

Curator
Lim Cheng Soon

Contributors
Ram Rachum
Najaf Ali
Sacha
Chua
Kyle MacDonald
Jeff Escalante
Craig Gidney
Jason
Cohen
David Cain
Shaanan Cohney

Proofreaders
Emily Griffin
Sigmarie Soto

Illustrator
Stefan Hartmann

Ebook Conversion
Ashish Kumar Jha

Printer
MagCloud

Contact

contact@hackermonthly.com

Published by
Netizens Media

46, Taylor Road,
11600 Penang, Malaysia.

Hacker Monthly is the print magazine version of Hacker News —
news.ycombinator.com,
a social news website wildly popular among programmers and startup
founders. The submission guidelines state that content can be
“anything that gratifies one’s intellectual curiosity.” Every
month, we select from the top voted articles on Hacker News and print
them in magazine format.
For more, visit hackermonthly.com

Indescribable
Numbers

The theorem that made
me fall in love with math

By RAM RACHUM

Let
me open this blog post by quoting a Zen koan from Mumonkan, along
with the comments and poem that Zen master Mumon added to it:

Koan:

A
monk asked Zen master Nansen, “Is there any teaching no master has
ever taught before?”

Nansen
replied, “Yes, there is.”	

“What
is it?” asked the monk.Nansen answered, “It is not mind, it is
not Buddha, it is not things.”

Mumon’s
comments about the koan:	

Being
asked a question, old Nansen gave away his treasure words. He must
have been greatly upset.

Mumon’s
poem about the koan:

Nansen
was too kind and lost his treasure,

Clearly
words have no power.Even though the mountain becomes the sea,

Words
cannot open another’s mind.

Now
that I’ve put you in the mood, I’d like to tell you the story of
my theorem about “indescribable numbers.” I can’t believe I
didn’t write about this thing years ago. This theorem was one of
the most exciting episodes in my love affair with math, and it’s a
tale worth telling.

The
year was 2005. I was about 19 years old, with only a general and
vague idea of what I wanted to do with my life. I enrolled to study
Electrical Engineering at the Technion, a leading university in
Israel. Why did I choose Electrical Engineering? Because (a) it
sounded science-y and (b) it was said that there was a lot of money
in it.

Contrasting
my present self with my 2005 one, the most striking thing is how
empty my mind was from the various strong opinions and views that
inhabit it today. Not quite the emptiness of mind that a Zen master
would aspire to, but rather an emptiness in which the two promises
above, of scienciness and money, were all I needed to decide that EE
was indeed for me, at least for a little while.

One
morning I was walking to class, or perhaps I should say climbing; The
Technion, built upon Mount Carmel, is famous for its brutally steep
slopes. I lived in the Canada dorms, which were located at the
lowermost point in the campus, and I had to walk up all the way to
the campus’ vertical center. I’m not the athletic type, so this
daily ordeal left me sweaty and tired every time I got to class.

Just
as I was passing the faculty for Civil Engineering on my right, the
first beads of sweat already formed on my forehead, a funny thought
came to me.

That
thought was: Could there be numbers that cannot be described?

I
should explain this idea in detail.

Imagine
that you’re solving a homework problem in physics. Say the problem
introduces you to a helium-filled balloon as it is making its way
towards the ceiling, and you are tasked with finding its Y coordinate
at t equals 3 seconds, air resistance neglected. After some work you
come up with an answer. If the homework in question is given in
junior high or high school, the resulting number describing the
height is likely to be a simple one. Perhaps 7 meters, or 11 meters;
thanks are due to the invisible compassion of high school physics
teachers who have a hard enough time as it is teaching physics to
teenagers who are much more interested in sex. The teachers, knowing
they have only a precious modicum of the students’ attention at
their disposal, compose their problems in such a way that the final
number would be so simple, usually an integer and in wild cases a
simple fraction, that when the student finally hits upon it, he can
put his mind at ease. After all, if after these complex and
error-prone calculations, fraught with quadratic equations, you got a
result of 7 meters, that’s a good enough reassurance as any that an
error was not made and that the answer you came upon is the correct
one.

As
high school pupils become university students and are gradually
weaned from the soft and cozy world
of integers, the numerical solutions gradually become more complex.
You could be hard at work on a more advanced variant of the above
physics problem in Physics 101, air resistance emphatically not
neglected, only to arrive at a result of 3*Sin(57) meters, which the
last few pages of the book reassure you is the correct answer.

You
stare at that number, 3*Sin(57), or 2.516011703836(...) in all its
decimal glory, and you imagine the fictional God of that fictional
universe who placed each and every one of the sextillions of helium
atoms in that balloon in just the right position, so that when t
equals 3 seconds, the height of the center mass of the balloon would
be at precisely 3*Sin(57) meters, to the last of its infinite digits.
And you realize, of course, that this invisibly compassionate God is
nothing more than a braver version of the invisibly compassionate
high school teacher, who was so careful not to frighten you with an
unholy number such as -6.33333.

So
you imagine what a real God would do, and what the real height of a
real helium balloon would be. Since we’re dealing with pure math,
where two numbers would be absolutely different even if they differ
from one another only in the billionth digit, it is obvious that
physical experiments are not going to help us here. We turn to
thought experiments instead.

We
imagine a real God, creating a real balloon with sextillions of real
helium atoms, each of which is emphatically apathetic to our desire
for beautiful numbers as our solution. And we imagine that balloon at
t equals 3 seconds. We think, what would be its height? Definitely
not 3*Sin(57) meters. There is no chance in hell that the solution
would be as pretty as that. In fact, intuition tells us that the
number would be as ugly a number as we’ve ever seen. Next to that
number, 3*Sin(57) or even 3*Sin(57)^74*Arctan(0.42^3.5) would look as
pathetically simple as 7. No, that number would be so ugly, that…that
there won’t even be a way to describe it. And now we’re finally
reaching the original thought with which I opened this discussion:
indescribable numbers.

Let
me humbly take upon myself the job of being that real God of that
apathetic universe; and let me hereby declare, with the full power of
my omnipotence, that the height of the balloon in meters is, as
suspected, not 3*Sin(57), but rather the following number:

3.7493685096834712522039127(...)

Yes,
be impressed by the glory of these digits that I have created in my
infinite wisdom; look at them and wonder what pattern might lie
behind them, knowing full well that I am too terrible a God to have
planted there any pattern you might be able to understand with your
limited human mind; stare imploringly into the siren call of the
final ellipsis, for you know that no matter how often you expand it,
I will always smile when giving you more and more digits, because you
and I will both know that the final wisdom of The Number will always
be mine and never yours.

Please
excuse me, it’s not that often that I get to be an omnipotent being
and I’d like to have fun with it as long as it lasts. I’ll retire
now and join you in the pathetic human race.

So
the question is: Are there really such numbers as 3.749(...), whose
pattern is not only unknown to us, but could never be known and will
forever be beyond the grasp of us mere mortals? Could there be a
number that simply cannot be described by any means known to us? A
number which is definitely not an integer, obviously not rational,
desperately not algebraic; we know that it is at some
innocuous-looking spot on the line of real numbers, somewhere between
honest old 3.749 and honest old 3.750, but we know that it is a
different creature entirely than these two model citizens of the
Reals. Our number carries secrets infinitely more profound, and
therefore we know that unlike the above duo, we’ll never be able to
pinpoint the exact spot in which this number resides. Like a
telephone number that is unlisted in the Yellow Pages; if God didn’t
give you the number as he spoke from behind a burning bush, you’ll
never find it using the scientific method.

Those
were my thoughts as I was wiping sweat off of my forehead and passing
the faculty for Civil Engineering. Being 19, my mathematical mind not
yet fully developed, I thought: What an interesting philosophical
conundrum. That’s pretty cool. I doubt it could ever be solved
though; yet another unanswered, vague philosophical question in the
long history of unanswered, vague philosophical questions. I got to
class, I believe it was Calculus, and concentrated on that instead.

Fast
forward a few months.

I
was into my second semester by now, which would prove to be my final
semester. I had a little bit more training in math, given to me not
only in the courses I’ve taken, but also from random math-related
articles I would read on the web.

It
was morning again.

I
was taking my usual morning climb from Canada dorms to class, passing
Civil Engineering on my right.

That
is when the answer came to me. As Zen master Mumon would say: At that
moment, I became enlightened.

I
found an answer to the question of indescribable numbers, and I found
a mathematical proof to the answer. I managed to take this
philosophical question, so vague and soft, and not only define it
mathematically, but find an actual goddamned water-tight proof to
validate my answer.

I
was amazed. I was shaken. I could hardly believe this was really
happening.

The
answer to the question is this: Yes, there are such things as
indescribable numbers. In fact, the vast majority of real numbers are
indescribable, and only a tiny fraction of real numbers are of the
familiar describable variety.

Holy
shit.

I
didn’t really know what to do with this. Is my proof even right?
Did I just make a first-rate scientific discovery? Perhaps I’ve
rediscovered a known truth, perhaps a theorem my Calculus 3 teacher
will teach to us next semester as my classmates will yawn and doodle
in their notebooks? Perhaps I am simply deranged?

Then
I got an idea who to turn to: My Calculus 2 teacher. He was a
friendly old man. He was clumsy, had a huge unkempt beard, and his
great love and fascination for math showed through in our Calculus 2
lectures. He was your classic math professor. I would later learn
that he was originally from Australia, which helped explain how
clumsily energetic he was.

I
found his love for math contagious, even when it was hard for me to
keep up with the technical aspects, which was often. My fellow
Electrical Engineering students, more enchanted by the promise of
great money in EE rather than a love for science, were less
cooperative with him. It was sad to see someone so passionate trying
to inspire those who simply did not want to be inspired. (No
disrespect intended to these students; I love money too.)

After
the class ended, and all the students were putting their notebooks
back in their backpacks and leaving, I went to the professor’s
desk. He was packing as well. I told him I had a mathematical thought
that I didn’t really know what to do with. He was intrigued. He was
too busy at that time to continue the conversation, but he told me to
email him, and via email we set a time for an appointment.

I
arrived at his office. It was small and cramped and incredibly messy.
There were boxes of papers everywhere. Fortunately, there was a
whiteboard.

