
Issue 34  March 2013

Pixels
Don’t

Care
Kyle Neath

Engineers rebuilding the infrastructure
that powers finance. careers.addepar.com

http://careers.addepar.com

  3

Now you can hack on DuckDuckGo

Create instant answer plugins for DuckDuckGo

duckduckhack.com

Now you can hack on DuckDuckGo

Create instant answer plugins for DuckDuckGo

DuckDuckHackDuckDuckHack

package DDG::Goodie::Unidecode;# ABSTRACT: return an ASCII version of the search query use
DDG::Goodie; use Text::Unidecode; zci is_cached => 1; zci answer_type => "convert to ascii"; triggers
startend => "unidecode"; handle remainder => sub { my $u = unidecode $_; # unidecode output some-
times contains trailing spaces $u =~ s/\s+$//; return $u; }; 1; package DDG::Goodie::Rot13; #
ABSTRACT: Rotate chars by 13 letters use DDG::Goodie; triggers start => 'rot13'; handle remainder =>
sub { if ($_) { $_ =~ tr[a-zA-Z][n-za-mN-ZA-M]; return "ROT13: $_"; }; return }; zci is_cached => 1; 1;
package DDG::Goodie::Base64; use DDG::Goodie; use MIME::Base64; use Encode; triggers startend =>
"base64"; zci answer_type => "base64_conversion"; zci is_cached => 1; handle remainder => sub {
return unless $_ =~ /^(encode|decode|)\s*(.*)$/i; my $command = $1 || ''; my $str = $2 || ''; if ($str) { if (
$command && $command eq 'decode') { $str = decode_base64($str); $str = decode("UTF-8", $str);
return "Base64 decoded: $str"; } else { $str = encode_base64(encode("UTF-8", $str)); return "Base64
encoded: $str"; } } return; }; 1; package DDG::Goodie::Chars; # ABSTRACT: Give the number of charac-
ters (length) of the query. use DDG::Goodie; triggers start => 'chars'; zci is_cached => 1; zci
answer_type => "chars"; handle remainder => sub { return "Chars: " .length $_ if $_; return; }; 1; pack-
age DDG::Goodie::ABC; use DDG::Goodie; triggers any => "or"; zci answer_type => "rand"; handle
query_parts => sub { my @choices; my @collected_parts; while (my $part = shift) { if (lc($part) eq 'or') {
return unless @collected_parts; push @choices, join(' ', @collected_parts); my $length =
@collected_parts; return if $length > 1; @collected_parts = (); } elsif ($part) { push @collected_parts,
$part; } } push @choices, join(' ', @collected_parts) if @choices && @collected_parts; return if
scalar(@choices) <= 1; my $choice = int(rand(@choices)); if (my @duck = grep { $_ eq 'duckduckgo' || $_
eq 'duck' || $_ eq 'ddg' } @choices) { return $duck[0]." (not random)", answer_type => 'egg'; } return
$choices[$choice]." (random)"; return; }; 1; package DDG::Goodie::PublicDNS; use DDG::Goodie; use

sub { if ($_) { $_ =~ tr[a-zA-Z][n-za-mN-ZA-M]; return "ROT13: $_"; }; return }; zci is_cached => 1; 1;
package DDG::Goodie::Base64; use DDG::Goodie; use MIME::Base64; use Encode; triggers startend =>
"base64"; zci answer_type => "base64_conversion"; zci is_cached => 1; handle remainder => sub {
return unless $_ =~ /^(encode|decode|)\s*(.*)$/i; my $command = $1 || ''; my $str = $2 || ''; if ($str) { if (
$command && $command eq 'decode') { $str = decode_base64($str); $str = decode("UTF-8", $str);
return "Base64 decoded: $str"; } else { $str = encode_base64(encode("UTF-8", $str)); return "Base64
encoded: $str"; } } return; }; 1; package DDG::Goodie::Chars; # ABSTRACT: Give the number of charac
ters (length) of the query. use DDG::Goodie; triggers start => 'chars'; zci is_cached => 1; zci
answer_type => "chars"; handle remainder => sub { return "Chars: " .length $_ if $_; return; }; 1; pack
age DDG::Goodie::ABC; use DDG::Goodie; triggers any => "or"; zci answer_type => "rand"; handle
query_parts => sub { my @choices; my @collected_parts; while (my $part = shift) { if (lc($part) eq 'or') {
return unless @collected_parts; push @choices, join(' ', @collected_parts); my $length =
@collected_parts; return if $length > 1; @collected_parts = (); } elsif ($part) { push @collected_parts,
$part; } } push @choices, join(' ', @collected_parts) if @choices && @collected_parts; return if
scalar(@choices) <= 1; my $choice = int(rand(@choices)); if (my @duck = grep { $_ eq 'duckduckgo' || $_

http://duckduckhack.com

4  ﻿

Curator
Lim Cheng Soon

Contributors
Jacques Mattheij
Kyle Neath
Jason Chen
Tom Limoncelli
Chris Zacharias
Mike Muuss
Kristian Kielhofner
Ben Kamens
Peteris Krumins
Krishnan Raman
Fat
Jacques Fuentes
Tanya Khovanova
Steven Corona
Justin Jackson

Proofreaders
Emily Griffin
Sigmarie Soto

Printer
MagCloud

Hacker Monthly is the print magazine version
of Hacker News — news.ycombinator.com, a social news
website wildly popular among programmers and startup
founders. The submission guidelines state that content
can be “anything that gratifies one’s intellectual curios-
ity.” Every month, we select from the top voted articles
on Hacker News and print them in magazine format.
For more, visit hackermonthly.com

Advertising
ads@hackermonthly.com

Contact
contact@hackermonthly.com

Published by
Netizens Media
46, Taylor Road,
11600 Penang,
Malaysia.

Hacker Monthly is published by Netizens Media and not affiliated with Y Combinator in any way.

Cover Photo: Andy Delcambre

http://news.ycombinator.com
http://hackermonthly.com
mailto:ads@hackermonthly.com
mailto:contact@hackermonthly.com

  5

For links to Hacker News dicussions, visit hackermonthly.com/issue-34

Contents
FEATURES

06  A World Without Power
By JaCquES MaTTHEIJ

10  Pixels Don’t Care
By Kyle Neath

STARTUPS

14  Mechanics of a Small Acquisition
By Jason Chen

PROGRAMMING

16  Four Unix Commands I Abuse Every Day
By Tom Limoncelli

21  Page Weight Matters
By Chris Zacharias

22  The Story of the PING Program
By Mike Muuss

24  Packets of Death
By Kristian Kielhofner

27  I Don’t Understand
By Ben Kamens

27  My Favorite Regex of All Time
By Peteris Krumins

28  Tom, Dick & Harry
By Krishnan Raman

31  What I Learned Building Twitter Bootstrap
By Fat

32  A Letter to My Daughter, Augusta, in Ruby
By Jacques Fuentes

SPECIAL

34  My IQ
By Tanya Khovanova

36  How I Automated the Boring Parts of Life
By Steven Corona

38  Things I’ve Quit Doing at My Desk
By Justin Jackson

Illustration: Jaime G. Wong

http://hackermonthly.com/issue-34

6  FEATURES

FEATURES

A World
Without Power

By JaCquES MaTTHEIJ

  7

The 14th of August,
2003 was an inter-
esting day in many
ways. I had just

taken the family down to Toronto
to spend a day there and pick up
our newly minted passports at
the Dutch embassy. We had some
fun in the city seeing the sights,
visited Niagara Falls and were on
the way back on a sunny Thursday
afternoon. What could possibly go
wrong? We pulled into a gas station
just outside of Barrie. We parked
behind the person gassing up and
waited our turn. The guy took his
time, walked into the store to pay,
got into his car and drove off. We
moved up the line to the pump, I
got out and put the nozzle into the
fuel port, but nothing happened.
This normally means that the pump
hasn’t been “cleared,” which usually
takes 10 seconds or so (an annoying
little bell starts ringing in the office
over the blinking light indicating
the pump that needs to be cleared).
After a minute of waiting, I went
into the office. “Sorry bud, the
power is out.”

Bummer! The car we were driv-
ing was our family car — one of
those Ford minivan affairs, and it
wasn’t exactly a paragon of fuel
economy. 3.8 liter engine, still slow
as could be and it drank like a fish.
So when we pulled into the gas sta-
tion the needle was at “empty” and
the fuel warning light was on. We
were stuck for the duration.

I looked at Barrie from the high-
way and noticed that there were
lots of people in the streets, many
more than you’d normally see in a
place like that. Traffic lights were
out. Billboards were dark. Little
by little it dawned on me that this
was more than just a trivial outage.
I tried my cell phone; it still had a

signal, so I called the island where
we lived. We had a business there
(a gas station, coincidentally) and
I asked them if they had power.
No, they didn’t. Oh oh. But the
generator was up and running and
as far as they were concerned it
was business as usual. Maybe a bit
busier because some traffic from
the highway pulled in on the island
to gas up. I asked them to call the
supplier (Wardlaw fuels in Sault
Ste Marie, an awesome company to
work with) to make sure they were
going to be provisioned.

An hour and a half into the
blackout, a truck from OPG pulled
into the station. The guy in it took
all the ice his truck could carry,
paid cash and drove off again.
Now I was getting really worried.
OPG is the Ontario Power Gen-
erating Company, which runs the
entire grid infrastructure. More
importantly, they run the nuclear
generators. If a guy with that much
knowledge buys ice, he must know
something that the general public
doesn’t know yet: that this outage
is going to take a very long time —
long enough that food will spoil.
Nuclear power is funny in that it is
excellent baseline power, but when
you shut down a nuke it’s going to
be down for a while. They go down
quite quickly, but they take forever
to get back online.

I saw one guy walk around to the
spot with the air hose for refilling
tires. A few minutes later the same
guy walks by with the length of the
air hose coiled up and on his shoul-
der like it was the most normal
thing in the world. Presumably he
was going to use it to siphon fuel
from one car into another. Let’s
hope they were at least both his
cars. Another guy made off with the
fire extinguisher. I’ve heard it said

that the veneer over our society
is very thin and that it won’t take
much to bring out the ugliness
underneath, but I had not expected
to see that illustrated so clearly
and so quickly. Suddenly, I didn’t
feel safe and I did not want to wait
for who knows how long next to
an unfamiliar town in a vulnerable
position like this with my wife and
kid with me.

