
Issue 42  November 2013

Cocktails For
Programmers

def ruby()
 20.times do
 liqueur { :type => :cocoa, :name =>
:Malibu }
 liqueur { :type => :lychee }
 end
 if liqueur.exist? { :type => :brandy
} then l = :brandy else l = :cognac
 40.times do liqueur { :type => l }
end
 lemon
 ice
end

2  ﻿

Curator
Lim Cheng Soon

Contributors
Ilya Zykin
Vulpyne
Trevor McKendrick
Jack McDade
Job Vranish
Pete Keen
Kerrick Long
Matt Wright
Miles Bader
Stephane Epardaud
Chong Kim

Proofreaders
Emily Griffin
Sigmarie Soto

Ebook Conversion
Ashish Kumar Jha

Printer
MagCloud

Hacker Monthly is the print magazine ver-
sion of Hacker News — news.ycombinator.com, a
social news website wildly popular among program-
mers and startup founders. The submission guide-
lines state that content can be “anything that grati-
fies one’s intellectual curiosity.” Every month, we
select from the top voted articles on Hacker News
and print them in magazine format.
For more, visit hackermonthly.com

Advertising
ads@hackermonthly.com

Contact
contact@hackermonthly.com

Published by
Netizens Media
46, Taylor Road,
11600 Penang,
Malaysia.

Hacker Monthly is published by Netizens Media and not affiliated with Y Combinator in any way.

http://news.ycombinator.com
http://hackermonthly.com
mailto:ads@hackermonthly.com
mailto:contact@hackermonthly.com

  3

For links to Hacker News dicussions, visit hackermonthly.com/issue-42

Contents
FEATURES

04  Cocktails for Programmers
By Ilya Zykin

12  How to Choose a Profitable Niche
By Trevor McKendrick

SPECIAL

16  Why I Play Video Games
By Jack Mcdade

PROGRAMMING

20  Unix Commands I Wish I’d
Discovered Years Earlier
By Job Vranish

24  DNS: The Good Parts
By Pete Keen

31  FTP is so 90s. Let's deploy via Git
instead!
By Kerrick Long

34  How I Structure My Flask
Applications
By Matt Wright

42  What Makes Lua Tick
By Miles Bader

44  What Every Web Developer Must
Know About URL Encoding
By Stéphane Épardaud

54  Using Katas to Improve Your Coding
By Chong Kim

http://hackermonthly.com/issue-42

4  FEATURES

A culinary project for a profes-
sional holiday, “Programmers
Day,” celebrated on the 256th

day of the year.

Ruby
The drink will be sweet, fragrant, and
fresh. This ruby-colored cocktail per-
fectly matches the Ruby logo.

Ingredients
■■ 20 mL Malibu (coconut liqueur)

■■ 20 mL Lychee Liqueur (a fruit)

■■ 40 mL Cognac or Brandy

■■ 150 mL Cherry juice

■■ Lemon

■■ Ice

FEATURES

By Ilya Zykin

Cocktails for
Programmers

Code contributed by Vulpyne

  5

Directions

1.	Add basic ingredients into a tall glass
filled with ice.

2.	Add lemon juice to taste.

3.	Thoroughly mix until the glass is
misted.

4.	Garnish with a slice of orange and a
maraschino cherry.

Code

def ruby()
 20.times do
 liqueur { :type => :cocoa,
:name => :Malibu }
 liqueur { :type => :lychee }
 end
 if liqueur.exist? { :type =>
:brandy } then l = :brandy else l
= :cognac
 40.times do liqueur { :type =>
l } end
 lemon
 ice
end

6  FEATURES

Python
This cocktail looks like a green python.
It must be served fast — its froth dis-
appears quickly. This drink has a fresh
pineapple taste.

Ingredients
■■ 50 mL White Rum

■■ 30 mL Mint Liqueur

■■ 30 mL Pineapple Juice

■■ Juice of half a Lemon

■■ Sprite or 7 Up

Directions
1.	Shake together with ice and strain.

2.	Pour into a glass and add Sprite or 7
Up.

3.	Garnish with a slice of lime.

Code

def python():
 d = Drink()
 d.addIngredient(50, type = 'rum', name = 'white')
 d.addIngredient(30, type = 'liqueur', name = 'mint')
 d.addIngredient(30, type = 'juice', name = 'pineapple')
 d.addIngredient(Lemon.unitsPerFruit() / 2.0, type = 'juice', name =
'lemon')
 while not d.glassOverflowed():
 d.addIngredient(1, type = 'soda', name = 'sprite')
 return d

  7

Severe Perl
Associations: severe, dry, desert, camel.

Ingredients
■■ 30 mL Gin

■■ 20 mL Dry Vermouth Rosso

■■ 20 mL Lemon Juice

■■ 10 mL Syrup

Directions
1.	Shake together with ice and strain.

2.	Garnish with physalis.

Code
Vulpyne: Well, I don’t actually know
Perl and I don’t feel like learning it for
this. So here is my best attempt:

$%!#$#$%^@#$!@#$!@#!%$#$%^#@#$@#$
@#$"gin"
$$#%@#$$%^$%@#$/=|$"dry vermouth
rosso"
""<>.((79348*&("lemon juice"({}
}}}{{}{$$$$"syrup"*#(*#$83 ||
die();

8  FEATURES

JMP (aka Assembler)

Ingredients
■■ 20 mL Jagermeister (herbal liqueur)

■■ 20 mL Midori (melon liqueur) +
Lime

■■ 20 mL Peach Syrup

Directions
1.	Pour all the ingredients with a

bar spoon in a high shot glass
layer-by-layer.

Code
.global _start
.text

_start:
mov $0xfeed, %rax
mov $0x14, %rcx
mov jager, %rdi
cld
rep movmd ; md = make drunk, natu-
rally.
mov $0x14, %rcx
mov midori, %rdi
rep movmd
mov peach, %rdi
mov $0x14, %rcx
rep movmd
jmp $0xfeedface

:jager
.ascii "Jagermeister"
:midori
.ascii "Midori"
peach:
.ascii "peach syrup"

  9

Profit!
Profit! should be sweet and airy. That’s
how we saw this cocktail.

Ingredients
■■ 20 mL Creamy Liqueur

■■ 20 mL Crème de Cassis

■■ 20 mL Triple Sec

■■ Whipped Cream

■■ Cocoa Powder

Directions

1.	Shake together with ice and strain.

2.	Garnish with whipped cream and
dust with cocoa powder (use a sifter
for better results).

3.	Put a cherry on top.

Epic Fail
By design, the lemon and Coke conceal
the taste of alcohol. But if you go too
far, it will be a real epic fail. Be careful
if you want to try something like this!

Ingredients
■■ 50 mL Vodka

■■ 100 mL Coke

■■ Juice of Half a Lemon

■■ Ice

Directions:
1.	Fill a glass of ice with all ingredients.

2.	Thoroughly mix till the glass is
misted.

3.	Garnish with a lemon slice.

10  FEATURES

Memory Leak

Ingredients

■■ 50 mL Tequila

■■ 50 mL White Rum

■■ 50 mL Triple Sec

■■ 50 mL Kahlua

■■ Lime

■■ Coke

Directions

1.	Fill a glass with ice and small pieces
of lime.

2.	Add the rest of the ingredients and
mix.

3.	Garnish with a slice of lime and
you’ve got tasty and stunning drink.

Code

struct Drink *make_drink() {
 struct Drink *drink;
 struct Ingredient *ingredient;

 drink = malloc(sizeof(struct
Drink));
 drink->ingredients = ingredient =
malloc(sizeof(struct Ingredient) *
7);
 *ingredient.amount = 50;
 *ingredient.name = "tequila";
 ingredient++;
 *ingredient.amount = 50;
 *ingredient.name = "white rum";
 ingredient++;

  11

 return drink;
}

void free_drink(struct Drink *) {
 free(drink);
} n

Ilya is a Ruby on Rails and front-end developer
living in Saint-Petersburs, Russia. In the past, he
was a school teacher of informatics. Ilya dreams
to create a social-oriented CMS for food-blog-
gers and publishes his pet projects in his GitHub
account [github.com/the-teacher].

Vulpyne started programming on a TRS-80 when
he was 9. These days, he mostly codes in Haskell
(his poison of choice) and Python. Vulpyne never
had any formal education and have been pro-
gramming professionally for about 14 years. He
lives in a little cabin in the mountains of Colorado
with his three dogs.

Additional Credits: Artem (making the cocktails),
Anna Nechaeva (photo), Sergey Romanov (english
translation), Trevor Strieber (english translation).

 *ingredient.amount = 50;
 *ingredient.name = "triple sec";
 ingredient++;
 *ingredient.amount = 50;
 *ingredient.name = "kahlua";
 ingredient++;
 addLime(ingredient++);
 *ingredient.amount = sizeof(Glass) - 100;
 *ingredient.name = "coke";
 *ingredient++;
 memset(ingredient, 0, sizeof(struct Ingredient));

Reprinted with permission of the original author.
First appeared in hn.my/cocktails

http://github.com/the-teacher
http://hn.my/cocktails

12  FEATURES

How to Choose a
Profitable Niche

By Trevor McKendrick

We can estimate how profitable an

app is using Gross and Paid Rankings.

This helps us decide whether it’s a good niche

to get into.

A Framework for Evaluating Poten-
tial Niches
When I was considering building my
Spanish Bible app I wanted to be as
sure as possible that people were going
to be able to find it and buy it. With
that in mind I came up with the idea of
the ideal target niche.

The ideal niche:

1.	Is profitable

2.	Can be found through search

3.	Has crappy competitors

Today I’m going to explain how to
figure out #1.

➊ Find an app that ranks #25 Paid
I found two apps in the Busi-

ness category that have a history of
ranking around #25 Paid. You can see

their historical Paid rankings below via
AppFigures:

PDF Expert

Documents

Why #25 Paid? See step 2.

  13

➋
Calculate the apps’ daily
revenue using Distimo

Last year I asked the nice folks at Dis-
timo to analyze how many downloads
it takes an app to rank #25 Paid by
category.

Gert Jan Spriensma, a Distimo ana-
lyst at the time, was nice enough to
respond with this post [hn.my/distimo]
which got picked up by TechCrunch.

You don’t even need to read the
whole post, just this one chart:

 This means our two example apps
are being downloaded roughly 90 times
a day. We can estimate their daily rev-
enue by multiplying their prices by 90.

➌
Look up Gross Ranking
Easy with AppFigures:

Eyeballing the charts it looks like
their average Gross Ranks are #13 and
#50, respectively.

➍
Plot the Data
This is what we’ve collected:

 Plotting it we get this:

http://hn.my/distimo

14  FEATURES

This gives us an estimate on how
much apps in the Business category
make.

Will Customers Find You Via Search?
You need to find something that can
be found with a frequently searched
keyword that doesn’t have a lot of
competitors.

This is a tough one because Apple
doesn’t release keyword data. While
there do exist tools now that approxi-
mate keyword search frequency, I
didn’t know about them when I picked
my niche.

One in particular that I’ve started
using lately is Straply.com. I’ve talked to
the cofounder and he calls it the first
“Google Keyword Tool” for App Stores.
The interface isn’t very good yet, but
the data he’s collecting is remark-
able. It’ll tell you how often a term is
searched and how many competitors
also appear in the App Store Search
Results (ASSRs).

Do It Yourself
But I’d also recommend doing your
own tried-and-true research. I did the
following before most any App Store
optimization tools went mainstream:

For each niche I brainstormed a
bunch of keywords/phrases. I plugged
those words into the Google Keyword
Tool and clicked the “mobile only”
option.

From there I selected the top 30 or
so keywords. And I plugged those into
the search bar of the App Store.

