
The Apprentice
Programmer
Tobias Lütke

Issue 38  July 2013

Tealeaf Academy
an online school for developers

{
 join: 'Intensive Online Bootcamp',
 learn: 'Web Development',
 goto: 'http://www.gotealeaf.com'
}

Learn Ruby on Rails | Level up Skills | Launch Products | Get a Job

2  ﻿

Tealeaf Academy
an online school for developers

{
 join: 'Intensive Online Bootcamp',
 learn: 'Web Development',
 goto: 'http://www.gotealeaf.com'
}

Learn Ruby on Rails | Level up Skills | Launch Products | Get a Job

http://gotealeaf.com
http://gotealeaf.com

Tealeaf Academy
an online school for developers

{
 join: 'Intensive Online Bootcamp',
 learn: 'Web Development',
 goto: 'http://www.gotealeaf.com'
}

Learn Ruby on Rails | Level up Skills | Launch Products | Get a Job

Now you can hack on DuckDuckGo

Create instant answer plugins for DuckDuckGo

duckduckhack.com

Now you can hack on DuckDuckGo

Create instant answer plugins for DuckDuckGo

DuckDuckHackDuckDuckHack

package DDG::Goodie::Unidecode;# ABSTRACT: return an ASCII version of the search query use
DDG::Goodie; use Text::Unidecode; zci is_cached => 1; zci answer_type => "convert to ascii"; triggers
startend => "unidecode"; handle remainder => sub { my $u = unidecode $_; # unidecode output some-
times contains trailing spaces $u =~ s/\s+$//; return $u; }; 1; package DDG::Goodie::Rot13; #
ABSTRACT: Rotate chars by 13 letters use DDG::Goodie; triggers start => 'rot13'; handle remainder =>
sub { if ($_) { $_ =~ tr[a-zA-Z][n-za-mN-ZA-M]; return "ROT13: $_"; }; return }; zci is_cached => 1; 1;
package DDG::Goodie::Base64; use DDG::Goodie; use MIME::Base64; use Encode; triggers startend =>
"base64"; zci answer_type => "base64_conversion"; zci is_cached => 1; handle remainder => sub {
return unless $_ =~ /^(encode|decode|)\s*(.*)$/i; my $command = $1 || ''; my $str = $2 || ''; if ($str) { if (
$command && $command eq 'decode') { $str = decode_base64($str); $str = decode("UTF-8", $str);
return "Base64 decoded: $str"; } else { $str = encode_base64(encode("UTF-8", $str)); return "Base64
encoded: $str"; } } return; }; 1; package DDG::Goodie::Chars; # ABSTRACT: Give the number of charac-
ters (length) of the query. use DDG::Goodie; triggers start => 'chars'; zci is_cached => 1; zci
answer_type => "chars"; handle remainder => sub { return "Chars: " .length $_ if $_; return; }; 1; pack-
age DDG::Goodie::ABC; use DDG::Goodie; triggers any => "or"; zci answer_type => "rand"; handle
query_parts => sub { my @choices; my @collected_parts; while (my $part = shift) { if (lc($part) eq 'or') {
return unless @collected_parts; push @choices, join(' ', @collected_parts); my $length =
@collected_parts; return if $length > 1; @collected_parts = (); } elsif ($part) { push @collected_parts,
$part; } } push @choices, join(' ', @collected_parts) if @choices && @collected_parts; return if
scalar(@choices) <= 1; my $choice = int(rand(@choices)); if (my @duck = grep { $_ eq 'duckduckgo' || $_
eq 'duck' || $_ eq 'ddg' } @choices) { return $duck[0]." (not random)", answer_type => 'egg'; } return
$choices[$choice]." (random)"; return; }; 1; package DDG::Goodie::PublicDNS; use DDG::Goodie; use

sub { if ($_) { $_ =~ tr[a-zA-Z][n-za-mN-ZA-M]; return "ROT13: $_"; }; return }; zci is_cached => 1; 1;
package DDG::Goodie::Base64; use DDG::Goodie; use MIME::Base64; use Encode; triggers startend =>
"base64"; zci answer_type => "base64_conversion"; zci is_cached => 1; handle remainder => sub {
return unless $_ =~ /^(encode|decode|)\s*(.*)$/i; my $command = $1 || ''; my $str = $2 || ''; if ($str) { if (
$command && $command eq 'decode') { $str = decode_base64($str); $str = decode("UTF-8", $str);
return "Base64 decoded: $str"; } else { $str = encode_base64(encode("UTF-8", $str)); return "Base64
encoded: $str"; } } return; }; 1; package DDG::Goodie::Chars; # ABSTRACT: Give the number of charac
ters (length) of the query. use DDG::Goodie; triggers start => 'chars'; zci is_cached => 1; zci
answer_type => "chars"; handle remainder => sub { return "Chars: " .length $_ if $_; return; }; 1; pack
age DDG::Goodie::ABC; use DDG::Goodie; triggers any => "or"; zci answer_type => "rand"; handle
query_parts => sub { my @choices; my @collected_parts; while (my $part = shift) { if (lc($part) eq 'or') {
return unless @collected_parts; push @choices, join(' ', @collected_parts); my $length =
@collected_parts; return if $length > 1; @collected_parts = (); } elsif ($part) { push @collected_parts,
$part; } } push @choices, join(' ', @collected_parts) if @choices && @collected_parts; return if
scalar(@choices) <= 1; my $choice = int(rand(@choices)); if (my @duck = grep { $_ eq 'duckduckgo' || $_

http://gotealeaf.com
http://duckduckhack.com

4  ﻿

Curator
Lim Cheng Soon

Contributors
Tobias Lütke
George W. Hart
Basalgangster
Patrick Wyatt
Evan Travers
Geoffroy Couprie
Mike Bostock
Mario Livio
Glenn Reid

Proofreaders
Emily Griffin
Sigmarie Soto

Ebook Conversion
Ashish Kumar Jha

Printer
MagCloud

Hacker Monthly is the print magazine version
of Hacker News — news.ycombinator.com, a social news
website wildly popular among programmers and startup
founders. The submission guidelines state that content
can be “anything that gratifies one’s intellectual curios-
ity.” Every month, we select from the top voted articles
on Hacker News and print them in magazine format.
For more, visit hackermonthly.com

Advertising
ads@hackermonthly.com

Contact
contact@hackermonthly.com

Published by
Netizens Media
46, Taylor Road,
11600 Penang,
Malaysia.

Hacker Monthly is published by Netizens Media and not affiliated with Y Combinator in any way.

Cover: Tobias Lütke

http://news.ycombinator.com
http://hackermonthly.com
mailto:ads@hackermonthly.com
mailto:contact@hackermonthly.com

  5

For links to Hacker News dicussions, visit hackermonthly.com/issue-38

Contents
FEATURES

06  The Apprentice Programmer
By Tobias Lütke

09  How to Slice a Bagel into Two
Linked Halves
By George W. Hart

PROGRAMMING

12  Building Photoshop
By Basalgangster

20  The StarCraft Path-finding Hack
By Patrick Wyatt

24  Workflow in Tmux
By Evan Travers

26  Tips to Accelerate SSL
By Geoffroy Couprie

31  Why Use Make
By Mike Bostock

SPECIAL

34  Where and When Did the Symbols
“+” and “–” Originate?
By Mario Livio

36  What It’s Really Like Working With
Steve Jobs
By Glenn Reid

http://hackermonthly.com/issue-38

6  FEATURES

By Tobias Lütke

The Apprentice
Programmer

I dropped out of school when I
was 16 years old. School was
not for me. To me, computers

were so much more interesting.
Right or wrong, I felt like I wasted
my time there and my real edu-
cation was starting when I came
home. I lost respect for the institu-
tion and of course this meant that
I no longer bothered to put any
effort into it. They diagnosed me
with all sorts of learning disabili-
ties and started to medicate me. I
wanted to leave it all behind.

I decided the best thing to do was
to drop out and start an appren-
ticeship as a Fachinformatiker
— computer programmer. This
might sound like a stupid decision
to people in North America, who
often go to College or University
to get a degree in something like
computer science, but in Germany,
leaving high school for an appren-
ticeship is not out of the ordinary. It

is called the dual education system,
and it is likely one of the main rea-
sons for Germany’s success.

The system has its roots in the
history of the region. Carpenters
and a number of other important
crafts have used an apprenticeship
system to teach and build expertise
for hundreds, if not thousands of
years. The underlying idea is that
there are professions that profit
more from experience then theoret-
ical understanding, and that educa-
tion time is far better spent doing
the actual work than by watching
or listening.

Many companies in Germany
take on apprentices, much like
North American companies accept
interns and co-op students. If a
company decides to take you on
as an apprentice, the position is
guaranteed by the state. Should the
company go bust, you are placed
with another company the next

day. There is a web of companies
guaranteeing the positions for each
other, spread all across the country.

Unlike interns in North American
companies, apprentices in Ger-
many are treated like normal junior
employees except they are cheaper,
(700 marks per month or $400USD
when I went). They’re also often
younger and miss about 60 work-
days a year to attend classes at their
vocational school. The schools teach
the theory behind each chosen
trade and certify the students at the
end of 3 years with an exit exam
which concludes the program.
Student apprentices, (they called
us “Stift” = Pen), who successfully
complete the program and pass the
exam earn the vocational title.

FEATURES

  7

I landed an apprenticeship with
a company in my hometown called
BOG Koblenz, a subsidiary of
Siemens with a history of taking
on apprentices. For some reason I
vividly remember this one question
from my interview:

The number of lilies in a pond
double every day. So, on the first
day of the month there is one lily.
On the second day, two lilies, the
next day four lilies, then eight, six-
teen, thirty two, etc. If the pond is
full on the 30th day of the month,
what day is it half full?

That was not exactly difficult.
Three other Stifts started with

me at the same time. On our first
day we got a tour of the 150 person
company, which seemed massive to
me at the time. The first year was
about paying our dues: 3 months
running the cafeteria, 3 helping
in accounting, 3 more working in
inventory, and then 3 months at
reception. It was a rite of passage,
they told us.

The first 3 months in the cafete-
ria meant I quickly met everyone in
the company and learned what kind
of coffee or tea they liked. I made
sure to keep them well caffein-
ated. My absolute favorite group

of people worked in a small room
in the basement of a secondary
building. I do not remember what
their official titles were, but they
were essentially doing Skunk Works
[hn.my/skunk] down there.

They did things differently than
everyone else. Most of the com-
pany used an esoteric program-
ming environment called Rosie
SQL — which seemed like death
to my Demo Szene-honed sensi-
bilities (Assembler, Pascal or bust!)
— these guys used Delphi. I fell in
love with it! Here was a program-
ming language that put humans
before machines. It was built for
instant gratification, experimenta-
tion, and rapid prototyping. Its
window management library, called
the VCL, was so much greater than
anything I had seen before. More
importantly, it was run by Jürgen.

Jürgen was a long-haired,
50-something, grizzled rocker who
would have been right at home
in any Hell’s Angels gang. He was
a rebel. He refused to wear the
company attire, refused to use the
formal language [hn.my/german],
and called people out on bad ideas
in plain language when he saw
them. Despite all of this, everyone
respected him. I tried my best to

make it absolutely obvious that I
wanted to work for him. I borrowed
the Delphi manuals and committed
them to memory in my downtime
between coffee runs.

At the same time, I would attend
my vocational school every Friday,
and twice a year we would go for
two straight weeks to study and
take exams. This was a much better
way for me to learn. It felt relevant.
I learned the fundamentals of
things picked up from being around
Jürgen’s team. We learned about
algorithms, Big O, etc — even some
basic soldering and electrical work.

It turned out those learning dis-
abilities were not real disabilities; I
was simply a kinesthetic learner. I
could not understand or come up
with solutions to problems I have
never had. At my vocational school,
I knew the problems we were solv-
ing. I had been in those situations.
It was great! My self esteem and
confidence improved quickly.

