

Curator
Lim
Cheng Soon

Contributors
Martin
Legeer
Andrew Chalkley
Grant Mathews
Bryan Kennedy
Patrick
Wyatt
Pete Keen
Craig Kerstiens
Amber Feng
Alex
Baldwin
John Biesnecker
Rachel Kroll

Proofreaders
Emily
Griffin
Sigmarie Soto

Ebook Conversion
Ashish
Kumar Jha

Printer
MagCloud

Advertising

ads@hackermonthly.com

Contact

contact@hackermonthly.com

Published by
Netizens Media

46, Taylor Road,
11600 Penang, Malaysia.

Hacker Monthly is the print magazine version of Hacker News —
news.ycombinator.com,
a social news website wildly popular among programmers and startup
founders. The submission guidelines state that content can be
“anything that gratifies one’s intellectual curiosity.” Every
month, we select from the top voted articles on Hacker News and print
them in magazine format.
For more, visit hackermonthly.com

How I Created a
Matrix Bullet Time-Style Rig

By MARTIN LEGEER

Back in March, a client for whom I’ve done some light consulting work
asked me if it was possible to capture a 360-degree image that can be
rotated afterwards. I said of course, but I didn’t think that much
about the consequences — it’s a project that would wake me up at
night for the next few months.

Everything was fine until the moment he
showed me the room I was supposed to make the rig in — it was his
villa.

 This type of project is generally done
in warehouse-sized spaces, and there are good reasons for that
(lighting being one of them). Well, this was a garage about
130-square-feet in area and a ceiling about 8 feet tall. My first
reaction was to laugh for a little while. Then I asked if he was
serious. I saw from the look on his face that he really did want me
to build the rig there, so my next reaction was, “I have to think
about it.”

Don’t get me wrong, I’m up for any
badness, but this was beyond crazy and bananas.

The next day, we sat down in a
restaurant and started talking about this a little more — what his
vision was, what look he wanted to achieve, and so on. What I ended
up with was that he would like to have a shadowless photo on a white
background with maybe some contrast in there, but definitely
shadowless.

This
was a bit funny because the only thing I know that makes contrast
(light-wise, not color-wise) is a shadow. But sure, let’s make
history.

 Another request he made was to make it
as easy as possible for further retouches, since he planned to use
the rig extensively.

I took a few days to think about what
direction I would go with the project — things like lighting the
subject, the background, the fluency between the photos — the
distance between the cameras, subject, camera count — just about
everything. I’ve seen quite a few results from “bullet time”
systems all around the world, so I knew what things and results I
would like to avoid, especially with my white background.

I
came up with some ideas, but just to be sure, I called my friend
Daniel over (he’s pretty much at the same technical level as I am)
to have somebody to bounce ideas off. From that moment on, the
concept just grew.

The next day, I called the client and
accepted the challenge. I asked for an advance before putting
everything together, making phone calls, etc. just to be sure there
would be no trouble afterwards. I got the advance the very same day
(to my surprise) and then we got started.

Since we had so little space to make
the rig on (mainly due to the low ceiling), my initial idea was to
put up some kind of a diffusing tent around the subject and light it
from the outside with big octas around. However, we moved on from
this idea because there were so many issues we had to address
(possible flares, the quality of the image due to the lighting, how
to spread the light evenly from the close distance, tension of the
diffusing textile, the possibility of someone damaging the textile,
etc.).

I called another colleague and we came
up with the idea of making a cylinder, which we could paint from the
inside and repaint if necessary in the future. The only problem we
had to solve with this new design was how to light it from within.
Since the request was to have a subject on a white background, we
decided to build it completely in white so that the light would
bounce around like crazy (eliminating shadows).

We started putting together the precise
lighting setup. We wanted to give the client the option of using
other styles of lighting for non-shadowless photos, so we arranged 6
lights on the ceiling in a circular formation.

For those of you wondering about the
brand of the lights, I normally shoot with Profoto, but I chose to go
with Elinchrom this time (to save some money). Elinchrom satisfies
the requirements for professional use, since it has such a consistent
amount of light, consistent color temperature, etc.

So that was step one. Step two was
putting together a list of the gear we needed to buy. You wouldn’t
believe how much trouble it was to simply find a seller who was able
to send us 50 cameras and prime lenses to the middle of Europe. It
was unbelievable. If it were Canon 5D MKIIIs, Nikon D800s, or
something of that class, that would be understandable, but Canon
600Ds? Come on!

We chose the cheaper Canon DSLRs over
other brands simply due to budget constraints.

I originally wanted to go for Nikon
(since it’s the brand I shoot with), but we had trouble solving
certain issues with Nikon technicians. We had to fire all 50 cameras
at once and transfer all the data off the cameras, and there is
currently no software on the market (that I am aware of) that can do
the job (at least at the time we did this project). Maybe there is,
but I couldn’t find it.

 There were potential programs we could
use, but they were written for Linux. I also could have had
programmers around me write the software, but that would have taken
weeks or months, which we didn’t have.

We eventually found a single program
for Canon DSLRs, which turned out to be a huge waste of money. The
trial version had limited options, so we had to buy the full
software. After we did, we found out that although the software is
able to trigger all the cameras at once, it has a slight delay
between the cameras — like 1/5s between each camera.

This was a big issue for us since we
needed to sync the flash between the 50 cameras as well (we can’t
light it with other types of lights, lest we fry the person in the
cylinder).

Just like Leonardo DiCaprio in
Inception, we had to go deeper. Finally, we reached the best and
simplest solution. Since each camera can be fired via a cable
trigger, we created a net of cables that does just that — triggers
all the cameras at once. Two buttons are located at the end of the
net: the focus/wakeup and trigger buttons. Voila! Firing problem
solved.

The
software allows us to download the RAW images onto computers (there
has to be 4 laptops since the software can operate only up to 14 or
16 cameras and there are also bandwidth issues).

That’s pretty much the entire build
process. Of course, I simplified quite a few things to not bore you
with my thoughts throughout the whole project, but all in all, I hope
you enjoyed the ride. I know I did, and I would love to do it again —
perhaps in a larger space.

The last thing I have to say will be a
disappointment to many of you: I don’t have any resulting images to
share with you due to the client’s request to not share any sample
photos outside. Perhaps in the future some of his photos will begin
to appear on the web. §

Martin Legeer is a photographer who
went from shooting events for companies like AXE, RedBull, Ferrero to
commercial photography. He is trying to make his mark in fashion
industry and taking some challenges along the way.

First
appeared in hn.my/bullet
(petapixel.com)

The Absolute
Beginner’s Guide to Arduino

By ANDREW CHALKLEY

Over the Christmas break
from work I wanted to learn something new.

I’ve been eyeing up
Arduino for some time now, and for Christmas I got an Arduino UNO R3
board.

What is Arduino?

Arduino
is an open-source electronics prototyping platform based on flexible,
easy-to-use hardware and software. It is intended for artists,
designers, hobbyists, and anyone interested in creating interactive
objects or environments.

Source:
arduino.cc

Microcontroller

Arduino is a
microcontroller on a circuit board which makes it easy to receive
inputs and drive outputs.

A microcontroller is an
integrated computer on a chip.

Inputs

Some examples of inputs
would be a temperature sensor, a motion sensor, a distance sensor, a
switch, and so forth.

Outputs

Some examples of outputs
would be a light, a screen, a motor and so forth.

TL;DR

Arduino is a small
computer that you can program to read and control electrical
components connected to it.

Obtaining an Arduino
Board

There are several online
distributors that stock Arduino boards.

Often boards are bundled
up with starter kits. Kits include a wide variety of inputs, outputs,
resistors, wires and breadboards. Breadboards are solderless circuit
prototyping boards that you can plug wires and components into.

Arduinos come in different
flavors. Most people starting off go for the UNO board. Its current
revision is the third, hence the R3 listed by stockists.

Most enthusiasts use sites
like Adafruit [adafruit.com] and
Element14 [element14.com].

You can even pick one up
from your local RadioShack.

If you’re just getting a
single Arduino board or starter kit, be sure you have a USB A-to-B
cable. Most, if not all, starter kits come with the USB A-to-B cable.
Most printers have this type of interface so you may have this cable
already lying around. You need the cable to program the device, so
it’s best to double check when ordering.

Programming Arduino

For the example I’m
showing, you’ll only need the Arduino UNO R3 board itself and the
required USB cable to transfer the program
from your computer to the board.

On the board left of the
Arduino logo there’s an LED, short for Light Emitting Diode, a
small light, with the letter L next to it.

We’re going to switch it
on and off and then look into making it blink on and off for 2
seconds at a time.