My mobile still worked, so I
called the gas station on the island
again. The mood around us contin-
ued to deteriorate from resigned
to menacing; people were getting
angry with the operator of the sta-
tion (just some kid that was clearly
not the cause of the trouble). I
asked the people at our gas station
on the island to please go to our
house, get our other car (a Honda
Civic hybrid, capable of doing 1200
km on a single tank if you were
careful), load it up with fuel can-
isters and drive down to where we
were. They said they’d get on it and
that the station was being mobbed
by people that wanted gas, some
coming all the way from DesBarats
and Sault Ste. Marie (a good 50
Km or 30 Miles away). They had
already gone through one full drop
(50,000 liters) and another one was
on the way. Our trusty diesel was
doing just fine running the pumps
and half of the freezers. They had
sold the food in the freezers so they
could be switched off, and they had
sold the other half at a discount
rather than letting it go bad.

We talked to some of the people
stranded around us. One group
was a bunch of motorcycle enthu-
siasts, guys that not only drive but
build their own bikes. Lots of nice
metalworking there, so we talked
for a bit about that. One girl that
was stranded came from Toronto

8  FEATURES

and was on the way to Muskoka, a
popular place to spend the holidays.
We waited… One of the bike guys
went into town and scored a pizza.
One of the pizza bakers had set up
in the street and was selling pizzas
for $5 as long as he had ingredients.
We munched on our pizza, talked
some more and waited some more.

Barrie is about 500 km from the
island, and around 10 pm I saw
our saviors roll into the station.
Two kids with huge grins on their
faces and music blaring loud from
the open windows. I don’t think I
was ever so glad to see my own car.
The Honda was a veritable bomb,
filled with as many canisters as
they could cram in. We gassed up,
then gassed the bikes of the bike
guys (we swapped addresses; they
invited us for a pig roast, which we
attended, and they came to visit us
on the island). The girl got enough
gas to get back to Toronto, and we
parceled out the remaining fuel in
the same way — just enough to
get as many people home as pos-
sible. No charge, obviously (people
were on the whole expecting to
pay the gas station with a credit
card or debit card). We made a lot
of friends that day :), and quite a
few enemies, too (all those that we
couldn’t help).

So, finally done we drove back to
the island. It was the weirdest ride
on Highway 17 North ever. Nor-
mally, even at night, there is light
traffic there, but this time there
wasn’t a single car. Just lots of wild-
life, deer, moose and the occasional
bear that had already taken over the
highway so we went pretty slow.
There weren’t any lights in the little
villages on the road. When we got
back to the island it was 5:30 am
or so. The gas station was still open,
and the pumps were still manned
and going pretty much continu-
ously. For 75 miles around there
was no gas. The distribution point
had huge tanks (millions of liters)
that did a gravity dump into the
delivery trucks, and then the truck
would do a gravity dump into the
underground storage tanks at the
station. So none of that required
power. And then the generator
driven pumps would pull the fuel
out of the underground tanks and
deliver it to the customers just like
normal.

The outage lasted 2 days and a
bit. We went through our monthly
amount of fuel in that time and
we made the Sault Star (the
local newspaper) after the power
was restored. (Good thing, too,
their presses were down just like

everything else. We wouldn’t have
been able to cope with the demand
if there had been any publicity
during the outage; word of mouth
we could deal with, barely).

When we bought the station one
of the first things I did was install
that generator. I felt that what with
the station being critical infrastruc-
ture for many of the islanders that
we could not be dependent on
Ontario’s power grid. The island
was fed by cables to a step-down
transformer. After that, there was a
“low voltage” (not really that low,
but low compared to long distance
lines) distribution net on the island
and every house had its own drop
transformer. Outages were frequent
— once every couple of months
and more frequently in the winter
months. Whenever lightning struck
it was 50/50 that the power would
go out. I imagined a situation where
the power was out for just a bit
longer than normal and decided that
we could not run that risk. My soft-
ware background makes me abhor
single points of failure, so running
an infrastructure business without a
back-up in place seemed unwise and
ran against my nature (even though
the partners in the business thought
it was a bit over the top, they still
helped install the genny).

“I imagined a situation where the power
was out for just a bit longer than normal
and decided that we could not run that risk.”

  9

I didn’t have any idea that there
would be such a massive power
outage (there had not been one
like that in decades). I also didn’t
know that I was going to be one of
the main beneficiaries of having a
back-up. I definitely didn’t plan to
get our business in the newspaper
this way and did not realize how
many people would end up relying
on our silly little out-of-the-way gas
station with its puny 2x50K liter
reservoirs for a critical resource (a
typical highway station has a 1/4 of
a million liters). But being prepared
for the occasion sure didn’t hurt.
What is really scary is that appar-
ently none of the other (much
larger) stations had thought this
scenario through. Critical infra-
structure being down is annoying
enough, but the knock-on effects
are devastating.

Our house didn’t have any issues
at all; we were “off the grid” by
that time so our business worked
uninterrupted. One thing that I was
very impressed with was how well
the cell phone network dealt with
the outage. For at least 24 hours all
the base stations worked, but after
that point, they slowly dropped out
one by one as their batteries ran
dry.

Infrastructure is invisible, as long
as it works. And only when it fails
do you realize just how much we
are all dependent on it and how
badly we cope with such infra-
structure being unavailable for any
length of time. No power translates
quickly into: no fuel, no water, no
food and so on. If this had hap-
pened during the winter instead
of a nice summer day, the results
would have been much more
severe.

There is no moral to this story,
but I’d like to add one: if you’re in
the infrastructure business, design
as if lives depend on it. One day
they may, even if you can’t fore-
see how that is possible — even
if you’re just running a lousy gas
station on some barely accessible
island. n

Jacques is the inventor of the live stream-
ing webcam, founder of camarades.com
/ ww.com and a small time investor. He
also collects insightful comments from
Hacker News.

“If you’re in the infrastructure business,
design as if lives depend on it.”

Reprinted with permission of the original author.
First appeared in hn.my/power (jacquesmattheij.com)

Illustration by Jaime G. Wong.

http://camarades.com
http://ww.com
http://hn.my/power

10  FEATURES

I’m short.
When I was 20, I decided
to try to make some extra
money to pay my tuition by

building websites for people. My
work was good; it wasn’t phenom-
enal, but it was good. It was impos-
sible for me to get work. Everything
would be great until I met with a
potential client. At which point
they told me they’d rather hire a
professional.

What they meant is that I looked
too young. I didn’t really realize
this was the problem until people
started screwing me out of money.
“You’re just a kid and you’ll get
over it” I believe was the phrase my
last client used to fuck me over.

Humans are really good at preju-
dice and intolerance.

The internet was a much differ-
ent place eight years ago. Facebook

wasn’t open to the public. Twitter
didn’t exist. Google did not require
legal names. I was just kneath who
had a blog at warpspire.com. I didn’t
have a picture and no one knew my
age.

And the internet loved my work.
I still remember the first day my
blog was featured on CSSVault
— it was one of the most exciting
things to ever happen to me. How
awesome was it that my work was
highlighted as one of the best in the
world? (CSSVault was quite a dif-
ferent beast 8 years ago, too.)

A few days later I received an
email from the Art Director of a
local agency asking me to come in
and meet their team. And so it was
that I was interviewing for a job to
work on sites for the likes of Apple,
Disney, HP, and RIM. Pretty fuck-
ing crazy. It felt good — it felt like

validation that my work was worth
paying for.

I remember the last question
asked of me at the interview
because it was possibly the most
terrifying professional moment of
my life. To paraphrase:

“You have no formal education and
no experience with any big clients.
What makes you think you could
possibly be good enough to work
here?”

Through a stroke of luck, a
moment of wit came upon me and
I replied with the only thing my
brain could grasp:

“I have no idea. I didn’t even know
I was interviewing. Kris sent me an
email asking me to come in today
because he thought my work was
good. Is it?”

Pixels Don’t Care
By Kyle Neath

http://warpspire.com

  11

I never really got an answer, but
I did get the job. Because my work
was good. But I was given a much
lower salary than my co-workers.
For every hour I worked, the agency
billed my time out at a 2,083%
markup. To the client (who couldn’t
see my height), my time was worth
over 20x the amount I was worth
to the agency.

Looking back, I can’t help but
think this was discrimination. For
age, for height, for whatever you
will. I had no lower education than
my peers, equal or better skills, and
did work of the highest quality.

The physical world is harsh.
I’m by all means a member of the
privileged class in America by race,
gender, and sexual orientation —
yet a few inches of vertical height is
all it took to diminish the value of
my work.

At least they paid me.
About the same time, I started

to get into Ruby on Rails. I wasn’t
really the most brilliant program-
mer or designer, but I could get
stuff done. I was invited to hang
out in the #caboose IRC channel.
There aren’t any avatars in IRC. No
faces. No names. Just usernames
and words.

I ended up making a lot of
friends through caboose. Friends I
still have today. Friends I’ve worked
with, friends I haven’t worked with.
Friends who never saw my face
or knew my age for almost half a
decade. It just wasn’t important.

We were working on code, on
Photoshop documents — pixels.
The pixels didn’t care what we
looked like. Over time we grew to
respect each other. Not because
of how handsome we were, but
because of the things we built.

In a strange sense, it was a bit of
a utopian work environment. How
could the internet know you were
gay? 80 years old? Hispanic? Trans-
gender? Karl Rove? It just didn’t
matter. Respect was earned through
actions and the words you actually
said (hard to squeeze rumor out of
publicly logged chat).

12  FEATURES

It took until early 2009 for me
to realize the real value of this
network. I was miserable at my job
and I sent a long-winded email to
court3nay inquiring about working
with ENTP [entp.com]. ENTP was a
half-product, half-consulting agency
at this point comprised almost
solely of caboosers. All of whom
had never met me or ever heard my
voice. About 30 seconds later I got a
response:

Hey Kyle,

That’s pretty fuckin awesome, if
you’ll pardon my french.

We’re just heading out to breakfast, I
mean, an important company meet-
ing, but I’ll get back to you today.

Courtenay & Rick

And then a follow up:

OK, I’ve talked it over with everyone
(unanimous— “kyle? awesome!”)

I think you’ll fit into our team
perfectly.

No in-person interview. No phone
calls. No technical test. They were
confident enough in my pixels to
give me what equated to my dream
job at that point in my life.

Really fucking crazy.
This industry we work in is magi-

cal. For the first time in human his-
tory, it’s possible to be represented
(almost) solely through the merits of
your work. Build something magical,
push it up to GitHub under a pseud-
onym, and you could become one of
the most sought after programmers
in the world.

That’s really fucking awesome.
There’s plenty of prejudice and

intolerance in our world — and in
our industry. But never forget that
pixels don’t care. n

Kyle Neath works at GitHub in San Fran-
cisco. He loves to build beautiful things with
software.