My plan was working.

“Most days I came to work and found a
printout of the code I wrote the day before
annotated with red marker everywhere.”

http://hn.my/skunk
http://hn.my/german

8  FEATURES

After the first year, Jürgen drafted
me to be a part of his little base-
ment-dwelling team. It was prob-
ably the most important thing that
happened to me in my professional
life. Jürgen was a master teacher. He
created an environment in which
it was not only possible but easy to
move through 10 years of career
development every year. It is a
method and an environment which
I am fiercely trying to replicate at
Shopify.

Most days I came to work and
found a printout of the code I
wrote the day before annotated
with red marker everywhere. I used
poor idioms or could have chosen
better abstractions or done a better
job hinting at the architecture of
the overall system. This taught me
not to tangle my ego up in the code
I write. There are always ways to
improve it and getting this feedback
is a gift.

I remember we made software
for GM. One particular car deal-
ership needed a faster system to
estimate the value of incoming used
cars. A big competitive advantage.
Jürgen gave this project to me.
Shipping it meant Jürgen and I had
to drive to the dealership which
was a day trip away. In preparation
for it, the company gave me extra
money so I could buy a suit. We
work for Siemens after all. We had
to look the part.

The day before the installation,
Jürgen casually tells me he has
somewhere else to be. I would be
going by myself. I felt overwhelmed
but somehow managed to make a
good impression and got everything
working regardless.

This pattern kept on repeating
itself. Jürgen somehow knew the
extent of my comfort zone and
manufactured situations which
were slightly outside it. I over-
came them through trial and error,
through doing, and immediately
applying the theory I was learning
at the vocational school to practice
at my apprenticeship, I succeeded.

My degree is not recognized in
North America so I am technically a
high school dropout. My cofounder
at Shopify has a PhD, so we always
joke that together we average out
to a bachelor’s degree.

Not that degrees matter anymore.
They do not. Experience does. That
is one of the things my apprentice-
ship and the dual education system
in general taught me: experiencing
and learning things quickly is the
ultimate life skill. If you can do
that, you can conjure up impossible
situations for yourself over and over
again and succeed.

Perhaps most importantly, the
apprenticeship program gave me a
solid head start. If I had gone to a
University and studied to get a PhD
like my cofounder, I might JUST be
getting out of school. Instead, at 32
years old, I have been paid to build
complex software for almost half
my life.

That is a powerful concept and
one within the reach of almost any
German student thanks to the dual
education system. At the last count,
there are 356 different occupa-
tions or occupational categories
which offer apprenticeships. From
hair dressers to oven builders to
various specializations of computer
programming. For hands-on people
or kinesthetic learners like me, the
apprenticeship program created a
legitimate path to success.

It was the perfect environment
for me: I learned a lot, and I am
eternally thankful to have chosen
that path. If only more countries
struggling with dropout rates and
job creation would give their stu-
dents a similar choice. n

Tobi is CEO and founder of Shopify. Before
taking the helm of the company, Tobi was
active in many open source projects. The
best known is the Ruby on Rails framework
where Tobi served as a core team member
starting in 2004. He also released a series of
open source projects that are used around
the world such as Liquid, DelayedJob, and
ActiveMerchant.

Reprinted with permission of the original author.
First appeared in hn.my/tobi (lutke.com)

http://hn.my/tobi

  9

By George W. Hart

How to Slice a Bagel into
Two Linked Halves

It is not hard to cut a bagel into two equal halves
which are linked like two links of a chain.

To start, you must visualize four key points. Center
the bagel at the origin, circling the Z axis.

A is the highest point above the +X axis. B is where
the +Y axis enters the bagel.

C is the lowest point below the -X axis. D is where
the -Y axis exits the bagel.

10  FEATURES

These sharpie markings on the bagel are just to help
visualize the geometry and the points. You don’t need
to actually write on the bagel to cut it properly.

The line ABCDA, which goes smoothly through all
four key points, is the cut line.

As it goes 360 degrees around the Z axis, it also goes
360 degrees around the bagel.

The red line is like the black line but is rotated 180
degrees (around Z or through the hole).

An ideal knife could enter on the black line and
come out exactly opposite, on the red line.

But in practice, it is easier to cut halfway on both the
black line and the red line.

The cutting surface is a two-twist Mobius strip; it has
two sides, one for each half.

After being cut, the two halves can be moved but
are still linked together, each passing through the hole
of the other. (So when you buy your bagels, pick ones
with the biggest holes.)

  11

If you visualize the key points and a smooth curve
connecting them, you do not need to draw on the
bagel. Here the two parts are pulled slightly apart.

If your cut is neat, the two halves are congruent.
They are of the same handedness. (You can make both
be the opposite handedness if you follow these instruc-
tions in a mirror.)

You can toast them in a toaster oven while linked
together, but move them around every minute or so.
Otherwise, some parts will cook much more than
others, as shown in this half.

It is much more fun to put cream cheese on these
bagels than on an ordinary bagel. In addition to the
intellectual stimulation, you get more cream cheese
because there is slightly more surface area.

Topology problem: Modify the cut so the cutting
surface is a one-twist Mobius strip. (You can still get
cream cheese into the cut, but it doesn’t separate into
two parts.)

Calculus problem: What is the ratio of the surface
area of this linked cut to the surface area of the usual
planar bagel slice?

For future research: How to make Mobius lox...

Note: I have had my students do this activity in my
Computers and Sculpture class. It is very successful if the
students work in pairs with two bagels per team. For the
first bagel, I have them draw the indicated lines with a
“sharpie.” Then they can do the second bagel without the
lines. (We omit the schmear of cream cheese.) After doing
this, one can better appreciate the stone carving of Keizo
Ushio, [hn.my/keizo] who makes analogous cuts in granite
to produce monumental sculpture. n

George Hart started hacking the internet (back when it was the
Arpanet) in the early 1970s, when he worked at BBN. He has MIT
degrees in mathematics, computer science, and electrical engi-
neering and has been a professor at both Columbia University
and Stony Brook University. Nowadays, he focuses on creating
cool mathematical sculpture and fun videos about mathemat-
ics. See his web site, georgehart.com, for some amazing uses of
3D printing.

Reprinted with permission of the original author.
First appeared in hn.my/bagel (georgehart.com)

http://hn.my/keizo
http://georgehart.com
http://hn.my/bagel

12  PROGRAMMING

PROGRAMMING

By Basalgangster

On February 13, 2013,
the Computer His-
tory Museum reported

that they had received the source
code for version 1.1 of Photoshop
from Adobe, and had permission to
release it for non-commercial use.
This is the second time recently
that something like this has hap-
pened, the first being the release
of the Quickdraw and MacPaint
[hn.my/macpaint] source code by
Apple last year. In both cases, there

was a nice commentary by Grady
Booch, software design legend and
trustee of the Computer His-
tory Museum. Both times, Booch
reported having a look at the code
and found it to be elegant and clear,
and outstanding examples of how
to write software. In his commen-
tary on the Photoshop source code,
Booch says, “Software source code is
the literature of computer scientists,
and it deserves to be studied and
appreciated”.

Writers need to study the writ-
ing of others, and usually they do.
Computer programmers? Not so
much. There is a lot written about
programming, and most program-
mers read that stuff (including
Grady Booch’s books), but there are
very few opportunities to actually
read an acknowledged Great Work
of programming from the past. So
now we have the sources to Pho-
toshop, an indisputable software
masterpiece. How can we make

Building Photoshop

http://hn.my/macpaint

  13

use of it? Shall we read through
the 100,000 or so lines of code in
179 files to see how Thomas Knoll
made it do its magic? Maybe Grady
Booch can just look at the code and
immediately understand the thread
of genius that runs through it, but
I can’t. Source code may be the lit-
erature of computer scientists, and
each program’s source code may
tell the story of its function, but
that story is written in a scrambled,
crazy order and it makes no sense.
To understand their stories, com-
puter programs must be read in the
order of their execution, not the
order of the text in the files. For
Photoshop, as for MacPaint, that
means the code has to be compiled
and running when we read it. We
need to see it in its natural order,
and while it is executing, so we
can compare what it says to what
it does. Only then can we learn its
story.

MacApp version 1.1
Photoshop was created for the
Macintosh computer in the late
1980s, and it looks a little strange
to today’s programmers. Anyone
can see (and many are surprised)
that it is written in Pascal. Maybe
it is not well known that 25 years
ago the Pascal language saw a lot
of use, even for teaching program-
ming in college. Pascal is not taught
much these days, and that must be
why almost nobody notices that
Photoshop is not written in ordi-
nary Pascal, but rather in Object
Pascal. Even fewer would recognize
that it is written using Apple’s
MacApp object library. The version
of Photoshop that was released to
the public is not a complete set of
sources. If you are going to build
Photoshop from the distributed
files, you need a Macintosh Object

Pascal compiler, its associated librar-
ies, and the appropriate version of
the MacApp class library. MacApp
was not included in the source code
release, and could not have been,
because Adobe does not have a
license to distribute MacApp™.

It would have been helpful if
Apple had decided to release the
source code for the appropriate
version of MacApp at the same
time as Photoshop. Why not? The
source for MacApp is not a trade
secret. The class library was distrib-
uted to programmers as source, and
they were expected to compile it
themselves. The version of MacApp
in question is version 1, released
in 1987 and replaced by a totally
rewritten version in 1990. The
original was distributed as a set of 2
floppy disks. MacApp version 2 was
the first version to be distributed on
CDROM. In 1990, Apple wanted
programmers to port their pro-
grams to version 2, and they didn’t
include version 1 on the version 2
CD or on any of the later developer
distributions. I think it is probably
pretty rare. Of course, some people
no doubt still have an old copy of
MacApp on floppy disks. I didn’t.
I started using MacApp at version
2, in 1990, and never had a copy
of version 1. Miraculously, a pair of
MacApp v1.1.1 diskettes was for
sale on ebay at the time the Photo-
shop code was released.

I bought them, realizing that at
their age they might or might not
be readable. They mostly were.
One of the disks contains all of the
Pascal and assembly source code
for the MacApp library. The other
has everything else needed to build
and test the library, including the
resource files, the one object file
for which Apple did not share their
source (called wwDriver.c.o), and
the MPW script called MABuild
that is used to build MacApp
programs from their make files.
There is also a compiled MPW tool,
called PostRez, used to post-process
the code. It connects menu GUI
elements compiled by the resource
compiler Rez to the object code
that they are supposed to evoke.
The second diskette also contains
the classic MacApp example
programs, like DrawShapes and
Nothing. I am lucky; the diskettes I
bought were mostly readable. The
second diskette was completely
error-free. The source code diskette
had one unreadable file that con-
tained seven bad sectors. The file
that could not be read was UTTE-
View.inc1.p, which contained the
implementation of an object called
TTEView that is a baby text editor.
It was a relief to find that Photo-
shop did not use this component
of MacApp, but I wasn’t surprised.
TTEView was not used much
outside of Apple’s demos because

it was limited to editing
text blocks of size 32K or
smaller.

The MacApp that I
bought was complete
enough to compile
Photoshop. But if you
happen to have a copy of
UTTEView.inc1.p, I’d be
interested in acquiring a
copy of that file, just to

14  PROGRAMMING

complete the library. Don’t worry
about Apple’s lawyers. I have a
license for MacApp.

