
Growing
Tomatoes

Joe Hewitt

Issue 39  August 2013

2  ﻿

Curator
Lim Cheng Soon

Contributors
Patrick Smith
Joe Hewitt
Jon Wheatley
Brennan Dunn
Ian Langworth
ridiculous_fish
Gergely Kalman
Chris Parnin
Maroun Najjar

Illustrators
Parko Polo
Ben O’Brien

Proofreaders
Emily Griffin
Sigmarie Soto

Ebook Conversion
Ashish Kumar Jha

Printer
MagCloud

Hacker Monthly is the print magazine version
of Hacker News — news.ycombinator.com, a social news
website wildly popular among programmers and startup
founders. The submission guidelines state that content
can be “anything that gratifies one’s intellectual curios-
ity.” Every month, we select from the top voted articles
on Hacker News and print them in magazine format.
For more, visit hackermonthly.com

Advertising
ads@hackermonthly.com

Contact
contact@hackermonthly.com

Published by
Netizens Media
46, Taylor Road,
11600 Penang,
Malaysia.

Hacker Monthly is published by Netizens Media and not affiliated with Y Combinator in any way.

Cover Illustration: Parko Polo

http://news.ycombinator.com
http://hackermonthly.com
mailto:ads@hackermonthly.com
mailto:contact@hackermonthly.com

  3

For links to Hacker News dicussions, visit hackermonthly.com/issue-39

Contents
FEATURES

05  The Exploding Toilet
By PAtrick SMith

10  Growing Tomatoes
By JOE HEWITT

STARTUPS

14  Making A Physical Product
By jon wheatley

18  The Freelancer’s Guide To Recurring Revenue
By Brennan Dunn

PROGRAMMING

22  Vim After 11 Years
By Ian Langworth

26  Yahoo! Chat — A Eulogy
By RIDICULOUS_FISH

28  How I Made Porn 20x More Efficient with Python
BY GERGELY KALMAN

32  Programmer, Interrupted
By Chris Parnin

SPECIAL

36  Sleep: Everything You Need To Know
By Maroun Najjar

http://hackermonthly.com/issue-39

4  ﻿

  5

FEATURES

By PAtrick SMith

The Exploding Toilet

One old adage defines
the business of flying
planes as long stretches

of boredom punctuated by
moments of sheer terror. Moments
of sheer ridiculousness, maybe, are
equally as harrowing. One young
pilot, when he was 22 and trying to
impress the pretty Christine Collin-
gworth with a sightseeing circuit in
a friend’s four-seater, highlighted
their date by whacking his forehead
into the metal pitot tube jutting
from the wing. Earning a famous
“Cessna dimple,” so he chose to
think, would be the stupidest
thing he’d ever do in or around an
airplane.

That was a long time ago, and
a long way from this same pilot’s
mind during a late-night cargo
flight in the winter of 1998:

It’s eleven p.m. and the airplane,
an old DC-8 freighter loaded with
pineapples, is somewhere over the
Bermuda Triangle, bound from San
Juan, Puerto Rico to Cincinnati.
The night is dark and quiet, void
of moonlight, conversation, and
for that matter worry. The crew of
three is tired, and this will be their
last leg in a week’s rotation that has
brought them from New York to
Belgium and back again, onward to
Mexico, and now the Caribbean.

They are mesmerized by the
calming drone of four high-bypass
turbofans and the deceptively
peaceful noise created by 500
knots of frigid wind hissing past
the cockpit windows. Such a set-
ting, when you really think about
it, ought to be enough to scare
the living shit from any sensible
person. We have no business being
up there — participants in such
an inherently dangerous balance
between naïve solitude and instant
death, distracted by paperwork and
chicken sandwiches while scream-
ing along, higher than Mount
Everest and at the speed of sound
in a 40 year-old assemblage of
machinery. But such philosophiz-
ing is for poets, not pilots, and also
makes for exceptionally bad karma.
No mystical ruminations were in
the job description for these three
airmen, consummate professionals
who long ago sold their souls to the
more practical-minded muses of
technology and luck.

Patrick Smith, born Patrick R.
Santosuosso of Revere, Massachu-
setts, a fourth-generation descen-
dant of Neapolitan olive growers, is
one of these consummate profes-
sionals. He is the second officer.
His station, a sideways-turned chair
and a great, blackboard-sized panel

of instruments, is set against the
starboard wall of the cockpit. Now
34, Patrick has seen his career stray
oddly from its intended course. His
ambitions of flying gleaming new
passenger jets to distant ports-of-
call have given way to the coarser
world of air cargo: to sleepless,
back-of-the-clock timetables, the
greasy glare of warehouse lights and
the roar of forklifts — realities that
have aroused a low note of disap-
pointment that rings constantly in
the back of his brain.

All is quiet, somewhere around
mid-flight, when he stands from his
seat and walks out of the cockpit,
closing the door behind him. Here
he enters the only other zone of
the aircraft that is accessible during
flight, the small entryway vestibule
adjacent to the main cabin door.
It contains a life raft, oven, cooler,
some storage space and the lavatory.
His plan is simple enough — to
get himself a Diet Coke. The soft
drinks are in a cardboard box on
the floor, in a six-pack strapped
together with one of those clear
plastic harnesses so threatening to
sea turtles and small children. These
plastic rings are banned at home,
but apparently perfectly legal in
the Caribbean, where there are, of
course, lots of sea turtles and small

6  FEATURES

children. The pilot thinks about this
as he reaches for a can, weighing
the injustices of the world, philoso-
phizing, daydreaming, ruminating
— things that, again, his manuals
neither command nor endorse, for
perhaps good reason.

He unstraps a Coke and decides
to put the remaining ones in the
cooler to chill. The cooler, a red,
lift-top Coleman that you’d buy in
Walmart or Sears, sits in front of the
lavatory and is packed with bags of
ice. He drops in the cans, but now
the cooler will not close. There’s
too much ice. One of the bags will
have to go. So he pulls one out and
shuts the lid.

Decisions, decisions. Which
checklist do I initiate? Which valve
do I command closed? Which
circuit breakers do I pull? How do
I keep us alive and this contrap-
tion intact? And what to do, now,
with an extra, sopping wet bag of
ice? Well, the pilot will do what he
always does with an extra bag of
ice. He will open the bag and dump
it down the toilet. This he has done
so often that the sound of a hun-
dred cubes hitting the metal bowl is
a familiar one.

This time, though, for reasons
he hasn’t realized yet, there are

no cubes. More accurately, there is
one huge cube. He rips open the
bag, which is greenish and slightly
opaque, and out slides a long, single
block of ice, probably two pounds’
worth, that clatters off the rim and
splashes into the bowl. There it is
met, of course, by the caustic blue
liquid one always finds in airplane
toilets — the strange chemical
cocktail that so efficiently and
brightly neutralizes our organic
contributions.

The fluid washes over the ice. He
hits the flush button and the block
is drawn into the hole and out of
sight. He turns, clutching the empty
bag and worrying still about the
dangers of plastic rings and turtles,
picturing some poor endangered
hawksbill choking to death. It’s just
not fair.

And it’s now that the noise
begins. As he steps away, the pilot
hears a deep and powerful burble,
which immediately repeats itself
and seems to emanate from some-
where in the bowels of the plane.
How to describe it? It’s similar
to the sound your own innards
might make if you’ve eaten an
entire pizza or, perhaps swallowed
Drano, amplified many times over.
The pilot stops and a quick shot

of adrenaline pulses into his veins.
What was that? It grows louder.
Then there’s a rumble, a vibration
passes up through his feet, and
from behind him comes a loud
swishing noise.

He turns and looks at the toilet.
But it has, for all practical purposes,
disappeared. Where it once rested
he now finds what can best be
described only as a vision. In place
of the commode roars a fluorescent
blue waterfall — a huge, heav-
ing cascade of toilet fluid thrust
waist-high into the air and splashing
into all four corners of the lava-
tory. Pouring from the top of this
volcano, like smoke out of a factory
chimney, is a rapidly spreading pall
of what looks like steam.

The pilot closes his eyes tightly
for a second, then reopens them.
He does this not for theatrics, or to
create an embellishment for later
use in a story. He does it because,
for the first time in his life, he truly
does not believe what is cast in
front of him.

The fountain grows taller, and he
sees that the toilet is not spraying so
much as it is bubbling — a geyser
of lathering blue foam topped with
white fog. And suddenly he realizes
what’s happened. It was not a block

“He turns and looks at the toilet. But it has,
for all practical purposes, disappeared.”

  7

of ice, exactly, that he fed to the
toilet. It was a block of dry ice.

Dry ice is solid carbon dioxide,
and to combine it with liquid is to
initiate the turbulent and rather
unstoppable chemical reaction now
underway before our unfortunate
friend. The effect, though in our
case on a much grander scale, is
similar to the mixing of baking soda
with vinegar, or dumping water
into a Friolator, an exciting experi-
ment those of you who’ve worked
in restaurants have probably
experienced: the boiling oil will
have nothing to do with the water,
discharging its elements in a violent
surge of bubbles. Normally when
the caterers use dry ice, it’s packed
apart in smaller, square-shaped bags
you can’t miss. Today, for whatever
reason, an extra-large allotment
was stuffed into a regular old ice
cube bag — two pounds of CO2
now mixing quite unhappily with a
tankful of acid.

Within seconds a wide blue river
begins to flow out of the lava-
tory and across the floor, where a
series of tracks, panels, and gul-
lies promptly splits it into several
smaller rivers, each leading away to
a different nether-region beneath
the main deck of the DC-8. The

liquid moves rapidly along these
paths, spilling off into the crevices.
It’s your worst bathroom nightmare
at home or in a hotel — clogging
up the shitter at midnight and
watching it overflow — except this
time it’s a Technicolor eruption of
poison, dribbling into the seams of
an airplane, down into the entrails
to freeze itself around cables or
short out bundles of vital wiring.
And the pilot knows his cataract
is not going to stop until either
the CO2 is entirely evaporated or
the tank of blue death is entirely
drained. Meanwhile, like the smoke
show at a rock concert, the cabin
continues filling with white vapor.

He decides to get the captain.
Our captain tonight is a boister-

ous and slightly crazy Scandinavian
named Jens. A tall, square-jawed
Norwegian with graying, closely
cropped curls and an animated air
of imperious cocksure, Jens is one
of those guys who makes everybody
laugh simply by walking into a
room, though whether or not he’s
trying to is never exactly clear. He
is sitting in the captain’s chair. The
sun has set hours ago but he is still
wearing Ray-Bans.

“Jens, come here fast. I need
your help.” Jens nods to the first

officer and unbuckles his belt. This
is an airline captain, a confident
four-striper trained and ready for
any variety of airborne calamity —
engine failures, fires, bombs, wind
shear. What will he find back there?

Jens steps into the alcove and is
greeted not by any of a thousand
different training scenarios, but by
a psychedelic fantasy of color and
smoke — a wall of white fog and
the fuming blue witch’s cauldron,
the outfall from which now covers
the entire floor from the entrance
of the cockpit to the enormous
nylon safety net that separates the
crew from its load of pineapples.

Jens stares. Then he turns to his
young second officer and puts a
hand on his shoulder, a gesture of
both fatherly comfort and sur-
rendering camaraderie, as if to say,
“Don’t worry son, I’ll clean all this
up,” or maybe, “Down with the
ship we go.” He sighs, nods toward
the fizzing, disgorging bowl and
says, with a tone of un-ironic pride:
“She’s got quite a head on her,
doesn’t she?”

What can they do? And in one
of those dreaded realizations pilots
are advised to avoid, that insulation
between cockpit calm and atmo-
spheric anarchy looks thin indeed.

“Like the smoke show at a rock concert, the
cabin continues filling with white vapor.”

