
Issue 37  June 2013

How To Land An Airplane
Eduardo Mourao

Engineers rebuilding the infrastructure
that powers finance. careers.addepar.com

http://careers.addepar.com

Engineers rebuilding the infrastructure
that powers finance. careers.addepar.com

Now you can hack on DuckDuckGo

Create instant answer plugins for DuckDuckGo

duckduckhack.com

Now you can hack on DuckDuckGo

Create instant answer plugins for DuckDuckGo

DuckDuckHackDuckDuckHack

package DDG::Goodie::Unidecode;# ABSTRACT: return an ASCII version of the search query use
DDG::Goodie; use Text::Unidecode; zci is_cached => 1; zci answer_type => "convert to ascii"; triggers
startend => "unidecode"; handle remainder => sub { my $u = unidecode $_; # unidecode output some-
times contains trailing spaces $u =~ s/\s+$//; return $u; }; 1; package DDG::Goodie::Rot13; #
ABSTRACT: Rotate chars by 13 letters use DDG::Goodie; triggers start => 'rot13'; handle remainder =>
sub { if ($_) { $_ =~ tr[a-zA-Z][n-za-mN-ZA-M]; return "ROT13: $_"; }; return }; zci is_cached => 1; 1;
package DDG::Goodie::Base64; use DDG::Goodie; use MIME::Base64; use Encode; triggers startend =>
"base64"; zci answer_type => "base64_conversion"; zci is_cached => 1; handle remainder => sub {
return unless $_ =~ /^(encode|decode|)\s*(.*)$/i; my $command = $1 || ''; my $str = $2 || ''; if ($str) { if (
$command && $command eq 'decode') { $str = decode_base64($str); $str = decode("UTF-8", $str);
return "Base64 decoded: $str"; } else { $str = encode_base64(encode("UTF-8", $str)); return "Base64
encoded: $str"; } } return; }; 1; package DDG::Goodie::Chars; # ABSTRACT: Give the number of charac-
ters (length) of the query. use DDG::Goodie; triggers start => 'chars'; zci is_cached => 1; zci
answer_type => "chars"; handle remainder => sub { return "Chars: " .length $_ if $_; return; }; 1; pack-
age DDG::Goodie::ABC; use DDG::Goodie; triggers any => "or"; zci answer_type => "rand"; handle
query_parts => sub { my @choices; my @collected_parts; while (my $part = shift) { if (lc($part) eq 'or') {
return unless @collected_parts; push @choices, join(' ', @collected_parts); my $length =
@collected_parts; return if $length > 1; @collected_parts = (); } elsif ($part) { push @collected_parts,
$part; } } push @choices, join(' ', @collected_parts) if @choices && @collected_parts; return if
scalar(@choices) <= 1; my $choice = int(rand(@choices)); if (my @duck = grep { $_ eq 'duckduckgo' || $_
eq 'duck' || $_ eq 'ddg' } @choices) { return $duck[0]." (not random)", answer_type => 'egg'; } return
$choices[$choice]." (random)"; return; }; 1; package DDG::Goodie::PublicDNS; use DDG::Goodie; use

sub { if ($_) { $_ =~ tr[a-zA-Z][n-za-mN-ZA-M]; return "ROT13: $_"; }; return }; zci is_cached => 1; 1;
package DDG::Goodie::Base64; use DDG::Goodie; use MIME::Base64; use Encode; triggers startend =>
"base64"; zci answer_type => "base64_conversion"; zci is_cached => 1; handle remainder => sub {
return unless $_ =~ /^(encode|decode|)\s*(.*)$/i; my $command = $1 || ''; my $str = $2 || ''; if ($str) { if (
$command && $command eq 'decode') { $str = decode_base64($str); $str = decode("UTF-8", $str);
return "Base64 decoded: $str"; } else { $str = encode_base64(encode("UTF-8", $str)); return "Base64
encoded: $str"; } } return; }; 1; package DDG::Goodie::Chars; # ABSTRACT: Give the number of charac
ters (length) of the query. use DDG::Goodie; triggers start => 'chars'; zci is_cached => 1; zci
answer_type => "chars"; handle remainder => sub { return "Chars: " .length $_ if $_; return; }; 1; pack
age DDG::Goodie::ABC; use DDG::Goodie; triggers any => "or"; zci answer_type => "rand"; handle
query_parts => sub { my @choices; my @collected_parts; while (my $part = shift) { if (lc($part) eq 'or') {
return unless @collected_parts; push @choices, join(' ', @collected_parts); my $length =
@collected_parts; return if $length > 1; @collected_parts = (); } elsif ($part) { push @collected_parts,
$part; } } push @choices, join(' ', @collected_parts) if @choices && @collected_parts; return if
scalar(@choices) <= 1; my $choice = int(rand(@choices)); if (my @duck = grep { $_ eq 'duckduckgo' || $_

http://careers.addepar.com
http://duckduckhack.com

4  ﻿

Curator
Lim Cheng Soon

Contributors
Rohin Dhar
Eduardo Mourao
Jeff Nelson
David Lieb
Chris Taylor
Dominik Dabrowski
Mike Krieger
Andrew Wulf
Sash MacKinnon
Jon Bell

Illustrator
Matthew Billington

Proofreaders
Emily Griffin
Sigmarie Soto

Ebook Conversion
Ashish Kumar Jha

Printer
MagCloud

Hacker Monthly is the print magazine version
of Hacker News — news.ycombinator.com, a social news
website wildly popular among programmers and startup
founders. The submission guidelines state that content
can be “anything that gratifies one’s intellectual curios-
ity.” Every month, we select from the top voted articles
on Hacker News and print them in magazine format.
For more, visit hackermonthly.com

Advertising
ads@hackermonthly.com

Contact
contact@hackermonthly.com

Published by
Netizens Media
46, Taylor Road,
11600 Penang,
Malaysia.

Hacker Monthly is published by Netizens Media and not affiliated with Y Combinator in any way.

Cover Illustration: Matthew Billington

http://news.ycombinator.com
http://hackermonthly.com
mailto:ads@hackermonthly.com
mailto:contact@hackermonthly.com

  5

For links to Hacker News dicussions, visit hackermonthly.com/issue-37

Contents
FEATURES

06  The Jellyfish Entrepreneur
By RoHin Dhar

16  How To Land An Airplane If
You Are Not A Pilot
By Eduardo Mourao

STARTUP

22  Inventing Chromebook
By Jeff Nelson

25  Cognitive Overhead
By David Lieb

PROGRAMMING

30  The Algebra of Algebraic Data Types
By Chris Taylor

36  Python Libraries You Should Know About
By Dominik Dabrowski

42  Handling Growth with Postgres
By Mike Krieger

Alex Andon, jellyfish entrepreneur.

SPECIAL

46  How Hotel Reservations Work
By Andrew wulf

52  What It’s Like To Die
By Sash Mackinnon

54  McDonald’s Theory Of Bad Ideas
By Jon Bell

http://hackermonthly.com/issue-37

FEATURES

The Jellyfish Entrepreneur
By RoHin Dhar

6  FEATURES

When Alex Andon got his
first order for a $25,000
jellyfish tank installation,

he was excited. He also had a problem.
He didn’t know anything about jel-
lyfish or how to make a jellyfish tank.
He had a hunch that people wanted
to keep jellyfish as pets, so he created
a test website and bought $100 in
Google search ads. Lo and behold, his
phone started ringing with enquires
and he got his first order for the
$25,000 jellyfish tank.

Today, Alex’s company Jellyfish Art
[jellyfishart.com] is the leading com-
pany in the jellyfish pet space. In fact,
they’re pretty much the only company

in the space. When they launched over
four years ago, the only way to keep
jellyfish at home was to pay a custom
installer $10,000 – $25,000. After
starting as a custom installer, Alex later
developed a desktop jellyfish tank that
brought the price of jellyfish ownership
down to $500.

Along the way, he launched one of
the first popular Kickstarter campaigns,
received funding from Y Combinator,
and created a market that didn’t exist
before.

This is the story of Alex Andon and
Jellyfish Art, the world’s only jellyfish
startup.

http://jellyfishart.com

  7

Who Wants a Pet Jellyfish?
While the market for pet fish is esti-
mated to be around $2 billion a year,
the market for jellyfish is tiny. Part of
the reason is that if you put a jellyfish
in a regular fish tank, it will instantly
be sucked into the filter and die. The
other reason, according to Alex, is that
until the 1990s there were no jellyfish
exhibits at aquariums. In 1992, the
Monterey Bay Aquarium took a chance
on one, and launched the first major
jellyfish exhibit in the United States. It
was a smash hit.

The key to housing jellyfish without
killing them was developed in 1960s
by German oceanographer Wolfe
Greve to house plankton. If a jellyfish
tank’s water intake and outtake rate are
not perfectly in sync, BOOM, you get
liquefied jellyfish. Dr. Greve had pre-
viously designed a tank that he called
the “Kreisel” tank that could solve this
problem with a perfectly balanced
filtration system (kreisel is German for
carousel).

Kreisel tanks look like the fat cross
section of a cylinder. A slow circular
water flow along the edge of the tank
keeps the jellyfish suspended in the
middle and away from the filter. All
water flowing into the tank is sprayed
in a flat laminar sheet in front of the
exit screen. If jellyfish get close to the
exit screen, the incoming water blows
them away to safety. The water flowing
out of the tank goes through a screen
with sufficiently large surface area
to prevent any points of suction that
could suck a jellyfish in. Only small
particles pass through the exit screen,
filtering the tank while the jellyfish
remain safe in the center.

Most jellyfish look nondescript.
They’re practically transparent until
you shine LED lights on them or pro-
vide a background color.

 But if you create the right setting,
jellyfish are stunning.

8  FEATURES

Proof of Concept
In late 2007, Alex was itching to start a
company, any kind of company at all. He
was two years out of college and living
with tech entrepreneurs in a house in
San Francisco. He worked as a lab tech-
nician at a struggling biotech firm.

A marine biology major in college,
Alex noticed that jellyfish exhibits
completely mesmerized aquarium visi-
tors: “People seemed to have an obses-
sive infatuation with the jellies. Some
people would sit in front of the tanks
for hours staring at them.” Since the
jellyfish exhibits were so popular, he
decided to explore whether there was a
market for pet jellyfish.

He discovered that it was possible to
keep jellyfish as pets, and possible to
catch them as well. Based on studying
the design of jellyfish tanks at aquari-
ums and conversations with breeders,
he concluded that it was technically
feasible to sell jellyfish to consumers.

But was there any actual demand?
To find out, Alex put up a landing

page advertising the services of his (at
this point non-existent) custom jelly-
fish tank installation business.

 Alex then started a Google Adwords
advertising campaign, targeting search
terms like “jellyfish tank.” His phone
started ringing with potential cus-
tomers. Before he had spent $100
on Adwords, he made his first sale, a
$25,000 custom jellyfish tank for a
restaurant opening in Seattle.

The First Sale
Alex made the sale, but now he had a
problem: he had to deliver on the tank
he promised. Alex had a general under-
standing of jellyfish tank construction
based on googling around and talking
to experts, but he didn’t have enough
expertise to deliver the product.