I tried to compile MacApp and
a couple of examples (the ones
that didn’t use TTEView) to make
sure my MPW setup was work-
ing with MacApp. It wasn’t. A
quick look around the inter-webs
yielded this post [hn.my/macapp]
on comp.sys.mac.programmer from
Apple’s Keith Rollin in 1989, after
the release of MacApp 2.0 (thanks
to macgui.com for archiving these
old usenet posts). Basically, it says
that if you want to keep on using
MacApp 1.x (and you shouldn’t),
you have to use MPW version 2.x
and it’s Pascal compiler, not version
3.x. Of course I was trying to use
MPW 3.0. It is the earliest version
I have. I haven’t used MPW 2 on
any computer since about 1991.
And like MacApp v1, MPW 2 was
only distributed on floppy diskettes.
I still have the MPW 2.0 diskettes,
but in a moment of bad judgment
in the mid 1990s I reused them to
store some files that seemed more
important at the time (but don’t
seem so anymore). There were no
MPW 2 diskettes that I could find
for sale anywhere. According to the
usenet post, I could use MPW 3.0
under system 6 with some changes

to the MacApp makefiles and to
the application resources. It says
that might suffice for builds that
do not evoke MacApp’s built-in
debugger. But according to Keith
Rollin, the MacApp debugger will
not work if MacApp is compiled
under MPW 3. I tried the Nothing
and DrawShapes examples both
ways; the nodebug versions worked
and the debug versions crashed. I
could build the nodebug version of
Photoshop, but what good is that?
I don’t just want to just use some
old version of Photoshop; I want
to run it in the MacApp debug-
ger. MPW version 2 didn’t have a
source level debugger. Apple’s first
source debugger for MPW (SADE)
was released with version 3. I think
Thomas Knoll must have created
Photoshop without the use of any
source-level debugger other than
the one that was part of MacApp.
If I want to see it the way he saw it
(and I do), I would need to compile
MacApp with debugging turned
on. Luckily, the problem with the
debugger was fixed with only a
small change in the MacApp source
code.

Getting MacApp to Build
If you build a MacApp v1.1 pro-
gram with debug on, it enables code
for the Writeln window, names in
code, range checking, the MacApp
debugger interface, and subroutine
tracing. Tracing subroutine calls,
when on, means that the MacApp
debugger keeps track of entry into
and exit from every subroutine.
When trace is then activated in the
debugger, every subroutine call is
recorded to the Writeln window,
similarly to the trace function in
Lisp. If the code was compiled for
the debugger, whether tracing is
turned on or not, MacApp calls a
couple of weirdly named functions
called %_BP and %_EP respectively
(implemented in unit UTrace.
inc1.p) on entry and exit to every
subroutine. Some subroutines that
should never be seen in a trace (like
the ones that write trace informa-
tion to the Writeln window) are
exempted from %_BP and %_EP
using the directive {$D+}, which
leaves subroutine names in code
but does not trace. The directive
{$D++} turns tracing back on for
the next subroutine. In MacApp
v1.1, both %_BP and %_EP call a
subroutine, named MeasureTally.
For some reason, MeasureTally was
not exempt from the trace. I don’t

“Thomas Knoll must have created
Photoshop without the use of any
source-level debugger other than
the one that was part of MacApp.”

http://hn.my/macapp

  15

know what would happen if it was
compiled with the MPW 2.0 Pascal
compiler, but MPW 3.0 compiled
this into an infinite recursion, as
it should. At startup any program
compiled with debugging on would
immediately hang, stay hung for
a while, and then the stack would
collide with something vital in the
heap (probably some code seg-
ment) and there would be a Bad
Crash. It was an easy bug to track
down. As soon as it hung but before
it crashed, I hit the programmer’s
switch and fell into TMON. I was
in %_EP. Both %_EP and Measure-
Tally are short, and I could step
through them and see them call
each other in turn. The problem
was fixed by exempting Measure-
Tally from the trace.

I don’t see how the MacApp
debugger could have ever worked
without this change. It seems to
me that everything in UMea-
sure probably should have been
exempted, but it doesn’t look
like it was. Anyway, just exempt-
ing MeasureTally got everything
working for now. In pretty short
order, I was able to build MacApp
in System 6 using MPW 3.0 and get
the examples to work with debug-
ging turned on. It was fun messing
around with the MacApp example
programs. What a thrill. I was ready
to compile Photoshop.

Fixing the Files
The files in the Photoshop distribu-
tion are not ready to use. Firstly, all
the text files are contaminated by

Windows-style newline
characters. Every text
line in Windows (and in
DOS before it, and in
CPM and DEC RT-11
before that) was termi-
nated by a pair of char-
acters, a carriage return
(ascii 13) and a linefeed
(ascii 10). If you were
printing the text using a
teletype machine these
two characters would first
move the print head to

the left limit, and then advance the
paper one line. This made sense as
a line terminator back in the days
of the PDP-11, but by the time
the Macintosh was released it was
already vestigial. Macintoshes were
never expected to be connected to
teletype machines. They needed a
character to represent newline, but
one was enough. So Apple omitted
the linefeed and kept the carriage
return. Somebody at Adobe or at
the Computer Museum must have
thought we would be using this
code with Windows, or some other
operating system intended to work
with teletype machines. To build
Photoshop, the first thing you have
to do is to strip out all those extra-
neous linefeeds. Next, it is necessary
to attend to the copyright blurb at
the top of each of the resource files.
Every Pascal and every Rez file has
a little snippet of legalese at the top,
encased in curly brackets, like this:

{Photoshop version 1.0.1, file:
About.r Computer History
Museum, www.computerhistory.
org This material is (C)Copyright
1990 Adobe Systems Inc. It may
not be distributed to third parties. It
is licensed for non-commercial use
according to www.computerhistory.
org/softwarelicense/photoshop/ }

“The files in the Photoshop distribution
are not ready to use. All the text files
are contaminated by Windows-style
newline characters.”

16  PROGRAMMING

Curly brackets delimit comments
in Pascal, so these are fine for the
Pascal files. For the assembly lan-
guage files, the curly brackets have
already been replaced with semico-
lons at the start of each line, which
is exactly right. Semicolons start a
comment line in MPW assembly (as
in many others). But the resource
files are in the Rez language,
whose conventions are apparently
unknown to the archivers, because
they retained the curly bracket
Pascal comments. Rez resembles C,
so curly brackets mean something
altogether different. Comment lines
in Rez begin with //, and so all of
these need to be added. Finally, the
MPW make files and other shell
scripts used a unique lexicon of
special characters. Comment lines
began with #, as they do in most
unix shell scripts, and this part has
been done right in the sources as
distributed. But all the MPW scripts
are mangled by the use of a backs-
lash (\) instead of option-d (∂) as the
escape character (for line continu-
ation), and all instances of option-f
(ƒ) to indicate target-dependency in
makefiles have been replaced with
colon (:), I suppose because that
is what is used in unix makefiles.
Fixing all that was easily done with a
couple of little MPW scripts.

There are some additional
small version issues to address
before compiling Photoshop in
MPW 3.0. The Photoshop code
uses a Pascal interface file called
Quickdraw32bit.p. The con-
tents of this file were folded into
Quickdraw.p at the time of release
of MPW 3, so you have to remove
the reference to Quickdraw32bit.p
in several places. The MPW 3.0
version of Quickdraw.p left out the
definition of a couple of constants
that were in Quickdraw32bit.p,
however, so I had to borrow a later
version of Quickdraw.p from MPW
3.2. Also, I think Knoll must have
been using a particularly early ver-
sion of the Quickdraw32bit.p file.
He refers to a field of the ColorT-
able record as transindex. That field
is called ctFlags in Inside Macintosh
V, and in the MPW 3.x interface
files. I changed references to tran-
sindex with ctFlags everywhere it
appeared in the Photoshop code.

Knoll’s Modifications of MacApp
One of the great things about
MacApp was that it was distributed
as source code. The first thing you
had to do was to build the library
yourself. What was so great about
that? Well, it meant you could
improve it if you wanted to. In
this particular case that was not
so great. I do not have a copy of
Thomas Knoll’s version of MacApp,
so I was hoping that he had used
an unaltered version, but I knew it
wasn’t likely. A lot of things you can
readily see happening in Photoshop
were not implemented in MacApp
v1. For example, that floating
palette window with the tools in
it. Floating windows like that were
(in)famously not part of MacApp
v1. Another well-known difficulty
with MacApp at that time was
its lack of support for “mouse-up
tracking.” This problem was even
mentioned by Kurt Schmucker
in his 1986 book on MacApp,
”Object-Oriented Programming for
the Macintosh."

To understand the problem with
mouse-up tracking, you have to
understand MacApp’s support for
mouse tracking. Mouse tracking
means that your code is drawing
and redrawing something on the
screen in response to movements of

“The resource files are in the Rez language,
whose conventions are apparently unknown
to the archivers, because they retained the
curly bracket Pascal comments.”

  17

the mouse. Normally this happens
only when the mouse button is
down. When your user was draw-
ing, or defining a selection or drag-
ging something, or for whatever
reason moving the mouse around
in a window with the button
pressed, mouse monitoring code
(in the TFrame object) would call
your command object (subclass of
TCommand) and tell it where the
mouse was and where it had been
most recently. A command object
that handled mouse tracking was
called a tracker. You were expected
to subclass TCommand to imple-
ment each specific behavior of
your program during mouse-down
tracking, but you didn’t expect
to have to change TFrame at all.
TFrame would call your tracker
periodically while the user held the
mouse button down, so you could
update what was needed and draw
stuff on the screen accordingly.
When the user let go of the mouse
button, your tracker was called one
last time, with the advisement this
was the end of the series. At that
time you were supposed to clean
up and draw the final state of your
window as it should appear after
the user-interaction.

It was a cool system, because
you just made a command object
and didn’t worry about how it
got called. Stuff that happened in
between the time that the TAppli-
cation object intercepted the user’s
action and the time your tracker
was called stayed completely invis-
ible to you as a programmer. The
down side was you couldn’t easily
keep tracking the mouse after
a mouse-up event. The TFrame
would think that the action was
over and wouldn’t call your tracker
again till the mouse button was
pressed to start a new interaction.
But let’s say you wanted to let the
user draw with the mouse up. For
example, imagine you wanted the
user to be able to define a polygon
by clicking on a series of vertices,
and have the program drag out a
dynamic line between your last
clicked point and the current
mouse position as the user moved
around with the mouse button up.
Mouse-up tracking was used in the
polygon-drawing tools in MacDraw,
SuperPaint, and Canvas, and lots
of other drawing programs. If you
wanted to do mouse-up draw-
ing in a MacApp v1 application,
you could not do it purely in your
command object. You would have
to bore down deep and alter the

normally untouched MacApp code
in class TFrame that called com-
mand objects. These days this kind
of problem is solved using multiple
inheritance, or (even better) by del-
egation, so you never have to alter
the guts of the framework, and this
is why Apple doesn’t have to share
the class framework source code
with you.

It turned out that the floating
palette window was not a prob-
lem. Knoll coded that window’s
behavior by subclassing the existing
MacApp TView class. That’s one of
the things I’d like to study when I
get everything running. And Pho-
toshop almost did not use mouse-
up tracking. But it did, just for
one small thing. I am a long-time
Photoshop user, but I didn’t know
or had forgotten about this feature.
I learned about it because I got an
error at compile-time. A subclass of
TCommand (a tracker) in Photo-
shop, called TLassoSelector, over-
rides a TCommand method called
TrackMouseUp. The compiler knew
that in my version of MacApp,
TCommand does not have a mes-
sage called TrackMouseUp. In
Thomas Knoll’s version, there must
have been.

“When your user was drawing, mouse
monitoring code would call your command
object and tell it where the mouse was
and where it had been most recently.”