I
was excited. I’ve never been to a professor’s office before. I’ve
never had a serious conversation about math before with someone who
could be actually considered an expert in it. I tunneled my energies
of excitement to making sure that I’m explaining the original
question and my proof in a clear, calm, but relentlessly watertight
way.

I
will recreate the explanation of the proof for you now, leaving out
the more technical parts.

The
proof is not complex; any BSc of Mathematics would understand it
quite easily.

The
only way us humans have of describing numbers is using language.
Sometimes that could be a non-math-specific language like English.
For example, “seven” is a description of 7; “the sum of ten and
three” is 13; and “the ratio of a circle’s circumference to its
diameter” is a concise expression of Pi.

Quite
often though, we prefer to describe numbers using mathematical
language. “7" is a simple number described by that language.
Our previous acquaintance "3*Sin(57)" is a more complicated
one, and "3*Sin(57)^74*Arctan(0.42^3.5)" is an even more
impressive specimen.

This
mathematical language is more powerful for describing numbers than
the English language, but it’s still a language; every such
description of a number is just a finite string of symbols, taken
from a finite pool of available symbols: “3”, then “*”, then
“S”, then “i”, then “n”, then “(”, then “5”,
then “7”, and finally “)”. Descriptions can get much longer
than that, as long as they’re finite. But there is an infinite
number of descriptions, since we can combine symbols in infinite many
ways to make descriptions as long as we want.

Now
this is where things start to get interesting. I’ll try not to get
too technical.

In
math, we have several different kinds of infinity. The smallest kind
is “countable infinity” also known as Aleph zero. It is the
infinity of natural numbers, the infinity of 0, 1, 2, 3…

The
infinity just a step bigger than it is Aleph one, the infinity of
real numbers: The infinity of an impossibly dense line of numbers,
between each two, no matter how close, resides yet another infinite
spectrum of numbers, itself bigger than the previously mentioned
infinity of natural numbers.

It
is well proven that Aleph one, which is the infinity of the real
numbers, is undeniably bigger than the infinity of the natural
numbers. What this means, is that you can never “cover” the real
numbers with the natural numbers. In technical terms, you can’t
have a surjective mapping from the set of naturals to the set of
reals. In more intuitive terms, if you try to pair up each natural
number to a real number, you will run out of natural numbers way
before you’ll run out of real numbers. (We can never really imagine
the moment where we’ve run out of natural numbers, since there are
an infinity of them… But bear in mind that the set of real numbers
is “even more infinite,” and that’s the closest I can give you
to an intuitive description.)

Let’s
get back to describing numbers. We’ve said that our descriptions of
numbers using mathematical language are nothing but finite strings of
a finite language. There’s infinitely many of them, but that
infinity can be easily shown to be Aleph zero, the smallest infinity.
Just consider that any such description, like “3*Sin(57)”, could
be saved as a text file on a computer, and every file on a computer
is just ones and zeroes.

However,
the real numbers have the bigger infinity of Aleph one. You can feel
the proof forming, can’t you?

When
we take a description like “3*Sin(57)”, we know it has an obvious
counterpart in the set of real numbers: The number it’s describing,
the very real number close to 2.51. We can in fact pair every such
description to the number it describes. “7" could be paired
with the number 7, and the venerable “3*Sin(57)^74*Arctan(0.42^3.5)"
will also be paired with the number it describes. We’re in effect
pairing up each member of the set of descriptions to a member in the
set of real numbers.

But,
remember what we said before, that if you try to pair up an infinite
set of size Aleph zero with an infinite set of size Aleph one, you
will never be able to cover the entire Aleph one set. There will
always be unfortunate members in that bigger set that would be left
without a counterpart in the smaller set.

Those
unfortunate members are indescribable numbers.

Why?
Because consider what they are: They are real numbers, for which we
have just proven it is impossible to find a description that will
match them. We have proven that no description will ever describe
them.

We
have proven that indescribable numbers exist. Q.E.D., and please
someone hand me a cigarette.

I
explained all this to the professor. He asked a bunch of questions,
and I managed to answer all of them without having an “Oh shit, you
just discovered a critical flaw in my proof, my entire proof is wrong
now fuck me” moment. At the end, when he was quite convinced that
my proof was correct, he said something along the lines of “that’s
pretty cool.” He said he was unfamiliar with this area of
mathematics, but that he thought my proof was correct and really
interesting.

I
felt so proud. I managed to find a proof that impressed not only me,
but a genuine crazy math professor! I’m smart!!!

The
professor arranged an appointment for me with a different professor
who did specialize in logic, and was familiar with my theorem. He
said that my theorem and proof have been well known to logicians
since the 1940s. He was still impressed that I was able to prove them
despite being a first-year Electrical Engineering student.

I
was a bit saddened that my theorem was old stuff for logicians and
not a new discovery. There goes my Nobel Prize…

But
I was still so happy just to have found the proof. The experience of
having taken a vague philosophical question, and using the precise
machinery of math to state it rigorously and then actually prove it,
was amazing for me. It was like discovering a net with which I
managed to catch a beautiful butterfly. Imagining those indescribable
numbers out there, the mathematical equivalent of dark matter,
occupying most of the space in the set of real numbers despite being
completely invisible and unattainable… I was in love with math.

That
episode was one of the reasons that I quit Electrical Engineering and
spent the next 2 years of my life studying mathematics. But that’s
another story :) §

Ram
Rachum is a freelance software developer based in Tel-Aviv, Israel.
He works almost exclusively in Python. He loves nothing more than
stripping bullshit away until all that is left is the unembellished
truth.

First
appeared in hn.my/indescribable
(ram.rachum.com)

You
Are Dangerously Bad At Cryptography

By NAJAF ALI

The
four stages of competence:

1.
Unconscious incompetence: When
you don't know how bad you are or what you don't know.

2.
Conscious incompetence:
When you know how bad you are and know what steps you need to take to
get better.

3.
Conscious competence:
When you're good and you know it (this is fun!)

4.
Unconscious competence:
When you're so good you don't know it anymore.

We
all start at stage one whether we like it or not. The key to
progressing from stage one to stage two in any subject is to make
lots of mistakes and get feedback. If you're getting feedback, you
begin to create a picture of what you got right, what you got wrong
and what you need to do better next time.

Cryptography
is perilous because you get no feedback when you mess up. For the
average developer,
one block of random base 64 encoded bytes is as good as any other.

You
can get good at programming by accident. If your code doesn't
compile, doesn't do what you intended it to or has easily observable
bugs, you get immediate feedback, you fix it and you make it better
next time.

You
cannot get good at cryptography by accident. Unless you put time and
effort into reading about and implementing exploits, your home-grown
cryptography-based security mechanisms don't stand much of a chance
against real-world attacks.

Unless
you pay a security expert who knows how to break cryptography-based
security mechanisms, you have no way of knowing that your code is
insecure. Attackers who bypass your security mechanism aren't going
to help you with this either (their best case is bypassing it without
you ever finding out).

Take
a look at some examples of misused crypto below. Ask yourself, if you
hadn't read this post, would you have caught these errors in real
life?

Authenticating
the API for your photo sharing website

Message
Authentication with md5 + secret

Once
upon a time, a photo sharing site authenticated its API with the
following scheme:

		Users
	have the following two credentials:

	
	A
	public user id that they use to identify themselves (safe to send in
	the clear)

	
	A
	shared secret that they use to sign messages (must be kept private)

	
	The
	user makes API requests over HTTP/HTTPS (it doesn't matter).
	Destructive changes are made using a POST/GET request with specific
	parameters (e.g. { action: create, name: 'my-new-photo' }).

	
	To
	authenticate the message, the user sends their user id as a
	parameter, and then signs the message with their secret key. The
	signature is the md5 of the shared secret concatenated with the
	key-value pairs.

To
check that the client is the user he claims to be, the server
generates the signature from the request parameters and the secret
key it has on file for that user.

The
code for this could be:

 # CLIENT SIDE

 require 'openssl'

 ## Our user credentials
 user_id = '42'
 secret = 'OKniSLvKZFkOhlo16RoTDg0D2v1QSBQvGll1hHflMeO77nWesPW+YiwUBy5a'

 ## The request params we want to send
 params = { foo: 'bar', bar: 'baz', user_id: user_id }

 ## Build the MAC
 message = params.each.map { |key, value| "#{key}:#{value}" }.join('&')
 params[:mac] = OpenSSL::Digest::MD5.hexdigest(secret + message)

 ## Then send the request via something like...
 HTTP.post 'api.example.com/v3', params

 # SERVER SIDE

 ## Grab the user credentials out of the DB
 user = User.find(params[:user_id])
 secret = user.secret

 ## Get the MAC out of the request params
 challenge_mac = params.delete(:mac)

 ## Calculate the MAC using the same method the client uses
 message = params.each.map { |key, value| "#{key}:#{value}" }.join('&')
 calculated_mac = OpenSSL::Digest::MD5.hexdigest(secret + message)

 ## Compare the challenge and calculated MAC
 if challenge_mac == calculated_mac
 # The user authenticates successfully, do what
 # they ask
 else
 # The user is not authenticated, fail
 end

With
a basic understanding of how md5 works, this is a perfectly
reasonable implementation of API authentication.
That looks secure, right? Are you sure?

It
	turns out that this scheme is vulnerable to what's called a length
	extension attack.

Briefly:

		If
	you know the value of md5('foo'), due to the way md5 works, it's
	trivial to compute md5('foobar'), without knowing the prefix 'foo'.

	
	So
	if you know the value of md5('secretfoo:bar'), it's trivial to
	compute md5(secretfoo:bar&bar:baz) without knowing the prefix
	'secret'.

	
	This
	means that as long as you have one example of a signed message, you
	can forge signatures for that message plus any arbitrary request
	parameters you like and they will authenticate under the above
	described scheme.

Any
developer who didn't know about this beforehand would have easily
been caught out. The developers at Flickr, Vimeo and Remember the
Milk rolled this out to production.

The
point isn't that you should know about every esoteric detail of the
internals of cryptographic functions. The point is there are a
million ways to mess up cryptography, so don't touch it.

Not
convinced? OK, let's try fixing this example and see if we can make
it secure...

Message
Authenticating with HMAC

You
hear about this security vulnerability via your friendly
neighbourhood whitehat and he recommends that you use a Hash-based
Message Authentication Code or HMAC to authenticate your API
requests.