Then I go through the ASSRs.
For the top 5 or 10 results for each

keyword I consider a few metrics:

■■ Does the app have a lot of reviews?
How recent are the reviews?

■■ When did the developer last update
the app?

■■ Are there any apps that make good
money and only rank high in the
ASSRs for a few keywords?

In an ideal world you’d find an app
that has lots of reviews and that ranks
well in the ASSRs for one keyword
phrase, and of course is making money.
That means the phrase is likely to be
something users are searching for.

If a profitable app ranks well for
a few keywords look at the other
apps in the ASSRs. Do they appear
to be making money, too? Generally,
the more money the top results are
making, the more likely the keyword is
searched by users.

You do have to be careful here
though: some apps will rank well for
many keywords and it requires much
more detective work to figure out
which keywords are the ones users are
actually searching.

http://Straply.com

  15

Is The Keyword Competitive?
Simply look at the number of apps in
the ASSRs for the keyword phrases
research above.

Example below are the number of
results for different keywords with the
word “calculator”:

■■ “calculator” = 10,930

■■ “tip calculator” = 777

■■ “scientific calculator” = 336

■■ “graphing calculator” = 81

I consider anything less than 100 to
be great. Anything over 500 is probably
too much.

Are The Competitors Any Good?
Again, the App Stores are great
because they give public reviews. You
already know what users do and don’t
like about your competitors. If you
decide to get into that niche, you know
where the improvements need to be
made.

Also, subjectively look at competi-
tors: does it appear the developer is
putting time/care/love into the prod-
uct? Maybe she has become apathetic
because she has so little competition
and users can’t find anything else.
That’s exactly how the landscape
looked with Spanish Bibles (It’s worth
noting that since then the competition
has picked up significantly.)

If it looks like the competition
isn’t trying very hard but they’re still
making money, it’s likely you’ve found
a niche worth investing some more
time in. n

Trevor started Salem Software with $500 as
a side project hoping to just pay his rent. You
can follow him on Twitter @trevmckendrick and
read his blog at trevormckendrick.com

Reprinted with permission of the original author.
First appeared in hn.my/niche (trevormckendrick.com)

http://twitter.com/trevmckendrick
http://trevormckendrick.com
http://hn.my/niche

16  SPECIAL

SPECIAL

I’ve been playing video games again.
I feel fantastic and my head is
clearer than it has been in a while.

Here are my thoughts on the topic, and
why I think video games are important
and not even remotely a waste of time.
Like every other guy who grew up in
the ‘80s, I used to play video games all
the time. Super Mario, Double Dragon,
Zelda, Street Fighter, GoldenEye, you
name it. Later came the Halo and
Counter Strike LAN parties. In col-
lege I played a lot of World of Warcraft
(back when the level cap was 60). Hell,
I played games with some semblance
of regularity up until I quit my job and
started working for myself in 2009.

It was that point when every hour
I existed had a dollar value attached
to it. Why play 2 hours of Assassin’s
Creed if you could bill two hours of
work? If you’re self-employed you
either have, or have had this mind-set
at some point.

Why play 2 hours of Assassin’s Creed
if you could bill two hours of work?

So I gave up gaming. I scoffed at
gamers, looking down on them as lesser
beings not dedicated enough to their
craft. Foolish peons! You can’t get your
time back! Perhaps an exaggeration,
but not a large one.

So how did I go from one extreme to
the other, and back again?

I started building my own product/
app called Statamic [statamic.com]. A
neat little (okay, not so little anymore)
flat-file CMS. This became my passion
(and still is in many ways) for many
months, as I fanned the flames of a
fragile little web app into a robust tool
powering thousands of websites across
the internet and around the world.

I rode the emotional tidal waves that
come with pouring all your energy into
a product, and was elated by every sale,
devastated by every refund request.

By Jack Mcdade

Why I Play Video Games

http://statamic.com

  17

So I worked even harder, staying up
until 4:30am regularly to fix the bugs,
answer support tickets, build new
features, write and rewrite documenta-
tion, design and redesign the website. I
kept it up for an incredible amount of
time.

And then I crashed. This was prob-
ably somewhere around February
or March of this year. I entered the
fourth month of development on v1.5
with the end no nearer in sight, and I
couldn’t handle the pressure.

Sounds familiar to some of you,
right?

So I decided to take a few nights off.
I needed to get my head clear some-
how if I was ever going to make this
thing sustainable.

Well, I couldn’t get Statamic out
of my head. I started dream-coding,
waking up exhausted without having
actually accomplished anything. A new
low. I was becoming an insomniac.

So another night goes by, and I’m
trying to stay away from my computer.
I can’t get into any books for what-
ever reason, so I decide to turn on my
Xbox 360 and throw in Borderlands 2,
which had barely been touched since
Christmas.

Boom!
Things changed almost overnight. I

had a blast playing BL2. It’s an awe-
some game, with just the right balance
of action, humor, and speed. I played
until 2am every night for a few nights
and started sleeping better. It kept

my mind from wandering into “work
mode” and stressing me out. I was able
to chill out and relax for a while, enjoy
myself, and sleep like a human again.

So what happened to Statamic? Did
the product suffer?

Just the opposite. I found I had
renewed energy, and the time I spent
was more productive, more creative,
and higher caliber.

I was happier supporting customers,
more enthusiastic when promoting and
marketing it, and we were able to get
v1.5 roughly 6 weeks after that. We’ve
made huge improvements to the plat-
form, sales are up, we have more users
than ever, and we’re getting great press.
And I’m still gaming, and loving every
minute of it.

I ended up picking up a PS3 on
Craigslist with 20 or so games, and
have been plowing through them with
vigor. My buddy and neighbor Dave is
an avid gamer, and made a number of
recommendations, and I’ve been enjoy-
ing gaming like never before. I had
missed out on so many incredible titles,
and now I’m making up for lost time. I
really, really dig games with killer sto-
rylines and character development, so I
immediately played through everything
by Naughty Dog [naughtydog.com]
once I got my PS3.

I generally play for an hour or two
each night after my wife goes to bed
and sometimes a few hours on lazy
Sunday afternoons.

http://naughtydog.com

18  SPECIAL

This year so far I’ve beaten (in
order):

■■ Borderlands 2

■■ Diablo III

■■ L.A. Noire

■■ The Last of Us (best game of all
time)

■■ Uncharted

■■ Uncharted 2

■■ Uncharted 3

■■ Tomb Raider

■■ Battlefield 3

And as of today I’m about halfway
through Far Cry 3.

I’ve started a few others, but if the
storyline doesn’t grab me or the game-
play feels too repetitive I tend to jump
into the next game, planning to come
back (but I don’t always):

■■ Assassins Creed III

■■ God of War III

■■ Bioshock

■■ Deadspace

■■ Max Payne 3

■■ Red Dead Redemption

So there you have it. Do what you
will.

Gaming clears my head, makes me
more productive when I am working,
and, frankly, just makes me happy. Do
fun things. You rarely regret it. n

Jack McDade is a self-employed designer and
developer from Upstate New York. He founded
Statamic, a developer and client friendly, flat-
file CMS, and is a husband and father of two
young boys. He's been known to play video
games and fish in his spare time, though rarely
at the same time.

Reprinted with permission of the original author.
First appeared in hn.my/videogames (jackmcdade.com)

http://hn.my/videogames

The fast and easy way to accept affiliates into your online business

AFFILIATE.IO
Visit affiliate.io/hacker for discount

Without affiliate.io...

With affiliate.io...

Just you - 7 sales/week

Affiliate #042
- Lisa, Marketing expert

Affiliate #011
- Tim, power user & ambassador

Affiliate #094
- Diana, owns 7 blogs

Affiliate #027
- Tom, industry expert

Recruit, track, and promote your business

http://affiliate.io/hacker

20  PROGRAMMING

I’ve been using *nix systems for
quite a while. But there are a few
commands that I somehow over-

looked and I wish I’d discovered years
earlier.

➊
man ascii
This prints out the ascii tables in

octal, hexadecimal and decimal. I can’t
believe I didn’t know about this one
until a month ago. I’d always resorted
to googling for the tables. This is much
more convenient.

NAME
 ascii -- octal, hexadecimal
and decimal ASCII character sets

DESCRIPTION
 The octal set:

 000 nul 001 soh 002 stx
 003 etx 004 eot 005 enq
 006 ack 007 bel 010 bs 	

	 011 ht 012 nl 013 vt 	
	 014 np 015 cr 016 so 	
 	 017 si 020 dle 021 dc1 	
	 022 dc2 023 dc3 024 dc4 	
	 025 nak 026 syn 027 etb 	
	 030 can 031 em 032 sub 	
	 033 esc 034 fs 035 gs 	
 	 036 rs 037 us

➋
cal
Pulling up a calendar on most

systems is almost always a multi-step
process by default. Or you can just use
the cal command.

> cal
 August 2013
Su Mo Tu We Th Fr Sa
 1 2 3
 4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31

By Job Vranish

Unix Commands I Wish I’d
Discovered Years Earlier

PROGRAMMING

  21

➌
xxd

> xxd somefile.bin

0000000: 83ff 0010 8d01 0408 d301
0408 a540 0408 @..
0000010: d701 0408 d901 0408 db01
0408 0000 0000
0000020: 0000 0000 0000 0000 0000
0000 1199 0508
0000030: df01 0408 0000 0000 e199
0508 1d9a 0508
0000040: e501 0408 2912 0508 e901
0408 eb01 0408 )...........
0000050: ed01 0408 ef01 0408 39e0
0408 55e0 0408 9...U...
0000060: 71e0 0408 8de0 0408 a9e0
0408 39f7 0408 q...........9...
0000070: 6df7 0408 a5f7 0408 ddf7
0408 15f8 0408 m...............

This is another command I can’t
believe I didn’t know about until
recently. xxd can generate a hex dump
of a given file, and also convert an
edited hex dump back into its original
binary form. It can also output the hex
dump as a C array, which is also super
handy:

> xxd -i data.bin

unsigned char data_bin[] = {
 0x6d, 0x61, 0x64, 0x65, 0x20,
0x79, 0x6f, 	 0x75, 0x20,
0x6c, 0x6f, 0x6f, 0x6b, 0x0a
};
unsigned int data_bin_len = 14;

I’ve also used it to compare binary
files by generating a hex dump of two
files and then diff’ing them.

➍
ssh
ssh was one of the first non-

trivial UNIX utilities that I got familiar
with, but it was a while before I real-
ized that it can be used for a lot more
than just logging into remote machines.

ssh and its accompanying tools can
be used for:

■■ Copying files between computers
(using scp).

■■ X-forwarding — connect to a remote
machine and have any gui applica-
tions started, displayed as if they
were started locally, even if the
remote machine doesn’t have an X
server.

■■ Port forwarding — forward a con-
nection with a local port to a port
on a remote machine OR forward
connections with a port on a remote
machine to a local port.

■■ SOCKS proxy — forward any con-
nections of an application that sup-
ports SOCKS proxies through the
remote host. Useful for more secure
browsing over public Wi-Fi and for
getting around overly restrictive
firewalls.

22  PROGRAMMING

■■ Typing a password on your local
machine once, then using a secure
identity to login to several remote
machines without having to retype
your password by using an ssh key
agent. This is awesome.

➎
mdfind
This one is specific to mac, as

there are other *nix equivalents. It has
similar functionality to find but uses
the Spotlight index. It allows you to
search your entire filesystem in sec-
onds. You can also use it to give you
live updates when new files that match
your query appear. I use it most often
when I’m trying to find the obscure
location where an application stores
some critical file.

> mdfind -name homebrew

/usr/local/Library/Homebrew
/Users/job/Library/Logs/Homebrew
n

Job Vranish is a software developer at Atomic
Object. He tries to bring modern tools and
practices to embedded software development
in an effort to make it not terrible.

