
On Hacking
by Richard Stallman

Issue 46  March 2014

2  ﻿

Curator
Lim Cheng Soon

Contributors
First Round Capital
Richard Stallman
Nathan Wong
Mike Ash
Seth Brown
Rich Adams
Evan Miller
Jonathan E. Chen
Chad Fowler

Proofreaders
Emily Griffin
Sigmarie Soto

Illustrators
Jaime G. Wong
Joel Benjamin

Ebook Conversion
Ashish Kumar Jha

Printer
MagCloud

Hacker Monthly is the print magazine ver-
sion of Hacker News — news.ycombinator.com, a
social news website wildly popular among program-
mers and startup founders. The submission guide-
lines state that content can be “anything that grati-
fies one’s intellectual curiosity.” Every month, we
select from the top voted articles on Hacker News
and print them in magazine format.
For more, visit hackermonthly.com

Advertising
ads@hackermonthly.com

Contact
contact@hackermonthly.com

Published by
Netizens Media
46, Taylor Road,
11600 Penang,
Malaysia.

Hacker Monthly is published by Netizens Media and not affiliated with Y Combinator in any way.

Cover Illustration: Jaime G. Wong

http://news.ycombinator.com
http://hackermonthly.com
mailto:ads@hackermonthly.com
mailto:contact@hackermonthly.com

  3

For links to Hacker News dicussions, visit hackermonthly.com/issue-46

Contents
FEATURES

04  How to Win as a First-Time Founder
By First Round Capital

12  On Hacking
By Richard Stallman

PROGRAMMING

18  Make the Type System Do the Work
By Nathan Wong

23  Why Registers Are Fast and RAM Is Slow
By Mike Ash

28  Vim Croquet
By Seth Brown

35  AWS Tips I Wish I’d Known Before I Started
By Rich Adams

46  Why I’m Betting on Julia
By Evan Miller

SPECIAL

50  Forever Alone
By Jonathan E. Chen

56  Killing the Crunch Mode Anti-pattern
By Chad Fowler

Drew Houston, illustrated by Joel Benjamin.

http://hackermonthly.com/issue-46

4  FEATURES

FEATURES

By First Round Capital

How to Win as a
First-Time Founder
A Drew Houston Manifesto

In 2007, Drew Houston flew to San
Francisco determined to find a co-
founder for Dropbox. At the time,

it was just him. No backers. No team.
On a friend’s advice, he walked into Y
Combinator’s offices unsolicited to talk
to Paul Graham about finding the right
person. It didn’t go well.

“It wasn’t a great experience, coming
in unannounced,” Houston recently told
students in an exclusive Dorm Room
Fund interview at MIT. “Getting into Y
Combinator is like getting into a great
school. So imagine having your two
minutes with the dean of admissions
and them coming away thinking you’re
an asshole. That plane ride back was the
worst. No co-founder. Lower chance of
getting into YC. I was panicked.”

Illustration by Joel Benjamin.

  5

The good news is, early founders
can turn things around. Soon after
he thought it was all over, Houston
teamed with fellow-MIT alum Arash
Ferdowsi and made it into YC. Today,
he’s led Dropbox to nearly 200 mil-
lion users — and the company’s grow-
ing faster than ever before. This hasn’t
been a piece of cake, but Houston’s
rocky start did teach him to forge
ahead and throw out assumptions that
discourage many would-be found-
ers. Looking back, he recommends six
strategies that helped him cut through
the fear, drown out the noise, and make
it happen.

➊
Start with a worthy problem.
Prospective entrepreneurs are

primed to find problems. While he was
still in college, Houston signed up to
beta test an online game as it was being
built. When he ran out of things to do,
he started poking around under the
hood, and he discovered a bunch of
security vulnerabilities.

“So I started hacking around on the
game, and ended up telling the devel-
opers, ‘Hey guys, you have to do this
and this…’ They responded, ‘Okay
great, want to just do that for us?’”
That’s how Houston landed his first
engineering gig. Dropbox was born out
of a similar moment, when he simply
got fed up with the lack of seamless
storage solutions for his files.