Daniel Pon, a home aquarium and
maintenance expert (who now works
at Jellyfish Art in addition to running
his own aquarium business) remembers
first meeting Alex around this time:

“I had lunch with him and afterwards
was like “this guy is in way over his
head.” He doesn’t know how basic
things about a fish tank work and
he’s going to make a $25,000 jellyfish
tank?”

The experience of selling his first
jellyfish tank was, as Alex put it, “a
complete disaster.” Eventually Alex
found a local aquarium builder to build
the tank on his behalf. He got a fishing
permit and caught some jellyfish in a
bay near San Francisco. He then had to
get the tank and jellyfish up to Seattle
for installation while the restaurant was
still under construction:

“A little before Christmas, a friend and
I drove the tank up to Seattle. It was
bad. It was filled with water and jel-
lyfish so the truck weight was 3 times
its legal payload.”

  9

“It started snowing really hard on the
way up. We had to get chain control
and put chains on our tires. I’d never
done that before. We went through 3
sets of chains.”

When he arrived in Seattle, the jelly-
fish were dead. That wasn’t such a big
deal because they could be replaced.
The main issue was setting up the jel-
lyfish tank. Alex worked for five days
straight with the construction company
to get it installed properly. He slept at
the construction site every night.

Alex got the tank installed in time
for the restaurant’s opening. But the
tank had a few hiccups. One day, a
pipe broke and dumped 100 gallons of
water into the restaurant. Other minor
problems arose, too, though according
to Alex, the restaurant was annoyed,
but pretty cool about it. They still use
the tank today, but now for fish.

Alex Andon, Jellyfish Consultant
And so with one customer under
his belt, Alex decided to go into the
jellyfish business. His website and
advertising campaign kept producing
customer leads for people that wanted
custom jellyfish tanks installed. At the
same time, the biotech company Alex
worked for was struggling during the
recession and looking for volunteers
to leave the company in exchange for
severance. Alex left biotech and com-
mitted to jellyfish.

He found working in the custom jel-
lyfish tank installation business brutally
difficult, but he earned an understand-
ing of tank design, and the aquarium
and pet supply industry.

Alex realized that he needed to build
an affordable jellyfish tank. Over the
course of a year, he finished only 3
custom installations. The market for
$25,000 tanks was very small and too
labor-intensive to scale. Instead of sell-
ing his installation services, he needed
to sell a product.

Around February 2009, Alex put up
a landing page on his website offering
a desktop jellyfish product for around
$500. He put up a photoshopped
image of a tank that didn’t quite exist
yet. Based on the advice of his software
engineer roommates, he posted it to
Hacker News.

10  FEATURES

Around this time, he got his big
break, even though he wasn’t quite
ready for it. The New York Times pro-
filed him in article about people start-
ing businesses after they lost their jobs
during the recession. The article led to
an influx of traffic to his site, but his
affordable desktop jellyfish tank wasn’t
ready yet, so it didn’t lead to any new
sales. Still, the article put Alex on the
map as “the jellyfish entrepreneur.”
From March 2009 onwards, almost
every article about jellyfish in the
popular press mentioned Jellyfish Art.

The Desktop Jellyfish Product Ver-
sion 1.0
A few months after the New York
Times article, the first version of the
company’s desktop jellyfish product
was ready for sale. It was a bit of a
Franken-aquarium, hacked together
from various off-the-shelf aquarium
parts. But it worked. It kept the jelly-
fish alive, made them look pretty, and
cost around $500.

Sales of the desktop jellyfish tank
started to take off. The New York
Times article ushered in a wave of
articles by other publications about
Jellyfish Art. Now, when visitors came
to the site, they could actually buy the
product. It began to look like a real
business with a scalable product.

The increase in sales, however,
exposed a critical problem in the busi-
ness that Jellyfish Art struggles with to
this day. Alex had succeeded in making
an affordable jellyfish tank that people
wanted. But where was he going to get
a reliable supply of jellyfish to sell?

The Jellyfish Supply Chain
When Alex started Jellyfish Art, he
caught the jellyfish himself. He got
stung frequently. As an aside, you are
NOT supposed to urinate on a jelly-
fish sting. This appears to be an urban
legend derived mostly from an episode
of Friends in the 1990s. Just flush it out
with vinegar or if that’s not available,
salt water. Okay?

But back to the subject at hand.
Where did Alex get the jellyfish supply
from?

“Basically, I just asked everyone. One
local aquarium gave me a list of a few
people who might be able to help. One
of them was my guy in [place redacted
for competitive reasons] and he worked
out.”

  11

This supplier, who lived in a tropical
island far from San Francisco, put 500-
1000 jellyfish in Styrofoam coolers and
shipped them via commercial carrier to
San Francisco. This means they flew in
the cargo section of a regular passenger
plane. Alex monitored the flight online
and picked up the jellyfish at San Fran-
cisco Airport, like you might pick up
your in-laws.

The jellyfish stock is kept at the com-
pany’s warehouse and office in Potrero
Hill, San Francisco.

 When an order is placed, they ship
the jellyfish to the customer by FedEx
overnight. Jellyfish can survive 48-72
hours in shipping so even if there is a
delay, the jellyfish normally shows up
alive. By contrast, fish typically die after
twelve hours of transit. The average
jellyfish lives for 6 months and Jellyfish
Art guarantees that they arrive alive.

The supply chain worked this way
for a year. Then one day, the tropical
supplier went to his jellyfish catching
spot and couldn’t catch a single one.

All of them were gone. Every week he
checked out the same spot, but every
week he went home empty-handed.

But Jellyfish Art survived. Thanks
to his increased market exposure, it
was easier to get jellyfish. If you breed
jellyfish and want to sell them, Alex is
the only game in town. He managed to
find a decent supplier in Europe that
provided just enough supply.

Let’s Make Our Own Product
After a year of rising sales selling
another company’s fish tank retrofitted
with their own filtration system, Alex
decided it was time for Jellyfish Art to
develop its own tanks. Buying someone
else’s tanks was expensive and manu-
ally retrofitting each one was a pain.

At this point, two and a half years
after getting started, Alex knew enough
to design Jellyfish Art’s signature prod-
uct: the desktop jellyfish tank. His
original “napkin” design is below:

12  FEATURES

 It took another year to get to pro-
duction. By March of the next year,
they had a barely functioning proto-
type that they unveiled at the Global
Pet Expo. The Expo is the largest trade
show in the pet industry that is domi-
nated by companies with huge market-
ing budgets. It normally caters to dog
and cat owners. Alex and his team had
the smallest booth, but they won best
new product of the year in the aquar-
ium category.

And Now, 3 Years After Its Start,
Jellyfish Art is an Overnight Success
After winning at the Expo, things start
happening pretty fast for Jellyfish Art.
They found a Chinese manufacturer
for their tanks, but it was still going to
be expensive to kick off production,
so they secured a small business loan.
Around the same time, Alex heard
about Kickstarter. He figured it could
be a good way to get orders and fund
the manufacturing.

In August 2011, they launched a
Kickstarter campaign aiming to raise
$3,000. This was the amount of pre-
orders they had gotten so far based
on being in the New York Times and
winning the Pet Expo. It seemed like an
aggressive but doable goal.

 They ended up raising $162,917 on
Kickstarter. For the first few days of
the campaign, sales trickled in. Then
rap artist Jermaine Dupri tweeted out
about the campaign and it massively
spiked. After that tweet, everything
changed in the campaign. More blogs
started covering it, and Alex went on
local TV and radio to talk about the
campaign.

Almost immediately after they were
“blowing up on Kickstarter,” Alex and
Jellyfish Art decided to apply to Y
Combinator, the technology startup
incubator and investment firm. In their
application to Y Combinator, they
posited that they could use jellyfish as
a beachhead to become the “Amazon

  13

for pets.” They were accepted into the
Y Combinator Winter 2012 batch.

Mistakes Were Made
After a meteoric rise in the fall of
2011, gravity set in during the winter
of 2012. As they started Y Combina-
tor, Alex realized that the “Amazon
for pets” idea wasn’t a very good one.
Shipping around live animals in boxes
like Amazon is a niche industry with
low margins. The big money in pets is
in dogs and cats.

After toying with the idea of creating
a database of dog breeders to connect
people with the types of dogs they
want, Alex decided against the idea.
Their existing business, Jellyfish Art,
offered no advantages for starting a
dog breeder matching service. Between
starting a breeders database from
scratch and staying in the world of jel-
lyfish, they chose jellyfish.

During YC, Alex felt pressure to have
a jellyfish sales chart that was “up and
to the right.” Immediately after they
shipped off the jellyfish tanks to their
Kickstarter backers, they launched a
sale on Fab.com, a flash sale site. The
sale on Fab.com was their single larg-
est source of sales ever, but it came at
a cost. Jellyfish Art offered the same
discount on Fab as they offered their
Kickstarter backers. The Kickstarter
backers were livid that they received
the same treatment even though Kick-
starter backers funded the business

and put up with a 6 month wait. Some
of the people that should have been
the biggest supporters of Jellyfish Art
turned on the company.

In the wake of massive sales growth
from Kickstarter and Fab, Alex started
hiring for staff and investing in sys-
tems to make the business work. Sales
were skyrocketing every day, and it was
unclear just how massive this business
could become. Alex explains:

“As fast as money was coming in the
door, it was flying out. We also had
no idea how high the sales would go,
whether we should be bracing for more
growth or planning for stability. It
turned out our product was too expen-
sive for many of the large retail chains
that originally showed interest, so sales
eventually leveled out.”

As time went on, it became clear
that sales wouldn’t continue to rise
as quickly as they had in the past
few months. What was previously a
profitable business was now barely so
because they were spending money
as if it were a high growth startup. As
sales started to flatten out, Alex let go
of half his staff.

Despite deciding against the “Amazon
for Pets” idea, they received offers from
investors to fund the idea after YC
Demo Day. Alex decided to turn down
the funds. Even if someone was willing
to fund it, it was not the business he
wanted to start.

14  FEATURES

The Current Situation
According to Alex, over the last year,
sales have been strong but flat. Anyone
in the world willing to pay $500 for
jellyfish buys the product from Jellyfish
Art. The first reason that sales are flat is
because they have almost 100% market
share. It’s hard to improve on that. No
competitors have emerged, and if you
Google anything jellyfish related, you
inevitably end up at the Jellyfish Art
website or read an article about the
company. Even Wikipedia uses images
of their products in its entries. When
asked if he was worried about competi-
tion, Alex demurred. The Jellyfish Art
marketing machine would be hard to
unseat.

So, the market of people willing to
spend $500 for a jellyfish tank and
jellyfish is basically tapped. According
to Alex, what Jellyfish Art needs to do
is roll out a $100 tank and open up a
much larger market and get shelf space
in large retailers.

In fact, they’ve already built a low
cost jellyfish tank, but they can’t release
it. If their demand increased 5-10 times
by offering their cheaper tank, they
couldn’t source enough jellyfish. They
currently sell just about every jellyfish
they can get their hands on.

The whole fate of the business hangs
on whether they can breed their own
jellyfish. They’re sort of getting the
hang of it, but right now they breed
10% of their supply and buy the other
90%. Once they reliably nail the pro-
cess of producing jellyfish, then they
can lower their prices grow again.