“For the first time in human history,
it’s possible to be represented solely
through the merits of your work.”

Reprinted with permission of the original author.
First appeared in hn.my/pixels (warpspire.com)

Photo by Andy Delcambre.

http://entp.com
http://hn.my/pixels

Accept payments online.

http://stripe.com

14  STARTUPS

By Jason Chen

STARTUPS

When a startup
successfully exits,
chances are it was

an acquisition. Unfortunately for
the founders, that acquisition was
likely their first, while the acquirer
has probably gone through many.
This was the case with Stypi. For-
tunately, my cofounder and I were
lucky enough to have had access
to several other acquired founders
who helped us ultimately navigate
our first multimillion-dollar exit
for a company barely a year old.
Hopefully by sharing what we
learned and encountered, you can
be slightly less lost, should you be
faced with an acquisition of your
own.

DISCLAIMER: Every startup and
founder group is unique so the data
provided here may not apply in
all cases. In particular, it is skewed
towards acquisitions of <$25M
made by much larger compa-
nies. An acquisition is important
enough that you should always
do your own research. Reach
out to acquired founders in your

space, company size range, and/
or acquired by the same company
that may acquire your company. If
any of these apply to me, feel free to
contact me at jason@stypi.com

First Contact
Potentials acquirers are a lot like
the opposite sex: their intentions
are confusing, but the prospects
are exciting. Initially, you will most
likely be approached by a founder
or the Corporate Development
department of a larger company,
acting on behalf of an interested
internal team. Either way, get
comfortable with this person, as he/
she will be setting up and facilitat-
ing your meetings and will likely be
the one you eventually haggle with
over terms.

Before moving forward, it is
worth noting that the cost of pursu-
ing an acquisition is nonzero — in
fact, it’s quite high. You and your
cofounder(s) will be consumed by
the process for weeks and divulge a
lot of otherwise private information
to potential competitors. But more

importantly, rejection hurts. Believ-
ing that the finish line is just yards
away and finding that it is actually
miles is not going to be good for
your company’s morale.

Courtship
Assuming the decision is to open
your company’s kimono and
pursue an acquisition, you and your
cofounder(s) will end up going to a
series of meetings with the poten-
tial acquiring company (except at
the pace of trying to decide if you
want to get married by the end of
the week). For larger companies,
mutual NDAs will likely be signed
by the first meeting. Decisions to
continue the relationship are made
very quickly after each meeting.
This of course goes both ways —
we decided to end the relationship
early with more than half of inter-
ested potential acquirers.

If feelings are positive on both
sides, arrangements would be made
to meet again, probably with dif-
ferent people. Regardless of who
we were meeting with, they were

Mechanics of a
Small Acquisition

  15

usually available the next or follow-
ing day, which seems to suggest the
priority for acquisition meetings are
reasonably high. One founder, we
discovered, cancelled racing Audi
R8 to meet with us.

The Term Sheet
We averaged three to four of these
dates before we were invited into
bed with a term sheet. The rela-
tionship is not exclusive, so it is
kosher and advisable to be pursued
by multiple potential acquirers in
parallel. Ideally they would be lined
up such that multiple term sheets
would come at roughly the same
time. Different companies prefer
to have varying amounts of infor-
mation or certainty before putting
together a term sheet. In general,
the time spent or saved here will be
made up for during due diligence.
But, for your purpose of timing the
term sheets, it is not unreasonable
to ask about the potential acquirer’s
timeline and form expectations.

Once you get your first term
sheet, it’s time to celebrate with
your cofounder(s). If the offer is
interesting enough, then it’s also
time to get a lawyer. Ideally other
offers will soon be coming in and
you can use them to get better
terms from each company. While
you will be negotiating the key
terms, your lawyers will be taking
care of less familiar ones, like
escrow, indemnification, etc. They’ll
explain what this means, the con-
sequences, etc., and for significant
ones, they will ask how hard you
want to push for more favorable
terms. For these, we usually just
asked them to push for market
terms.

It took us roughly a week to
agree on the terms and decide
which company Stypi would join.

Due Diligence and Closing
Now it’s time for monogamy. When
you sign a term sheet there will also
be a separate exclusivity agreement
that requires you to reject any other
outstanding offers and, for a period
of 45 days, remain faithful and not
solicit other offers. There will be
more meetings and every document
your company has ever signed will
be scrutinized (which your lawyers
will want to screen before sharing)
to make sure you did not misrepre-
sent your company’s position. This
process should be taken seriously
as either party can still back out of
the deal. But the default outcome
is that the deal will close and unless
you are hiding something big, like
a lawsuit or stealing code, there
shouldn’t be anything to lose sleep
over.

In parallel with due diligence,
weighted towards the tail end,
preparations will begin for closing.
Mechanically this means filling out
and signing a lot of forms. A lot of
time will be spent chasing down
information from people connected
to your company; for example, your
advisors’ addresses or investors’
wire instructions. Many will need
signatures so there might actually
be some physical chasing down.

The complexity of the deal or
parties involved will dictate the
time frame, but this process will
take roughly 3-4 weeks for small
companies.

Exit
What happens after exit is entirely
up to up to you. Life can be as dif-
ferent or as similar to what it was
before. Some founders take time
off, some throw massive parties,
and others buy and crash brand
new Lamborghinis. For Stypi, life
has not changed very much and we
went straight to work the day after
closing. We still have a long way
to go before Stypi becomes what
we envisioned and we chose an
acquirer that shares and wants us to
pursue that vision unencumbered.n

Jason Chen is the founder of a YCombi-
nator backed startup called Stypi. It was
recently acquired by Salesforce.com, where
Jason continues to work on Stypi.

Reprinted with permission of the original author.
First appeared in hn.my/acquire (quotidianventures.com)

http://hn.my/acquire

16  PROGRAMMING

By Tom Limoncelli

A co-worker watched me type the other day
and noticed that I use certain Unix com-
mands for purposes other than they are

intended. Yes, I abuse Unix commands.

➊ grep dot (view the contents of files prefixed by
their file name)

I want to view the contents of a few files, but I want
each line prepended with the file’s name. My solution?

$ grep . *.txt
jack.txt:Once upon a time
jack.txt:there was a fellow named Jack.
lyingryan.txt:Now that "trickle down economics"
has been
lyingryan.txt:tested for 30 years and the data
shows it
lyingryan.txt:has been a total failure, candi-
dates
lyingryan.txt:still claim that cutting taxes for
lyingryan.txt:billionaires will help the econ-
omy.
market.txt:Jack went to market to sell the
family
market.txt:cow.
market.txt:He came back with a handful of magic
beans.
$

grep is a search tool. Why am I using it like a weird
version of cat? Because cat doesn’t have an option
to prepend the file name to each line of text. And it
shouldn’t.

Note that . matches lines with at least 1 character.
That is, blank lines are not included. If we change .
(matches any 1 character) to ^ (matches the begin-
ning of a line), then every line will be matched because
every line, no matter how short or long, has a begin-
ning! However, the period key is easier to type than
the caret, at least on my keyboard. Therefore, if I don’t
need the blanks, I don’t request them.

Example: The other day, I grabbed the /etc/network/
interfaces file from 6 different Linux boxes. I needed
to review them all. Each was copied to a file name that
was the same as the hostname. grep . * let me view
them all easily and where they come from was anno-
tated on each line.

PROGRAMMING

Four Unix Commands
I Abuse Every Day

  17

➋ “more star pipe cat”
(cat files with a header between each one)

Let’s look at another way to accomplish my example
of comparing 6 files. In this case, I want to print the
contents of each file but separate the contents with the
file name. Yes, I could do it in a loop:

$ for i in *.txt ; do echo === $i === ; cat $i ;
done

However, that takes a lot of typing.
This is where I abuse more. Are you familiar with

more? It prints the contents of files but pauses every
screenful to ask “More?” Pressing SPACE shows one
screenful more. Pressing RETURN shows one line
more.

When more was new it was very dumb. It had no
search functions, you could skip forward a file but not
skip back, it assumed your screen size was 24 lines
long, etc. Heaven forbid you weren’t on a hardware
terminal fixed at 80x24; these new-fangled graphic
screens with windows that could be resized confused
more. Resizing your window while using more con-
fused it even more. Another problem was that if you
piped the output of more to another program things
got totally confusing because those prompts were sent
down the pipe. Certainly, the next program in the pipe
doesn’t expect to see a “More?” every 24 lines.

Luckily someone came along and created a replace-
ment for more that fixed all of those problems. Obvi-
ously these features and bug fixes were added to more
and we all benefited. No, that’s not what really hap-
pened. Obviously they wrote a new program from
scratch and called it “more 2.0” so we could keep
typing “more” but have all those new features. No,
that’s not what happened. In the grand tradition of
Unix having a sense of humor, this new program was
called less. Thus begat funny conversations like, “Do
you use more?” “No, I couldn’t live without less.” Or
the joke: So a pager walks into a bar, and the bartender
says “What are you, more or less?”

Some versions of Unix have the old traditional more
and less commands. In many Unix and Unix-like sys-
tems both are the same program, but the code detects
that it was run as more and goes into "more emulation
mode." Either way, more gets you the old behavior with
a few bugs fixed and less gets you all the cool new
stuff.

If you have been using Linux for fewer than 5 years
there is a good chance that you didn’t know that more
existed and quite possibly that you were confused why
less is called less. Now you know.

Which brings us back to our story. Sometimes people
get so used to typing more that they type it when they
mean cat. For example they type:

more * | command | command2

when they mean:

cat * | command | command2

For example:

more * | grep -v bar | sort

Old more would send the prompts to grep, which
would pass them to sort, which would get very con-
fused. You’d have to press SPACE a number of times
and, since you didn’t see any output, you would usually
bang on the keyboard in frustration. It’s all a big mess.

less is smart enough to detect that its output is
going to a pipe and would emulate cat. This is very
smart.

Even smarter is that when less is emulating more
instead of producing “the big mess,” it acts like cat but
outputs little headers for each file:

$ more * | cat
::::::::::::::
jack.txt
::::::::::::::
Once upon a time
there was a fellow named Jack.
::::::::::::::
lyingryan.txt
::::::::::::::
Now that "trickle down economics" has been
tested for 30 years and the data shows it
has been a total failure, candidates
still claim that cutting taxes for
billionaires will help the economy.
::::::::::::::
market.txt
:::::::::::::::
Jack went to the free-market to sell the family
cow.
He came back with a handful of magic beans.
$

Isn’t that pretty?