8  FEATURES

An extrapolated horror: the riveted
aluminum planks bending apart,
the wind rushing in, explosive
depressurization, death, the first
airliner — no, the first vehicle — in
history to crash because of an over-
flowing toilet. Into the sea, where
divers and salvage ships will haul
up the wreckage, detritus trailing
from mauled, unrecognizable pieces
while investigators shake their
heads. At least, the pilot thinks,
odds are nobody will ever know the
truth, the cold ocean carrying away
the evidence. He’s good as dead,
but saved, maybe, from immortal
embarrassment. A dash of mystique
awaits him, the same that met
Saint-Exupéry at the bottom of the
Mediterranean, another lousy pilot
who got philosophical and paid the
price. Maybe he blew up the toilet
too. Probable cause: unknown.

“Call flight control,” commands
Jens, hoping a dose of authority
will interject some clarity into a
scene that is obviously and hope-
lessly absurd. “Get a patch with
maintenance and tell them what
happened.”

The pilot rushes back to the
cockpit to call the company’s
maintenance staff. He fires up the
high-frequency (HF) radios, small
black boxes that can bounce the
human voice, and any of its associ-
ated embarrassments, up off the
ionosphere and halfway around the
world if need be. Trouble is, he will
announce his predicament not only
to the mechanics, but also to any of
dozens of other crews monitoring
the same frequency. Even before
keying the mike he can see the
looks and hear the wisecracks from
the Delta and United pilots in their
state-of-the-art 777s, Mozart sooth-
ing their passengers through Bose
headsets, flight attendants wiping

down the basins while somewhere
in the night sky three poor souls
in a Cold War relic are trapped in
a blue scatological hell, struggling
helplessly with a flood of shit and
chemicals.

“You say the toilet exploded?”
Maintenance is on the line, incredu-
lous but not particularly helpful.
“Well, um, not sure. Should be okay.
Nothing below the cabin there
to worry about. Press on, I guess.”
Thanks. Click.

Jens has now grabbed the exten-
sion wand for the fire extinguisher
— a hollow metal pole the length
of a harpoon — and is shoving it
down into the bowl trying to agi-
tate the mixture to a stop. Several
minutes have passed, and a good
ten gallons have streamed their way
onto the floor and beyond.

Up front, the first officer has
no idea what’s going on. Look-
ing behind him, his view mostly
blocked by the circuit breaker
panels and cockpit door, this is
what he sees: a haze of white odor-
less smoke, and his captain yelp-
ing with laughter and thrusting at
something with a long metal pole.

The pilot stands aside, watching
Jens do battle. This was the same
little kid who dreamed of becom-
ing a 747 captain, the embodiment
of all that was, and could still be,
glamorous and exciting about avia-
tion. And poor Jens, whose ances-
tors ploughed this same Atlantic in
longboats, ravenous for adventure
and conquest. Here he is, a twenty-
first century Viking jousting with a
broken toilet.

So it goes, and by the time the
airplane touches down, its plumb-
ing finally at rest, each and every
employee at the cargo hub, clued
in by the amused mechanics who
received our distress call, already

knows the story of the idiot who
poured dry ice into the crapper. His
socks and hundred-dollar Rock-
ports have been badly damaged,
while the walls, panels and placards
aboard aircraft 806 are forever dyed
a heavenly azure.

The crew bus pulls up to the
stairs, and as the pilots step on
board the driver looks up at him.
There’s a knowing look in the
driver’s eye. “It was you!” he says
excitedly, “Wasn’t it?” n

Patrick Smith is an airline pilot and the host
of askthepilot.com. He lives near Boston.
His new book is “Cockpit Confidential:
Everything You Need to Know About Air
Travel” [hn.my/cockpit].

Reprinted with permission of the original author.
First appeared in hn.my/askpilot (askthepilot.com)

Illustration by Ben O’Brien.

http://askthepilot.com
http://hn.my/cockpit
http://hn.my/askpilot
http://hn.my/cockpit

Now you can hack on DuckDuckGo

Create instant answer plugins for DuckDuckGo

duckduckhack.com

Now you can hack on DuckDuckGo

Create instant answer plugins for DuckDuckGo

DuckDuckHackDuckDuckHack

package DDG::Goodie::Unidecode;# ABSTRACT: return an ASCII version of the search query use
DDG::Goodie; use Text::Unidecode; zci is_cached => 1; zci answer_type => "convert to ascii"; triggers
startend => "unidecode"; handle remainder => sub { my $u = unidecode $_; # unidecode output some-
times contains trailing spaces $u =~ s/\s+$//; return $u; }; 1; package DDG::Goodie::Rot13; #
ABSTRACT: Rotate chars by 13 letters use DDG::Goodie; triggers start => 'rot13'; handle remainder =>
sub { if ($_) { $_ =~ tr[a-zA-Z][n-za-mN-ZA-M]; return "ROT13: $_"; }; return }; zci is_cached => 1; 1;
package DDG::Goodie::Base64; use DDG::Goodie; use MIME::Base64; use Encode; triggers startend =>
"base64"; zci answer_type => "base64_conversion"; zci is_cached => 1; handle remainder => sub {
return unless $_ =~ /^(encode|decode|)\s*(.*)$/i; my $command = $1 || ''; my $str = $2 || ''; if ($str) { if (
$command && $command eq 'decode') { $str = decode_base64($str); $str = decode("UTF-8", $str);
return "Base64 decoded: $str"; } else { $str = encode_base64(encode("UTF-8", $str)); return "Base64
encoded: $str"; } } return; }; 1; package DDG::Goodie::Chars; # ABSTRACT: Give the number of charac-
ters (length) of the query. use DDG::Goodie; triggers start => 'chars'; zci is_cached => 1; zci
answer_type => "chars"; handle remainder => sub { return "Chars: " .length $_ if $_; return; }; 1; pack-
age DDG::Goodie::ABC; use DDG::Goodie; triggers any => "or"; zci answer_type => "rand"; handle
query_parts => sub { my @choices; my @collected_parts; while (my $part = shift) { if (lc($part) eq 'or') {
return unless @collected_parts; push @choices, join(' ', @collected_parts); my $length =
@collected_parts; return if $length > 1; @collected_parts = (); } elsif ($part) { push @collected_parts,
$part; } } push @choices, join(' ', @collected_parts) if @choices && @collected_parts; return if
scalar(@choices) <= 1; my $choice = int(rand(@choices)); if (my @duck = grep { $_ eq 'duckduckgo' || $_
eq 'duck' || $_ eq 'ddg' } @choices) { return $duck[0]." (not random)", answer_type => 'egg'; } return
$choices[$choice]." (random)"; return; }; 1; package DDG::Goodie::PublicDNS; use DDG::Goodie; use

sub { if ($_) { $_ =~ tr[a-zA-Z][n-za-mN-ZA-M]; return "ROT13: $_"; }; return }; zci is_cached => 1; 1;
package DDG::Goodie::Base64; use DDG::Goodie; use MIME::Base64; use Encode; triggers startend =>
"base64"; zci answer_type => "base64_conversion"; zci is_cached => 1; handle remainder => sub {
return unless $_ =~ /^(encode|decode|)\s*(.*)$/i; my $command = $1 || ''; my $str = $2 || ''; if ($str) { if (
$command && $command eq 'decode') { $str = decode_base64($str); $str = decode("UTF-8", $str);
return "Base64 decoded: $str"; } else { $str = encode_base64(encode("UTF-8", $str)); return "Base64
encoded: $str"; } } return; }; 1; package DDG::Goodie::Chars; # ABSTRACT: Give the number of charac
ters (length) of the query. use DDG::Goodie; triggers start => 'chars'; zci is_cached => 1; zci
answer_type => "chars"; handle remainder => sub { return "Chars: " .length $_ if $_; return; }; 1; pack
age DDG::Goodie::ABC; use DDG::Goodie; triggers any => "or"; zci answer_type => "rand"; handle
query_parts => sub { my @choices; my @collected_parts; while (my $part = shift) { if (lc($part) eq 'or') {
return unless @collected_parts; push @choices, join(' ', @collected_parts); my $length =
@collected_parts; return if $length > 1; @collected_parts = (); } elsif ($part) { push @collected_parts,
$part; } } push @choices, join(' ', @collected_parts) if @choices && @collected_parts; return if
scalar(@choices) <= 1; my $choice = int(rand(@choices)); if (my @duck = grep { $_ eq 'duckduckgo' || $_

http://duckduckhack.com

10  FEATURES

By JOE HEWITT

Growing Tomatoes
When people asked me what I was going to

grow in my new garden, my response was,
“Anything but tomatoes.”

Blame it on my Italian relatives for excessive use of
marinara, or on American restaurants for the pale, mealy
wedges atop salads, but I just don’t like tomatoes. I was
excited about growing peaches, blueberries, broccoli, and
just about anything else.

  11

I’m fortunate to live near Love
Apple Farms in Santa Cruz, Cali-
fornia. Their main gig is growing
produce for a Michelin-starred
restaurant, but they also teach an
array of gardening classes. After
having a great time in their spring
vegetable class, I returned excitedly
to the class roster to find another.
Given that the name of the farm,
“Love Apple,” is an antiquated
French name for tomatoes, you can
probably guess which plant most of
the classes were about. I signed up
for one nonetheless, convinced that
only a selfish gardener would refuse
to grow things they don’t enjoy
eating.

Seed Party
The farm’s owner, Cynthia Sand-
berg, opened class with a refrain I’d
heard before: homegrown heirloom
tomatoes are infinitely superior to
the supermarket variety. I wanted to
believe her, but I wasn’t optimistic.

And then she began passing
around hundreds of jars of seeds for
us to choose from — Black Zebra!
Green Giant! Amazon Choco-
late! — and my collector’s instinct
kicked in as I imagined the menag-
erie of fruit that would burst from
Cynthia’s catalog into my garden.

Selecting which seeds to plant
was kind of stressful. The jars
swapped hands so fast, I barely had
time to pinch out seeds, much less
discern orange striped this from
sweet red that. I ended up shooting
for a mix of colors and shapes and
hoping for the best.

My Tomato Pets
Once I got home, I learned that
tomatoes are more like pets than
houseplants. The fun of watch-
ing them sprout soon gave way to
despair as many seedlings wilted
and died when I forgot to check
them even for a day or two.

Despite having all the recom-
mended equipment — a heating
mat, grow lights, a fan, timers, and
temperature sensors — they mostly
just needed personal attention (and
water). As they grew, the seedlings
had to be carried into the sun
during the day and brought back
in at night. Once they outgrew
their trays, I had to transplant them
to larger pots, and soon after, still
larger 1-gallon pots.

I hadn’t considered what I was
going to do with 100 seedlings
until I was at the nursery buying
100 plastic pots. My garden is big,
but not that big. Neglect thinned
the numbers quite a bit, but I still
wound up with more than 60
plants in 1-gallon pots. A dozen or
so found their way to friends’ gar-
dens, and somehow I found room
for 25 plants in the ground.

Fish Heads, Aspirin, Rusty Cages
Twenty-five plants may not seem
like a lot until you try to lift a coil
of 25 steel tomato cage — each
7 feet tall — from the bed of a
pickup. Cynthia insisted on this
height and even predicted the
vines might grow taller and spill
over (indeed, they would). Before
I could set up the cages, I needed
to get the tomatoes in the ground.
Of course, my needy pets insisted I
first round up a witch’s brew of soil
amendments.

According to Cynthia’s prescrip-
tion, each young plant should be
buried with the following: one fish
head, a handful of egg shells, bone
meal, worm castings, tomato fertil-
izer, mycorrhizal fungi, and two
aspirin. (Yes, aspirin. Apparently it
combats disease.)

From seed trays to 4-inch pots to 1-gallon pots.

12  FEATURES

After three months of babying
the seedlings, I wasn’t about to
slack off now. It took a few phone
calls to tracwk down the fish heads,
but Whole Foods came through for
me with beautiful 1-pound salmon
heads. Into the ground they went,
up went the cages, down went the
irrigation tubes, and then the wait
began.

