a week, so I could
remember that. All we did was sit around and program, so we didn’t
have any appointments. We really didn’t know what we were doing,
and we didn’t know who we were building this for.

Then, Google Calendar came out. A lot
of people liked that, and we decided Kiko wasn’t working.
Eventually, about 14 months later, we sold it to Tucows in Toronto,
Canada. We had put it on eBay and said, "Hey, maybe we can get
$50,000 to pay back our investors.” When I woke up on the last day
of our eBay auction, there was a bid for $80,000. That’s awesome.
We had made no money, and the bid just kept going up every time I
would refresh. It was $80,000, $113,000, $150,000, and then finally,
an hour later, it was $258,000. We were pretty ecstatic. I was
sitting there in my friend’s apartment in my underwear refreshing
an eBay page and screaming. It was pretty awesome.

One day, we were with Paul and Robert
Morris, who’s another partner at Y Combinator and also a famous
computer science professor at MIT. Emmett and I told them we had an
idea for something called JustinTV. We explained it as a crazy,
camera-on-head thing where we would run around and film our own
reality TV show. I remember Robert said, “I would fund that just to
see you make a fool of yourself.”

So, we walked out of there with a check
for $50,000, and that was it. We were doing it. JustinTV was called
JustinTV because I was the only one that volunteered to wear the
camera.

It started off as us trying to make our
own live video reality show on the web. When we launched the show, it
immediately became this epicenter for pranks. One time, it was pretty
serious. They had called in a stabbing in our apartment, and the cops
came and kicked in the doors with guns drawn, expecting to see a
stabbing victim in our apartment, but it was just us sitting there on
our laptops. It was a pretty awkward situation.

We didn’t know anything about
creating content; most of the content we created was us sitting
around on our couch using our laptops. People would text or email me,
saying, “Get off your computer and go do something. Entertain us.”

Pretty quickly, we realized we weren’t
that interesting, but we needed to do something else. We turned
JustinTV into a platform for anyone to create live video content.
After that, people who were much more interesting than us started
broadcasting and that’s when it really took off.

After JustinTV, we started a couple
projects that have kind of become bigger than originally planned. The
first one was Twitch, which is our gaming site — like ESPN for
gaming. We now have about 20 million unique users that watch gaming
content every month. That’s everyone from professional Starcraft
players, to people playing new releases, to gaming journalists
demoing new games and doing reviews, to people just having fun.

We also spun off another company called
SocialCam, which is like Instagram for videos. It’s the easiest way
to get video off your iPhone and share it with your friends. That’s
been running as an independent company outside of JustinTV. SocialCam
just uploads your video and shrinks it in size, but it also
transposes it to different qualities so you can watch it on different
devices. The goal is to get a video to whomever you want to as fast
as possible.

Recently, SocialCam was acquired by
Autodesk for $60 million. That happened on Tuesday actually, the day
after my birthday. It’s been the longest road for the team, and we
had 100 million Facebook users.

Exec is a company I started with my
brother and a longtime friend of ours. The inspiration for Exec came
from a trip to Burning Man. One of my friends had forgotten his
ticket at his apartment building, which was in downtown San
Francisco, so how could he get the ticket without going back? It
turned out another friend of ours was driving up but was leaving in
half an hour, so we needed to get that friend the key. I said, “Hey,
call Uber and tell the driver to go to point A, wait for a girl and
pick up a key, and then drive to point B and drop it off with the
doorman.” It worked. After that, I thought it would be cool to have
a service like that — a service to get something done while you’re
busy or remote in the real world. Exec is the easiest and fastest way
to get anything you want done right now. When you submit your job on
an iPhone or the web, you just write a short description and then
press a button. We go out and find someone for you right then. You
don’t have to choose the person, and there’s no negotiation; it’s
just a flat rate of $25 an hour.

The social aspect of Exec — the way
that we create jobs for people who can’t find jobs right now —
has been really impactful because it’s something we really didn’t
expect. It has been really meaningful to me to have people tell us,
“I would be in a really dark place right now if I didn’t have
this job. Thank you.” That makes me feel like I’m doing something
that’s bigger than any project I’ve worked on before.

I think Exec can change the world
because everyone can either be working on Exec or hiring people
through Exec. We have all sorts of jobs that people can pick up and
make some extra money. The future of America requires us to figure
out better education and specifically job retraining, but hopefully
we can do our part at Exec to help provide people with ways to make
money in the interim while we’re figuring that out. §

Justin Kan is the founder and CEO of
Exec, your on demand work force. Previously he founded Justin.tv,
TwitchTV and Socialcam. He is a part time partner at Y Combinator.

Reprinted with permission. First
appeared in hn.my/jkan (justinkan.com)

What Happens to
Stolen Bicycles?

By ROHIN DHAR

At Priceonomics, we are fascinated by
stolen bicycles. Put simply, why the heck do so many bicycles get
stolen? It seems like a crime with very limited financial upside for
the thief, and yet bicycle theft is rampant in cities like San
Francisco (where we are based). What is the economic incentive for
bike thieves that underpins the pervasiveness of bike theft? Is this
actually an efficient way for criminals to make money?

 It seems as if stealing bikes
shouldn’t be a lucrative form of criminal activity. Used bikes
aren’t particularly liquid or in demand compared to other things
one could steal (phones, electronics, drugs). And yet, bikes continue
to get stolen, so they must be generating sufficient income for
thieves. What happens to these stolen bikes, and how do they get
turned into criminal income?

The Depth of the Problem

In San Francisco, if you ever leave
your bike unlocked, it will be stolen. If you use a cable lock to
secure your bike, it will be stolen at some point. Unless you lock
your bike with medieval-esque u-locks, your bike will be stolen from
the streets of most American cities. Even if you take these strong
precautions, your bike may still get stolen.

 According the National Bike Registry
and FBI, $350 million in bicycles are stolen in the United States
each year. Beyond the financial cost of the crime, it’s
heartbreaking to find out someone stole your bike; bikers love their
bikes.

As one mom wrote in an open letter to
the thief who pinched her twelve year old son’s bike:

It took CJ three weeks to finally
decide on his bike. We looked at a brown bike at Costco, even brought
it home to return it the next day, and a blue one at Target. But his
heart was set on the green and black Trek he saw at Libertyville
Cyclery. CJ knew it was more than we wanted to spend, but the boy had
never asked for anything before. You see, CJ had to live through his
dad being unemployed for 18 months and knew money was tight. Besides,
he’s just an all around thoughtful kid.

CJ didn’t ride his bike to school
if there was rain in the forecast and he always locked it up. You
probably noticed that it doesn’t have a scratch on it. CJ treated
his bike really well and always used the kick-stand.

You should know that CJ has cried
about the bike and is still very sad. He had to learn a life lesson a
little earlier than I had liked: that there are some people in the
world who are just plain mean. Now you know a little about my really
awesome son and the story behind his green and black Trek 3500,
16-inch mountain bike.

An Economic Theory of Bike Crime

In 1968, Chicago economist Gary Becker
introduced the notion that criminal behavior could be modeled using
conventional economic theories. Criminals were just rational actors
engaged in a careful cost-benefit analysis of whether to commit a
crime. Is the potential revenue from the crime greater than the
probability adjusted weight of getting caught? Or, as the antagonist
in the movie The Girl Next Door puts it, “Is the juice worth the
squeeze?”

Criminal activity (especially crime
with a clear economic incentive like theft) could therefore be
modeled like any financial decision on a risk reward curve. If you
are going to take big criminal risk, you need to expect a large
financial reward. Crimes that generate more reward than the
probability weighted cost of getting caught create expected value for
the criminal. Criminals try to find “free lunches” where they can
generate revenue with little risk. The government should respond by
increasing the penalty for that activity so that the market
equilibrates and there is an “optimal” amount of crime.

Using
this risk-return framework for crime, it begins to be clear why there
is so much bike theft. For all practical purposes, stealing a bike is
risk-free crime. It turns out there is a near zero chance you will
be caught stealing a bike and if you are, the consequences are
minimal.

There are a few great accounts of
journalists getting their bikes stolen and then going on a zealous
mission to try to capture bikes thieves. In each account, they
ultimately learn from local police that the penalty for stealing a
bike is generally nothing.

“We make it easy for them. The DA
doesn’t do tough prosecutions. All the thieves we’ve busted have
got probation. They treat it like a petty crime.”

“You can’t take six people off a
murder to investigate a bike theft.”

Bike thievery is essentially a
risk-free crime. If you were a criminal, that might just strike your
fancy. If Goldman Sachs didn’t have more profitable market
inefficiencies to exploit, they might be out there arbitraging stolen
bikes.

What Happens to the Stolen Bikes?

Just because the risk of a crime is
zero, that doesn’t mean that a criminal will engage in that crime.
If that were the case, thieves would go about stealing dandelions and
day-old newspapers. There has to be customer demand and a liquid
market for the product in order for the criminal to turn their
contraband into revenue. So, how exactly does a criminal go about
converting a stolen bicycle to cash?

We decided to survey the prior
literature on where stolen bikes are sold as well as consult with
bike shops and experts in San Francisco to get a better picture of
who steals bikes and where the stolen bikes end up.

Amateur
Bike Thieves. Amateur bike thieves sell their stolen goods at local
fencing spots and are typically drug addicts or down on their luck
homeless.

Sgt. Joe McKolsky, bike theft
specialist for the SFPD, estimates that the overwhelming majority of
bike thefts are driven by drug addicts and end up being sold on the
street for 5 to 10 cents on the dollar. Any bike will do, whether
it’s a $50 beater or a $2,000 road bike. These thieves are
amateurs just opportunistically stealing unsecured bikes to get some
quick cash:

“Bikes are one of the four
commodities of the street — cash, drugs, sex, and bikes….You can
virtually exchange one for another.”

In San Francisco, these amateur stolen
bikes end up on the streets at the intersection of 7th Street and
Market Street in front of the Carl’s Jr restaurant. We chatted with
Brian Smith, co-owner of HuckleBerry Bicycles, which is located
across the street from this fencing joint. He confirmed it’s not
uncommon for people to come into the shop having just purchased a $50
bike across the street or with obviously stolen bikes.

Professional Thieves. On the other end
of the spectrum are professional bike thieves. Instead of
opportunistically targeting poorly locked bicycles, these thieves
target expensive bicycles. They have the tools that can cut through
u-locks and aim to resell stolen bikes at a price near their “fair
market value.” These thieves acquire the bicycles from the streets,
but then resell them on online markets to maximize the selling price.

We asked Aubrey Hoermann, owner of used
bicycle shop Refried Cycles in the Mission, about professional bike
thieves and where they sell their merchandise:

“It has to end up somewhere where
you can sell it in another city. My feeling is that people steal
enough bikes to make it worth to take a trip somewhere like LA and
then sell it there on Craigslist. If you have about 10 stolen bikes,
it’s probably worth the trip.”