Reprinted with permission of the original author.
First appeared in hn.my/unixcommands (atomicobject.com)

Now you can hack on DuckDuckGo

Create instant answer plugins for DuckDuckGo

duckduckhack.com

Now you can hack on DuckDuckGo

Create instant answer plugins for DuckDuckGo

DuckDuckHackDuckDuckHack

package DDG::Goodie::Unidecode;# ABSTRACT: return an ASCII version of the search query use
DDG::Goodie; use Text::Unidecode; zci is_cached => 1; zci answer_type => "convert to ascii"; triggers
startend => "unidecode"; handle remainder => sub { my $u = unidecode $_; # unidecode output some-
times contains trailing spaces $u =~ s/\s+$//; return $u; }; 1; package DDG::Goodie::Rot13; #
ABSTRACT: Rotate chars by 13 letters use DDG::Goodie; triggers start => 'rot13'; handle remainder =>
sub { if ($_) { $_ =~ tr[a-zA-Z][n-za-mN-ZA-M]; return "ROT13: $_"; }; return }; zci is_cached => 1; 1;
package DDG::Goodie::Base64; use DDG::Goodie; use MIME::Base64; use Encode; triggers startend =>
"base64"; zci answer_type => "base64_conversion"; zci is_cached => 1; handle remainder => sub {
return unless $_ =~ /^(encode|decode|)\s*(.*)$/i; my $command = $1 || ''; my $str = $2 || ''; if ($str) { if (
$command && $command eq 'decode') { $str = decode_base64($str); $str = decode("UTF-8", $str);
return "Base64 decoded: $str"; } else { $str = encode_base64(encode("UTF-8", $str)); return "Base64
encoded: $str"; } } return; }; 1; package DDG::Goodie::Chars; # ABSTRACT: Give the number of charac-
ters (length) of the query. use DDG::Goodie; triggers start => 'chars'; zci is_cached => 1; zci
answer_type => "chars"; handle remainder => sub { return "Chars: " .length $_ if $_; return; }; 1; pack-
age DDG::Goodie::ABC; use DDG::Goodie; triggers any => "or"; zci answer_type => "rand"; handle
query_parts => sub { my @choices; my @collected_parts; while (my $part = shift) { if (lc($part) eq 'or') {
return unless @collected_parts; push @choices, join(' ', @collected_parts); my $length =
@collected_parts; return if $length > 1; @collected_parts = (); } elsif ($part) { push @collected_parts,
$part; } } push @choices, join(' ', @collected_parts) if @choices && @collected_parts; return if
scalar(@choices) <= 1; my $choice = int(rand(@choices)); if (my @duck = grep { $_ eq 'duckduckgo' || $_
eq 'duck' || $_ eq 'ddg' } @choices) { return $duck[0]." (not random)", answer_type => 'egg'; } return
$choices[$choice]." (random)"; return; }; 1; package DDG::Goodie::PublicDNS; use DDG::Goodie; use

sub { if ($_) { $_ =~ tr[a-zA-Z][n-za-mN-ZA-M]; return "ROT13: $_"; }; return }; zci is_cached => 1; 1;
package DDG::Goodie::Base64; use DDG::Goodie; use MIME::Base64; use Encode; triggers startend =>
"base64"; zci answer_type => "base64_conversion"; zci is_cached => 1; handle remainder => sub {
return unless $_ =~ /^(encode|decode|)\s*(.*)$/i; my $command = $1 || ''; my $str = $2 || ''; if ($str) { if (
$command && $command eq 'decode') { $str = decode_base64($str); $str = decode("UTF-8", $str);
return "Base64 decoded: $str"; } else { $str = encode_base64(encode("UTF-8", $str)); return "Base64
encoded: $str"; } } return; }; 1; package DDG::Goodie::Chars; # ABSTRACT: Give the number of charac
ters (length) of the query. use DDG::Goodie; triggers start => 'chars'; zci is_cached => 1; zci
answer_type => "chars"; handle remainder => sub { return "Chars: " .length $_ if $_; return; }; 1; pack
age DDG::Goodie::ABC; use DDG::Goodie; triggers any => "or"; zci answer_type => "rand"; handle
query_parts => sub { my @choices; my @collected_parts; while (my $part = shift) { if (lc($part) eq 'or') {
return unless @collected_parts; push @choices, join(' ', @collected_parts); my $length =
@collected_parts; return if $length > 1; @collected_parts = (); } elsif ($part) { push @collected_parts,
$part; } } push @choices, join(' ', @collected_parts) if @choices && @collected_parts; return if
scalar(@choices) <= 1; my $choice = int(rand(@choices)); if (my @duck = grep { $_ eq 'duckduckgo' || $_

http://hn.my/unixcommands
http://duckduckhack.com

Now you can hack on DuckDuckGo

Create instant answer plugins for DuckDuckGo

duckduckhack.com

Now you can hack on DuckDuckGo

Create instant answer plugins for DuckDuckGo

DuckDuckHackDuckDuckHack

package DDG::Goodie::Unidecode;# ABSTRACT: return an ASCII version of the search query use
DDG::Goodie; use Text::Unidecode; zci is_cached => 1; zci answer_type => "convert to ascii"; triggers
startend => "unidecode"; handle remainder => sub { my $u = unidecode $_; # unidecode output some-
times contains trailing spaces $u =~ s/\s+$//; return $u; }; 1; package DDG::Goodie::Rot13; #
ABSTRACT: Rotate chars by 13 letters use DDG::Goodie; triggers start => 'rot13'; handle remainder =>
sub { if ($_) { $_ =~ tr[a-zA-Z][n-za-mN-ZA-M]; return "ROT13: $_"; }; return }; zci is_cached => 1; 1;
package DDG::Goodie::Base64; use DDG::Goodie; use MIME::Base64; use Encode; triggers startend =>
"base64"; zci answer_type => "base64_conversion"; zci is_cached => 1; handle remainder => sub {
return unless $_ =~ /^(encode|decode|)\s*(.*)$/i; my $command = $1 || ''; my $str = $2 || ''; if ($str) { if (
$command && $command eq 'decode') { $str = decode_base64($str); $str = decode("UTF-8", $str);
return "Base64 decoded: $str"; } else { $str = encode_base64(encode("UTF-8", $str)); return "Base64
encoded: $str"; } } return; }; 1; package DDG::Goodie::Chars; # ABSTRACT: Give the number of charac-
ters (length) of the query. use DDG::Goodie; triggers start => 'chars'; zci is_cached => 1; zci
answer_type => "chars"; handle remainder => sub { return "Chars: " .length $_ if $_; return; }; 1; pack-
age DDG::Goodie::ABC; use DDG::Goodie; triggers any => "or"; zci answer_type => "rand"; handle
query_parts => sub { my @choices; my @collected_parts; while (my $part = shift) { if (lc($part) eq 'or') {
return unless @collected_parts; push @choices, join(' ', @collected_parts); my $length =
@collected_parts; return if $length > 1; @collected_parts = (); } elsif ($part) { push @collected_parts,
$part; } } push @choices, join(' ', @collected_parts) if @choices && @collected_parts; return if
scalar(@choices) <= 1; my $choice = int(rand(@choices)); if (my @duck = grep { $_ eq 'duckduckgo' || $_
eq 'duck' || $_ eq 'ddg' } @choices) { return $duck[0]." (not random)", answer_type => 'egg'; } return
$choices[$choice]." (random)"; return; }; 1; package DDG::Goodie::PublicDNS; use DDG::Goodie; use

sub { if ($_) { $_ =~ tr[a-zA-Z][n-za-mN-ZA-M]; return "ROT13: $_"; }; return }; zci is_cached => 1; 1;
package DDG::Goodie::Base64; use DDG::Goodie; use MIME::Base64; use Encode; triggers startend =>
"base64"; zci answer_type => "base64_conversion"; zci is_cached => 1; handle remainder => sub {
return unless $_ =~ /^(encode|decode|)\s*(.*)$/i; my $command = $1 || ''; my $str = $2 || ''; if ($str) { if (
$command && $command eq 'decode') { $str = decode_base64($str); $str = decode("UTF-8", $str);
return "Base64 decoded: $str"; } else { $str = encode_base64(encode("UTF-8", $str)); return "Base64
encoded: $str"; } } return; }; 1; package DDG::Goodie::Chars; # ABSTRACT: Give the number of charac
ters (length) of the query. use DDG::Goodie; triggers start => 'chars'; zci is_cached => 1; zci
answer_type => "chars"; handle remainder => sub { return "Chars: " .length $_ if $_; return; }; 1; pack
age DDG::Goodie::ABC; use DDG::Goodie; triggers any => "or"; zci answer_type => "rand"; handle
query_parts => sub { my @choices; my @collected_parts; while (my $part = shift) { if (lc($part) eq 'or') {
return unless @collected_parts; push @choices, join(' ', @collected_parts); my $length =
@collected_parts; return if $length > 1; @collected_parts = (); } elsif ($part) { push @collected_parts,
$part; } } push @choices, join(' ', @collected_parts) if @choices && @collected_parts; return if
scalar(@choices) <= 1; my $choice = int(rand(@choices)); if (my @duck = grep { $_ eq 'duckduckgo' || $_

http://duckduckhack.com

24  PROGRAMMING

DNS: The Good Parts

Frequently I come across confu-
sion with domain names. Why
doesn’t my website work? Why

is this stupid thing broken, everything I
try fails, I just want it to work!! Invari-
ably the question asker either doesn’t
know what DNS is or doesn’t under-
stand how something fundamental
works. More generally, people think
that DNS is scary or complicated. This
article is an attempt at quelling that
fear. DNS is easy once you understand
a few basic concepts.

What is DNS?
First things first: DNS stands for
Domain Name System. Fundamentally,
it’s a globally distributed key value
store. Servers around the world can
give you the value associated with a
key, and if they don’t know they’ll ask
other servers for the answer.

That’s it. That’s all there is to it.
You (or your web browser) ask for the
value associated with the key www.
example.com and get back 1.2.3.4.

Basic Exploration and Fundamental
Types
The great thing about the DNS is that
it’s completely public and open, so it’s
easy to poke around. Let’s do a little
exploring, starting with this domain,
petekeen.net. Note that you can run
all of these examples from an OS X or
Linux command line.

First, let’s look at a simple domain
name to IP address mapping:

$ dig empoknor.bugsplat.info

The dig command is a veritable
Swiss Army knife for querying DNS
servers and we’ll be using it quite a bit.
Here’s the first part of the response:

; <<>> DiG 9.7.6-P1 <<>> empoknor.
bugsplat.info
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY,
status: NOERROR, id: 51539
;; flags: qr rd ra; QUERY: 1,
ANSWER: 1, AUTHORITY: 0, ADDI-
TIONAL: 0

By Pete Keen

  25

There’s only one interesting thing in
here. We asked for one record and got
exactly one response. Here’s the ques-
tion we asked:

;; QUESTION SECTION:
;empoknor.bugsplat.info. IN A

dig defaults to asking for A records.
A stands for address and is one of the
basic fundamental types of records in
the DNS. An A record holds exactly
one IPv4 address. There’s an equivalent
record for IPv6 addresses named AAAA.
Next, let’s look at the answer our DNS
server gave us:

;; ANSWER SECTION:
empoknor.bugsplat.info. 300 IN A
192.30.32.165

This says the host empoknor.bug-
splat.info. has exactly one A address:
192.30.32.165. The 300 is called
the TTL value, or time to live. It’s the
number of seconds that this record
can be cached before it needs to be
checked again. The IN component
stands for Internet and is meant to
disambiguate between the various
types of networks that the DNS his-
torically was responsible for. The rest of
the response tells you things about the
response itself:

;; Query time: 20 msec
;; SERVER:
192.168.1.1#53(192.168.1.1)
;; WHEN: Fri Jul 19 20:01:16 2013
;; MSG SIZE rcvd: 56

Specifically, it tells you how long
it took for your server to respond,
what that server’s IP address is
(192.168.1.1), what port dig asked
(53, the default DNS port), when the
query completed, and how many bytes
the response contained.