18  PROGRAMMING

That works on Linux but not on *BSD. However,
there’s a solution that works on both. We simply take
advantage of the fact that if head is given more than
one file name it prints a little header in front of each
file. However, we want to see the entire file, not just
the first 10 that head normally shows. No worries. We
assume the files are shorter than 99999 lines long and
do this:

$ head -n 99999 *
==> jack.txt <==
Once upon a time
there was a fellow named Jack.
==> lyingryan.txt <==
Now that "trickle down economics" has been
tested for 30 years and the data shows it
has been a total failure, candidates
still claim that cutting taxes for
billionaires will help the economy.
==> market.txt <==
Jack went to market to sell the family
cow.
He came back with a handful of magic beans.
$

Note: You can use head -n 0 on Linux to mean “all
lines.” That, however, doesn’t work on FreeBSD and
other Unixes. (Hey, BSD folks: can you fix that?) You
can also use tail +0, but the header it draws is not as
pretty.

➌ grep --color=always '^|foo|bar'
As you get older your eyesight gets worse. It

becomes more difficult to find something in a field of
text. Here’s an eye test. Below is a list of recently run
jobs on a Ganeti cluster.

$ gnt-job list
157994 success OS_DIAGNOSE
158073 running CLUSTER_VERIFY
158074 success CLUSTER_VERIFY_CONFIG
158075 success CLUSTER_VERIFY_GROUP(7ee44802-
85d3-40fb-bd36-a7e701ecea29)
158076 success CLUSTER_VERIFY_GROUP(72a2138c-
dc07-494d-bd02-ebff7916c9bc)
158077 success CLUSTER_VERIFY_GROUP(457c7377-
c83b-4fed-9ebe-a2974e2c521f)
158156 success OS_DIAGNOSE
158367 success CLUSTER_VERIFY
158368 waiting CLUSTER_VERIFY_CONFIG
158371 success CLUSTER_VERIFY_GROUP(457c7377-
c83b-4fed-9ebe-a2974e2c521f)
158432 waiting OS_DIAGNOSE
$

How quickly can you find which job is running? It’s
kind of buried in there. (The answer is job #158073.)

The most interesting jobs are the ones that are run-
ning and the ones that are waiting to run. It would be
nice to have those highlighted. My first instinct was to
simply use grep to remove the successful jobs:

$ gnt-job list | grep -v success
158073 running CLUSTER_VERIFY
158368 waiting CLUSTER_VERIFY_CONFIG
158432 waiting OS_DIAGNOSE
$

However, it is useful to see those jobs in con-
text with all the other jobs. What I really want is to
highlight the running and waiting jobs. Ah! egrep
--color=always would color the things it finds, right?
Ah, but egrep only shows what is found. We get:

$ gnt-job list | egrep --color=always
'running|waiting'
158073 running CLUSTER_VERIFY
158368 waiting CLUSTER_VERIFY_CONFIG
158432 waiting OS_DIAGNOSE
$

  19

So, how can we output every line but also highlight
certain words? Well . matches everything so we could
use that, right? No, it matches every single charac-
ter. We’d just get 100% red text (try it: egrep . file
file2). What else does every line have? It has a begin-
ning! We make a regular expression that matches lines
with “a beginning” -or- lines with “running” -or- lines
with “waiting.” Every line will match and therefore
be output. Since “the beginning of each line” has no
length, nothing additional will be highlighted in red.

This regular expression matches any line that has a
beginning or has the word “running” or has the word
“waiting.” The matched text will be colored red.

$ gnt-job list | egrep --color=always
'^|running|waiting'
157994 success OS_DIAGNOSE
158073 running CLUSTER_VERIFY
158074 success CLUSTER_VERIFY_CONFIG
158075 success CLUSTER_VERIFY_GROUP(7ee44802-
85d3-40fb-bd36-a7e701ecea29)
158076 success CLUSTER_VERIFY_GROUP(72a2138c-
dc07-494d-bd02-ebff7916c9bc)
158077 success CLUSTER_VERIFY_GROUP(457c7377-
c83b-4fed-9ebe-a2974e2c521f)
158156 success OS_DIAGNOSE
158367 success CLUSTER_VERIFY
158368 waiting CLUSTER_VERIFY_CONFIG
158371 success CLUSTER_VERIFY_GROUP(457c7377-
c83b-4fed-9ebe-a2974e2c521f)
158432 waiting OS_DIAGNOSE
$

Now you can easily see which jobs are running and
waiting and still get the full context.

(Note: For some reason this doesn’t work on Mac OS and
*BSD. However, $ matches the end of a line and works the
same way.)

I set up an alias so I can use this command all the
time:

alias j="gnt-job list | egrep --color=always
'^|running|waiting'"

Note the careful use of ' within ".
If you want to highlight more than just “running” and

“waiting,” you will need to use slightly more complex
regular expressions:

Highlight starting at the word, continuing to the end
of the file:

egrep --color=always '^|running.*$|waiting.*$'

Highlight the entire darn line if it has either word in
it:

egrep --color=always '^|^.* (running|waiting)
.*$'

Of course, if you are typing these commands instead
of using them in a script or alias, the least typing to
highlight “foo” and “bar” is:

egrep '^|foo|bar'

Chances are --color=auto is the default and the
right thing will happen. If not, add the --color=always.

Note: A co-worker just pointed out that "" matches
every line and doesn’t result in all text being highlighted.
He wins for reducing the regex’s to be even smaller. Just
remove the ^ at the front:

alias j="gnt-job list | egrep --color=always
'|running|waiting'"

or

egrep --color=always '|^.* (running|waiting)
.*$'

20  PROGRAMMING

➍ fmt -1 (split lines into individual words)
If you are not familiar with the fmt command,

that’s probably because you use a modern text editor
like vim or emacs, which can do the formatting for you.
In the old days we had to call an external command to
do our formatting. Back then all Unix commands were
small, single-function tools that could be combined to
do great things. Now every new Unix command seems
to be trying to have more features than MS-Word. But
I digress.

fmt -n takes text as input and reformats it into
nicely shaped paragraphs with no line longer than n.
For example, fmt -65 formats text in nice paragraphs
with no line longer than 65 characters.

But what if you have a word that is longer than 65
characters? Does it truncate it? No, then you get a line
with just that word on it. (Ok, I lied about “no lines
longer than n.”)

So how can we abuse this program? Simple! Sup-
pose we have a bunch of text and want to list out the
individual words one per line. Well, words that are
“too long” are printed on their own line and we want
every word to be printed on its own line. Therefore,
why don’t we tell fmt that all words are “too long” by
saying we want the paragraphs to be formatted to be 1
character long!

$ fmt -1 <fraudulent.txt
Fraud
is
telling
a
lie
that
benefits
you
and
not
the
person
or
people
you
tell
it
to.
$

Why would you want to do that? There are plenty of
situations where this is useful!

Recently, I found myself with long lines of text that
mixed usernames and numbers, and I wanted to extract
the names. Sure, I could have figured something out
with awk or put it into a text editor and copied out the
names. Instead, I did this:

$ fmt -1 <the_file.txt | egrep -v '^[0-9]'
fred
jane
bob
$

Recently, I was curious which IP addresses are men-
tioned on my wiki:

$ cat *.wiki | fmt -1 | egrep -E '[0-9]{1,3}\.
[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}' | sort -u
192.168.1.4
192.168.1.7
255.255.255.0#
255.255.255.240
8.3.8.1
<code>172.16.240.1
<code>172.16.240.2

Ok, that’s not a perfect list, but I was able to do that
in a few seconds rather than an hour of writing code.

A simple improvement: Transform < and > and a lot
of other punctuation into spaces, then delete spaces at
the end.

$ cat *.wiki | tr "#:@;()<>=,'-\"" ' ' | fmt -1
| egrep -E '[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.
[0-9]{1,3}' | tr -d ' ' | sort -u
172.16.240.1
172.16.240.2
192.168.1.4
192.168.1.7
255.255.255.0
255.255.255.240
8.3.8.1

That’s a lot cleaner. 8.3.8.1 is a version number, not
an IP address, but this is good enough for a first pass
through the list. n

Tom is an internationally recognized author, speaker, and system
administrator. His best known books include Time Management
for System Administrators (O’Reilly) and The Practice of System
and Network Administration (Addison-Wesley). He works at
Google in NYC on the Ganeti project. [code.google.com/p/ganeti]

Reprinted with permission of the original author.
First appeared in hn.my/abuse (everythingsysadmin.com)

http://code.google.com/p/ganeti
http://hn.my/abuse

  21

Three years ago, while
I was a web developer
at YouTube, one of the

senior engineers began ranting
about the page weight of the video
watch page being far too large. The
page had ballooned to as high as
1.2MB and dozens of requests. This
engineer openly vented that “if they
can write an entire Quake clone in
under 100KB, we have no excuse
for this!” Given that I agreed with
him and was excited to find a new
project, I decided to champion the
cause of getting the YouTube watch
page to weigh in under 100KB. On
the shuttle home from San Bruno
that night, I coded up a prototype.
I decided to limit the functionality
to just a basic masthead, the video
player, five related videos, a shar-
ing button, a flagging tool, and ten
comments loaded in via AJAX. I
code-named the project “Feather.”

Even with such a limited set of
features, the page was weighing
in at 250KB. I dug into the code

Page
Weight
Matters

By Chris Zacharias

and realized that our optimization
tools (i.e. Closure compilation)
were unable to exclude code that
was never actually used in the page
itself (which would be an unfair
expectation of any tool under
the circumstances). The only way
to reduce the code further was
to optimize the CSS, JavaScript,
and image sprites myself by hand.
After three painstaking days, I had
arrived at a much leaner solution. It
still was not under 100KB though.
Having just finished writing the
HTML5 video player, I decided to
plug it in instead of the far heavier
Flash player. Bam! 98KB and only
14 requests. I threaded the code
with some basic monitoring and
launched an opt-in to a fraction of
our traffic.

After a week of data collec-
tion, the numbers came back…
and they were baffling. The aver-
age aggregate page latency under
Feather had actually INCREASED.
I had decreased the total page
weight and number of requests to
a tenth of what they were previ-
ously, and somehow the numbers
were showing that it was taking
LONGER for videos to load on
Feather. This could not be possible.
Digging through the numbers more
and after browser testing repeat-
edly, nothing made sense. I was just
about to give up on the project,
with my world view completely
shattered, when my colleague dis-
covered the answer: geography.