Great!
HMAC's are designed for our use case. This is a drop-in replacement
for what you were doing to verify the signature before. Our server
verification code can now look like this:

 require 'openssl'

 ## Grab the user credentials out of the DB
 user = User.find(params[:user_id])
 secret = user.secret

 ## Get the MAC out of the request params
 challenge_mac = params.delete(:hmac)

 ## Calculate the HMAC
 ## We'll do the same thing on the client when we
 ## generate the challenge
 message = params.each.map { |key, value| "#{key}:#{value}" }.join('&')
 calculated_hmac = OpenSSL::HMAC.hexdigest(OpenSSL::Digest.new('md5'), secret, message)

 ## Compare the challenge and calculated MAC
 if challenge_hmac == calculated_hmac
 # The user authenticates successfully, do what
 # they ask
 else
 # The user is not authenticated, fail
 end

end

That
looks secure, right? Are you sure?

It
turns out that the verification code above is vulnerable to a timing
attack that allows you to guess the correct MAC for a given message.

Briefly:

		For
	a given message, attempt to send it with a HMAC of all one single
	character. Do this once for each ASCII char (e.g. 'aaaa...',
	'bbbb...', etc.).

	
	Measure
	the time each request takes to complete. Since string equality takes
	a tiny bit longer to complete when the first char matches, the
	message that takes the longest to return will have the correct first
	character.

	
	Smooth
	out noise from latency in two ways:
	

		Run
	a couple of hundred or thousand requests for each guess to get an
	average time.

	
	Run
	your timing attack code from within the same data centre. If you're
	having trouble determining the data centre, in the worst case you
	can spin up a box at each of the major providers and find out which
	box takes significantly less time to ping the target server.

	
	Once
	you've determined the first character, repeat for the second by
	changing the second char
	onwards (e.g. if 'x' is the first char, try 'xaaa...', 'xbbb...',
	etc.).

	
	Keep
	going until you have the whole HMAC.

	
	Using
	the above defined technique, you can reliably determine the HMAC of
	any message you want to send to the API and authenticate
	successfully.

Again,
perhaps you didn't know about timing attacks and you're not expected
to. The point isn't that you should have known the details of
specific vulnerabilities and watched out for them. The point is that
there are a million ways to mess up cryptography, so don't touch it.

All
the same, let's go ahead and try to make this more secure...

Verifying
HMACs in a time-insensitive way

You
get around timing attacks by comparing the sent and computed MAC in a
time-insensitive way. This means you can't rely on your programming
languages built in string equality operator, as it will return
immediately when it finds a single character difference.

To
compare strings, we can take advantage of the fact that any byte
XORed with itself is 0. All we have to do is XOR each byte from
string A with the corresponding byte from string B, sum the resulting
bytes and return true if the result is 0, false otherwise. In Ruby,
that might look like this:

 require 'openssl'

 ## Time insensitve string equality function
 def secure_equals?(a, b)
 return false if a.length != b.length
 a.bytes.zip(b.bytes).inject(0) { |sum, (a, b)| sum |= a ^ b } == 0
 end

 ## Grab the user credentials out of the DB
 user = User.find(params[:user_id])
 secret = user.secret

 ## Get the MAC out of the request params
 challenge_hmac = params.delete(:hmac)

 ## Calculate the HMAC
 ## We'll do the same thing on the client when we generate the challenge
 message = params.each.map { |key, value| "#{key}:#{value}" }.join('&')
 calculated_hmac = OpenSSL::HMAC.hexdigest(OpenSSL::Digest.new('md5'), secret, message)

 ## Compare the challenge and calculated MAC
 if secure_equals?(challenge_hmac, calculated_hmac)
 # The user authenticates successfully, do what
 # they ask
 else
 # The user is not authenticated, fail
 end

That
looks secure, right? Are you sure?

I
doubt it. It marks the edge of my knowledge in terms of potential
attack vectors on this sort of scheme, but I'm not convinced that
there's no way to break it.

Save
yourself the trouble. Don't use cryptography. It is plutonium. There
are millions of ways to mess it up and precious few ways of getting
it right.

P.S.
If you must verify HMACs by hand and you have activesupport handy,
you'll get that time-insensitive comparison from using
ActiveSupport::MessageVerifier. Don't code it from scratch, and for
crying out loud don't copy-paste my implementation above.

P.P.S.
Still not convinced? Do the Matasano Crypto Challenges
[hn.my/matasano]
and
see if that doesn't change your mind. I'm not half way through and
I've already had to get in touch with two former clients to fix their
broken crypto. §

Najaf
Ali is an independent technical consultant based in London, UK. He
helps startups and small businesses build better software.

First
appeared in hn.my/crypto
(happybearsoftware.com)

Nginx for Developers: An Introduction

By KYLE MACDONALD & JEFF
ESCALANTE

If you are a
web developer, you’ve probably heard of nginx (pronounced
engine-x). Nginx is a fast and extremely powerful http and reverse
proxy server that can be used to quickly and easily serve webpages.

Unfortunately,
like many sysops tools, there is very little documentation and very
few tutorials that explain how it works and how to get it up and
running. There is a wiki, which is extensive and confusing, showing
you all possible options rather than presenting the important ones as
you need them. After struggling with it myself for a bit, I finally
got down the basics of how to work with nginx, and wanted to share it
so that other developers would have an easier time picking it up.

So let’s dive
right into it. For this tutorial, you’re going to want a VPS of
some sort, preferably fresh so that you can avoid potential conflict
with other old setups etc.

Initial
Setup

Assuming you
are running an Ubuntu box, once you have set up your login and have
apt updated, just run apt-get install nginx and everything should
install cleanly. Visit your server’s IP address in a web browser
and you’ll see the “welcome to nginx” message. Great success.

Finding
nginx

When nginx is
installed (through apt), it provides a solid basic structure for how
to set up your config files. All nginx config files are located in
/etc/nginx, so cd there and poke around. The place you’ll want to
add new configurations is the sites-enabled folder. If you check this
folder out, you’ll find that there’s a single text file called
default in there, and opening that up you’ll see an nginx
configuration and the code that causes the “welcome to nginx”
page to display. Now let’s make our own config file with the bare
basics to display a page. Touch a new file inside sites-enabled
called ‘test’, open it up in your text editor of choice, and
let’s get to it.

Note: You'll
also find a /etc/nginx/sites-available directory. If you find
yourself managing many different sites that are coming up-and-down,
this folder can help keep things organized. Add your nginx
configuration files here instead and then symlink them to
sites-enabled. This command might look something like this...

ln -s /etc/nginx/sites-available/dotcom /etc/nginx/sites-enabled/dotcom

Only
configurations in sites-enabled will actually be public to visitors,
but you may want to keep some configurations in sites-available for
archival and symlinking purposes.

Configuring
a Static Server

Nginx config
files use their own language, but the good news is that it’s super
simple. Much like css, namespaces are declared followed by a block
which is bound on either side by curly braces. The top level block we
want to enter is server, which would look like this:

 server {

 }

Inside this
block, we can, again much like css, add key-value pairs followed by
semicolons, or (more like sass), we can add a nested block. We’ll
be doing both of these for the basic setup, and it should be no
problem to follow.

There is a
ridiculous amount of possible key-value pairs or blocks we can add
(called directives; I’ll be referring to them this way through the
rest of the tutorial), and if you jump into the documentation
[wiki.nginx.org/DirectiveIndex], you will find a few hundred. For a
basic server setup though, only a few are important to know, and
we’ll go over those here. I’ll include links to the official
nginx docs for each directive we go over if you are interested. Since
the official docs are the only official way to get around nginx, it’s
important to become familiar with how they work if and when you want
to set up something more advanced later.

listen

This
directive specifies the port that your server will listen at. If you
have ever worked with rails, you’d know that the local server runs
on port 3000. Roots runs on port 1111. SSL runs on port 443. The
default port for the internet is 80, so if there’s no port in a
url, that means it’s 80. Since you are likely trying to run a
production server here, it’s likely that you will be after port 80,
so let’s enter that here.

 server {
 listen 80;
 }

Note that this
is the default and is not strictly necessary to enter, but it’s
good to do it anyway in this case to show what’s going on. Bam,
first directive written. Feels great. Let’s keep rolling.

server_name

This directive
is essentially a matcher for the url bar. Whenever any sort of
request comes in to nginx, it takes a look at the url and looks for a
server block that has a matching server_name directive. So if your
site was at http://example.com, your server_name for the root would
be example.com. If you used an A Record to also route
http://snargles.com through to your server, you could add another
server block with a server_name of snargles.com, and that block would
match requests coming in from that domain.

This is quite
powerful. If you think about it, this means you can host numerous
sites, even coming from different domains, on a single nginx
configuration. All you have to do is set up an A Record that points
the domain to your box’s IP, then sort out the rest with nginx
server configs.

It’s worth
noting two more interesting aspects of server_name. First, you can
use this directive to also deal with subdomains. If you want to match
http://test.example.com, you can easily do this, and even map it to
an entirely different app. Second, you can perform some wizardry with
the value of server_name. You can use both wildcards, indicated by *,
or regular expressions to match routes. As you can imagine, this can
be extremely powerful. Let’s write a quick config for the root
domain of example.com.

 server {
 listen 80;
 server_name example.com;
 }

Sweet. Only a
couple more directives till we can get our site in production.

root

This is the key
to serving static sites. If you are just trying to lay down some html
and css, the root directive specifies the directory that you have
stored your files in. I like to store my sites in /var/www, so let’s
go make a folder there. Just mkdir a folder called /var/www/example,
and inside this, touch an index.html file and add a paragraph saying
‘hello world’ or something. Now that we’re good, let’s get
back to our config and add our new document root:

 server {
 listen 80;
 server_name example.com;
 root /var/www/example;
 }

Now that we’ve
got the basic variables set, let’s actually listen for hits to a
specific route.

location

Location takes
two parameters, a string/regex and a block. The string/regex is a
matcher for a specific location. So if you wanted anyone who went to
example.com/whatever to hit a specific page, you would use ‘whatever’
as the uri. In this case, we are just trying to match the root, so we
can use / as the uri here. Let’s fill in an empty block for now,
which we will complete in a second.

 server {
 listen 80;
 server_name example.com;
 root /var/www/example;

 location / {

 }
 }

Note that
the first parameter has a number of options which you can see in the
linked documentation, and that the ability to match by regex is quite
powerful. Inside that block, we want to actually route to the result
page. Also note that this / uri will match all urls, since it’s
treated as a regex. If you want a location
block to match only an exact string, you can preface it with an
equals sign, as shown below. But in this case, it’s ok for it to
match all urls.

 location = / { ... }

Now to fill in
that block from before.... We can use another directive inside the
block to serve a file called try_files. Try files takes a list of
filenames or patterns that it will try to find in you root directory,
and it will serve the first one it finds. For our simple static
server, we want to try to find a file with the name of ‘whatever’
after the slash, like ‘whatever.html’. If there is nothing after
the slash, it should go for index.html. There are a few other
technical aspects to how you write these which are laid out in the
docs linked above; here’s a very simple implementation.

 server {
 listen 80;
 server_name example.com;
 root /var/www/example;

 location / {
 try_files $uri $uri/ /index.html;
 }
 }

Now you might
ask yourself, where did this $uri business come from? Well, that’s
the magic of nginx. As soon as that request comes in, nginx makes a
bunch of variables available to you that hold information about the
request. In this case uri is exactly what we were after. So let’s
walk through the list.