As you can see, there’s an awful
lot going on in a single DNS query.
Every time you open a web page your
browser makes literally dozens of these
queries to resolve the web host, all
of the hosts where external resources
like images and scripts are located, etc.
Every single resource involves at least
one DNS query, which would involve
an awful lot of traffic if DNS wasn’t
designed to be heavily cached.

What you probably can’t see,
however, is that the DNS server at
192.168.1.1 contacted a whole chain
of other servers in order to answer that
simple question of what address does
empoknor.bugsplat.info map to. Let’s
run a trace to see all of the servers
that dig would have to contact if they
weren’t already cached:

$ dig +trace empoknor.bugsplat.
info

; <<>> DiG 9.7.6-P1 <<>> +trace
empoknor.bugsplat.info
;; global options: +cmd
. 137375 IN NS l.root-servers.net.
. 137375 IN NS m.root-servers.net.
. 137375 IN NS a.root-servers.net.
. 137375 IN NS b.root-servers.net.

26  PROGRAMMING

. 137375 IN NS c.root-servers.net.

. 137375 IN NS d.root-servers.net.

. 137375 IN NS e.root-servers.net.

. 137375 IN NS f.root-servers.net.

. 137375 IN NS g.root-servers.net.

. 137375 IN NS h.root-servers.net.

. 137375 IN NS i.root-servers.net.

. 137375 IN NS j.root-servers.net.

. 137375 IN NS k.root-servers.net.
;; Received 512 bytes from 192.168.1.1#53(192.168.1.1) in 189 ms

info. 172800 IN NS c0.info.afilias-nst.info.
info. 172800 IN NS a2.info.afilias-nst.info.
info. 172800 IN NS d0.info.afilias-nst.org.
info. 172800 IN NS b2.info.afilias-nst.org.
info. 172800 IN NS b0.info.afilias-nst.org.
info. 172800 IN NS a0.info.afilias-nst.info.
;; Received 443 bytes from 192.5.5.241#53(192.5.5.241) in 1224 ms

bugsplat.info. 86400 IN NS
ns-1356.awsdns-41.org.
bugsplat.info. 86400 IN NS
ns-212.awsdns-26.com.
bugsplat.info. 86400 IN NS
ns-1580.awsdns-05.co.uk.
bugsplat.info. 86400 IN NS
ns-911.awsdns-49.net.
;; Received 180 bytes from 199.254.48.1#53(199.254.48.1) in 239 ms

empoknor.bugsplat.info. 300 IN A 192.30.32.165
bugsplat.info. 172800 IN NS
ns-1356.awsdns-41.org.
bugsplat.info. 172800 IN NS
ns-1580.awsdns-05.co.uk.
bugsplat.info. 172800 IN NS
ns-212.awsdns-26.com.
bugsplat.info. 172800 IN NS
ns-911.awsdns-49.net.

  27

;; Received 196 bytes from 205.25
1.195.143#53(205.251.195.143) in
15 ms

The DNS is arranged in a hierarchy.
Remember how dig inserted a single .
after the hostname we asked for before,
empoknor.bugsplat.info? Well, that .
is pretty important and stands for the
root of the hierarchy. The root DNS
servers are run by various companies
and governments around the world.
Originally there were only a handful
of these servers, but as the Internet has
grown more have been added, so that
now there are notionally 13. Each one
of these servers, however, has dozens or
hundreds of physical machines hiding
behind a single IP.

So, at the top of the trace we see the
root servers, each represented by an NS
record. An NS record maps a domain
name, in this case the root, to a DNS
server. When you register a domain
name with a registrar like NameCheap
or GoDaddy they create NS records for
you.
dig randomly picked one of the root

server responses, in this case f.root-
servers.net., and asked it what the A
record for empoknor.bugsplat.info
is and the root server responded with
another set of NS servers. This time the
ones responsible for the info top level
domain . dig asks one of these servers
for the A record for empoknor.bug-
splat.info, gets back another set of
NS servers, and then asks one of those

servers for the A record for empoknor.
bugsplat.info. and finally receives an
actual answer.

Whew! That would be a heck of a
lot of traffic, except that almost all of
these entries are cached for a long time
by every server in the chain. Your com-
puter caches too, as does your browser.
Most of the time DNS resolution will
never touch the root servers because
their IP addresses hardly ever change.
The top level domains: com, net, org,
etc., are also generally heavily cached.

Other Types
There are a few other types that you
should be aware of. The first is MX,
which maps a domain name to one or
more email servers. Email is so impor-
tant to the functioning of the Internet
that it gets its own record type. Here’s
the MX records for petekeen.net:

$ dig petekeen.net mx

; <<>> DiG 9.7.6-P1 <<>> petekeen.
net mx
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY,
status: NOERROR, id: 18765
;; flags: qr rd ra; QUERY: 1,
ANSWER: 2, AUTHORITY: 0, ADDI-
TIONAL: 0

;; QUESTION SECTION:
;petekeen.net. IN MX

28  PROGRAMMING

;; ANSWER SECTION:
petekeen.net. 86400 IN MX 60
empoknor.bugsplat.info.
petekeen.net. 86400 IN MX 60
teroknor.bugsplat.info.

;; Query time: 272 msec
;; SERVER:
192.168.1.1#53(192.168.1.1)
;; WHEN: Fri Jul 19 20:33:43 2013
;; MSG SIZE rcvd: 93

Note that this time we got two
answers because petekeen.net has
two mail servers set up. The response is
basically the same as the response for A.

The other record type that you
should be familiar with is CNAME, which
stands for Canonical Name and maps
one name onto another. Let’s look at
the response we get for a CNAME:

$ dig www.petekeen.net

; <<>> DiG 9.7.6-P1 <<>> www.pete-
keen.net
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY,
status: NOERROR, id: 16785
;; flags: qr rd ra; QUERY: 1,
ANSWER: 2, AUTHORITY: 0, ADDI-
TIONAL: 0

;; QUESTION SECTION:
;www.petekeen.net. IN A

;; ANSWER SECTION:
www.petekeen.net. 86400 IN

CNAME empoknor.bugsplat.info.
empoknor.bugsplat.info. 300 IN A
192.30.32.165

;; Query time: 63 msec
;; SERVER:
192.168.1.1#53(192.168.1.1)
;; WHEN: Fri Jul 19 20:36:58 2013
;; MSG SIZE rcvd: 86

The first thing to notice is that
we get back two answers. The first
says that www.petekeen.net maps to
empoknor.bugsplat.info. The second
gives the A record for that server. One
way to think about a CNAME is as an
alias for another domain name.

Why CNAME is Messed Up
CNAMEs are incredibly useful, but they
have one very important gotcha: if
a CNAME exists for a particular name,
that is the only record allowed for that
name. No MX, no A, no NS, no nothing.
This is because the DNS substitutes
the CNAME’s target for its own value, so
every record valid for the target is also
valid for the CNAME. This is why you
can’t have a CNAME on a root domain
like petekeen.net, because you gener-
ally have to have other records for that
domain like MX.

Querying Other Servers
Let’s say for sake of argument that you
messed up a DNS configuration. You
think you’ve fixed the problem, but
you don’t want to wait for the cache to

  29

expire to see. With dig you can actu-
ally query one of a number of public
DNS servers instead of your default
server like this:

$ dig www.petekeen.net @8.8.8.8

The @ symbol followed by an IP
address or hostname tells dig to query
that server on the default DNS port. I
use this a lot to query Google’s public
DNS servers or Level 3’s sort-of-public
servers at 4.2.2.2.

Common Situations

Redirect bare domain to www
Almost always you’ll want to redirect a
bare domain like iskettlemanstillo-
pen.com to www.iskettlemanstillo-
pen.com. Registrars like Namecheap
and DNSimple call this a URL Redi-
rect. In Namecheap you would set up a
URL Redirect like this:

 The @ stands for the root domain
iskettlemanstillopen.com. Let’s look
at the A record for that domain:

$ dig iskettlemanstillopen.com
;; QUESTION SECTION:
;iskettlemanstillopen.com. IN A

;; ANSWER SECTION:
iskettlemanstillopen.com. 500 IN
A 192.64.119.118

That IP is owned by Namecheap and
is running a small web server that just
serves up an HTTP-level redirect to
http://www.iskettlemanstillopen.com:

$ curl -I iskettlemanstillopen.com
curl -I iskettlemanstillopen.com
HTTP/1.1 302 Moved Temporarily
Server: nginx
Date: Fri, 19 Jul 2013 23:53:21
GMT
Content-Type: text/html
Connection: keep-alive
Content-Length: 154
Location: http://www.iskettleman-
stillopen.com/

CNAME to Heroku or Github
Notice in the screenshot above that
there’s a second row defining a CNAME.
In this case, www.iskettlemanstillo-
pen.com maps to an application run-
ning on Heroku. You’ll have to set up
Heroku with a similar domain map-
ping, of course:

$ heroku domains
=== warm-journey-3906 Domain Names
warm-journey-3906.herokuapp.com
www.iskettlemanstillopen.com

Github is similar, except that the
mapping lives in a file called CNAME at
the root of your pages, as described in
their documentation.

30  PROGRAMMING

Wildcards
Most DNS servers allow you to set up
DNS wildcards. For example, I have a
wildcard CNAME set up for *.empoknor.
bugsplat.info that maps to empoknor.
bugsplat.info. That way I can host
arbitrary things on empoknor and not
have to create new DNS entries for
them every time:

$ dig randomapp.empoknor.bugsplat.
info

;; QUESTION SECTION:
;randomapp.empoknor.bugsplat.info.
IN A

;; ANSWER SECTION:
randomapp.empoknor.bugsplat.info.
300 IN CNAME empoknor.bugsplat.
info.
empoknor.bugsplat.info. 15 IN A
192.30.32.165

Wrap Up
Hopefully this gives you a good begin-
ning understanding of what DNS is
and how to go about exploring and
verifying your configuration. n

Pete Keen is a software developer currently
residing in Ann Arbor. He recently published
a book titled Mastering Modern Payments:
Using Stripe with Rails and writes articles about
a variety of technology issues at petekeen.net

Reprinted with permission of the original author.
First appeared in hn.my/dnsgood (petekeen.net)

http://petekeen.net
http://hn.my/dnsgood (petekeen.net)

  31

By Kerrick Long

FTP is so 90s.
Let's deploy via Git instead!

First, create a directory on your
server and initialize an empty
git repository. I like to serve my

websites from ~/www/, so that’s what
I’ll do in this example.

mkdir ~/www/example.com && cd ~/
www/example.com
git init

Next, let’s set up your server’s git
repo to nicely handle deployment via
git push.

git config core.worktree ~/www/
example.com
git config receive.denycurrent-
branch ignore

Finally, we’ll set up a post-receive
hook for git to check out the master
branch so your web server can serve
files from that branch. (Remember, ^D
is Control+D, or whatever your shell’s
EOT character is).

cat > .git/hooks/post-receive
#!/bin/sh
git checkout -f
^D
chmod +x .git/hooks/post-receive

Keep in mind that you can add what-
ever you like to the post-receive hook
if you have a build process. For exam-
ple, one of my sinatra projects uses the
following post-receive hook:

#!/bin/sh
git checkout -f
bundle install
touch ~/www/example.com/tmp/
restart.txt

32  PROGRAMMING

Back on your local machine, let’s get
your git repo ready for deployment.

cd ~/www-dev/example.com
git remote add origin \
ssh://user@example.com/home/user/
www/example.com

For the first push to your server, run
the following command:

git push origin master

Now, whenever you want to deploy
changes you’ve made locally, simply
run the following command!

git push n

With five years of experience in a combination
of back- and front-end web development, an
eye for user interface design, and a passion
for learning, Kerrick bridges the gap between
design and programming. He strives to make
the web usable and accessible to all with
open source, web standards, and good user
experience.