But not every idea is bound to be a
good one, or worth your time. After
coming up with a cohort of aspir-
ing founders (some successful, some
not) and observing their various fates,
Houston has devised a list to help new
entrants choose their projects wisely:

■■ It just pulls you. This is the least sci-
entific of his recommendations, but
that gut feeling that a problem is crit-
ical and needs an answer shouldn’t
be overlooked. “Sometimes you just
get this feeling — it’s a compulsion
or an obsession. You can’t stop think-
ing about it. You just have to work
on this thing,” he says. “You need
that hunger no matter what, because
eventually the honeymoon period
wears off. Somewhere between
printing your business cards that say
‘founder’ on them and everything
else you have to do, you realize, ‘Oh,
actually this is a ton of work.’”

■■ You think it can go far. “With some-
thing like Dropbox, it was immedi-
ately like, “Wow, this is literally some-
thing that anyone with an internet
connection could use.” Everyone needs
something like this, they just don’t
realize it yet.” Now, with the app
approaching 200 million users, Hous-
ton already has his eyes fixed on a bil-
lion. “It’s crazy that we live in a world
where that’s a totally reasonable thing
to go after. But I look at all the things
we can do, and the magnitude of the
opportunity in front of us is so clear.”

By First Round Capital

How to Win as a
First-Time Founder

6  FEATURES

■■ It optimizes for learning. It’s always
smart to go where you’ll have the
ability to learn the most. Go where
people are smart and fierce, because
wherever you go, you’re bound to
learn through osmosis. “If you join
a company, work with world-class
people because that’s the fastest way
to learn how to do things. If you start
your own thing, you can learn a lot
really fast from doing things wrong.
Ask yourself, ‘Where can I find an
environment where I can work really
hard and learn the most?’”

➋
Own Being a Beginner.
In his book Outliers, Malcolm

Gladwell suggests that it takes 10,000
hours before you can truly become an
expert at anything. Given the immense
challenge of starting a company, one
might think that founders need to be
vastly experienced. But Houston dis-
agrees. He’s got some powerful evi-
dence, too: Google, Apple, Dell and
Facebook — all unicorns, all started by
first-timers or people who failed on the
first try.

“A lot of times it’s an asset to not
know everything about everything,”
Houston says. “As you advance in your
career, you feel like you know so much
about the world and what’s possible.
Then you have this mental model
about how things work that gets less
and less flexible. You can get stuck.”

His favorite example came early on
when the first articles were being writ-
ten about his company. He remembers
one quote precisely:

“Fortunately, the Dropbox founders are
too stupid to know everyone’s already
tried this.”

“A lot of really great, innovative
things have happened when people
just didn’t know it wasn’t supposed to
be possible,” Houston says.

It’s important to not underestimate
your ability to learn on the fly. “Every-
thing can seem so mystifying before
you start,” he says. “But when you look
behind the curtain at how some of
these huge companies were built, it
wasn’t a lot of magic. It’s people itera-
tively trying to make reasonable deci-
sions and surround themselves with the
smartest people they can.”

➌
Assume Nothing & the First
Mover Disadvantage

At the time Houston got the idea for
Dropbox, people thought the problem
was already solved. They had email
attachments and thumb drives — and
for the power users, external hard
drives. What more did they need?
Even the forward thinkers would have
guessed a solution would come from
Google or Microsoft.

  7

“People make basic assumptions
based on what they have now. But you
have to ask yourself, is this really what
people are going to be doing in five
years?” he says. “Very few people ask
themselves what they would actually
want instead if they could wave a magic
wand. What if there could be this
magic folder that you could access from
anywhere and never need to back up?”

Something a lot of entrepreneurs
assume is that they have to be first to
market in order to win in a category.
But when you look at the breakout
success stories, this is almost never
the case. Google was preceded by
Yahoo, Alta Vista, Ask Jeeves, and 100
other little search engines. Facebook
entered stage left and slaughtered both
MySpace and Friendster.