Conclusion

At every stage in Jellyfish Art’s evolu-
tion, Alex Andon definitely sold well
ahead of his capabilities. Without
knowing much about jellyfish, he sold
a $25,000 tank. Before he could build
his own tank, he jerry-rigged another
company’s tank to hold jellyfish. Once
he had a barely functioning prototype,
he entered it in a trade show and won
first prize. Alex was a “fake it till you
make it” entrepreneur par excellence.

  15

But then, he made it. The home jel-
lyfish market is small, but Jellyfish Art
both created it and dominates it. With
the business stable, Alex has had time
to experiment with living in a van in
San Francisco (he doesn’t recommend
it), building a website for artisans to
sell their crafts, and figuring out what
he wants to do with his life.

Living in San Francisco with a bunch
of tech entrepreneurs has heavily influ-
enced Alex. He will tell you that what
he really wants to do now is start a
successful tech company. Alex thought
he could turn Jellyfish Art into a tech
business, but he couldn’t. It’s a jellyfish
business. But that’s still pretty awe-
some. n

Rohin Dhar is the co-founder of Priceonom-
ics Price Guides. He is also the co-founder of
Personforce job boards and has an MBA from
Stanford and BA from Dartmouth.

Reprinted with permission of the original author.
First appeared in hn.my/jellyfish (priceonomics.com)

http://hn.my/jellyfish

16  FEATURES

How To Land An Airplane
If You Are Not A Pilot

By Eduardo Mourao

  17

At flight school people
always ask me:

“Can I land a plane? I have X years of
flight simulator experience.”

The short answer is: history shows
you will probably die. Not necessar-
ily because it is difficult, but because
you don’t know what you don’t know.
Flight simulators distort important
aspects of landing airplanes: your
awesome 200 degrees/3D vision, the
muscle mechanics of flying and the
notion of distance. In fact, flight simu-
lators are harder than the real thing.
Yet, many people in the flight school I
teach landed their first flight without
the need for intervention. I landed an
airplane for the first time when I was
11 years old. With a bit of luck you can
do this by yourself. So, in case of an
emergency, this is what you could do...

There are many types of airplanes,
but when it comes to landing there are
pretty much two classes: heavy and
light. This is more related to lift/weight
ratio (and wing type) than the actual
the size of the airplane. I will show
you how you can land light airplanes
in the easiest way possible, as long as
you first open any flight simulator right
now (xplane for iPhone is ok) and
understand the basic controls (pitch,
roll, yaw) and the relationship between
speed and angle of attack. Playing
with it for 10 minutes (at low speeds)
should suffice. The basic mechanics are

good enough. Keep in mind that brains
are incredible machines and can learn
things automatically, but you need to
stay calm. For instance, my wife learned
how to keep an airplane flying without
one single instruction.

The pilot died, now what?

➊
Stay calm; take control
Flying airplanes is easy, but stay

calm. Your only goal now is to take
control. The first thing you will do is
put your hands on the yoke (or stick).
Do not make sudden moves. Airplanes
are not like cars; inputs must be very
subtle and smooth. If the airplane is
not leveled, you will instinctively and
smoothly move the yoke to make the
airplane level against the horizon. At
this point the plane will be likely going
up or down a bit (maybe you are not
even aware of that), but don’t worry
about this now. Check if the pilot’s
body is blocking or pushing anything,
and check if the pedals are clear (don’t
touch the pedals). The throttle is the
black (or gray) lever in the middle of
the panel or between the seats. Now,
push the throttle forward until you
feel where the end is and then pull
back 30% of that. You should be using
70% of the engine for now. That will
prevent you from crashing for a while.
If you are flying a propeller airplane
check the RPM (just like a car, it
should be right in front of you). The
RPM should be around 2.300. The

18  FEATURES

speedometer and tachometer should
have colors; never let it get close to the
yellow or red areas. (yellow = this is
wrong, red = you are doomed)

➋
Inform the situation
Put the headset on. There should

be a BLACK push button at the right
side or your yoke. Your radio should
be set with an approach or center.
Push the button (keep pushed) and
speak slowing (but briefly) what hap-
pened, start by saying “PAN PAN” or
MAYDAY (depends on the country).
Do not lose more than 15-20 seconds
doing this since we still need to find an
acceptable airspeed for this airplane!
Also, you will need to find a place to
land. If you know where you are, great!
Also, the guys on the radio will tell
you which direction you should go. If
no one answers to you just keep flying
straight (do not make turns yet). Ask
them if there is a pilot around that
knows that specific aircraft (this should
help you with finding the speed).

➌
Flying straight and airspeed
Now, the speed. I don’t know

which airplane you are flying (you
probably don’t either), so you will
need to test a reasonable approach/
flight speed. We do this by using the
airplane’s altitude/angle of attack.
Airplanes usually fly at a certain
angle of attack; the slower you fly the
greater the angle of attack (and engine

power) needed to continue a leveled
flight (because it increases the lift and
drag). What we want is to find a speed
where the airplane flies with a very
small angle of attack. To do that you
will accelerate the airplane to about
70-90% of the throttle. Now, looking at
the altimeter, stay at that altitude and
start pulling the throttle back (slowly)
and watch the horizon closely (or
artificial horizon). As soon as you need
to push the yoke back to keep flying at
the same altitude, check the speedome-
ter: that’s 90% of the speed you should
be flying now. Accelerate a bit to get
to the correct speed. Remember this:
everything is subtle; do not push back
the yoke to the point where the nose
is going up more than 6-8 degrees. If
there is an artificial horizon, your angle
should be just enough to make a thin
blue line between the piece present-
ing the airplane and the yellow/brown
background representing the ground.

➍
Making turns
Making correct turns are hard.

It takes 20+ hours of instruction to
teach students how to turn correctly
and they still make turns that suck.
You are not going to learn this. With
that said, this is how your turns will
work: first, where do you want a go? If
this is a 180 turn, look 90 to the direc-
tion you want to turn, find a refer-
ence (trees, etc. — use the tip of the
wing) and start the turn by very slowly

  19

turning the yoke to the direction you
want. This is so delicate that someone
looking at your hands would barely
notice you are actually moving the
yoke. As soon as your reference is on
the other site (same position relative
to the wing), you finished the turn 180
turn. The maximum angle of turning
you will use for this entire flight is no
more than 10 degrees (tilt your head
to the right/left a little, that’s more
than enough). You might get a bit
dizzy because you are making the turns
wrong, but ignore it.

➎
Approaching
Now, the guys on the radio

guided you to the runway or you found
the runway yourself. This is the part
where flight simulators are useless.
You should be higher than you prob-
ably think. Most people have a wrong
perception of the height the airplanes
approach because the size and direc-
tion of airliner passengers windows.
That makes first-time pilots come in
too low, especially flight simulator
players.

You should be at least at 1000 feet
above the ground. If you see the
number 29.92 set in the altimeter,
ignore the altimeter completely. Ask
on the radio for this altimeter setting
(change the setting by turning the knob
on the altimeter). If you don’t have a
radio or GPS, try this: you should be
high to the point where you can see

cars but cannot possibly identify the
specific color or model. This is around
the 45th floor of a building. Remem-
ber: the altimeter is showing your alti-
tude relative to a sea level configured
by that number, not the distance to the
ground.

Your approach will consist of getting
the airplane at this height and 1 mile
(or less) apart from the airfield, aligned
with the runway.

➏
Landing
Anyone who plays with a flight

simulator should get to this point
without any instructions, but now
things will get stupidly fast. Adrenaline
and not knowing what you are doing
are the main reasons for this. To land
you will have to forget everything you
know about xplane of Microsoft’s flight
simulator.

Using small movements, you will
keep the runway between your legs.
Be patient and make only small correc-
tions. If you over correct you will start
zigzagging. Airplanes are like kayaks,
they are always skidding and inertia
make things take a bit longer, you need
to wait for your input to make a differ-
ence (this impression is actually caused
by our notion of space).

We should find a distance between
you and the runway at which you
could turn off the engine at your cur-
rent altitude and still reach the runway.
We can’t do that now, but the good

20  FEATURES

thing about light airplanes is that they
lose speed very fast. With that said,
you will stay at the current speed (or
the speed someone tells you on the
radio). If you can locate the control to
lower the flaps to its next position, do
it now. This will feel like the airplane
is braking and could gain altitude, but
keep you current speed; the flaps won’t
break.

Time to dive: you kept the runway
between your legs, you are 1000 ft.
above the ground and the runway is 1
mile in front of you. You will point the
nose of this airplane to the very begin-
ning of the runway. The speed will start
to grow and you will reduce throttle
to keep your current speed. You will
not overshoot the runway; don’t worry
about that. Keep your eye on the
speed. Some people will feel the pres-
sure changing in their ears, and this is
normal. You point the nose of the air-
plane to the beginning of the runway,
but you won’t be able to land there.
You should cross the beginning of the
runway at the height of a 4-5 story

building and descending. When you
reach the height of a common pole,
cut the throttle completely. You will
start to pull and reduce the descend-
ing speed. If you pull it sooner it will
get ugly. The airplane should be as high
as a very tall person now. Do not let it
land. Smoothly keep pulling it more
and more to try to keep this height.
After a few seconds you will hear a
buzz, which means the plane is start-
ing to stall. Because you followed my
instructions, you should be around 1.5
meters from the ground and the plane
will land by itself. If you ever hear
that buzzing sound and the distance
between you and the ground is greater
than a height, you can fall on your feet.
Push the throttle to the end and do not
pull the yoke until the buzzing stops.
Get altitude and try everything again.
If the airplane hits the ground, imme-
diately cut the throttle. Some landings
can be so hard that they can hurt a bit.

After the plane is on the ground, it
won’t go straight. It will turn to the left
or right immediately after you touch

“Controlling an airplane on the ground
sometimes feels like driving a shopping
cart backwards at 60 miles/hour.”

  21

the runway. The pedals, which you
haven’t used until now, are also used to
brake and control the airplane on the
ground. Do not put your whole foot on
the pedals. Instead, you will put only
the tips of your toes on the lower part
of them (like kicking). If you push the
left pedal, the airplane goes to the left
(and vice versa). If you push the upper
part of the rudder you will brake one
of the main wheels. Unlike cars, every
main wheel has its own braking pedal.
Do not brake the airplane now; wait
for it to get slower. When the airplane
is slow, move the tip of your toe to the
upper part of the pedal and push left
and right, slowing and simultaneously.
Controlling an airplane on the ground
sometimes feels like driving a shopping
cart backwards at 60 miles/hour.

You made it! Now just push buttons
around and you will end up turning the
engines off (red ones first).

Conclusion (TL;DR)
Playing 10 minutes with a flying simu-
lator will make you more comfortable
maintaining the airplane in the air, but
it won’t help you on landing. The big-
gest mistake most first timers make is
coming too slow and too low for land-
ing. Make sure you are high and glide
to the ground without the need to use
the throttle (but use it if you need
it). Do not fear the ground and start
to flare only when you are 10 meters
high (same height as a pole). When

you reach the height of a tall person,
keep pulling until the airplane stalls.
You have the option to give up before
touching the ground, but never try
to take off after touching the ground.
Don’t ever push the yoke when close
to the ground because you will be
certain to crash. If you fly by 2/3 of
the runway, apply full throttle and
try again. If you are on a newer/larger
airplane, you will need a pilot on the
radio to help you, but the good news
is that it could be possible to program
the airplane to land by itself.