Another bike shop proprietor who asked
not to be named added:

“Most of these guys are drug
addicts, but a lot of them are professionals. You can cut through a
u-lock in a minute and a half with the right tools. Steal three bikes
and sell them in LA for $1500 a piece and you’re making money.”

These thieves essentially are
maximizing their revenue per van trip to a market in which they can
sell the bicycle. In the past they might’ve been able to resell it
locally, but according to Aubrey, this opportunity is fading:

You can’t just steal a bike and
sell it on Craigslist in San Francisco anymore. It’s too well known
that’s where it would be and it’s too much work to change it to
make it look different. I used to be a bike messenger and if your
bike was stolen you’d go check at 7th and Market. Now that’s too
well known to just sell a bike there.

Increasingly when a bicycle is stolen,
the victims know where to check locally (Craigslist, 7th and Market,
the Oakland Flea Market) so that makes it hard to sell the bikes
there. Because bikes aren’t even that popular in the first place,
it’s just not worth the effort to customize and disguise them for
local sale.

Because of this dynamic, Aubrey
concludes that professional bike theft is replacing amateur theft as
the predominant form of bike theft. While the police may not penalize
bicycle thieves, it’s becoming easier for the person whose bike was
stolen to investigate the bike theft themselves. This is making it
harder for the amateur thief to casually flip a stolen bike.

Is There at Keyser Söze of the Bike
Underworld?

Bike theft is rampant and increasingly
the province of professionals. Is there any evidence that a “criminal
mastermind” exists behind this network where bikes are stolen in
one city, transported to another and then resold? Ultimately, there
is no evidence that a bike kingpin exists.

The largest bike theft arrests ever
recorded are rather mundane actually. In San Francisco, recently a
local teen was arrested with hundreds of stolen bikes found in his
storage locker. Did these bicycles end up in some exotic fencing
ring? Nope, they were being resold at an Oakland flea market.

In Toronto, a mentally imbalanced bike
shop owner was found hoarding 2,700 stolen bikes. Mostly, he was just
letting them rust.

Criminal masterminds have to value
their time and resources, and bike theft isn’t really that
profitable. The transportation costs and low value density ratio of
the product likely kill the economics of the stolen bike trade. The
bike shop proprietor we interviewed that requested anonymity
concluded:

You’d be in the prostitution or
drugs business if you were running a criminal ring to make money.
There just isn’t that much money in bikes. These people who steal
bikes are professionals but small time operators. Or, they’re just
assholes.

Conclusion

Ultimately, that’s the point everyone
seems to agree on: bike thieves are assholes. For everything else,
there is little consensus and hard evidence. However, some things are
clear and explain a lot of the bike theft that occurs.

It’s dead simple to steal a bike and
the consequences are near zero. You can resell stolen bikes. If you
want to get a good price for a stolen bicycle, it requires a decent
amount of work. That amount of work is what limits the bike theft
trade from really flourishing. Criminal masterminds have an
opportunity cost for their time; they can’t be messing around
lugging heavy pieces of metal and rubber that are only in limited
demand.

So, if your bike ever gets stolen, you
can at least take solace in the fact that the illicit bike trade
isn’t a very easy way to make a lot of money. That probably won’t
make you feel any better though. §

Rohin Dhar is the
co-founder of Priceonomics Price Guides. He is also the co-founder of
Personforce job boards and has an MBA from Stanford and BA from
Dartmouth. You can follow him on Twitter here @rohindhar

First appeared in hn.my/stolenbikes
(priceonomics.com)

What A Hacker Learns After A Year In Marketing

By ROB SPECTRE

A year ago last Friday I left eight
years cutting code and plumbing servers to take my very first
marketing job. Prior to then and even before in college and high
school, hard skills were what paid my bills — technical work
building stuff mostly for the Internet. Everything I had done up
until last year required only the soft skills needed to send a group
email or interview a candidate, certainly a pittance to those
required to craft a message and get it in front of an audience.

I knew I needed more than that. While I
was at Boxee working for Avner Ronen I made the determination that I
wanted the CEO role for my startup. Like a lot of folks who spend
their career in the high risk, high reward, high laughs world of
early stage tech, I’ve long held my own entrepreneurial ambitions,
but after working for a programmer-turned-head-honcho, I came around
to the notion I could make a greater contribution to that endeavor by
pushing the vision and the culture rather than the technology and
architecture. I didn’t want to be the technical co-founder; I
wanted to run the circus.

But, I was sorely deficient. Sales and
marketing were skills I just didn’t have and were I to ask others
to entrust their livelihoods and their families in such an
enterprise, it would be incumbent upon me to learn. To do such a
thing with a knowledge base very nearly zero would just be
irresponsible.

So, to get some of
those skills while keeping my technical chops up, I hopped onboard
Twilio as a developer evangelist. Like a lot of companies, Twilio’s
devangelism program is under the marketing aegis, and the gig meant
working for one of the best marketers I knew [distributionhacks.com].
I’d still write code, but would do so surrounded by the thoroughly
unfamiliar context of message craft and story telling. And through
the daily demands of the job and the proximity of those who do it
well, hopefully I’d learn a thing or two about this marketing thing
and ultimately serve those I wish to lead better.

Holy biscuits, did I learn plenty! A
year in, I thought it might be helpful to my fellow developers to
share what it’s like to turn to the Dark Side and what I picked up
in the process.

1. This Shit Is Hard

Like many folks who build stuff, my
disdain for marketing as a business discipline had grown ironclad. I
thought soft skills meant it was a soft job: 9 to 5 without pagers
ringing, apocalyptic deadlines, or material consequences for poor
workmanship. A marketer was never around when I had to get a server
back up or the prod db was borked; this gig must be easy.

I learned swiftly that this view was as
legitimate as assuming web development is easy after installing a
Squarespace theme. My view (and likely yours) was informed mostly by
bad marketing, which is every bit as prevalent as bad programming.
Install ten WordPress plugins and base a view on software engineering
and I’m sure the 7 out of 10 bad experiences one would encounter
would foster a belief that the entire discipline is bankrupt.

As it turns out, the ones who do it
well are rare and far less visible because, like good programmers,
their work is a lot harder to notice. Good marketing is a product of
the same inputs as good code; long hours, sweating the details, and
the judicious application of experience doing it the right way.

2. Data Wins Arguments

When debating the performance of a
chunk of code or a particular architectural decision, I’d often
find myself at loggerheads with my colleagues with none in the
argument operating with any real evidence. And, invariably, to win
I’d just test the hypothesis on a small scale, show the comparative
data, and the decision would be much clearer.

Sometimes I was right, sometimes I was
wrong. But the practice of testing intuition on reduced scope to gain
confidence about a decision is one I use every day as an evangelist.
And, as it turns out, it is a practice used by every person good at
marketing. “It’s all a numbers game,” people would tell me,
leading me to believe that I’d be spending a lot of time in
spreadsheets fiddling with a formula until it did what I wanted.
Surely those charts and graphs meant nothing, and at the end of the
day a small amount of math could be twisted to support my own
preconceptions. “Developers don’t want a bunch of examples,”
I’d say. ”Just give them really strong reference documentation,
and they’ll figure it out.”

Not so. Marketing data shows in stark
relief what works and what doesn’t and — especially when working
on the Internet — is readily available if you spend a little effort
trying to find it. Folks with a technical background excel at such,
and wielding that power in this discipline can yield very powerful
results, if less powerful buzzwords.

3. Calendar Management Is A Skill

Managing my meetings was by far the
most difficult part of my first few months as a developer evangelist.
When I was writing code, meetings were always something I could punt.
When a reminder would come in and I didn’t feel like being
bothered, I could always throw some headphones on, spit out a quick
email about needing to stay heads down on a problem, and everyone
would just magically wait until I was ready for them. People came to
me.

Man, those were the days. A lot of
marketing is gently aligning external forces to craft the right
message and get it in front of the right people at the right time.
And since those external forces don’t need me for a login page or a
bug fix, they are far less inclined to tolerate last minute pushes or
tardiness.

I must have run up and down Manhattan
every day the first month I was at Twilio. I’d set a meeting at
42nd and Broadway next to one at Fulton and Church with 15 minutes in
between. I’d double and triple book in email, leaving two or three
of the parties asking where the hell I was. This function that had
always been a nuisance in my life was now a critical skill, and I
found out I sucked at it.

Took a long while to learn. I’m still
not very good at it.

4. You Can Learn To Schmooze

I’m not naturally very charismatic or
talkative. Despite having played in a band and given a fair number of
technical presentations, it’s just not something I have a genetic
talent for, and I have to work very hard to do it. But in evangelism,
this is part and parcel of the profession and indeed a valuable
ability in the marketing game.

And, much to my delight, it is
something you do get better at with practice. Programming is
something I felt I could always just do. But public speaking,
networking at a party, meeting people at a conference just never came
as easily to me as writing code. It is now something I feel I can do
and do well, and the only difference was a lot of practice.

There aren’t any real secrets. Ask
people what they are working on, always treat them not as a means but
an end, and be your authentic, flawed, fully present self. Nearly
every human you meet will respond kindly. And those who don’t, you
just don’t have to worry about.

It’s hard, but so is learning Erlang.
And just like you cringe when you revisit the first Post-Nuke you
ever built, so too will you when you recall your first attempts at
building your interpersonal skills (just ask the kids at PennApps
about my first Twilio demo. What a bomb on stilts that was).

Don’t get discouraged. Just grit your
teeth, plow through and practice. You will get better.

5. The Impact You Can Make Is Huge

I long thought my maximum point of
power to effect real change was in the text editor in front of me.
The only way I could make an impact on people’s lives at scale was
to write great software. While I still think we who can write code
wield awesome power indeed, I’ve learned more parts of a startup
than just engineering can make a huge impact.

While in the thick of the Olympics of
hustling called SXSW, my paths crossed into a coder from LA named
Will. He gave me a high-five for my Twilio shirt and said he was
working on an app that would let people create disposable phone
numbers to use for Craiglist posts, job interviews, and other calls
you needed screened. My somewhat flippant question after hearing
about his product was, “When you going to ship?”

“Soon, soon,” he said. “We’re
working on it.”

“Well, hurry up!” I exclaimed.
“People need this!”

A few months later he and his crew at
AdHoc did ship that app, launched it on HackerNews, and the response
has been incredible. So incredible in fact only a few days after
launch, it helped a guy in Portland catch the thief who stole his
bike.

After the launch, I got a very kind
thank you from Will for the little push to get his app shipped. The
right message at the right time to the right person helped encourage
an intrepid team to finish a great idea, earn a lot of business, and
help a dude I’ll never meet got his bike back.