When we plotted the data
geographically and compared it to
our total numbers broken out by
region, there was a disproportion-
ate increase in traffic from places
like Southeast Asia, South America,
Africa, and even remote regions
of Siberia. Further investigation
revealed that, in these places, the

average page load time under
Feather was over TWO MINUTES!
This meant that a regular video
page, at over a megabyte, was taking
more than TWENTY MINUTES to
load! This was the penalty incurred
before the video stream even had
a chance to show the first frame.
Correspondingly, entire populations
of people simply could not use You-
Tube because it took too long to see
anything. Under Feather, despite
it taking over two minutes to get
to the first frame of video, watch-
ing a video actually became a real
possibility. Over the week, word of
Feather had spread in these areas
and our numbers were completely
skewed as a result. Large numbers
of people who were previously
unable to use YouTube were sud-
denly able to.

Through Feather, I learned a
valuable lesson about the state of
the Internet throughout the rest of
the world. Many of us are fortunate
to live in high bandwidth regions,
but there are still large portions of
the world that do not. By keep-
ing your client side code small and
lightweight, you can literally open
your product up to new markets. n

Chris is the cofounder of imgix. Prior to
that, he worked at Google, YouTube, and
Xerox where his primary focus was on
high-performance web tools and infra-
structure. He is a graduate of the RIT New
Media program.

Reprinted with permission of the original author.
First appeared in hn.my/abuse (everythingsysadmin.com)

Reprinted with permission of the original author.
First appeared in hn.my/weight (chriszacharias.com)

http://hn.my/abuse
http://hn.my/weight

22  PROGRAMMING

By Mike Muuss

Yes, it’s true! I’m the author of PING
for Unix. PING is a little thousand-
line hack I wrote in an evening,

which practically everyone seems to know
about. :-)

I named it after the sound a sonar makes,
inspired by the whole principle of echo-loca-
tion. In college I had done a lot of modeling
of sonar and radar systems, so the “cyber-
space” analogy seemed very apt. It’s exactly
the same paradigm applied to a new problem
domain: PING uses timed IP/ICMP ECHO_
REQUEST and ECHO_REPLY packets to probe the
“distance” to the target machine.

My original impetus for writing PING for
4.2a BSD Unix came from an offhand remark
in July 1983 by Dr. Dave Mills while we were
attending a DARPA meeting in Norway. He
described some work that he had done on his
“Fuzzball” LSI-11 systems to measure path
latency using timed ICMP Echo packets.

In December of 1983 I encountered some
odd behavior of the IP network at BRL.
Recalling Dr. Mills’ comments, I quickly
coded up the PING program, which revolved
around opening an ICMP style SOCK_RAW
AF_INET Berkeley-style socket(). The code
compiled just fine, but it didn’t work — there
was no kernel support for raw ICMP sockets!

The Story of the
PING Program

Incensed, I coded up the kernel support and had everything
working well before sunrise. Not surprisingly, Chuck Kennedy
(aka “Kermit”) had found and fixed the network hardware before
I was able to launch my very first “ping” packet. But I’ve used it
a few times since then. *grin* If I’d known then that it would be
my most famous accomplishment in life, I might have worked on
it another day or two and added some more options.

The folks at Berkeley eagerly took back my kernel modifica-
tions and the PING source code, and it’s been a standard part of
Berkeley Unix ever since. Since it’s free, it has been ported to
many systems since then, including Microsoft Windows 95 and
WindowsNT. You can identify it by the distinctive messages it
prints, which look like this:

PING vapor.arl.army.mil (128.63.240.80): 56 data bytes
64 bytes from 128.63.240.80: icmp_seq=0 time=16 ms
64 bytes from 128.63.240.80: icmp_seq=1 time=9 ms
64 bytes from 128.63.240.80: icmp_seq=2 time=9 ms
64 bytes from 128.63.240.80: icmp_seq=3 time=8 ms
64 bytes from 128.63.240.80: icmp_seq=4 time=8 ms
^C
----vapor.arl.army.mil PING Statistics----
5 packets transmitted, 5 packets received, 0% packet loss
round-trip (ms) min/avg/max = 8/10/16

In 1993, ten years after I wrote PING, the USENIX association
presented me with a handsome scroll, pronouncing me a joint
recipient of The USENIX Association 1993 Lifetime Achieve-
ment Award, which was presented to the Computer Systems
Research Group, University of California at Berkeley 1979-1993.

  23

“Presented to honor profound intel-
lectual achievement and unparal-
leled service to our Community.
At the behest of CSRG principals
we hereby recognize the follow-
ing individuals and organizations
as CSRG participants, contributors
and supporters.” Wow!

From my point of view, PING
is not an acronym standing
for Packet InterNet Grouper;
it’s a sonar analogy. However, I’ve
heard second-hand that Dave Mills
offered this expansion of the name,
so perhaps we’re both right. Sheesh,
and I thought the government was
bad about expanding acronyms! :-)

Phil Dykstra added ICMP Record
Route support to PING, but in those
early days few routers processed
them, making this feature almost
useless. The limitation on the
number of hops that could be
recorded in the IP header precluded
this from measuring very long
paths.

I was insanely jealous when Van
Jacobson of LBL used my kernel
ICMP support to write TRACEROUTE.
He realized that he could get ICMP
Time-to-Live Exceeded messages
when pinging by modulating the
IP time to life (TTL) field. I wish I
had thought of that! :-) Of course,
the real traceroute uses UDP
datagrams because routers aren’t
supposed to generate ICMP error
messages for ICMP messages.

The best PING story I’ve ever
heard was told to me at a USENIX
conference, where a network
administrator with an intermit-
tent Ethernet had linked the PING
program to his vocoder program, in
essence writing:

ping goodhost | sed -e 's/.*/
ping/' | vocoder

He wired the vocoder’s output
into his office stereo and turned
up the volume as loud as he could
stand. The computer sat there
shouting “Ping, ping, ping...” once a
second, and he wandered through
the building wiggling Ethernet

connectors until the sound stopped.
And that’s how he found the inter-
mittent failure. n

The late Mike Muuss was the architect of
BRL-CAD, a substantial third-generation
CSG solid modeling system, and the author
of ping, ttcp, and assorted other network
goodies.

“From my point of view, PING is not an
acronym standing for Packet InterNet
Grouper; it’s a sonar analogy.”

First appeared in hn.my/ping

http://hn.my/ping

24  PROGRAMMING

Packets of death. I started calling them that
because that’s exactly what they are.

Star2Star has a hardware OEM that has built
the last two versions of our on-premise customer appli-
ance. I’ll get more into this appliance and the magic it
provides in another post. For now let’s focus on these
killer packets.

About a year ago, we released a refresh of this on-
premise equipment. It started off simple enough, pretty
much just standard Moore’s Law stuff. Bigger, better,
faster, cheaper. The new hardware was 64-bit capable,
had 8X as much RAM, could accommodate additional
local storage, and had four Intel (my preferred Ethernet
controller vendor) gigabit Ethernet ports. We had (and
have) all kinds of ideas for these four ports. All in all it
was pretty exciting.

This new hardware flew through performance and
functionality testing. The speed was there and the reli-
ability was there. Perfect. After this extensive testing
we slowly rolled the hardware out to a few beta sites.
Sure enough, problems started to appear.

All it takes is a quick Google search to see that the
Intel 82574L Ethernet controller has had at least a
few problems, including, but not necessarily limited to,
EEPROM issues, ASPM bugs, and MSI-X quirks. We
spent several months dealing with each and every one
of these and eventually, we thought we were done.

We weren’t. It was only going to get worse.
I thought I had the perfect software image (and

BIOS) developed and deployed. However, that’s not

what the field was telling us. Units kept failing. Some-
times a reboot would bring the unit back, but usually it
wouldn’t. When the unit was shipped back, however, it
would work when tested.

Wow. Things just got weird.
The weirdness continued and I finally got to the

point where I had to roll up my sleeves. I was lucky
enough to find a very patient and helpful reseller in
the field to stay on the phone with me for three hours
while I collected data. This customer location, for some
reason or another, could predictably bring down the
Ethernet controller with voice traffic on their network.

Let me elaborate on that for a second. When I say
“bring down” an Ethernet controller I mean BRING
DOWN an Ethernet controller. The system and Eth-
ernet interfaces would appear fine and then after a
random amount of traffic the interface would report
a hardware error (lost communication with PHY) and
lose link. Literally the link lights on the switch and
interface would go out. It was dead.

Nothing but a power cycle would bring it back.
Attempting to reload the kernel module or reboot the
machine would result in a PCI scan error. The interface
was dead until the machine was physically powered
down and powered back on. In many cases, for our
customers, this meant a truck roll.

While debugging with this very patient reseller I
started stopping the packet captures as soon as the
interface dropped. Eventually, I caught on to a pattern:
the last packet out of the interface was always a 100

Packets of Death
By Kristian Kielhofner

Illustration: Patrick Hoesly

  25

Trying provisional response, and it was always a specific
length. Not only that, I ended up tracing this (Asterisk)
response to a specific phone manufacturer’s INVITE.

I got off the phone with the reseller, grabbed some
guys, and presented my evidence. Even though it was
late in the afternoon on a Friday, everyone did their
part to scramble and put together a test configura-
tion with our new hardware and phones from this
manufacturer.

We sat there, in a conference room, and dialed as
fast as our fingers could. Eventually we found that we
could duplicate the issue! Not on every call and not on
every device, but every once in a while we could crash
the Ethernet controller. However, every once in a while
we couldn’t at all. After a power cycle, we’d try again
and hit it. Either way, as anyone who has tried to diag-
nose a technical issue knows, the first step is duplicat-
ing the problem. We were finally there.

Believe me, it took a long time to get here. I know
how the OSI stack works. I know how software is
segmented. I know that the contents of a SIP packet
shouldn’t do anything to an Ethernet adapter. It just
didn’t make any sense.

Between packet captures on our device and packet
captures from the mirror port on the switch we were
finally able to isolate the problem packet. It turns out
it was the received INVITE, not the transmitted 100
Trying! The mirror port capture never saw the 100
Trying hit the wire.

Now we needed to look at this INVITE. Maybe the
userspace daemon processing the INVITE was the
problem. Maybe it was the transmitted 100 Trying.
One of my colleagues suggested we shut down the SIP
software and see if the issue persisted. No SIP software
running, no transmitted 100 Trying.

First, we needed a better way to transmit the problem
packet. We isolated the INVITE transmitted from the
phone and used tcpreplay [tcpreplay.synfin.net] to play
it back on command. Sure enough, it worked. Now,
for the first time in months, we could shut down these
ports on command with a single packet. This was signif-
icant progress and it was time to go home, which really
meant it was time to set this up in the lab at home!