When you first plug your
USB cable into your Arduino and your computer, you may notice that
this LED is blinking. Not to worry! It’s the default program stored
on the chip. We’re going to override this.

The USB cable powers the
device. Arduinos can run standalone by using a power supply in the
bottom left of the board. Once you’re done programming and don’t
require it to be constantly connected to your machine, you can opt to
power it separately. This is entirely dependant on the use case and
circumstances you want to use the device in.

Download Arduino
Software

You’ll need to download
the Arduino Software package for your operating system from the
Arduino download page [hn.my/adl].

When you’ve downloaded
and opened the application you should see something like this:

 This is where you type
the code you want to compile and send to the Arduino board.

The Initial Setup

We need to setup the
environment to Tools menu and select Board.

 Then select the type of
Arduino you want to program, in our case it’s the Arduino Uno.

The Code

The code you write for
your Arduino are known as sketches. They are written in C++.

Every sketch needs two
void type functions, setup() and loop(). A void type function doesn’t
return any value.

The setup() method
is run once just after the Arduino is powered up and the loop()
method runs continuously afterwards. The
setup() is where you want to do any initialization steps, and in
loop() you run the code you want to run over and over again.

So, your basic sketch or
program should look like this:

 void setup()
 {

 }

 void loop()
 {

 }

Now
that we have the basic skeleton in place, we can do the Hello, World
program of microcontrollers, a blinking an LED.

Headers and Pins

If you notice on the top
edge of the board there’s two black rectangles with several squares
in it. These are called headers. Headers make it easy to connect
components to the Arduino. The places where they connect to the board
are called pins. Knowing what pin something is connected to is
essential for programming an Arduino.

The pin numbers are listed
next to the headers on the board in white.

The onboard LED we want to
control is on pin 13.

In our code above the
setup() method let’s create a variable called ledPin. In C++ we
need to state what type our variable is beforehand, in this case it’s
an integer, so it’s of type int.

 int ledPin = 13;

 void setup()
 {

 }

 void loop()
 {

 }

Each line ends with a
semicolon (;).

In the setup() method, we
want to set the ledPin to the output mode. We do this by calling a
special function called pinMode() which takes two variables, the
first the pin number, and second, whether it’s an input or output
pin. Since we’re dealing with an output, we need to set it to a
constant called OUTPUT. If you were working with a sensor or input it
would be INPUT.

 int ledPin = 13;

 void setup()
 {
 pinMode(ledPin, OUTPUT);
 }

 void loop()
 {

 }

In our loop we are going
to first switch off the LED to make sure our program is being
transferred to the chip and overriding the default.

We do this by calling
another special method called digitalWrite(). This also takes two
values, the pin number and the level, HIGH or the on state or LOW the
off state.

 int ledPin = 13;

 void setup()
 {
 pinMode(ledPin, OUTPUT);
 }

 void loop()
 {
 digitalWrite(ledPin, LOW);
 }

Next we want to compile to
machine code and deploy or upload it to the Arduino.

Compiling the Code

If this is your first time
you’ve ever compiled code to your Arduino, before plugging it in to
the computer, go to the Tools menu, then Serial Port and take note of
what appears there.

Here’s what mine looks
like before plugging in the Arduino UNO:

Plug
your Arduino UNO board into the USB cable and into your computer. Now
go back to the Tools > Serial Port menu and you should see at
least 1 new option. On my Mac 2 new serial ports appear.

The tty and cu are two
ways that computers can talk over a serial port. Both seem to work
with the Arduino software so I selected the tty.* one. On Windows you
should see COM followed by a number. Select the new one that appears.

Once you have selected
your serial or COM port, you can then press the button with the arrow
pointing to the right.

 Once that happens you
should see the TX and RX LEDs below the L LED flash. This is the
communication going on between the computer and the Arduino. The L
may flicker, too. Once this dance is complete, your program should be
running, and your LED should be off.

Now let’s try to switch
it on using the HIGH constant.

 int ledPin = 13;

 void setup()
 {
 pinMode(ledPin, OUTPUT);
 }

 void loop()
 {
 digitalWrite(ledPin, HIGH);
 }

Press Upload again, and
you should see your LED is now on!

Let’s make this a little
more interesting now. We’re going to use another method called
delay(), which takes an integer of a time interval in milliseconds,
meaning the integer of 1000 is 1 second.

So after we switch the LED
on, let’s add delay(2000), which is two seconds, then
digitalWrite(ledPin, LOW) to switch it off and delay(2000) again.

 int ledPin = 13;

 void setup()
 {
 pinMode(ledPin, OUTPUT);
 }

 void loop()
 {
 digitalWrite(ledPin, HIGH);
 delay(2000);
 digitalWrite(ledPin, LOW);
 delay(2000);
 }

Press Upload and you
should see your LED blinking!

What next?

The Arduino platform is an
incredibly easy and versatile platform to get started with. It’s
open-source hardware, meaning that people can collaborate to improve,
remix and build on it.

It’s the brains to some
of the most popular devices that are driving the next Industrial
Revolution, the 3D printer. [makerbot.com]

And as Massimo Banzi
says, “You don’t need anybody’s permission to create something
great.” So what you waiting for? §

Andrew Chalkley is an
Expert Teacher at Treehouse, Co-founder of iOS app development
company Secret Monkey Science and technical writer on
Screencasts.org. In his spare
time he hacks around with hardware such as Arduino, Raspberry Pi and
Kinect.

First
appeared in
hn.my/arduino
(forefront.io/)

From
AS3 to Haxe

By GRANT MATHEWS

I recently converted a codebase of
about 5000 lines from ActionScript 3 to Haxe [haxe.org]. Here’s
what I learned.

Initial impressions:

1. Haxe compiles really fast.

I see compile times from 0.1 to 1
second — usually 0.1. As a comparison, the same project used to see
compile times from 2-15 seconds in AS3. This is great when you’re
testing out lots of small changes rapidly.

2. Autocompletion is built in.

Haxe was designed with autocompletion
in mind. This means almost any Haxe editor supports it, since the API
is so simple. I’ve personally been using Sublime Text 2, which
handles Haxe like a dream, and runs on Windows, OSX and Linux (I run
OSX). If you run Windows, you’d be a fool not to use FlashDevelop,
which is rock solid.

AS3 autocomplete was a shaky
proposition outside of FlashDevelop, so having it available
everywhere (and being able to even autocomplete the flash API) is a
boon.

3. The AS3 target is solid.

Through the entire translation phase, I
didn’t encounter a single Haxe bug. Debugging was a breeze because
the backtrace given was relative to the Haxe files (as you should
expect).

Language differences

1. Stronger type system.

Generics

This is a huge, huge win for Haxe. If
you’ve used AS3, you might be familiar with how they have a
parameterized Vector.<T>. You’re probably familiar with how
you got your hopes up for properly generic types and functions, only
to have them dashed when it turned out Vector.<T> is an Adobe
hardcode and you can’t do anything like it. Haxe, on the other
hand, has generics built into the language, so you can make both
functions and objects generic.

Function types

In AS3, functions have one type:
Function. In Haxe, they have many. For instance, a function that
takes an Int and converts it to a String would be Int -> String.
This catches many bugs.

2. No more Object.

The problem with Object from AS3 is
that it’s not type safe. In AS3 you can do something like this:

 var myObject:Object = {};

 myObject[1] = "hi";
 myObject["somekey"] = 4.3;

Obviously if you do a loop through that
object, you couldn’t specify the type of the key. Haxe gets around
this by splitting Object into two types that encompass all of its
expected functionality.

The first is TypedDictionary<Key,
Value>. TypedDictionary is your typical key-value store: put in a
key of one type, get out a value of another.

The second is typedef. typedef is
really similar to struct from C. If you’re not familiar with
struct, you can also think of it as an AS3 Object that you can’t
add any more properties to. Here’s an example.

 typedef User = {
 var age : Int;
 var name : String;
 }
 var u : User = { age : 26, name : "Tom" };
 u.age = 32;
 trace(u.name);
 u.xyz = 557; //Error!

Both of these have the advantage of
type safety. Also notice how they really do separate the two use
cases of AS3’s Object. In AS3 you shouldn’t be using Object for
structs; you should be making classes — but I’d bet that you do
anyways because Objects are so much more lightweight.

There’s a nice interplay between
typedefs and classes. For instance, the Iterator typedef defines two
methods: next and hasNext. You can make an Iterator like so:

 var a:Array<Int> = [1,2,3,4,5,6];
 var loc:Int = 0;
 var i:Iterator<Int> = {
 hasNext = function() return loc != a.length,
 next = function() return a[loc++]
 }

But you can also make an iterator like
this:

 class MyIterator<Int> {
 function hasNext(): Bool {
 // do some stuff
 }
 function next(): T {
 // do other stuff
 }
 }

Both these two iterators are
interchangeable. Nice!