Now I can code all goddamn day and
probably never achieve the same impact as that little conversation in
the middle of a busy conference. Just a little encouragement at the
right moment helped a team build something of which they are
rightfully proud and serve some people who needed it. The
satisfaction I got from watching that squad’s product blow up on
the news was immense.

And when I’m doing this marketing
thing right, that’s what it always feels like. I was anticipating a
lot of different outcomes starting down this path, but I didn’t
expect it to feel so rewarding. Good marketing is tough to do, good
programming is tough to do; I’m starting to learn that anything
good is tough to do.

And, for this hacker at least, doing
something well will always feel magical. §

Doing just about anything for a good
laugh, Rob runs developer evangelism for Twilio and is an ardent
supporter of open source software and creative commons art, the
startup scene in New York, and every professional sports club from
Boston. In addition to writing on Brookyn Hacker, he runs a number of
exploits into Internet ridiculousness, including the heartwarming
documentary service how i knew you were the one, the robotic
telephonic joke machine Laugh-o-Tron, and the Nobel Prize-losing
Chrome Extension Jeter Filter.

First appeared in hn.my/hacketer
(brooklynhacker.com)

Push, Push,
Push: Expanding Your Comfort Zone

By DEREK SIVERS

I’m 40 meters underwater. It’s
getting cold and dark. It’s only the third dive in my life, but I’m
taking the advanced training course, and the Caribbean teacher was a
little reckless, dashing ahead, leaving me alone.

The next day I’m in a government
office, answering an interview, raising my right hand, becoming a
citizen of Dominica.

I’m in a Muslim Indian family’s
house in Staten Island, washing my feet, with the Imam waiting for my
conversion ceremony. Next week they will be my family in-law. The
Muslim wedding will make her extended family happy. I’ve memorized
the syllables I need to say. “Ash hadu alla ilaha illallah. Ash
hadu anna muhammadar rasulullah.”

I’m backstage at the TED Conference,
about to go on, but I can’t remember my lines. In the audience are
Bill Gates, Al Gore, Peter Gabriel, and a few hundred other
intimidating geniuses. Heart pounding so fast and hard, I think I’m
going to explode. They call my name. Ack! I still can’t remember my
lines! But I hit the stage anyway.

I’m alone on a bicycle in a forest in
Sweden. I left from Stockholm 6 hours ago, headed south, with only 50
kronor, and I’m getting hungry. I don’t know the way back.

We’re in a filthy dorm-room apartment
in Guilin, China, studying at the local university. At the local
grocery store, we choose from a bin of live frogs.

The India Embassy official hands me a
pseudo-passport that says I am now officially a “Person of Indian
Origin,” a pseudo-citizen of India.

I’m in the back of a truck in
Cambodia, soaking wet, hitching a ride back to Phnom Penh after an
all-day bike ride. The roads were flooded, but we rode our bikes
through anyway, Mekong River water waist-high.

That week I speak at four conferences
in Cambodia, Singapore, Brunei, and Indonesia. By the 4th one, my
American accent has started to morph into something kind of Asian.

We’re in a hospital in Singapore,
having a baby. It’s a boy, which means he’ll serve 2 years in the
Singapore military in 2030. The birth certificate says his race is
Eurasian, a word I’ve never heard.

I’m on a diplomatic mission in
Mongolia, with the Singapore Business Federation, talking with the
Mongolian government’s head of business development, walking with
the next mayor of Ulaanbaatar.

I suppress a laugh at the
ridiculousness of this situation.

I’m just a musician from California!
What the hell am I doing here?

But that feeling lets me know I’m on
the right track. This is exactly what I wanted.

Some people push themselves physically,
to see how far they can go. I’ve been doing the same thing
culturally, trying to expand my California-boy perspective.

I love that when we push push push, we
expand our comfort zone. Things that used to feel intimidating now
are as comfortable as home.

I remember how scary New York City felt
when I moved there in 1990, just 20 years old. Two years later it was
“my” city, my comfort zone.

Now previously-exotic Singapore is my
long-term comfortable home, while I push myself into exploring
foreign places, new businesses, and different perspectives.

After years of stage fright, performing
over 1000 shows, I have a strong case of “stage comfort.” Being
the lead singer or speaker on stage is now my comfort zone.

A lot of my musician friends feel this
when playing on stage with their legendary heroes. You push push
push, and then one day find yourself on the very stage you used to
dream about. And it feels so natural — almost relaxing. It’s your
new comfort zone.

The question is: what scares you now?
What’s intimidating? What’s the great unknown?

I keep using that question to guide my
next move. §

Derek Sivers
founded a music distribution company, CD Baby, in 1997, a web hosting
company, Hostbaby, in 2000, and sold both in 2008. Since then he’s
been a popular speaker at the TED Conferences, and writing short
essays at sivers.org

First appeared in
hn.my/push (sivers.org)

Using
Python and k-means to Find the Dominant Colors in Images

By CHARLES LEIFER

I’m
working on a little photography website for my Dad and thought it
would be neat to extract color information from photographs. I tried
a couple of different approaches before finding one that works pretty
well. This approach uses k-means clustering [hn.my/kmeans]
to cluster the pixels in groups based on color. The center of those
resulting clusters is then the “dominant” color(s). k-means is a
great fit for this problem because it is (usually) fast, but the
caveat is that it requires you to specify up-front how many clusters
you want — I found that it works well when I specified around 3.

A warning

I’m no expert on data-mining —
almost all my experience comes from reading Toby Segaran’s
excellent book Programming Collective Intelligence. In one of the
first chapters Toby covers clustering algorithms, including a nice
treatment of k-means, so if you want to really learn from an expert
I’d suggest picking up a copy. You won’t be disappointed.

How it works

The way I understand it to work is you
start with a bunch of data points. For simplicity, let’s say
they’re numbers on a number-line. You want to group the numbers
into “k” clusters, so pick “k” points randomly from the data
to use as your “clusters.”

Now, loop over every point in the data
and calculate its distance to each of the “k” clusters. Find the
nearest cluster and associate that point with the cluster. When
you’ve looped over all the points they should all be assigned to
one of the “k” clusters. Now, recalculate each cluster’s center
by averaging the distances of all the associated points and start
over.

When the centers stop moving very much
you can stop looping. You will end up with something like this: the
points are colored based on what “cluster” they are in and the
dark-black circles indicate the centers of each cluster.

Applying
it to photographs

The neat thing about this algorithm is
that, since it relies only on a simple distance calculation, you can
extend it out to multi-dimensional data. Color is often represented
using 3 channels: Red, Green, and Blue. So what I did was treat all
the pixels in the image like points on a 3-dimensional space. That’s
all there was to it!

I made a few optimizations along the
way:

		Resize the
	image down to 200 x 200 or so using PIL [hn.my/pil]

	
	Instead of storing “duplicate”
	points, store a count with each — saves on calculations

Looking at some results

The source code

Below is the source code. It requires
PIL to resize the image down to 200x200 and to extract the
colors/counts. The colorz function is the one that returns the actual
color codes for a filename.

 from collections import namedtuple
 from math import sqrt
 import random
 try:
 import Image
 except ImportError:
 from PIL import Image

 Point = namedtuple('Point', ('coords', 'n', 'ct'))
 Cluster = namedtuple('Cluster', ('points', 'center', 'n'))

 def get_points(img):
 points = []
 w, h = img.size
 for count, color in img.getcolors(w * h):
 points.append(Point(color, 3, count))
 return points

 rtoh = lambda rgb: '#%s' % ''.join(('%02x' % p for p in rgb))

 def colorz(filename, n=3):
 img = Image.open(filename)
 img.thumbnail((200, 200))
 w, h = img.size

 points = get_points(img)
 clusters = kmeans(points, n, 1)
 rgbs = [map(int, c.center.coords) for c in clusters]
 return map(rtoh, rgbs)

 def euclidean(p1, p2):
 return sqrt(sum([
 (p1.coords[i] - p2.coords[i]) ** 2 for i in range(p1.n)
]))

 def calculate_center(points, n):
 vals = [0.0 for i in range(n)]
 plen = 0
 for p in points:
 plen += p.ct
 for i in range(n):
 vals[i] += (p.coords[i] * p.ct)
 return Point([(v / plen) for v in vals], n, 1)

 def kmeans(points, k, min_diff):
 clusters = [Cluster([p], p, p.n) for p in random.sample(points, k)]

 while 1:
 plists = [[] for i in range(k)]

 for p in points:
 smallest_distance = float('Inf')
 for i in range(k):
 distance = euclidean(p, clusters[i].center)
 if distance < smallest_distance:
 smallest_distance = distance
 idx = i
 plists[idx].append(p)

 diff = 0
 for i in range(k):
 old = clusters[i]
 center = calculate_center(plists[i], old.n)
 new = Cluster(plists[i], center, old.n)
 clusters[i] = new
 diff = max(diff, euclidean(old.center, new.center))

 if diff < min_diff:
 break

 return clusters

Playing with it in the browser

I ported the code over to JavaScript —
let me tell you, it’s pretty rough, but it works and is fast. If
you’d like to take a look at a live example, check out:

charlesleifer.com/static/colors/

You can view the
source to see the JavaScript version, but basically it is just using
the HTML5 canvas and its getImageData method. §

Charles Leifer is
a Python developer both professionally and for his own open source
projects [github.com/coleifer].
He previously worked three and a half years for Mediaphormedia, the
company responsible for creating the Django framework.

First appeared in hn.my/color
(charlesleifer.com)

“The Best
Programming Advice I Ever Got”

By ROB PIKE

A year or two after I’d joined the
Labs, I was pair programming with Ken Thompson on an on-the-fly
compiler for a little interactive graphics language designed by
Gerard Holzmann. I was the faster typist, so I was at the keyboard
and Ken was standing behind me as we programmed. We were working
fast, and things broke, often visibly — it was a graphics language,
after all. When something went wrong, I’d reflexively start to dig
in to the problem, examining stack traces, sticking in print
statements, invoking a debugger, and so on. But Ken would just stand
and think, ignoring me and the code we’d just written. After a
while I noticed a pattern: Ken would often understand the problem
before I would, and would suddenly announce, “I know what’s
wrong.” He was usually correct. I realized that Ken was building a
mental model of the code and when something broke it was an error in
the model. By thinking about how that problem could happen, he’d
intuit where the model was wrong or where our code must not be
satisfying the model.

Ken taught me that thinking before
debugging is extremely important. If you dive into the bug, you tend
to fix the local issue in the code, but if you think about the bug
first, how the bug came to be, you often find and correct a
higher-level problem in the code that will improve the design and
prevent further bugs.

I recognize this is largely a matter of
style. Some people insist on line-by-line tool-driven debugging for
everything. But I now believe that thinking — without looking at
the code — is the best debugging tool of all, because it leads to
better software. §

Rob Pike is a Distinguished Engineer
at Google, Inc. He works on distributed systems, data mining,
programming languages, and software development tools. Most recently
he has been a co-designer and developer of the Go programming
language.