18  PROGRAMMING

The Lasso tool uses mouse-up
tracking, but only sometimes. Try
this in any version of Photoshop.
Start to make a selection using the
Lasso tool. Part way through the
selection, press the option key, and
then release the mouse button.
Photoshop drags out a straight line
between the place you released the
mouse button and the current loca-
tion of the mouse. If you release the
option key, it closes the selection
with a straight line. Photoshop v1.1
also did that. Knoll had to change
MacApp to make this happen, and
I didn’t have a copy of his changes.
Of course it is easy to put a dummy
method called TrackMouseUp in
TCommand; that would satisfy the
compiler. But it would never get
called, and the mouse-up track-
ing would not happen. My version
of Photoshop would compile, but
it would not be authentic. Not
good enough. I had to add a call
to TrackMouseUp somewhere in
just the right spot. I would know it
was the right spot, because if I did
it right, TrackMouseUp in Knoll’s
lasso command object would do the
right thing. Of course, I also needed
a default do-nothing version of
TrackMouseUp in TCommand so it
could be overriden. I’m pretty sure
TFrame is the object that has to
call TrackMouseUp. In MacApp v1
(but not in later versions), objects
of class TFrame provide scrolling
to views in windows. They also
monitor clicks and drags in their
screen territories, and send mes-
sages to tracker command objects
that are supposed to be drawing
in those spaces. As pointed out by
Grady Booch in his commentary,
there are almost no comments at all
in the Photoshop code; there was
no hint left anywhere by Knoll. By
the looks of it, TrackMouseUp in

the LassoSelector was supposed to
take over for TFrame after TFrame
gave up tracking the mouse. I stuck
a call to TrackMouseUp in the part
of TFrame.TrackInContent that
runs at the end of tracking, when
the mouse has just been released. It
works, but I can’t be sure whether
this is the same change that was
made to MacApp for the origi-
nal Photoshop. A similar change
to another part TFrame was also
required because of another mys-
tery override. Photoshop overrides
TFrame.CalcSBarMin, another
MacApp method that does not
exist. There is a TFrame.CalcSBar-
Max in TFrame.AdjustSBars, and so
I put the call to CalcSBarMin there
too. I don’t actually know what the
function of this is, so I can’t even be
sure it’s working. I’ll find that later
when I study it in action. Photo-
shop also expects to find a proce-
dure called FlashButton. I thought
it was apparent what this should do
and wrote something accordingly.

EVEITF.o
Photoshop expects to link an
object file called EVEITF.o. The
file is not there. It apparently
provides the code for 5 functions,
called EVEStatus, EVEReset,
EVEEnable, EVEReadGPR, and
EVEChallenge. These functions
are called by a global function,
VerifyEve, which is present, and
is called at startup time. Linking
Photoshop fails because of these
unresolved references. Examina-
tion of VerifyEve shows that none
of the EVE functions are called
unless Photoshop has a resource
of type “Eve ” (that’s E-v-e-space).
There is no such resource in the
distribution’s resource descrip-
tion file, so these functions would
never be called anyway. The source

code distribution is designed to
link EVEITF.o into the final build,
but not to call it. It is dead code.
But adding an appropriate “Eve”
resource would bring it back to life
without a rebuild. I think VerifyEve
must have had something to do
with serial number registration,
because it is called immediately
after RegisterCopy, which checks
whether or not a valid registration
number has been entered. After
commenting out the EVE functions,
the program runs and RegisterCopy
works fine. It successfully accepts
valid Photoshop serial numbers and
rejects invalid ones, even without
VerifyEve. So VerifyEve remains
a mystery. The personalization
information, including the serial
number if correct, is stored in the
program in a resource of type “Reg.”
The debug version of Photoshop
includes av alid “Reg ” resource
with registration information, and
allows the program to start up fine,
as if it were already registered. It
shows personalization for Thomas
Knoll at Knoll Software. Cool. Pho-
toshop thinks I am Thomas Knoll.
Who else would be running it with
the debugger enabled?

Things Were Tougher Then
I built Photoshop on a stock
Mac IIci with my ‘040 accelera-
tor removed and the cache card
put back in place, to see what the
experience would have been to do
the build on a high end Macintosh
in 1989. The full build, compiling
MacApp and the program together,
took 14 minutes. If MacApp was
already built, it was reduced to 10
minutes.

The debug version of Photoshop
starts up normally, and the only
immediate differences from the
release version are the Debug menu

  19

and the presence of the Writeln
window (labeled Debug Window)
at the bottom of the screen.

The Debug window is a regular
window you can drag around and
resize. A few things are initially
written there, and any Writeln com-
mand in the code will write into it,
but it is not immediately obvious
how you use it as an interactive
debugger. In MacApp v2 there was
a selection in the Debug menu that
would stop the program and drop
you into an interaction with the
Debug window. There is no such
item in version 1. I don’t have a
version 1 manual, so I had to look
up in the MacApp source code to
find out how you were supposed
to enter the debugger. It turns out
the answer is to press the com-
mand, option, and shift keys at the
same time. At that point you get a
prompt (≥). Typing a ? gets a list of
one-character commands and what
they do.

Some of the commands are
pretty obviously useful. The Stack
Crawl command prints the name
of functions on the stack, and
addresses of objects whose methods
are on the stack. It is also possible
to display a block of memory, a list
of recently run subroutines, infor-
mation about memory allocation

and some other useful things. You
can step through the program. But
this isn’t a source-level debugger in

the sense of being able to
examine the source file
from inside this debug-
ger. One really useful-
sounding command is
Inspect, which will show
the contents of fields of
an object. In MacApp
version 2 this feature
has its own window that
presents a list of every
object in memory and can
inspect any of them. In
this version, if you know

the address of an object, it will
print the values stored in all the
fields, in hex. Not as useful as you
might hope. Turning on trace (T)
and starting the program again (G)
will create a storm of activity in the
Debug Window as subroutines fire
off and run their course. By default,
the Debug Window only stores 55
lines of text, so it is important to
redirect the output to a file. This is
probably the most useful general
debugging feature.

Seriously, did Thomas Knoll
write and debug Photoshop with
just this? I don’t know for sure,
but maybe so. Programmers were
tougher back then. Most had never
used a source debugger; they relied
on debugging in object code, using
something like TMON or Macs-
bug. Probably a lot of debugging
of Photoshop happened this way. I
suspect Knoll was not a big believer
in the MacApp built-in debugger.
I think this because he didn’t code
for it. If you were going to use
the Inspect command in MacApp,
you needed to override a special
method, called Inspect, in all your
classes. In Inspect you would format
the values of all the fields you had

added to your applications classes
so they could be inspected in the
MacApp debugger. If you didn’t
do this, Inspect would only show
the fields of the most immediate
superclass that did implement it.
Nowhere in the Photoshop code is
there any single override of Inspect.
There are quite a few direct calls to
Writeln, so that the debugging ver-
sion of the code reports some infor-
mation about what was going on. I
think that means he was using the
MacApp debugger. If so, I’m sure
that there were lots more of these
calls to Writeln when something
was not working during the debug-
ging of Photoshop, and that these
were removed after the problems
were solved.

One of my first lessons learned
while reading Photoshop is an
appreciation for the power and
convenience of the tools we have
available for coding today, and the
skill of the programmers who made
big programs like this without them
not too long ago. I’m sure there are
a lot more lessons waiting for me,
now that the book of Photoshop is
open and ready to read. n

Basalgangster started programming in col-
lege using punched cards on a CDC 6000
series computer. As he aged and gradu-
ally lost his edge, computer programming
became progressively easier. It’s a wash.

Reprinted with permission of the original author.
First appeared in hn.my/photoshop
(basalgangster.macgui.com)

http://hn.my/photoshop
http://hn.my/photoshop

20  PROGRAMMING

Game-unit path-finding
is something that most
players never notice

until it doesn’t work quite right,
and then that minor issue becomes
a rage-inducing, end-of-the-world
problem. During the development
of StarCraft there were times when
path-finding just didn’t work at all.

As the development of StarCraft
dragged on it seemed like it would
never be done: the game was always
two months from launch but never
seemed to get any closer to the
mythical ship date. “Fortunately”
— and I use that term advisedly —
Blizzard had previous experience
shipping games late.

While we always had launch-
date “goals” (though “wishes” might
be a better term) we tried not
to announce them publicly until
there was a good chance that the
game would be ready at that point.
Blizzard’s “when it’s done” policy
for game launch was as much an
admission that no one had any idea
when we would finish as it was a
commitment to releasing quality
products.

In any event, towards the end of
the project we had a set of prob-
lems that prevented launching.
Like any game in the latter stages
of the development process there
were defects galore that needed
to be found and repaired and the
bug count still numbered in the
thousands.

Many of those bugs were trivial
and needed only a little attention
to fix. Too bad they weren’t all like
that.

Others, like a multiplayer
synchronization bug, would pop
up and require dedicated atten-
tion from several members of the
programming team — sometimes
weeks of effort for a single prob-
lem. Other game developers have
reported similar experiences with
their sync bugs: Ages of Empires
[hn.my/aoe] and Supreme Com-
mander. [hn.my/scom]

Some bugs were related to the
development process itself. The
Protoss Carrier regularly lagged
behind other units because it had
its own way of doing … everything.
At some point in time the code for
the Carrier was branched from the
main game code and had diverged

beyond any hope of re-integration.
Consequently, any time a feature
was added for other units, it had to
be re-implemented for the Carrier.
And any time a bug was fixed for
other units, a similar bug would
later be found in the Carrier code
too, only more devious and difficult
to fix.

But the biggest thing holding back
StarCraft was unit path-finding.

It wasn’t that the path-finding
was totally broken; in most cases it
worked quite well. But there were
enough edge-cases that the game
was un-shippable.

Game units would get stuck and
stop on the battlefield. Often they
would go through elaborate efforts
to find paths, inching forward or
looping around but not making
progress, and sometimes getting
wedged and unable to move further.
Entire task forces would get bogged
down in what looked like the after-
noon commute.

The problem was frustrating for
players, but it also made the AI
weak and consequently made it
impossible to balance the missions,
wasting design time.

By Patrick Wyatt

The StarCraft
Path-finding Hack

http://hn.my/aoe
http://hn.my/scom

  21

Though I was never a top-tier
RTS player, I was good at the
game before it launched because
I discovered that Goliaths were
overpowered to make up for their
poor path-finding abilities. Because
they were larger than other ground
units they needed wider spaces
for path-finding, and so by care-
fully shepherding Goliaths around
obstacles I was able to bring their
firepower to bear in crucial situa-
tions to overcome “macro” players
who would otherwise tear me to
shreds. Sadly my skills only lasted a
short while until the Goliaths were
rebalanced. sigh

Early path-finding was rough —
although there were well-chosen
algorithms driving unit movement
they were handicapped by some
poor development decisions made
during the course of the project.

How did we get here?
StarCraft was built on the Warcraft
engine, which renders terrain-art
using a tile-engine that’s optimized
to draw 32×32 pixel square tiles
made of 16 8×8 pixel square cells.
I architected Warcraft this way
because it had worked well for our
Super Nintendo and Genesis titles.
Those game consoles had hardware
support for drawing 8×8 cells, but
the behavior was easy to emulate
on a PC.

Because the camera perspective
of Warcraft I and II were almost
top-down, the edges of objects
(forests, terrain, buildings) on
game maps are either horizontal
or vertical, so the render-engine’s
representation of the world as a
square tile-map is conducive to
easy path-finding. In those games,
each 32×32 tile was either pass-
able or un-passable. I’ve shown
a few of the tile-edges in the

image below in green. Some tiles
appeared passable but actually
were not; below you can see the
barracks building artwork does
not fill the 96×96 area it sits on
completely, leaving two tiles that
appear passable but actually are
not (red).

But along the way the develop-
ment team switched StarCraft to
isometric artwork to make the game
more visually attractive. But the
underlying terrain engine wasn’t
re-engineered to use isometric tiles,
only the artwork which was redrawn.

The new camera perspective
looked great but in order for path-
finding to work properly it was
necessary to increase the resolu-
tion of the path-finding map: now
each 8×8 tile was either
passable or un-passable,
increasing the size of the
path-finding map by a
factor of 16. While this
finer resolution enabled
more units to be squeezed
onto the map, it also
meant that searching for
a path around the map
would require substan-
tially more computational
effort to search the larger
pathing-space.

Path-finding was now more
challenging because diagonal edges
drawn in the artwork split many of
the square tiles unevenly, making
it hard to determine whether a tile
should be passable or not. Ensuring
that all tiles were correctly marked
required painstaking effort.