Strictly speaking, you can simulate an
AS3 object by declaring a var Dynamic and using Reflect.setField and
Reflect.getField. I encourage you not to do this, though, because the
built-in Object replacements are far superior in terms of
type-safety.

3. Improved for loops.

This is a nice advantage over AS3.
Haxe’s loops only use iterators. A traditional for loop looks like
this:

 for (x in 0...10)
 trace(x)

If
you want to loop through an Array, it looks like this:

 var myArray:Array<Int> = [1,2,3,4,5];

 for (val in myArray)
 trace(val)

This means that you can make any
user-defined object loopable simply by defining an iterator() method
on the object.

4. Different setter/getter syntax.

 public var someInt(getSomeInt, setSomeInt): Int;

This indicates that the variable
someInt has a setter and getter method named getSomeInt and
setSomeInt, respectively.

5. Enumerations

 enum Color { Red; Green; Blue; }

They type check; no mismatching
enumerations because you did something like var Red:Int = 1.

Enumerations in Haxe are a bit more
powerful than, say, those found in Java or C++. If you’re familiar
with Haskell, you’ll see that they take influence from algebraic
datatypes. They can have values and be recursive. (And if you’re
not familiar with Haskell, don’t be scared away! It’s quite
simple.) Nicolas Cannasse wrote Haxe in OCaml, so the influence is
obvious.

Here’s your basic binary tree, where
each node in the tree is either a leaf or a node with two trees
beneath:

 enum Tree {
 Leaf(val: Int);
 Node(left:Tree, right:Tree);
 }

Of course, we don’t need to be
showing favoritism to Int — we can templatize!

 enum Tree<T> {
 Leaf(val: T);
 Node(left:Tree<T>, right:Tree<T>);
 }

Let’s see AS3 typecheck that!

6. Using

The using keyword allows you to add
additional methods onto existing types. The classic example of using
is the Lambda class. The Lambda class has a bunch of static methods
on it. We’ll use Lambda.exists as an example. The definition looks
like this:

static function exists<T>(it: Iterable<T>, F: T -> Bool);

For example, you could use the function
like this:

 var myArray:Array<Int> = [1,2,3,4];
 var is3:Int -> Bool = function(x: Int) return x == 3;

 if (Lambda.exists(myArray, is3)) {
 trace("I found a 3 in the array!");
 }

The using keyword lets you drop exists
right onto the Array object itself — or any other object that
implements Iterable<T>, for that matter. Check it out:

 using Lambda;

 var myArray:Array<Int> = [1,2,3,4];
 var is3:Int -> Bool = function(x: Int) return x == 3;

 if (myArray.exists(is3)) {
 trace("I found a 3 in the array!");
 }

Nice, huh?

Problems

1. No cross-platform Dictionary
type.

The AS3 target has TypedDictionary, but
sadly it doesn’t exist on all platforms. The NME target has
ObjectHash, but the problem with ObjectHash is that it can’t have
primitive types (Int,String, Float, Bool) as keys.

To solve this problem, I wrote
SuperObjectHash.hx [hn.my/soh] which combines ObjectHash and Hash
into a single interface that you can use without having to worry
about having primitive typed values.

(It was pointed out on #haxe that
ObjectHash is planned to be introduced to Haxe, and will make it in
by Haxe 3. Then my SuperObjectHash won’t even be necessary.)

2. Overriding setters/getters is
tricky.

Essentially, you can override a
variable setter and getter, but only if you know the name of the
functions you’re overriding (which rules out extending some
built-ins), and you’re not permitted to use super to access the
parent’s property. From what I understand, these limitations stem
from problems with target languages, primarily PHP. This essentially
means that enhancing old behavior is impossible.

The good news is that the super
limitation is going away in Haxe 3, too. The first Haxe 3 release
candidate is coming out in late February, and I’m definitely
looking forward to it.

Closing thoughts

My overall impression? As a suffering
AS3 developer, Haxe is a dream come true. It has all the features I
wished AS3 would have — and a few more. It compiles faster than AS3
and it has better autocompletion than AS3. It optimizes code better
than AS3 (which is to say not at all— AS3 optimizes absolutely
nothing). It even has macros. Yep, a language with macros that
doesn’t have parenthesis all over the place (not to speak badly of
Lisp, of course). Haxe is impressive.

Even better, Haxe doesn’t feel like a
dead end language. I can cross-compile to any number of platforms
with NME, which is exciting. I’ve been experimenting with using
NME, which is admittedly a bit shakier than using the AS3 libraries,
but it’s there, and it’s exciting. I no longer feel nervous about
the world moving to HTML5. Nicolas Cannasse and the Haxe team move
incredibly fast. Just the other day I noticed they were writing a
Haxe shader language and a set of generic 3D bindings that will
interoperate between Flash’s Stage3D, HTML5’s WebGL, and more.
Wow.

I have to feel like one of the big
reasons that Haxe hasn’t seen more widespread attention is that
it’s not English. The documentation is full of imprecise wording
that feels amateur. (In fact, I spent some time cleaning it up the
other day.) It’s easy to draw the conclusion that the language is
like the docs — mismatched and awkward — but it’s not.

Check it out. The possibilities are
wild. §

Grant Mathews is a 22-year-old
senior currently attending Stanford University. He wants to prove
that games can be art, and invent the tools to make it happen.

First appeared in hn.my/haxe
(grantmathews.com)

My
First 5 Minutes On A Server

By BRYAN KENNEDY

Server
security doesn’t need to be complicated. My security philosophy is
simple: adopt principles that will protect you from the most frequent
attack vectors, while keeping administration efficient enough that
you won’t develop “security cruft.” If you use your first 5
minutes on a server wisely, I believe you can do that.

Any
seasoned sysadmin can tell you that as you grow and add more servers
and developers, user administration inevitably becomes a burden.
Maintaining conventional access grants in the environment of a
fast-growing startup is an uphill battle— you’re bound to end up
with stale passwords, abandoned intern accounts, and a myriad of “I
have sudo access to Server A, but not Server B” issues. There are
account sync tools to help mitigate this pain, but IMHO the
incremental benefit isn’t worth the time nor the security
downsides. Simplicity is the heart of good security.

Our
servers are configured with two accounts: root and deploy. The deploy
user has sudo access via an arbitrarily long password and is the
account that developers log into. Developers log in with their public
keys, not passwords, so administration is as simple as keeping the
authorized_keys file up-to-date across servers. Root login over ssh
is disabled, and the deploy user can only log in from our office IP
block.

The
downside to our approach is that if an authorized_keys file gets
clobbered or mis-permissioned, I need to log into the remote terminal
to fix it (Linode offers something called Lish, which runs in the
browser). If you take appropriate caution, you shouldn’t need to do
this.

Note:
I’m not advocating this as the most secure approach— just that it
balances security and management simplicity for our small team. From
my experience, most security breaches are caused either by
insufficient security procedures or sufficient procedures poorly
maintained.

Let’s
Get Started

Our
box is freshly hatched, virgin pixels at the prompt. I favor Ubuntu;
if you use another version of linux, your commands may vary. Five
minutes to go:

passwd

Change
the root password to something long and complex. You won’t need to
remember it, just store it somewhere secure. This password will only
be needed if you lose the ability to log in over ssh or lose your
sudo password.

 apt-get update
 apt-get upgrade

The
above gets us started on the right foot.

Install
Fail2ban

 apt-get install fail2ban

Fail2ban
is a daemon that monitors login attempts to a server and blocks
suspicious activity as it occurs. It’s well configured out of the
box.

Now,
let’s set up your login user. Feel free to name the user something
besides “deploy”, it’s just a convention we use:

 useradd deploy
 mkdir /home/deploy
 mkdir /home/deploy/.ssh
 chmod 700 /home/deploy/.ssh

Require
Public Key Authentication

The
days of passwords are over. You’ll enhance security and ease of use
in one fell swoop by ditching those passwords and employing public
key authentication for your user accounts.

 vim /home/deploy/.ssh/authorized_keys

Add
the contents of the id_rsa.pub on your local machine and any other
public keys that you want to have access to this server to this file.

 chmod 400 /home/deploy/.ssh/authorized_keys
 chown deploy:deploy /home/deploy -R

Test
the New User and Enable Sudo

Now
test your new account logging into your new server with the deploy
user (keep the terminal window with the root login open). If you’re
successful, switch back to the terminal with the root user active and
set a sudo password for your login user:

 passwd deploy

Set
a complex password. Uou can either store it somewhere secure or make
it something memorable to the team. This is the password you’ll use
to sudo.

 visudo

Comment
all existing user/group grant lines and add:

 root ALL=(ALL) ALL
 deploy ALL=(ALL) ALL

The
above grants sudo access to the deploy user when they enter the
proper password.