First appeared in hn.my/bestadvice
(informit.com)

Effective Text Editing

By BRAM MOOLENAAR

If you spend a lot of time typing plain
text, writing programs or writing HTML, you can save much of that
time by using a good editor and using it effectively. This article
will present guidelines and hints for doing your work more quickly
and with fewer mistakes.

The open source text editor Vim (Vi
IMproved) will be used here to present the ideas about effective
editing, but they apply to other editors just as well. Choosing the
right editor is actually the first step towards effective editing.
The discussion about which editor is the best for you would take too
much room and is avoided. If you don’t know which editor to use or
are dissatisfied with what you are currently using, give Vim a try;
you won’t be disappointed.

PART 1: EDIT A FILE

1. Move around quickly

Most time is spent reading, checking
for errors and looking for the right place to work on, rather than
inserting new text or changing it. Navigating through the text is
done very often, thus you should learn how to do that quickly.

Quite often you will want to search for
some text you know is there. Or look at all lines where a certain
word or phrase is used. You could simply use the search command
/pattern to find the text, but there are smarter ways:

		If you see a specific word and
	want to search for other occurrences of the same word, use the *
	command. It will grab the word from under the cursor and search for
	the next one.
	

	
	If you set the 'incsearch' option,
	Vim will show the first match for the pattern, while you are still
	typing it. This quickly shows a typo in the pattern.
	

	
	If you set the 'hlsearch' option,
	Vim will highlight all matches for the pattern with a yellow
	background. This gives a quick overview of where the search command
	will take you. In program code, it can show where a variable is
	used. You don’t even have to move the cursor to see the matches.
	

In structured text there are even more
possibilities to move around quickly. Vim has specific commands for
programs in C (and similar languages like C++ and Java):

		Use % to jump from an open brace
	to its matching closing brace. Or from a “#if” to the matching
	“#endif.” Actually, % can jump to many different matching items.
	It is very useful to check if () and {} constructs are balanced
	properly.
	

	
	Use [{ to jump back to the “{”
	at the start of the current code block.
	

	
	Use gd to jump from the use of a
	variable to its local declaration.
	

	
	There are many more, of course.
	The point is that you need to get to know these commands. You might
	object that you can’t possibly learn all these commands — there
	are hundreds of different movement commands, some simple, some very
	clever — and it would take weeks of training to learn them all.
	Well, you don’t need to. Instead, realize what your specific way
	of editing is, and learn only those commands that make your editing
	more effective.

There are three basic steps:

		While you are editing, keep an eye
	out for actions you repeat and/or spend quite a bit of time on.
	

	
	Find out if there is an editor
	command that will do this action quicker. Read the documentation,
	ask a friend, or look at how others do this.
	

	
	Train using the command. Do this
	until your fingers type it without thinking.
	

Let’s use an example to show how it
works:

		You find that when you are editing
	C program files, you often spend time looking for where a function
	is defined. You currently use the * command to search for other
	places where the function name appears, but you end up going through
	a lot of matches for where the function is used instead of defined.
	You get the idea that there must be a way to do this faster.
	

	
	Looking through the quick
	reference you find a remark about jumping to tags. The documentation
	shows how this can be used to jump to a function definition. Just
	what you were looking for!
	

	
	You experiment a bit with
	generating a tags file, using the ctags program that comes with Vim.
	You learn to use the CTRL-] command and find you save lots of time
	using it. To make it easier, you add a few lines to your Makefile to
	automatically generate the tags file.
	

A couple of things to watch out for
when you are using these three steps:

		“I want to get the work done. I
	don’t have time to look through the documentation to find some new
	command.” If you think like this, you will get stuck in the stone
	age of computing. Some people use Notepad for everything, and then
	wonder why other people get their work done in half the time.
	

	
	Don’t overdo it. If you always
	try to find the perfect command for every little thing you do, your
	mind will have no time left to think about the work you were
	actually doing. Just pick out those actions that take more time than
	necessary, and train the commands until you don’t need to think
	about it when using them. Then you can concentrate on the text.
	

In the following sections there will be
suggestions for actions that most people have to deal with. You can
use these as inspiration for using the three basic steps for your own
work.

2. Don’t type it twice

There is a limited set of words we
type, and even a limited number of phrases and sentences, especially
in computer programs. Obviously, you don’t want to type the same
thing twice.

Very often you will want to change one
word into another. If you need to do this for the whole file, you can
use the :s (substitute) command. If only a few locations need
changing, a quick method is to use the * command to find the next
occurrence of the word and use cw to change the word. Then, type n to
find the next word and . (dot) to repeat the cw command.

The . command repeats the last change.
A change, in this context, is inserting, deleting or replacing text.
Being able to repeat this is a very powerful mechanism. If you
organize your editing around it, many changes will become a matter of
hitting just that . key. Watch out for making other changes in
between because it will replace the change that you were repeating.
Instead, you might want to mark the location with the m command,
continue your repeated change and come back there later.

Some function and variable names can be
awkward to type. Can you quickly type “XpmCreatePixmapFromData”
without a typo and without looking it up? Vim has a completion
mechanism that makes this a whole lot easier. It looks up words in
the file you are editing, and also in #include’d files. You can
type “XpmCr” and then hit CTRL-N, and Vim will expand it to
“XpmCreatePixmapFromData” for you. Not only does this save quite
a bit of typing, it also avoids making a typo and having to fix it
later when the compiler gives you an error message.

When you are typing a phrase or
sentence multiple times, there is an even quicker approach. Vim has a
mechanism to record a macro. You type qa to start recording into
register “a.” Then you type your commands as usual and finally
hit q again to stop recording. When you want to repeat the recorded
commands, you type @a. There are 26 registers available for this.

With recording you can repeat many
different actions, not just inserting text. Keep this in mind when
you know you are going to repeat something.

One thing to watch out for when
recording, however, is that the commands will be played back exactly
as you typed them. When moving around you must keep in mind that the
text you move over might be different when the command is repeated.
Moving four characters left might work for the text where you are
recording, but it might need to be five characters where you repeat
the commands. It’s often necessary to use commands to move over
text objects (words, sentences) or move to a specific character.

When the commands you need to repeat
are getting more complicated, typing them right at once is getting
more difficult. Instead of recording them, you should then write a
script or macro. This is very useful to make templates for parts of
your code; for example, a function header. You can make this as
clever as you like.

3. Fix it when it’s wrong

It’s normal to make errors while
typing — nobody can avoid it. The trick is to quickly spot and
correct them. The editor should be able to help you with this, but
you need to tell it what’s wrong and what’s right.

Very often you will make the same
mistake again and again because your fingers just don’t do what you
intended. This can be corrected with abbreviations. A few examples:

 :abbr Lunix Linux
 :abbr accross across
 :abbr hte the

The words will be automatically
corrected just after you type them.

The same mechanism can be used to type
a long word with just a few characters. This is especially useful for
words that you find hard to type, and it avoids that you type them
wrong. Examples:

 :abbr pn penguin
 :abbr MS Mandrake Software

However, these tend to expand to the
full word when you don’t want it, which makes it difficult when you
really want to insert “MS” in your text. It is best to use short
words that don’t have a meaning of their own.

To find errors in your text, Vim has a
clever highlighting mechanism. This was actually meant to be used for
syntax highlighting of programs, but it can catch and highlight
errors as well.

Syntax highlighting shows comments in
color. That doesn’t sound like an important feature, but once you
start using it you will find that it helps a lot. You can quickly
spot text that should be a comment but isn’t highlighted as such
(you probably forgot a comment marker), or see a line of code
highlighted as comment (you forgot to insert a “*/”). These are
errors which are hard to spot in a B&W file and can waste a lot
of time when trying to debug the code.

The syntax highlighting can also catch
unbalanced braces. An unbalanced “)” is highlighted with a bright
red background. You can use the % command to see how they match, and
insert a “(” or “)” at the right position.

Other common mistakes are also quickly
spotted. For example, using “#included <stdio.h>” instead
of “#include <stdio.h>”. You easily miss the mistake in
B&W, but quickly spot that “include” is highlighted while
“included” isn’t.

A more complex example: for English
text there is a long list of all words that are used. Any word not in
this list could be an error. With a syntax file, you can highlight
all words that are not in the list. With a few extra macros, you can
add words to the wordlist, so that they are no longer flagged as an
error. This works just as you would expect in a word processor. In
Vim it is implemented with scripts and you can further tune it for
your own use; for example, to only check the comments in a program
for spelling errors.

PART 2: EDIT MORE FILES

4. A file seldom comes alone

People don’t work on just one file.
Mostly there are many related files, and you edit several after each
other, or even several at the same time. You should be able to take
advantage of your editor to make working with several files more
efficient.

The previously mentioned tag mechanism
also works for jumping between files. The usual approach is to
generate a tags file for the whole project you are working on. You
can then quickly jump between all files in the project to find the
definitions of functions, structures, typedefs, etc. The time you
save compared with manually searching is tremendous; creating a tags
file is the first thing I do when browsing a program.

Another powerful mechanism is to find
all occurrences of a name in a group of files using the :grep
command. Vim makes a list of all matches and jumps to the first one.
The :cn command takes you to each next match. This is very useful if
you need to change the number of arguments in a function call.

Include files contain useful
information, but finding the one that contains the declaration you
need to see can take a lot of time. Vim knows about include files and
can search them for a word you are looking for. The most common
action is to lookup the prototype of a function. Position the cursor
on the name of the function in your file and type [I:. Vim will show
a list of all matches for the function name in included files. If you
need to see more context, you can directly jump to the declaration. A
similar command can be used to check if you did include the right
header files.

In Vim you can split the text area in
several parts to edit different files. Then you can compare the
contents of two or more files and copy/paste text between them. There
are many commands to open and close windows, jump between them,
temporarily hide files, etc. Again you will have to use the three
basic steps to select the set of commands you want to learn to use.

There are more uses of multiple
windows. For example, the preview-tag mechanism is a good feature.
This opens a special preview window while keeping the cursor in the
file you are working on. The text in the preview window shows, for
example, the function declaration for the function name that is under
the cursor. If you move the cursor to another name and leave it there
for a second, the preview window will show the definition of that
name. It could also be the name of a structure or a function which is
declared in an include file of your project.

5. Let’s work together

An editor is for editing text. An
e-mail program is for sending and receiving messages. An Operating
System is for running programs. Each program has its own task and
should be good at it. The power comes from having the programs work
together.

A simple example: You need to write a
summary of no more than 500 words. Select the current paragraph and
write it to the “wc” program: vip:w !wc -w. The external “wc
-w” command is used to count the words. Easy, isn’t it?