Before I go any further I need to give another shout
out to an excellent open source piece of software I
found. Ostinato [code.google.com/p/ostinato/] turns
you into a packet ninja. There’s literally no limit to
what you can do with it. Without Ostinato, I could
have never gotten beyond this point.

With my packet Swiss army knife in hand I started
poking and prodding. What I found was shocking.

It all starts with a strange SIP/SDP quirk. Take a look
at this SDP:

v=0
o=- 20047 20047 IN IP4 10.41.22.248
s=SDP data
c=IN IP4 10.41.22.248
t=0 0
m=audio 11786 RTP/AVP 18 0 18 9 9 101
a=rtpmap:18 G729/8000
a=fmtp:18 annexb=no
a=rtpmap:0 PCMU/8000
a=rtpmap:18 G729/8000
a=fmtp:18 annexb=no
a=rtpmap:9 G722/8000
a=rtpmap:9 G722/8000
a=fmtp:101 0-15
a=rtpmap:101 telephone-event/8000
a=ptime:20
a=sendrecv

Wireshark picture:

Yes, I saw it right away too. The audio offer is dupli-
cated and that’s a problem, but again, what difference
should that make to an Ethernet controller?!? Well, if
nothing else it makes the Ethernet frame larger...

But wait, there were plenty of successful Ethernet
frames in these packet captures. Some of them were
smaller, some were larger. No problems with them. It
was time to dig into the problem packet. After some
more Ostinato-fu and plenty of power cycles, I was
able to isolate the problem pattern (with a problem
frame).

Warning: we’re about to get into some hex.

Illustration: Patrick Hoesly

http://tcpreplay.synfin.net
http://code.google.com/p/ostinato/

26  PROGRAMMING

The interface shutdown is triggered by a specific
byte value at a specific offset. In this case, the specific
value was hex 32 at 0x47f. Hex 32 is an ASCII 2.
Guess where the 2 was coming from.

a=ptime:20

All of our SDPs were identical (including ptime,
obviously). All of the source and destination URIs were
identical. The only difference was the Call-IDs, tags,
and branches. Problem packets had just the right Call-
ID, tags, and branches to cause the “2” in the ptime to
line up with 0x47f.

BOOM! With the right Call-IDs, tags, and branches
(or any random garbage) a “good packet” could turn
into a “killer packet” as long as that ptime line ended
up at the right address. Things just got weirder.

While generating packets I experimented with vari-
ous hex values. As if this problem couldn’t get any
weirder, it does. I found out that the behavior of the
controller depended completely on the value of this
specific address in the first received packet to match
that address. It broke down to something like this:

Byte 0x47f = 31 HEX (1 ASCII) - No effect
Byte 0x47f = 32 HEX (2 ASCII) - Interface shutdown
Byte 0x47f = 33 HEX (3 ASCII) - Interface shutdown
Byte 0x47f = 34 HEX (4 ASCII) - Interface inoculation

Bad:

Good:

 When I say “no effect” I mean it didn’t kill the inter-
face, but it didn’t inoculate the interface either (more
on that later). When I say the interface shutdown, well,
remember my description of this issue - the interface
went down. Hard.

With even more testing I discovered this issue with
every version of Linux I could find, FreeBSD, and even
when the machine was powered up complaining about
missing boot media! It’s in the hardware; the OS has
nothing to do with it. Wow.

To make matters worse, using Ostinato, I was able
to craft various versions of this packet - an HTTP
POST, ICMP echo-request, etc. Pretty much whatever
I wanted. With a modified HTTP server configured
to generate the data at byte value (based on headers,
host, etc) you could easily configure an HTTP 200
response to contain the packet of death - and kill client
machines behind firewalls!

I know I’ve been pointing out how weird this whole
issue is. The inoculation part is by far the strangest. It
turns out that if the first packet received contains any
value (that I can find) other than 1, 2, or 3, the inter-
face becomes immune from any death packets (where
the value is 2 or 3). Also, valid ptime attributes are
defined in multiples of 10 - 10, 20, 30, 40. Depending
on Call-ID, tag, branch, IP, URI, etc. (with this buggy
SDP), these valid ptime attributes line up perfectly.
Really, what are the chances?!?

All of a sudden it hsd become clear why this issue
was so sporadic. I’m amazed I tracked it down at all.
I’ve been working with networks for over 15 years and
I’ve never seen anything like this. I doubt I’ll ever see
anything like it again. At least I hope I don’t...

I was able to get in touch with two engineers at Intel
and send them a demo unit to reproduce the issue.
After working with them for a couple of weeks they
determined there was an issue with the EEPROM on
our 82574L controllers.

They were able to provide new EEPROM and a
tool to write it out. Unfortunately, we weren’t able
to distribute this tool and it required unloading and
reloading the e1000e kernel module, so it wouldn’t be
preferred in our environment. Fortunately (with a little
knowledge of the EEPROM layout), I was able to work
up some bash scripting and ethtool magic to save the
“fixed” eeprom values and write them out on affected
systems. We now have a way to detect and fix these
problematic units in the field. We’ve communicated
with our vendor to make sure this fix is applied to units
before they are shipped to us. What isn’t clear, how-
ever, is just how many other affected Intel Ethernet
controllers are out there.

I guess we’ll just have to see... n

Kristian Kielhofner is the co-founder and CTO of Star2Star Com-
munications, creators of the world’s most reliable business com-
munications solution. Since creating AstLinux in 2004, Kristian
has spent most of his time working on various technologies that
interest him.

Reprinted with permission of the original author.
First appeared in hn.my/packets (krisk.com)

http://hn.my/packets

  27

I’ve noticed that the most mature and accomplished
developers I’ve worked with are also those who most
frequently say “I don’t understand” when they’re

listening to a technical explanation. This has been the case
with coworkers both at Fog Creek and at Khan Academy.

In one way, it’s counterintuitive. Shouldn’t the senior devs
already know everything? But it makes a lot of sense. Those
who are most secure in their own abilities are the most
comfortable to admit when they haven’t fully wrapped
their minds around something. Newer devs assume that
their confusion is their own fault. They don’t want to inter-
rupt others due to their own perceived shortcomings.

New devs should try to really get just how common it
is to not fully understand a technical problem. Most tech
stacks have crossed the threshold of one person being
able to hold the entire codebase in their head, especially
at companies that are hiring. And once that threshold is
crossed, you’ll start hearing from people about the new
JavaScript rendering framework or the latest MapReduce
pipeline or a bug in the deploy script or a proposal for
a new caching pattern, and a little voice in your head is
going to start saying, “Wait…I don’t get it.”

“I don’t understand” is the perfect response. You’re not
insulting anybody. You’re not showing weakness. You’re
building a culture of respect for how smart everybody is,
because you know that after a few minutes of explanation
you will get it.

Either that or you’ll find a bug. I like to think of “I don’t
understand” as a kind of reverse rubber ducking. Except in
this version, the duck comes alive and quacks and stomps
and “I don’t understand”s all over your keyboard while
forcing you to explain various things.

 It’s most said by the best, decades after they’ve
become a master. We newer devs should follow their lead
and get rid of any stigma associated with those words. n

Ben is lead dev at Khan Academy, where he started volunteering
after watching one of Sal’s talks and feeling left with no choice but
to help. Ben was previously VP of Engineering at Fog Creek Software,
where he spent five and a half years learning how to push bits around
with small, fast teams.

I Don’t Understand
By Ben Kamens

I thought I’d share my favorite regex
of all time:

[-~]

Any ideas what this regexp matches?
It matches all ASCII characters from the

space to the tilde. What are those charac-
ters? They’re all printable characters!

Take a look at the ASCII table. The
printable characters start at the space and
end at the tilde:

I love this. n

Peteris Krumins is 28 years old and he’s from Riga,
Latvia. He loves blogging and writing books about
programming.

My Favorite
Regex of All
Time
By Peteris Krumins

Reprinted with permission of the original author.
First appeared in hn.my/understand (bjk5.com)

Reprinted with permission of the original author.
First appeared in hn.my/favregex (catonmat.net)

[-~] matches all printable ASCII characters

http://hn.my/understand
http://hn.my/favregex

28  PROGRAMMING

One day, the bean counter said to the boss,
“Unless you fire one employee, we are not
going to be profitable this year.”

The boss loudly said, “Find the oldest guy who has
been at this company for the longest time and is still
not making six figures. We’ll fire him!”

Impeccable management logic here: The guy has
been with the company for the longest time. The guy is
the oldest. He is still not making six figures. Obviously
a sure loser. Fire this loser and save money!

Three programmers, Tom, Dick and Harry, overheard
their boss and got to work immediately.

The employee database obviously looks like this:

case class Employee(age:Int, tenure:Int,
salary:Int, name:String)

def rnd(min:Int,max:Int) = math.round(min+math.
random*(max-min)).toInt

val empDB = for(employees<-1 to 10000) yield
Employee(rnd(25,35),rnd(1,6),rnd(85000,150000),
"emp"+employees)

 So we see there are 10,000 employees at this
company.

They are between 25 and 35 years old.
They have been with the company anywhere from 1

to 6 years.
They make between $85,000 to $150,000.

Tom was a PHP/JS programmer. He worked on
rapidly prototyped web-apps and didn’t give a rat’s ass
about efficiency.

Tom reasoned: This is just a nested sort. Let me first
sort on the tenure; that will tell me who has been with
the company for the longest time. Then I’ll sort on age;
that tells me who the oldest bloke is. Then I’ll sort on
salary; that tells me who is making the least money.
That should be it!

In Scala, Tom’s code would look like:

scala> empDB.sortBy(e=>(e.tenure,e.age,-e.
salary)).reverse.head
res0: Employee = Employee(35,6,85079,emp7435)

Dick was a back-end systems programmer. He
thought deep and hard about algorithms and Big O
performance and such.

So Dick thought: There’s no need to sort anything.
We just want the oldest guy with the longest tenure
who makes the least salary. That just an O(n) problem,
NOT an O(nlog(n)) problem. We just need the min
tuple.

In Scala, Dick’s code looks like this:

scala> empDB.minBy(e=>(-e.tenure,-e.age,e.salary))
res1: Employee = Employee(35,6,85079,emp7435)

Tom, Dick & Harry
By Krishnan Raman

  29

Harry was a math major who went about looking for math-
ematical abstractions in the simplest of code. He took the day off
and thought long and hard about this problem while lounging in
the bathtub.