		Request
	comes in for http://example.com, nginx fields it.

	
	nginx
	finds the server block with a server_name of example.com, and picks
	this one to handle the request.

	
	nginx
	matches the request against any location blocks present. Since the /
	block matches anything after the root domain, we have a match.

	
	Inside the
	matching location block, nginx decides to try serving a file up.
	First, it looks for a file named nothing, since uri maps to nothing
	in this case—no luck. Then it looks for a directory called
	nothing, still no luck. Finally, it looks for /index.html within the
	root directory, /var/www/example, and finds that file. It then
	serves it up to you.

Now try to
imagine the flow if we were to add a test.html file to the root
directory and go to http://example.com/test.html. Then try it and see
what happens.

Note that you
can twist this configuration any way you want. For example, on
carrot.is, we have it configured so that when you hit a filename
without the .html extension, try_files looks for $uri.html and
matches that as well. So you could go to http://carrot.is/about as
well as http://carrot.is/about.html, and they would both return the
same document. The amount of wizardry you can do with the server
config is limited only to your crazy ambitions.

Ship It

Okay, so what
have we actually done here? What we've done is that we've added a
server declaration to nginx's configuration. When nginx runs, it
slurps up all of the configuration files you have put into
/etc/sites-enabled and uses those to know what to display to your
viewers. But wait! If you stopped here, you might not be able to see
your new server—this is because nginx doesn't quite know about your
new changes yet. To get nginx to know about your new configuration
you need to reload nginx so that it can pull in your new
configuration. The easiest way to do this is to run

 service nginx reload

Note: This
service command actually just aliases to running the reload command
on the configuration files that apt installed into your server's file
system. In this example it aliases to /etc/init.d/nginx reload.

Another thing
you may want to do is test your configurations to assure they are
valid. To do this simply run, service nginx -t.

Then just visit
your server's IP address again and you should see your shiny new
page! §

Kyle
MacDonald — Chief Technology Officer and Partner at Carrot
Creative. Kyle drives all technology decisions and leads development
on client projects — crafting an end-to-end experience for users
and translating that into code. Kyle has successfully launched
digital projects for clients including: Red Bull, Target, Disney,
Crayola, The Home Depot, Ford, Budweiser and more.

Jeff Escalante — With a
strong background in neuroscience, user experience, graphic design,
and programming, Jeff is a Developer at Carrot. He made roots
[roots.cx] — integral to the Carrot
site [carrot.is], and is a front-end
specialist. For more see, github.com/jenius

Carrot is a
full-service digital agency headquartered in Brooklyn, NY.

First
appeared in hn.my/nginxintro
(carrot.is)

Breaking a Toy
Hash Function

By CRAIG GIDNEY

You
probably know that hash functions can be used to protect passwords.
The idea is that someone with access to the hash can’t figure out
the corresponding password, but can use the hash to recognize that
password when it is received. This is really, really useful in cases
where attackers have access to your source code and your data.

For
example, consider WarCraft 3 maps (essentially little self-contained
games). Maps specify terrain, units, code, etc. but can’t access
the internet, the file system, or even the current time. Anyone who
has a map knows every detail of how it works, if they care to look.
If you want to make a map that recognizes a password, perhaps to give
yourself some sort of unfair admin powers as a joke, you’ll want to
protect that password so that people who look inside the map won’t
be able to play the joke on you.

In
fact, years ago, I happened across exactly that sort of thing: a bit
of JASS code that hashes the user’s name and a password in order to
recognize the map maker and a couple of their friends. However, the
hash function being used was created by a friend of the map maker. It
is not a standard cryptographic hash function.

One
of the standard refrains in cryptography is “Do not write your own
crypto.” Given that this person wrote their own crypto, I wondered
if I could break their hash function. I tried a bit and gave up, but
the problem stayed in the back of my mind. Every year or so I’d get
the urge to go back and try again, waste a day messing with it, and
give up again.

This
year, I finally succeeded. I reversed the password, and all three
usernames.

Note
that I am not a cryptographer. The way I broke this function is
probably… naive. I assume that, to a real cryptographer, this
function is a toy to be crushed in an hour (“Ha! Just use X!”).

Nevertheless,
I broke the hash function and I’m going to explain how.

The
Hash Function

Given
that most readers won’t know the intricacies of obfuscated JASS,
I’ve taken the liberty of translating the hash function to C#:

 static Tuple<Int32, Int32> Hash(string text) {
 var charSet="abcdefghijklmnopqrstuvwxyz
 ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789
 `~!@#$%^&*()_+-=|[];',.{}:<>? ";
 Int32 a = 0;
 Int32 b = 0;
 foreach (var letter in text) {
 var e = charSet.IndexOf(letter);
 if (e == -1) e = charSet.Length + 1;
 for (var i = 0; i < 17; i++) {
 a = a *-6 + b + 0x74FA - e;
 b = b / 3 + a + 0x81BE - e;
 }
 }
 return Tuple.Create(a, b);
 }

As
you can see, the state of the hash function is made up of two 32-bit
signed integers (a,b) that both start out as 0. The input is a
sequence of characters, drawn from 93 possibilities. Each character
from the input is mixed into the state over a progression of 17
rounds and, when the last character has been mixed in, the result is
just the final state of (a,b).

Note
that addition and multiplication are unchecked (e.g. Int32.MaxValue+1
= Int32.MinValue, Int32.MaxValue*2 = -2) and division rounds towards
0 (e.g. -4/3= -1, 7/3 = 2).

In
addition to the hash function, here is translated code to verify that
a username/password combination is valid:

 static bool Verify(string username, string password) {
 var expectedPassHash = Tuple.Create(-0x20741256, -0x4A579222);
 var expectedNameHashes = new[] {
 Tuple.Create(-0x52BEB283, -0x733C9599),
 Tuple.Create(0x605D4A4F, 0x7EDDB1E5),
 Tuple.Create(0x3D10F092, 0x60084719)
 };

 var passHash = Hash(password);
 var nameHash = Hash(username);
 return password.StartsWith("<+")
 && passHash.Equals(expectedPassHash)
 && expectedNameHashes.Contains(nameHash);
 }

As
you can see, both the valid usernames and the valid password are
protected by hashing them. Also, the first two characters of the
password are included in the code.

Side
Note: Although it might seem dumb to give away some of the password's
characters, it's actually a good idea given the context. The prefix
is used as a filter for the chat event that triggers the hashing, to
avoid hashing every single chat message said by anyone. The filter
also allows the game to avoid secretly sharing all team messages with
opponents. (They need to know something matching the filter was said
in order to run the chat event trigger, and they need to know what
was said in order to feed the right information into the hash
function. Otherwise they can't advance in lockstep.)

Our
goal is to find a username and a password that make Verify return
true.

Leaking
Entropy

The
first thing to notice about the above function that suggests it
should be easy to break, is that it leaks entropy. It is using
non-reversible operations, which decrease the number of states the
system might be in.

To
make it easier to talk about that, here's a spread out version of the
internal loop, with the multiplication by -6 factored and the
division by 3 split into rounding followed by inverse-multiplying.

 a *= 2;
 a *= -3;
 a += b;
 a += 0x74FA;
 a -= e;
 b -= b % 3; // round to multiple of 3, towards 0
 b *= -1431655765; // multiplicative inverse of 3 (mod 2^32)
 b += a;
 b += 0x81BE;
 b -= e;

When
working in modular arithmetic, some multiplications are reversible
(do not leak entropy), but others aren't.

Multiplying
a 32-bit integer by 3 does not decrease the amount of entropy because
it is reversible. Every input state corresponds to exactly one output
state. You can even efficiently run the operation backwards by
multiplying by the modular multiplicative inverse of 3. The
multiplicative inverse of 3 is 3 · 1= -1431655765 (mod 232) because
multiplying them together gives a result equivalent to one: 3 · 3-1
= 3 · -1431655765 = -42846795 = -232 + 1 = 1 (mod 232).

Multiplying
by 2 is NOT reversible. It does decrease the amount of entropy. This
happens because (x + 231) · 2 = x · 2 + 232 = x · 2 (mod 232),
meaning both inputs of either x or x + 231 are collided into the
single output of 2 * x. In the worst case this limits the possible
number of output states to be half the number of input states,
destroying 1 bit of entropy. Many inputs map to one output, so the
operation is not reversible and leaks entropy.

The
other non-reversible operation is rounding to the nearest multiple of
3 towards 0. In the worst case this destroys about 1.5 bits of
entropy, reducing the number of possible states by about a third.

These
leaks occur every single round, and it's possible for their
cumulative effects to be very bad. It's a bit like those "mixing
tank" problems you solve when learning differential equations,
except the input mixture keeps changing color. If the tank is leaking
then the contributions of the early colors to the average color
decrease exponentially, instead of linearly, as more colors are
added.

These
leaks make me suspect that earlier values are in danger of 'diluting
away.' Every round destroys a couple bits and replaces them with
mixtures of the remaining entropy. Later values don't get destroyed
and mixed much, but early ones do. Maybe, to find a preimage, I only
have to care about the last few characters instead of all the
characters. Maybe, to find a collision, I can significantly increase
my chances by adding the same long suffix to any two starting
strings.