Nothing seemed to happen for
weeks at a time, and I kind of forgot
about them for the summer. When
the fruit began to ripen in August,
there was suddenly a lot happening,
and not all of it good. I learned a
few things the hard way.

Lesson #1
Cages Are There For A Reason
Tomatoes are vines, and when vines
spill out of their cages, they need
to be pushed back in. Otherwise,
tomatoes will soon be growing
in hard-to-reach places, or worse,
rotting on the ground. Young and
limber vines are easily snaked back
into the cage, but mature woody
vines will only snap if you try this.

Lesson #2
Treat Blossom-End Rot
About half the plants had fruit
with “blossom-end rot,” a condition
caused by poor calcium absorption.
The egg shells were supposed to
help with this, but I guess I didn’t
use enough. There’s tons of litera-
ture on the web on blossom-end
rot prevention — this year I’ll be on
top of it.

Lesson #3
Fear the rain
Coastal California summers are
bone-dry, which is great for toma-
toes. But in late August, we had an
unexpected downpour. My vines
were covered in almost-ripe fruit
that I was waiting to get super-
ripe, but in the days after the rain
many of them began to split and
rot. Lesson learned: when it rains,
immediately harvest everything
that is remotely edible.

Lesson #4
Know Your Diseases
In early September, many of the
plants began to look parched, with
droopy and desiccated leaves. I
thought they just needed more
water, but I was mistaken. The
dead leaves were from “late blight,”

a dreaded tomato disease. Guess
what “late blight” loves? Water!
Oops.

Before I realized my error and
stopped the irrigation, a couple
plants were killed to the ground.
Others stopped fruiting, and what
fruit was left didn’t ripen. Fortu-
nately, only about 1/3 of the plants
were affected. This year I’ll defi-
nitely back off on water later in the
season.

Lesson #5
Be Ready For An Avalanche
Growing the plants was hard work,
I thought, but that was nothing
compared to the work of harvest.
My four cherry tomato plants
started ripening in early August,
and I expected the rest to steadily
follow for the next couple of
months, giving me plenty of time to
deal with them. Instead, my other
21 non-cherry plants ripened all at
once in early September, and I had
about three weeks to deal with the
bulk of them.

Only thing missing was frog’s legs.

  13

September was a tomato-chop-
ping, crushing, canning, freezing,
and dehydrating frenzy. I ate toma-
toes with nearly every meal and
delivered heaping baskets to friends
and neighbors. With my freezer and
pantry overflowing, the tomatoes
still kept coming. I was greeted with
the smell of mold each morning as
I walked past the growing backlog
in my kitchen. The first time I had
to compost a moldy tomato was
sad, but by mid-September, every
lost tomato was kind of a relief. The
lesson here is that 25 plants are
too many for me. I’ll probably have
eight this year.

But How Do They Taste?
You might be wondering at this
point if I changed my mind about
the merits of eating “love apples.”
I’ll say this much: a tomato, picked
when warm from the sun, so ripe
it’s on the verge of going bad, and
eaten while standing in the garden,
is better than ice cream. On the
other hand, some of the varieties I
grew, despite being fancy heirlooms,
tasted no better than a winter
greenhouse tomato from Safeway.

I conducted a taste test with my
parents with each of the 25 vari-
eties. One clear winner emerged,
and that is Orange Russian 117,
which is not only the most beauti-
ful tomato I’ve ever seen, but tastes
more like a peach than a tomato.
Other favorites included Coyote
and Sungold cherries; the hefty
Casey’s Pure Yellow and German
Red Strawberry; the striped Tiger-
ella; and George O’Brien for
making sauce. Some, like Black
Plum, tasted just OK when raw, but
were spectacular when dehydrated.

Until next year
As it turns out, I was right all along.
Tomatoes aren’t that great — unless
you grow the right varieties, eat
them at the right time, and process
them the right way. As I ripped out
the last of the tomatoes in October,
it was clear I was ending a cycle
that would begin again every year
for as long as I’m fit to garden. n

Joe is a programmer and novice gardener.
He’s worked on Firefox, Firebug, and Face-
book’s iPhone app.

Reprinted with permission of the original author.
First appeared in hn.my/tomato (joehewitt.com)

Illustration by Parko Polo.

A typical day in September.

http://hn.my/tomato

14  STARTUPS

STARTUPS

By jon wheatley

I had been kicking around the
idea for some kind of space-
themed dice game for a while.

I thought it would be a really nice
metaphor for what actually hap-
pens when galaxies are formed.
The dice represent balls of matter
floating around the universe. Some-
times they bump into other balls of
matter and become stuff.

I decided to design the game
around the “press your luck” genre.
The concept of these games is
usually pretty simple. Some things
are good to roll and some things
are bad. The goal is to roll as many
good things as you can before roll-
ing a bad thing and resetting your
score. The first person to get X
good things is the winner.

The goal with Space Dice is to
roll as many “habitable planets” as
possible, before you roll 3 black
holes and make your galaxy unsta-
ble. A “habitable planet” is a planet
near at least 1 star and without
space debris hurtling towards it.
The first person to roll 10 habitable
planets is the winner.

Here’s a VERY early prototype
(figure 1) of the game I was work-
ing on over Christmas. It really

helped to make a prototype, as I
could actually play the game rather
than everything being hypothetical.

Having finalized the basic con-
cept, I needed to make sure the
game would actually be playable.
There should be a good chance of
rolling the things you need to roll to
score. It shouldn’t be likely to die in
one roll. Rolling a supernova (which
destroys every planet every player
has scored up until that point)
shouldn’t happen very often, etc.

I spent a few hours hacking
together a little rails app which

would play out 100,000 rolls in
a few seconds and tell me the
chances of everything coming up.
The script let me easily play around
with the values on each of the dice
and tweak the chances of every-
thing happening. It’s still online if
you want to look at it [spacedice.
herokuapp.com] and the code is on
GitHub [hn.my/spacedice]. Please
excuse my bad Ruby code.

I hired a graphic designer to
make some nice icons. I was ready
to start talking to factories.

Making A Physical Product

Figure 1

http://spacedice.herokuapp.com
http://spacedice.herokuapp.com
http://hn.my/spacedice

  15

I looked on alibaba.com and
found some dice manufactures in
China. It turns out 12 sided dice
are MUCH more expensive than
regular 6 sided dice (about $0.25
per dice vs. $0.05). I reluctantly
decided to go with the 12 sided
dice anyway, because the shape of
them worked much better with the
theme. Rarely do you see celestial
bodies that are square!

The factory did a test print and
made a complete set of space dice.
(figure 2) Now it was starting to
become real!

The factory was happy to ship
out the tester dice they made before
entering full production. Luckily,
this coincided nicely with Chinese
New Year so I had a bit of time
to play test the game and request
any changes. When I received the
package, I excitedly opened it and
anxiously waited for my girlfriend
to get home so we could play Space
Dice for the first time.

I may be a little biased here, but
the game was great fun. Everything
worked as intended, and my girl-
friend picked it up pretty quickly.
The only thing that was a little
awkward was keeping score of how

many habitable planets each of us
owned. We solved this by using a
pen and paper to keep track, but
I’m planning on building a simple
Space Dice score keeping iPhone
app at some point.

The next step was the pack-
aging. I found a factory in LA
[spiralpaper.com] that made custom
tubes with removable tops. This
was good because the tube could
also double as the dice shaker. They
were nice enough to send over some
pictures of the tubes being made.
(figure 3)

The last thing I needed was
instructions. This turned out to
be a much harder task then I was
anticipating. There were a lot of
things that seemed obvious to me
that absolutely were
not obvious to other
people when I spoke
to them. It was also
hard to explain all
the rules, including
rare edge cases, while
keeping the instruc-
tions short and not
intimidating to new
players. I needed pro-
fessional help.

I hired a freelance copywriter to
give me a hand, which made things
much easier. There was still a fair
amount of back and forth until we
decided on the best way to struc-
ture and word everything but we
eventually hammered out some
pretty decent instructions.

They just needed some design
and they were ready.

Everything arrived at my apart-
ment, and I started packaging sets
together. This took much longer
than I thought it would (1.5ish
minutes per set, 333 sets, just over
8 hours).

And here it is. The final, com-
pleted set of space dice in all its
glory.

Figure 2 Figure 3

http://alibaba.com
http://spiralpaper.com

16  STARTUPS

Shipping
As one might expect with some-
thing like this, shipping is a huge
time sink. The first few days after
launching were spent almost
entirely packaging space dice sets
and hand writing addresses. It
wasn’t long before our daily trips
to the post office were met with
audible groans from the staff there.
Each package needed to be indi-
vidually weighed and stamped. For
international orders the addresses
on the customs forms needed to be
manually typed in. It was horrible.

I looked into a few different
options. I really wanted to automate
the whole process so I looked into
local fulfillment services. Unfortu-
nately at such small scale and with
the margins I’m currently working
with, the math doesn’t work. It
would cost a few dollars extra per
order (I received quotes ranging
from $3-10) on top of a monthly
storage fee.

I now have a dedicated shipping
computer (~$300 from OfficeMax).
My friend recommended getting
a zebra label printer which uses
thermal paper to print labels rather
than ink (~$100 from Amazon) and
a free USB scale from stamps.com.

 Now shipping takes a fraction
of the time. Stamps can be printed
rather than arduously hand written
and customs forms are automati-
cally filled in. The shipping soft-
ware also spits out a free tracking
number which can be passed onto
the customer. All that and USPS
will come and collect!

Reception
The game was mostly well received
although a few weeks in I started
to get a few reports that there was
a bug.

In the game it’s possible to roll
a “supernova” which completely
resets everyone’s scores. In my
simulations and play testing this
rarely happened (there’s about a 6%
chance). I enjoyed the rule because
it meant however far behind you
got there was always an outside
chance you could roll a supernova
and reset the scores so you’re level
with your opponent again. Unfortu-
nately in all the play testing I did I
only ever played the game with one
other person.

This was a big mistake.
The problem is the more people

you play the game with the more
likely it is to roll a supernova during

a round. There’s a point where it
becomes more likely than not that a
supernova will be rolled essentially
making the game last forever. This
was a huge oversight and some-
thing I’m sure any professional
game designer would have noticed
instantly.

Luckily it’s a relatively easy fix
(the rules are being tweaked so a
supernova just resets your score and
not everyone’s) but this was still
a harsh lesson in the value of play
testing more than you think you
should.

Despite the bug, lots of people
were enjoying the game. A few
people sent me pictures of them-
selves or their families playing
which was great to see. Someone
even made a really cool score card
app [spacedicescorecard.com]
which lets players easily track
scores in the game.

I had some success approach-
ing local toy stores and asking if
they’d like the carry the game. Out
of 80 stores contacted so far, 10
were interested in doing a small
test run of the game to see how
it performed in the store. I didn’t
do anything fancy at all here. I just
searched Yelp for toy stores, found
their website, then their email, then
cold-emailed them and told them
some high level info about the
game. Considering my somewhat
unsophisticated approach, I think a
12.5% potential conversion is pretty
good. n

Jon Wheatley is a British born, San Fran-
cisco based entrepreneur. Previously
founding DailyBooth, and currently
working on new projects. Head over to
spacedice.com if you’d like to buy a copy
of Space Dice.

Reprinted with permission of the original author.
First appeared in hn.my/physical (jonw.com)

http://spacedicescorecard.com
http://spacedice.com
http://hn.my/physical

Accept payments online.

http://stripe.com

18  STARTUPS

By Brennan Dunn

The Freelancer’s Guide To
Recurring Revenue

It’s pretty much inevitable that
after the realization that “Oh
my God, I’m making a ton

of money” freelancing, just about
every consultant I’ve met soon
realizes, “But that money disappears
when I stop working.”

This article is going to dive into
how you, an idea-less freelance con-
sultant, can build products of your
own and develop recurring rev-
enue streams that don’t necessarily
require an ongoing commitment of
your time.