And the StarCraft map editor
was horribly difficult
to write because of the
many edge-cases neces-
sitated by laying down
diagonal shapes onto a
square tile-map. Writing
the specialized “tile-fixup”
code necessitated months
of programming time.

Unlike Diablo, which
used an isometric tile-ren-
dering engine, the Star-
Craft development team
kept the old engine even

as new problems with the approach
continued to be discovered week by
week.

This image shows how a bridge
was made up of 8×8 cells; several
are shown in green. The almost
isometric perspective of the art-
work unevenly slices through the
cells, leading to a stair-stepped edge
along each side of the bridge, as you
can see where the red line cuts each
tile into an irregular shape.

StarCraft map with 8x8 cells

Warcraft 2 map with 32x32 tiles

22  PROGRAMMING

Because the project was always
two months from launch, it was
inconceivable that there was
enough time to re-engineer the
terrain engine to make path-finding
easier, so the path-finding code just
had to be made to work. To handle
all the tricky edge-cases, the path-
ing code exploded into a gigantic
state-machine which encoded all
sorts of specialized “get me out of
here” hacks.

Rush hour
If there was any one major prob-
lem with path-finding it was that
harvesting units (Terran SCV,
Zerg drone, Protoss probe) would
get jammed up trying to harvest
crystals or vespene gas (hereafter
“minerals”), and they would grind
to a halt. While a player was busy
managing an attack or construct-
ing a secondary, the harvesters back
at the home base would jam up,
halting the flow of minerals into
the treasury. When next the player
looked up, the entire build-queue
would have collapsed due to lack of
cash.

The basic problem with resource-
gathering is that players want to
max-out the number of harvesters
working on each mineral deposit
to maximize their cash flow. Those
harvesters are commuting between
the minerals and their base so
they’re constantly running head-
long into other harvesters traveling
in the opposite direction. With
enough harvesters in a small space,
it’s entirely possible that some get
jammed in and are unable to move
until the mineral deposit is mined
out.

How do we get out of here?
I either volunteered or was asked to
look into the problem; I just can’t
remember after all this time. After
studying the path-finding code
extensively I realized that there
was no way I was smart enough to
just “fix the problem.” So I came up
with a dirty hack instead.

While programmers can become
obsessed with finding the most
pure, abstract, clean, even sub-
lime solution to a problem, there
are times in a project when a few
sacrifices have to be made. If they’re
done well no one notices the evil
compromises that had to be made,
as is true for the hacks written up
by Brandon Sheffield in his article
Dirty Coding Tricks. [hn.my/dirty]

My idea was simple: whenever
harvesters are on their way to get
minerals, or when they’re on the
way back carrying those minerals,
they ignore collisions with other
units. By eliminating the inter-unit
collision code for the harvesters
there is never a rush-hour commute
to get jammed up, and harvesters
operate efficiently.

It’s possible to notice this behav-
ior by selecting a large group of
harvesters who are working a plot
of crystals and telling them to halt.
They immediately spread out to
find tiles that aren’t occupied by
other harvesters.

The behavior is obvious if you
look, but hidden in plain sight — it
doesn’t rise to the level of conscious
awareness, though professional-level
players and map-makers/modders
do notice.

In short, it just works, which is
the best kind of hack.

And while there was a lot more
work required to finish the game,
that hack was what enabled us to
launch without massive and time-
consuming re-engineering.

The development team was able
to work around some of the other
path-finding problems and just
plain ignore the rest, though the
Protoss Dragoon in particular ended
up with a bad reputation because,
as the largest ground-unit, it fre-
quently failed to path well.

The final result was that path-
finding was good enough, and we
all learned a hard lesson about hope
and wishful thinking as scheduling
tools. n

Patrick Wyatt is a lifelong programmer,
game developer, and game-player, and as
of 2004, a parent as well. He has worked on
many popular games including Warcraft,
Diablo, StarCraft, Guild Wars and TERA.

Reprinted with permission of the original author.
First appeared in hn.my/path (codeofhonor.com)

http://hn.my/dirty
http://mandrill.com
http://hn.my/path

  23

http://mandrill.com

24  PROGRAMMING

By Evan Travers

Tmux has three levels of
hierarchy when it comes
to organizing views: ses-

sions, windows, and panes. Ses-
sions are groups of windows, and
a window is a layout of panes.
Windows and panes are to a certain
degree interchangeable as we will
see, but sessions are fairly immu-
table. I use sessions to separate
workspaces, almost like the spaces
in OSX. Windows and panes I use
as is convenient.

I recently have been digging
into some of the neater features in
tmux’s layout system, and here’s
what I’ve come up with to help me
work harder, better, faster, stronger.

A couple notes: I have set the
tmux key to be ctrl-g, but you
can use whatever you want. For
the course of this article, I will use
tmux+[whatever] to avoid confu-
sion when describing tmux short-
cuts. My tmux config can be found
here [hn.my/tmuxc], and there are
some other theme settings here
[hn.my/tmuxt]. When I refer to
starting the tmux console, I mean
keying in tmux-:. Never forget that
you always have access to your cur-
rent shortcuts by typing tmux-?.

Sessions
Because I tend to isolate projects to
a single session, allowing me to have
a complete context switch when
needed, I tend to name them the
project I am working on, and force
their default folder to the project
folder. You can switch between
sessions using tmux-s, rename
them using tmux-$, and set their
default folder by running tmux set
default-folder $(pwd) inside the
session. This last command means
that any split or new window inside
that session opens in your current
folder, which is handy for making a
split so you can run a rake task or a
script console for your rails project.

I got tired of doing this every
time I made a context switch, so I
wrote a little script [hn.my/tspace]
to do this for me. Super simple,
every time I need a new session
now I simply tmux-: to get the
tmux console, type :new, then cd to
the folder I need, and run tspace to
name it after the project and set the
folder defaults.

Windows
Windows in tmux have a name, and
a sort number. They live in the bar
at the bottom of the screen, ordered
by their sort number. You can
refer to them in tmux by name or
number, which is kind of handy. By
default, tmux-, is rename window,
tmux-. is move window, and tmux-
[number key] lets you jump around
your first ten windows. I used to
think that move window only let
you set a new order number for
your window, but I have since
learned that you can pass windows
between sessions fairly easily using
the [session]:[window] syntax.

If I want to move a window con-
taining my irc session (named irssi)
from my current session foo to the
new context session I’ve created
(bar), I can either invoke the con-
sole and type out :move-window or
type tmux-. to get the same thing,
then pass the argument bar:irssi.
By default, tmux accepts your cur-
rent window as the argument, but
you can move a window you are
not currently on by using the -t -s
arguments to specify the target and
source of the move.

Workflow in Tmux

http://hn.my/tmuxc
http://hn.my/tmuxt
http://hn.my/tspace

  25

So I had been juggling my irc
channel around for a couple of
months, before I stumbled on
link-window. If you invoke the
tmux console, type in link-window,
and you can share a window
between two sessions, using the
same target/source syntax as move.
That means I can have the same
shell, or the same program shared
between multiple sessions. No
more juggling the irc window; I can
simply have it everywhere.

Panes
Splits are usually the reason people
find tmux in the first place, as the
version of GNU screen that OSX
ships with doesn’t do vertical splits
for some unknown reason. Horizon-
tal splits are tmux-", and vertical are
tmux-%. You can rotate your splits
around using tmux-space, though
I’ve never found a good use for it.
More useful is the select layout
options available by using tmux-
[meta+1-5] options, letting you
select a variety of layouts. I tend to
keep things fairly simple with only
one or two splits, so I haven’t dived
heavily into this yet.

Of course, moving between panes
is usually tmux-[arrow-key], but
in my polka config I’ve set it to the
vim keybindings, naturally.

One neat trick you can do is
pulling a window into your current
setup as a pane using join-pane.
Once again using that cryptic
-t/-s syntax, you can do some
useful things with it. One example
I use occasionally is pulling in the
window containing the rails server
into my dev window so I can access
the binding.pry session for debug-
ging. For this, I would use join-
pane -t 1 (assuming it’s number is
1, I could also use its name). I can
even yank it from another session
using the [session]:[number|pane]
syntax. When I’m done, and I
want this pane to go back to being
another window, you can use
break-pane to break the pane back
out to being a window.

Final thoughts
Because all the tmux commands
are also available in the console,
and because everything you type
in the tmux console is also avail-
able by running tmux [command]

in your terminal, you can script
out workspaces and split setups.
I’m considering writing a script to
set up my splits and windows for
a rails project the way I like them,
and building perhaps an argument
into the tspace script for different
layouts. As with all your tools in the
command line, think about what
you do constantly over and over
again, and consider how you could
script that into being one step.
These tools aren’t powerful because
you can use the keyboard instead
of a mouse — they are powerful
because you can combine them in
new ways. n

Evan is a UI developer from Birmingham,
AL. Starting from a photography/design
background, he fell into becoming soft-
ware developer, and now enjoys bridg-
ing the disparate worlds of engineers and
designers. Follow him at @evantravers, or
visit his blog at evantravers.com

Reprinted with permission of the original author.
First appeared in hn.my/tmux (evantravers.com)

http://twitter.com/evantravers
http://evantravers.com
http://hn.my/tmux

26  PROGRAMMING

By Geoffroy Couprie

SSL is slow. These cryptographic algorithms eat the CPU,
there is too much traffic, and it is too hard to deploy cor-
rectly. SSL is slow. Isn’t it?

HELL NO!
SSL looks slow because you haven’t tried to optimize it! For

that matter, I could say that HTTP is too verbose, XML web ser-
vices are too verbose, and all this traffic makes the website slow.
But SSL can be optimized, as well as everything!

Slow cryptographic algorithms
The cryptographic algorithms used in SSL are not all created
equal: some provide better security, some are faster. So, you
should choose carefully which algorithm suite you will use.

The default one for Apache 2’s SSLCipherSuite directive is:
ALL:!ADH:RC4+RSA:+HIGH:+MEDIUM:+LOW:+SSLv2:+EXP

You can translate that to a readable list of algorithms with this
command: openssl ciphers -v 'ALL:!ADH:RC4+RSA:+HIGH:+MED
IUM:+LOW:+SSLv2:+EXP'

Here is the result:

Tips to Accelerate SSL

DHE-RSA-AES256-SHA SSLv3 Kx=DH Au=RSA Enc=AES(256) Mac=SHA1
DHE-DSS-AES256-SHA SSLv3 Kx=DH Au=DSS Enc=AES(256) Mac=SHA1
AES256-SHA SSLv3 Kx=RSA Au=RSA Enc=AES(256) Mac=SHA1
DHE-RSA-AES128-SHA SSLv3 Kx=DH Au=RSA Enc=AES(128) Mac=SHA1
DHE-DSS-AES128-SHA SSLv3 Kx=DH Au=DSS Enc=AES(128) Mac=SHA1
AES128-SHA SSLv3 Kx=RSA Au=RSA Enc=AES(128) Mac=SHA1