It
turns out that these leaks weren't devastating, but they really
shouldn't have existed in the first place. Fixing the leak caused by
multiplying by -6 is as easy as changing 6 to 7. Fixing the leak
caused by rounding to a multiple of 3 is also easy: just remove the
rounding.

Wait,
no, that last idea is terrible.

Almost
Linear

All
of the operations in the hash function, except rounding to a multiple
of three, are linear. They distribute over addition.

If
we removed the rounding operation, the contributions of every input
could be separated and reduced to a single multiplicative constant
that depended only on the position relative to the end of the string.
Each input value would be multiplied by the constant corresponding to
its position, you'd sum up the products, and that'd be the result of
hashing. Suddenly, finding an input that hashes to a given value
would be like solving the subset sum problem, and there'd be all this
structure we might be able to take advantage of to save huge amounts
of time.

Fun
fact: if you fixed the entropy leak due to the rounding (by removing
it), but didn't fix the leak due to the multiplication by -6, you'd
have made things far, far worse. The constants corresponding to
positions would keep gaining factors of two. Ultimately, only the
last four characters would get non-zero corresponding constants and
collisions would be somewhat easier to find.

It's
interesting that the operation that rounds b to be a multiple of
three affects the state very little. It offsets it by at most 2, but
that little tweak is the only reason reversing the hash function is
difficult. Of course, in a properly designed hash function, the
non-linearities are reversible and their effects are not tiny tweaks
to state (e.g. they might XOR a into b instead of adding a into b,
presumably flipping half of b's bits).

The
fact that the non-linearity is so small made me wonder if I could
just apply integer programming to the problem. Presumably integer
constraint solvers are super-fast when there's this sort of
regularity. That did not go well.

Integer
constraint solvers are not designed with modular arithmetic in mind.
Every solver I used failed to reverse even three of the seventeen
rounds needed to process a single character, because the solutions
required values that exceeded the solvers' valid range. Confusingly,
the solvers mostly just claimed "no solution". The only
solver that actually told me I was going out of range, instead of
pretending there was no solution, was IBM's CPLEX. I hereby award
them one competence point.

I
also tried extracting the non-linearities by rearranging the code by
hand. I took this way, way too far before giving up.

Meet
in the Spring

Eventually,
I figured maybe I should try the obvious thing and brute-force the
answer.

First,
I tried just enumerating all inputs. This starts getting pretty slow
once you get to five characters, since there are 93 possibilities for
each character and 935 = 6956883693 ≈ 1010. With that many
possibilities to check, every additional operation needed to check a
single possibility is adding at least a second to your running time
(and hashing involves hundreds of operations). At six characters that
goes up to a hundred seconds per operation, and you'll be left
waiting for days.

Second,
I tried to meet in the middle.

Because
the entirety of the hash function's state is used as its output, it's
possible to run it backwards
(this is slower, though). Just do the inverse of each operation. This
allows you to explore both forwards and backwards, while trying to
find common middle states.

To
say that this gives a performance boost is a bit of an
understatement. Instead of using almost a trillion hash operations to
try all possible six character strings, we're only going to spend a
million hash operations and a million reverse-hash operations. The
million hash operations are used to try all possible three character
prefixes, building a dictionary that takes a reached state and tells
you the prefix
that reaches it. The million reverse hash operations are used to try
all possible three character suffixes, telling you which intermediate
states can be reached by exploring backwards from the end state. If
there's a path from the start point to the end point, then one of the
states reached by traveling backwards will be in the dictionary, and
you're done.

I
used meeting in the middle to go from searching all five character
strings to all six character strings. I didn't bother with seven
because my machine would go out of memory trying to store all the
four-character states.

Third,
I decided to use a bloom filter instead of a dictionary to store the
middle states. Now, instead of immediately getting a solution when I
found a match in the middle, each match was a possible solution that
I could verify later on by re-exploring the possible prefixes.

Why
is it worth sacrificing the immediate result to go from three
'cached' rounds to four cached rounds? Because every cached round is
effectively a 100-fold speedup. I could even have gone to five cached
rounds, if my machine had more than 4 gigs of memory (the bloom
filters had to be quite large to accommodate the hundreds of millions
of items while maintaining low false-positive rates).

Fourth,
I tried tracking integer constraints. I knew a lot of constraints
that intermediate states had to satisfy, so I checked them constantly
and discarded states that didn't fit. When I measured how much this
was reducing the search space, it was a staggering 50% per
reverse-round. I assumed most of this was being burned countering the
search space increasing as irreversible operations had multiple
possible inputs.

At
this point I found my first result, which I could have found earlier
if I'd just let things run longer. One of the usernames only had
seven characters: "Procyon". However, I was still hitting a
massive time investment wall. Checking all those constraints took
time.

Then
I realized the 50% reduction in search space from the constraints was
wrong. It turned out that the constraints were just catching what
would have been caught by the very next reverse-multiplication or
reverse-division-by-3. The constraints were actually achieving a...
0% reduction. Whoops. Removing them sped things up quite a bit,
allowing me to search all 9 character strings.

Finally,
I realized that I should switch the direction of caching. Going
backwards was more expensive than going forwards, and I was
memory-limited to caching fewer rounds than I was exploring from the
other direction. Caching the results of going backwards, instead of
going forwards, would reduce the amount of reverse hash operations
and allow me to search all strings up to ten characters as long as I
was willing to wait a couple days while my laptop chugged away.

Collision

We've
finally reached the weakness I ultimately used to beat the hash
function: the size of its output.

The
output size is 64 bits, which allows a bit more than 1019
possibilities. I can search through every string up to ten characters
(with 93 possibilities per character), which is 9310 possibilities.
That's about five times 1019.

Right.
At this point it doesn't matter how long the real password is. By
pure brute luck, I'm going to stumble onto strings that hash to the
same thing.

My
work is done. I just need to let the computer churn.

Code

This
is the code I used to break the hash function:

 /// Returns a given start state and a sequence of values of the given length that reach the given
 /// end state. If not such sequence exists, returns null.
 public static Tuple<HashState, int[]> Break(HashState end,
 int assumedLength,
 IEnumerable<HashState> startStates) {
 // generate bloom filter going backwards from end
 var numExpandBackward = (assumedLength - 1).Min((assumedLength * 2) / 3).Max(0).Min(4);
 var filter = HashStateBloomFilter.GenReverseCache(end, numExpandBackward, pFalsePositive: 0.0001);

 // explore forward from starts to filter, discard states that don't match
 var possiblePartialSolutions =
 from start in startStates
 from midStateAndData in start.ExploreTraceVolatile(assumedLength - numExpandBackward)
 where filter.MayContain(midStateAndData.Item1)
 select new { start, data = midStateAndData.Item2.ToArray(), end = midStateAndData.Item1 };

 // base case: not enough length to bother meeting in the middle.
 // Partials are actually complete solutions.
 if (numExpandBackward == 0) {
 return possiblePartialSolutions
 .Select(e => Tuple.Create(e.start, e.data))
 .FirstOrDefault();
 }

 // we don't want to wait for all possible partial solutions before checking. That would take
 // tons of memory. we also don't want to check after every single possible partial solution,
 // because that's expensive. so we partition possible solutions and check whenever there's
 // enough to make it worth the time.
 var partitions = possiblePartialSolutions.PartitionVolatile(10000);

 // complete any partial solutions
 var solutions =
 from partition in partitions
 let partialSolutionMap = partition.ToDictionary(e => e.end, e => e)
 // recursively solve the gap
 let secondHalf = Break(end, numExpandBackward, partialSolutionMap.Keys, true)
 where secondHalf != null
 // Anything reaching here is a solution. Combine it with the first half and return it.
 let partialSolution = partialSolutionMap[secondHalf.Item1]
 let start = partialSolution.start
 let data = partialSolution.data.Concat(secondHalf.Item2).ToArray()
 select Tuple.Create(start, data);

 // actually run the queries
 return solutions.FirstOrDefault();
 }

The
above code makes a bloom filter containing states that can reach the
end by adding a suffix of some length (up to 4). It then iterates
over prefixes of the complementary length, noting any that match the
filter. Once it has ten thousand matching prefixes, or runs out, it
recursively tries to break the gap from the states reached by
matching prefixes to the end state. If it finds a way to break the
gap, the correct prefix is paired with the gap solution in order to
make a full solution. Otherwise it keeps going until it runs out of
prefixes.

Note
that the code is not optimized very much. In particular, it's using
Linq queries instead of the equivalent imperative code. As far as I
know, neither the C# compiler not the .Net jit optimize them
particularly well, and so the code is paying for tons of virtual
function calls when it doesn't have to. On the other hand, the
equivalent imperative code is stupidly hard to get right because you
end up mixing everything together in a big jumble. (I spent my time
doing other things while the computer did the tedious work.)

Solutions

After
about two days of computing, and one dead laptop, the code returned a
password that matched the
password hash. The password is "<+nt1AkgbMht" (or
rather, <+nt1AkgbMht is a string that hashes to the same thing as
the true password). If you're wondering why the password has 12
characters, when I said I was searching 10, recall that the first two
characters of the password were given away in the JASS code. I
searched 10 additional characters.

(It's
tempting to pretend I didn't know those two characters, because 9312
≈ 1024, so I could say I literally searched a trillion trillion
possibilities.)

After
another three days, I had both remaining usernames. These are clearly
collisions, instead of the actual names, but here they are
nonetheless: "hRlGz%W3&R" and "b>4FXV'Xf8"
match the first and third hashed usernames respectively (the second
was "Procyon").

My
Reward

With
the solutions in hand I can finally download Phase Killer, play it in
single player with a profile called "Procyon", say
"<+nt1AkgbMht" and see... a red "VALID"
message.

Worth
it.

Summary

Things
we've learned about writing hash functions:

		Don't
	write your own hash function.

	
	Don't
	leak entropy. All round operations should be reversible.

	
	Don't
	use the hash's entire state as its result. Running backwards from
	the result should be hard. (See also: length extension attack.)

	
	Use
	non-linear combinations of operations and apply them a lot. The
	effects of each input should be difficult to separate. (See also:
	avalanche effect.)

	
	Have
	a result with lots of bits. Collisions should be hard to find. (See
	also: birthday attack.)