Remember: you have time and you
can keep trying as long as you can keep
the airplane flying. n

Former commercial pilot, Eduardo is the
founder & lead engineer of a credit card com-
pany and founder of a startup in Brazil. He is
also a flight instructor and avid sport biker.

Reprinted with permission of the original author.
First appeared in hn.my/land (eduardo.intermeta.com.br)

Illustration by Matthew Billington.

http://hn.my/land

22  STARTUP

STARTUP

By Jeff Nelson

Inventing
Chromebook

While working for Google
back in 2006, I had the
good fortune to create a

new operating system.
I confess it wasn’t created from

scratch; it was a chopped down Linux
distribution, as so many “new” operat-
ing systems are these days.

This new operating system was
originally code-named “Google OS”
and since 2009 has been released to
the public under the product names,
Google Chrome OS, Chromebook,
and Chromebox. I wrote a patent for
it, #8,239,662, titled “Network-based
Operating System Across Devices” that
was finally granted in August 7, 2012,
long after I left Google.

Here are few interesting tidbits about
the invention of Chromebook.

First, Chromebook was initially
rejected by Google management. In
fact, I wrote the first version as early
as July 2006 and showed it around to
management. Instead of launching a
project, the response was extremely
tepid. My boss complained, “You can’t
use it on an airplane.” Actually, you
could since, under the covers, it was
still a bare-bones Linux distribution
and could execute any Linux program
installed on it.

Second, Google OS was not origi-
nally written for Chrome or called
“Chrome OS.” The first versions were
all based on Firefox. When I wrote the
first version in 2006, Google had not

  23

yet started developing a web browser
of its own, nor had the name “Chrome”
existed as a Google product. Chrome
versions followed in 2007, after inter-
nal beta test versions of Chrome
started to be passed around inside
Google.

Third, Chromebook was definitely
not intended to be “another device”
for web browsing — as many prod-
uct reviewers have characterized the
Samsung Chromebook models. The
first versions were bare-bones Linux
distributions, but fully functional for
many tasks, including code develop-
ment for a Google engineer. I myself
used versions of Chromebook, exclu-
sively, every day, for over a year as my
primary development box, taking it
on many business trips and even some
airplanes.

Fourth, the main priority of Chrome-
book — originally — was not to write a
webapp-only operating system. In fact,
the main priority when I started con-
structing the operating system was the
need for speed — to create a super-fast
operating system.

Why bother to write a super-fast
operating system? I was frustrated
with Windows and Linux, which I
perceived were unnecessarily slow. For
example, at that time my occupation
was writing webapps for Google, so
I was restarting my web browser fre-
quently, sometimes hundreds of times a
day, to clear browser cache and cookies

as part of the code development pro-
cess. Restarting the web browser was
a particularly slow operation, often
taking 30-45 seconds, whether IE or
Firefox, Linux or Windows. (Chrome
not being available in 2006.) How-
ever, even simple tasks such as display-
ing a directory in a file explorer were
unreasonably slow operations, requiring
several seconds for a task that should
be nearly instantaneous. A few sec-
onds here, 45 seconds there, might not
sound like much of a delay, but when
such delays occur hundreds of times
a day, it adds up to a costly amount of
time.

The solution? Move the entire desk-
top operating system into RAM. By
moving the entire operating system
into RAM, that immediately took
off the table the largest performance
bottlenecks in the operating system:
File I/O.

Very few tasks that an operating
system performs are CPU intensive
or cause other major delays that can’t
be attributed to File I/O. By running
the operating system entirely in RAM,
most such tasks became nearly instan-
taneous, without having to rewrite or
do any performance optimization at
all for thousands of applications that
make up the operating system. For
example, restarting Firefox went from
~45 seconds to ~1 second. Browsing a
directory in the file explorer went from
~8 seconds to ~0.01 seconds. Even

24  STARTUP

compiling code became 60% faster,
and I could run non-indexed, recursive
greps of the entire RAM resident file
system in under 15 seconds. Try doing
that with a hard disk.

When discussing the RAM resident
architecture of the original versions
of Chromebook, nearly everyone
expressed concerns about data loss. In
fact, data loss was not a problem for
several reasons. First, many tasks were
performed as webapps, so as long as
the webapps were well-written, there
was no possibility of data loss. Second,
I had configured my IDE to auto-save
backups to a network drive, so even in
the event of a system crash only a few
seconds of work could be lost. Third,
some version occasionally synced
backups to a local storage media.
Aside from that and boot loading, the
operating system never accessed any
local storage media aside from dynamic
RAM. Ever.

Running a RAM resident operating
system did pose other challenges. First,
avoiding the installation of any bloated
applications. A bloated application
hogging a few gigabytes of hard disk
space might not be painful, but hog-
ging a few gigabytes of RAM is. Such
bloat had to be avoided by replacing
the functionality with webapps.

Second, many software vendors don’t
support Linux at all. This functionality
also was replaced with webapps.

Thus, tracking down webapps to
replace any and all functionality nor-
mally found on a desktop became a
priority. That’s how the seeds of the
webapps on the Chromium desktop,
albeit originally written in HTML and
running on Firefox, were planted.

While running your front-end oper-
ating system entirely in RAM is a
fundamental shift to the status quo
of modern operating system archi-
tectures, I’m convinced the benefits
far outweigh the costs. As we live
our lives, connected and online, few
or no resources need to be stored on
the same computer as the attached
keyboard, and those which are stored
don’t need to be accessed by spinning a
magnetic platter. n

Mr. Nelson has written two books and many
magazine articles on Java and cloud comput-
ing during his twenty year career as a Java and
C++ engineer and tech lead. He has extensive
experience in the Big Data and Search indus-
tries, building highly scalable web services,
and leading engineering teams at such com-
panies as Google and eBay. He holds a Masters
Degree in Applied Mathematics.

Reprinted with permission of the original author.
First appeared in hn.my/chromebook (jeff-nelson.com)

http://hn.my/chromebook

  25

It’s been hard to ignore the mas-
sive shift in the last decade toward
simple products. The minimalist

design aesthetic pioneered by Dieter
Rams in the 1960s on alarm clocks
and toasters was popularized by Apple
and Google in the 2000s on iPods
and search boxes. Soon after, Web 2.0
took over, yielding big buttons, less
text, more images, and happier users.
Startup accelerators and design gurus
popped up proselytizing “simplicity!”
and the rapid growth of mobile in the
last five years has created an almost
strict requirement for simple products
that work on our new small screens
and increasingly small attention spans.
Some of the most popular products
today (Twitter, Snapchat, Instagram) all
have simplicity of design and experi-
ence at their core.

This Ain’t Is Your Grandma’s Internet
 So why did this happen, and why
mostly in the last 10 years? Some say
that good design simply lags behind
technology and that design has finally
caught up. Others point to the evolu-
tion of our devices and our environ-
ments — definitely a major factor.

But I believe the high-order bit is
even more straightforward: It’s only
been in the last 10 years that technol-
ogy products have reached the mass
market. The market size of the entire
broadband Internet in 2000 was 50
million people; today it is 2 billion

By David Lieb

Cognitive Overhead
Why Your Product Isn’t As Simple As You Think

26  STARTUP

people; in a few short years with the
shift to mobile it will be more than
5 billion people. This mass market is
comprised mostly of people who sit
in the middle of the tech-adopter bell
curve, and since they aren’t product
designers, computer programmers, and
tech bloggers, they require an even
higher degree of simplicity.

“Simple” Isn’t What You Think
But “simplicity” comes in many flavors.
We can make products simpler by opti-
mizing along a number of vectors:

■■ minimize number of steps in the flow

■■ minimize time required

■■ minimize number of features

■■ minimize elements on each page

■■ ….

But the most important, and often
most overlooked, is Cognitive Simplic-
ity. This is an idea that slowly emerged
as my company, Bump, tried to under-
stand exactly why Bump is so popular,
especially in the non-tech crowd. We
believe product builders should first
and foremost minimize the Cogni-
tive Overhead of their products, even
though it often comes at the cost of
simplicity in other areas.

Cognitive Overhead
There isn’t yet much written about
cognitive overhead in our field. The
best definition on the web comes from
a web designer and engineer in Chi-
cago named David Demaree:

Cognitive Overhead — “How many
logical connections or jumps your brain
has to make in order to understand or
contextualize the thing you’re looking
at.”

Minimizing cognitive overhead is
imperative when designing for the
mass market. Why? Because most
people haven’t developed the pattern
matching machinery in their brains to
quickly convert what they see in your
product (app design, messaging, what
they heard from friends, etc.) into
meaning and purpose. We, the product
builders, take our ability to cut through
cognitive overhead for granted; our
mental circuits for our products’ pat-
terns are well practiced.

This is especially pronounced for
mass market mobile products. Normal
people already have to use more
of their mental horsepower to cut
through cognitive overhead. Now
imagine the added burden of having
to do that while on a crowded bus, or
in line at Starbucks, or while open-
ing your app for the first time while
eating dinner with a friend and tex-
ting another. This isn’t 1999 when
your users were sitting in their quiet

  27

bedrooms checking out your website
on a large monitor while waiting for
their Napster downloads to finish; they
are out in the real world being bom-
barded with distractions.

My, What Big Cognitive Overhead
You Have
To illustrate the difference between
generic simplicity and cognitive sim-
plicity, let’s look at a couple products
that, on the surface, might be regarded
as being simple to use, but rank in my
book as some of the most cognitively
complex products of late.

■■ QR Codes — Designed to check the
simplicity boxes of speed, ubiquity,
and small number of steps, QR codes
really dropped the ball on cognitive
overhead. “So it’s a barcode? No?
It’s a website? Ok. But I open web-
sites with my web browser, not my
camera. So I take a picture of it? No,
I take a picture of it with an app?
Which app?”

■■ iCloud / PhotoStream — When we
heard Steve Jobs preach the utopian
future where all of our photos and
data would be seamlessly synchro-
nized among all our devices, we
smelled the Apple simplicity we’d all
grown to love. But in practice, iCloud
is rife with cognitive overhead —
it only backs up your most recent
photos, it works on certain select
apps but not others, you have to

create an icloud.com email account
for it to sync your mail and notes but
not everything else. Oh, and it works
on new iPhone and iPads and Macs
running OS X v10.7.4 or later, but
not your PC or Android tablet. Try
explaining that to your mother.

Cognitive Simplicity Winners
So which products really nail cogni-
tive simplicity? Here are a couple
examples:

■■ Shazam — An app that magically
hears what song is playing and tells
you what it is? Seems pretty com-
plex, and what’s happening under
the covers actually is. But Shazam
does a phenomenal job keeping the
user’s cognitive burden low. They
force people to press a button to
“start listening,” show real-time
feedback that shows the app is hear-
ing the sounds, and it buzzes when
a result is found. Shazam could have
made the flow faster or fewer taps,
but it would come at the cost of cog-
nitive simplicity.