Why Recurring Revenue?
Recurring revenue is much more
than just “money that will come
to me as I sip Mai Tais on Waikiki
Beach.” Recurring revenue is (more
or less) predictable revenue. The
catch with consulting is that the
majority of us bill for our time,
and if no time is logged — either
because we’re on vacation or simply
just don’t have a project to work on
— there’s nothing to bill for. But we
still have monthly obligations. We
still need to pay for our shelter, our
food, and other amenities required
to live comfortably.

I can’t speak for you, but if I’m
on the hook for paying banks, credi-
tors, or utility companies upwards
of $10,000 for the foreseeable
future, being uncertain about where
I’m going to get that $10,000 is
a huge weight to shoulder. Our
salaried brethren understand what
it feels like to be worried about
getting fired and losing their pay-
check; but many of us freelancers
constantly face that fear, and that’s
a fate that can occur despite how
successful we are at the work we
produce for our clients.

What attracted me to pursu-
ing recurring revenue was that I
could offset my fixed liabilities
with something that I had a lot
of control over. If one of my two
current consulting clients bailed,
my income might be cut in half by
50%. If one customer out of the
thousands that have bought a book
of mine ask for a refund, I might
need to skip dessert tonight.

Products: An Emotional Hurdle
To Overcome
I was in Las Vegas last week for
MicroConf, an annual conference
for bootstrapped entrepreneurs.
And I noticed a trend: everyone
there was aiming to one day live
entirely off of product income, but
a significant majority was using con-
sulting as a crutch to support them
until they hit some critical mass of
paying customers that they could
cut the umbilical cord of consulting
(keep in mind this is a bootstrap-
pers conference — we don’t have
the luxury of the massive amounts
of cash infusion that can come
through funding!)

The jump, however, between sell-
ing time for cash and selling a self-
serve product to someone you’ve
never met is pretty big.

The former just requires you
finding a few people like you who
can effectively “rent” you for a rate,
either because they don’t have
whatever skill they hired you for or
they don’t have the time to do it
themselves.

  19

The latter can require figuring
out a problem that people will
pay YOU, an Internet stranger, to
fix. This means marketing, writing
persuasive sales copy, and building
a product before anyone’s bought it
(which can be a struggle for those
of us conditioned to “work now,
get paid soon-ish”) and having the
gumption to actually ask for the
sale.

Marketing. Persuasion. Building a
product. Fulfillment. These dragons
are slain through research and elbow
grease. But before any of this can
happen, many freelancers-turned-
product-people need to come up
with an idea, which is where most
of us stumble and give up.

The problem is the belief that
ideas are special, and that “great
ideas” will come given enough time
(or enough showers, depending on
when and where you get inspired.)

But what if you didn’t have to
wait. What if you already had the
great ideas you need to build up
recurring revenue?

Sell What You Know
I want to talk about two different
audiences you can sell to right now,
and how you can go from trading
your time for money to building
up a product that literally sells
itself while you sleep. As an added
bonus, doing this can help you get
more clients, which helps alleviate
the “feast or famine” problem that
affects a lot of freelancers.

To begin, you need to start with a
little soul searching…

Why do clients pay you wads of
cash? The answer isn’t necessar-
ily “Because I write code” or “I’m
good at setting up WordPress.”
Most people will hire you because
you’re capable of solving some sort
of business problem that makes it

worthwhile to cut you large checks
with the assumption that you’ll
deliver something worth more than
the cost to hire you.

So if they’re hiring you to, say,
get more walk-in customers to
their retail shop by setting up some
really solid stuff online, that’s at the
far end of the execution spectrum
(“Here’s my problem, you’re the
tech guy, I’ll pay you to fix it.”)
You’re consulting. You’re apply-
ing your knowledge to solve one
person’s pain, which in this case is a
lack of customers which is causing
a bit of a problem with their cash
flow.

Alternatively, the skills you pos-
sess that allow you to charge your
clients to get them more walk-in
customers might be desired by a
more junior freelancer who also
wants to become more valuable by
offering this service to their clients.

How did you get to where you
are today? What skills did you need
to acquire before you were able to
make yourself valuable enough to
be hired? And before worrying that
you aren’t necessarily an expert and
getting the maximum amount of
walk-in customers for the maxi-
mum amount of retail shops, you
just need to realize that you only
need to know more than the person
you’re trying to teach.

The theme here is education.
Consulting is just applied educa-
tion, and there’s a lot of middle
ground between where a client or
fellow freelancer is today (“I need
more walk-ins” / “I also want to
help my clients get more walk-ins”)
and having an expert consultant
apply years of accrued wisdom to a
specific problem, or becoming the
go-to consultant for getting retail
shops more clients.

Sell To Your Peers
Selling information to other free-
lancers like you can solicit two
types of very vocal responses:

You’re selling tools to the miners.
(The idea being that the only people
who made money during the gold
rush in the American West were the
merchants hawking mining gear to
upstart miners. The difference being
that in this gold rush, the miners
are actually making lots of money.)

…or…

All of this is available for free on the
Internet (in existing blog posts, pod-
casts, forums, StackOverflow, etc.)

But for each of these minority
voices there are dozens of silent
doers who want what you have to
teach so they can move on with
their lives, becoming more valuable
and charging more.

And these doers will buy the
knowledge you’ve cataloged,
organized, and presented for sale.
Because when the doer isn’t doing,
they’re not making any money. And
if they’re billing $XXX an hour,
spending $XX to level-up is a no
brainer. They don’t have the time
to hunt and peck around Google
results to get to the same result that
you’re offering with a shiny “Buy
Now” button.

A great example of this in action
is what Nathan Barry’s done with
his two books, The App Design
Handbook and Designing Web
Applications. He’s produced two
products — the former for iOS
designers, the latter for designers
of web apps — that can help the
reader go from just a designer to
being able to walk and talk like
an experienced iOS or web app
designer.

20  STARTUPS

The best part of what Nathan’s
done is that his products are sold
and packaged as an easy-to-digest
pill. Rather than wading through
the good and bad of pages of
Google results to figure out how to
implement the perfect navigation
UI, Nathan’s done that work for
you and has it available for sale.

Let’s think like a CEO who
hires designers for a second. Jim,
an employee of yours, is a good
web designer, but now he needs to
design our company’s new iPhone
app. Sure, he knows how to use
Photoshop and splice and dice up
PSD files…but Jim’s never designed
an iOS app. We could think, “Jim,
go and figure out the ins and outs
of iOS design for a few weeks.” But
Jim costs a few thousand dollars
a week, and the idea of spending
thousands so Jim can (hopefully)
become a competent iOS designer
sort of sucks. And you don’t want
to hire that high price consultant
and risk pissing off your in-house
designer, right?

And then you discover that for
$169, this guy named Nathan has
a complete package of resources
that help designers become awe-
some iOS designers. Businesses pay
for things, especially when those
things can reduce costs or amplify
revenue.

Sell To Your Clients
Remember that spectrum, where at
one end we have raw information
(“The know-how to help a retail
business get more walk-ins”) and at
the other application (“The knowl-
edge and the time spent to help one
retail business get more walk-ins”)?

As freelancers, we’re used to
being paid to apply knowledge for
our clients. But we don’t always
think about the value we could
deliver on the lesser parts of the
spectrum.

Think about it this way. To go
back to our example, Mary the
Business Owner wants more walk-
in customers. There are actually
quite a few ways to do this:

Learn and act. Mary could read
a book or take a training course
from someone like you who’s con-
structed a guide for setting up ads
and a marketing site that helps con-
vert visitors to walk-in customers.
This requires Mary (or someone on
staff) to take the time to do some
learning and then actually execute
on this new knowledge. The prod-
uct Mary purchases is probably
purely information: an eBook, a
training course, videos….

Get something turnkey. Mary
could come across a SaaS vendor
who promises a turnkey website
and set of marketing campaigns
that are specifically built for retail
shops wanting more walk-in cus-
tomers. This is significantly lower
risk (and cost) for Mary, because
the next option would be to hire
a designer off the street and hope
that he 1) knows how to build the
site and the marketing campaigns,
and 2) knows enough about retail
shops and how they get walk-in
customers. Chances are, most of the
products you’ve wanted to build
have fallen into this space. The
product Mary purchases is probably
a web-based, multi-tenant product
that she pays for monthly.

“Businesses pay for things, especially
when those things can reduce costs
or amplify revenue.”

  21

From scratch. Mary needs her
problem solved, and she lacks the
technical capacity or time and
energy to do it herself. So she finds
someone like you, is persuaded
that you have the skills to solve her
problem, and then commissions
you after a high-touch, possibly
lengthy sales cycle. The product
Mary purchases is a one-off consult-
ing engagement with someone (an
individual or agency) that she feels
can help solve her problem.

An added benefit of educating
your client is that you’ll increase
your perceived expertise, which
could end up netting you new
clients who need to hire a consul-
tant who helps retail businesses get
more walk-in customers. After all,
you literally wrote the book on it.

Patrick McKenzie is routinely
hired by software companies to
help improve their conversion rates
through something called lifecycle
emails. Now, Patrick lives in Japan,
and just about all of his clients are
located halfway around the globe
from him. Hiring Patrick involves
going through a proposal, possibly
convincing partners or a board to
hire this guy for $XX,XXX a week,
accepting his proposal, negotiating
contracts, getting Patrick to fly half-
way around the world, getting him
in your office for at least a week,
and then sending him back.

All because you need Patrick to
help you apply the email knowl-
edge he has to your business.

This also limits Patrick to having
just a handful of clients. He can do
the grueling, cross-Pacific flight only
so often, and being a newlywed
tends to exponentially complicate
things.

So while Patrick could just stop
consulting, he could also do it at
scale. He could distill his knowledge
into a five hour video course, and
allow people that couldn’t afford
him or win a coveted spot in his
consulting schedule to reap a lot of
the benefits of having Patrick sit in
your office for a week.

The Middle Ground Between
Information and Application
Where Patrick hasn’t gone (and
where, frankly, I think he and
you could) is the middle ground
between teaching and doing.

When Patrick is hired to write
lifecycle emails for a software com-
pany, the hiring company is edu-
cated by Patrick, but he’s also going
to write and put into place the
application of that education (e.g.,
a 30-day email course.) But what
happens when a company picks up
his video course and takes a stab at
implementing the advice contained
within?

Who do you think they’re want-
ing to get feedback from?

Patrick. Or if it’s an eBook on
getting more retail walk-in custom-
ers, from you.

And this gives you and Patrick
the distinct advantage of being
able to charge what might seem
an exorbitant rate to spot-check or
vet the end result of your customer
attempting to take action on your
information. And let’s face it —
only one person really fits the bill to
do this one-off consult…the creator
of the content that gave them the
skills!

Other middle grounds involve
group training or workshops,
monthly retainer agreements,
coaching, and other services that
you can price, rather than bill.

To round out the examples,
Joanna Wiebe of Copyhackers
offers a No-Fluff Website Review
for close to $1,000. The review
includes an assessment of your web-
site’s copy and a 60-minute video
review. Because Joanna’s established
her foothold in teaching people
who hate writing sales copy what it
takes to write effective sales copy,
her 1-on-1 review is a natural upsell
to her books. She’d be hard pressed
to sell this service of hers without
the book, but again — once some-
one’s spent a few hours in Joanna’s
head by reading her book, she’s
going to be the only viable candi-
date that’s capable of conducting a
website review.

So before you get dismayed by
the amount of time and effort it
takes to build a product, realize that
products can be as simple as some-
thing that teaches just one thing.
And instead of waiting for your
Eureka moment, reflect on why
people have hired you in the past.
The road to selling products doesn’t
need to be steep and jagged. n

Brennan and Patrick McKenzie will
be running a “Recurring Revenue
(for freelancers and consultants)”
workshop this month. For more, see
recurringrevenueforconsultants.com

Brennan Dunn is an author, teacher, startup
founder, podcast host, and newsletter
junkie. He’s written two books, “Double
Your Freelancing Rate” and “Sell Yourself
Online: The Blueprint”. Brennan is also the
founder of Planscope, a project manage-
ment tool for freelancers and small teams.