Reprinted with permission of the original author.
First appeared in hn.my/ftp (coderwall.com)

http://hn.my/ftp

  33

Metrics and monitoring for people
who know what they want
We know from experience that monitoring your servers and
applications can be painful, so we built the sort of service that
we would want to use. Simple to set up, responsive support
from people who know what they're talking about, and reliably
fast metric collection and dashboards.

Why Hosted Graphite?

• Hosted metrics and StatsD: Metric aggregation without the setup headaches

• High-resolution data: See everything like some glorious mantis shrimp / eagle hybrid*

• Flexibile: Lots of sample code, available on Heroku

• Transparent pricing: Pay for metrics, not data or servers

• World-class support: We want you to be happy!
Promo code: HACKER

*Hosted Graphite’s mantis shrimp / eagle breeding program has been unsuccessful thus far

Dashboards StatsD Happiness

Grab a free trial at http://www.hostedgraphite.com

http://hostedgraphite.com

34  PROGRAMMING

By Matt Wright

How I Structure My
Flask Applications

Flask [flask.pocoo.org] has
been my preferred web frame-
work as of late. I think it has a

great core feature set, and Armin, the
main author, has done well to keep its
API minimal and easy to digest even
for developers that are relatively new
to Python. However, given that it is a
rather minimal framework, it can often
be difficult to decide how to structure
an application after it reaches a certain
level of complexity. It tends to be a
common question that comes up in the
#pocoo IRC channel.

In this article I intend to share how
I structure Flask applications. To help
support this article I’ve written a very
basic application that I’ve arbitrarily
named Overholt. [hn.my/overholt]

High Level Concepts

Platform vs. Application
Web applications can encapsulate a
lot of different functionality. Most
commonly when you think of a web
application you probably think of
a user interface rendered as HTML
and JavaScript and displayed to a
user in the browser. However, web
applications can be infinitely more
complicated. For instance, an applica-
tion can expose a JSON API designed
specifically for a Backbone.js front
end application. There could also be a
tailored JSON API for the native iOS
or Android application. The list goes
on. So when starting a project I try to
think of it as a platform instead of an
application. A platform consists of one
or more applications. As a side note,
this concept is not quite apparent in
the Overholt application source code.

http://flask.pocoo.org
http://hn.my/overholt

  35

A Flask application is a collection of
views, extensions, and configuration
This concept supports the previous.
I look for logical contexts within the
larger scope of my platform. In other
words, I try to find patterns in the
endpoints I will be exposing to vari-
ous clients. Each of these contexts has
slightly different concerns and thus
I encapsulate their functionality and
configuration into individual Flask
applications. These applications can
reside in the same code repository or
can be separated. When it comes time
to deploy the applications I then have
the option to deploy them individu-
ally or combine them using Werkzeug’s
DispatcherMiddleware. In the case of
Overholt, the platform consists of two
Flask applications which are organized
into separate Python packages: over-
holt.api and overholt.frontend.

Application logic is structured in logi-
cal packages and exposes an API of its
own
I try to think of the application logic as
a core “library” for my platform. Some
developers call this a “service” layer.
Regardless of what you call it, this
layer sits on top of the data model and
exposes an API for manipulating the
data model. This allows me to encap-
sulate common routines that may be
executed in multiple contexts within
the platform. Using this approach also
tends to lead to “thinner” view func-
tions. In other words it allows me to

keep my view functions small and
focused on transforming request data
into objects that my the service layer
expects in its API. Application logic
within Overholt is primarily located in
the overholt.users, overholt.products,
and overholt.stores Python packages.

View functions are the layer between
an HTTP request and the application
logic
A view function is where an HTTP
request meets the application logic. In
other frameworks this layer is often
called a “controller” or a “handler” and
sometimes even a “command.” It is
here that the data in the HTTP request
is able to be accessed and used in con-
junction with the API exposed by the
application logic. The view function
then renders a response according to
the results of the application logic that
was used. View functions within Over-
holt are organized using Blueprints.
Each Blueprint has its own module
within the application’s Python pack-
age. An example of such a module is
overholt.api.products or overholt.
frontend.dashboard.

Patterns and Conventions
Flask tends not to push any patterns
or conventions on the developer. This
is one of the things I like most about
Flask compared to large frameworks
like Django and Rails. However, any
developer not willing to establish pat-
terns and conventions for their Flask

36  PROGRAMMING

apps would be doing themselves or any
other developers working on the proj-
ect a disservice. Without patterns or
conventions your applications will lose
architectural integrity and be difficult
for others to understand. After work-
ing with Flask for almost two years
now I’ve settled on a few patterns and
conventions of my own. The following
is an overview of what I commonly use.

Application Factories
The factory pattern is the first pattern
to be implemented and used in any of
my Flask applications. There is a small
amount of documentation regarding
application factories already. While
the documentation is limited in scope,
I believe it is there to encourage the
usage of this pattern. That being said,
there is not an established convention
for implementing a factory method.
Chances are your app will have its
own unique requirements and thus
your factory method should be tailored
accordingly. Regardless of your imple-
mentation the factory method is, in my
opinion, indispensable as it gives you
more control over the creation of your
application in different contexts such
as in your production environment or
while running tests.

Within the Overholt source code
you will find three different factory
methods. There is one factory for
each application and an additional
factory which is shared by the indi-
vidual application factories. The shared

factory instantiates the application
and configures the application with
options that are shared between apps.
The individual app factories further
configure the application with options
that are more specific to their use. For
example, the api application factory
registers a custom JSONEncoder class
and custom error handlers that render
JSON responses. Whereas the frontend
application factory initializes an assets
pipeline and custom error handlers for
HTTP responses.

Blueprints
Blueprints are crucial to my Flask
applications as they allow me to group
related endpoints together. I honestly
couldn’t live without Blueprints. The
Flask documentation [hn.my/blue-
prints] provides the best overview
of what Blueprints are and why they
are useful. There isn’t much else I
can describe about Blueprints them-
selves that Armin hasn’t already. In the
context of the Overholt source code,
each application package contains
various modules containing Blueprint
instances. The API application contains
three Blueprints located at overholt.
api.products, overholt.api.stores
and overholt.api.users. The frontend
application contains but one Blue-
print located at overholt.frontend.
dashboard. All Blueprint modules are
located in the same package as the
application which allows me to use a
simple method of registering them on

http://hn.my/blueprints
http://hn.my/blueprints

  37

their respective application. Within the
shared application factory you should
notice the register_blueprints helper
method. This method simply scans all
the modules in the application package
for Blueprint instances and registers
them on the app instance.

Services
Services are how I follow my third high
level concept: “Application logic is struc-
tured in logical packages and exposes an
API of its own.” They are responsible
for connecting and interacting with any
external data sources. External data
sources include (but are not limited
to) such things as the application
database, Amazon’s S3 service, or an
external RESTful API. In general each
logical area of functionality (products,
stores, and users) contains one or more
services depending on the required
functionality. Within the Overholt
source code you will find a base class
for services that manage a specific
SQLAlchemy model. Furthermore,
this base class is extended and addi-
tional methods are added to expose an
API that supports the required func-
tionality. The best example of this is
the overholt.stores.StoresService
class. Instances of service classes can
instantiate at will, but as a convenience
instances are consolidated into the
overholt.services module.

API Errors/Exceptions
Dealing with errors in a RESTful API
can be kind of annoying at times, but
Flask makes it truly simple. Armin has
already written a little bit about imple-
menting API exceptions which I rec-
ommend you read. My implementation
is not quite the same as his, but that’s
the beauty of Flask. Overholt has a
base error class and a slightly more spe-
cific error class related to form process-
ing. Perhaps you recognize these errors
if you view the source referenced in
the application factories section. More
specifically, the API application regis-
ters error handlers for these errors and
returns a JSON response depending on
the error that was raised. Dig around
the source and see if you can find
where they are raised.

View Decorators
Decorators in Python are very useful
functional programming tools. In the
context of a Flask application they are
extremely useful for view functions.
The Flask documentation provides
a few examples [hn.my/viewdec] of
some useful view decorators. Within
the Overholt source there are two
examples of view decorators that I
commonly use. Each is tailored for
using Blueprints and specific to each of
the two applications. Take a look at the
API view decorator. [hn.my/viewapi]
This type of view decorator allows me
to add all the other common decora-
tors to my view methods. This prevents

http://hn.my/viewdec
http://hn.my/viewapi

38  PROGRAMMING

me from having to repeat decorators,
such as @login_required, across all the
API views. Additionally, the decorator
serializes the return value of my view
methods to JSON. This also allows
me to simply return objects that can
be encoded by the API application’s
custom JSONEncoder.

Middleware
WSGI middlewares are pretty handy
and can be used for all sorts of things.
I have one middleware class that I
always copy from project to project
called HTTPMethodOverrideMiddle-
ware. You can find it in the overholt.
middleware module. This middleware
allows an HTTP client to override the
request method. This is useful for older
browsers or HTTP clients that don’t
natively support all the modern HTTP
verbs such as PUT, DELETE and HEAD.

JSON Serialization
If you’ve ever developed a JSON API
you’ll inevitably need to have control
over how objects are represented as a
JSON document. As mentioned ear-
lier, the API application uses a custom
JSONEncoder instance. This encoder
adds additional support for objects that
include the JSONSerializer mixin. This
mixin defines a few “magic” variables
which allow me to be explicit about
the fields or attributes that are vis-
ible, hidden, or modified before being
encoded as JSON. I simply need to
extend this mixin, override the magic

variables with my options and include
the new, extended mixin in the data
model’s inheritance chain. Examining
any of the model modules within the
overholt.stores, overholt.products,
or overholt.users packages will illus-
trate how this mixin is used.

Database Migrations
In addition to using SQLAlchemy I
always use Alembic. [alembic.readthed-
ocs.org] Alembic is a nice database
migration tool made specifically for
SQLAlchemy by Mike Bayer, the
author of SQLAlchemy. What’s nice
about Alembic is that it includes a
feature to autogenerate database ver-
sions from the model metadata. If you
examine the alembic.env module you
should notice the application specific
imports. Further down is where the
application’s database URI and model
metadata is handed off to Alembic.

Configuration
Configuration is always important for
an application, especially for sensitive
details such as API keys and passwords.
I always provide a default configura-
tion file that is checked into the project
repository so that a developer can get
up and running as quick as possible.
This file contains default values that
are specific to the virtual machine set-
tings specified in the Vagrantfile. This
default file is used to configure any
apps created by the shared applica-
tion factory. Additionally, the factory

http://alembic.readthedocs.org
http://alembic.readthedocs.org

  39

method attempts to override any
default settings from a settings.cfg
file located in the application’s instance
folder. This additional file can be cre-
ated by any developer working on the
project to tweak any settings to be
more specific to their local develop-
ment environment. When it comes
time to deploy the application to a
development or production server the
settings.cfg file will be created by
the deployment tool, such as Chef or
Fabric.

Management Commands
Management commands often come
in handy when developing or manag-
ing your deployed application. The
Flask-Script extension makes setting
up management commands pretty easy.
Commands are useful in many ways
such as manipulating data or manag-
ing the database. It’s really up to you
and your application’s needs. Overholt
contains a simple manage.py module at
the top level of the project. There are
three commands for managing users.
As my applications grow, management
commands tend to as well.