Lock
Down SSH

Configure
ssh to prevent password and root logins and lock ssh to particular
IPs:

 vim /etc/ssh/sshd_config

Add
these lines to the file, inserting the IP address from where you will
be connecting:

 PermitRootLogin no
 PasswordAuthentication no
 AllowUsers deploy@(your-ip) deploy@(another-ip-if-any)

Now
restart ssh:

 service ssh restart

Setup
A Firewall

No
secure server is complete without a firewall. Ubuntu provides ufw,
which makes firewall management easy. Run:

 ufw allow from {your-ip} to any port 22
 ufw allow 80
 ufw allow 443
 ufw enable

This
sets up a basic firewall and configures the server to accept traffic
over port 80 and 443. You may wish to add more ports depending on
what your server is going to do.

Enable
Automatic Security Updates

I’ve
gotten into the apt-get update/upgrade habit over the years, but with
a dozen servers, I found that servers I logged into less frequently
weren’t staying as fresh. Especially with load-balanced machines,
it’s important that they all stay up to date. Automated security
updates scare me somewhat, but not as badly as unpatched security
holes.

 apt-get install unattended-upgrades
 vim /etc/apt/apt.conf.d/10periodic

Update
the file to look like this:

 APT::Periodic::Update-Package-Lists "1";
 APT::Periodic::Download-Upgradeable-Packages "1";
 APT::Periodic::AutocleanInterval "7";
 APT::Periodic::Unattended-Upgrade "1";

One
more config file to edit:

 vim /etc/apt/apt.conf.d/50unattended-upgrades

Update
the file to look like below. You should probably keep updates
disabled and stick with security updates only:

 Unattended-Upgrade::Allowed-Origins {
 "Ubuntu lucid-security";
 // "Ubuntu lucid-updates";
 };

Install
Logwatch To Keep An Eye On Things

Logwatch
[hn.my/logwatch] is a daemon that
monitors your logs and emails them to you. This is useful for
tracking and detecting intrusion. If someone were to access your
server, the logs that are emailed to you will be helpful in
determining what happened and when, as the logs on your server might
have been compromised.

 apt-get install logwatch
 vim /etc/cron.daily/00logwatch

add
this line:

 /usr/sbin/logwatch --output mail --mailto test@gmail.com --detail high

All
Done!

I
think we’re at a solid place now. In just a few minutes, we’ve
locked down a server and set up a level of security that should repel
most attacks while being easy to maintain. At the end of the day,
it’s almost always user error that causes break-ins, so make sure
you keep those passwords long and safe!§

Bryan
Kennedy is the Co-Founder and CTO of Sincerely, helping to scale
thoughtfulness across the world. Bryan is a YCombinator alum and an
angel investor. On warm summer nights he runs MobMov.org, a worldwide
collective of guerrilla drive-ins.

First appeared in hn.my/5mins
(plusbryan.com)

Whose Bug Is
This Anyway?

By PATRICK WYATT

At a certain point in every
programmer’s career we each find a bug that seems impossible
because the code is right, dammit! So it must be the operating
system, the tools, or the computer that’s causing the problem.
Right?!?

Today’s story is about some of those
bugs I’ve discovered in my career.

This bug is Microsoft’s fault…or
not

Several months after the launch of
Diablo in late 1995, the StarCraft team put on the hustle and started
working extra long hours to get the game done. Since the game was
“only two months from launch,” it seemed to make sense to work
more hours every day (and some weekends, too). There was much to do,
because even though the team started with the Warcraft II game
engine, almost every system needed rework. All of the scheduling
estimates were willfully wrong (my own included), so this extra
effort kept on for over a year.

I wasn’t originally part of the
StarCraft dev team, but after Diablo launched, when it became clear
that StarCraft needed more “resources” (a.k.a. people), I joined
the effort. Because I came aboard late I didn’t have a defined
role, so instead I just “used the force” to figure out what
needed to happen to move the project forward.

I got to write fun features like
implementing parts of the computer AI, which was largely developed by
Bob Fitch. One was a system to determine the best place to create
“strong-points” — places that AI players would gather units for
defense and staging areas for attacks. I was fortunate because there
were already well-designed APIs that I could query to learn which map
areas were joined together by the path-finding algorithm and where
concentrations of enemy units were located in order to select good
strong-points, as it would otherwise be embarrassing to fortify
positions that could be trivially bypassed by opponents.

I re-implemented some components like
the “fog of war” system I had written for previous incarnations
of the ‘Craft series. StarCraft deserved to have a better
fog-of-war system than its predecessor, Warcraft II, with finer
resolution in the fog-map, and we meant to include line-of-sight
visibility calculations so that units on higher terrain would be
invisible to those on lower terrain, greatly increasing the tactical
complexity of the game: when you can’t see what the enemy is doing,
the game is far more complicated. Similarly, units around a corner
would be out of sight and couldn’t be detected.

The new fog of war was the most
enjoyable part of the project for me, as I needed to do some quick
learning to make the system functional and fast. Earlier efforts by
another programmer were graphically displeasing and moreover, ran so
slowly as to be unworkable. I learned about texture filtering
algorithms and Gouraud shading, and wrote the best x386 assembly
language of my career — a skill now almost unnecessary for modern
game development. Like many others I hope that StarCraft is
eventually open-sourced, in my case so I can look with fondness on my
coding efforts, though perhaps my memories are better than seeing the
actual code!

But my greatest contribution to the
StarCraft code was fixing defects. With so many folks working extreme
hours writing brand new code, the entire development process was
haunted by bugs: two steps forward, one step back. While most of the
team coded new features, I spent my days hunting down the problems
identified by our Quality Assurance (QA) test team.

The trick for effective bug-fixing is
to discover how to reliably reproduce a problem. Once you know how to
replicate a bug, it’s possible to discover why the bug occurs, and
then it’s often straightforward to fix. Unfortunately reproducing a
“will o’ the wisp” bug that only occasionally deigns to show up
can take days or weeks of work. Even worse is that it is difficult or
impossible to determine beforehand how long a bug will take to fix,
so long hours investigating were the order of the day. My terse
status updates to the team were along the lines of “yeah, still
looking for it.” I’d sit down in the morning and basically spend
all day cracking on, sometimes fixing hundreds of issues, but many
times fixing none.

One day I came across some code that
wasn’t working: it was supposed to choose a behavior for a game
unit based on the unit’s class (“harvesting unit”, “flying
unit”, “ground unit”, etc.) and state (“active”,
“disabled”, “under attack”, “busy”, “idle”, etc.). I
don’t remember the specifics after so many years, but something
along the lines of this:

 if (UnitIsHarvester(unit))
 return X;

 if (UnitIsFlying(unit)) {
 if (UnitCannotAttack(unit))
 return Z;
 return Y;
 }

 ... many more lines

 if (! UnitIsHarvester(unit)) // "!" means "not"
 return Q;

 return R; <<< BUG: this code is never reached!

After staring at the problem for too
many hours, I guessed it might be a compiler bug, so I looked at the
assembly language code.

For the non-programmers out there,
compilers are tools that take the code that programmers write and
convert it into “machine code”, which are the individual
instructions executed by the CPU.

 // Add two numbers in C, C#, C++ or Java
 A = B + C

 ; Add two numbers in 80386 assembly
 mov eax, [B] ; move B into a register
 add eax, [C] ; add C to that register
 mov [A], eax ; save results into A

After looking at the assembly code I
concluded that the compiler was generating the wrong results, and
sent a bug report off to Microsoft — the first compiler bug report
I’d ever submitted. And I received a response in short order, which
in retrospect is surprising: considering that Microsoft wrote the
most popular compiler in the world, it’s hard to imagine that my
bug report got any attention at all, much less a quick reply!

You can probably guess — it wasn’t
a bug, there was a trivial error I had been staring at all along but
didn’t notice. In my exhaustion — weeks of 12+ hour days — I
had failed to see that it was impossible for the code to work
properly. It’s not possible for a unit to be neither “a
harvester” nor “not a harvester”. The Microsoft tester who
wrote back politely explained my mistake. I felt crushed and
humiliated at the time, only slightly mitigated by the knowledge that
the bug was now fixable.