■■ Nintendo Wii — In most ways, the
Wii was far more complicated than
its game console peers in 2006. It
used accelerometers and IR blasters
and detectors that required setup and
calibration, and it was a departure
from the mental model most people
had for video games. But the payoff
was a system with low cognitive

28  STARTUP28  STARTUP

overhead — you swing the control-
ler to the left, and the little avatar on
screen swings his racquet to the left.
And voila, toddlers and grandparents
alike suddenly became gamers.

Could Go Either Way?
Finally, a couple of my personal favor-
ite daily-use products that could be
argued either way. What do you think?

■■ Dropbox — I love Dropbox. All of
my stuff is in my Dropbox; Dropbox
is on all my devices; so all my stuff
is on all my devices. Pretty cogni-
tively simple. But there are certainly
some potential cognitive hurdles, or,
perhaps better put, cognitive activa-
tion energy required before reaching
the low cognitive overhead state. Is
Dropbox a folder on your desktop or
a cloud-storage website? Oh and it’s
a program to install on my computer,
too? When do things get backed up?
Did it work?

■■ Facebook — Facebook started out
with very low cognitive overhead —
it was a digital version of the paper
Facebooks that already commanded
high engagement and retention of
college kids. Question: Has Face-
book’s cognitive overhead increased
or decreased as it has expanded to
the mass market? What cognitive
hurdles have arisen recently that
weren’t present in the past? Should
this worry Facebook?

How To make Cognitively Simple
Products

Make people work more, not less.
Put your user in the middle of your
flow. Make them press an extra button,
make them provide some inputs, let
them be part of the service-providing,
rather than a bystander to it. If they
are part of the flow, they have a better
vantage point to see what’s going on.
Automation is great, but it’s a layer of
cognitive complexity that should be
used carefully. (Bump puts the user in
the middle of the flow quite physically.
While there were other ways to build
a scalable solution without the physi-
cal bump, it’s very effective for helping
people internalize exactly what’s going
on.)

Give people real-time feedback.
If your user has to wonder, “So, did
it work?” you’ve failed. Walk people
through using your product like a
magician leads the audience through an
illusion. Point out the steps along the
way, or whatever magic your product is
providing could be lost to the user.

Slow down your product.
We’ve all heard stories of Google’s
relentless quest for search-result speed,
but sometimes you need to let your
user understand and appreciate what
your service is doing for them. Studies
have shown that intentionally slowing
down results on travel search websites

  29

can actually increase perceived user
value — people realize and appreci-
ate that the service is doing a lot of
work searching all the different travel
options on their behalf.

How To Know If You’ve Succeeded

Test on the young, the old…and the
drunk.
The very young and the very old are
even more sensitive to cognitive over-
head, as their brains aren’t accustomed
to the sort of logical leaps our products
sometimes require. Grandparents and
children make great cognitive overhead
detectors.

When you can’t find old or young
people, drunk people are a good
approximation. In fact, while building
Bump 3.0, we took teams of designers
and engineers to bars in San Francisco
and Palo Alto and watched people
use Bump, tweaking the product to
accommodate.

Ask your users/customers to repeat
what your product does and how it
works.
Let people use your product, and
then ask them to tell you what it does.
They’ll think you are crazy for not
knowing already, but what you hear
can point to cognitive hurdles you’ve
missed. One technique that scales
that we use at Bump is to show a one
question survey to a small fraction of
users inside the app right after they are

done bumping, asking “What is Bump
for?” or “How do you use Bump?” The
answers help us eliminate cognitive
hurdles that remain.

There’s never been a time when cog-
nitive simplicity matters more. As the
mobile wave continues over the next
five years, the world will see arguably
the most rapid deployment of any new
technology in our history. Products
that are truly mass market will need to
simultaneously target the Silicon Valley
early adopter and the kid riding on the
back of a motor scooter in Thailand.
Which products will win, and which
will lose? My money is on those that
focus on cognitive simplicity. n

David Lieb is co-founder and CEO of Bump,
creators of the popular app that lets people
share contact information, photos, and other
content by bumping their phones together.
Bump has been downloaded more than 130
million times.

Reprinted with permission of the original author.
First appeared in hn.my/cognitive (techcrunch.com)

http://hn.my/cognitive

30  PROGRAMMING

In this article, I’ll explain why
Haskell’s data types are called
algebraic — without mentioning

category theory or advanced math.
The algebra you learned in high

school starts with numbers (e.g. 1, 2,
3…) and operators (e.g. addition and
multiplication). The operators give you
a way to combine numbers and make
new numbers from them. For example,
combining 1 and 2 with the operation
of addition gives you another number,
3 — a fact that we normally express as

1+2=3

When you get a little older you are
introduced to variables (e.g. x, y, z …)
which can stand for numbers. Further
still, and you learn about the laws that
algebra obeys. Laws like

0+x=x
1·x=x

which hold for all values of x. There are
other laws as well, which define proper-
ties of numbers or of operations.

When mathematicians talk about
algebra, they mean something more
general than this. A mathematical alge-
bra has three parts:

■■ Objects are the “things” of the alge-
bra. The collection of objects defines
what we’re talking about.

■■ Operations give us ways to combine
old things to make new things.

■■ Laws are relationships between the
objects and the operations.

In high school algebra the objects are
numbers and the operations are addi-
tion, multiplication and friends.

The algebra of Haskell types
In the algebra of Haskell types, the
objects are types, for example Bool
and Int. The operators take types
that already exist and generate new

By Chris Taylor

The Algebra of
Algebraic Data Types

PROGRAMMING

  31

types from them. An example is the
type constructor Maybe. It’s not a type
itself, but you use it to create types; for
example Maybe Bool and Maybe Int,
which are types. Another example is
Either, which creates a new type from
two old types; for example Either Int
Bool.

Counting
A connection to the more familiar
algebra of numbers can be seen by
counting the possible values that a type
has. Take Bool, defined by

data Bool = False | True

There are two values that an object
of type Bool can have — it is either
False or True (technically it could also
be undefined — a fact that I’m going to
ignore for the rest of the post). Loosely,
the type Bool corresponds to the
number “2” in the algebra of numbers.

If Bool is 2, then what is 1? It should
be a type with only one value. In the
computer science literature such a type
is often called Unit and defined as

data Unit = Unit

In Haskell there is already a type
with only one value — it’s called ()
(pronounced “unit”). You can’t define it
yourself, but if you could it would look
like

data () = ()

Using this counting analogy, Int cor-
responds to the number 232, as this is
the number of values of type Int.

Addition
In principle we could types corre-
sponding to 3, 4, 5 and so on. Some-
times we might have a genuine need to
do this — for example, the type cor-
responding to 7 is useful for encoding
days of the week. But it would be nicer
if we could build up new types from
old. This is where the operators of the
algebra come in.

A type corresponding to addition is

data Add a b = AddL a | AddR b

That is, the type a + b is a tagged
union, holding either an a or a b. To
see why this corresponds to addition,
we can revisit the counting argument.
Let’s say that a is Bool and b is (), so
that there are 2 values a and 1 value for
b. How many values of type Add Bool
() are there? We can list them out:

addValues = [AddL False, AddL
True, AddR ()]

There are three values, and 3 = 2 +
1. This is often called a sum type. In
Haskell the sum type is often called
Either, defined as

data Either a b = Left a | Right b

but I’ll stick with Add.

32  PROGRAMMING

Multiplication
A type corresponding to multiplication
is

data Mul a b = Mul a b

That is, the type a · b is a container
holding both an a and a b. The counting
argument justifies the correspondence
with multiplication — if we fix a and b
to both be Bool, the possible values of
the type Mul Bool Bool are

mulValues = [Mul False False, Mul
False True, Mul True False, Mul
True True]

There are four values, and 4 = 2 x 2.
This is often called a product type. In
Haskell the product is the pair type:

data (,) a b = (a, b)

but I’ll stick with Mul.

Zero
Using addition and multiplication we
can generate types corresponding to all
the numbers from 1 upwards — but
what about 0? That would be a type
with no values. It sounds odd, but you
can define such a type:

data Void

Notice that there are no constructors
in the data definition, so you can’t ever
construct a value of type Void — it has
zero values, just as we wanted!

Laws in the algebra of Haskell types
What are the laws for the types we’ve
just defined? Just like in the algebra of
numbers, a law will assert the equal-
ity of two objects — in our case, the
objects will be types.

However, when I talk about equal-
ity, I don’t mean Haskell equality, in
the sense of the (==) function. Instead,
I mean that the two types are in one-
to-one correspondence — that is,
when I say that two types a and b are
equal, I mean that you could write two
functions

from :: a -> b
to :: b -> a

that pair up values of a with values
of b, so that the following equations
always hold (here the == is genuine,
Haskell-flavored equality):

to (from a) == a
from (to b) == b

For example, I contend that the types
Bool and Add () () are equivalent. I
can demonstrate the equivalence with
the following functions:

to :: Bool -> Add () ()
to False = AddL ()
to True = AddR ()

from :: Add () () -> Bool
from (AddL _) = False
from (AddR _) = True

  33

I’ll use the triple equality symbol,
===, to denote this kind of equivalence
between types.

Laws for sum types
Here are two laws for addition:

Add Void a === a

which says that there are as many
values of type Add Void a as there are
of type a, and

Add a b === Add b a

which says that it doesn’t matter which
order you add things in. These laws are
probably more familiar to you in the
algebra of numbers as

0+x=x
x+y=y+x

If you fancy an exercise, you can
demonstrate the correctness of the laws
in the Haskell algebra — either with a
counting argument, or by writing the
functions from and to.

Laws for product types
There are three useful laws for
multiplication:

Mul Void a === Void

which says that if you multiply any-
thing by Void, you get Void back,

Mul () a === a

which says that if you multiply by ()
you don’t change anything, and

Mul a b === Mul b a

which says that it doesn’t matter which
order you multiply in. The more famil-
iar forms of these laws are:

0·x=0
1·x=x
x·y=y·x

Two more exercises: (i) prove the
validity of these laws in the Haskell
algebra, and (ii) explain why we don’t
need laws of the form:

Mul a Void === Void
Mul a () === a

There’s also a law that relates the
addition and multiplication operators:

Mul a (Add b c) === Add (Mul a b)
(Mul a c)

This one is a bit trickier to reason
about, but writing the corresponding
from and to functions isn’t too hard.
The arithmetic version of this law is
the friendlier-looking

a·(b+c)=a·b+a·c

called the distributive law.

34  PROGRAMMING

Function types
As well as concrete types like Int and
Bool, in Haskell you also have func-
tion types, like Int -> Bool or Double
-> String. How do these fit into the
algebra?

To figure this out we can go back to
the counting argument. How many
functions of type a·b are there?

Let’s be concrete, and fix a and b to
both be Bool. The value False can map
to either False or True, and similarly
for the value True — thus there are
2·2=22=4 possible functions Bool ->
Bool. To be really explicit, we could
enumerate them:

f1 :: Bool -> Bool -- equivalent
to 'id'
f1 True = True
f1 False = False

f2 :: Bool -> Bool -- equivalent
to 'const False'
f2 _ = False

f3 :: Bool -> Bool -- equivalent
to 'const True'
f3 _ = True

f4 :: Bool -> Bool -- equivalent
to 'not'
f4 True = False
f4 False = True

What happens if b is still Bool (with
two values) and a is a type with three
values, say:

data Trio = First | Second | Third

Then each of First, Second, and
Third can map to two possible values,
and in total there are 2·2·2=23=8 func-
tions of type Trio -> Bool.