“The fact is that there’s a problem
with being first,” Houston says. “When
you do that, you create a market, and
if you’re too early, you essentially leave
the door open behind you for someone
to do it better. I actually don’t think
it matters how early or late you are as
long as you hit critical mass.”

When Dropbox was getting off the
ground in 2007, there were hundreds
of small storage companies. It was
almost a cliché, the way that many
people believe mobile photo sharing is
a cliché now, he says. “The important
thing was, I would keep asking people
if they used any one of these hundred
options, and they all said no. These

are my favorite problems to solve.
You can’t focus on what everyone else
is doing — it has to be about what’s
really broken and what you can do to
fix it.”

Even today, Houston’s reminded
all the time that he has 400 people
against Google’s 40,000. It’s daunting,
but he has to shrug it off. In the end,
tech is about disruption, and there’s
plenty of proof that numbers of users,
or employees or dollars doesn’t always
make the difference.

“Small teams can take on bigger
companies because of their focus and
speed. That’s also what makes it fun.”

This kind of challenge can seem like
too big a gamble for many people who
might otherwise start companies. With
odds so heavily in favor of the Goli-
aths, chances for success seem slim, but
Houston does his best to de-risk the
idea for aspiring entrepreneurs.

“People assume — and misunder-
stand — that it’s risky to join a startup
or start their own company, but you
have to know this is ridiculous,” he
says. “Even if it doesn’t work out, the
experience is so valuable to so many
employers that your worst case sce-
nario is, “Ok, so that was a bust, I”ll get
a six-figure job at whatever company.’
Risk is this outmoded idea — your
parents might not understand that, but
taking these types of risks doesn’t have
a downside.”

8  FEATURES

➍
Build a knowledge machine.
For Houston, learning new things

became an addiction — one he actually
systematized.

“I was living in Boston, working for
a startup during the summer, living in
my fraternity house. But every week-
end, I would take this folding chair up
to the roof with all these books I got
on Amazon. I would just sit there and
read all of them. I would spend the
whole weekend just reading, reading,
reading.”

His process wasn’t complicated, but
he did keep a list of target topics in his
head. “I’d be like, alright, I don’t know
anything about sales. So I would search
for sales on Amazon, get the three top-
rated books and just go at it. I did that
for marketing, finance, product, and
engineering. If there was one thing that
was really important for me, that was
it.”

If you’ve never started a company,
or worked at a smaller company, you’ll
run into a vertical learning curve,
Houston says. There’s no way to know
everything you need to from the start,
so you need to a) gain as much knowl-
edge as you can as fast as you can, and
b) plan ahead to learn what you’ll need
months down the line. You have to be
prepared for a never-ending conveyor
belt of challenges.

“You have to adopt a mindset that
says, “Okay, in three months, I”ll need
to know all this stuff, and then in six

months there’s going to be a whole
other set of things to know — again
in a year, in five years.’ The tools will
change, the knowledge will change, the
worries will change.”

“You have to get good at preparing
yourself to understand what’s on the
horizon.”

 This is especially important for skills
and habits that you can’t internalize
overnight. “You’re not going to become
a great manager overnight. You’re not
going to become a great public speaker
or figure out how to raise money,” he
says. “These are the things you want to
start the clock on as early as possible.”

As a founder, this goes for both
you and your employees. This can be
a huge advantage when it comes to
recruiting the best talent, too. One
young engineer comes to mind for
Houston, who was swayed by the
opportunity to be thrown into the
deep end right away.

“We had this enormous infrastructure
project where we were spending mil-
lions of dollars and he was in charge of
it — and he was like 20 at the time. He
just wouldn’t have gotten that oppor-
tunity if he had been employee 20,000
at Google or something,” he says. “This
engineer even said to him at some
point, “Dropbox let me do things that I
wasn”t ready for.’”