There will always be some functionality
that you need that is not in the editor. Making it possible to filter
text with another program means you can add that functionality
externally. It has always been the spirit of Unix to have separate
programs that do their job well and work together to perform a bigger
task. Unfortunately, most editors don’t work too well together with
other programs. You can’t replace the e-mail editor in Netscape
with another one, for example. You end up using a crippled editor.
Another tendency is to include all kinds of functionality inside the
editor; Emacs is a good example of where this can end up. (Some call
it an operating system that can also be used to edit text.)

Vim tries to integrate with other
programs, but this is still a struggle. Currently it’s possible to
use Vim as the editor in MS-Developer Studio and Sniff. Some e-mail
programs that support an external editor, like Mutt, can use Vim.
Integration with Sun Workshop is being worked on. Generally, this is
an area that has to be improved in the near future. Only then will we
get a system that’s better than the sum of its parts.

6. Text is structured

You will often work with text that has
some kind of structure, but different from what is supported by the
available commands. Then you will have to fall back to the “building
blocks” of the editor and create your own macros and scripts to
work with this text. We are getting to the more complicated stuff
here.

One of the simpler things is to speed
up the edit-compile-fix cycle. Vim has the :make command, which
starts your compilation, catches the errors it produces and lets you
jump to the error locations to fix the problems. If you use a
different compiler, the error messages will not be recognized.
Instead of going back to the old “write it down” system, you
should adjust the 'errorformat' option. This tells Vim what your
errors look like and how to get the file name and line number out of
them. It works for the complicated gcc error messages, thus you
should be able to make it work for almost any compiler.

Sometimes adjusting to a type of file
is just a matter of setting a few options or writing a few macros.
For example, to jump around manual pages, you can write a macro that
grabs the word under the cursor, clears the buffer and then reads the
manual page for that word into the buffer. That’s a simple and
efficient way to lookup cross-references.

Using the three basic steps, you can
work more effectively with any sort of structured file. Just think
about the actions you want to do with the file, find the editor
commands that do it and start using them. It’s really as simple as
it sounds; you just have to do it.

PART 3: SHARPEN THE SAW

7. Make it a habit

Learning to drive a car takes effort.
Is that a reason to keep driving your bicycle? No, you realize you
need to invest time to learn a skill. Text editing isn’t different.
You need to learn new commands and turn them into a habit.

On the other hand, you should not try
to learn every command an editor offers. That would be a complete
waste of time. Most people only need to learn 10 to 20 percent of the
commands for their work, but it’s different for everyonr. It
requires that you lean back now and then and wonder if there is some
repetitive task that could be automated. If you do a task only once
and don’t expect having to do it again, don’t try to optimize it.
But you probably realize you have been repeating something several
times in the last hour. Then search the documentation for a command
that can do it quicker. Or write a macro to do it. When it’s a
larger task, like lining out a specific sort of text, you could look
around in newsgroups or on the Internet to see if somebody already
solved it for you.

The essential basic step is the last
one. You can think of a repetitive task, find a nice solution for it
and after the weekend forgot how you did it. That doesn’t work. You
will have to repeat the solution until your fingers do it
automatically. Only then will you reach the efficiency you need.
Trying to learn too many things at once won’t work, but doing a few
at the same time will work well. For tricks you don’t use often
enough to get them in your fingers, you might want to write them down
to look them up later. Anyway, if you keep the goal in view, you will
find ways to make your editing more and more effective.

One last remark to remind you of what
happens when people ignore all the above: I still see people who
spend half their day behind a VDU looking up at their screen, then
down at two fingers, then up at the screen, etc., and then they
wonder why they get so tired... Type with ten fingers! It’s not
just faster but also is much less tiresome. Using a computer program
for one hour each day, it only takes a couple of weeks to learn to
touch-type. §

Bram Moolenaar is the main author of
Vim. He writes the core Vim functionality and selects what code
submitted by others is included. He mainly works on software, but he
still knows how to handle a soldering iron. He is founder and
treasurer of ICCF Holland, which helps orphans in Uganda.

First appeared in hn.my/habits
(moolenaar.net)

Give a Damn

By CLAY ALLSOPP

I want to tell you about The Kid. I met
The Kid a few years ago, right out of high school; he had shipped
some popular iPhone apps, made a few websites, and had a bright
future.

I don’t know how it started, but The
Kid really believed in “Move Fast and Break Things.” He was a
ship-first-questions-later sort of guy. It made sense to him: the
product was the purpose, and the code was a means to an end. He loved
the things he could build, but he wasn’t big on the process.

So, The Kid carried on and built a lot
of cool stuff. I saw some of the code; it wasn’t pretty, but the
end result still worked fine. And it got him pretty far, too. He’d
flaunt these creations and eyes would go wide because it all looked
impressive. He was young, sure, but who wouldn’t want to grab that
talent while it was cheap?

The Kid started working. He was famous
for shipping new features that users loved, and damn could he do it
fast! It usually took just a few days from idea to production —
hundreds of lines of code in an afternoon, I kid you not. Lots of
pats on his back, I’m sure. It all seemed to be working out for
him, living the good life.

And then things changed. I saw The Kid
just about a year ago, working feverishly on a complete product
redesign. It was lots of new code and not a lot of time to think
about it. Just him on the project — no second opinions or
supervision. As with all redesigns, feature requests piled up at the
pace of a bad game of Tetris. But who was The Kid to say no?
Sleepless nights later, The Kid emerged with something. At first
glance it looked great; even I couldn’t believe it came together so
quickly. Champion effort on his part, right?

But here’s the rub: beneath the
surface, it was just too buggy. And these weren’t just sloppy
edge-case bugs; they were “What idiot do we need to fire?” class
problems. The redesign was shelved and rewritten again without The
Kid.

The Kid didn’t lose his job, but I
could tell it hurt him like hell. Because to programmers like us,
what is our work but extensions of ourselves? What did this disaster
say about The Kid?

He laid low for a bit, ashamed of what
he had done. Moving fast and breaking things had gotten him far, but
now he had finally broken too much. Kind of world-shattering to him,
I guess. It was a dark place for The Kid.

And that’s when I heard The Kid grew
up. You could say he became The Guy, The Dude, whatever. The point is
he had a change of heart. He started to realize shipping might not be
everything, and his screw-up was a loud wakeup call that he needed to
change his scene.

And so (and this is all hearsay, mind
you), The Kid started caring about his code. Not just caring, but
really giving a damn about it, and not because it was a means to an
end, but for the sole sake of caring about it. “Code is more than
just a tool,” I heard he said. “It’s our craft. It’s our
muscle. And we need to train it. Chop wood. Carry water. Code.”

I heard all sorts of wild rumors that
The Kid started using “best practices” in all his Google
searches. I even heard he started learning the deep internals of the
beasts he wrangled, whether it was Rails or iOS or whatever, just for
the intellectual pleasure of it all. Code was no longer a beast to be
tamed; it was a creature, to be both studied and admired. He even
tried to teach others the error of his old ways. Wild stuff, right?

Did The Kid completely abandon his old
ways? Well, apparently not. He said something about how there’s a
“time and place for everything” — that sometimes we need to
ship fast and break things. But if we take all the other time we have
and put it to good use by really learning and crafting our code,
we’ll break less.

That’s kind of a crazy change, but
I’d believe it. I thought a lot of things about The Kid when I met
him years ago, but I didn’t think he was stupid. He grew and
evolved as we all do, and he’s probably not even done yet, wherever
he is. But next time you need to move fast, take a deep breath before
taking the dive and remember The Kid in all of us. §

Clay Allsopp is a
hacker, Thiel Fellow, and internet enthusiast. An iOS developer since
day one, Clay has crafted beautiful mobile apps with over a million
cumulative downloads for startups like Circle. He is currently
building Propeller [usepropeller.com],
the best way for anyone to build a mobile app.

First appeared in
hn.my/kid (clayallsopp.com)

How
To Set Up Your Linode For Maximum Awesomeness

By FEROSS ABOUKHADIJEH

I’ve
set up at least five new servers with Linode [linode.com]
and each time I complete the ritual, I learn new incantations that
make the Linux angels sing. I’m pretty happy with my current
recipe.

Setting up a new server can be
confusing, so using a tutorial like this one is a good idea the first
time you do it.

In this guide, I will demonstrate how
to set up a fresh Ubuntu server from scratch, update everything,
install essential software, lock down the server to make it more
resilient against basic attacks and denial-of-service, improve server
stability, setup automatic backups to another server, and finally
install common software like Nginx, MySQL, Python, Node, etc.

Provision a New Linode

First, you need to provision a new
Linode. Using Linode’s web UI, it’s quite easy. Select your
desired Linode size. If you’re unsure, choose the smallest size.
You can always resize it later. Select “Ubuntu 12.04 LTS” as your
OS. You’ll be asked to create a password for the root user.

After a few minutes, your server will
be ready. Now, it’s time to connect to it!

Connecting to Your Server

First, open Terminal
on your Mac. On Windows, you’ll want to use putty [hn.my/putty],
since Windows doesn’t come with a proper terminal.

To connect to your server, type this
into your terminal and hit Enter:

ssh root@<your server ip>

Of course, replace <your server ip>
with your Linode’s actual IP address, which you can find on the
“Remote Access” tab in the control panel.

This command launches the SSH program
and asks it to connect to your server with the username root, which
is the default Ubuntu user. You will be prompted for the root
password you created earlier.

Basic Ubuntu Setup

To set up your new server, execute the
following commands.

Set the hostname

Set the server hostname. Any name will
do — just make it memorable. In this example, I chose “future”.

echo "future" > /etc/hostname
hostname -F /etc/hostname

Let’s verify that it was set
correctly:

hostname

Set the fully-qualified domain
name

Set the FQDN of the server by making
sure the following text is in the /etc/hosts file:

 127.0.0.1 localhost.localdomain localhost
 127.0.1.1 ubuntu
 <your server ip> future.<domain>.net future

It is useful if you add an A record
that points from some domain you control (in this case I used
“future.<domain>.net”) to your server IP address. This way,
you can easily reference the IP address of your server when you SSH
into it, like so:

ssh future.<your domain>.net

Set the time

Set the server timezone:

dpkg-reconfigure tzdata

Verify that the date is correct:

date

Update the server

Check for updates and install:

aptitude update
aptitude upgrade

Basic Security Setup

Create a new user

The root user has a lot of power on
your server. It has the power to read, write, and execute any file on
the server. It’s not advisable to use root for day-to-day server
tasks. For those tasks, use a user account with normal permissions.

Add a new user:

adduser <your username>

Add the user to the sudoers group:

usermod -a -G sudo <your username>

This allows you to perform actions that
require root privilege by simply prepending the word sudo to the
command. You may need to type your password to confirm your
intentions.

Login with new user:

exit
ssh <your username>@<your server ip>

Set up SSH keys

SSH keys allow you to login to your
server without a password. For this reason, you’ll want to set this
up on your primary computer (definitely not a public or shared
computer!). SSH keys are very convenient and don’t make your server
any less secure.