	
	Don't
	write your own hash function (except for fun). §

Craig
Gidney is a computer scientist who started his adventure making maps
and mods for Starcraft and Warcraft III. He works at Twisted Oak
Studios, a software consulting cooperative in Halifax, Nova Scotia. A
software developer to the core, he enjoys coding both personally and
professionally, in theory and in practice.

First appeared in hn.my/toyhash
(twistedoakstudios.com)

The
Unprofitable SaaS Business Model Trap

By JASON COHEN

Marketo
filed for IPO with impressive 80% year-over-year growth in 2012 and
almost $60M in revenue.

Except,
they lost $35M. WTF?

It’s
not impressive when you spend $1.60 for every $1.00 of revenue,
force-feeding sales pipelines with an unprofitable product.

Don’t
tell me this is normal for growing enterprise SaaS companies. I know
the argument: The pay-back period on sales, marketing, and up-start
costs is long, but there’s a profitable result at the end of the
tunnel. Just wait!

Bullshit.
Eloqua was also a SaaS company, also selling to enterprise and
selling the same product in exactly the same space. It was also
tightly integrated with Salesforce.com, and IPO’ed with a $5M loss
on $71M in revenue — a 7% loss instead of Marketo’s massive 60%
loss.

So
no, this upside-down business model isn’t what a SaaS business
should construct. I wish the modern startup community would
understand the mindset that gets a company to this point, and resist
it.

The
mindset works like this:

		It
	costs a lot of money to land an enterprise customer: marketing,
	sales, legal, account management, on-boarding, technical guidance,
	training, etc. And how many times do you run through that process
	and still lose the customer? So these costs are amortized over the
	customers you do land.

	
	SaaS
	companies earn their revenue over time. Whereas a normal software
	company might charge $100,000 for an enterprise deal, and thus
	immediately earn back those “customer startup” costs plus
	profit, the same SaaS deal might be $5,000/month, and it might take
	18 months to get that same amount of revenue. The good news is that
	after those 18 months, the SaaS company still charges $5,000/mo.
	The other company has to bust ass for measly 20%/year maintenance
	fees.

	
	As
	a result, enterprise-facing SaaS companies are unprofitable for the
	first 12-24 months of a given customer’s life.

	
	But,
	a growing SaaS company will be landing new customers and increasing
	numbers, which
	means piling up more and more unprofitable operations.

	
	So
	much so, that even when an older customer individually crosses into
	profitability, there are so many more unprofitable customers, the
	company remains permanently unprofitable so long as it maintains
	healthy growth.

	
	Plus,
	there’s all the other costs — R&D to build the stuff, office
	space, executive salaries, billing, legal, finance, HR, tech
	support, account managers, etc. To actually be profitable, you need
	to cover those costs too. So it takes even longer to be
	bottom-line-profitable.

	
	Therefore,
	it is healthy and reasonable for SaaS companies to be unprofitable
	as long as they’re growing even a little bit.

Early
in a company’s life, this line of reasoning is correct. But at
Marketo’s size, this argument falls apart.

Why,
exactly?

There’s
a tacit assumption that if only we just stopped spending to grow,
we’d be profitable. Thus, this “really is” a profitable
company, and the only reason it’s not is because of growth, which
means market domination, which is a Good Thing.

The
fallacy is: That time never comes. No company stops trying to grow!
The mythical time when growth rates are small so the company reaps
the rewards of having a huge stable of profitable customers never
arrives. When do you “show me the money?”

It’s
worse. Growth becomes harder and harder for SaaS companies because of
cancellations. Even with a great retention rate (e.g., 75%/year),
you have to replace 25% of your revenue with new — which
means unprofitable – customers just to break even in top-line
revenue! More losses, more unprofitability.

Even
with very broad numbers, you can see how this model doesn’t work.
Here’s typical numbers for an enterprise SaaS company at scale:

		1.5
	year pay-back period (i.e., time to earn back the revenue to cover
	all your customer acquisition expenses).

	
	75%
	annual retention (which also means you turn over the entire customer
	base every 4 years. On average, of course — some stay longer,
	many shorter).

	
	30%
	cost to serve the customer (which can also be stated at 70% Gross
	Profit Margin, meaning for every $1.00 of revenue, $0.30 disappears
	in direct costs to service that customer, like servers, licenses,
	tech support, and account management. Many public SaaS companies,
	even the titans like Salesforce.com, are about 70% GPM).

	
	15%
	revenue == cost for R&D department.

	
	15%
	revenue == cost for Admin department (office space, finance, HR,
	execs).

Say
the average customer represents R dollars in annual revenue. That’s:

		$4R
	of revenue over the lifetime of the customer. But:

	
	$1.5R
	is spent to acquire the customer (the pay-back period).

	
	$1.2R
	is spent in gross margin to service the customer (4 years times 30%
	cost).

	
	$0.6R
	spent on R&D (15% over 4 years).

	
	$0.6R
	spent on Admin (15% over 4 years).

So
out of the original $4R, we’re left with $0.1R in profit. That’s
1/40th of the revenue making its way to actual bottom-line
profitability, and even that takes 4 years to achieve.

And
that is without any growth at all. But you need to grow enough to
keep up with cancellations at minimum, so that consumes the last
notion of profitability.

What’s
the solution?

Successful,
profitable SaaS companies at scale (certainly by $30M/year revenue,
but should be paying attention to this stuff by $5M/year), do several
things to make the math work:

		Undo
	the effect of cancellations through up-sells/upgrades.
	Salesforce.com and ZenDesk charge more for every person you add, and
	more per person when you increase the features in your plan. Their
	customers grow (on average). Thus, their revenue over four years is
	not 4R, but rather it might be R on the first year, 1.5R on the
	second, 2R on the third,
	etc., so perhaps 7R in four years. That drastically changes the
	equation, because cost to “acquire” the customer doesn’t go
	up, and in general R&D and Admin don’t either. Taking “rate
	of cancellations” minus “rate of upgrades” is called “net
	churn.” Getting to zero net-churn is a big step in getting
	profitable; the most successful SaaS companies have negative net
	churn. It’s not just pure software companies that achieve this —
	hardware/server SaaS company Rackspace also has negative net churn,
	which enables them to grow revenues 30% year-over-year with $1.5B in
	revenue and $300M in profit.

	
	Use
	viral growth to offset cancellations.
	 Few B2B companies can truly claim “viral growth”
	characteristics. But for the few who do, they can maintain growth
	rates of X%/year where X is much larger than cancellation, and do so
	with very little acquisition costs. In this case, cancellation
	never “catches up,” and you win.

	
	Drastically
	reduce the cost of customer acquisition.
	An 18-month pay-back period is a killer. If customers can be found
	with paid advertising; if they can sign up without talking to a
	sales person; if they can learn the product through in-product
	tutorials, great documentation, and how-to videos; if they can
	import their data without assistance; if they can demonstrate value
	to the purse-string-holders without a sales person writing the
	presentation for them, then the cost of cancellation-replacement and
	proper growth becomes small enough that it’s no longer a barrier
	to profitability, even under conditions of growth.

	
	Drastically
	improve GPM. It’s
	hard for a service-oriented enterprise-sales company to not have
	real costs around tech support, account management, and extensive IT
	infrastructure, which
	is why even the most cost-efficient (and profitable!)
	enterprise-facing SaaS companies often can’t push much past 70%
	GPM (e.g. Salesforce.com, Rackspace). But, companies with extremely
	low-touch customer service (which doesn’t necessarily mean bad
	customer service!) can push it way up (Google, Facebook,
	Freshbooks), unlocking “free money” for profitability.

Another
way to think about these solutions is that a SaaS business cannot
have static fundamental metrics. The metrics themselves need to
improve — lowering cancellation rates, lowering net churn,
increasing GPM, reducing cost to acquire customers. Leaving the
metrics alone, and trying to “grow until profitable” doesn’t
work.

It’s
like the old Jackie Mason joke — A man is selling jackets at cost.
The customer asks “how can you sell at cost, how do you make any
money?” Answer: “I sell a lot of jackets!”

Marketo
is selling a lot of jackets. §

Jason
Cohen is the founder of WP Engine — Heroku for WordPress, after
exitting from three previous companies. He blogs at
blog.asmartbear.com

First appeared in
hn.my/saas (asmartbear.com)

The
Attack

By: SHAANAN COHNEY

I’m
a college student studying abroad at the University of Pennsylvania,
studying a mixture of CS, Physics, and Music. Eager to learn about
the field, I decided to take a course CIS551: Network and Computer
Security this semester. This is the story of how as part of the
course, I compromised the security of one of my fellow students
through social engineering techniques.

For
our final project, the class was divided up into two sets of teams,
attack and defense. About halfway through the project, defense and
attack switched. The role of the defense teams was to construct a
secure network chat client. In plain English, they had to write a
piece of software that would allow two people to communicate over the
internet without fear of wiretapping. The aim of the attack side was
to disrupt or compromise their system.

For
me the excitement came from the attack side. We had learned in class
about ‘social engineering attacks’ as a powerful offensive
security tool. The basic premise according to Wiki is “the art of
manipulating people into performing actions or divulging confidential
information.” A trick of a con-man. This was a perfect opportunity
for me to actually try putting such a technique into practice whilst
still remaining well within the bounds of morality and legality. I
asked for permission and was soon granted it. The eagle was a’ go.

Phase
1: Information Gathering

First
we cross referenced the list of emails on the defense team against
the Penn Directory Database. Once we gained full names and school, we
cross referenced this against publicly available data using a
combination of data mining tools and lookups on social networks such
as Facebook and LinkedIn. These were used to build profiles,
including photos of potential targets. In our attack proposal we also
listed social engineering to warn them of it.

Phase
2: Gaining Rapport/Trust

The
next phase of the social engineering attack involved multiple steps.
The plan was to place a mole outside the classroom in the engineering
building posing as a recruiter from a prestigious company, offering
summer internships! First up was obtaining a domain name and email
address for use in the attack. We picked X (name redacted) to be the
company we would replicate as they are known for being secretive and
security focused. We thus registered Xrecruting.com and had the
address forward to X.com for authentic looks, while using emails
registered to that domain for our purposes.