  9

This chance, to work on real things
and move the needle at a company
serving millions, is rare and extremely
valuable. “I look at the interns we have
at Dropbox, and they’re shipping real
stuff every day,” Houston says. “In
contrast, I had a friend who worked at
Microsoft for a summer, and he spent
the entire time working on the back
button on Internet Explorer.”

The upshot: Making learning central
to your company’s culture pays serious
dividends.

➎
Be resourceful. Fast.
Houston may have gotten off on

the wrong foot with Y Combinator, but
he was able to turn it around just as
fast with limited tools.

“It was one of those things where it
was a couple weeks before the dead-
line, and I just realized I had no choice.
I had to write this application,” he
says. “I was already at a disadvantage
because I was a single founder and YC
really wants co-founders. But I said to
hell with it, I’ll just do it anyway. So I
made a video.”

This demo video is now part of
Dropbox mythology. Not only did it
catch fire on Hacker News and Reddit,
it also convinced YC partner Trevor.
The key was Houston knew his audi-
ence. “I was part of that audience, so
I made the video that would get me
excited about Dropbox. The produc-
tion value wasn’t great. It was just me

sitting in my bedroom at 3 a.m., but
I knew what to say.” It worked — he
got an email from Paul Graham saying
there was interest, but to go any fur-
ther, he’d need to find a co-founder.

He approached this task with the
same attitude as his YC application.
He knew what he needed. He went
after it, and he moved quicker than he
felt comfortable with. That’s the pace
you have to get used to when you’re
involved with a startup, he says. Find-
ing a co-founder on this timetable can
be one of the most daunting things an
entrepreneur can do.

 “It was sort of like them telling me I
needed to find someone to marry in
two weeks.”

Luckily, the video came in handy
here, too. By the time he met with
Arash Ferdowsi, a friend of a friend at
MIT, his future CTO had already seen
the demo and was interested.

“We went to the coffee house at the
student center because that’s the only
thing we could do,” Houston recalls. “At
the time, I was just like, this kid seems
pretty smart. I can’t say it was this
careful process where I had 19 things
I was looking for, but he seemed intel-
ligent and cool, and we spent a good
two hours together talking. At the end,
he said “Okay, yeah, I”ll drop out next
week.’”

10  FEATURES

Now that he’s had time to reflect,
he realizes how lucky he got with
Ferdowsi, and he has some advice
for young entrepreneurs looking for
their other halves. “The most impor-
tant thing is whether you respect this
person, whether you trust them. Are
they someone that you can see yourself
being in the trenches with for a long
time, because you’re going to see them
more than your spouse or your signifi-
cant other.”

➏
Don’t lose your North Star.
Inevitably companies evolve as

they grow, but Houston knows the
value of keeping a higher purpose front
and center. This is especially critical for
Dropbox right now as it adds hundreds
of new employees and expands more
and more into enterprise software.

Many of even the most successful
startups in tech will say their culture
evolved organically — that they’re
only just now starting to be intentional
about it at 100 to 300 employees.
Dropbox falls into this category. But
Houston advocates for an earlier attack.

“When you’re studying and getting
your engineering degree, things like
mission or values sound totally unnec-
essary,” he says. “But then it turns out
that you have to evolve from build-
ing this system of code to building a
system of people. It’s like updating
your operating system. You have to
adapt very quickly.”

To keep this top of mind, you have
to make the company’s mission about
something more than money or build-
ing great products. It has to be about
the value created for users.

“Whole businesses are living out of
Dropbox right now, big and small,” he
says. “That’s something that’s really
valuable — the fact that we’re helping
employees be more productive, even at
giant companies. IT departments and
administrators have become an impor-
tant audience for us, but at the same
time we have to remember why we do
what we do: We do it to make people
happy.”

“We get these emails from people
that just blow us away,” Houston says.
“They say things like “I just used Drop-
box to start a music festival” or “I made
a movie” or “I started the company I”ve
been dreaming about my whole life.’
People tell us that Dropbox has com-
pletely changed how they work. And
I think that’s what’s really exciting —
being able to redefine how people col-
laborate. It’s not just the why of what
we do, it’s also a huge market. n

Drew Houston is the founder of Dropbox.