If you’ve already generated SSH keys
before (maybe for your GitHub account?), then you can skip the next
step.

Generate SSH keys

Generate SSH keys with the following
command:

(NOTE: Be sure to run this on your
local computer — not your server!)

ssh-keygen -t rsa -C "<your email address>"

When prompted, just accept the default
locations for the keyfiles. Also, you’ll want to choose a nice,
strong password for your key. If you’re on Mac, you can save the
password in your keychain so you won’t have to type it in
repeatedly.

Now you should have two keyfiles, one
public and one private, in the ~/.ssh folder.

Copy the public key to server

Now, copy your public key to the
server. This tells the server that it should allow anyone with your
private key to access the server. This is why we set a password on
the private key earlier.

From your local machine, run:

scp ~/.ssh/id_rsa.pub <your username>@ <your server ip>:

On your Linode, run:

 mkdir .ssh
 mv id_rsa.pub .ssh/authorized_keys
 chown -R <your username>:<your username> .ssh
 chmod 700 .ssh
 chmod 600 .ssh/authorized_keys

Disable remote root login and
change the SSH port

Since all Ubuntu servers have a root
user and most servers run SSH on port 22 (the default), criminals
often try to guess the root password using automated attacks that try
many thousands of passwords in a very short time. This is a common
attack that nearly all servers will face.

We can make things substantially more
difficult for automated attackers by preventing the root user from
logging in over SSH and changing our SSH port to something less
obvious. This will prevent the vast majority of automatic attacks.

Disable remote root login and change
SSH port:

sudo nano /etc/ssh/sshd_config

Set “Port” to “44444” and
“PermitRootLogin” to “no”. Save the file and restart the SSH
service:

sudo service ssh restart

In this example, we changed the port to
44444. So, now to connect to the server, we need to run:

ssh <your username>@future.<your domain>.net -p 44444

Advanced Security Setup

Prevent repeated login attempts
with Fail2Ban

Fail2Ban
[fail2ban.org] is a security tool
to prevent dictionary attacks. It works by monitoring important
services (like SSH) and blocking IP addresses which appear to be
malicious (i.e. they are failing too many login attempts because they
are guessing passwords).

Install Fail2Ban:

sudo aptitude install fail2ban

Configure Fail2Ban:

sudo cp /etc/fail2ban/jail.conf
/etc/fail2ban/jail.local
sudo nano /etc/fail2ban/jail.local

Set “enabled” to “true” in the
[ssh-ddos] section. Also, set “port” to “44444” in the [ssh]
and [ssh-ddos] sections. (Change the port number to match whatever
you used as your SSH port).

Save the file and restart Fail2Ban to
put the new rules into effect:

sudo service fail2ban restart

Add a firewall

We’ll add an
iptables [hn.my/iptables]
firewall to the server that blocks all incoming and outgoing
connections except for ones that we manually approve. This way, only
the services we choose can communicate with the internet.

The firewall has no rules yet. Check it
out:

sudo iptables -L

Setup firewall rules in a new file:

sudo nano /etc/iptables.firewall.rules

The following firewall rules will allow
HTTP (80), HTTPS (443), SSH (44444), ping, and some other ports for
testing. All other ports will be blocked.

Paste thist gist
[gist.github.com/4665695]
into /etc/iptables.firewall.rules.

Activate the firewall rules now:

sudo iptables-restore < /etc/iptables.firewall.rules

Verify that the rules were installed
correctly:

sudo iptables -L

Activate the firewall rules on startup:

sudo nano
/etc/network/if-pre-up.d/firewall

Paste this into the
/etc/network/if-pre-up.d/firewall file:

 #!/bin/sh
 /sbin/iptables-restore < /etc/iptables.firewall.rules

Set the script permissions:

sudo chmod +x /etc/network/if-pre-up.d/firewall

Get an email anytime a user uses
sudo

I like to get an email anytime someone
uses sudo. This way, I have a “paper trail” of sorts, in case
anything bad happens to my server. I use a Gmail filter to file these
away and only look at them occasionally.

Create a new file for the sudo
settings:

sudo nano /etc/sudoers.d/my_sudoers

Add this to the file:

 Defaults mail_always
 Defaults mailto="feross@feross.org"

Set permissions on the file:

sudo chmod 0440 /etc/sudoers.d/my_sudoers

This isn’t mentioned anywhere on the
web, as far as I know, but in order for the “mail on sudo use”
feature to work, you need to install an MTA server. sendmail is a
good choice:

sudo aptitude install sendmail

Now, you should get an email anytime
someone uses sudo!

Improve Server Stability

VPS servers can easily run out of
memory during traffic spikes.

For example, most people don’t change
Apache’s default setting which allows 150 clients to connect
simultaneously. This is way too large a number for a typical VPS
server. Let’s do the math. Apache’s processes are typically ~25MB
each. If our website gets a temporary traffic spike and 150 processes
launch, we’ll need 3750MB of memory on our server. If we don’t
have this much (and we don’t!), then the OS will grind to a halt as
it swaps memory to disk to make room for new processes, but then
immediately swaps the stuff on disk back into memory.

No useful work gets done once swapping
happens. The server can be stuck in this state for hours, even after
the traffic rush has subsided. During this time, very few web
requests will get serviced.

It’s very important to configure your
applications so memory swapping does not occur. If you use Apache,
you should set MaxClients to something more reasonable like 20 or 30.
There are many other optimizations to make, too.

Reboot server on out-of-memory
condition

Still, in cases where something goes
awry, it is good to automatically reboot your server when it runs out
of memory. This will cause a minute or two of downtime, but it’s
better than languishing in the swapping state for potentially hours
or days.

You can leverage a couple kernel
settings and Lassie to make this happen on Linode.

Adding the following two lines to your
/etc/sysctl.conf will cause it to reboot after running out of memory:

vm.panic_on_oom=1
kernel.panic=10

The vm.panic_on_oom=1 line enables
panic on OOM; the kernel.panic=10 line tells the kernel to reboot ten
seconds after panicking.

Miscellaneous
nice-to-haves

These next things are not required (in
fact, nothing in this guide really is), but are nice to do.

Set up reverse DNS

The reverse DNS system allows one to
determine the domain name that lives at a given IP address. This is
useful for network troubleshooting — (ping, traceroute, etc.), as
well as email anti-spam measures.

It’s pretty easy to set up. From the
Linode Manager, select your Linode, click on “Remote Access”,
then click on “Reverse DNS” (under “Public IPs”). Type in
your domain, and that’s it!

Set up a private IP address

Private IPs are useful for
communicating data on the Linode network, i.e. Linode to Linode. This
is handy if you have multiple Linodes (say, one for your web server
and one for your database). Private network traffic is more secure
(only other Linode customers can see it, vs. the whole internet),
faster (the traffic never has to leave the datacenter if both Linodes
are in the same datacenter), and free (doesn’t count towards your
monthly bandwidth quota).

I currently put my database server on
its own Linode, so that I can scale it independently of my frontend
servers and debug performance issues easier since the systems are
isolated. This hasn’t been super-handy yet, but if one of my sites
gets a huge traffic rush, I bet it will be immensely useful.

It’s easy to set up. On the Remote
Access tab, click Add a Private IP.

Then, edit the file
/etc/network/interfaces to contain:

 # The loopback interface
 auto lo
 iface lo inet loopback

 # Configuration for eth0 and aliases

 # This line ensures that the interface will be
 # brought up during boot.
 auto eth0 eth0:0
 # eth0 - This is the main IP address that will
 # be used for most outbound connections.
 # The address, netmask and gateway are all
 # necessary.
 iface eth0 inet static
 address 12.34.56.78
 netmask 255.255.255.0
 gateway 12.34.56.1

 # eth0:0 - Private IPs have no gateway (they are
 # not publicly routable) so all you need to
 # specify is the address and netmask.
 iface eth0:0 inet static
 address 192.168.133.234
 netmask 255.255.128.0

Of course, adjust the IP addresses to
reflect your own addresses from the Remote access tab.

Then, restart your Linode and remove
DHCP since we’re using static networking now:

sudo aptitude remove isc-dhcp-client dhcp3-client dhcpcd

Install Useful
Server Software

At this point, you have a pretty nice
server setup. Congrats! But your server still doesn’t do anything
useful. Let’s install some software.

Install a compiler

A compiler is often required to install
Python packages and other software, so let’s just install one
up-front.

sudo aptitude install build-essential

Install MySQL

sudo aptitude install mysql-server libmysqlclient-dev

Set root password when prompt asks you.

Verify that MySQL is running.

sudo netstat -tap | grep mysql

For connecting to
MySQL, instead of the usual PHPMyAdmin, I now use Sequel Pro
[sequelpro.com], a free app for
Mac.

Improve MySQL security

Before using MySQL in production,
you’ll want to improve your MySQL installation security. Run:

mysql_secure_installation

This will help you set a password for
the root account, remove anonymous-user accounts, and remove the test
database.

Keep your MySQL tables in tip-top
shape

Over time your MySQL tables will get
fragmented and queries will take longer to complete. You can keep
your tables in top shape by regularly running OPTIMIZE TABLE on all
your tables. But, since you’ll never remember to do this regularly,
we should set up a cron job to do this.

Open up your crontab file:

crontab -e

Then, add the following line:

@weekly mysqlcheck -o --user=root --password=<your password here> -A

Also, you can try manually running the
above command to verify that it works correctly.

Backup your MySQL databases

The excellent automysqlbackup utility
can automatically make daily, weekly, and monthly backups of your
MySQL database.

Install it:

sudo aptitude install automysqlbackup

Now, let’s configure it. Open the
configuration file:

sudo nano /etc/default/automysqlbackup

By default, your database backups get
stored in /var/lib/automysqlbackup which isn’t very intuitive. I
recommend changing it to a folder within your home directory. To do
this, find the line that begins with BACKUPDIR= and change it to
BACKUPDIR="/home/<your username>/backups/"

You also want to get an email if an
error occurs, so you’ll know if automatic backups stop working for
some reason. Find the line that begins with MAILADDR= and change it
to MAILADDR="<your email address>".

Close and save the file. That’s it!

Install Python

Install Python environment:

 sudo aptitude install python-pip python-dev
 sudo pip install virtualenv

This creates a global “pip” command
to install Python packages. Don’t use it, because packages will be
installed globally. Instead, use virtualenv.

Create a new virtualenv Python
environment with:

virtualenv --distribute <environment_name>

Switch to the new environment with:

 cd <environment_name>
 source bin/activate

Note that the name of your environment
is added to your command prompt.

Install Python packages with “pip”
inside of virtualenv:

 pip search <package_name>
 pip install <package_name>

This is the best Python workflow that
I’ve found. Let me know if you know of a better way to manage
Python packages and Python installations.