Reprinted with permission of the original author.
First appeared in hn.my/recurring (planscope.io)

http://hn.my/recurring

22  PROGRAMMING

At some point
over a decade
ago I received

my first real Unix
account on Northeast-
ern CCS’s computing
infrastructure. I realized
that my primary method
of development — edit-
ing files in BBEdit and
uploading them via
FTP — wouldn’t scale
for college-level projects, so I decided to learn how to
efficiently edit files on a remote host. I used Pico for a
while but became annoyed at its lack of syntax high-
lighting, so I used the only other editor I remembered
bumping into: Vim.

Fast forward eleven years. I’ve written many different
languages and used Eclipse, IntelliJ IDEA, TextMate,
and Flash Builder. I even used Emacs for a year just to
see what I was missing. But when it was time to start
a company, I knew that an early priority would be to
bang out code quickly, so I chose the best tool for the
job.

Recently, someone noticed a plugin I was using and
said, “I had no idea Vim could do that. You should
teach me all of these tricks someday.” A fine suggestion,
indeed, and that day is today.

Customizing Vim: A Preamble
Customizing Vim is two parts: editing rc files and
installing plugins. You should already have a .vim/
directory with a vimrc and possibly a gvimrc.
For plugins, the first thing to look at is Pathogen

[hn.my/pathogen], a
neat little plugin that
lets you keep plugins in
subdirectories of .vim/
bundle/ instead of merg-
ing everything into the
big .vim/ tree. It’s easy
to install and makes it
a breeze to try out new
plugins.

It’s also useful to keep
the .vim/ directory in

version control because you can test a plugin or setting
and, if you don’t like it, put everything back the way it
used to be with a git revert.

Additionally, I use an update.sh script [hn.my/
updatesh] I wrote to install plugins as well as keep
everything up date. Keeping Vim plugins up to date is
advantageous; I’ve found that Vim plugins are often
updated to fix bugs and not change functionality
significantly.

Regarding mappings, I use the backslash key as my
utility prefix since backslash isn’t bound to anything by
default. For example, \ o toggles paste mode and \ l
toggles line numbers:

:nmap \l :setlocal number!<CR>
:nmap \o :set paste!<CR>

Rudimentary Essentials
Vim’s defaults are pretty smart, but there are a few
small rough spots which need ironing out.

The Esc key is used to return to Normal mode, but
on most keyboards the Esc key is pretty far from the

By Ian Langworth

Vim After 11 Years

PROGRAMMING

http://hn.my/pathogen
http://hn.my/updatesh
http://hn.my/updatesh

  23

home row. Ctrl-\[produces the same keycode but
involves two hands. Both might have problems on
latent terminals which support Esc as an alternative
to Meta. Alternatively, use Ctrl-C — it’s easy to type,
instant, and you’re already used to jamming on it from
when you cancel commands. The only caveat is that
you still need to use Esc for operations in visual block
mode (more on this later).

Moving around text is part of what makes using Vim
feel so efficient. The one single thing I could never
stand about Vim’s default movements, however, is
how j and k move around wrapped lines. By default
they move you one line down and up but on a linewise
basis, which is annoying. If I hit j I would expect the
cursor to move down a single row on the screen, just
like every other text editing area in the world. The fol-
lowing does just that:

:nmap j gj
:nmap k gk

Regarding Vim’s command line, its defaults make it
behave very unlike a modern command line. If you’re
used to Emacs-style movement keys on your Bash or
Zsh command line (using Ctrl-A and Ctrl-E and the
like) then you might want to make Vim act the same
way:

:cnoremap <C-a> <Home>
:cnoremap <C-b> <Left>
:cnoremap <C-f> <Right>
:cnoremap <C-d> <Delete>
:cnoremap <M-b> <S-Left>
:cnoremap <M-f> <S-Right>
:cnoremap <M-d> <S-right><Delete>
:cnoremap <Esc>b <S-Left>
:cnoremap <Esc>f <S-Right>
:cnoremap <Esc>d <S-right><Delete>
:cnoremap <C-g> <C-c>

A common operation is to search for text, so it
makes sense to have some sane defaults. The incsearch
option highlights as you type an expression (a.k.a.
“Emacs style”), and ignorecase plus smartcase make
searches case-insensitive except when you include
upper-case characters (so /foo matches FOO and fOo,
but /FOO only matches the former). hlsearch is a
useful option which highlights the current search, but
the highlight can become annoying so it makes sense
to have a key to clear the highlight when you no longer
need it:

:set incsearch
:set ignorecase
:set smartcase
:set hlsearch
:nmap \q :nohlsearch<CR>

Vim, the Terminal, Buffers, and You.
There are two forms of Vim: Vim in the console and
the native gVim application. The advantages of gVim
are better OS integration for dialogs, native printing
support, and a wider range of color themes. A modern
terminal gives you everything else such as mouse sup-
port and mostly-decent color.

It was decided early in its development that Vim
isn’t designed to replace a terminal, so Vim is and for-
ever will be bad at emulating terminals. Using the :shell
command in gVim is a path to madness. One plugin,
Conque, comes close to adding terminal support, but
I found that it caused Vim to hang, and its integration
felt clunky. Thus, if you do a lot of work from the com-
mand line while you edit, the best way to run Vim is
from the command line.

One of Vim’s strengths is that it starts lightning
fast, so starting Vim from the terminal is trivial. With
a modern, 256-color terminal like iTerm2 or Gnome
Terminal, it will even look like gVim. But the best part
is that you can drop into the command line at any time
with Ctrl-Z, which suspends Vim, and your working
directory is where you left off.

If you have trouble remembering which terminal has
Vim suspended, try adding the number of background
jobs to your shell prompt. If you have many Vims in
the background, however, you should start using buf-
fers instead.

Vim has the powerful ability to keep multiple files
open in the background, and there are many ways to
navigate between them. This is useful for performing
work on a project or for editing multiple files as part of
an operation.

For example, say your current working directory is a
Django project and you want to edit the shopping cart
request handler, so you run vim cart/views.py. Once
Vim is open you realize you need to change a setting so
you type :e settings.py, which opens up the file set-
tings.py in the current window. You can get back to the
other file by running :b views (:b is short for :buffer),
which performs a substring match across all buffers,
or use :b#, which opens the previously viewed buffer.
Buffers become more powerful once you start using
Ctrl-P, which I’ll get to later.

24  PROGRAMMING

A lot of times you’ll want to do some work some-
where other than the file you’re editing and return
afterward, in which case :b# is a godsend. (Or :e#,
I’m not sure if there’s a difference.) It’s so useful that
it deserves a more natural keybinding, like Ctrl-E.
(The default binding is Ctrl-Shift-6, which you’ll
never remember, and nobody knows what Ctrl-E does
anyway.)

:nmap <C-e> :e#<CR>

Vim automatically creates a buffer for each file on
the command line. This is useful from the command
line, such as with vim *.js, or combined with grep/
ack: vim `grep -l foo *.js`. I use this pattern so
often that I bound two keys to cycle between all open
buffers:

:nmap <C-n> :bnext<CR>
:nmap <C-p> :bprev<CR>

Yes, My Editor Does That
Vim has error highlighting through the plugin Syntas-
tic, [hn.my/syntastic] which uses external compilers
and linters to show errors inline with your code. This is
absolutely essential, and it works so well that the short-
ness of my description doesn’t do it justice.

Syntastic uses the current file’s filetype and runs an
appropriate linter or compiler after every save — super
useful for finicky syntaxes of JSON, CSS, and SASS,
not to mention C.

TextMate raised the bar when it introduced it’s “Go
To File…” command which lets you quickly jump to
any file using a fuzzy text search. The best Vim equiva-
lent is Ctrl-P, which not only has a fuzzy file search,
but a fuzzy buffer search as well:

If you use Vim buffers, Ctrl-P’s ability to quickly go
to the buffer you want is life-changing. It’s so useful
that I’ve bound it to ; (and nobody remembers what
; does anyway). Ctrl-P’s file search combined with
buffer search is magnificent; use the file search to open
files related to the task at hand, then use buffer search
to flip in between them.

:nmap ; :CtrlPBuffer<CR>

It’s worth showing a few settings for Ctrl-P. The
following are the settings I use which map it to , t, put
it at the top of the screen, hide unnecessary files from
the search results, and a few more things. Run :help
ctrlp-options to read more about them.

:let g:ctrlp_map = '<Leader>t'
:let g:ctrlp_match_window_bottom = 0
:let g:ctrlp_match_window_reversed = 0
:let g:ctrlp_custom_ignore = '\v\~$|\.(o|swp|p
yc|wav|mp3|ogg|blend)$|(^|[/\\])\.(hg|git|bzr)
($|[/\\])|__init__\.py'
:let g:ctrlp_working_path_mode = 0
:let g:ctrlp_dotfiles = 0
:let g:ctrlp_switch_buffer = 0

A collapsible directory tree is a great tool to explore
a project structure when you don’t know what you’re
looking for or to help keep the project’s organization in
your head. The best file browser plugin is NERD Tree,
[hn.my/nerdtree] which has easy-to-remember key-
board navigation (hit ? in the window for help), mouse
support, and uses little Unicode arrows next to folders.

http://hn.my/syntastic
http://hn.my/nerdtree

  25

It’s also useful to have a key which toggles the vis-
ibility of the tree:

:nmap \e :NERDTreeToggle<CR>

Finally, everybody has a color scheme they’re com-
fortable with. Modern terminals support 256 colors,
but sometimes you need to kick Vim to recognize this:

if $TERM == "xterm-256color" || $TERM == "screen-
256color" || $COLORTERM == "gnome-terminal"
 set t_Co=256
endif

You can’t, unfortunately, start using any gVim theme
immediately, though there’s plugin that tries to make
that happen. There exists a plugin called vim-col-
orschemes [hn.my/vcs] which has bundled hundreds
of themes with 256-color support, such as twilight256
and wombat256. It also includes the popular Zenburn
theme, but its copy isn’t as good as the independently-
maintained zenburn.vim [hn.my/zenburn]. If you want
to see what all of the themes look like, check out vim-
colorscheme page [hn.my/vcspreview] which contains
samples of each theme.

Finally, in terms of visuals, Vim’s default status
line is pretty lacking. A popular plugin is Powerline,
[hn.my/powerline] which displays lots of helpful
things in the status bar including your current git
branch. It also uses colors to cue you into the current
mode as well as when paste is enabled.

(Note: As of this writing it seems that the authors of
Powerline decided to port the plugin to Python, which
unfortunately requires a Vim build with Python sup-
port and complicates its installation. The pure vim-
script version is still available. [hn.my/powerline])

Other People’s Code
If everyone could write code like you, wouldn’t the
world be a great place? Unfortunately, there are still
some jerks who use or don’t use tabs, or maybe they
indent with four spaces instead of two, or vice versa, or
whatever it is that those jerks do. You still need to read
their code and it helps to be able to quickly switch
between popular (and unpopular) tab modes:

:nmap \t :set expandtab tabstop=4 shiftwidth=4
softtabstop=4<CR>
:nmap \T :set expandtab tabstop=8 shiftwidth=8
softtabstop=4<CR>
:nmap \M :set noexpandtab tabstop=8 softtab-
stop=4 shiftwidth=4<CR>
:nmap \m :set expandtab tabstop=2 shiftwidth=2
softtabstop=2<CR>

Those authors might wrap or not wrap lines at 80 or
100 columns or whatever it is you like, so being able to
quickly toggle wrap mode helps:

:nmap \w :setlocal wrap!<CR>:setlocal wrap?<CR>

Conclusion
There are still features I miss from Emacs and other
editors. For example, Emacs has a useful mode
[hn.my/ecss] which highlights hexadecimal colors in
CSS and SASS with the color represented by the text.
It’s smart enough to display light text when the color is
dark and vice-versa.