  27

EDH-RSA-DES-CBC3-SHA SSLv3 Kx=DH Au=RSA Enc=3DES(168) Mac=SHA1
EDH-DSS-DES-CBC3-SHA SSLv3 Kx=DH Au=DSS Enc=3DES(168) Mac=SHA1
DES-CBC3-SHA SSLv3 Kx=RSA Au=RSA Enc=3DES(168) Mac=SHA1
DHE-RSA-SEED-SHA SSLv3 Kx=DH Au=RSA Enc=SEED(128) Mac=SHA1
DHE-DSS-SEED-SHA SSLv3 Kx=DH Au=DSS Enc=SEED(128) Mac=SHA1
SEED-SHA SSLv3 Kx=RSA Au=RSA Enc=SEED(128) Mac=SHA1
RC4-SHA SSLv3 Kx=RSA Au=RSA Enc=RC4(128) Mac=SHA1
RC4-MD5 SSLv3 Kx=RSA Au=RSA Enc=RC4(128) Mac=MD5
EDH-RSA-DES-CBC-SHA SSLv3 Kx=DH Au=RSA Enc=DES(56) Mac=SHA1
EDH-DSS-DES-CBC-SHA SSLv3 Kx=DH Au=DSS Enc=DES(56) Mac=SHA1
DES-CBC-SHA SSLv3 Kx=RSA Au=RSA Enc=DES(56) Mac=SHA1
DES-CBC3-MD5 SSLv2 Kx=RSA Au=RSA Enc=3DES(168) Mac=MD5
RC2-CBC-MD5 SSLv2 Kx=RSA Au=RSA Enc=RC2(128) Mac=MD5
RC4-MD5 SSLv2 Kx=RSA Au=RSA Enc=RC4(128) Mac=MD5
DES-CBC-MD5 SSLv2 Kx=RSA Au=RSA Enc=DES(56) Mac=MD5
EXP-EDH-RSA-DES-CBC-SHA SSLv3 Kx=DH(512) Au=RSA Enc=DES(40) Mac=SHA1 export
EXP-EDH-DSS-DES-CBC-SHA SSLv3 Kx=DH(512) Au=DSS Enc=DES(40) Mac=SHA1 export
EXP-DES-CBC-SHA SSLv3 Kx=RSA(512) Au=RSA Enc=DES(40) Mac=SHA1 export
EXP-RC2-CBC-MD5 SSLv3 Kx=RSA(512) Au=RSA Enc=RC2(40) Mac=MD5 export
EXP-RC4-MD5 SSLv3 Kx=RSA(512) Au=RSA Enc=RC4(40) Mac=MD5 export
EXP-RC2-CBC-MD5 SSLv2 Kx=RSA(512) Au=RSA Enc=RC2(40) Mac=MD5 export
EXP-RC4-MD5 SSLv2 Kx=RSA(512) Au=RSA Enc=RC4(40) Mac=MD5 export

28 cipher suites, that’s a lot! Let’s see if we can remove the
unsafe ones first! You can see at the end of the list that 7 are
marked as “export.” That means that they comply with the US
cryptographic algorithm exportation policy. Those algorithms are
utterly unsafe, and the US abandoned this restriction years ago,
so let’s remove them:

ALL:!ADH:!EXP:RC4+RSA:+HIGH:+MEDIUM:+LOW:+SSLv2

Now, let’s remove the algorithms using plain DES (not 3DES)
and RC2:

ALL:!ADH:!EXP:!LOW:!RC2:RC4+RSA:+HIGH:+MEDIUM

That leaves us with 16 algorithms.
It is time to remove the slow algorithms! To decide, let’s use

the openssl speed command. Use it on your server because you
might get different results depending on your hardware. Here is
the benchmark on my computer:

OpenSSL 0.9.8r 8 Feb 2011
built on: Jun 22 2012
options:bn(64,64) md2(int) rc4(ptr,char) des(idx,cisc,16,int) aes(partial) blowfish(ptr2)
compiler: -arch x86_64 -fmessage-length=0 -pipe -Wno-trigraphs -fpascal-strings -fasm-blocks
 -O3 -D_REENTRANT -DDSO_DLFCN -DHAVE_DLFCN_H -DL_ENDIAN -DMD32_REG_T=int -DOPENSSL_NO_IDEA
 -DOPENSSL_PIC -DOPENSSL_THREADS -DZLIB -mmacosx-version-min=10.6
available timing options: TIMEB USE_TOD HZ=100 [sysconf value]
timing function used: getrusage
The 'numbers' are in 1000s of bytes per second processed.

28  PROGRAMMING

type 16 bytes 64 bytes 256 bytes 1024 bytes 8192 bytes
md2 2385.73k 4960.60k 6784.54k 7479.39k 7709.04k
mdc2 8978.56k 10020.07k 10327.11k 10363.30k 10382.92k
md4 32786.07k 106466.60k 284815.49k 485957.41k 614100.76k
md5 26936.00k 84091.54k 210543.56k 337615.92k 411102.49k
hmac(md5) 30481.77k 90920.53k 220409.04k 343875.41k 412797.88k
sha1 26321.00k 78241.24k 183521.48k 274885.43k 322359.86k
rmd160 23556.35k 66067.36k 143513.89k 203517.79k 231921.09k
rc4 253076.74k 278841.16k 286491.29k 287414.31k 288675.67k
des cbc 48198.17k 49862.61k 50248.52k 50521.69k 50241.28k
des ede3 18895.61k 19383.95k 19472.94k 19470.03k 19414.27k
idea cbc 0.00 0.00 0.00 0.00 0.00
seed cbc 45698.00k 46178.57k 46041.10k 47332.45k 50548.99k
rc2 cbc 22812.67k 24010.85k 24559.82k 21768.43k 23347.22k
rc5-32/12 cbc 116089.40k 138989.89k 134793.49k 136996.33k 133077.51k
blowfish cbc 65057.64k 68305.24k 72978.75k 70045.37k 71121.64k
cast cbc 48152.49k 51153.19k 51271.61k 51292.70k 47460.88k
aes-128 cbc 99379.58k 103025.53k 103889.18k 104316.39k 97687.94k
aes-192 cbc 82578.60k 85445.04k 85346.23k 84017.31k 87399.06k
aes-256 cbc 70284.17k 72738.06k 73792.20k 74727.31k 75279.22k
camellia-128 cbc 0.00 0.00 0.00 0.00 0.00
camellia-192 cbc 0.00 0.00 0.00 0.00 0.00
camellia-256 cbc 0.00 0.00 0.00 0.00 0.00
sha256 17666.16k 42231.88k 76349.86k 96032.53k 103676.18k
sha512 13047.28k 51985.74k 91311.50k 135024.42k 158613.53k
aes-128 ige 93058.08k 98123.91k 96833.55k 99210.74k 100863.22k
aes-192 ige 76895.61k 84041.67k 78274.36k 79460.06k 77789.76k
aes-256 ige 68410.22k 71244.81k 69274.51k 67296.59k 68206.06k
 sign verify sign/s verify/s
rsa 512 bits 0.000480s 0.000040s 2081.2 24877.7
rsa 1024 bits 0.002322s 0.000111s 430.6 9013.4
rsa 2048 bits 0.014092s 0.000372s 71.0 2686.6
rsa 4096 bits 0.089189s 0.001297s 11.2 771.2
 sign verify sign/s verify/s
dsa 512 bits 0.000432s 0.000458s 2314.5 2181.2
dsa 1024 bits 0.001153s 0.001390s 867.6 719.4
dsa 2048 bits 0.003700s 0.004568s 270.3 218.9

We can remove the SEED and 3DES suite because they are
slower than the other. DES was meant to be fast in hardware
implementations, but slow in software, so 3DES (which runs DES
three times) is slower. On the contrary, AES can be very fast in
software implementations, and even faster if your CPU provides
specific instructions for AES. You can see that with a bigger key
(and so, better theoretical security), AES gets slower. Depend-
ing on the level of security, you may choose different key sizes.
According to the key length comparison, 128 might be enough
for now. RC4 is a lot faster than other algorithms. AES is consid-
ered safer, but the implementation in SSL takes into account the
attacks on RC4. So, we will propose this one in priority.

  29

So, here is the new cipher suite:

ALL:!ADH:!EXP:!LOW:!RC2:!3DES:!SEED:RC4+RSA:+HIGH:+MEDIUM

And the list of ciphers we will use:

DHE-RSA-AES256-SHA SSLv3 Kx=DH Au=RSA Enc=AES(256) Mac=SHA1
DHE-DSS-AES256-SHA SSLv3 Kx=DH Au=DSS Enc=AES(256) Mac=SHA1
AES256-SHA SSLv3 Kx=RSA Au=RSA Enc=AES(256) Mac=SHA1
DHE-RSA-AES128-SHA SSLv3 Kx=DH Au=RSA Enc=AES(128) Mac=SHA1
DHE-DSS-AES128-SHA SSLv3 Kx=DH Au=DSS Enc=AES(128) Mac=SHA1
AES128-SHA SSLv3 Kx=RSA Au=RSA Enc=AES(128) Mac=SHA1
RC4-SHA SSLv3 Kx=RSA Au=RSA Enc=RC4(128) Mac=SHA1
RC4-MD5 SSLv3 Kx=RSA Au=RSA Enc=RC4(128) Mac=MD5
RC4-MD5 SSLv2 Kx=RSA Au=RSA Enc=RC4(128) Mac=MD5

9 ciphers, that’s much more manageable. We could
reduce the list further, but it is already in good shape
for security and speed. Configure it in Apache with this
directive:

SSLHonorCipherOrder On
SSLCipherSuite ALL:!ADH:!EXP:!LOW:!RC2:!3DES:!SE
ED:RC4+RSA:+HIGH:+MEDIUM

Configure it in Nginx with this directive:

ssl_ciphers ALL:!ADH:!EXP:!LOW:!RC2:!3DES:!SEED:
RC4+RSA:+HIGH:+MEDIUM

You can also see that the performance of RSA gets
worse with key size. With the current security require-
ments (as of now, January 2013, if you are reading
this from the future). You should choose a RSA key
of 2048 bits for your certificate because 1024 is not
enough anymore, but 4096 is a bit overkill.

Remember, the benchmark depends on the version
of OpenSSL, the compilation options and your CPU, so
don’t forget to test on your server before implementing
my recommendations.

Take care of the handshake
The SSL protocol is in fact two protocols (well, three,
but the first is not relevant for us): the handshake pro-
tocol where the client and the server will verify each
other’s identity, and the record protocol where data is
exchanged.

Here is a representation of the handshake protocol,
taken from the TLS 1.0 RFC:

Client Server

ClientHello -------->
 ServerHello
 Certificate*
 ServerKeyExchange*
 CertificateRequest*
 <-------- ServerHelloDone
Certificate*
ClientKeyExchange
CertificateVerify*
[ChangeCipherSpec]
Finished -------->
 [ChangeCipherSpec]
 <-------- Finished
Application Data <-------> Application Data

You can see that there are 4 messages exchanged
before any real data is sent. If a TCP packet takes
100ms to travel between the browser and your server,
the handshake is eating 400ms before the server has
sent any data!

And what happens if you make multiple connections
to the same server? You do the handshake every time.
So, you should activate Keep-Alive. The benefits are
even bigger than for plain unencrypted HTTP.

Use this Apache directive to activate Keep-Alive:

KeepAlive On

Use this nginx directive to activate keep-alive:

keepalive_timeout 100

30  PROGRAMMING

Present all the intermediate certification authori-
ties in the handshake
During the handshake, the client will verify that the
web server’s certificate is signed by a trusted certifica-
tion authority (CA). Most of the time, there is one or
more intermediate certification authorities between the
web server and the trusted CA. If the browser doesn’t
know the intermediate CA, it must look for it and
download it. The download URL for the intermedi-
ate CA is usually stored in the “Authority information”
extension of the certificate, so the browser will find it
even if the web server doesn’t present the intermediate
CA.

This means that if the server doesn’t present the
intermediate CA certificates, the browser will block the
handshake until it has downloaded them and verified
that they are valid.

So, if you have intermediate CAs for your server’s
certificate, configure your webserver to present the
full certification chain. With Apache, you just need to
concatenate the CA certificates, and indicate them in
the configuration with this directive:

SSLCertificateChainFile /path/to/certification/
chain.pem

For nginx, concatenate the CA certificate to the web
server certificate and use this directive:

ssl_certificate /path/to/certification/chain.pem

Activate caching for static assets
By default, the browsers will not cache content served
over SSL for security reasons. That means that your
static assets (JavaScript, CSS, pictures) will be reloaded
on every call. Here is a big performance failure!

The fix for that: set the HTTP header
“Cache-Control: public” for the static assets. That
way, the browser will cache them. But don’t activate
it for the sensitive content because it should not be
cached on the disk by your browser.