Incidentally, this is one of the
reasons that crunch time is a failed development methodology, as I’ve
mentioned in past posts on this blog; developers get tired and start
making stupid mistakes. It’s far more effective to work reasonable
hours, go home, have a life, and come back fresh the next day. When I
started ArenaNet with two of my friends, the “no crunch”
philosophy was a cornerstone of our development effort, and one of
the reasons we didn’t buy foosball tables and arcade machines for
the office. Work, go home at a reasonable time, and come back fresh!

This bug is actually Microsoft’s
fault

Several years later, while working on
Guild Wars, we discovered a catastrophic bug that caused game servers
to crash on startup. Unfortunately, this bug didn’t occur in the
“dev” (“development”) branch that the programming team used
for everyday work, nor did it occur in the “stage” (“staging”)
branch used by the game testers for final verification, it only
occurred in the “live” branch which our players used to play the
game. We had “pushed” a new build out to end-users, and now none
of them could play the game! WTF!

Having thousands of angry players amps
up the pressure to get that kind of problem fixed quickly.
Fortunately we were able to “roll back” the code changes and
restore the previous version of the code in short order, but now we
needed to understand how we broke the build. Like many problems in
programming, it turned out that several issues taken together
conspired to cause the bug.

There was a compiler bug in Microsoft
Visual Studio 6 (MSVC6), which we used to build the game. Yes! Not
our fault! Well, except that our testing failed to uncover the
problem. Whoops.

Under certain circumstances, the
compiler would generate incorrect results when processing templates.
What are templates? They’re useful, but they’ll blow your mind.
[hn.my/fqa]

C++ is a complex programming language,
so it is no surprise that compilers that implement the language have
their own bugs. In fact the C++ language is far more complicated than
other mainstream languages. Ruby is a complex and fully-featured
language, but C++ is twice as complex, so we would expect it to have
twice as many bugs, all other things being equal.

When we researched the compiler bug it
turned out to be one that we already knew about, and that had already
been fixed by the Microsoft dev team in MSVC6 Service Pack 5 (SP5).
In fact all of the programmers had already upgraded to SP5. Sadly,
though we had each updated our work computers, we neglected to
upgrade the build server, which is the computer that gathers the
code, artwork, game maps, and other assets and turns them into a
playable game. So while the game would run perfectly on each
programmers’ computer, it would fail horribly when built by the
build server. But only in the live branch!

Why only in live? Hmmm….Well, ideally
all branches (dev, stage, live) would be identical to eliminate the
opportunity for bugs just like this one, but in fact there were a
number of differences. For a start, we disabled many debugging
capabilities for the live branch that were used by the programming
and test teams. These capabilities could be used to create gold and
items, or spawn monsters, or even crash the game.

We wanted to make sure that the
ArenaNet and NCsoft staff didn’t have access to cheat functions
because we wanted to create a level playing field for all players.
Many MMO companies have had to fire folks who abused their godlike
“GM” powers, so we thought to eliminate that problem by removing
capability.

A further change was to eliminate some
of the “sanity checking” code that’s used to validate that the
game is functioning properly. This type of code, known as asserts or
assertions by programmers, is used to ensure that the game state is
proper and correct before and after a computation. These assertions
come with a cost, however: each additional check that has to be
performed takes time; with enough assertions embedded in the code,
the game can run quite slowly. We had decided to disable assertions
in the live code to reduce the CPU utilization of the game servers,
but this had the unintended consequence of causing the C++ compiler
to generate the incorrect results which led to the game crash. A
program that doesn’t run uses a lot less CPU, but that wasn’t
actually the desired result.

The bug was easily fixed by upgrading
the build server, but in the end we decided to leave assertions
enabled even for live builds. The anticipated cost-savings in CPU
utilization (or more correctly, the anticipated savings from being
able to purchase fewer computers in the future) were lost due to the
programming effort required to identify the bug, so we felt it better
to avoid similar issues in future.

Lesson learned: everyone, programmers
and build servers alike, should be running the same version of the
tools!

Your computer is broken

After my experience reporting a non-bug
to the folks at Microsoft, I was notably shyer about suggesting that
bugs might be caused by anything other than the code I or one of my
teammates wrote.

During the development of Guild Wars
(GW), I had occasion to review many bug reports sent in from players’
computers. As GW players may remember, in the (hopefully unlikely)
event that the game crashed, it would offer to send the bug report
back to our “lab” for analysis. When we received those bug
reports we triaged to determine who should handle each report, but of
course bugs come in all manner of shapes and sizes and some don’t
have a clear owner, so several of us would take turns at fixing these
bugs.

Periodically we’d come across bugs
that defied belief, and we’d be left scratching our heads. While it
wasn’t impossible for the bugs to occur, and we could construct
hypothetically plausible explanations that didn’t involve
redefining the space-time continuum, they just “shouldn’t” have
occurred. It was possible they could be memory corruption or thread
race issues, but given the information we had, it just seemed
unlikely.

Mike O’Brien, one of the co-founders
and a crack programmer, eventually came up with the idea that they
were related to computer hardware failures rather than programming
failures. More importantly, he had the bright idea for how to test
that hypothesis, which is the mark of an excellent scientist.

He wrote a module (“OsStress”)
which would allocate a block of memory, perform calculations in that
memory block, and then compare the results of the calculation to a
table of known answers. He encoded this stress-test into the main
game loop so that the computer would perform this verification step
about 30-50 times per second.

On a properly functioning computer this
stress test should never fail, but surprisingly we discovered that on
about 1% of the computers being used to play Guild Wars, it did fail!
One percent might not sound like a big deal, but when one million
gamers play the game on any given day that means 10,000 would have at
least one crash bug. Our programming team could spend weeks
researching the bugs for just one day at that rate!

When the stress test failed, Guild Wars
would alert the user by closing the game and launching a web browser
to a Hardware Failure page which detailed the several common causes
that we discovered over time:

		Memory failure: in the
	early days of the IBM PC, when hardware failures were more common,
	computers used to have “RAM parity bits” so that in the event a
	portion of the memory failed, the computer hardware would be able to
	detect the problem and halt computation, but parity RAM fell out of
	favor in the early ’90s. Some computers use “Error Correcting
	Code” (ECC) memory, but because of the additional cost, it is more
	commonly found on servers rather than desktop computers.
	

	
	Overclocking: while less
	common these days, many gamers used to buy lower clock rate — and
	hence less expensive — CPUs for their computers, and would then
	increase the clock frequency to improve performance. Overclocking a
	CPU from 1.8 GHz to 1.9 GHz might work for one particular chip but
	not for another. I’ve overclocked computers myself without
	experiencing an increase in crash-rate, but some users ratchet up
	the clock frequency so high as to cause spectacular crashes as the
	signals bouncing around inside the CPU don’t show up at the right
	time or place.

	
	Inadequate power supply:
	many gamers purchase new computers every few years, but purchase new
	graphics cards more frequently. Graphics cards are an inexpensive
	system upgrade which generate remarkable improvements in game
	graphics quality. During the era when Guild Wars was released, many
	of these newer graphics cards had substantially higher power needs
	than their predecessors, and in some cases a computer power supply
	was unable to provide enough power when the computer was “under
	load,” as happens when playing games.

	
	Overheating: Computers
	don’t much like to be hot and malfunction more frequently in those
	conditions, which is why computer datacenters are usually cooled to
	68-72F (20-22C). Computer games try to maximize video frame-rate to
	create better visual fidelity; that increase in frame-rate can cause
	computer temperatures to spike beyond the tolerable range, causing
	game crashes.

In college I had an external hard-drive
on my Mac that would frequently malfunction during spring and summer
when it got too hot. I purchased a six-foot SCSI cable that was long
enough to reach from my desk to the mini-fridge (nicknamed Julio),
and kept the hard-drive in the fridge year round. No further
problems!

Once the Guild Wars tech support team
was alerted to the overheating issue, they had success fixing many
otherwise intractable crash bugs. When they received certain types of
crash reports, they encouraged players to create more air flow by
relocating furniture, adding external fans, or just blowing out the
accumulated dust that builds up over years, and that solved many
problems.

While implementing the computer stress
test solution seems beyond the call of duty, it had a huge payoff: we
were able to identify computers that were generating bogus bug
reports and ignore their crashes. When millions of people play a game
in any given week, even a low defect rate can result in more bug
reports than the programming team can field. By focusing our efforts
on the bugs that were actually our fault, the programming team was
able to spend time creating features that players wanted instead of
triaging unfixable bugs.

Ever more bugs

I don’t think that we’ll ever reach
a stage where computer programs don’t have bugs — the increase in
the expectations from users is rising faster than the technical
abilities of programmers. The Warcraft 1 code base was approximately
200,000 lines of code (including in-house tools), whereas Guild Wars
1 eventually grew to 6.5 million lines of code (including tools).
Even if it’s possible to write fewer bugs per line of code, the
vast increase in the number of lines of code means it is difficult to
reduce the total bug count. But we’ll keep trying.