Install Nginx

sudo aptitude install nginx

Install Apache

sudo aptitude install apache2

Install PHP5

sudo aptitude install php5 libapache2-mod-php5 php5-mysql
sudo service apache2 restart

Install Node.js

 sudo aptitude install python-software-properties
 sudo add-apt-repository ppa:chris-lea/node.js
 sudo aptitude update
 sudo aptitude install nodejs npm nodejs-dev

Install MongoDB

Follow instructions
on 10gen’s site: Install MongoDB on Ubuntu. [hn.my/instmongo]

Install Redis

sudo aptitude install redis-server

Setup Automatic Backups

Backups are really important. Linode
offers a paid backup service that’s really convenient if you
accidentally destroy something and need to restore your Linode
quickly. It’s $5 per month for the smallest Linode. I enable it on
all my Linodes.

If you want even more peace of mind (or
don’t want to pay for Linode’s backup service), you can roll your
own simple backup solution using rsync.

You will need access to another Linux
server (maybe another Linode?) or a home server. I just installed
Ubuntu on an old desktop computer to use as a backup server.

We’re going to create a weekly
cronjob that backs up our Linode’s home directory to a backup
server. I keep all the files that I would want to backup in my home
folder, so this works for me.

Open your crontab:

crontab -e

Add this line to the file:

@weekly rsync -r -a -e "ssh -l <your username on backup server> -p <ssh port number of backup server>" --delete /home/<your username> <hostname or ip address of backup server>:/path/to/some/directory/on/backup/server

I recommend running the above command
manually to make sure you have it right before adding it to your
crontab file.

That’s it! Happy hacking! §

Feross
Aboukhadijeh is a 22-year old Stanford CS student/teacher, web
developer, designer, and security researcher. He is the founder of
StudyNotes [studynotes.org]
where he is helping students to learn faster and study better.

First appeared in
hn.my/linode (feross.org)

Simplify
Your Life With an SSH Config File

By JOEL PERRAS

If you’re anything like me, you
probably log in and out of a half dozen remote servers (or these
days, local virtual machines) on a daily basis. And if you’re even
more like me, you have trouble remembering all of the various
usernames, remote addresses and command line options for specifying
such things as a non-standard connection port or a local port to
forward to a remote server.

Luckily, there are a few ways that we
can simplify these tedious, repetitive actions.

Shell Aliases

Let’s say that you have a remote
server named dev.example.com, which has not been set up with
public/private keys for password-less logins. The username to the
remote account is fooey, and to reduce the number of scripted login
intrusion attempts, you’ve decided to obfuscate the default SSH
port to 2200 from the normal default of 22. This means that a typical
login command would look like:

 $ ssh fooey@dev.example.com -p 2200
 password: *************

Not horribly complex or long, but still
cumbersome to type out a dozen times a day.

We can make things simpler and more
secure by using a public/private key pair:

 $ # Assuming your keys are properly setup...
 $ ssh fooey@dev.example.com -p 2200

Note: I highly recommend using
ssh-copy-id for moving your public keys around. It will save you
quite a few folder/file permission headaches.

Now, this doesn’t seem all that bad.
To cut down on the verbosity you could also create a shell alias:

 $ alias sshdev='ssh fooey@dev.example.com -p 2200'
 $ # To connect:
 $ sshdev

This works surprisingly well, and can
scale linearly for every new server you need to work with: Just add
an additional alias to your .bashrc or .zshrc, and voilà.

~/.ssh/config

Even with the simplicity of the method
described previously, there’s a much more elegant and flexible
solution to this problem. Enter the SSH config file:

 # contents of $HOME/.ssh/config
 Host dev
 HostName dev.example.com
 Port 22000
 User fooey

This means that I can simply issue $
ssh dev in my terminal and the options will be read from the
configuration file automatically, and on every invocation. Easy
peasy.

Let’s see what else we can do with
just a few simple configuration directives.

Personally, I manage a few
public/private keypairs due to having multiple machines
(work/home/laptop). Say, for illustrative purposes only, that I have
a key that I use uniquely for my github account. Let’s set it up so
that that particular private key is used for all my github-related
operations:

 # contents of $HOME/.ssh/config
 Host github.com
 IdentityFile ~/.ssh/github.key

The use of IdentityFile allows me to
specify exactly which private key I wish to use for authentification
with the given host instead of specifying this as a command line
parameter:

 $ ssh -i ~/.ssh/blah.key username@host.com

However, the use of a config file with
the IdentityFile directive is pretty much your only option if you
want to specify which identity to use for any git commands. This also
opens up the very interesting concept of further segmenting your
keypairs:

 Host github-work
 User git
 HostName github.com
 IdentityFile ~/.ssh/github.work.key

 Host github-home
 User git
 HostName github.com
 IdentityFile ~/.ssh/github.home.key

 Host github-laptop
 User git
 IdentityFile ~/.ssh/github.laptop.key

Which means that if I want to clone a
repository using my work credentials, I can simply use the following:

$ git clone git@github-work:orgname/some_repository.git

Going further

As a security-conscious developer, I
make sure to set up firewalls on all of my servers and make them as
restrictive as possible. In many cases, this means that the only
ports that I leave open are 80/443 (for webservers) and 22 for SSH.

On the surface, this seems to prevent
me from using things like a desktop MySQL GUI client, which expects
port 3306 to be open and accessible on the remote server you are
connecting to. The informed reader will note, however, that a simple
local port forward can save you:

 $ ssh -f -N -L 9906:127.0.0.1:3306 coolio@database.example.com
 $ # -f puts ssh in background
 $ # -N makes it not execute a remote command

This will forward all local port 9906
traffic to port 3306 on the remote dev.example.com server, letting me
point my desktop GUI to localhost (127.0.0.1:9906) and have it behave
exactly as if I had exposed port 3306 on the remote server and
connected directly to it.

Now I don’t know about you, but
remembering that sequence of flags and options for SSH can be a
complete pain. Luckily, our config file can help alleviate that:

 Host tunnel
 HostName database.example.com
 IdentityFile ~/.ssh/coolio.example.key
 LocalForward 9906 127.0.0.1:3306
 User coolio

This means I can simply do:

 $ ssh -f -N tunnel

And my local port forwarding will be
enabled using all of the configuration directives I set up for the
tunnel host. Slick.

Homework

There are quite a
few configuration options that you can specify in ~/.ssh/config,
and I highly suggest consulting the online documentation or the
ssh_config man
page [hn.my/sshconfig]. Some
interesting/useful things that you can do include:

		Changing the default number of
	connection attempts

	
	Specifying local environment
	variables to be passed to the remote server upon connection

	
	Using of * and ? wildcards for
	matching hosts.

And much, much more — the ssh_config
man page is 747 lines long, and consists almost entirely of
configuration file directives and short explanations of what those
directives do. Take a look! I’m certain you’ll be surprised at
what you find. §

Joel Perras is a physicist turned
Big Data geek. He is a partner at Fictive Kin, where he gets to build
applications to change the way the world use the web.

First appeared in hn.my/simplify
(nerderati.com)

What I’ve
Learned About Learning

By REGINALD
BRAITHWAITE

I have a rather glaring life-long
weakness, a behavior that has tripped me up many times. You would
think that I would have noticed it and corrected my behavior in my
teens or twenties, but no, it has persisted. While I am much better
at correcting myself, it is extremely persistent and requires
constant vigilance to suppress.

The behavior in question is this: when
I am learning something new, I suffer from laziness, impatience, and
hubris. I try to grasp the gist of the thing, the conclusion, and
then I stop. I figure I “understand” it, so I must be done
learning.

This is wrong for me. I am blessed with
a quick mind for certain subjects, so there are times when I am
reading something, or someone is explaining something, and I can work
out the obvious implications. Someone is telling me about
aspect-oriented programming, and I start thinking about cross-cutting
concerns like authorization. Or perhaps database access. Then I ask
myself whether AOP is related to the “Unobtrusive JavaScript”
style. Or if it’s really fine-grained dependency injection.

I’m impatient to learn, so I try to
jump to the end. I don’t “do the work” of taking it step by
step, doing exercises with the material, building my knowledge like a
pyramid with a broad foundation. If a technology seems interesting, I
want to jump right into the deep end and try it on an important
project instead of researching it more thoroughly or playing with it
a bit on side-projects.

This has been wrong more often than
not.

Every idea has “big implications.”
Decoupling. Refactoring. Events. Idempotence. Whatever. But ideas in
execution have many, many little implications, little caveats and
gotchas, rough edges and leaky abstractions. These “little ideas”
are less important than the big ideas in theory, but in practice each
failure to grasp an implication or consequence leads almost directly
to a flaw in the finished work.

The wrongness of my laziness,
impatience, and hubris is apparent. When I think that I “grasp”
an idea, I’m really only grasping the big idea. Or what I think is
the big idea in my hubris. I’m assuming that what I don’t know
about the idea can’t hurt me. But what I don’t know about an idea
can hurt me and often has.

I don’t always make this mistake.
Sometimes an idea catches my fancy and I find myself playing with it.
Combinators grabbed me in this way. I was fascinated by the book To
Mock a Mockingbird many years ago, and when I started Ruby
programming, I had a chance to try these ideas out in practice.

I worked from Ruby to Combinatorial
Logic and from Combinatorial Logic to Ruby at the same time. I tried
to view certain meta-programming ideas from the perspective of CL, to
fit them within the framework. This opened up some insights that had
eluded me when I thought that I had “grasped” Ruby
meta-programming. And when I took some of the combinators and tried
to find practical uses for them in Ruby, I learned some more.

It turns out, there really is no
substitute for experience with an idea. Experience that is obtained
through practice, through repeated application of principles to
problems, not just from skimming a text.

A decade ago, I would have read an
article like this and summarized it thusly: “There’s more to an
idea than the obvious implication, there are some details you need to
learn as well.” I’d have been wrong. There’s an important
factor my mental model of ideas and implications ignores.

“A programming language that
doesn’t affect the way you think about programming is not worth
learning.” — Alan Perlis

My personal experience is that
“learning” a programming language requires writing programs in
that language. If I tell you that Scheme is homoiconic, that it has
just five special forms, and that it has hygienic macros do you
“know” Scheme? Can you say that it “affects the way you think
about programming”?

From what I wrote above, we say “No,
because there are many implications of these three features of the
language that are not obvious, that require further study.” But I
think there’s something else.

Knowing how to do something is not the
same thing as doing that thing. When you actually do the thing, and
when you incorporate it into your life, it becomes a mental habit, it
becomes part of who you are and how you think.

That is when a language affects the way
you think about programs: when its ideas become part of your mental
habits. And a language’s ideas only become your mental habits when
you program in that language on a regular basis. This doesn’t
happen from playing with it a bit here and a bit there. It doesn’t
happen from reading a lot of books and blog posts. It doesn’t
happen when you snap your fingers and think you “get” its big
ideas.