The same argument holds in general.
If there are A values of type a, and B
values of type b, then the number of
values of type a · b is

BA

This justifies the common terminol-
ogy for function types as exponential
types.

Laws for functions
There are two laws for function types
that involve the unit type. They are:

() -> a === a

which says that there are as many func-
tions () -> a as there are values of
type a, and

a -> () === ()

which says that there is only one func-
tion a -> () — in particular, it is const
(). The arithmetic versions of these
laws are

a1=a
1a=1

  35

There is also a law that allows factor-
ing out of common arguments:

(a -> b, a -> c) === a -> (b,c)

whose arithmetic form is

ba·ca=(bc)a

and a law about functions that return
other functions:

a -> (b -> c) === (b,a) -> c

whose arithmetic form is

(cb)a=cb·a

This last law may be more familiar
when the order of the variables in the
pair on the right-hand side is switched,
and the parens on the left hand side are
removed:

a -> b -> c === (a,b) -> c

which just says that we can curry and
uncurry functions. Again, it’s an inter-
esting exercise to prove all of these
laws by writing the corresponding to
and from functions. n

Chris Taylor is a researcher at a London hedge
fund. He is interested in using mathematics to
write safer and more composable programs.

Reprinted with permission of the original author.
First appeared in hn.my/algebraic (chris-taylor.github.io)

http://hn.my/algebraic

36  PROGRAMMING

In my years of programming in
Python and roaming around
GitHub’s Explore section, I’ve

come across a few libraries that stood
out to me as being particularly enjoy-
able to use. This article is an effort to
further spread that knowledge.

I specifically excluded awesome libs
like requests, SQLAlchemy, Flask,
fabric, etc. because I think they’re
already pretty “mainstream.” If you
know what you’re trying to do, it’s
almost guaranteed that you’ll stumble
over the aforementioned. This is a list
of libraries that in my opinion should
be better known, but aren’t.

➊ pyquery (with lxml)

pip install pyquery

For parsing HTML in Python, Beauti-
ful Soup [hn.my/soup] is oft recom-
mended and it does a great job. It sports

a good Pythonic API and it’s easy to
find introductory guides on the web. All
is good in parsing-land…until you want
to parse more than a dozen documents
at a time and immediately run head-
first into performance problems. It’s —
simply put — very, very slow.

Just how slow? Check out this chart
from the excellent Python HTML
Parser comparison Ian Bicking com-
piled in 2008:

 What immediately stands out is how
fast lxml is. Compared to Beautiful
Soup, the lxml docs are pretty sparse
and that’s what originally kept me

By Dominik Dabrowski

Python Libraries You
Should Know About

  37

from adopting this mustang of a pars-
ing library. lxml is pretty clunky to use.
Yeah, you can learn and use Xpath or
cssselect to select specific elements
out of the tree and it becomes kind of
tolerable. But once you’ve selected the
elements that you actually want to get,
you have to navigate the labyrinth of
attributes lxml exposes, some contain-
ing the bits you want to get at, but the
vast majority just returning None. This
becomes easier after a couple dozen
uses, but it remains unintuitive.

So either slow and easy to use or fast
and hard to use, right?

Wrong!

Enter PyQuery
Oh, PyQuery, you beautiful seductress:

from pyquery import PyQuery
page = PyQuery(some_html)

last_red_anchor = page('#container
> a.red:last')

Easy as pie. It’s ever-beloved jQuery
but in Python!

There are some gotchas. For exam-
ple, PyQuery, like jQuery, exposes its
internals upon iteration, forcing you to
re-wrap:

for paragraph in page('#container
> p'):
 paragraph = PyQuery(paragraph)
 text = paragraph.text()

That’s a wart the PyQuery creators
ported over from jQuery (where they’d
fix it if it didn’t break compatibility).
Understandable but still unfortunate
for such a great library.

➋ dateutil

pip install python-dateutil

Handling dates is a pain. Thank god
dateutil exists. I won’t even go
near parsing dates without trying
dateutil.parser first:

from dateutil.parser import parse

>>> parse('Mon, 11 Jul 2011
10:01:56 +0200 (CEST)')
datetime.datetime(2011, 7, 11, 10,
1, 56, tzinfo=tzlocal())

fuzzy ignores unknown tokens

>>> s = """Today is 25 of Septem-
ber of 2003, exactly
... at 10:49:41 with time-
zone -03:00."""
>>> parse(s, fuzzy=True)
datetime.datetime(2003, 9, 25,
10, 49, 41,
tzinfo=tzoffset(None, -10800))

Another thing that dateutil does for
you that would be a total pain to do
manually is recurrence:

38  PROGRAMMING

>>> list(rrule(DAILY, count=3,
byweekday=(TU,TH),
...
dtstart=datetime(2007,1,1)))
[datetime.datetime(2007, 1, 2, 0,
0),
 datetime.datetime(2007, 1, 4, 0,
0),
 datetime.datetime(2007, 1, 9, 0,
0)]

➌ fuzzywuzzy

pip install fuzzywuzzy

fuzzywuzzy allows you to do fuzzy
comparison on wuzzes strings. This has
a whole host of use cases and is espe-
cially nice when you have to deal with
human-generated data.

Consider the following code that
uses the Levenshtein distance compar-
ing some user input to an array of
possible choices.

from Levenshtein import distance

countries = ['Canada', 'Antarc-
tica', 'Togo', ...]

def choose_least_distant(element,
choices):
 'Return the one element of
choices that is most similar to
element'
 return min(choices, key=lambda
s: distance(element, s))

user_input = 'canaderp'
choose_least_distant(user_input,
countries)
>>> 'Canada'

This is all nice and dandy, but we can
do better. The ocean of 3rd party libs
in Python is so vast, that in most cases
we can just import something and be
on our way:

from fuzzywuzzy import process

process.extractOne("canaderp",
countries)
>>> ("Canada", 97)

➍ watchdog

pip install watchdog

watchdog is a Python API and shell
utilities to monitor file system events.
This means you can watch some direc-
tory and define a “push based” system.
Watchdog supports all kinds of prob-
lems. A solid piece of engineering
that does it much better than the 5 or
so libraries I tried before finding out
about it.

  39

➎ sh

pip install sh

sh allows you to call any program as if
it were a function:

from sh import git, ls, wc

checkout master branch
git(checkout="master")

print(the contents of this
directory
print(ls("-l"))

get the longest line of this file
longest_line = wc(__file__, "-L")

➏ pattern

pip install pattern

This behemoth of a library advertises
itself quite modestly:

Pattern is a web mining module for the
Python programming language.

... that does Data Mining, Natural
Language Processing, Machine Learn-
ing and Network Analysis all in one. I
myself have yet to play with it, but a
friend’s verdict was very positive.

➐ path.py

pip install path.py

When I first learned Python, os.path
was my least favorite part of the
stdlib.

Even something as simple as creating
a list of files in a directory turned out
to be grating:

import os
some_dir = '/some_dir'
files = []
for f in os.listdir(some_dir):
 files.append(os.path.
joinpath(some_dir, f))

That listdir is in os and not
os.path is unfortunate and unex-
pected, and one would really hope for
more from such a prominent module.
And then all this manual fiddling for
what really should be as simple as
possible.

But with the power of path, handling
file paths becomes fun again:

from path import path
some_dir = path('/some_dir')
files = some_dir.files()

Done!

40  PROGRAMMING

Other goodies include:

>>> path('/').owner
'root'
>>> path('a/b/c').splitall()
[path(''), 'a', 'b', 'c']

overriding __div__
>>> path('a') / 'b' / 'c'
path('a/b/c')

>>> path('ab/c').relpathto('ab/
d/f')
path('../d/f')

Best part of it all? path subclasses
Python’s str so you can use it com-
pletely guilt-free without constantly
being forced to cast it to str and
worrying about libraries that check
isinstance(s, basestring) (or even
worse isinstance(s, str)).

 That’s it! I hope I was able to intro-
duce you to some libraries you didn’t
know before. n

Dominik grew up in Austria and started his first
business at sixteen, helping to repair gaming
consoles. He then studied CS in Vienna for a
year before dropping out, instead graduating
from HackerSchool batch #3 and now works
as a Software engineer at Smarkets.

Reprinted with permission of the original author.
First appeared in hn.my/pylab (doda.co)

http://hn.my/pylab

  41

http://mandrill.com

42  PROGRAMMING

As we’ve scaled Instagram
to an ever-growing number
of active users, Postgres has

continued to be our solid foundation
and the canonical data storage for most
of the data created by our users. While
less than a year ago, we blogged about
how we “stored a lot of data” at Insta-
gram at 90 likes per second, we’re now
pushing over 10,000 likes per second
at peak — and our fundamental storage
technology hasn’t changed.

Over the last two and a half years,
we’ve picked up a few tips and tools
about scaling Postgres that we wanted
to share — things we wish we knew
when we first launched Instagram.
Some of these are Postgres-specific
while others are present in other data-
bases as well. For background on how
we’ve horizontally partitioned Post-
gres, check out our Sharding and IDs
[hn.my/sharding] at Instagram post.

➊
Partial Indexes
If you find yourself frequently

filtering your queries by a particular
characteristic, and that characteristic
is present in a minority of your rows,
partial indexes may be a big win.

As an example, when searching tags
on Instagram, we try to surface tags
that are likely to have many photos in
them. While we use technologies like
ElasticSearch for fancier searches in
our application, this is one case where
the database was good enough. Let’s
see what Postgres does when searching
tag names and ordering by number of
photos:

EXPLAIN ANALYZE SELECT id from
tags WHERE name LIKE 'snow%' ORDER
BY media_count DESC LIMIT 10;
QUERY PLAN

 Limit (cost=1780.73..1780.75
rows=10 width=32) (actual

By Mike Krieger

Handling Growth
with Postgres

5 Tips From Instagram Engineering

http://hn.my/sharding

  43

time=215.211..215.228 rows=10
loops=1)
 -> Sort
(cost=1780.73..1819.36
rows=15455 width=32) (actual
time=215.209..215.215 rows=10
loops=1)
 Sort Key: media_count
 Sort Method: top-N hea-
psort Memory: 25kB
 -> Index Scan
using tags_search on tags_
tag (cost=0.00..1446.75
rows=15455 width=32) (actual
time=0.020..162.708 rows=64572
loops=1)
 Index Cond:
(((name)::text ~>=~ 'snow'::text)
AND ((name)::text ~<~
'snox'::text))
 Filter:
((name)::text ~~ 'snow%'::text)
 Total runtime: 215.275 ms
(8 rows)

Notice how Postgres had to sort
through 15,000 rows to get the right
result. Since tags (for example) exhibit
a long-tail pattern, we can instead first
try a query against tags with over 100
photos; we’ll do:

CREATE INDEX CONCURRENTLY on tags
(name text_pattern_ops) WHERE
media_count >= 100
Now the query plan looks like:
EXPLAIN ANALYZE SELECT * from tags
WHERE name LIKE 'snow%' AND media_
count >= 100 ORDER BY media_count

DESC LIMIT 10;

QUERY PLAN
 Limit (cost=224.73..224.75
rows=10 width=32) (actual
time=3.088..3.105 rows=10 loops=1)
 -> Sort (cost=224.73..225.15
rows=169 width=32) (actual
time=3.086..3.090 rows=10 loops=1)
 Sort Key: media_count
 Sort Method: top-N hea-
psort Memory: 25kB
 -> Index Scan
using tags_tag_name_idx on
tags_tag (cost=0.00..221.07
rows=169 width=32) (actual
time=0.021..2.360 rows=924
loops=1)
 Index Cond:
(((name)::text ~>=~ 'snow'::text)
AND ((name)::text ~<~
'snox'::text))
 Filter:
((name)::text ~~ 'snow%'::text)
 Total runtime: 3.137 ms
(8 rows)

Notice that Postgres only had to visit
169 rows, which was way faster. Post-
gres’ query planner is pretty good at
evaluating constraints too; if you later
decided that you wanted to query tags
with over 500 photos, since those are a
subset of this index, it will still use the
right partial index.