Next
I waited around the engineering buildings looking for a junior
administrative assistant or janitor and upon finding one, convinced
them that I needed a Penn Lanyard urgently for my senior design
presentation as I had forgotten mine. I was soon granted a lanyard
and next the team photoshopped an X badge with the face of our
‘recruiter’ (another Penn student) in order to simulate
authenticity. We also printed advertising posters to place outside
the classroom for further realism. We then placed our mole outside
the 551 classroom dressed up in an X t-shirt (purchased online) with
the fake badge, the posters, and a laptop set up with a survey. Our
representative advertised summer internships in security. A number of
students from the class fell for it and entered their information in
the survey.

Next
we gained further rapport by reaching out to the targets via email.
First we initiated contact asking for basic details, a resume, etc.:

“This
is Joseph from X, we met earlier today. The team and I are very eager
to find a candidate that fits our openings here… “

It
wasn’t long before our target replied, eager to seize the
opportunity:

“…please
find attached herewith my resume for your kind perusal…I have fair
bit of knowledge in Networks and Network Security.”

The
game was on, he was falling for it! However, it was one thing to have
his trust, but for us to actually use it in some way, we needed to
push this further.

Phase
3: Exploitation

To
exploit our position of power we had many options, some of which
would be pushing the assignment
over the edge. With this level of trust it would be feasible to gain
access to information protecting
online accounts, a very scary thought. However, we decided to go down
a different route and instead convinced them of the need to review
their source code for recruitment purposes. This allowed us to
analyze their code for potential exploits.

“My
team operates mainly on a Java codebase. Do you have any experience
in the area?

We’ll
also get you to submit a few simple coding exercises and perhaps the
code from a previous project to see if you’re a good fit.”

We
exchanged a few more emails back and forth, but it wasn’t really
getting anywhere. I decided to press a little harder being relatively
sure of his trust:

“…In
looking into specifically which project you would be working on, it
would also be good to know if you had any experience in crypto
protocols and defensive infrastructure. In regards to this I have two
questions. Firstly, is there a professor I could contact in regards
to the syllabus and, secondly is there anything that matches this
description that you have engaged in as far as you know…?

Could
you possibly let me know feasible times in the next week for an
interview?

Also,
are there any current projects in Java you are working on for which a
codebase is available for our engineers to review? Even a work in
progress is fine. We’re really interested in seeing material and
your personal projects from this course given the nature of the
internship….”

Finally
we struck gold! A few hours later the following appeared in my inbox:

“Please
find attached herewith 2 Java source code files. (server.java and
client.java)

These
are for a basic chat system application. Further, I and my group
would be adding some encryption techniques in it (I’ll send you
those once we start working on it and progress to some level).”

And
later:

“Hi
Joseph,

Please
find attached herewith 2 Java code files for a chat system with AES
encryption.

Thanks.

Regards.”

In
the final copy they submitted they had hard coded their AES key, this
would be easier than I thought! However this wasn’t quite good
enough. It would still be difficult to intercept their communication,
much less read their messages.

Next
I simulated a discussion between the professor and X granting access
to the ‘recruiter’ to come visit the demo.

“I
have some exciting news and a question for you. I have been informed
by Professor Smith that the class has upcoming demos on
attack/defense and focusing on network vulnerabilities. I have his
permission and now I need yours, to come and watch you demo live….”

“——–
Original
Message ——–Subject: Re: CIS551 Security Recruitment

From:
X <X@cis.upenn.edu>

Date:
Sun, April 21, 2013 11:41 am

To:
“joseph@Xrecruiting.com” <joseph@Xrecruiting.com>

Hi
Joseph

I’d
be happy to let you and your team come visit my students on Monday
during Network Security demos they are undertaking using chat systems
they have coded.”

The
target replied with the affirmative, very eagerly inviting our
recruiter in.

“Yes
absolutely. You are most welcome. It’s this Monday at 4pm in
Engineering Building.

Hope
to see you there.”

“My
contact no. is REDACTED if you need any help with location or
anything.”

Today
being demo day, the stage was all set, and our fake recruiter was
again in place. I had given her my new Wi-Fi enabled camera to stream
a screencap of the enemies messages direct from their screen as they
typed, to where my team was sitting a few meters away.

Throughout
the demo my team acted as all the other attack teams had, using DDoS,
ARP Poisoning and other standard network attacks, to try to
compromise their server. However we really had a trump
card. Both their encryption key and better yet, the plaintext of
their messages.

After
launching our usual slew of attacks on their code (most of which
worked anyway), we closed the demo and went to meet the other team.
When asked if we had any more attacks, I motioned to the recruiter to
pass me the camera and as she handed it over, our opponents faces
took on stunned looks. It took a good few minutes to convince them of
the depth of our attack. Successfully executing this was such an
amazing feeling.

I’ve
not yet received my grade for the course, but I feel that more than
anything this was a fantastic learning experience before I head out
soon to look for a position in industry or for higher study. §

Shaanan
Cohney is a third year Computer Science and Mathematical Physics
student studying at the University of Pennsylvania on exchange from
the University of Melbourne. In his spare time he is working on a
Diploma of Music, and spending many hours toying around with security
systems, both physical and digital.

First appeared in
hn.my/attack
(shaanan.cohney.info)

Procrastination
Is Not Laziness

BY DAVID CAIN

I was going to tackle my
procrastination problem last weekend, but I never got around to it.

By Sunday at 5:48 p.m., I realized I
had blown it again. Throughout the week I feel like I barely have
enough time to cook, eat, tidy up, write an article and do the odd
errand. I lean towards the weekend, when I have two whole days to
finally get some work done. To improve my blog, to catch up on my
correspondence, to get some monkeys off my back like fixing things
that need fixing, organizing things that need organizing, tackling
things that need tackling.

But the weekends go by and I never
catch up. I don’t use the time well. Time is not what I’m short
on, even though that’s what I tell myself all week.

Sometimes I do sit down early in the
day and pound something out, but then I give myself a well-deserved
break and that’s usually the end of any productivity. I end up
clicking aroun d on the internet, then clean up, then cook something,
then watch a bit of a documentary online, then try to work again,
then get distracted. Then I decide to wait until after supper to do
some work, then I start reading something after supper, then if I’m
still home, it’s already after 9:00 so I decide I’ll get an early
start the next day.

I avoid taking on the real important
stuff. I create work of secondary importance so that I never have to
confront the really worthwhile things. When I get on a roll, I back
off and stay backed off. I take breaks that turn into written-off
days. I am addicted to hanging it up for the night, to letting myself
off the hook.

The important stuff doesn’t get done,
at least not before my procrastinatory tendencies have created an
obvious, impending consequence of not doing it, like incurring a
fine, really letting someone down, or getting fired.

So much of what I want to do isn’t
terribly difficult and wouldn’t take a lot of time to get done.
Looking at my projects list now I have items like: book an
appointment for X, send in that change of address form, phone
so-and-so about Y, write a short piece for Z. And many of them have
been sitting there for weeks or months. I have the most bizarre
aversion to tackling things.

Reaching critical levels

To some of you this is already sounding
familiar.

I have lived with this sort of
“productivity lag” most of my life, but it only recently hit me
that it’s not just run-of-the-mill human busyness. Some alarming
patterns have emerged in the past few months. I’ve been feeling
chronic stress for the first time in years. I have been waking up
angry on a fairly regular basis, and that’s not okay.

After a bit of poking around at the
library, it’s become clear to me that I have a pretty serious
procrastination issue. I also learned that procrastination is not
caused by laziness or disorganization, but by deeper psychological
issues, which I’ll touch on a bit later in this post.

As I said, it’s always been a feature
of my life but it’s reached a critical point this year. The
catalyst has been a change in my job. At the end of January I was
dropped into a new role that I neither like nor feel prepared for. My
protests were met with, “You’ll figure it out as you go along;
it’s like this for everyone at first.” I have since worked it
through, mostly, but not before it set off a pretty bad stress cycle
that brought some ugly stuff to the surface.

Honestly, it probably would have been a
much easier adjustment for most people to make than it has been for
me, but my initial uncertainty combined in very ugly ways with my
lifelong phobias of asking for help, admitting ignorance, and talking
to people I don’t know on the phone. Paralysis set in. Stress,
which has been a mostly-dormant force in my life for the last five
years or so, became prominent again.

Once you lose track of the specific
items that are causing you stress, you tend to regard it all as one
big ugly entity that you want to avoid. My unaddressed duties and
grey areas at work became mixed with my unaddressed duties and grey
areas outside of work, to create a stifling mutant stressor that only
leaves me alone while I’m sleeping. All the work I’ve done
towards learning to effect the quality of the day can be easily
short-circuited by my procrastination habit, and that’s what’s
happening right now. It has gone way too far and I am determined to
address the bad habits that let it get this way.

My last few experiments have created
huge changes in the way I operate and the environment I live in. Well
I’m doing a bigger one this time. I’m taking on a problem that
has probably taken more from me than any other behavior. I’ve lost
so many opportunities, relationships, advantages, sources of income
and growth. There is certainly nothing that has caused more suffering
in my life than my propensity to avoid achievement or competition.

For what I’m capable of, I have been
a resoundingly unproductive person. Almost every Sunday night I mourn
another blown opportunity to catch up, and throughout every week I am
leaning towards the next weekend. The weeks fly by, and if weeks are
flying by, so are months. How we spend our days is how we spend our
lives, and I’ve had enough of this.

Monday I’ll formally announce
Experiment No. 11. While preparing for it I did some research on
where procrastination comes from, which was frankly quite alarming to
me and shed a sorely-needed light on why I have had such confounding,
persistent trouble with getting ordinary things done. This post is
quite a bit longer than usual but if you’ve had similar trouble, it
might just shake loose something that’s been stuck for a very long
time.

The real causes of procrastination

Let’s clear something up: I am not
lazy. I have no shortage of energy, I have no interest in lounging on
the couch, I don’t have TV service, I never wear pajamas all day.
Waking up after 7:30 is sleeping in for me, even on a Saturday. I
actually like working.

Yet I exhibit a consistent failure to
work through my day-to-day tasks, errands and projects in any manner
than could be considered timely. Nearly everything must reach some
sort of “scary point” for me to finally move on it. Like when I
waited till the last possible day to submit my lease renewal, even
though I had three months of lead time. In the end it took about
fifteen minutes, but evidently I needed to be a day away from losing
my home in order to do it.