First Round Capital is a San Francisco-based
venture capital firm focusing on seed fund-
ing for technology startups and creating a
vibrant community of entrepreneurs working
to change the world.

Reprinted with permission of First Round Review
[firstround.com/review], a publication of First Round Capital.

http://firstround.com/review

Metrics and monitoring for people
who know what they want
We know from experience that monitoring your servers and
applications can be painful, so we built the sort of service that
we would want to use. Simple to set up, responsive support
from people who know what they're talking about, and reliably
fast metric collection and dashboards.

Why Hosted Graphite?

• Hosted metrics and StatsD: Metric aggregation without the setup headaches

• High-resolution data: See everything like some glorious mantis shrimp / eagle hybrid*

• Flexibile: Lots of sample code, available on Heroku

• Transparent pricing: Pay for metrics, not data or servers

• World-class support: We want you to be happy!
Promo code: HACKER

*Hosted Graphite’s mantis shrimp / eagle breeding program has been unsuccessful thus far

Dashboards StatsD Happiness

Grab a free trial at http://www.hostedgraphite.com

http://hostedgraphite.com

12  FEATURES

By Richard Stallman

On Hacking

In June 2000, while visiting
Korea, I did a fun hack that
clearly illustrates the original

and true meaning of the word
“hacker”.

I went to lunch with some GNU
fans, and was sitting down to eat
some tteokpaekki 1, when a wait-
ress set down six chopsticks right in
front of me. It occurred to me that
perhaps these were meant for three
people, but it was more amusing to
imagine that I was supposed to use
all six. I did not know any way to
do that, so I realized that if I could
come up with a way, it would be a
hack. I started thinking. After a few
seconds I had an idea.

First I used my left hand to
put three chopsticks into my
right hand. That was not so hard,
though I had to figure out where
to put them so that I could control
them individually. Then I used my
right hand to put the other three

  13

chopsticks into my left hand. That was
hard, since I had to keep the three
chopsticks already in my right hand
from falling out. After a couple of tries
I got it done.

Then I had to figure out how to use
the six chopsticks. That was harder. I
did not manage well with the left hand,
but I succeeded in manipulating all
three in the right hand. After a couple
of minutes of practice and adjustment,
I managed to pick up a piece of food
using three sticks converging on it from
three different directions, and put it in
my mouth.

It didn’t become easy — for practical
purposes, using two chopsticks is com-
pletely superior. But precisely because
using three in one hand is hard and
ordinarily never thought of, it has “hack
value”, as my lunch companions imme-
diately recognized. Playfully doing
something difficult, whether useful or
not, that is hacking.

I later told the Korea story to a friend
in Boston, who proceded to put four
chopsticks in one hand and use them
as two pairs — picking up two differ-
ent pieces of food at once, one with
each pair. He had topped my hack. Was
his action, too, a hack? I think so. Is he
therefore a hacker? That depends on
how much he likes to hack.

The hacking community developed
at MIT and some other universities in
the 1960s and 1970s. Hacking included
a wide range of activities, from writing

software, to practical jokes, to explor-
ing the roofs and tunnels of the MIT
campus. Other activities, performed
far from MIT and far from computers,
also fit hackers’ idea of what hacking
means: for instance, I think the contro-
versial 1950s “musical piece” by John
Cage, 4'33" 2, is more of a hack than a
musical composition. The palindromic
three-part piece written by Guillaume
de Machaut in the 1300s, “Ma Fin Est
Mon Commencement”, was also a
good hack, even better because it also
sounds good as music. Puck appreci-
ated hack value.

It is hard to write a simple defini-
tion of something as varied as hacking,
but I think what these activities have
in common is playfulness, cleverness,
and exploration. Thus, hacking means
exploring the limits of what is possible,
in a spirit of playful cleverness. Activi-
ties that display playful cleverness have
“hack value”.