Asynchronous Tasks
Running code asynchronously is a
common way of improving the respon-
siveness of a web application. Celery
[celeryproject.org] is, arguably, the de
facto library for doing this with Python.
Similar to creating Flask apps, I also
use a factory method for creating my

Celery apps. The thing to note about
this factory method is that it speci-
fies a custom task class. This custom
class creates an application context
before any task is run. This is necessary
because task methods will most likely
be using code that is shared by the web
application. More specifically, a task
might query or modify the database
via the Flask-SQLAlchemy extension
which requires an application context
to be present when interacting with
the database. Beyond this, tasks queued
from within view functions. Overholt
contains just a few example tasks to
illustrate how they might be used.

Frontend Assets
When it comes to frontend assets, I
always use webassets in conjunction
with the Flask-Assets extension. These
libraries allow me to create logical bun-
dles of assets that, once compiled and
minified, offers optimized versions for
web browsers to keep the download
times to a minimum. When it comes
time to deploy the assets, there are two
approaches. The first is simply to com-
pile the assets locally and commit them
to the project repository. The other is
to compile the assets on the web server
when the application is deployed. The
first option has the advantage of not
having to configure your web server
with various tools (CoffeeScript, LESS,
SASS, etc.) to compile the assets. The
second option keeps compiled files out
of the project repository and could

http://celeryproject.org

40  PROGRAMMING

potentially prevent an error resulting
from someone forgetting to compile
new assets.

Testing
Testing your Flask applications is
“important.” I’ve quoted the word
“important,” though, and that’s because
tests, while very useful, should not be
your first concern. Regardless, when it
comes time to write tests it should be
relatively easy to do so. Additionally,
I rarely write unit tests for my Flask
applications. I generally only write
functional tests. In other words, I’m
testing that all application endpoints
work as expected with valid and invalid
request data.

Tools
In the Python world there are count-
less testing tools and libraries, and it’s
often difficult to decide which ones to
use. The only thing I strive for is to find
the right balance of fewest dependen-
cies and ease of testing. That being said,
I’ve found that it’s pretty easy to get by
using only the following tools:

nose [nose.readthedocs.org]

Running tests is a breeze with nose. It
has a lot of options, and there is a wide
variety of plugins that you may find
useful. This library also seems to be
widely used in the community, so I’ve
settled on it as my preferred, top-level
test tool.

factory_boy
[factoryboy.readthedocs.org]

Without test data/fixtures it will be
difficult to test any app. factory_boy
is a nice library that makes it trivial to
create test data from the application’s
models. Lately I’ve been using an older
version and configured it to support
SQAlchemy. However, as of writing
this, there is a newer version on the
horizon that will support SQLAlchemy
out of the box.

mock [mock.readthedocs.org]

I use this library the leas,t but it still
comes in handy from time to time.
This is why you’ll see it listed in the
requirements.txt file but not yet used
in the tests.

Structure
Without exception my Flask projects
always contain a package named tests
where all test-related code is placed.
In the top level of the test package
you will see a few base classes for test
cases. Base classes are extremely useful
for testing because there is inevitably
always repeated code in tests.

There are also a few modules in this
package. One being tests.settings
which is a testing-specific configuration
module. This module is passed to each
application’s factory method to over-
ride any default settings. The tests.
factories module contains factory
classes which utilize the aforemen-
tioned factory_boy library. Lastly you’ll

http://nose.readthedocs.org
http://factoryboy.readthedocs.org
http://mock.readthedocs.org

  41

find the tests.utils module. This
module will hold all reusable test utili-
ties. For now it contains a simple func-
tion to generate a basic HTTP auth
header and a test case mixin class that
has many useful assertion and request
methods.

Also within the top level tests pack-
age are two other packages, tests.
api and tests.frontend which map
to the two applications that are part of
Overholt. Within the top level of each
package is another base class which
inherits from tests.OverholtAppTest-
Case. This class can then be modified
to add common testing code for the
respective application. Each applica-
tion then has a varying amount of
test modules that group the testing of
endpoints. For instance, the tests.api.
product_tests module contains the
ProductApiTestCase class which tests
all the product-related endpoints of the
API application.

Documentation
The last and most commonly neglected
part of any project is documentation.
Sometimes you can get away with a
small README file. The Overholt
project happens to contain a small
README file that explains how to
setup the local development environ-
ment. However, README files are not
necessarily sustainable as a project’s
complexity grows. When this is the case
I always turn to Sphinx. [sphinx-doc.org]

All documentation files reside in
the docs folder. These files can then
be used by Sphinx to generate HTML
(and other formats). There are also a
lot of extensions out there for Sphinx.
The extension I most commonly use is
sphinxcontrib-httpdomain. This exten-
sion is geared specifically for docu-
menting HTTP APIs and even has the
ability to generate documentation for
a Flask application. You can see this
extension in action in the Overholt API
documentation file.

Wrap Up
I believe that the age-old saying “there
is more than one way to skin a cat”
holds true to developing any applica-
tion, let alone a web application with
Flask. The approach outlined here
is based on my personal experience
developing, what I would consider,
relatively large applications with Flask.
What works for me might not work for
you, but I’d like to think there is some
useful information here for developers
getting into Flask. n

Matt Wright is a software and devops engi-
neer at ChatID [chatid.com]. Prior to ChatID
he has worked as a developer for a variety
of companies which include Local Projects
[localprojects.net] and Rokkan [rokkan.com]. In
his spare he maintains a variety of extensions
for Flask and chronicles his work experiences
on his blog at mattupstate.com

Reprinted with permission of the original author.
First appeared in hn.my/flask (mattupstate.com)

http://sphinx-doc.org
http://chatid.com
http://localprojects.net
http://rokkan.com
http://mattupstate.com
http://hn.my/flask

42  PROGRAMMING

By Miles Bader

What Makes Lua Tick

➊ Is very small, both source and
binary, an order of magnitude or

more smaller than many more popular
languages (Python, etc.). Because the
Lua source code is so small and simple,
it’s perfectly reasonable to just include
the entire Lua implementation in your
source tree, if you want to avoid adding
an external dependency.

➋ Is very fast. The Lua interpreter
is much faster than most script-

ing languages (again, an order of mag-
nitude is not uncommon), and LuaJIT2
is a very good JIT compiler for some
popular CPU architectures (x86, ppc).
Using LuaJIT can often speed things
up by another order of magnitude, and
in many cases, the result approaches
the speed of C. LuaJIT is also a “drop
in” replacement for standard Lua: no
application or user code changes are
required to use it.

➌ Has LPEG. LPEG is a “Parsing
Expression Grammar” library for

Lua, which allows very easy, powerful,
and fast parsing, suitable for both large
and small tasks; it’s a great replacement
for yacc/lex/hairy-regexps. [I wrote a
parser using LPEG and LuaJIT, which
is much faster than the yacc/lex parser
I was trying emulate, and was very easy
and straight-forward to create.] LPEG
is an add-on package for Lua, but it is
well-worth getting (it’s one source file).

➍ Has a great C-interface, which
makes it a pleasure to call Lua

from C, or call C from Lua. For inter-
facing large/complex C++ libraries, one
can use SWIG, or any one of a number
of interface generators (one can also
just use Lua’s simple C interface with
C++ of course).

Lua:

  43

➎ Has liberal licensing (“BSD-like”),
which means Lua can be embedded

in proprietary projects if you wish, and is
GPL-compatible for FOSS projects.

➏ Is very, very elegant. It’s not lisp,
in that it’s not based around cons-

cells, but it shows clear influences from
languages like scheme, with a straight-for-
ward and attractive syntax. Like scheme
(at least in its earlier incarnations), it
tends towards “minimal” but does a good
job of balancing that with usability. For
somebody with a lisp background (like
me!), a lot about Lua will seem familiar,
and “make sense,” despite the differences.

➐ Has a simple, attractive, and
approachable syntax. This might

not be such an advantage over lisp for
existing lisp users but might be relevant if
you intend to have end-users write scripts.

➑ Has a long history, and respon-
sible and professional developers

who have shown good judgment in how
they’ve evolved the language over the last
2 decades.

➒ Has a vibrant and friendly user-
community. n

Miles is a long-time user and developer of free
software.

Reprinted with permission of the original author.
First appeared in hn.my/lua (lua-users.org)

http://hn.my/lua

44  PROGRAMMING

By Stéphane Épardaud

What Every Web
Developer Must Know
About URL Encoding

This article describes common
misconceptions about Uni-
form Resource Locator (URL)

encoding, then attempts to clarify URL
encoding for HTTP, before presenting
frequent problems and their solutions.
While this article is not specific to any
programming language, we illustrate
the problems in Java and finish by
explaining how to fix URL encoding
problems in Java, and in a web applica-
tion at several levels.

Introduction
There are a number of technologies
we use every day when we browse the
web. There is the data itself (the web
pages) obviously, the formatting of this
data, and the transport mechanism
which allows us to retrieve this data.

Then there is the foundation, the root,
the thing that makes the web a web:
links from one page to the other. These
links are URLs.

General URL syntax
Everyone by now has seen a URL at
least once in his life. Take “http://www.
google.com” for instance. This is a URL.
A URL is a Uniform Resource Locator
and is really a pointer to a web page (in
most cases). URLs actually have a very
well-defined structure since the first
specification in 1994.

We can extract detailed information
about the “http://www.google.com”
URL:

Part			 Data
Scheme		 http
Host address	 www.google.com

  45

If we look at a more complex
URL such as “https://bob:bobby@
www.lunatech.com:8080/
file;p=1?q=2#third” we can extract the
following information:

Part	 		 Data
Scheme		 https
User			 bob
Password		 bobby
Host address	 www.lunatech.com
Port			 8080
Path			 /file
Path params		 p=1
Query params	 q=2
Fragment		 third

The Scheme (here http and https
(secure HTTP)) define the structure
of the rest of the URL. Most internet
URL schemes have a common first
part which indicates the user, pass-
word, host name and port, followed by
a scheme-specific part. This common
part deals with authentication and
being able to know where to connect
in order to request data.

HTTP URL syntax
For HTTP URLs (with the http or
https schemes), the scheme-specific
part of the URL defines the path to the
data, followed by an optional query
and fragment.

The path part consists of a hierarchi-
cal view similar to a file system hier-
archy with folders and files. The path
starts with a “/” character, then each
folder is separated from one another

by a “/” again until we reach the file.
For example “/photos/egypt/cairo/first.
jpg” has four path segments: “photos”,
“egypt”, “cairo” and “first.jpg”, which
can be extrapolated as: the “first.jpg”
file in the “cairo” folder, which is in the
“egypt” folder located in the “photos”
folder at the root of the web site.

Each path segment can have optional
path parameters (also called matrix
parameters) which are located at the
end of the path segment after a “;”,
and separated by “;” characters. Each
parameter name is separated from its
value by the “=” character like this: “/
file;p=1” which defines that the path
segment “file” has a path parameter “p”
with the value “1”. These parameters
are not often used — let’s face it — but
they exist nonetheless, and we’ve even
found a very good justification for their
use in a Yahoo RESTful API document:

Matrix parameters enable the appli-
cation to retrieve part of a collection
when calling an HTTP GET operation.
See Paging a Collection for an example.
Because matrix parameters can follow
any collection path segment in a URI,
they can be specified on an inner path
segment.

After the path segments we can find
the query which is separated from the
path with a “?” character, and contains
a list (separated by “&”) of parameter
names and values separated by “=”. For
example “/file?q=2” defines a query

46  PROGRAMMING

parameter “q” with the value “2”. This
is used a lot when submitting HTML
forms, or when calling applications
such as Google search.