I ended up reading one of the more
highly acclaimed books on procrastination, Neil Fiore’s The Now
Habit. Reading the section on the psychological causes of
procrastination really hit home.

It turns out procrastination is not
typically a function of laziness, apathy or work ethic as it is often
regarded to be. It’s a neurotic self-defense behavior that develops
to protect a person’s sense of self-worth.

You see, procrastinators tend to be
people who have, for whatever reason, developed to perceive an
unusually strong association between their performance and their
value as a person. This makes failure or criticism disproportionately
painful, which leads naturally to hesitancy when it comes to the
prospect of doing anything that reflects their ability — which is
pretty much everything.

But in real life, you can’t avoid
doing things. We have to earn a living, do our taxes, have difficult
conversations sometimes. Human life requires confronting uncertainty
and risk, so pressure mounts. Procrastination gives a person a
temporary hit of relief from this pressure of “having to do”
things, which is a self-rewarding behavior. So it continues and
becomes the normal way to respond to these pressures.

Particularly prone to serious
procrastination problems are children who grew up with unusually high
expectations placed on them. Their older siblings may have been high
achievers, leaving big shoes to fill, or their parents may have had
neurotic and inhuman expectations of their own, or else they
exhibited exceptional talents early on, and thereafter “average”
performances were met with concern and suspicion from parents and
teachers.

This was the part that made my heart
sink when I read it. Not that anybody was trying to make things
difficult for me, but I grew up feeling high expectations from the
adults in my life and myself. For most of my schooling, I was always
in advanced programs, always aced everything, and when I got anything
less than an A, people asked me what was wrong.

I also noticed other kids didn’t get
this treatment. They were congratulated for getting Bs and even Cs.
So from the feedback I got, I learned that a report card (of mine)
with five As and a B was indicative of a shortcoming somewhere, not
success. I’ve written about this before so I won’t get into it
here, but suffice it to say that I learned that the downsides of
being imperfect are far greater than the upsides of being perfect.

Perfectionism breeds pessimism

It was a major revelation to me when I
recognized a year ago that despite my preference for and sensitivity
to the positive aspects of life, I am a pessimist — I have come to
give potential downsides far more weight than potential upsides. This
means that pushing projects ahead is — on the balance — a bad
deal, because unless I’m pretty damn perfect there is much more
pain to be had in doing that than pleasure.

This is obviously an inaccurate
presumption, and I’m intellectually aware of that, but when it
comes down to confronting it “in the field,” it’s amazing how
tricky the mind can be. I have a lifetime of habits routing me away
from striving for prizes in life, and towards protecting myself.

For a procrastinator of my kind,
perfection (or something negligibly close to it) thereby becomes the
only result that allows one to be comfortable with himself. A
procrastinator becomes disproportionately motivated by the pain of
failure. So when you consider taking anything on, the promise of
praise or benefit from doing something right are overshadowed by the
(disproportionately greater) threat of getting something wrong.
Growing up under such high expectations, people learn to associate
imperfection or criticism with outright failure, and failure with
personal inadequacy.

A person who does not have this
neurosis might wish they didn’t make a mistake, whereas the
neurotic procrastinator perceives the error as being a reflection of
their character. In other words, most people suffer mainly the
practical consequences of mistakes (such as finishing with a lower
grade, or having to redo something) with only minor self-esteem
implications, while neurotic procrastinators perceive every mistake
they make as being a flaw in them.

So what they are motivated to do is to
avoid finishing anything, because to complete and submit work is to
subject yourself (not just your work) to scrutiny. To move forward
with any task is to subject yourself to risks that appear to the
subconscious to be positively deadly because part of you is convinced
that it is you that is at stake, not just your time, resources,
patience, options or other secondary considerations. To the fear
center of your brain, by acting without guarantees of success (and
there are none), you really are facing annihilation.

A backlog of avoided tasks accumulates,
and each one represents another series of threats to your self-worth
should you tackle them. So the fear mounts, knowing that there is a
minefield of threats between you and the fulfillment of your
responsibilities. You feel like you must do something and can’t do
that thing simultaneously, which can only lead to a burning
resentment of the people or forces that put you in that impossible
place — your employer, your society, or yourself. A victim
mentality emerges.

Because it is rewarding on the short
term, procrastination eventually takes on the form of an addiction to
the temporary relief from these deep-rooted fears. Procrastinators
get an extremely gratifying “hit” whenever they decide to let
themselves off the hook for the rest of the day, only to wake up to a
more tightly squeezed day with even less confidence.

Once a pattern of procrastination is
established, it can be perpetuated for reasons other than the fear of
failure. For example, if you know you have a track record of taking
weeks to finally do something that might only take two hours if you
weren’t averse to it, you begin to see every non-simple task as a
potentially endless struggle. So a modest list of 10-12
medium-complexity to-dos might represent to you an insurmountable
amount of work, so it feels hopeless just to start one little part of
one task. This hones a hair-trigger overwhelm response, and life gets
really difficult really easily.

All I want

As I mentioned, on Monday I will begin
Experiment 11, which is direct attack on my procrastination problem.
I’ll give you the details then about how I’m going to go about
it.

All my experiments must have a clear
aim. “Dealing with my procrastination problem” is too vague a
goal here. I have to define what specific change I want to make.

What I want to get out of it is very
simple. I want to be able to do something many (most?) people do
every day, and would never consider it a problem:

I want to write down what I’m going
to do the next day, and actually do it.

I am really good at the first half of
that. Planning is something I do very well. I have planned the next
day (or week) thousands of times. I’ve taped it to my door or
bathroom mirror. I’ve set alarms, made promises, left trails of
instructional sticky notes all through my apartment. But I am not
sure if I’ve ever executed one of these plans all the way through.
Honestly, in my 30 years I cannot think of one time I ever did. I
will do anything but the 5 to 10 items I thought would be smart ones
to do.

It’s hard to pinpoint exactly why
I’ll do anything but what I planned, but it’s not that they’re
necessarily difficult tasks. Sometimes they’re so easy that I don’t
feel any urge to do them right away, and therefore can justifiably do
something even easier, like check my email, watch online
documentaries, or try a new recipe.

My adversary is the unconscious
reactive part of my mind, and by now it’s a world-class expert at
manipulating me. It’s like being a prison guard for Hannibal
Lecter. Sure he’s locked up, but he’s Hannibal Lecter.

So that’s my simple, humble dream in
life: to list a few things I’d like to get done and go ahead and do
them. I could take over the world, if I could only learn to do that.
§

David is the author of Raptitude, a
street-level look at the human experience — what makes human beings
do what they do, and what that means in real life. He write sabout
how to make sense of the earth's most ridiculous animal, how to get
better at being one of them.

First appeared in hn.my/procras
(raptitude.com)

aff.png
Without affiliateio..

With affiliate.o.

..~ ¥¥¥

Recruit, track, and promote your business

AFFILIATE.IO

Th st an sy g o e o Visitofiate omocker for discount

pusher.png
YOUR APP
\

P N
e om@

"BUILD REALTIME APPS IN 5 MINUTES"

www.pusher.com

mailjet.png
Zmailjet

EMAIL FOR YOUR APPS

‘- SEND. TRACK. DELIVER. A

Your one stop shop for ALL your email needs.

Manage lists as well. No extra fees for Newsletters.

Priority headers to deliver notifications in real time.

Gofor mailjet

mongolab.png
mongolab

MongoDB-as-a-Service

AMAZON « AZURE » GOOGLE +JOYENT « RACKSPACE

Power your app with the fastest-growing
cloud database service in the world

ebook_html_4f9d4b80.jpg
O begmers guide 15 Emmacs 24 or lter hon?
Sacha O (eswhad sachachos com/begin-ermacs Dz 280

Learn Emace busics G52 Learn other handy s

Bife 4 window wwﬂmm

x (- n (mm Cx o swi SEn.
e R e
Cx Ce qit s () e o B
e %mﬂjuué\n e Szt o
e PRl e
ow 1o select Text
L T e @ Navgation & Search
6o elechon g M ine.
GM.MAWM'\MM“ Wade b
o a6 SIS o e o
u wﬂn-w, o s 3, e o ok
B O el S
C,W?r EoL kT M by of bl
Pl S A R

Extend & aus\nmze %ﬁh‘i

e ko shume, € Nowamidl
e 5@\, oqgr ™ Wi S &
oz fce RET
Vo s o P ol Tem
e Fotig ..‘ o @m"ﬁlm‘:“”
ond then... ;_‘iﬁ @ “‘)"““ﬁ 2 am&mj
editing your </emacs. d/w(e[file! L oS
}# 3y fuaer 7% Thee’s S0 much more!
o & macs, ¢ emacsokiors ekt Snens.
o ¢ Cheet exompls W o=
Focronaiing acimon RS =
e o = iag
““ e ond discover
‘ B sz s Jemace-q s o ctoninatore by exploring!

Gun

ddg.png
Now you can hack on DuckDuckGo

DuckDuckHack

itp: Guckduckhack.com R

Create instant answer plugins for DuckDuckGo

duckduckhack.com

ebook_html_m6fb162e3.png
VALID

ebook_html_m2fb618fa.jpg
HOW TO LEARN EMACS

e adentperor sy’ (B ez]
* Learn Virn ~ e e o e
PR Lt =~
et S o e
Lt Pl

et
around Vim, people won't gue you.
TR R

> g sty it

fopie oo o) E’ﬂ’"“/""

Zemacs

Okau, Onte upu know the basics Why Emacs?
W, s o gt on Lirazimaly cstomzabie
Caeminey Bt 258 o it g by

? Learn how fo learn Ot resoures
@T‘m ore some 0 bocks on Eracs e s

e Hiote

e P

Start with the ba.%vwdubrml instead. e, mf:wmv

Flp - Emcs Torial | (ePE 2 000 50T S
C‘an{ v:e the me

Te The Emacs. M‘arml has h:vge?
s terms i
et ferme W, {0 Sng
m, gt e
oy S o ot
Sorne Hnings rat et bl
Cox s This s haw Kegooard. shorteds
CrE B blten
T pprens Contrl & 5 o the s
@Mys?.‘m,‘mw.é
e S gore g G €
i e)
= Coin (o shows help
W s ot mmards oy s
Mein grest cont rement
(g0 Keyboard shokcut b Wx hapruih horial REY L34
RS

cover.jpeg