44  PROGRAMMING

➋
Functional Indexes
On some of our tables, we need

to index strings (for example, 64 char-
acter base 64 tokens) that are quite
long, and creating an index on those
strings ends up duplicating a lot of
data. For these, Postgres’ functional
index feature can be very helpful:

CREATE INDEX CONCURRENTLY on
tokens (substr(token), 0, 8)

While there will be multiple rows
that match that prefix, having Postgres
match those prefixes and then filter
down is quick, and the resulting index
was 1/10th the size it would have been
had we indexed the entire string.

➌
pg_reorg For Compaction
Over time, Postgres tables can

become fragmented on disk (due to
Postgres’ MVCC concurrency model,
for example). Also, most of the time,
row insertion order does not match the
order in which you want rows returned.
For example, if you’re often querying
for all likes created by one user, it’s
helpful to have those likes be contigu-
ous on disk, to minimize disk seeks.

Our solution to this is to use pg_
reorg, which does a 3-step process to
“compact” a table:

1.	Acquire an exclusive lock on the table

2.	Create a temporary table to accu-
mulate changes, and add a trigger on
the original table that replicates any
changes to this temp table

3.	Do a CREATE TABLE using a
SELECT FROM…ORDER BY,
which will create a new table in
index order on disk

4.	Sync the changes from the temp
table that happened after the
SELECT FROM started

5.	Cut over to the new table

There are some details in there
around lock acquisition etc, but that’s
the general approach. We vetted the
tool and tried several test runs before
running in production, and we’ve run
dozens of reorgs across hundreds of
machines without issues.

➍
WAL-E for WAL archiving and
backups

We use and contribute code to WAL-E
[hn.my/wale], Heroku’s toolkit for
continuous archiving of Postgres Write-
Ahead Log files. Using WAL-E has
simplified our backup and new-replica
bootstrap process significantly.

At its core, WAL-E is a program that
archives every WAL files generated by
your PG server to Amazon’s S3, using
Postgres’ archive_command. These WAL
files can then be used, in combination
with a base backup, to restore a DB to
any point since that base backup. The
combination of regular base backups
and the WAL archiving means we can
quickly bootstrap a new read-replica or
failover slave, too.

http://hn.my/wale

  45

We’ve made our simple wrapper
script for monitoring repeated failures
to archive a file available on GitHub.
[gist.github.com/4550560]

➎
Autocommit mode and async
mode in psycopg2

Over time, we’ve started using more
advanced features in psycopg2, the
Python driver for Postgres.

The first is autocommit mode; in this
mode, psycopg2 won’t issue BEGIN/
COMMIT for any queries; instead,
every query runs in its own single-
statement transaction. This is particu-
larly useful for read-only queries where
transaction semantics aren’t needed.
It’s as easy as doing:

connection.autocommit = True

This lowered chatter between our
application servers and DBs signifi-
cantly, and lowered system CPU as
well on the database boxes. Further,
since we use PGBouncer for our con-
nection pooling, this change allows
connections to be returned to the pool
sooner.

Another useful psycopg2 feature is
the ability to register a wait_callback
for coroutine support. Using this allows
for concurrent querying across multiple
connections at once, which is useful
for fan-out queries that hit multiple
nodes — the socket will wake up and
notify when there’s data to be read
(we use Python’s select module for

handling the wake-ups). This also plays
well with cooperative multi-threading
libraries like eventlet or gevent; check
out psycogreen [hn.my/psycogreen] for
an example implementation.

Overall, we’ve been very happy with
Postgres’ performance and reliability.
If you’re interested in working on one
of the world’s largest Postgres installa-
tions with a small team of infrastruc-
ture hackers, get in touch at infrajobs@
instagram.com n

Mike Krieger is a Brazilian entrepreneur and
software engineer best known as the co-
founder of Instagram, along with Kevin Sys-
trom. Born in São Paulo, Brazil, Krieger moved
to California in 2004 to attend Stanford Uni-
versity. At Stanford, where he studied symbolic
systems, he met Kevin Systrom. The two of
them co-founded Instagram in 2010.

Reprinted with permission of the original author.
First appeared in hn.my/instagres
(instagram-engineering.tumblr.com)

http://gist.github.com/4550560
http://hn.my/psycogreen
http://hn.my/instagres
http://hn.my/instagres

46  SPECIAL

SPECIAL

By Andrew wulf

How Hotel
Reservations Work

A recent complaint from a
small hotel operator which
was posted on Hacker News

[hn.my/complain] made me decide to
talk about the whole process of reserv-
ing a room in a hotel.

I work for an OTA (which stands
for online travel aggregator) which
provides flight, hotel, car, and cruise
reservations. The major players are
Priceline, Expedia, Orbitz and Trav-
elocity. These own many other familiar
brands (like lastminute.com is owned
by Travelocity, and booking.com is
owned by Priceline); plus there are
many smaller brands which target
niche markets and sometimes provide
booking through a major player. Other
companies like Kayak and Tripadvisor

provide information but handle book-
ing through others as well.

In the U.S. alone there are around
400,000 hotels, motels, lodges, and bed-
and-breakfasts alone. Worldwide I have
no idea but I am sure there are mil-
lions of places to stay. All of them want
customers to fill their rooms. Many of
them have access to computerized res-
ervation systems, but many still operate
on phone calls and fax machines. The
challenge as an OTA is how to make
this all work. It’s pretty crazy.

The average hotel in the U.S. has
around 200 rooms. These are avail-
able for 365 days a year, so the total
room-nights is around 73,000 per year.
Each one is a potential reservation.
Hotels generally average around 70%

http://hn.my/complain

  47

occupancy for tonight, which is the
only night that really matters, the one
where someone is occupying a room.
Unlike people selling widgets, who can
make fewer widgets or more depending
on demand, hotels have a fixed supply.
An empty room brings in nothing. A
room with guests paying anything is
better than an empty room. So the
challenge is getting people to sleep in
your beds. Over a years’ time you need
a lot of those people to make it work
(that “average” hotel needs 50,000).

The difficulty with making this work
from an OTA’s perspective is how to
allow people to make reservations at, for
example, 200,000 properties over the
next year. That is 14 billion potential
room nights. Now the properties may

be part of a large chain, like Marriott,
that has a massive reservation system,
or a mom and pop motor court operat-
ing with a fax machine. Each hotel has
a certain number of rooms of different
types (queen, king, etc) and these types
may be broken down into different rates
based on any number of parameters
(free breakfast, mobile special rates,
multi-night discounts, etc.). Somehow
the details have to wind up at the OTA
so it can provide them to potential cus-
tomers. This is where ugly happens.

Note that even with fancy reserva-
tions systems, ultimately an individual
hotel manager is responsible for all the
data and even the rates. So each one
of those properties has someone who
decides what rates there will be, and

“Even with fancy reservations systems,
ultimately an individual hotel manager
is responsible for all the data and even
the rates.”

48  SPECIAL

how often they can change. Even at
the large chains, individual managers
may ignore or trump the chain’s rules
in order to maximize their potential
sales. Now OTA’s have what are gen-
erally called market managers (either
employees or contractors), whose job
it is to deal with the hotels, usually
directly, to negotiate special rates or
deals or simply sign them up. Some
hotels and chains are exclusive to one
OTA but many make deals with all of
them. Sometimes the deals are com-
plicated. OTA’s can either negotiate a
discount and sell the rooms themselves
and collect the money, then pay the
hotel or chain; sometimes they negoti-
ate a commission and get paid later
when the guest pays their bill after
their stay; sometimes they will reserve
actual rooms at a discount and hope to
sell them all. The latter is more risky
for the OTA since you can get stuck
with the rooms, but you have the most
flexibility on pricing.

In any case, the hotel is either paid
immediately upon the guest making
the reservation (which is often prefer-
able) or they have to wait until the end
of the stay and then send the commis-
sion later (usually much later). Both
have advantages, but hotels generally
like to get money as soon as possible,
as does the OTA. But like all con-
tracted things, the reality might be
complicated.

Now if you decide you would rather
avoid the OTA, you have to realize
that is not so cut and dry either. Often
a direct hotel reservation number may
not go to the individual hotel, but to a
chain reservation line, which is unlikely
to give you any special pricing. Often
hotels are franchises and are restricted
in what they can offer, usually to avoid
having related franchises try to kill
each other in a local market. Hotels
know people hope to get better deals
direct and might sell you a room at
what you imagine is a discount, except
it isn’t. Comparing rates between
OTA’s, chains and comparison sites
is always a good idea for hotels (but
rarely for flights, that’s a much uglier
can of worms for another day).

So how does a hotel search work?
Firstly, OTAs have to get the hotel
descriptions and room type informa-
tion and prices from the hotels. This
can range from a real-time connection
to a full reservation system which is
used by all the chain’s properties all
the way to a fax machine and a daily
or even weekly update. Availability,
which is what we call what rooms are
available for a particular date or date
range, is always based on cached data.
If we had to query external systems to
get information for searches we would
never return anything. Like any cached
system, this creates the possibility for
stale data. The staleness can be both
availability (we say the hotel has a

  49

room) and price (we tell you it’s $100).
For searching to work we have to ask
the hotel’s system periodically for
updates or even wait on a weekly fax,
and then update the caches. Once you
have done a search and have chosen
a potential hotel, you are shown the
available room types and rates, which
can range from one type/rate to dozens
at some properties. You then pick a
room and express a desire to possibly
book it. At this point the OTA system
will query the real-time hotel system if
available, or the “fax cache” and see if
the room is actually available and what
the current rate is. Now we will either
tell you the room is not really available
or note the real price. Sometimes if the
room is not available you can choose a
different room; sometimes there are no
rooms available at all. It’s also possible
the hotel has rooms but is not making
them available to the OTA.