Suddenly, it occurred to Harry: Hey, this is a monoid!
Naked Harry happily danced the mathematician’s Eureka

Dance and set about coding.
In Scala, Harry’s code looks like:

case class Monoid(e:Set[Employee]) {
 def plus(a:Employee,b:Employee)= {
 if(a.age > b.age) a else
 if(b.age > a.age) b else
 if(a.tenure > b.tenure) a else
 if(b.tenure > a.tenure) b else
 if (a.salary > b.salary) b else
 if(b.salary > a.salary) a else
 if(math.random > 0.5) a else b
}
 val identity = Employee(0,0,0,"id")
 val theUnluckyOne = e.foldLeft(identity)((a,b)=>plus(a,b))
}

scala> Monoid(empDB.toSet).theUnluckyOne
res2: Employee = Employee(35,6,85079,emp7435)

In scalaz, it would look like this:

import scalaz.Monoid

case class EmpMonoid(e:Set[Employee]) extends Monoid[Employee] {

 override val zero:Employee = Employee(0,0,0,"emp0")

 override def append(a:Employee, b: =>Employee):Employee = {
 if(a.age > b.age) a else
 if(b.age > a.age) b else
 if(a.tenure > b.tenure) a else
 if(b.tenure > a.tenure) b else
 if (a.salary > b.salary) b else
 if(b.salary > a.salary) a else
 if(math.random > 0.5) a else b
 }

 val theUnluckyOne:Employee = e.foldLeft(zero)((a:Employee, b:Employee)=>append(a,b))
}

scala> EmpMonoid(empDB.toSet).theUnluckyOne
res12: Employee = Employee(35,6,85079,emp7435)

30  PROGRAMMING

The next day, Tom, Dick and
Harry met with the boss.

They happily announced, “We’ve
found the unlucky bastard! He
is employee number 7435. He
has been with the company for 6
years. He is 35 years old. He makes
$85,079. Fire him and we’ll be
profitable again!”

The boss was very impressed, but
he wanted to know how they came
up with this solution.

Tom said, “This is just a nested
sorting problem.”

Dick said, “There is no need to
sort at all! It’s just a min-tuple
problem. Takes O(n) to find the
right answer.”

Harry said, “You are both trivially
right. The most important insight is
that this is a monoid!”

“But what is a monoid ?” the boss
asked.

“Well, you have a set with an
associative plus and an identity.
That’s a monoid!” said Harry.

Nobody understood anything, so
Harry said, “Think of the employee
database as a set of employees.
I claim two employees can be
added!”

“What do you mean? How do
you add an employee to another
employee?” they asked.

“Well,” Harry said, “If you are
asked to add two employees, return
the guy who is older. But if both
of them are the same age, then
return the guy who has been with
the company the longest. But if
both guys have been working for
us for the same number of years,
then return the guy with the lowest
salary. But if they both earn the
same as well, then just randomly
pick one over the other.”

“And how does all that work?”
they asked.

“Well, let’s define an identity
employee. If you add something to
this identity, you get back the thing
you added. So we create a dummy
employee who has been with us for
0 years, so that everybody else has
been here longer than the identity.
Then the addition works out.”

“OK. I still don’t see how all this
works,” said the boss.

“Well, if we seed a catamorphism
with the identity employee and
aggregate over the set, we collapse
to the unlucky employee 7435,
who has been here the longest,
is the oldest and makes the least
money,” Harry triumphantly
announced.

Everybody stared at Harry, abso-
lutely speechless.

Long story short: Harry was
immediately fired. Dick was made
the CTO and Tom was appointed as
Dick’s secretary. n

Krishnan Raman is a data scientist at Twit-
ter. He has contributions to several Twitter
open source Scala libraries including Scald-
ing, Bijections, Algebird. He works on big
data & machine learning algorithms.

Bonus Problem: What
happened to employee
number 7435?

Solution at the bottom of
this column.

Solution: Employee
number 7435 was the
boss! You can’t fire the
boss!! He took the least
amount of salary home
for tax avoidance pur-
poses. The bulk of his
earnings came from
equity.

Reprinted with permission of the original author.
First appeared in hn.my/monoid (jasq.org)

http://hn.my/monoid

  31

I didn’t think I’d learn anything
building Bootstrap.

Actually, I was pretty confi-
dent I wouldn’t learn anything.

As a technical challenge, Boot-
strap just isn’t very interesting. It’s
trying to provide a collection of
components — components like
modals, tooltips, and grids that have
been around the Web forever — to
people who don’t spend a lot of
time writing frontend code.

That’s It
There’s nothing groundbreaking
there.

I knew it would enable people to
move faster and build more beauti-
ful products, and that was great.
I also knew that Bootstrap would
be relatively successful — it being
something I think really needed to
exist and it being released under
Twitter’s name.

But what I didn’t anticipate was
the extent of its popularity and, in
turn, what its popularity meant.

40,000 Stars
Today, Bootstrap is really fucking
popular. However, what people
often don’t realize is that despite
its popularity, and despite it being
a “Twitter” project, it isn’t actually
maintained by a team at Twitter
(nor was it ever).

Bootstrap is (and has always
been) maintained by two nerds
who like to write code together.
Just two nerds.

What’s more is that this wasn’t
something we did in the office —
there was no “Bootstrap team” and
no 20% time. It was just Mark and
me hacking in our free time. And
this is significant because what

building Bootstrap has taught me
more than anything else is that’s all
I really care about.

Writing Code with the Homies
Sitting on my bed alone, stressed
out, hammering through 50+
issues a night isn’t why I wanted
to release Bootstrap with Mark; or
Ratchet with Dave and Connor; or
Ender with Dustin; or Hogan with
Rob; or Bower with Alex.

Getting together and creating
something with your friends is
amazing, and for me, it’s easily one
of the most fun and rewarding things
I do. I love it. And that’s why I’ve
done it and will continue to do it.

The trick is not losing sight of
this. n

Fat is a software engineer at Obvious Corp.
He is also the co-author of Bootstrap,
Ratchet, Bower, and a number of other
open source projects.

What I Learned Building
Twitter Bootstrap

By Fat

Reprinted with permission of the original author.
First appeared in hn.my/bootstrap (medium.com)

Photo by Olivia Watkins.

http://hn.my/bootstrap

32  PROGRAMMING

I wanted to creatively express my affection for my
daughter, Augusta, in the way I know best. I chose Ruby
for its flexibility and elegance. My hope is to intro-

duce her to its boundless beauty someday soon using this
composition.

require "./love"

a_letter to: Augusta do
 twas(only: 16.months.ago) { The::Universe << You.to(OurFamily) }
 life.has :been => %w(i n c r e d i b l y).zip(*"wonderful!").ever_since
 We::Wish.we_could { experience these_moments: over & over }
 You.will always_be: Loved, and: Cherished
 until Infinity.ends do; Forever.(); end
end

A Letter to My Daughter,
Augusta, in Ruby

By Jacques Fuentes

 This is a real, working, program, which outputs Augusta,
we <3 you! when executed. Be sure to read the love.rb file,
which supports the letter’s syntax. I tried to keep it sym-
metrical and legible so that the source closely resembles the
letter’s content.

Augusta = Awesome = true and Loved = Cherished = true

Infinity = (+1.0 / 0)..(-1.0 / 0)
def Infinity.ends; false; end
Forever = -> { puts "Augusta, we \033[31m<3\033[0m you!"; sleep 5 }
Incredible = :wunderbar!
%w(We The).map { |const| self.class.const_set const, Module.new do; end }
OurFamily = :the_number_one_most_important_thing # not breakfast

  33

def a_letter(*to); yield Augusta; end

class Numeric
 def method_missing(*); instance_eval { self }; end
end

def twas(as_if_it_were = {}, &re)
 memories = as_if_it_were.fetch :only, 1.day.ago
 re.call memories
end

class You
 class << self
 def will(always_be_loved); end
 def to(us = OurFamily); end
 end
end

class The::Universe < Infinity.class
 def self.<<(you); end
end

def life
 Class.new do
 def self.has(since); since.fetch :been, Incredible; end
 end
end

class Array
 def ever_since; end
end

class String
 def each; self.chars; end
end

module We
 class Wish
 def self.we_could(&blk)
 klass = Module.new do
 def self.experience(these_moments_for); Infinity; end
 end.instance_eval &blk
 end
 end
end

def over(and_over = Infinity); end

trap :INT, :IGNORE # Forever and ever!

Reprinted with permission of the original author.
First appeared in hn.my/augusta

Jacques Fuentes is a father, husband,
hacker, autodidact, classical music addict,
friend of dogs, and last but not least: seri-
ously envious of full-blown unix beards. He
began teaching myself web development
in early 2008 which quickly transformed
into a passion for composing elegant code
and solving problems simply.

http://hn.my/augusta

34  SPECIAL

SPECIAL

When I came to the
US, I heard about
Mensa — the high

IQ society. My IQ had never been
tested, so I was curious. I was told
there was a special IQ test for non-
English speakers and that my fresh
immigrant status and lack of Eng-
lish knowledge was not a problem. I
signed up.

There were two tests. One test
had many rows of small pictures,
and I had to choose the odd one
out in each row. That was awful.
The test was English-free, but it
wasn’t culture-free. I couldn’t iden-
tify some of the pictures at all. We
didn’t have such things in Russia. I
remember staring at a row of tools
that could as easily have been from
a kitchen utensil drawer as from a
garage tool box. I didn’t have a clue
what they were.

But the biggest problem was that
the idea of crossing the odd object
out seemed very strange to me in
general. What is the odd object out
in this list?

Cow, hen, pig, sheep.

The “right” answer is supposed
to be hen, as it is the only bird. But
that is not the only possible correct
answer. For example, pig is the only
one whose meat is not kosher. And,
look, sheep has five letters while
the rest have three.

Thus, creative people get fewer
points. That means IQ tests actually
measure how standard and narrow
your mind is.

The second test asked me to
continue patterns. Each page had a
three-by-three square of geometric
objects. The bottom right corner
square, however, was empty. I had
to decide how to continue the
pattern already established by the
other eight squares by choosing
from a set of objects they provided.

This test is similar to continuing a
sequence. How would you continue
the sequence 1,2,3,4,5,6,7,8,9?
The online database of integer
sequences has 1479 different
sequences containing this pattern.
The next number might be:

■■ 10, if this is the sequence of
natural numbers;

■■ 1, if this is the sequence of the
digital sums of natural numbers;

■■ 11, if this the sequence of
palindromes;

■■ 0, if this is the sequence of digital
products of natural numbers;

■■ 13, if this is the sequence of
numbers such that 2 to their
powers doesn’t contain 0;

■■ 153, if this is the sequence of
numbers that are sums of fixed
powers of their digits;

■■ 22, if this is the sequence of
numbers for which the sum
of digits equals the product of
digits; or

■■ any number you want.