To close, I wanted to share one of my
favorite tongue-in-cheek quotes from Bob Fitch, whom I worked with
back in my Blizzard days. He posited that, “All programs can be
optimized, and all programs have bugs; therefore all programs can be
optimized to one line that doesn’t work.” And that’s why we
have bugs.§

Patrick Wyatt is a lifelong
programmer, game developer, and game-player, and as of 2004, a parent
as well. He has worked on many popular games including Warcraft,
Diablo, Starcraft, Guild Wars and TERA.

First appeared
in hn.my/bug (codeofhonor.com)

How I Run My
Own DNS Servers

By PETE KEEN

For the longest time I used
zoneedit.com as my DNS provider of choice. All of my important
domains were hosted there, and they never really did me wrong. A few
months back I decided that I wanted to learn how DNS actually works
in the real world though. Like, what does it actually take to run my
own DNS servers?

Step 0: Why would you ever do that?!

I’m mostly motivated by curiosity,
but also by frustration. When something isn’t going my way it just
starts to make sense to do it myself. My frustration with zoneedit
wasn’t anything super specific. Their dynamic DNS system wasn’t
too terribly dynamic and adding and editing zones through their web
interface got to be pretty tedious after awhile. I have a bunch of
zones (32 at last count), most of which are very simple setups.
bugsplat.info is way more complicated, but we’ll get into that
later.

Step 1: The Hardware

I decided that if I’m going to do
this, I’m going to go all out. To that end, I rented two VPSs, one
from RamNode.com in Atlanta and
another from Prgmr.com in San Jose.
Overall I would say that my RamNode experience has been more positive
than my Prgmr experience. The network links have gone down twice in
the past six months at Prgmr, which isn’t the end of the world when
you’re running a redundant service, but it’s still pretty
annoying. RamNode has had 100% uptime so far.

Specs on these bad
boys:

		prgmr (teroknor.bugsplat.info): 1
	core, 1024MiB ram, 24GiB Disk, 160GiB transfer

	
	ramnode (empoknor.bugsplat.info):
	4 core, 2048MiB ram, 30GiB SSD-backed Disk, 4000GiB transfer

I’m not even close to exploiting
these two machines. I’m planning on moving more and more of my apps
and sites over to them, but right now they’re mainly handling this
site and my email and DNS.

Why two machines? To host your own DNS
servers, the registrars require you to list two IP addresses with the
idea that you’ll be providing redundant service. The one thing you
don’t want is downtime with DNS; it screws everything up.

Step 2: The Software

Once you decide to go down this DNS
rabbit hole, there are a bunch of decisions to make on the software
side. I considered PowerDNS and BIND and finally settled on
tinydns.org managed via puppet and supply drop. Tinydns is a project
started by Daniel J. Bernstein many years ago and has proven to be
extremely reliable when run as intended (no axfr, configuration
propogation via scp, etc). My setup is thus:

		Puppet [puppetlabs.com]
	managing the config for both boxes

	
	Supply drop [hn.my/supplydrop]
	deploys this configuration via Capistrano [hn.my/cap]

	
	Tinydns has a static config file
	checked into git, controlling most of my zones

	
	Tinydns also has a dynamic file
	that does my dynamic DNS updates for the home router

bugsplat.info is my oldest and thus
most complicated domain. It’s not even really that complicated; it
just handles a lot of stuff. My Mac mini runs a cron job every minute
that ssh’s into both machines and rebuilds the tinydns config file
if its IP has changed. That IP is then assigned to
subspace.bugsplat.info, and I have a wildcard CNAME for
*.bugsplat.info pointing at subspace. This lets me do things, like
having various services running on that Mac mini with distinct
hostnames, all hiding behind a common nginx. In addition, each VPS
has a wildcard CNAME pointing to it from *.<hostname>.bugsplat.info,
which lets me set up new apps and sites easily.

Step 3: The Email

One of the other problems I had with
zoneedit was their free email forwarding setup. It was slow. So slow.
Slower than molasses spread onto the back of the slowest dog. Even
before this whole DNS adventure started I knew I wanted to get rid of
that.

Each VPS runs its copy of my Postfix
[postfix.org] setup (also managed
via puppet), which mostly just forwards incoming email into my Gmail
account. I don’t send through it, since I haven’t quite figured
out all of the various DKIM and DMARC and SenderID and SPF things I
need to do, and besides, Gmail won’t send out through my SMTP
server anyway.

Step 4: Logging

One of the more interesting aspects of
this whole project has been getting a comprehensive view of
everything that goes on in my little empire. The other day I set up
global logging using Papertrail [papertrailapp.com],
a hosted logging service. It doesn’t do a whole lot; mostly it just
seeps up logs from all of my services, including these two VPSs and a
bunch of Heroku apps, makes them searchable for a few days, and drops
tarballs of them onto S3 nightly. It has given me really valuable
insight into at least two things: my Gmail backup wasn’t working,
and I get hit a lot by Chinese and India SSH breakin attempts. Still
working on how to deal with that one, but the Gmail backup is up and
running.

Conclusion

So after all of that, what have I
learned? Mostly that I’m a very particular person with regards to
this stuff. It’s fun right now, but I can see it getting kind of
tedious down the line. We’ll find out! It’s been an interesting
ride thus far and I’ve learned quite a bit, which is the most
important thing.§

Pete Keen is a software developer
currently residing in Portland Oregon. He writes articles about a
variety of technology issues at bugsplat.info

First appeared in
hn.my/dns (bugsplat.info)

How
I Work With Postgres

By CRAIG KERSTIENS

On at least a weekly basis and not
uncommonly multiple times in a single week I get this question:

I’ve been hunting for a nice PG
interface that works within other things. PGAdmin kinda works, except
the SQL editor is a piece of shit.
— @neilmiddleton

Sometimes it leans more to, “what is
the Sequel Pro equivalent for Postgres?” My default answer is: I
just use psql, though I do have to then go on to explain how I use
it. For those who are interested, you can read more below or just get
the highlights here:

		Set your default EDITOR then use
	\e

	
	On postgres 9.2 and up \x auto is
	your friend

	
	Set history to unlimited

	
	\d all the things

Before going into detail on why psql
works perfectly fine as an interface I want to rant for a minute
about what the problems with current editors are and where I expect
them to go in the future. First this is not a knock on the work
that’s been done on previous ones, for their time PgAdmin,
phpPgAdmin, and others were valuable tools, but we’re coming to a
point where there’s a broader set of users of databases than ever
before and empowering them is becoming ever more important.

Empowering developers, DBA’s, product
people, marketers, and others to be comfortable with their database
will lead to more people taking advantage of what’s in their data.
pg_stat_statements was a great start to this, laying a great
foundation for valuable information being captured. Even with all of
the powerful stats being captured in the statistics of PostgreSQL, so
many are still terrified when they see something like:

 QUERY PLAN
 --
 Hash Join (cost=4.25..8.62 rows=100 width=107) (actual time=0.126..0.230 rows=100 loops=1)
 Hash Cond: (purchases.user_id = users.id)
 -> Seq Scan on purchases (cost=0.00..3.00 rows=100 width=84) (actual time=0.012..0.035 rows=100 loops=1)
 -> Hash (cost=3.00..3.00 rows=100 width=27) (actual time=0.097..0.097 rows=100 loops=1)
 Buckets: 1024 Batches: 1 Memory Usage: 6kB
 -> Seq Scan on users (cost=0.00..3.00 rows=100 width=27) (actual time=0.007..0.042 rows=100 loops=1)
 Total runtime: 0.799 ms
 (7 rows)

Empowering more developers by surfacing
this information in a digestible form, such as building on top of
pg_stat_statements tools such as datascope [datascope.heroku.com]
by @leinweber and getting this to be part of the default admin we
will truly begin empowering a new set of users.

But enough of a detour, those tools
aren’t available today. If you’re interested in helping build
those to make the community better, please reach out. For now I live
in a world where I’m quite content with simple ole psql. Here’s
how:

Editor

Ensuring you’ve exported your
preferred editor to the environment variable EDITOR when you run \e
will allow you to view and edit your last run query in your editor of
choice. This works for vim, emacs, or even sublime text.

 export EDITOR=subl
 psql
 \e

Gives me:

Note
you need to make sure you connect with psql and have your editor set.
Once you do that, saving and exiting the file will then execute the
query.