You can use this directive to enable Cache-Control:

<filesMatch ".(js|css|png|jpeg|jpg|gif|ico|swf|flv
|pdf|zip)$">
Header set Cache-Control "max-age=31536000,
public"
</filesMatch>

The files will be cached for a year with the max-age
option.

For nginx, use this:

location ~ \.(js|css|png|jpeg|jpg|gif|ico|swf|flv
|pdf|zip)$ {
 expires 24h;
 add_header Cache-Control public;
}

Beware of CDN with multiple domains
If you followed the usual performance tips, you already
offloaded your static assets (JavaScript, CSS, pictures)
to a content delivery network. That is a good idea for a
SSL deployment too, BUT, there are caveats:

■■ Your CDN must have servers accessible over SSL,
otherwise you will see the “mixed content” warning

■■ It must have “Keep-Alive” and “Cache-control:
public” activated

■■ It should serve all your assets from only on e domain!

Why the last one? Well, even if multiple domains
point to the same IP, the browser will do a new hand-
shake for every domain. So, here, we must go against
the common wisdom of separating your assets on mul-
tiple domains to profit from the parallelized request in
the browser. If all the assets are served from the same
domain, there will only be one handshake. It could be
fixed to allow multiple domains, but this is beyond the
scope of this article. n

Geoffroy Couprie is a freelance hacker, fixing performance and
security problems when he is not shipping weird products. He is
now working on pilotssh.com , a better way to manager servers
from a smartphone.

Reprinted with permission of the original author.
First appeared in hn.my/acssl (unhandledexpression.com)

Background image: flickr.com/photos/nishanthjois/4655396145/

http://pilotssh.com
http://hn.my/acssl
http://flickr.com/photos/nishanthjois/4655396145/

  31

By Mike Bostock

I love Make. You may think of
Make [hn.my/make] as merely
a tool for building large bina-

ries or libraries (and it is, almost to
a fault), but it’s much more than
that. Makefiles are machine-read-
able documentation that make your
workflow reproducible.

To clarify, this post isn’t just
about GNU Make; it’s about the
benefits of capturing workflows via
a file-based dependency-tracking
build system, including modern
alternatives such as Rake and Waf.

To illustrate with a recent exam-
ple: yesterday Kevin and I needed to
update a six-month-old graphic on
drought to accompany a new article
on thin snowpack in the West. The
article was already on the homepage,
so the clock was ticking to republish
with new data as soon as possible.

Shamefully, I hadn’t documented
the data-transformation process,
and it’s painfully easy to forget
details over six months: I had a
mess of CSV and GeoJSON data
files, but not the exact source URL
from the NCDC [ncdc.noaa.gov];
I was temporarily confused as to
the right Palmer drought metric
[hn.my/palmer] (Drought Severity
Index or Z Index?) and the cor-
responding categorical thresholds;
finally, I had to resurrect the code
to calculate drought coverage area.

Despite these challenges, we
republished the updated graphic
without too much delay. But I
was left thinking how much easier
it could have been had I simply
recorded the process the first time
as a makefile. I could have simply
typed make in the terminal and be
done!

It’s Files All
The Way Down
The beauty of Make is that it’s
simply a rigorous way of record-
ing what you’re already doing. It
doesn’t fundamentally change how
you do something, but it encour-
ages you to record each step in the
process, enabling you (and your
coworkers) to reproduce the entire
process later.

The core concept is that gener-
ated files depend on other files.
When generated files are missing,
or when files they depend on
have changed, needed files are
re-made using a sequence of com-
mands you specify.

Say you’re building a choro-
pleth map of unemployment
[hn.my/choro] and you need a
TopoJSON file of U.S. counties.
This file depends on cartographic
boundaries published by the U.S.
Census Bureau, so your workflow
might look like:

1.	 Download a zip archive from
the Census Bureau.

2.	 Extract the shapefile from the
archive.

3.	 Convert the shapefile to
TopoJSON.

As a flow chart:

In a mildly mind-bending
maneuver, Make encourages you to
express your workflow backwards
as dependencies between files,
rather than forwards as a sequential
recipe. For example, the shapefile
depends on the zip archive because
you must download the archive
before you can extract the shape-
file (obviously). So to express your
workflow in language that Make
understands, consider instead the
dependency graph:

This way of thinking can be
uncomfortable at first, but it has
advantages. Unlike a linear script,
a dependency graph is flexible and
modular. For example, you can
augment the makefile to derive
multiple shapefiles from the same
zip archive without repeated down-
loads. Capturing dependencies also
begets efficiency: you can remake

Why Use Make

http://hn.my/make
http://ncdc.noaa.gov
http://hn.my/palmer
http://hn.my/choro

32  PROGRAMMING

generated files with only minimal effort when anything
changes. A well-designed makefile allows you to iterate
quickly while keeping generated files consistent and
up-to-date.

The Syntax Isn’t Pretty
The ugly side of Make is its syntax and complexity; the
full manual is a whopping 183 pages. Fortunately, you
can ignore most of this and start with explicit rules of
the following form:

targetfile: sourcefile
	 command

Here targetfile is the file you want to generate,
sourcefile is the file it depends on (is derived from),
and command is something you run on the terminal to
generate the target file. These terms generalize: a source
file can itself be a generated file, in turn dependent on
other source files; there can be multiple source files or
zero source files; and a command can be a sequence
of commands or a complex script that you invoke. In
Make parlance, source files are referred to as prerequi-
sites, while target files are simply targets.

Here’s the rule to download the zip archive from the
Census Bureau:

counties.zip:
 curl -o counties.zip 'http://www2.census.gov/
geo/tiger/GENZ2010/gz_2010_us_050_00_20m.zip'

Put this code in a file called Makefile, and then run
make from the same directory. (Note: use tabs rather
than spaces to indent the commands in your makefile.
Otherwise Make will crash with a cryptic error.) If it
worked, you should see a downloaded counties.zip in
the directory.

You can approximate URL dependencies by check-
ing the Last-Modified header via curl -I.

This first rule has no dependencies because it’s
the first step in the workflow, or equivalently a leaf
node in the dependency graph. Although the zip file
depends on the Census Bureau’s website, and thus can
change, Make has no native facility for checking if the
contents of a URL have changed, and thus a makefile
cannot specify a URL as a prerequisite. As a result, the
counties.zip file will only be downloaded if it does
not yet exist. If the Census Bureau releases new carto-
graphic boundaries, you’ll need to delete the previously
downloaded zip file before running make.

The second rule for creating the shapefile now has a
prerequisite: the zip archive.

I preserved the Census Bureau’s original verbose file
name. You could instead rename files using parameter
expansion [hn.my/paramex].

gz_2010_us_050_00_20m.shp: counties.zip
 unzip counties.zip
 touch gz_2010_us_050_00_20m.shp

This rule also has two commands. First, unzip
expands the zip archive, producing the desired shape-
file and its related files. Second, touch sets the modifi-
cation date of the shapefile to the current time.

The final touch is critical to Make’s understanding
of the dependency graph. Without it, the modification
time of the shapefile will be when it was created by
the Census Bureau, rather than when it was extracted.
Since the shapefile is apparently older than the zip
archive from which it was extracted, Make thinks it
needs to be rebuilt — even though it was just made!
Fortunately, most programs set the modification dates
of their output files to the current time, so you’ll prob-
ably only need touch when using unzip.

Lastly to convert to TopoJSON [hn.my/topojson], a
rule with one command and one prerequisite:

counties.json: gz_2010_us_050_00_20m.shp
	 topojson -o counties.json --
counties=gz_2010_us_050_00_20m.shp

With these three rules together in a makefile (which
you can download), make counties.json will perform
the necessary steps to produce a U.S. Counties TopoJ-
SON file from scratch.

You can get a lot fancier with your makefiles. For
example, pattern rules and automatic variables are
useful for generic rules that generate multiple files.
But even without these fancy features, hopefully you
now have a sense of how Make can capture file-based
workflows.

http://hn.my/paramex
http://hn.my/topojson

  33

You Should Use Make
Created in 1977, Make has its quirks. But whether
you prefer GNU Make or a more recent alternative,
consider the benefits of capturing your workflow in a
machine-readable format:

■■ Update any source file, and any dependent files are
regenerated with minimal effort. Keep your gener-
ated files consistent and up-to-date without memo-
rizing and running your entire workflow by hand.
Let the computer work for you!

■■ Modify any step in the workflow by editing the
makefile, and regenerate files with minimal effort.
The modular nature of makefiles means that each
rule is (typically) self-contained. When starting new
projects, recycle rules from earlier projects with a
similar workflow.

■■ Makefiles are testable. Even if you’re taking rigor-
ous notes on how you built something, chances are a
makefile is more reliable. A makefile won’t run if it’s
missing a step; delete your generated files and rebuild
from scratch to test. You can then be confident that
you’ve fully captured your workflow.

To see more real-world examples of makefiles, see
my World Atlas [hn.my/worldatlas] and U.S. Atlas
[hn.my/usatlas] projects, which contain makefiles
for generating TopoJSON from Natural Earth, the
National Atlas, the Census Bureau, and other sources.
The beauty of the makefile approach is that I don’t
need gigabytes of source data in my git repositories
(Make will download them as needed), and the make-
file is infinitely more customizable than pre-generating
a fixed set of files. If you want to customize how the
files are generated, or even just use the makefile to
learn by example, it’s all there.

So do your future self and coworkers a favor, and use
Make! n

Mike Bostock is a graphics editor for The New York Times and
the author of D3.js, a popular open-source library for visualizing
data using web standards. Previously, Mike was a visualization
scientist for Square and a computer science PhD student at Stan-
ford University.

Reprinted with permission of the original author.
First appeared in hn.my/usemake (bost.ocks.org)

http://hn.my/worldatlas
http://hn.my/usatlas
http://hn.my/usemake

34  SPECIAL

The symbols for the
arithmetic operations
of addition (plus; “+”)

and subtraction (minus; “–”) are
so common today we hardly ever
think about the fact that they didn’t
always exist. In fact, someone first
had to invent these symbols (or at
least other ones that later evolved
into the current form), and some
time surely had to pass before the
symbols were universally adopted.
When I started looking into the
history of these signs, I discovered
to my surprise that they did not
have their origin in antiquity. Much
of what we know is based on an
impressively comprehensive and
still unsurpassed body of research
from 1928–1929 entitled History
of Mathematical Notations by the
Swiss-American historian of mathe-
matics, Florian Cajori (1859–1930).

The ancient Greeks expressed
addition mostly by juxtaposi-
tion, but sporadically used the
slash symbol “/” for addition and a

semi-elliptical curve for subtrac-
tion. In the famous Egyptian Ahmes
papyrus, a pair of legs walking for-
ward marked addition, and walking
away subtraction. The Hindus, like
the Greeks, usually had no mark for
addition, except that “yu” was used
in the Bakhshali manuscript Arith-
metic (which probably dates to the
third or fourth century). Towards
the end of the fifteenth century, the
French mathematician Chuquet
(in 1484) and the Italian Pacioli (in
1494) used “ ” or “p” (indicating
plus) for addition and “ ” or “m”
(indicating minus) for subtraction.

There is little doubt that our +
sign has its roots in one of the forms
of the word “et,” meaning “and” in
Latin. The first person who may
have used the + sign as an abbre-
viation for et was the astronomer
Nicole d’Oresme (author of The
Book of the Sky and the World)
in the middle of the fourteenth
century. A manuscript from 1417
also has the + symbol (although the

downward stroke is not quite verti-
cal) as a descendent of one of the
forms of et.

The origin of the – sign is much
less clear, and speculations range
all the way from hieroglyphic or
Alexandrian grammar ancestry, to
a bar symbol used by merchants
to separate the tare from the total
weight of goods.