You have to go beyond thinking you know
how, you have to go beyond actually knowing how, you have to go out
and do it. Again and again and again until it becomes a habit. I
think this is true of much more than just programming languages.
Everything I’ve learned works the same way: There is a difference
between knowing how to do it and doing it enough to change your way
of thinking.

In cognitive therapy, you have to
“do the work,” you have to grind it out and do the exercises day
in and day out. Week after week. Month after month.

I’ve experienced this in a very
direct way with Cognitive Therapy. I can tell you (and I did) that
one of the ways to combat depression is to change the way you explain
negative events in your life, to view them as being impersonal or
external, specific, and temporary. I can tell you that you should
view positive events as personal or internal, general, and permanent.
And I know you will snap your fingers and intuit how this can change
your moods and outlook.

But knowing how to change your moods is
not the same thing as changing your moods. In cognitive therapy, you
have to “do the work,” you have to grind it out and do the
exercises day in and day out. Week after week. Month after month.
It’s the doing of cognitive therapy that changes your moods, not
the grasping of its big principles nor the acquisition of the little
implications. Just doing it. Day after day after day.

Reasoning by analogy is notoriously
unreliable, but there seems to be a deep truth here about the
business of learning ideas. There are the big implications I can
grasp, sometimes quickly. But there are also the “little”
implications that require practice and experimentation, and when I am
impatient and ignore them, I suffer.

And finally there is the way that an
idea affects my thinking which comes only from sustained effort
applying the idea. Picking it up and playing with it isn’t enough,
I need to use it every day if I want it to change me in any serious
way.

My weakness is thinking that when I
first grasp an idea, I think I’m done. I’ve gotten better over
time. I have learned to exercise ideas, to write and use little
libraries, even to write essays like this to help me think the little
implications through.

But I mustn’t be fooled into thinking
I’m done. So if you’ll excuse me, I’m off to do the work. §

Reginald Braithwaite is a software
developer at Leanpub, where he and his colleagues take the friction
out of writing and selling books. He has more than twenty years of
hands-on experience creating software products and leading software
teams. He currently applies extremely deep Ruby, JavaScript,
CoffeeScript, and advanced programming expertise to crafting
well-factored, maintainable code.

First appeared in hn.my/learned
(raganwald.posterous.com)

I Was a Teenage Hacker

By JEFF ATWOOD

Twenty-four years ago today, I had a
very bad day.

On August 8, 1988, I was a senior in
high school. I was working my after school and weekend job at Safeway
as a cashier, when the store manager suddenly walked over and said I
better stop ringing up customers and talk to my mother on the store
phone right now. Mom told me to come home immediately because, well,
there were police at the front door asking for me with some legal
papers in hand.

Like
I said, definitely not a good day. The only sliver of good news was
that I was still 17 at the time, so I enjoyed the many protections
that the law provides to a minor. Which I shall now throw away by
informing the world that I am a dirty, filthy, reprehensible adult
criminal. Thanks, law!

One of the problems you had in the
pre-Internet 1980s as a hardcore computer geek was that all the best
bulletin boards and online services were kind of expensive. Either
because you had to pay an hourly fee to access them, like CompuServe,
or because they were a long distance modem call. Or both. Even after
the 1984 AT&T breakup, long distance at around 20-30 cents a
minute was a far, far cry from today’s rates. (Does anyone actually
even worry about how much voice calls cost any more, to anywhere in
the world? This, my friends, is progress.)

Remember, too, that this is back when
9600 baud modems were blazing, state of the art devices. For
perspective, the ultra-low-power wireless Bluetooth on your phone is
about 80 times faster. If you wanted to upload or download any warez
software, that meant potentially hours on your modem at rates of
around $20/hour. Adjusted for inflation, that’s closer to $40 in
2012 dollars. My family wasn’t well off enough to afford a second
telephone line, so most of my calling was done late at night both
because the rates were lower, and also so that I wouldn’t be
monopolizing the telephone. Nothing was worse than the dreaded “mom
picked up the phone” disconnect to an elite difficult-to-access BBS
with limited slots.

One way or another, I eventually got
involved with the seedier side of the community, even joining a
lesser Apple // pirate group. Probably my main claim to fame is that
while trolling BBSes, I personally discovered and recruited a guy who
turned out to be an amazing cracker. He was so good he eventually got
recruited away.

 I was, at best, a footnote to a
footnote to a footnote in Apple // history. This was mainly a process
of self-discovery for me. I learned I was the type of geek who
doesn’t even bother attending his high school prom, partially
because I was still afraid of girls even as a high school senior,
yes, but mainly because I was so addicted to computers and playing my
tiny role in these nascent online communities. I was, and am, OK with
that. This is the circuitous path of 30 years that led me to create
Stack Overflow. And there’s more, so much more, but I can’t talk
about it yet.

But addicted, I think, is too weak a
word for what I felt about being a part of these oddball, early
online home computer communities. It was more like an all-consuming
maniacal blood lust. So obtaining access to free, unlimited long
distance calling rapidly became an urgent priority in my teenage
life. I needed it. I needed it so bad. I had to have it to talk on
the phone to the other members of my motley little crew, who were
spread all over the USA, as well as for calling BBSes.

I can’t remember exactly how I found
it, probably on one of the BBSes, but I eventually discovered a local
804 area code number for “calling cards” that accepted a 5 digit
PIN, entered via touch-tone phone. Try over and over, and you might
find some valid PIN codes that let you attain the holy grail of free
long distance calling. Only one small problem: it’s a crime. But,
at least to my addled teenage brain, this was a victimless crime, one
that I had to commit. The spice must flow!

All I had to do is write software to
tell the modem to dial over and over and try different combinations.
Because I was a self-taught programmer, this was no problem. But
because I was an overachieving self-taught programmer, I didn’t
just write a program. No, I went off and built a full-blown toolkit
in AppleBasic, with complete documentation and the best possible text
user interface I could muster, and then uploaded it to my favorite
BBSes so every other addict could get their online modem fix, too. I
called it The Hacking Construction Set, and I spent months building
it. I didn’t just gold plate; I platinum plated this freaking
thing, man. (Yes, I know the name isn’t really correct. I read as
many 2600 textfiles as the next guy. This is mere phreaking, not
hacking, but I guess I was shooting for poetic license. Maybe you
could use the long distance dialing codes to actually hack remote
machines or something.)

I never knew if
anyone else ever used my little program to dial for calling codes. It
certainly worked for me, and I tried my level best to make it work
for all the possible dialing situations I could think of. It even had
an intro screen with music and graphics of my own creation. But
searching now, for the first time in 24 years, I found my old Hacking
Construction Set disk image on an Apple ROM site [hn.my/hcs].
It even has real saved numbers in the dialing list! Someone was using
my illicit software!

If
you’re curious, fire up your favorite Apple // emulator and give
the disk image [hn.my/dsk] a spin.
Don’t forget to connect your modem. There’s full blown
documentation accessible from the main menu. Which, re-reading now,
was actually not half bad, if I do say so myself:

I
used to regularly call BBSes in Florida, California, and Missouri?
That’s news to me; I haven’t seen any of this stuff in over 24
years! All I did was upload a disk image to a few BBSes in 1986.
After all that time, to discover that someone used and loved my
little bit of software still gives me a little thrill. What higher
praise is there for a software developer?

About that trouble. Using my own
software got me in trouble with the law. And deservedly so; what I
wrote the software to do was illegal. I hired a local lawyer (who, as
I recall, was missing a hand; he had a prosthetic hand that was
almost impossible not to look at) to represent me. It was quite clear
at preliminary hearings that the Chesterfield County court system did
not see any computer crime cases, and they had absolutely no idea
what to make of me, or what this was all about. All they saw was a
smart kid with a bit of bad judgment who loved computers and was
headed to the University of Virginia, most likely not a life as a
career criminal. So the case was dismissed for the cost of lawyer’s
fees. Which, for the record, I had to pay myself, using my income as
a Safeway cashier.

This was definitely a wake up call for
me. In the summer of 1988, I was about to graduate from high school,
and I thought I’d try being just a regular guy at college, with
less of an obsessive focus on computers that causes me to get in
trouble with the law, and perhaps spread my wings to other interests.
Who knows, maybe even girls!

That didn’t last long. Because after
all these years, I must confess I’ve grown to love my own bad
judgment. It’s led me to the most fascinating places. §

Jeff Atwood lives in Berkeley, CA
with his wife, two cats, and a whole lot of computers. He is best
known as the author of popular blog Coding Horror and the cofounder
of Stack Overflow with Joel Spolsky.

First appeared in hn.my/teenhack
(codinghorror.com)

ebook_html_m571351ee.png

ebook_html_m2ba9c3.png

ebook_html_505e170f.gif
pducsrod

e comp?

ebook_html_m4075c658.jpg

ebook_html_m49aebfa9.png
Risk Return Tradeoff of Crime

Kidnapping.

Crime

Risk to Criminal
Probability adjusted consequences of getting caught

ebook_html_58155b4c.png
The Stolen Bicycle Market: Professionals and Amateurs

Professional
Bike Thieves

Sper
stolen bike

Flea Markets

Amateur The Street

Thieves

Where they sellthe bikes

ebook_html_m17755b0e.jpg
stripe

Accept payments online.

ebook_html_m68ce42bd.jpg
Now you can hack on DuckDuckGo

DuckDuckHack

Create instant answer plugins for DuckDuckGo

ebook_html_220b16d5.png

ebook_html_3eeacfe5.png

ebook_html_m4295d839.png
/%)%

S
\

cover.jpeg

ebook_html_m6746295a.png

ebook_html_3406534b.png
1, the undersigned peitioner, state under oath o the best of my knowledge, that the above-named child s within the purview of the
Juvenile and Domesc Relaions Disrie Court Law i tha, witin it couy, the chi
434, salavfully, betveen Jue 7, 1988 and Juno 5, 198

ovs, comp

Gode,of. Vizyiata, as soeaded.

ebook_html_m7db20690.png

ebook_html_m78502519.png

ebook_html_m5da1ad45.jpg
Rent your IT infrastructure from
Memset and discover the incredible
benefits of cloud computing.

MEVIS I UKE.
— CLOUD STORAGE

o ———— ——
£007p/GByte/month or less.

MINISERVE

— CLOUD COMPUTE 94 9935903 object durability

m £0015p/hour 99.995% avalabilty quarantee

t04x 29 Ghiz Xeon cores RESTful APL FTP/SFTP and CON Service
M

3168, M
25TBRAID(1) disk

[SCAN THE CODE
OR MORE

INFORMATION

YTy

MEMSE]
il =)o iR

Find out more about us at e
¥ I

www.memset.com
or chat to our sales teamon
0800 634 927

ebook_html_6776b1d9.jpg
MEET MANDRILL

By MailChimp