Last in an HTTP URL is the frag-
ment which is used to refer not to the
whole HTML page but to a specific
part within that file. When you click on
a link and the browser automatically
scrolls down to display a part which
was not visible from the top of the
page, you have clicked a URL with a
fragment part.

URL grammar
The http URL scheme was first defined
in RFC 1738 (actually even before in
RFC 1630) and while the http URL
scheme has not been redefined, the
whole URL syntax has been general-
ized into Uniform Resource Identifiers
(URIs) from a specification that has
been extended a few times to accom-
modate for evolutions.

There is a grammar which defines
how URLs are assembled, and how
parts are separated. For instance, the
“://” part separates the scheme from
the host part. The host and path frag-
ments parts are separated by “/”, while
the query part follows a “?”. This means
that certain characters are reserved for
the syntax. Some are reserved for all
URIs, while some are only reserved for
specific schemes. All reserved charac-
ters that are used in a part where they
are not allowed (for instance a path
segment — a file name for example

— which would contain a “?” charac-
ter) must be URL-encoded.

URL-encoding is the transformation
of a character (“?”) into a harmless rep-
resentation of this character which has
no syntactic meaning in the URL. This
is done by converting the character
into a sequence of bytes in a specific
character encoding, then writing these
bytes in hexadecimal preceded by “%”.
A question mark in URL-encoding is
therefore “%3F”.

We can write a URL pointing to the
“to_be_or_not_to_be?.jpg” image as
such: “http://example.com/to_be_or_
not_to_be%3F.jpg” which makes sure
that nobody would think there might
be a query part in there.

Most browsers nowadays display the
URLs by decoding (converting percent-
encoded bytes back to their original
characters) them first, while keeping
them encoded when fetching them
for the network. This means users are
almost never aware of such encoding.

Developers or web page authors, on
the other hand, have to be aware of it,
because there are many pitfalls.

  47

Common pitfalls of URLs
If you are working with URLs, it pays
to know some of the most common
traps you should avoid. Here we give
a non-exhaustive list of some of those
traps.

Which character encoding?
URL-encoding does not define any
particular character encoding for per-
cent-encoded bytes. Generally ASCII
alphanumeric characters are allowed
unescaped, but for reserved characters
and those that do not exist in ASCII
(the French “œ” from the word “nœud”
— “knot” — for instance), we have to
wonder which encoding to use when
converting them to percent-encoded
bytes.

Of course the world would be easier
if they were just Unicode, because
every character exists in this set, but
this is a set — a list if you will — and
not an encoding per se. Unicode can be
encoded using several encodings such
as UTF-8 or UTF-16 (there are several
others), but then the problem is still
there: which encoding should URLs
(generally URIs) use?

The standards do not define any
way by which a URI might specify
the encoding it uses, so it has to be
deduced from the surrounding infor-
mation. For HTTP URLs it can be the
HTML page encoding or HTTP head-
ers. This is often confusing and a source
of many errors. In fact, the latest ver-
sion of the URI standard defines that

new URI schemes use UTF-8, and that
host names (even on existing schemes)
also use this encoding, which really
rouses my suspicion: can the host name
and the path parts really use different
encodings?

The reserved characters are different
for each part

Yes they are. Yes they are. Yes they
are.

For HTTP URLs, a space in a path
fragment part has to be encoded to
“%20” (not, absolutely not “+”), while
the “+” character in the path fragment
part can be left unencoded.

Now in the query part, spaces may
be encoded to either “+” (for backwards
compatibility: do not try to search for
it in the URI standard) or “%20” while
the “+” character (as a result of this
ambiguity) has to be escaped to “%2B”.

This means that the “blue+light
blue” string has to be encoded dif-
ferently in the path and query parts:
“http://example.com/blue+light%20
blue?blue%2Blight+blue”. From there
you can deduce that encoding a fully
constructed URL is impossible with-
out a syntactical awareness of the URL
structure.

Suppose the following Java code to
construct a URL:

String str = "blue+light blue";
String url = "http://example.com/"
+ str + "?" + str;

48  PROGRAMMING

Encoding the URL is not a simple
iteration of characters in order to
escape those that fall outside of the
reserved set: we have to know which
reserved set is active for each part we
want to encode.

This means that most URL-rewriting
filters would be wrong if they decide
to take a URL substring from one part
into another without proper encoding
care. It is impossible to encode a URL
without knowing about its specific
parts.

The reserved characters are not what
you think they are
Most people ignore that “+” is allowed
in a path part and that it designated
the plus character and not a space.
There are other surprises:

■■ “?” is allowed unescaped anywhere
within a query part,

■■ “/” is allowed unescaped anywhere
within a query part,

■■ “=” is allowed unescaped anywhere
within a path parameter or query
parameter value, and within a path
segment,

■■ “:@-._~!$&'()*+,;=” are allowed
unescaped anywhere within a path
segment part,

■■ “/?:@-._~!$&'()*+,;=” are allowed
unescaped anywhere within a frag-
ment part.

While this is slightly nuts and “http://
example.com/:@-._~!$&'()*+,=;:@-
._~!$&'()*+,=:@-._~!$&'()*+,==?/?:@-
._~!$'()*+,;=/?:@-._~!$'()*+,;==#/?:@-
._~!$&'()*+,;=” is a valid HTTP URL,
this is the standard.

For the curious, the previous URL
expands to:

Part				 Value
Scheme			 http
Host				 example.com
Path				 /:@-._~!$&'()*+,=
Path parameter name	 :@-._~!$&'()*+,
Path parameter value	 :@-._~!$&'()*+,==
Query parameter name	 /?:@-._~!$'()* ,;
Query parameter value	 /?:@-._~!$'()* ,;==
Fragment			 /?:@-._~!$&'()*+,;=

		N uts.

  49

A URL cannot be analyzed after
decoding
The syntax of the URL is only meaning-
ful before it is URL-decoded: after URL-
decoding, reserved characters may appear.

For example “http://example.com/
blue%2Fred%3Fand+green” has the fol-
lowing parts before decoding:

Part		 Value
Scheme	 http
Host		 example.com
Path segment blue%2Fred%3Fand+green
Decoded Path blue/red?and+green

Thus, we are looking for a file called
“blue/red?and+green”, not for the
“red?and+green” file of the “blue” folder.

If we decode it to “http://example.com/
blue/red?and+green” before analysis the
parts would give:

Part			 Value
Scheme		 http
Host			 example.com
Path segment	 Blue
Path segment	 Red
Query params name	and green

This is clearly wrong: analysis of
reserved characters and URL parts has
to be done before URL-decoding. The
implication is that URL-rewriting fil-
ters should never decode a URL before
attempting to match it if reserved char-
acters are allowed to be URL-encoded
(which may or may not be the case
depending on your application).

Decoded URLs cannot be reen-
coded to the same form
If you decode “http://example.
com/blue%2Fred%3Fand+green”
to “http://example.com/blue/
red?and+green” and proceed to
encode it (even with an encoder
which knows about each syntacti-
cal URL part) you will get “http://
example.com/blue/red?and+green”
because that is a valid URL. It just
happens to be very different from
the original URL we decoded.

Handling URLs correctly in Java
When you have mastered your black
belt in URL-fu you will notice that
there are still quite a few Java-spe-
cific pitfalls when it comes to URLs.
The road to URL handling correct-
ness is not for the faint of heart.

Do not use java.net.URLEncoder
or java.net.URLDecoder for whole
URLs
We are not kidding. These classes
are not made to encode or decode
URLs, as their API documentation
clearly says:

Utility class for HTML form
encoding. This class contains static
methods for converting a String
to the application/x-www-form-
urlencoded MIME format. For
more information about HTML
form encoding, consult the HTML
specification.

50  PROGRAMMING

This is not about URLs. At best it
resembles the query part encoding. It
is wrong to use it to encode or decode
entire URLs. You would think the stan-
dard JDK had a standard class to deal
with URL encoding properly (part by
part, that is) but either it is not there,
or we have not found it, which lures a
lot of people into using URLEncoder for
the wrong purpose.

Do not construct URLs without encod-
ing each part
As we have already stated: fully
constructed URLs cannot be
URL-encoded.

Take the following code for instance:

String pathSegment = "a/b?c";
String url = "http://example.com/"
+ pathSegment;

It is impossible to convert “http://
example.com/a/b?c” back to what it
should have been if “a/b?c” was meant
to be a path segment, because it hap-
pens to be a valid URL. We have
already explained this earlier.

Here is the proper code:

String pathSegment = "a/b?c";
String url = "http://example.com/"
 + URLUtils.
encodePathSegment(pathSegment);

We are now using a utility class
URLUtils which we had to make
ourselves for lack of finding an exhaus-
tive one available online fast enough.
The previous code will give you the

properly encoded URL “http://exam-
ple.com/a%2Fb%3Fc”.

Note that the same applies to the
query string:

String value = "a&b==c";
String url = "http://example.
com/?query=" + value;

This will give you “http://example.
com/?query=a&b==c” which is a valid
URL, but not the “http://example.
com/?query=a%26b==c” we wanted.

Do not expect URI.getPath() to give
you structured data
Since once a URL has been decoded,
syntactical information is lost, the fol-
lowing code is wrong:

URI uri = new URI("http://example.
com/a%2Fb%3Fc");
for(String pathSegment : uri.get-
Path().split("/"))
 System.err.println(pathSegment);

It would first decode the path
“a%2Fb%3Fc” into “a/b?c”, then split
it where it should not have been split
into path segment parts.

The correct code of course uses the
undecoded path:

URI uri = new URI("http://example.
com/a%2Fb%3Fc");

for(String pathSegment : uri.get-
RawPath().split("/"))
 System.err.println(URLUtils.dec
odePathSegment(pathSegment));

  51

Do note that path parameters will
still be present: deal with them if
required.

Do not expect Apache Commons
HTTPClient’s URI class to get this right
The Apache Commons HTTPClient
3’s URI class uses Apache Commons
Codec’s URLCodec for URL-encoding,
which is wrong as their API documen-
tation mentions since it is just as wrong
as using java.net.URLEncoder. Not
only does it use the wrong encoder, but
it also decodes each part as if they all
had the same reserved set.

Fixing URL encoding at every level in
a web application
We have had to fix quite a few URL-
encoding issues in our application
lately, from support in Java down to
the lower level of URL rewriting. We
will list here a few of changes which
were required.

Always encode URLs as you build them
In our HTML files, we replaced all
occurrences of this:

var url =
"#{vl:encodeURL(contextPath + '/
view/' + resource.name)}";

with:

var url = "#{contextPath}/view/#{
vl:encodeURLPathSegment(resource.
name)}";

And similarly for query parameters.

Make sure your URL-rewrite filters
deal with URLs correctly
Url Rewrite Filter is a URL rewrit-
ing filter we use in Seam to transform
pretty URLs into application-depen-
dent URLs.

For example, we use it to rewrite
http://beta.visiblelogistics.com/view/
resource/FOO/bar into http://beta.
visiblelogistics.com/resources/details.
seam?owner=FOO&name=bar.

Obviously this involves taking some
strings from one URL part to another,
which means we have to decode from
the path segment part and reencode as
a query value part.

Our initial rule looked as follows:

<urlrewrite decode-using="utf-8">
 <rule>
 <from>^/view/resource/(.*)/
(.*)$</from>
 <to encode="false">/resources/
details.seam?owner=$1&name=$2</to>
 </rule>
</urlrewrite>

It turns out that there are only two
ways to deal with URL-decoding in
Url Rewrite Filter: either every URL is
decoded prior to doing the rule match-
ing (the <to> patterns), or it is disabled
and each rule has to deal with decod-
ing. In our opinion the latter is the
sanest option, especially if you move
URL parts around, and/or want to
match path segments which may con-
tain URL-encoded path separators.