The biggest hole, however, is the lack of refactoring
and smart completion. The downside of working with
dynamic languages such as JavaScript make writing
refactoring engines hard, but even non-language-spe-
cific editors like Sublime Text make it easy to rename
a variable everywhere within a function. For Python,
there’s a thing called ropevim [hn.my/ropevim] which
adds some refactoring commands, but I’ve found it to
be clunky and unreliable.

Nonetheless, Vim is a great tool, and I hope the
above has been useful. n

Ian Langworth is the co-founder and CTO of Artillery, which aims
to bring console-quality games to the browser using HTML5,
WebGL and other cutting-edge browser technology. Prior to
Artillery, Ian was the first engineering hire at Redbeacon (acquired
by The Home Depot in 2012), and before that he was a Software
Engineer at Google.

Reprinted with permission of the original author.
First appeared in hn.my/vim11 (statico.github.io)

http://hn.my/vcs
http://hn.my/zenburn
http://hn.my/powerline
http://hn.my/powerline
http://hn.my/ecss
http://hn.my/ropevim
http://hn.my/vim11 (statico.github.io)

26  PROGRAMMING

By RIDICULOUS_FISH

“Asswipe,” replied
Yahoo’s server.
That’s when I knew

I had it.
Yahoo’s public chat rooms have

passed away. It is for the best, for
the spam had spread everywhere.
But they had a good run, operating
for a decade and a half, an Internet
eternity.

Here are three funny stories from
the Yahoo chat protocol.

Body and Zoul
Yahoo chat rooms started life as
a Java applet, chugging along in
Netscape Navigator 4. Support
for chat was later added to Pager,
their native app, which did its own
chugging in Visual Basic. Initially,
Pager had custom text rendering,
but then they replaced it with an
HTML view.

Oops. Pager didn’t escape mes-
sage contents, and so it was possible
for a message sender to coax the
recipient into displaying arbitrary
HTML - even fetching images off
the web. XSS in its infancy.

Oh dear, what to do? Not every-
one would install a security update.
But all messages went through
Yahoo’s servers, so they could fix

it server-side: block the attack by
rewriting the messages before send-
ing them along. So Yahoo replaced
the troublesome opening bracket <
with a letter that sort of looked like
a bracket: a capital Z. Messages con-
taining <html> or <body> would be
rewritten to Zhtml> and Zbody>.

And more than a decade later,
this methuselan workaround lives
on:

md55555555555...
Yahoo chat was not as full of sexu-
ally unfulfilled college girls as the
spam bots would have you believe.
Before the captchas arrived in 2007
(which did little in any case), Yahoo
battled the bots by obfuscating the
login protocol. And once the bots
caught up, obfuscating it again.
Rinse and repeat. By the end, the
protocol had grown to outrageous
complexity. A puny excerpt of the
login sequence:

1.	 md5 the user’s password

2.	 md5 the password, followed by
the fixed salt, followed by the
password again

3.	 md5 the password, followed
by a fixed salt, followed by the
second hash, followed by parts
of the password, but inter-
spersed with zeros

4.	 hash the password

5.	 hash the third hash

6.	 Iterate the previous two steps
50 times, including the password
in the hash every seventh time,
and salting the hash too, except
every third time

7.	 md5 the result of that loop...

And we have only barely begun.

Yahoo! Chat — A Eulogy

  27

The Sacred, but Mostly the Profane
fish wrote a client for Yahoo chat, but the pro-
tocol was not public. Reverse engineering the
login protocol for a native OS X client meant
running Ethereal in X11 to inspect a Java pro-
gram running in the OS 9 Classic environment:
a remarkable feat, but man, was it slow going.
For a long time, connection attempts were met
with radio silence and disconnection. Nothing,
nothing, nothing....

And then, all at once, Yahoo unleashed a
stream of filthy, filthy obscenities. Yessss.

You see, Yahoo was concerned that people
might swear on the Internet, so they provided
a list of words that the client should filter. But
this list might need to be updated dynamically,
in case someone on the Internet managed to
think up a new word for sex. So rather than
build the list into the client, they sent it to you
from the server. Right in the first packet. In
alphabetical order. Login successful, bitch.

A kind soul has preserved a packet dump
from a successful login. Cover your children’s
eyes and read the box below:

Eat your heart out, George Carlin.
R.I.P. Yahoo chat. You will be remembered

as you were: a crazy phuc. Whatever that
means. n

ridiculous_fish is a curious programmer perpetu-
ally out of his element. He is channeled by an
engineer who currently works at Apple. Read
more from fish at ridiculousfish.com

59 43 48 54 00 00 01 00 : 00 00 00 01 00 00 01 7F YCHT
41 73 6B 46 6F 72 42 6F : 6F 7A 65 C0 80 61 68 6F AskForBooze¿Äaho
6C 65 2C 61 68 6F 6C 65 : 73 2C 61 73 73 68 6F 6C le,aholes,asshol
65 2C 61 73 73 68 6F 6C : 65 73 2C 61 73 73 77 69 e,assholes,asswi
70 65 2C 62 69 61 74 63 : 68 2C 62 69 74 63 68 2C pe,biatch,bitch,
62 69 74 63 68 65 73 2C : 62 6C 6F 5F 6A 6F 62 2C bitches,blo_job,
62 6C 6F 77 5F 6A 6F 62 : 2C 62 6C 6F 77 6A 6F 62 blow_job,blowjob
2C 63 6F 63 6B 73 75 63 : 6B 65 72 2C 63 75 6E 74 ,cocksucker,cunt
2C 63 75 6E 74 73 2C 64 : 69 63 6B 68 65 61 64 2C ,cunts,dickhead,
66 75 63 6B 2C 66 75 63 : 6B 65 64 2C 66 75 63 6B fuck,fucked,fuck
69 6E 67 2C 66 75 63 6B : 6F 66 66 2C 66 75 63 6B ing,fuckoff,fuck
73 2C 68 61 6E 64 6A 6F : 62 2C 68 61 6E 64 6A 6F s,handjob,handjo
62 73 2C 6D 6F 74 68 65 : 72 66 75 63 6B 65 72 2C bs,motherfucker,
6D 6F 74 68 65 72 2D 66 : 75 63 6B 65 72 2C 6D 6F mother-fucker,mo
74 68 65 72 66 75 63 6B : 65 72 73 2C 6D 75 74 68 therfuckers,muth
61 66 75 63 6B 65 72 2C : 6D 75 74 68 61 66 75 63 afucker,muthafuc
6B 65 72 73 2C 6E 69 67 : 67 61 2C 6E 69 67 67 61 kers,nigga,nigga
73 2C 6E 69 67 67 65 72 : 2C 6E 69 67 67 65 72 73 s,nigger,niggers
2C 70 65 64 6F 66 69 6C : 65 2C 70 65 64 6F 70 68 ,pedofile,pedoph
69 6C 65 2C 70 68 61 67 : 2C 70 68 75 63 2C 70 68 ile,phag,phuc,ph
75 63 6B 2C 70 68 75 63 : 6B 65 64 2C 70 68 75 63 uck,phucked,phuc
6B 65 72 2C 73 68 61 74 : 2C 73 68 69 74 2C 73 68 ker,shat,shit,sh
69 74 73 2C 73 68 69 74 : 68 65 61 64 2C 73 68 69 its,shithead,shi
74 74 65 72 2C 73 68 69 : 74 74 69 6E 67 C0 80 54 tter,shitting¿ÄT
61 6E 67 6F 62 68 C0 80 : 20 C0 80 30 C0 80 31 angobh¿Ä ¿Ä0¿Ä1

Reprinted with permission of the original author.
First appeared in hn.my/ychat (ridiculousfish.com)

http://ridiculousfish.com
http://hn.my/ychat

28  PROGRAMMING

BY GERGELY KALMAN

Porn is a big industry. There
aren’t many sites on the
Internet that can rival the

traffic of its biggest players.
And juggling this immense traf-

fic is tough. To make things even
harder, much of the content served
from porn sites is made up of low
latency live streams rather than
simple static video content. But for
all of the challenges involved, rarely
have I read about the developers
who take them on. So I decided to
write about my own experience on
the job.

What’s the problem?
A few years ago, I was working for
the 26th (at the time) most visited
website in the world — not just the
porn industry: the world.

At the time, the site served up
porn streaming requests with the
Real Time Messaging protocol
(RTMP). More specifically, it used a
Flash Media Server (FMS) solution,
built by Adobe, to provide users
with live streams. The basic process
was as follows:

1.	 The user requests access to some
live stream

2.	 The server replies with an
RTMP session playing the
desired footage

For a couple reasons, FMS wasn’t
a good choice for us, starting with
its costs, which included the pur-
chasing of both:

1.	 Windows licenses for every
machine on which we ran FMS.

2.	 ~$4k FMS-specific licenses, of
which we had to purchase sev-
eral hundred (and more every
day) due to our scale.

All of these fees began to rack up.
And costs aside, FMS was a lacking
product, especially in its function-
ality (more on this in a bit). So I
decided to scrap FMS and write my
own RTMP parser from scratch.

In the end, I managed to make
our service roughly 20x more
efficient.

Getting started
There were two core problems
involved: firstly, RTMP and other
Adobe protocols and formats were
not open (i.e., publically available),
which made them hard to work
with. How can you reverse or parse
files in a format about which you
know nothing? Luckily, there were
some reversing efforts available in
the public sphere (not produced
by Adobe, but rather by osflash.org
who’ve since taken them down) on
which we based our work.

Note: Adobe later released
“specifications” which contained
no more information than what
was already disclosed in the non-
Adobe-produced reversing wiki and
documents. Their (Adobe’s) speci-
fications were of an absurdly low
quality and made it near impossible
to actually use their libraries. More-
over, the protocol itself seemed
intentionally misleading at times.

How I Made Porn 20x More
Efficient with Python

http://osflash.org

  29

For example:
1.	 They used 29-bit integers.

2.	 They included protocol head-
ers with big endian formatting
everywhere — except for a spe-
cific (yet unmarked) field, which
was little endian.

3.	 They squeezed data into less
space at the cost of computa-
tional power when transporting
9k video frames, which made
little to no sense, because they
were earning back bits or bytes
at a time — insignificant gains
for such a file size.

And secondly: RTMP is highly
session oriented, which made it
virtually impossible to multicast an
incoming stream. Ideally, if multiple
users wanted to watch the same live
stream, we could just pass them
back pointers to a single session in
which that stream is being aired
(this would be multicasting). But
with RTMP, we had to create an
entirely new instance of the stream
for every user that wanted access.
This was a complete waste.

My solution
With that in mind, I decided to re-
package/parse the typical response
stream into FLV “tags” (where a
“tag” is just some video, audio, or
meta data). These FLV tags could
travel within the RTMP with little
issue.

The benefits of such an approach:

1.	 We only needed to repackage a
stream once (repackaging was
a nightmare due to the lack
of specifications and protocol
quirks outlined above).

2.	 We could re-use any stream
between clients with very few
problems by providing them
simply with an FLV header,
while an internal pointer to FLV
tags (along with some sort of
offset to indicate where they’re
at in the stream) allowed access
to the content.

I began development in the
language I knew best at the time:
C. Over time, this choice became
cumbersome; so I started learn-
ing Python while porting over my

C code. The
development
process sped
up, but after a
few demos, I
quickly ran into
the problem
of exhaust-
ing resources.
Python’s socket
handling was
not meant to

handle these types of situations:
specifically, in Python we found
ourselves making multiple system
calls and context switches per
action, adding a huge amount of
overhead.

Improving performance: mixing
Python and C
After profiling the code, I chose
to move the performance-critical
functions into a Python module
written entirely in C. This was
fairly low-level stuff: specifically,
it made use of the kernel’s epoll
mechanism to provide a logarithmic
order-of-growth.