Hackers typically had little respect
for the silly rules that administrators
like to impose, so they looked for ways
around. For instance, when computers
at MIT started to have “security” (that
is, restrictions on what users could
do), some hackers found clever ways
to bypass the security, partly so they
could use the computers freely, and
partly just for the sake of cleverness
(hacking does not need to be useful).
However, only some hackers did this —
many were occupied with other kinds

14  FEATURES

of cleverness, such as placing some
amusing object on top of MIT’s great
dome 3, finding a way to do a certain
computation with only 5 instructions
when the shortest known program
required 6, writing a program to print
numbers in roman numerals, or writing
a program to understand questions in
English.

Meanwhile, another group of hack-
ers at MIT found a different solution to
the problem of computer security: they
designed the Incompatible Timeshar-
ing System without security “features”.
In the hacker’s paradise, the glory days
of the Artificial Intelligence Lab, there
was no security breaking, because there
was no security to break. It was there,
in that environment, that I learned to
be a hacker, though I had shown the
inclination previously. We had plenty
of other domains in which to be play-
fully clever, without building artificial
security obstacles which then had to be
overcome.

Yet when I say I am a hacker, people
often think I am making a naughty
admission, presenting myself specifi-
cally as a security breaker. How did this
confusion develop?

Around 1980, when the news media
took notice of hackers, they fixated on
one narrow aspect of real hacking: the
security breaking which some hack-
ers occasionally did. They ignored all
the rest of hacking, and took the term
to mean breaking security, no more

and no less. The media have since
spread that definition, disregarding our
attempts to correct them. As a result,
most people have a mistaken idea of
what we hackers actually do and what
we think.

You can help correct the misunder-
standing simply by making a distinc-
tion between security breaking and
hacking — by using the term “cracking”
for security breaking. The people who
do it are “crackers” 4. Some of them
may also be hackers, just as some of
them may be chess players or golfers;
most of them are not.

1.	Pronounced like stuckpeckee minus
the s (with an unaspirated t), if I
recall right.

2.	The piece 4'33" is a trivial piece. For
each “movement”, the pianist opens
the keyboard cover, waits the appro-
priate amount of time, then closes it;
that’s all. It is a musical counterpart
of the empty set.

3.	Going on the great dome is “forbid-
den”, so in a sense it constitutes
“breaking security”. Nonetheless,
the MIT Museum proudly exhibited
photos of some of the best dome
hacks, as well as some of the objects
that hackers placed on the dome in
their hacks. The MIT administra-
tion thus implicitly recognizes that
“breaking security” is not necessar-
ily evil and need not be invariably

  15

condemned. Whether security break-
ing is wrong depends on what the
security breaker proceeds to do with
the “forbidden” access thus obtained.
Hurting people is bad, amusing the
community is good.

4.	I coined the term “cracker” in the
early 80s when I saw journalists were
equating “hacker” with “security
breaker”.

Here are some examples of fun
hacks. If they make you smile,

you’re a hacker at heart.
First, some of mine.

■■ I learned to use two pairs of chop-
sticks too. Here I demonstrate this.
[twitpic.com/558zg]

■■ Speaking of chopsticks, some kinds of
Italian grissini work fine as chopsticks
— then, after the meal, you can eat
them. I brought a bag of them to
Taiwan once just to show them that
Italy has chopsticks too.

■■ Customer Training College
changed to Customer Draining
College [hn.my/drain]. Sassy, not
computer-related.

■■ Photos of some other hacks I’ve done
are here. [hn.my/stallhacks]

■■ In India there is a chain of fine Ben-
gali restaurants called “Oh! Calcutta”.
The staff, and the clients, have no
idea why that expression is notorious.

During my 2014 visit to India I
decided to inform them by bringing
to the restaurant some printouts of
the painting, and a publicity photo
from the play. I left a copy of each
with the staff.