52  PROGRAMMING

Within the replacement pattern (the
<to> patterns) you can then deal with
URL encoding/decoding using the
inline functions escape(String) and
unescape(String).

As of this writing, Url Rewrite Filter
Beta 3.2 contains several bugs and
limitations which blocked our progress
towards URL-correctness:

■■ URL decoding was done using java.
net.URLDecoder (which is wrong),

■■ the escape(String) and
unescape(String) inline func-
tions used java.net.URLDecoder
and java.net.URLEncoder (which
is not specific enough and will only
work for entire query strings, bead-
ing in mind any “&” or “=” will not be
encoded).

We therefore made a big patch
fixing a few issues like URL decod-
ing, and adding the inline functions
escapePathSegment(String) and
unescapePathSegment(String).

We can now write the almost correct:

It is only almost correct because our
patch still lacks a few things:

■■ the inline escaping/unescaping func-
tions should be able to specify the
encoding as either fixed (this is
already done) or by determining it
from the HTTP call (not supported
yet),

■■ the old escape(String) and
unescape(String) inline functions
were left intact and still call java.
net.URLDecoder which is wrong as it
will not escape “&” or “=”,

■■ we need to add more part-specific
encoding/decoding functions,

■■ we need to add a way to specify
the decoding behavior per-rule as
opposed to globally in <urlrewrite>.

As soon as we get the time, we will
send a second patch.

<urlrewrite decode-using="null">
 <rule>
 <from>^/view/resource/(.*)/(.*)$</from>
 <-- Line breaks inserted for readability -->
 <to encode="false">/resources/details.seam
 ?owner=${escape:${unescapePath:$1}}
 &name=${escape:${unescapePath:$2}}</to>
 </rule>
</urlrewrite>

  53

Using Apache mod-rewrite correctly
Apache mod-rewrite is an Apache
web server module for URL-rewriting
which we use to proxy all our http://
beta.visiblelogistics.com/foo traffic to
http://our-internal-server:8080/vl/foo
for instance.

This is the last thing to fix, and just
like Url Rewrite Filter, it defaults to
decoding the URL for us, and reencod-
ing the rewritten URL for us, which
is wrong, as decoded URLs cannot be
reencoded.

There is one way to get around this,
however. Since we are not switching
one URL part for another in our case,
we do not need to decode a path part
and reencode it into a query part. For
example: do not decode and do not
reencode.

We accomplished it by using THE_
REQUEST for URL-matching which is
the full HTTP request (including the
HTTP method and version) unde-
coded. We just take the URL part after
the host, change the host and prepend
the /vl prefix, and tada:

...

This is required if we want to
allow URL-encoded slashes a path
segment
AllowEncodedSlashes On

Enable mod-rewrite
RewriteEngine on

Use THE_REQUEST to not decode
the URL, since we are not moving
any URI part to another part so
we do not need to decode/reencode

RewriteCond %{THE_REQUEST} "^[a-
zA-Z]+ /(.*) HTTP/\d\.\d$"
RewriteRule ^(.*)$ http://
our-internal-server:8080/vl/%1
[P,L,NE] n

From deep into the Nice mountains, Stéphane
works for Red Hat on the Ceylon project. Pas-
sionate hacker in Java, C, Perl or Scheme. A
web standards and database enthusiast, he
implemented among other things a WYSIWYG
XML editor, a multi-threading library in C, a
mobile-agent language in Scheme (compiler
and virtual machines), and some Web 2.0
RESTful services and rich web interfaces with
JavaScript and HTML 5.

Reprinted with permission of the original author.
First appeared in hn.my/urlencoding (lunatech.com)

http://hn.my/urlencoding

54  PROGRAMMING

By Chong Kim

Using Katas to Improve
Your Coding

There is an experiment from
Richard Held and Alan Hein
who raised kittens in total

darkness. For a short period during
the day, the kittens were placed in a
carousel apparatus where the lights
were turned on. One basket allowed
the kitten to see and interact with its
environment (the active kitten). The
other had a hole for the head so the
kitten (the passive kitten) can have the
same visual experience but without the
interaction.

 At the end of the experiment, the
passive kitten was functionally blind
whereas the active kitten was normal.

This idea has stuck with me — the
idea that you need to interact with
your environment. You are function-
ally blind when you only have book
knowledge. I need to code (and code a
lot) to really get that knowledge at the
instinctive level.

It is also important to do things
quickly to develop fluency. Fluency
allows you the freedom from the
mechanics of what you are doing so
you can focus on the main ideas.

First Kata Experiment
When I joined 8th Light, I came
across katas. The idea of a kata is to
practice coding by doing it repeti-
tively. You build muscle memory in
the mechanics of coding — setting up
the editor, reacting to errors, letting
your fingers get used to the controls.
Initially I thought it was an amusing

  55

little activity. Then I started to wonder
if I can do a kata on something more
than coin-changer or roman numerals,
something with a little more substance.
I thought it could be possible to write
tic-tac-toe as a kata. My main goal is
to develop a workflow so I can write
it in under an hour. I also wanted to
record myself and bought Screenflow.
After all, the kata is meant to be a
performance.

I did my first tic-tac-toe kata in Ruby,
a language I know well. I used RSpec as
my testing framework, something I was
less familiar with.

In the beginning I spent a lot of time
setting up my testing environment and
researching the web when I got stuck.
For example, I forgot to add an “it”
block in RSpec, which generated an
error message I couldn’t understand. I
worked around it by making the test
pass. I didn’t figure it out until the
next day when a co-worker (Meagan)
pointed it out after she saw the video
of my kata.

I saw myself steadily improve in
my next version of the kata. I made 6
attempts before I was finally able to
do it in less than an hour. I was able to
interpret error messages better. I was
able to set up my testing environment
faster. I improved my code by finding
more elegant ways to solve a problem.
For instance, if I wanted to separate a
list into groups of 3, I would write:

lst.group_by.with_index {|e,i|
i/3}.values

After having written it several times,
I thought there was probably a better
way. I finally came up with:

lst.each_slice(3).to_a

I don’t know if I would have revisited
this problem if it weren’t for the kata.

I also saw the effect when I forgot to
add a test. This brings another impor-
tant point. I saw probably every type
of error/bug because each time I do a
kata, I make different mistakes. You get
a richer experience from it. You’re able
to focus on the source of the error/bug
rather than wonder about the correct-
ness of your code; after all, your code is
similar to your previous versions so you
know it should have worked. You can
always use diff to compare your ver-
sions if you get completely stuck.

Since the kata is repetitive, it allows
you to reflect on how you use your
editor. You wonder if there is a better
way to get from one point to another.
You can test out new keystrokes and
see if it makes a difference.

In the end, I would say the kata has
vastly improved my workflow.

Using Kata to Learn a New Language
I tried another experiment. What
would it be like to use a kata to learn
a new language? Would I be able to do
get it done under an hour? I tried it out
with Haskell.

56  PROGRAMMING

I’ve heard people mention Haskell so
I wanted to give it a go. The first step
was to find a resource to read up on
it. I read through Learn You A Haskell
[learnyouahaskell.com]. After a few
days, I was ready to start coding. Just
like the passive kitten, I was function-
ally blind. I knew about Haskell, but I
couldn’t code it. I needed to interact
with the language. What better way
than to do a kata?

I already had a set of routines I
wanted to code and I knew the algo-
rithm. The only thing standing in my
way was the language, and the kata
gave me a controlled environment so
I could focus on it. It also gave me a
good way to reflect on the problems
I encountered. Since my errors were
recorded, I didn’t have to remember
things I needed to look into or remem-
ber what error messages led me to a
particular fix. It’s like having superhu-
man memory.

After I got the setup for testing
out of the way (using HSpec), syntax
became my main problem. Every time
I wrote something, I would get parse
errors. I would backtrack to a simpler
form until I got it to work. After about
an hour, I was only able to write a con-
structor. I also had to set up guard (for
automatic testing), which took up a
good chunk of time. I kept my record-
ings to about an hour for the rest of my
katas whether I finished or not.

When I reviewed the video of my
first kata, I saw long pauses where I was
thinking about a particular issue. Then
I saw myself researching and eventu-
ally solving the problem. The video
reinforced everything I had learned. I
didn’t have to take notes or remember
how the problem originated. It was all
recorded for me. This allowed me the
freedom to try new techniques and go
beyond my comfort zone. I can always
review it and see where things went
wrong.

When you learn a new language, you
have a feeling that you know enough
to do small things but you have the
uneasy feeling that your knowledge
is tenuous, that it can slip away from
you if you’re not paying attention.
That feeling started to evaporate on
the second kata. I developed idioms
so I could do things automatically.
That gave me a base to build on. By
the third kata, the video showed a
steep increase in my performance. I
was no longer hesitating and going off
to Google. I was still making a lot of
errors, but they were different errors.
The ones I had encountered before
were quickly dismissed since I had
already solved it in the past.

Since I was new to the language, I
was not able to complete the program
in the early katas. It did give me good
research points when I finished record-
ing. I knew that I could at least get to
the same point as the previous kata. I

http://learnyouahaskell.com

  57

needed just a little bit more knowledge to
go further. It is very encouraging when you
can see yourself actually improve over each
version.

It took me 10 tries before I was able to
get a complete working version of my code.
I was able to do it just a little over my hour
target. I sped up the time on my Screen-
flow so it played for a bit over 16 minutes.
When I tried uploading it to YouTube, it
got rejected because they had a limit of 15
minutes. I knew I had to shave off 20 min-
utes so my video could run in 14 minutes.
I was already typing as fast as I could. Then
I realized that I could use the abbreviate
command in vim. I made it so when I typed
“p”, it would type out “position” and that
would save me keystrokes. I would add
these abbreviations as I went along. I spent
my off-kata time looking into shortcuts in
vim.

I did some unrecorded katas to test out
some new key bindings and some config
changes for vim. My 13th kata was the
charm. I was able to finish in a little under
50 minutes, which reduced my time-com-
pressed video to 14 minutes. I uploaded it
to YouTube and was approved finally.
[hn.my/tictactoe]

I encourage everyone to try using katas to
improve their workflow. You’ll be amazed at
what you can get accomplished. n

Chong Kim is a Software Craftsman. He is interested
in programming, math and chess.

Reprinted with permission of the original author.
First appeared in hn.my/kata (8thlight.com)

http://hn.my/tictactoe
http://hn.my/kata

You push it,
we test it,
& deploy it.

CircleCI is offering a special discount for Hacker Monthly readers. Follow the URL below and
take advantage of a 50% discount for your first three months.

https://circleci.com?=hackermonthly

https://www.mailjet.com/?utm_source=hackermonthly&utm_medium=pdf&utm_campaign=October-hackermonthly
http://circleci.com

You push it,
we test it,
& deploy it.

CircleCI is offering a special discount for Hacker Monthly readers. Follow the URL below and
take advantage of a 50% discount for your first three months.

https://circleci.com?=hackermonthly

https://www.mailjet.com/?utm_source=hackermonthly&utm_medium=pdf&utm_campaign=October-hackermonthly
http://circleci.com

	Contents
	FEATURES
	Cocktails for Programmers
	How to Choose a Profitable Niche

	SPECIAL
	Why I Play Video Games

	PROGRAMMING
	Unix Commands I Wish I’d Discovered Years Earlier
	DNS: The Good Parts
	FTP is so 90s. Let's deploy via Git instead!
	How I Structure My Flask Applications
	What Makes Lua Tick
	What Every Web Developer Must Know About URL Encoding
	Using Katas to Improve Your Coding