\x auto

psql has long had a method of
formatting output. You can toggle this on and off easily by just
running the \x command. Running a basic query you get the output:

 SELECT *
 FROM users
 LIMIT 1;
 id | first_name | last_name | email | data
 1 | Rosemary | Wassink | rosemary@yahoo.com | "sex"=>"F"

With
toggling the output and re-running the same query, we can see how
it’s now formatted:

 \x
 Expanded display is on.
 craig=# SELECT * from users limit 1;
 -[RECORD 1]--------------------------
 id | 1
 first_name | Rosemary
 last_name | Wassink
 email | rosemary@yahoo.com
 data | "sex"=>"F"

Using
\x auto will automatically put this in what Postgres believes is the
most intelligible format to read it in.

psql history

Hopefully this needs no justification.
Having an unlimited history of all your queries is incredibly handy.
Ensuring you set the following environment variables will ensure you
never lose that query you ran several months ago again:

 export HISTFILESIZE=
 export HISTSIZE=

\d

The last item on the list of the first
things I do when connecting to any database is check out what’s in
it. I don’t do this by running a bunch of queries, but rather by
checking out the schema and then poking at definitions of specific
tables. \d and variations on it are incredibly handy for this. Here
are a few highlights below:

Listing all relations with simply \d:

 \d
 List of relations
 Schema | Name | Type | Owner
 --------+------------------+---------------+-------
 public | products | table | craig
 public | products_id_seq | sequence | craig
 public | purchases | table | craig
 public | purchases_id_seq | sequence | craig
 public | redis_db0 | foreign table | craig
 public | users | table | craig
 public | users_id_seq | sequence | craig
 (7 rows)

List only all tables with dt:

 \dt
 List of relations
 Schema | Name | Type | Owner
 --------+-----------+-------+-------
 public | products | table | craig
 public | purchases | table | craig
 public | users | table | craig
 (3 rows)

Describe a specific relation with \d
RELATIONNAMEHERE:

 \d users
 Table "public.users"
 Column | Type | Modifiers
 ------------+-----------------------------+--
 id | integer | not null default nextval('users_id_seq'::regclass)
 first_name | character varying(50) |
 last_name | character varying(50) |
 email | character varying(255) |
 data | hstore |
 created_at | timestamp without time zone |
 updated_at | timestamp without time zone |
 last_login | timestamp without time zone |

§

Craig Kerstiens is part of the team
at Heroku. He writes code in Python, curates Postgresguide.com
and Postgres Weekly, and frequently speaks at conferences on those
topics among others.

First appeared in hn.my/postgres
(craigkerstiens.com)

Building
Stripe’s API

By
 AMBER FENG

I
thought it would be interesting to talk about Stripe’s API,
particularly lessons learned and what kind of things we did to try to
make the API as easy to use as possible.

Make
it easy to get started

It
may sound like a no-brainer, but the best way to get people to try
out (and hopefully eventually use) your API is to make it really easy
to get started.

To
that end, we do things like including pastable code snippets
throughout our site and documentation. One of the first things you’ll
see on our front page is a curl snippet you can paste into a terminal
to simulate charging a credit card.

Regardless
of whether you have a Stripe account or not (if logged in, we fill in
your test API key; otherwise, it’s a sample account’s API key),
you can see the Stripe API in action.

All
of our documentation code snippets are similarly possible to directly
copy and paste — we try to embed as much information as possible
(API keys, actual object IDs from the account, etc.) so our users
don’t have to.

Language-specific
libraries and documentation

Since
Stripe’s API speaks HTTP and JSON, you could easily integrate it
into your application with any standard HTTP client library. However,
this still requires constructing requests and parsing responses on
your own.

We
maintain and support open-source libraries in some of today’s most
popular web languages. It turns out people are pretty attached to
their favorite languages.

We
had a lot of internal discussions about whether we actually wanted to
support our own client bindings or allow the community to organically
start and maintain the projects themselves. Is it worth owning the
projects if it means that you might have to maintain libraries for
languages or frameworks in which you don’t have expertise?

Maybe.

Official
libraries have the benefit of being consistent: they all have the
same level of quality, support the same interface, and get updates at
the same time. Having our own libraries also makes it easier for us
to have language-specific documentation and help our users with any
problems they might be having with a particular integration.

We
decided that it was worth it, but this may not be the right answer
for everyone.

Have
a focused API, but allow flexibility

We’ve
found that it’s critically important to keep the API focused and
simple.

It’s
often tempting to add new features that are not obviously necessary
to the core API. For example, our users frequently want us to add
better analytics, tax calculations, or to send customers receipts.
While these things are nice, every feature you add makes the API more
complex and cluttered.

You
can instead give your users the tools to be able to write their own
extensions. We allow our users (and third party applications) to hook
into Stripe in a couple of ways:

Webhooks

Stripe
uses webhooks to let our users know when some interesting event has
happened. This ranges from events triggered by an API call, like
charge.succeeded or charge.refunded, to asynchronous events like
customer.subscription.trial_will_end.

Our
aim was to make it easy to layer additional logic on top of Stripe
events (like sending customer receipts or enabling push
notifications). Giving our users the ability to build this kind of
customized functionality allows them to control the entire experience
for their users as well.

Stripe
Connect

Stripe
Connect, an API we released just last year, is another way of
building on top of the Stripe platform.

Connect
is an OAuth2 API [oauth.net/2] that
allows a Stripe user to authorize access to their Stripe account to a
third-party application. We’ve seen a variety of applications built
on top of Stripe so far: marketplaces and checkout pages let users
“plug in” their Stripe accounts to accept payments, and analytics
dashboards fetch Stripe data in order to show interesting graphs or
patterns.

Provide
a testing environment

One
of the most important things you need with an API is a great
test/sandbox environment. This is particularly important for a
payments API — our users shouldn’t have to make live charges when
they’re trying to test their integration.

In
our test environment, we allow users to send test webhooks of any
type and provide handy test card numbers that trigger certain errors
(like declines).

This
allows them to easily test the behavior of their own application in
the face of different scenarios instead of having to manually trigger
things that are nondeterministic, like declines, or time-dependent,
like expiring subscriptions.

Help
your users debug

We’re
developers too. We know from experience that debugging is a
disproportionately large portion of the development cycle. We also
(unfortunately) know that sometimes you spend a lot of time debugging
something that eventually turns out to be really obvious or silly.

For
common or easy errors, you (the API) likely know exactly what’s
wrong. So why not try to help?

 >> Stripe::Customer.create
 Stripe::AuthenticationError: No API key provided. (HINT: set your API key using "Stripe.api_key = ". You can generate API keys from the Stripe web interface. See https://stripe.com/api for details, or email support@stripe.com if you have any questions.)

 >> Stripe.api_key = TEST_KEY
 => ...
 >> Stripe::Charge.retrieve(LIVE_CHARGE_ID)
 Stripe::InvalidRequestError: (Status 404) No such charge: ch_17SOe5QQ2exd2S; a similar object exists in live mode, but a test mode key was used to make this request.

On
the other hand, some errors are harder to diagnose (especially from
the API’s end, since you have limited information about what your
user is actually trying to accomplish).

Where
possible, we absolutely think it’s worthwhile to try to anticipate
our users’ errors and help as much as we can.

Dealing
with Change

Lastly,
dealing with change is never fun. As much as you hope you’ll never
have to change the API, sometimes you need to make changes and
sometimes those changes are backwards-incompatible.

There’s
no easy answer for versioning APIs. We keep a per-user version which
reflects the state of the API the first time the user made an API
request. Most of our new features are additions that aren’t
backwards-incompatible, and they just work automatically for
everyone.

Whenever
we make a backwards-incompatible change, however, it doesn’t affect
the API behavior for any of our current users. Users can then choose
to explicitly upgrade their version in the dashboard (after reviewing
the detailed changelogs) or can send a version override header in any
API request to test the behavior of a specific version.§

Amber
is an engineer at Stripe, and works primarily on the API. She loves
all things web and distributed, and enjoys hacking on side projects
and writing in her blog.

First appeared in hn.my/stripeapi
(amberonrails.com)

Goldeneye
64’s Inspirational Startup Story

By ALEX BALDWIN

Growing up, GoldenEye had a special
place in my heart; it was the first game my parents wouldn’t let me
buy. I saved up allowances and dug up couch treasures for months to
taste the forbidden fruit. The effort turned into one of the pillars
of my childhood experiences. I still vividly remember where to place
the proximity mines on Temple to get crazy spawn point kill streaks
against my little brother. Fifteen years later, it’s still
inspiring me, but not for the proximity mines.

It’s hard to imagine that this game
almost didn’t exist. Rare’s studio head, Mark Betteridge, was
quoted as saying,

When Nintendo
asked if we wanted to do it, we said, “well not really”…we were
trying to build our on IP, and film tie-ins meant a lot of ownership
by the film company.