 The first use of the modern alge-
braic sign – appears in a German
algebra manuscript from 1481 that
was found in the Dresden Library.
In a Latin manuscript from the
same period (also in the Dresden
Library), both symbols + and –
appear. Johannes Widman is known
to have examined and annotated
both of those manuscripts. In 1489,
in Leipzig, he published the first
printed book (Mercantile Arithme-
tic) in which the two signs + and
– occurred (Figure 1). The fact that
Widman used the symbols as if they
were generally known points to the
possibility that they were derived

SPECIAL

Where and When Did
the Symbols “+” and “–”

Originate?
By Mario Livio

  35

from merchants’ practices. An
anonymous manuscript — probably
written around the same time —
also used the same symbols, and it
provided input for two additional
books published in 1518 and 1525.

In Italy, the symbols + and – were
adopted by the astronomer Christo-
pher Clavius (a German who lived
in Rome), the mathematicians Glo-
riosi, and Cavalieri at the beginning
of the seventeenth century.

The first appearance of + and – in
English was in the 1551 book on
algebra, The Whetstone of Witte by
the Oxford mathematician Robert
Recorde, who also introduced the
equal sign as the rather longer than
today’s symbol “═.” In describing
the plus and minus signs Recorde
wrote: “There be other 2 signes in
often use of which the first is made
thus + and betokeneth more: the
other is thus made – and beto-
keneth lesse.”

As a historical curiosity, I should
note that even once adopted, not
everybody used precisely the same
symbol for +. Widman himself
introduced it as a Greek cross + (the
sign we use today), with the hori-
zontal stroke sometimes a bit longer
than the vertical one. Mathemati-
cians such as Recorde, Harriot and
Descartes used this form. Others
(e.g., Hume, Huygens, and Fermat)
used the Latin cross “†,” sometimes
placed horizontally, with the cross-
bar at one end or the other. Finally, a
few (e.g., De Hortega, Halley) used
the more ornamental form “ .”

The practices of denoting
subtraction were somewhat less
fanciful, but perhaps more confus-
ing (to us at least), since instead of
the simple –, German, Swiss, and
Dutch books sometimes used the
symbol “÷,” which we now use for
division. A few seventeenth cen-
tury books (e.g., by Descartes and
by Mersenne) used two dots “∙∙” or
three dots “∙∙∙” for subtraction.

Overall, what is perhaps most
impressive in this story is the fact
that symbols which first appeared
in print only about five hundred
years ago have become part of what
is perhaps the most universal “lan-
guage.” Whether you do science or
finances, in Kentucky or in Siberia,
you know precisely what these
symbols signify. n

Mario Livio is an astrophysicist and an
author of popular science books. His
research interests range from extrasolar
planets to supernova explosions and cos-
mology. He is also passionate about art.

Figure 1. The first use of the + and –
symbols in print in Johannes Widman’s
Behëde und Lubsche Rechenung auff
allen Kauffmanschafft, Augsburg edition
of 1526.

Reprinted with permission of the original author.
First appeared in hn.my/symbol (blogs.stsci.edu/livio)

http://hn.my/symbol

36  SPECIAL

By Glenn Reid

People who worked with
Steve Jobs (I’ll call him
Steve) usually don’t talk

about it. It’s kind of an unwritten
rule, partly because he was obses-
sive about his privacy.

I think that has all changed now,
but I’m not exactly sure. I am at
least sure that my phone won’t ring
if I say something about the experi-
ence. And I feel compelled to do
just that, because there is so much
written about Steve, and so few
who have actually seen him work. I
was one of those people.

And I am becoming aware that
lots of people are claiming, in one
way or another, to have been one
of those people. “I worked with
Steve Jobs” can mean, “I saw him
in the elevator once when I was at
a meeting at Apple,” or “I worked
at Apple during those years, and
saw him around campus, although
I never actually spoke to him.” I
actually worked with the guy, and
I’m realizing that perhaps I worked
with him more closely than almost
anyone (save Avie and the many
who were in his inner circle for

the whole duration of course) —
because I worked on products that
he cared deeply about.

First, some background. I worked
at Adobe Systems in 1985, one of
the first handful of people at the
company. I was employee #40.
After about 5 years, I was searching
for something new to do, and got
interested in NeXT, because they
embraced PostScript (an Adobe
technology) and were UNIX-based,
two things that I was good at. Being
young and brash, I wrote an email
message directly to Steve, suggest-
ing that I was just the right guy to
work there. In 1991, I started work
at NeXT, as Product Manager for
Interpersonal Computing. It was
the internet, before there was much
of an internet. We called it Inter-
personal Computing, but nobody
paid attention until 5 years later
when the WWW became more
mainstream. I reported directly to
Steve, in his capacity as “acting VP
of Marketing,” which was a lifelong
title for him.

I left NeXT to start a company to
build software for NeXT comput-
ers, RightBrain Software. We built
an amazing page layout app called
PasteUp, ran 2-page spread ads in
NeXTWORLD magazine, and had
a good old time, except we didn’t
sell a lot of software, so I went off
to do other things for a while.

Many years later, when NeXT
acquired Apple for negative
$400M, I was recruited by Steve’s
right hand man to come in to build
iMovie 1.0, in large part because I
knew a lot about NeXTSTEP, the
technology which was to become
MacOS X, and because I think
Steve liked PasteUp and liked me
and thought I could get it done (we
were done ahead of schedule, as it
turned out).

What It’s Really
Like Working With
Steve Jobs

  37

I can still remember some of
those early meetings, with 3 or 4
of us in a locked room somewhere
on Apple campus, with a lot of
whiteboards, talking about what
iMovie should be (and should not
be). It was as pure as pure gets, in
terms of building software. Steve
would draw a quick vision on the
whiteboard, we’d go work on it for
a while, bring it back, find out the
ways in which it sucked, and we’d
iterate, again and again and again.
That’s how it always went. Itera-
tion. It’s the key to design, really.
Just keep improving it until you
have to ship it.

There were only 3 of us on the
team, growing to 4 within the year,
with no marketing and very little
infrastructure around us. There was
paper over the internal windows to
keep other Apple employees from
knowing what we were doing. Our
component in Radar, the bug-
tracking database, was called “Tax
Department” so nobody would be
curious about it. We sat in the same
hallway as the Tax Department,
actually, and our Senior VP was

in charge of Service and Support
at the time. Truly a stealth proj-
ect. There were maybe only 5-10
people in the whole company who
knew what we were doing.

When we were done, and the
iMac DV shipped with iMovie
built in (I think it was October
or November of 1998), the world
changed, for everybody. Jeff Gold-
blum appeared in TV ad spots,
showing off iMovie. The idea of
“personal digital media” was born.
This was Steve’s vision, and why
he put together the iMac DV, with
Firewire and iMovie. We called it
the Digital Hub strategy internally,
to encourage you to put lots of per-
sonal digital media on your home
computer. It grew quickly from
movies to include photos and music
(iTunes was repackaged SoundJam,
acquired from Casady and Greene
in 2000). Before then, very few
people had any personal photos,
or music, or home movies on their
computers.

Over the ensuing 5 years or so,
we built several versions of iMovie
and several versions of iPhoto,
which came out a couple years
after iMovie, but along the same
track. Toward the end of my time
at Apple, we had standing meet-
ings, once a week, for about 3 or 4
hours, in the Board Room at Apple,
to go through what were known
internally as the “iApps” — iMovie,
iPhoto, iTunes, and later iDVD.
Over the course of some years,
that’s a lot of CEO hours devoted
to the details of some software apps
— and that was just the part that
we saw. I’m sure there were similar
meetings for OS X, the Pro apps,
the hardware, and everything else
that was going on.

“Steve would draw a quick vision on the white-
board, we’d go work on it for a while, bring
it back, find out the ways in which it sucked,
and we’d iterate, again and again and again.”

Engineers rebuilding the infrastructure
that powers finance. careers.addepar.com

38  SPECIAL

Now let me back up a bit.
Steve Jobs was passionate, as

everyone knows. What he was pas-
sionate about was, I think, quite
simple: he liked to build products. I
do, too. This we had in common. It
is a process which requires under-
standing the parameters, the goals,
and the gives and takes. Stretch
what’s possible, use technologies
that are good, rein it in when the
time comes, polish it and ship it. It’s
a kind of horse sense, maybe a bit
like building houses, where you just
kind of know how to do it...or you
don’t. Steve did.

Not only did he know and love
product engineering, it’s all he
really wanted to do. He told me
once that part of the reason he
wanted to be CEO was so that
nobody could tell him that he
wasn’t allowed to participate in the
nitty-gritty of product design. He
was right there in the middle of it.
All of it. As a team member, not as
CEO. He quietly left his CEO hat
by the door, and collaborated with
us. He was basically the Product
Manager for all of the products
I worked on, even though there
eventually were other people with
that title, who usually weren’t
allowed in the room.

One of the things about design-
ing products that can come up is
Ego, or Being Right, or whatever
that is called. I’m not sure how this
evolved, but when I worked with
Steve on product design, there
was kind of an approach we took,
unconsciously, which I characterize
in my mind as a “cauldron.” There
might be 3 or 4 or even 10 of us in
the room, looking at, say, an itera-
tion of iPhoto. Ideas would come
forth, suggestions, observations,
whatever. We would “throw them
into the cauldron,” and stir it, and

soon nobody remembered exactly
whose ideas were which. This let us
make a great soup, a great potion,
without worrying about who
had what idea. This was critically
important, in retrospect, to decou-
ple the CEO from the ideas. If an
idea was good, we’d all eventually
agree on it, and if it was bad, it just
kind of sank to the bottom of the
pot. We didn’t really remember
whose ideas were which — it just
didn’t matter. Until, of course, the
patent attorneys came around and
asked, but that’s a whole other
story.

The Steve that I worked with
loved product design, and he loved
consumer products, and iMovie
and iPhoto were two of the big-
gest consumer apps ever developed
from scratch at Apple, or NeXT, or
anywhere else, perhaps. So I think
that in some very real sense, I had
a better understanding of Steve
and how he worked, and what
motivated him, than almost anyone
in the world. It sounds kind of
self-serving to say this, but he and
I were a lot alike in that way, and
in that process. It was a true give
and take, a true collaboration with
everyone in the room. Most people
never saw that process, and those
who did never talk about it. I am
privileged to have been there.

I guess I have this to say about it:
it wasn’t magic, it was hard work,
thoughtful design, and constant
iteration. Doing the best we knew
how with what was available, shap-
ing each release into a credible,
solid, useful, product, as simple and
direct as we could make it. And
we shipped those products, most
importantly.

I am off doing other things now,
again, but it’s still Product Design,
and I still love it. That is what I
remember most about Steve, that
he simply loved designing and ship-
ping products. Again, and again,
and again. None of the magic that
has become Apple would have
ever happened if he were simply
a CEO. Steve’s magic recipe was
that he was a product designer at
his core, who was smart enough to
know that the best way to design
products was to have the magic
wand of CEO in one of your hands.
He was compelling and powerful
and all that, but I think that having
once had the reigns of power
wrestled away from him, he real-
ized that it was important not to let
that happen again, lest he not be
allowed to be a Product Manager
any more. n

Glenn Reid is a long-time hacker and entre-
preneur. He was the original author of
iMovie and iPhoto at Apple, employee #40
at Adobe, and CEO of multiple startups,
including Five Across, which was acquired
by Cisco in 2007.

Reprinted with permission of the original author.
First appeared in hn.my/sjobs (inventor-labs.com)

Illustration by Jimmy "good work media"
[goodworkmedia.se]

http://careers.addepar.com
http://hn.my/sjobs
http://goodworkmedia.se

Engineers rebuilding the infrastructure
that powers finance. careers.addepar.com

http://careers.addepar.com

Accept payments online.

http://stripe.com

	Contents
	FEATURES
	The Apprentice Programmer
	How to Slice a Bagel into Two Linked Halves

	PROGRAMMING
	Building Photoshop
	Tips to Accelerate SSL
	Workflow in Tmux
	The StarCraft Path-finding Hack
	Why Use Make

	SPECIAL
	Where and When Did the Symbols “+” and “–” Originate?
	What It's Really Like Working With Steve Jobs