In asynchronous socket program-
ming there are facilities that can
provide you with info whether a
given socket is readable/writable/
error-filled. In the past, developers
have used the select() system call to
get this information, which scales
badly. Poll() is a better version of
select, but it’s still not that great,
as you have to pass in a bunch of
socket descriptors at every call.

Epoll is amazing, as all you have
to do is register a socket and the
system will remember that dis-
tinct socket, handling all the gritty
details internally. So there’s no
argument-passing overhead with
each call. It also scales far better
and returns only the sockets that
you care about, which is way better
than running through a list of 100k
socket descriptors to see if they
had events with bitmasks (which
you need to do if you use the other
solutions).

But for the increase in per-
formance, we paid a price: this
approach followed a completely
different design pattern than before.
The site’s previous approach was (if
I recall correctly) one monolithic
process which blocked on receiving
and sending; I was developing an
event-driven solution, so I had to
refactor the rest of the code as well
to fit this new model.

30  PROGRAMMING

Specifically, in our new approach,
we had a main loop, which handled
receiving and sending as follows:

1.	 The received data was passed (as
messages) up to the RTMP layer.

2.	 The RTMP was dissected and
FLV tags were extracted.

3.	 The FLV data was sent to the
buffering and multicasting layer,
which organized the streams and
filled the low-level buffers of the
sender.

4.	 The sender kept a struct for
every client, with a last-sent
index, and tried to send as much
data as possible to the client.

This was a rolling window of
data, and included some heuristics
to drop frames when the client was
too slow to receive. Things worked
pretty well.

Systems-level, architectural, and
hardware issues
But we ran into another problem:
the kernel’s context switches were
becoming a burden. As a result,
we chose to write only every 100
milliseconds, rather than instanta-
neously. This aggregated the smaller
packets and prevented a burst of
context switches.

Perhaps a larger problem lied in
the realm of server architectures:
we needed a load-balancing and
failover-capable cluster — losing

users due to server malfunctions
is not fun. At first, we went with
a separate-director approach,

in which a designated
“director” would try
to create and destroy
broadcaster feeds by
predicting demand. This
failed spectacularly. In
fact, everything we tried
failed pretty substantially.
In the end, we opted for
a relatively brute-force
approach of sharing

broadcasters among the cluster’s
nodes randomly, equaling out the
traffic.

This worked, but with one draw-
back: although the general case was
handled pretty well, we saw terrible
performance when everyone on the
site (or a disproportionate number
of users) watched a single broad-
caster. The good news: this never
happens outside a marketing cam-
paign. We implemented a separate
cluster to handle this scenario, but
in truth we reasoned that jeopardiz-
ing the paying user’s experience for
a marketing effort was senseless —
in fact, this wasn’t really a genuine
scenario (although it would have
been nice to handle every imagin-
able case).

Conclusion
Some statistics from the end-result:
Daily traffic on the cluster was
about a 100k users at peak (60%
load), ~50k on average. I managed
two clusters (HUN and US); each
of them handled about 40 machines
to share the load. The aggregated
bandwidth of the clusters was
around 50 Gbps, from which they
used around 10 Gbps while at peak
load. In the end, I managed to push
out 10 Gbps/machine easily; theo-
retically, this number could’ve gone

as high as 30 Gbps/machine, which
translates to about 300k users
watching streams concurrently from
one server.

The existing FMS cluster con-
tained more than 200 machines,
which could’ve been replaced
by my 15 — only 10 of which
would do any real work. This
gave us roughly a 200/10 = 20x
improvement.

Probably my greatest take-
away from the project was that I
shouldn’t let myself be stopped by
the prospect of having to learn a
new skill set. In particular, Python,
transcoding, and object-oriented
programming, were all concepts
with which I had very sub-profes-
sional experience before taking on
this project.

That, and that rolling your own
solution can pay big. n

Gergely Kalman is a recruiting engineer
with Toptal. With a background in IT-Secu-
rity, Gergely has worked as Lead Developer
for an Alexa Top 50 website serving several
million unique visitors each month. He is a
diligent and motivated worker who likes
to dive in and get things done.

Reprinted with permission of the original author.
First appeared in hn.my/python20 (toptal.com)

http://hn.my/python20
http://mandrill.com

  31

http://mandrill.com

32  PROGRAMMING

By Chris Parnin

I’m writing this article in an apt
state: low-sleep, busy, disorien-
tated, and interrupted. I try all

the remedies: Pomodoro, working
in coffee shops, headphones, and
avoiding work until being distrac-
tion free in the late night.

But it is only so long before inter-
ruption finds a way to pierce my
protective bubble. Like you, I am
programmer, interrupted. Unfortu-
nately, our understanding of inter-
ruption and remedies for them are
not too far from homeopathic cures
and bloodletting leeches.

But what is the evidence and
what can we do about it? Every few
months I still see programmers who
are asked to not use headphones
during work hours or are inter-
rupted by meetings too frequently
but have little defense against these
claims. I also fear our declining abil-
ity to handle these mental work-
loads and interruptions as we age.

The costs of interruptions have
been studied in office environments.
An interrupted task is estimated to
take twice as long and contain twice
as many errors as uninterrupted
tasks [hn.my/czerwinski04]. Work-
ers have to work in a fragmented
state as 57% of tasks are interrupted
[hn.my/mark05].

For programmers, there is less
evidence of the effects and preva-
lence of interruptions. Typically,
the number that gets tossed around
for getting back into the “zone” is
at least 15 minutes after an inter-
ruption. Interviews with program-
mers produce a similar number
[hn.my/vansolingen98]. Neverthe-
less, numerous figures have weighed
in: Paul Graham stresses the differ-
ences between a maker’s schedule
and manager’s schedule. Jason Fried
says the office is where we go to get
interrupted.

Interruptions of Programmers
Based on an analysis of 10,000 pro-
gramming sessions recorded from
86 programmers using Eclipse and
Visual Studio and a survey of 414
programmers [hn.my/parnin10],
we found:

■■ A programmer takes between
10-15 minutes to start editing
code after resuming work from
an interruption.

■■ When interrupted during an edit
of a method, only 10% of times
did a programmer resume work
in less than a minute.

■■ A programmer is likely to get just
one uninterrupted 2-hour session
in a day.

■■ We also looked at some of the
ways programmers coped with
interruption:

■■ For most sessions, programmers
navigated to several locations to
rebuild context before resuming
an edit.

■■ Programmers insert intentional
compile errors to force a “road-
block” reminder.

■■ A source diff is seen as a last
resort way to recover state but
can be cumbersome to review.

Programmer, Interrupted

http://hn.my/czerwinski04
http://hn.my/mark05
http://hn.my/vansolingen98
http://hn.my/parnin10

  33

Worst Time to Interrupt a
Programmer
Research shows (figure 1) that the
worst time to interrupt anyone
is when they have the highest
memory load. Using neural cor-
relates for memory load, such as
pupillometry, studies have shown
that interruptions during peak
loads cause the biggest disruption
[hn.my/iqbal04].

We looked at (figure 2) subvo-
cal utterances during programming
tasks to find different levels of
memory load during programming
tasks [hn.my/parnin11].

If an interrupted person is
allowed to suspend their work-
ing state or reach a “good break-
point,” then the impact of the
interruption can be reduced
[hn.my/trafton03]. However,
programmers often need at least
7 minutes before they transition
from a high memory state to a low

memory state [hn.my/iqbal07]. An
experiment evaluating in which
state a programmer less desired
an interruption found these states
to be especially problematic
[hn.my/fogarty05]:

■■ During an edit, especially with
concurrent edits in multiple
locations.

■■ Navigation and search activities.

■■ Comprehending data flow and
control flow in code.

■■ IDE window is out of focus.

A Memory-Supported Program-
ming Environment
Ultimately, we cannot eliminate
interruptions. In some cases inter-
ruption may even be beneficial.
But we can find ways to reduce
the impact on the memory failures
that often result from interruption.
I introduce some types of memory
that get disrupted or heavily bur-
dened during programming and
some conceptual aids that can sup-
port them.

Prospective Memory
Prospective memory holds remind-
ers to perform future actions in
specific circumstances (e.g., to buy
milk on the way home from work).

Various studies have described
how developers have tried to cope
with prospective memory failures.
For example, developers often leave
TODO comments in the code they
are working on [hn.my/storey08].
A drawback of this mechanism is
that there is no impetus for viewing
these reminders. Instead, to force
a prospective prompt, developers
may intentionally leave a compile
error to ensure they remember to
perform a task [hn.my/parnin10]. A
problem with compile errors is that
they inhibit the ability to switch to
another task on the same codebase.
Finally, developers also do what
other office workers do: leave sticky
notes and emails to themselves
[hn.my/parnin10].

A smart reminder is a reminder
that can be triggered based on
conditions such as a teammate
checking in code, or proximity to a
reminder:

Figure 1

Figure 2

http://hn.my/iqbal04
http://hn.my/parnin11
http://hn.my/trafton03
http://hn.my/iqbal07
http://hn.my/fogarty05
http://hn.my/storey08
http://hn.my/parnin10
http://hn.my/parnin10

34  PROGRAMMING

Attentive Memory
Attentive memory holds con-
scious memories that can be freely
attended to.

Some programming tasks require
developers to make similar changes
across a codebase. For example, if
a developer needs to refactor code
in order to move a component
from one location to another or to
update the code to use a new ver-
sion of an API, then that developer
needs to systematically and care-
fully edit all those locations affected
by the desired change. Unfortu-
nately, even a simple change can
lead to many complications, requir-
ing the developer to track the status
of many locations in the code. Even
worse, after an interruption to such
a task, the tracked statuses in atten-
tive memory quickly evaporate and
the numerous visited and edited
locations confound retrieval.

Touch points allow a programmer
to track status across many loca-
tions in code.

Associative Memory
Associative memory holds a set of
non-conscious links between mani-
festations of co-occurring stimuli.

Developers commonly experi-
ence disorientation when navigating
to unfamiliar code. The disorienta-
tion stems from associative memory
failures that arise when a developer
must recall information about the
places of code they are viewing
or what to view next. Researchers
believe the lack of rich and stable
environmental cues in interface
elements, such as document tabs,
prevent associative memories from
being recalled.

The presence of multiple modali-
ties in a stimulus increases the ability
to form an associative memory.
In this sense, a modality refers to
distinct type of perceptions that
is processed by distinct regions of
the brain, such as auditory or visual
pathways. Examples of different
modalities include lexical, spatial,
operational, and structural. When

multiple modalities are present
in the same stimulus, more
pathways are acti-
vated, thus increas-

ing the chance of forming
an associative memory. In
contrast, a monotonous
stimulus with a single
modality is less likely to
form an associative memory.

An associative link helps a pro-
grammer by situating information of
multiple modalities with a program
element. In particular, by improving
navigating document tabs, which
have default configurations that are
especially spartan and often just
show the name of the document.

Episodic Memory
Episodic memory is the recollection
of past events.

Software developers continually
encounter new learning experiences
about their craft. Retaining and
making use of that acquired knowl-
edge requires developers to recol-
lect those experiences from their
episodic memory. When recalling
from episodic memory, developers
commonly experience failures that
limit their ability to recall essential
details or recollect the key events.
For example, a developer may
forget the changes they performed
for a programming task, or forget
details, such as the blog post that
was used for implementing a part of
the task.

A code narrative is an episodic
memory aid that helps a developer
recall contextual details and the his-
tory of programming activity. Two
narrative structures are currently
supported: A review mode for high-
level recall of events and a share
mode for publishing a coding task
for others.

  35

Conceptual Memory
Conceptual memory is a continuum
between perceptions and abstractions.
How does the brain remember such
objects as a hammer and such concepts
as a tool? The brain first learns basic
features of encountered stimuli, such
as the wood grains and metal curves
of a hammer, and then organizes those
features into progressively higher levels
of abstraction.