Now you go ahead and either pay
for the reservation or at least hold it
(depending on the three types I men-
tioned above). At this point, assum-
ing the payment is approved if we
are collecting the money, we call the
real-time system again and request
an actual reservation, or at least mark
the “fax cache” to fax the data. At this
point it can still fail as perhaps the last
room was reserved while you were fill-
ing out the form. The hotel system can
also fail, or data connections fail, and
you might not get the room either. We

generally don’t consider the reservation
assured unless the hotel system tells
us. Of course with the mom and pop
hotel, the reservation might get lost
or they had no rooms available or any
number of problems might greet you
when you show up. Always a good idea
to call ahead and confirm.

Once you have your reservation, you
assume everything will be smooth,
and it usually is. Booking a hotel via an
OTA usually means there is a hotel res-
ervation number that you will receive
in the confirmation or perhaps in a
later email. Still, even if a major hotel
chain gives you one, it’s still possible
for the local hotel to lose things or per-
haps their local system crashed or their
inventory is not exactly up to date.
Hotels can also have fires and other
issues which might make a reservation
become unavailable.

Now, the price you pay is clearly a
highly variable thing. We try to negoti-
ate with hotels for special rates; some-
times they might favor one OTA over
another. Of course, hotels are compet-
ing with each other. Even franchise
or chain hotels will often ignore their
franchise or chain rules and price things
themselves. It’s a complicated game
of trying to get more people in their
beds. Remember a paying customer at
any rate is better than an empty room.
Managers will do almost anything to
improve their bookings.

50  SPECIAL

Hotels are the only thing (maybe
cruises) where an OTA makes real
money. Cars and flights pay very little
and the price differences there are fairly
minimal. Billions of room nights make for
an appealing marketplace, but also a chal-
lenging one to manage. Even a small hotel
can make a lot of money if it can attract
enough customers, since the supply is
fixed and their cost is basically fixed as
wel;l the difference is filling the rooms.
OTA’s can make a lot of money as well,
but at the cost of a complicated mass of
connected systems of various levels of
quality. Now add in multiple countries
with all sorts of different rules, mix in
contracted market managers who may
have their own agendas (which is what it
sounds like in Cancun) and hotels desper-
ate to fill their rooms plus all the compet-
ing interests like OTA’s trying to book
your reservations and you have a volatile
mix of players.

I work on the customer end (mobile)
so some of this is way out of my area, but
I’ve learned enough about the back end
to understand how complicated it can be.

This is nothing at all compared to
flights, which is mighty ugly stuff. But
that’s another story. n

In 3 decades of programming Andrew has worked
on almost every kind of software. Currently he
works in mobile at a well known travel brand and
writes in his blog, thecodist.com

Reprinted with permission of the original author.
First appeared in hn.my/hotel (thecodist.com)

http://thecodist.com
http://hn.my/hotel

  51

Accept payments online.

http://stripe.com

52  SPECIAL

Six months ago, I died.
I have no recollection of the

event, but I’ve heard the story
retold so many times that I may as well
have seen it all. I was at the gym in my
apartment complex with my room-
mate, Sam. I was running on the tread-
mill when I turned and told him I was
going to faint. I collapsed and fell onto
the still-moving belt, which tore the
skin off my knee and pushed me onto
the floor. Sam was shocked. He called
for help. A personal trainer and her
client ran over, called an ambulance,
and assisted Sam in giving me CPR
while my body slowly drained of color.

My heart had gone into ventricular
fibrillation. “Vfib,” as I heard numerous
doctors call it, is a type of arrhythmia
— a series of irregular electrical signals
in the ventricle chamber of the heart.
Instead of beating normally, the walls
quiver erratically, like they’re having
a seizure. The heart quickly becomes
unable to pump blood to other organs.
I had suffered from what is officially,
and somewhat morbidly, termed
“Sudden Cardiac Death.”

The paramedics arrived and walked
slowly down the length of the pool to
the gym. This was procedure, they later
told me; they didn’t want to run and
cause alarm. When they reached me,
they defibrillated my heart by strap-
ping patches to my abdomen and run-
ning a strong electrical current through
my body. I was told that after the first
administration my heart had remained
in arrhythmia. After the second, it
started beating regularly.

For those 4 minutes and 30 seconds, I
was clinically dead.

I spent the next two days in a coma
while the doctors cooled my body
to 32 degrees in order to avoid brain
damage. During this time I developed
a pulmonary embolism and pneumo-
nia. Whenever I visit a doctor now
they are always surprised — “Each of
those alone could have killed you. It’s a
miracle you survived all three!” I sur-
vived by sitting through hours of MRIs
with oxygen in my nose, three IVs in
my arm and ten pills a day for weeks.
Sam and my two mothers, Laurie and
Kerrie, rarely left my side.

What It’s Like To Die
By Sash Mackinnon

  53

The stories you hear about people
dying usually end with tunnels, lights,
flashbacks, God, and big epiphanies.
That isn’t what happened to me.

After finally regaining enough con-
sciousness to understand my situation,
I sat for hours staring at the hospital
walls. I didn’t have any life changing
realizations. I wasn’t regretful. In fact, I
couldn’t think of anything in my life I
wanted to change at all. Being trapped
alone in that sterile room with wires
hanging off my chest only made me
think about everything in my life I
wanted back.

Most people I tell this story to think
I’m unlucky because I had a cardiac
arrest at 21 years old. But I don’t think
so. Only five percent of people who
suffer ventricular fibrillation out of the
hospital survive. Of those that do sur-
vive, more than half of them have brain
damage. That means only two and a
half percent fully recover. Not only did
I fully recover, but I did so in the com-
pany of the people closest to me.

If there is one lesson I took away
from the experience, it is not to “live
life to the fullest” or “have no regrets.”
It is to feel lucky. Feeling lucky means
you are appreciating the things in
your life that sometimes go unno-
ticed. It means you are achieving more
than think you deserve. Feeling lucky
requires a certain humility we often
lose sight of.

For me, it took losing everything to
remember how lucky I am. n

Sash MacKinnon is an Australian who moved
to Silicon Valley to make games. He worked
at Zynga as Mark Pincus’ technical assistant
for a year before joining MinoMonsters. Also
he died.

Reprinted with permission of the original author.
First appeared in hn.my/sash (sashmackinnon.com)

“If there is one lesson I took away from
the experience, it is to feel lucky.”

http://hn.my/sash

54  SPECIAL

By Jon Bell

McDonald’s Theory
Of Bad Ideas

I use a trick with co-workers when
we’re trying to decide where to eat
for lunch and no one has any ideas.

I recommend McDonald’s.
An interesting thing happens. Every-

one unanimously agrees that we can’t
possibly go to McDonald’s and better
lunch suggestions emerge. Magic!

It’s as if we’ve broken the ice with
the worst possible idea, and now that
the discussion has started, people sud-
denly get very creative. I call it the
McDonald’s Theory:

People are inspired to come up with
good ideas to ward off bad ones.

This is a technique I use a lot at
work. Projects start in different ways.
Sometimes you’re handed a formal
brief. Sometimes you hear a rumor
that something might be coming so
you start thinking about it early. Other
times you’ve been playing with an idea
for months or years before sharing with

your team. There’s no defined process
for all creative work, but I’ve come to
believe that all creative endeavors share
one thing: the second step is easier
than the first. Always.

Anne Lamott advocates “shitty first
drafts,” Nike tells us to “Just Do It,”
and I recommend McDonald’s just to
get people so grossed out they come
up with a better idea. It’s all the same
thing. Lamott, Nike, and the McDon-
ald’s Theory are all saying that the first
step isn’t as hard as we make it out to
be. Once, I got an email from Steve Jobs
and it was just one word: “Go!” Exactly.
Dive in. Do. Stop over-thinking it.

The next time you have an idea
rolling around in your head, find the
courage to quiet your inner critic just
long enough to get a piece of paper and
a pen, then just start sketching it. “But
I don’t have a long time for this!” you
might think. Or, “The idea is probably
stupid,” or, “Maybe I’ll go online and
click around for —”

  55

No. Shut up. Stop sabotaging yourself.
The same goes for groups of people at

work. The next time a project is being
discussed in its early stages, grab a marker,
go to the board, and throw something up
there. The idea will probably be stupid,
but that’s good! The McDonald’s Theory
teaches us that it will trigger the group
into action.

It takes a crazy kind of courage, of
focus, of foolhardy perseverance to quiet
all those doubts long enough to move for-
ward. But it’s possible — you just have to
start. Bust down that first barrier and just
get things on the page. It’s not the kind of
thing you can do in your head; you have
to write something, sketch something, do
something, and then revise off it.

Not sure how to start? Sketch a few
shapes, then label them. Say, “This is
probably crazy, but what if we.…” and
try to make your sketch fit the problem
you’re trying to solve. Like a magic spell,
the moment you put the stuff on the
board, something incredible will happen.
The room will see your ideas, will offer
their own, will revise your thinking, and
by the end of 15 minutes, 30 minutes, an
hour, you’ll have made progress.

That’s how it’s done. n

Jon Bell is a designer living in Seattle. He writes
more about himself on lot23.com

Reprinted with permission of the original author.
First appeared in hn.my/mcd (medium.com)

http://hn.my/mcd

Rent your IT infrastructure from
Memset and discover the incredible
bene�ts of cloud computing.

Find out more about us at
www.memset.com

hosting

HOSTING

HOSTING

SCAN THE CODE FOR
MORE INFORMATION

$0.091/GByte/month or less
99.999999% object durability
99.995% availability guarantee
RESTful API, FTP/SFTP and CDN Service

From $0.020/hour
to 4 x 2.9 GHz Xeon cores
31 GBytes RAM
2.5TB RAID(1) disk

or chat to our sales team on
0800 634 9270.

C

M

Y

CM

MY

CY

CMY

K

Tealeaf Academy
an online school for developers

{
 join: 'Intensive Online Bootcamp',
 learn: 'Web Development',
 goto: 'http://www.gotealeaf.com'
}

Learn Ruby on Rails | Level up Skills | Launch Products | Get a Job

http://gotealeaf.com

Rent your IT infrastructure from
Memset and discover the incredible
bene�ts of cloud computing.

Find out more about us at
www.memset.com

hosting

HOSTING

HOSTING

SCAN THE CODE FOR
MORE INFORMATION

$0.091/GByte/month or less
99.999999% object durability
99.995% availability guarantee
RESTful API, FTP/SFTP and CDN Service

From $0.020/hour
to 4 x 2.9 GHz Xeon cores
31 GBytes RAM
2.5TB RAID(1) disk

or chat to our sales team on
0800 634 9270.

C

M

Y

CM

MY

CY

CMY

K

Tealeaf Academy
an online school for developers

{
 join: 'Intensive Online Bootcamp',
 learn: 'Web Development',
 goto: 'http://www.gotealeaf.com'
}

Learn Ruby on Rails | Level up Skills | Launch Products | Get a Job
  57

http://gotealeaf.com

	Contents
	FEATURES
	The Jellyfish Entrepreneur
	How To Land An Airplane If You Are Not A Pilot

	STARTUP
	Inventing Chromebook
	Cognitive Overhead

	PROGRAMMING
	The Algebra of Algebraic Data Types
	Python Libraries You Should Know About
	Handling Growth with Postgres

	SPECIAL
	How Hotel Reservations Work
	What It’s Like To Die
	McDonald’s Theory Of Bad Ideas