The team faced insane amounts of
adversity and uncertainty. Starting out, they didn’t even know what
the specs were for the new platform. Wikipedia on the game’s
development:

Final N64
specifications and development workstations were not initially
available to Rare: a modified Sega Saturn controller was used for
some early play testing, and the developers had to estimate what the
finalized console’s capabilities would be.

Getting closer to the release date, the
final platform specs were released and they had to make significant
graphic cuts to make it work.

The final
Nintendo 64 hardware could render polygons faster than the SGI Onyx
workstations they had been using, but the game’s textures had to be
cut down by half. Karl Hilton explained one method of improving the
game’s performance: “A lot of GoldenEye is in black and white.
RGB color textures cost a lot more in terms of processing power. You
could do double the resolution if you used greyscale, so a lot was
done like that. If I needed a bit of color, I’d add it in the
vertex.”

While doing all this, their team had
almost no idea what they were doing when they started out. Sound
familiar?

GoldenEye 007
was developed by an inexperienced team, eight of whom had never
previously worked on video games. David Doak commented in 2004,
“Looking back, there are things I’d be wary of attempting now,
but as none of the people working on the code, graphics, and game
design had worked on a game before, there was this joyful naïveté.”

Scope was so slim that they didn’t
even originally plan out the legendary multiplayer mode that arguably
made the game so successful. It was done almost exclusively by one
guy as an afterthought.

The game’s
multiplayer mode was added late in the development process; Martin
Hollis described it as “a complete afterthought.” According to
David Doak, the majority of the work on the multiplayer mode was done
by Steve Ellis, who “sat in a room with all the code written for a
single-player game and turned GoldenEye into a multiplayer game.”

Despite everything, the game went on to
become the third highest selling N64 game, inspire console shooting
games, and win a crazy amount of awards. Next time you’re heading
down the wrong way of the entrepreneurial rollercoaster, take a deep
breath, make a cup of tea, and remember that you can make it happen.
Persevere and dominate. §

Alex is a designer at thoughtbot in
San Francisco, previously with 500 Startups, Techstars, and
Console.fm. He is a lover of lattes and dope beats.

First appeared in hn.my/goldeneye
(alexbaldwin.com)

The Joys of
Having a Forever Project

By JOHN BIESNECKER

I think most creative people have
something that I call a Forever Project — a project that, despite
its audacity and seeming impossibility, simply will not put itself to
bed. A project that comes creeping back into your consciousness when
you sit down for a break from “real work.” A project that is hard
to imagine actually embarking on, but whose mental cost of
abandonment is far too high to even consider. A project that you’d
totally do if you had the time, and the money, and the talent, and
the…

I don’t know about you, but I adore
my Forever Project (mine happens to be a game that I’ve been
punting around in various forms since the late 1990s, and I wouldn’t
be surprised if yours was also a game of some sort). I might not have
made the progress on it that I wish I would have, but just having it
out there as something to think about gives me a warm, fuzzy feeling.

Most people would say having a project
that you can’t put down but that you don’t make any substantial
progress on is silly — the antithesis of the various flavors of
Getting Things Done that spring up now and again — but I disagree.
While I may not have finished (or even really started) my game,
poking around the edges of it have led me to wonderful tangents
during which I’ve learned a lot about a lot of things, things that
I may have never touched if it weren’t for my Forever Project.
Rather than be a source of disappointment, my Forever Project is a
source of constant inspiration.

If I ever really completed it…
well…I’m not sure what I would do. Probably replace it with a
better version of itself. But that’s silly because I’ll never
actually complete it and because a Forever Project is like the speed
of light — you can get infinitely close to it, but you can never
quite get there. It’s just the nature of the beast.

Stop beating yourself up about not
making progress on your “one big goal.” Eating healthier,
exercising more, and being a better spouse, friend, etc. are goals.
Your Forever Project is not. Your Forever Project is your Beacon on
the Hill, pushing you to be better, to learn, to stretch, to reach
just a few finger widths beyond your grasp, over and over again.

Embrace your Forever Project, and never
stop dreaming. §

John Biesnecker (@biesnecker)
is an American product designer and software developer based in
Shanghai, China. He enjoys thinking about hard problems, telling good
stories, and playing with his kids.

First appeared in hn.my/forever
(dev.gd)

Avoiding “The
Stupid Hour”

By RACHEL KROLL

From time to time there is a romantic
notion of teams pulling crazy hours and working all-nighters
frequently. The idea is that you can cheat the night (or morning, for
that matter) and continue coding, writing, or doing whatever it is
you that you do. Sometimes this is driven by maniacal managers, but
other times it comes from within.

Now, I’ve already written
[hn.my/wrong] about the occasional
flashes of insight which lead to a late evening here and there.
That’s something else. That’s where you have a fire burning
inside of you and you need to get that fire routed through your
fingers and turned into code. You don’t do this often. It’s just
when things get really good and all get flushed into the computer at
once.

This is more about the relentless push
to keep working night after night even when there’s nothing special
going on. Enough has been written about it, but it always seems to
get really complicated in how it’s described. I want to give it a
simple name that anyone can remember and anyone else can understand.

I call it “the stupid hour.” When
talking about myself, I call it my stupid hour. It’s the point when
I’ve been awake for too long and anything I create is sure to be
suboptimal. The late hour has drained enough out of me to where I
turn stupid and my output shows this.

In my younger days, I used to feel this
coming on and would just keep going. This was a spectacularly bad
idea. The next morning, I’d get up and look at the code and would
have no idea how it ever worked. A function I had written during the
stupid hour might work for a specific test case, but I would have to
sit and really dig at it to find out how. Then I would also discover
that it didn’t cover other test cases, either.

Since it was ugly and unmaintainable
code, it needed to be fixed. The fact it didn’t even work properly
also meant it needed to go. More often than not I’d have to rip it
out and redo that particular chunk of code. It was a net loss of
time. I should have spent that time the night before just sleeping
rather than trying to fight it while coding.

In recent times, I’ve grown to
recognize this and appreciate it as a useful signal. I tend to stop
earlier than I would have before and switch to other things after a
certain point. Why write something that will have a good chance of
being broken and will require an immediate fix? Leave it as a “to
do” item and come back to it the next day.

There’s another good reason for doing
it this way. Have you ever come back to a project and been unsure of
where to get started? If you had left off just one item sooner the
day or week before, you’d already have a known starting point.
Write it down on a post-it note and stick to your monitor, then go do
something else.

The next day, not only will you have a
nice place to resume, but you’ll also have the benefit of several
hours (or days, if over a weekend) of subconscious/background
processing you didn’t even realize was going on. It’ll make for a
better result overall.

Don’t feed the stupid hour. It never
ends well. §

Rachel Kroll lives and works in
Silicon Valley. Once a Googler, she now runs her own software
consultancy business and writes daily about software, technology,
sysadmin war stories, and productivity. Her first book, The Bozo
Loop, is a collection of posts from 2011, with another on the way.

First appeared in hn.my/stupidhour
(rachelbythebay.com)

ebook_html_mc138b4e.jpg
stripe

Accept payments online.

ebook_html_41d36fab.jpg

ebook_html_17b5d15c.jpg

ebook_html_m181234b3.jpg

ebook_html_m29452dc9.png

ebook_html_49b5b837.jpg

ebook_html_632f3770.png

ebook_html_5d9d0aed.png

ebook_html_28926573.png
/dev/tty.Bluetooth-PDA-Sync
/dev/cu.Bluetooth-PDA-Sync
/dev/tty.Bluetooth-Modem
/dev/cu.Bluetooth—-Modem

v /dev/tty.usbmodem1411

/dev/cu.usbmodem1411

ebook_html_61017850.png
8 06 sketch_jan01a | Arduino 1.0.3

sketch_jan01a -

Arduino Uno on /dev/tty.usbmodem1421

ebook_html_98c98b4.png
/dev/tty.Bluetooth-PDA-Sync
/dev/cu.Bluetooth-PDA-Sync
/dev/tty.Bluetooth-Modem
/dev/cu.Bluetooth—-Modem

cover.jpeg
HACKER

The Absolute Beginner’s
Guide to Arduino

ebook_html_m608c01f1.jpg
MEET MANDRILL

By MailChimp

ebook_html_3e179baa.png
ralednsos o
ol

ebook_html_m51d283d0.png
CarbonNeutral hosting

ebook_html_6a63d03c.jpg
join: 'Intensive Online Bootcamp',
learn: 'Web Development’,
goto: 'http://www.gotealeaf.com’

Learn Ruby on Rals