Developers are expected to main-
tain expertise in their craft throughout
their careers. Unfortunately, the path to
becoming an expert is not easily walked:
For a novice, evidence suggests this can
be a 10 year journey [hn.my/chi82].
Furthermore, for experts trying to
become experts in new domains, like
the desktop developer becoming a web
developer, there are many concepts that
must be put aside and new ones learned.

Studies examining the difference
between an expert and novice find that
performance differences arise from dif-
ferences in brain activity. Not only do
experts require less brain activity than
novices, they also use different parts of
their brains [hn.my/milton07]: Experts
use conceptual memory whereas novices
use attentive memory. That is, experts
are able to exploit abstractions in con-
ceptual memory, whereas novices must
hold primitive representations in atten-
tive memory.

Sketchlets (alpha) helps a program-
mer form and prime concepts by
supporting abstraction and reviewing
concepts that need to be refreshed.

Future
■■ fMRI studies of programmers. See
preliminary research! [hn.my/prelim]

■■ Will future programmers take
designer nootropics for boosting
memory and attention to keep up?

■■ Can we predict the memory load of
using a language feature or performing
particular programming tasks?

■■ What new tool ideas can be derived
for programmers?

■■ What experiments need to be run?

Interested in participating in an
experiment or have any ideas? Email me
at chris.parnin@gatech.edu n

Chris Parnin is Phd candidate at Georgia Tech
studying software engineering from empirical,
hci, and cognitive neuroscience perspectives. He
toggles between being a professional software
developer and researching them.

Reprinted with permission of the original author.
First appeared in hn.my/interrupted (ninlabs.com)

http://hn.my/chi82
http://hn.my/milton07
http://hn.my/prelim
mailto:chris.parnin@gatech.edu
http://hn.my/interrupted

SPECIAL

36  SPECIAL

By Maroun Najjar

Sleep: Everything You
Need To Know

We spend one third
of our lives sleep-
ing — it’s crucial for

muscle recovery, fact retention and
preparing the body to operate at
full speed the next day. Sleep is one
of the most important things when
it comes to day-to-day happiness.
But what about students studying
late into the night reducing the
amount of information they retain?
Or athletes sleeping in warm and
loud environments missing out on
crucial muscle and immune system
recovery?

Sleep is a powerful tool that
when leveraged the right way can
help improve your quality of life
tremendously. Many people see
sleep as this complex dark place
and don’t know the first thing
about making it better.

A couple months ago, I was one
of those people.

I Slept Like Crap
What you see above is my aver-

age week of sleep last fall. Yes, I
slept 4 hours and 30 minutes on
average with less than 90 minutes
of REM and Deep. Mind you, this
was in the middle of one of my
toughest semesters, I was lifting
daily, running notely and under a
ton of stress.

I felt like complete shit. All. The.
Time.

There was not a single point in
the day where I wouldn’t think “I’m
tired.” I hated waking up. My lifting
stalled. Large coffees with a turbo
shot weren’t enough to keep me
awake so I would rely on two 24oz
Monster Energy drinks daily.

Then, something interesting hap-
pened. Last January, I started work-
ing for a sleep technology startup.
As a product manager, my job was
to make the best product possible
that would help people improve
their sleep.

I walked into the office on Janu-
ary 9th and suddenly had access to
some of the most knowledgeable
people on sleep out there.

So I took the opportunity and I
learned as much as I could about
sleep. I asked questions and began
deciphering what had been one of
the most stressful aspects of my life.

Here is what I learned.

  37

Sleep Affects Everything
Fact retention, muscle recovery,
hormone regulation and alertness.
Sleep influences everything.

Let’s take someone who just
had a horrible night of sleep: Their
hormones are going to be all over
the place the next day. They will be
tempted to eat starchy carbs and be
more prone to putting on fat due to
carbs.

If you slept like crap, stay away
from carbs the next day.

What Exactly is REM and Deep
Sleep?
When you sleep you undergo sev-
eral phases: REM, Light and Deep.
Your typical night of sleep looks
something like this:

My night of sleep the night I
went home after finals... I had some
catching up to do.

Deep + Light Sleep:
Think of deep sleep as recovering
from the day. Here’s what happens:

■■ You enter Deep Sleep earlier in
the night (the later you go to
sleep, the less Deep Sleep you
get).

■■ Your neurons slow down reduc-
ing the stimuli that comes into
your brain, causing your body to
release growth hormones that
help muscle tissue and immune
system recovery.

■■ If you drink caffeine, any amount
will reduce your deep sleep. Keep
it to small doses earlier in the
day.

■■ Crucial for fact retention. While
in Deep Sleep your mind replays
your short-term memories in the
hippocampus.

REM Sleep
So you’ve recovered from the day
— awesome. Now let’s prepare
to get you operating at full speed
tomorrow. That’s where REM sleep
comes in:

■■ In REM your short-term memo-
ries are transferred over to your
long-term memory (procedural)
area of the brain.

■■ While Deep increases the
amount of facts you remember,
REM increases your ability to
make connections between those
facts, which is especially impor-
tant for creatives.

■■ REM sleep affects whether you
feel refreshed and focused the
next day.

Now that we have a basic
understanding of what REM and
Deep sleep are, let’s take a look at
everyone’s favorite drug.

Caffeine and Sleep
Caffeine is a wonderful thing; it can
help get you through those slow
mornings and crank out a ton of
work. Plus, coffee is just delicious.
Here are two things to keep in
mind:

■■ Caffeine will reduce the amount
of deep sleep you get. The more
caffeine you have, and the later
you have it, the less deep sleep
you’ll get.

■■ Caffeine has a half-life of just
under six hours (it takes a while
to get out of your system).

■■ If you don’t want caffeine to
affect your sleep, don’t drink it
after 3pm.

Napping
What about napping?

■■ Naps are an awesome way to
get some extra rest in the day
(our Nap room in the office is in
pretty high demand).

■■ If you’re already struggling with
sleeping at night, then don’t nap.

■■ The earlier in the day, the better.

Things You Should Focus On To
Improve Your Sleep
Here are the four most powerful
areas you should focus on to take
control of your sleep.

➊ Set Up A Sleep Schedule
Consistency, consistency,

consistency.

■■ Go to sleep at the same time and
wake up at the same time.

■■ This is arguably more important
than how long you sleep.

■■ When you stick to a sleep
schedule you will feel amazing
throughout the day as your circa-
dian rhythm will be set and you’ll
be able to keep it consistent.

■■ Use a 40 minute sleep window.
For example, I go to sleep any-
time between 11:20-12:00 every
night and wake up at 7. This
ensures I’m hitting 7+hours a
night.

38  SPECIAL

➋ Quiet, Dark and Cool
Sleeping in the right atmo-

sphere is crucial to getting a good
night’s sleep.

■■ Keep it quiet. Your brain doesn’t
turn off when you go to sleep. We
are still sensitive to noise when we
sleep and any sounds can awaken
us throwing off our sleep cycles.

■■ Possibly the best thing I’ve done
for my sleep is wear earbuds.
There is nothing that compares
to sleeping in absolute silence.
Don’t get crappy earbuds either;
check out Mack’s Earbuds.
[hn.my/mack]

■■ Keeping your room cool and
drinking cold water right before
bed is a great way to stimulate
more deep sleep.

■■ Sleep in the dark. Get dark
shades or a tempur-pedic iMask.
You don’t want to be woken up
by the sun. You want your body
to sleep for as long as it needs to
in a dark and quiet environment.

■■ Sleeping with socks also helps
keep your extremities warm
which can increase your deep
sleep.

➌ Relaxation
It’s crucial to learn to relax

right before bed. We are constantly
in two different states:

Parasympathetic: The state of rest
and digest. While in this state your
blood pressure and heart rate go
down. Your digestion increases, and
you are in a state of relaxation.

This is the opposite of the
Sympathetic, which is a state of
"readiness.”

Learn to relax. Create a before
bed routine; dim the lights and read
a book to get your body used to

“relaxing.” Yoga is amazing at get-
ting you in the state of relaxation.
Ambient sounds and white noise
are also great alternatives.

➍ Track It
Just like putting on muscle,

losing weight, becoming faster or
stronger, you need to track your
progress.

Chances are you don’t have the
slightest idea of how well you sleep.
You need to track it to get a picture
of what you’re working with and
then use those measurements to
calculate progress.

When I started, I tracked my
sleep nightly. I’ve now gotten to the
point where I track it for one full
week once a month as a “check-
point” to see how I’m doing. If my
sleep is bad, then I work to fix it
and track it along the way.

Here’s what I recommend: Pick
one of the methods below and
track your sleep for five days. Get
a picture of what your sleep looks
like and then if you see a need for
improvement, test out the methods
above.

Methods to Track Your Sleep
Stopwatch (free)

■■ Tracks: Sleep Duration

■■ What is it: A simple stopwatch.
Start it before bed and stop it
when you wake up.

Sleep101 [sleep101app.com] and
other “Sleep Tracking” apps (free)

■■ Tracks: Sleep Duration, Awake
vs. Asleep, Time to Fall Asleep,
Sleep Efficiency

■■ What is it: A free sleep app
that we launched while I was
at Zeo. You put it on your bed
and it picks up on your move-
ments throughout the night

and determines how deeply
you’re asleep. I’d recommend
this solution because it is free,
provides a hefty amount of data
and is almost as accurate as wrist
devices.

Wrist Devices ($99-$150)
■■ Tracks: Sleep Duration, Awake
vs. Asleep, Time to Fall Asleep,
Sleep Efficiency

■■ What is it: A wristband that you
wear while sleeping. It relies on
wrist movements to determine
how deeply asleep you are. There
are several of these on the market
like the Jawbone Up, Fitbit, etc.

Zeo [myzeo.com] ($99)
■■ Tracks: Deep Sleep, Light Sleep,
REM Sleep, Sleep Duration,
Awake vs. Asleep, Time to Fall
Asleep, Overall Sleep Quality.

■■ What is it: A headband that you
wear when you go to sleep. It
uses brainwaves, eye movement
and actigraphy to determine you
sleep stages. This is one of the
very few things on the market
that can measure your actual
sleep stages. I’d recommend this
for athletes especially.

Sleep affects everything. If you’re
feeling stressed, exhausted and
unfocused, then take a look at your
sleep. It’s a lot easier to take control
of than you might think.

Sleep Better. Live Better. n

Maroun is a User Experience Researcher
at Kicksend and an Engineering student
at Northeastern. He’s fascinated by health
and technology and building great experi-
ences where those two converge.

Reprinted with permission of the original author.
First appeared in hn.my/sleep (medium.com)

http://hn.my/mack
http://sleep101app.com
http://myzeo.com
http://hn.my/sleep

Engineers rebuilding the infrastructure
that powers finance. careers.addepar.com

http://careers.addepar.com

Tealeaf Academy
an online school for developers

{
 join: 'Intensive Online Bootcamp',
 learn: 'Web Development',
 goto: 'http://www.gotealeaf.com'
}

Learn Ruby on Rails | Level up Skills | Launch Products | Get a Job

40  SPECIAL

Tealeaf Academy
an online school for developers

{
 join: 'Intensive Online Bootcamp',
 learn: 'Web Development',
 goto: 'http://www.gotealeaf.com'
}

Learn Ruby on Rails | Level up Skills | Launch Products | Get a Job

http://gotealeaf.com
http://gotealeaf.com

	Contents
	FEATURES
	The Exploding Toilet
	Growing Tomatoes

	STARTUPS
	Making A Physical Product
	The Freelancer’s Guide To Recurring Revenue

	PROGRAMMING
	Vim After 11 Years
	Yahoo! Chat — A Eulogy
	How I Made Porn 20x More Efficient with Python
	Programmer, Interrupted

	SPECIAL
	Sleep: Everything You Need To Know