Usually when you are asked to
continue a pattern the assumption
is that you are supposed to choose
the simplest way. But sometimes
it is difficult to decide what the
testers think is the simplest way.
Can you replace the question mark
with a number in the following
sequence: 31, ?, 31, 30, 31, 30, 31,
… You might say that the answer
is 30 as the numbers alternate, or
you might say that the answer is 28
as these are the amount of days for
each month.

Towards the end of my IQ test,
the patterns were becoming more
and more complicated. I could have
supplied several ways to continue
the pattern, but my problem was
that I wasn’t sure which one was
considered the simplest.

When I received my results, I
barely made it to Mensa. I am glad
that I am a member of the society
of people who value their brains,
but it bugs me that I might not
have been creative enough to fail
their test. n

Tanya Khovanova is a research affiliate at
MIT and a freelance mathematician. Her
current interests lie in recreational mathe-
matics including puzzles, magic tricks, com-
binatorics, number theory, geometry, and
probability theory. Her website is located
at tanyakhovanova.com, her highly popu-
lar math blog at blog.tanyakhovanova.com
and her Number Gossip website at num-
bergossip.com

My IQ
By Tanya Khovanova

Reprinted with permission of the original author.
First appeared in hn.my/iq (tanyakhovanova.com)

http://tanyakhovanova.com
http://blog.tanyakhovanova.com
http://numbergossip.com
http://numbergossip.com
http://hn.my/iq

  35

http://mandrill.com

36  SPECIAL

By Steven Corona

How I Automated the
Boring Parts of Life

I have a bad habit: waiting until
the last minute to do things.
For instance, last month I had

to fly to New York to run a 193
mile relay race. I knew about the
trip for almost 6 months, but I
didn’t buy plane tickets until 3 days
before, at 4x the cost. That is true
dedication to the art of procrastina-
tion. You can call me somewhat of
an expert, and it’s one of my biggest
shortcomings.

It’s not because I’m lazy — in
fact, the exact opposite is true; I’m
incredibly productive. I move fast,
but I single-task. I don’t bounce
around with a million things at
once because of the incredible cost
of context switching. Spending time
planning trips, picking flights, and
buying tickets just doesn’t really
seem important to me until it’s 3
days away.

Paying $700 bucks for plane tick-
ets, though, when they should have
cost $200, isn’t the best move, so
I’ve spent the past month trying to
get a handle on my procrastination.

Fixing procrastination without
willpower
Self-discipline and willpower —
two words that aren’t the solution.
You only have a fixed amount of
self-discipline and after it’s been
used up, you need to wait for it to
recharge. If you “fix” a personal-
ity defect by brute-forcing with
self-discipline, you’ll be back in the
same boat a week later.

I broke the cycle of procrastina-
tion and willpower exhaustion by
automating the things I was put-
ting off. Yup, I threw money at the
problem, and it was cheaper than
you think.

Get a personal assistant
Hold off your judgment for a
second. I’m still new to the assistant
thing, but it easily falls into the 10
most effective life changes I’ve ever
made. Within the first 24 hours of
having an assistant, I delegated 2
tasks that had been marinating in
my todo list for months. You know,
the thing you say you’re going to
finally get done every time Monday
rolls around? Well last Monday, it
finally got done, and all I had to do
was send an email. Mind blowing.

Total cost? $25 DOLLARS A
MONTH. The service I use is Fan-
cyHands [fancyhands.com] and it
paid for itself on the first day.

Think it’s ridiculous? So did I,
but it ended up changing my entire
workflow. For example, I just had
them book an AirBnB place for
a trip next month. Next month!
This is coming from a guy that was
buying plane tickets days before a
trip.

If it doesn’t end up being useful
you can just have your assistant
email me about how much I suck;
might as well get your monies worth.

http://fancyhands.com

  37

Amazon Subscribe & Save and
Emergency Deodorant
Maybe you’ve heard of it, maybe
you haven’t, but Amazon lets you
set up reoccurring orders that get
shipped automatically. It takes like
5 minutes to set up and has saved
me so much frustration. I used to
be the guy running to Target on
the way out to buy a little thing I
like to call “emergency deodorant.”
I’ve found myself standing in the
deodorant aisle nonchalantly apply-
ing some Old Spice before taking it
up to the register more times than I
can count.

It was surprisingly hard to come
up with ideas for using Subscribe
and Save, so if you need some
inspiration, check out the list of
things Amazon automatically sends
me. [hn.my/amzsteve] Fair warn-
ing: It’s hilarious to open your door
to a UPS guy carrying a 40-pack of
toilet paper, IN THE ORIGINAL
PACKAGING.

Automate the things you hate
Even though I really enjoy writing,
I despise proofreading and editing
to the point where I rather just not
write at all so I don’t have to deal
with the proofreading part. Noth-
ing kills my flow more than having
to re-read what I just wrote 1000
times.

Even though the book I’m work-
ing on has been an overall success,
one of my biggest failures with the
project has been not proofread-
ing it. I’d fall into the cycle of just
not writing, so I wouldn’t have to
proofread.

Instead of fighting it with will-
power, I automated it. How? I
tested both Mechanical Turk and
Fiverr as proofreading platforms.
Fiverr cost a total of $50 to have
62 pages edited. Just to give you
an idea: editing 62 pages is my idea
of a personal hell, but for less than
a dollar/page, all of my hesitation,
doubt, and negativity vanished.

Try it out today
You can automate almost all of the
boring parts of your life, today, for
less than 25 bucks and half an hour
on Amazon. And make sure to have
your assistant email me telling me
how much time I saved you. n

Steve is the CTO at Twitpic and author of
Scaling PHP Book [scalingphpbook.com].
He blogs about hacking his life and his
startup hustle stories at stevecorona.com

“You can automate almost all of the boring
parts of your life, for less than 25 bucks
and half an hour on Amazon.”

Reprinted with permission of the original author.
First appeared in hn.my/boring (stevecorona.com)

http://hn.my/amzsteve
http://scalingphpbook.com
http://stevecorona.com
http://hn.my/boring

Tealeaf Academy
an online school for developers

{
 join: 'Intensive Online Bootcamp',
 learn: 'Web Development',
 goto: 'http://www.gotealeaf.com'
}

Learn Ruby on Rails | Level up Skills | Launch Products | Get a Job

38  SPECIAL

We need to think
of our desks as
workstations.

In reality, we do all sorts of things
at our desks that aren’t really work-
related (or affect our ability to
produce our best work).

Here are things I’m trying to quit
doing at my desk:

➊ Thinking: Nobody does
their best thinking sitting

at their desk. When you reflect on
your biggest “Ah Ha!” moments,
how many of them occurred while
you were staring at a screen? If
you’re like me, your best think-
ing happens when you’re not at
your desk: taking a walk, going and
asking another person for help,
drinking a coffee, in the shower, etc.
Your desk is for executing; do your
thinking elsewhere.

➋ Socializing: When I sit
down at my desk, I want to

be in work mode. I want to pri-
oritize my most important tasks,
and then complete them with the
fastest velocity possible. Socializing
while I’m at my desk sullies the
purity of the workstation. This is

why the water cooler is actually a
brilliant social construct: when you
want to hang out, you can get up
from your workstation and go to
the socialstation. I think every office
should have a socialstation, a place
(or time in the morning) where
team members can hang out and
talk informally.

➌ Procrastinating: Check
Facebook, check Twit-

ter, go on YouTube, check email,
mindlessly read blog posts. I think
that breaks, and downtime, are
important in a work day. But again,
I think maintaining the purity of
my desk as a place where I work is
important. If I need some “mind-
less” time, I think it’s better to
walk away from my desk and have
a place and time limit where I do
that. It’s also important that we
catch ourselves when procrastinat-
ing and ask ourselves, Why? Are we
procrastinating because we’re tired?
Hungry? Bored? Are we stuck on a
problem? Are we just feeling lethar-
gic and need to get up and move
around? Figure out what’s at the
source of your mindless net brows-
ing, and deal with the problem.

➍ Sitting: For the past 18
months I’ve been using a

standing desk. I’ve realized that
the best part isn’t that I’m standing
all day; it’s that I’m not sitting. A
standing desk allows you to stand,
sit, lean, and put one leg up while
you’re at your workstation. Even
better, I’ve felt more freedom to
just walk away when I’m faced with
a problem and need to do some
thinking (or when I’m tired and
need a break).

Many writers maintain a private
writing hut. The hut has one pur-
pose: it’s the place they go to write.
They don’t do anything else there.
Once they can’t write any more,
they go do something else. I think
we need to think of our desks in the
same way; these are places where
we get work done. n

Justin Jackson is a Product Manager at
Industry Mailout [industrymailout.com],
and the host of the Product People pod-
cast [productpeople.tv]. He lives in Vernon,
British Columbia in Canada. Follow him
on Twitter @mijustin or visit his blog:
justinjackson.ca

Things I’ve Quit
Doing at My Desk

By Justin Jackson

Reprinted with permission of the original author.
First appeared in hn.my/desk (justinjackson.ca)

Photo: Brendon Burton

http://gotealeaf.com
http://industrymailout.com
http://productpeople.tv
http://twitter.com/mijustin
http://justinjackson.ca
http://hn.my/desk

Tealeaf Academy
an online school for developers

{
 join: 'Intensive Online Bootcamp',
 learn: 'Web Development',
 goto: 'http://www.gotealeaf.com'
}

Learn Ruby on Rails | Level up Skills | Launch Products | Get a Job

  39

Tealeaf Academy
an online school for developers

{
 join: 'Intensive Online Bootcamp',
 learn: 'Web Development',
 goto: 'http://www.gotealeaf.com'
}

Learn Ruby on Rails | Level up Skills | Launch Products | Get a Job

http://gotealeaf.com
http://gotealeaf.com

http://memset.com

	Contents
	FEATURES
	A World Without Power
	Pixels Don’t Care

	STARTUPS
	Mechanics of a Small Acquisition

	PROGRAMMING
	Four Unix Commands I Abuse Every Day
	Page Weight Matters
	The Story of the PING Program
	Packets of Death
	I Don’t Understand
	My Favorite Regex of All Time
	Tom, Dick & Harry
	What I Learned Building Twitter Bootstrap
	A Letter to My Daughter, Augusta, in Ruby

	SPECIAL
	My IQ
	How I Automated the Boring Parts of Life
	Things I’ve Quit Doing at My Desk