■■ Pre-Zen studies (an April fool).
[hn.my/prezen]

■■ Many years ago I had a root canal
operation in a molar in the back of
my mouth. It was difficult for me to
keep my mouth open far enough,
and the dentist said this was because
I had a rather small mouth.
 When it was done, I had him sign a
testimonial affirming this fact. I gave
it to my mother to show she was
wrong about me, all those years when
she said I had a big mouth.

■■ My puns are also playful cleverness.
[hn.my/puns]

Other people’s hacks.

■■ Everyone’s first hack: walking in
the wrong direction on an escalator.
That’s not the way it’s designed to be
used, but can you make it work?

■■ I think this award-winning art project
was actually a hack.
[hn.my/voina]

■■ A robot that climbs windows to
deploy a sun shade. Pure, sweet, &
computer-based. [hn.my/shady]

http://twitpic.com/558zg
http://hn.my/drain
http://hn.my/stallhacks
http://hn.my/prezen
http://hn.my/puns
http://hn.my/voina
http://hn.my/shady

16  FEATURES

■■ Hoisting Nigerian scammers on their
own petard. [hn.my/eater]Cunning,
mischievous, and not using comput-
ers except for email and phone calls.

■■ Lady Gaga’s approach to clothing
seems like hacking to me.

■■ A charming hack in the London
Underground. [hn.my/subway]

■■ The hacker who made this poster
was arrested for it. [hn.my/drone]

■■ TicBot is a conversation hack.
[touretteshero.com]

■■ Just for the hack of it, the ultimate
series of hacks with ordinary everyday
objects appears in the 1987 film, Der
Lauf der Dinge, by Fischli and Weiss.
(This should not be confused with
the unrelated 2006 film by the same
name.)

■■ Although hacking and cracking are
conceptually unrelated, occasion-
ally they are found together. This is
hacking that involves some cracking.
[hn.my/cat]
 This hack has pointed out the
injustice of the laws against “child”
pornography, but doing that by caus-
ing other people to be jailed seems
wrong to me. (Hacks can raise ethical
issues just as other activities do; clev-
erness and playfulness do not guaran-
tee that one can do no wrong.)  I t is
also foolhardy to taunt a dangerous
monster.

■■ A fun hack implemented via crack-
ing: making TV emergency alert
system give warnings about dead
bodies emerging from graves.
[hn.my/zombie]
 The security holes that made this
possible might be used humorlessly
to do real harm, but this hack didn’t
do harm. n

Richard Stallman is the founder of the Free
Software Foundation and the GNU project.

Copyright (C) 2002-2013 Richard Stallman

Verbatim copying and distribution of this entire ar-
ticle is permitted in any medium, provided this notice
is preserved.

http://hn.my/eater
http://hn.my/subway
http://hn.my/drone
http://touretteshero.com
http://hn.my/cat
http://hn.my/zombie

  17

and help change the future of search

http://duckduckhack.com

18  PROGRAMMING

Declaring types and being
restricted by the type system
is often cited as a negative

aspect of C++. I think this is an unfair
assessment: a type system can make a
programmer’s life considerably easier
if it’s embraced instead of fought, as
we’re seeing with the rise in popular-
ity of Haskell. But C++, despite all its
warts, has a pretty formidable type
system of its own.

The object-oriented paradigm is
commonly taught with the “Dog is-a
Mammal” architectural mentality
where your classes are supposed to
mirror real life objects and act accord-
ingly. Make no mistake, this approach
is an over-simplification of software
architecture and should be treated
as such, but the principles behind
it are actually fairly sound. Classes
should aim to be a self-contained

representation of some concept or
thing that has state and actions. Here,
we’re going to focus on how to make
the type system work for you instead
of against you.

Specifically, we’re going to focus
on the conversion of data from one
form to another. Many seem to think
of conversions as being functions,
taking one piece of data and returning
another. But in doing so, we callously
throw away dimensional analysis, a
skill that appears to have been lost in
translation from the natural sciences to
computing.

A simple example that demonstrates
the importance of dimensional consis-
tency is temperature conversions. All
too often we see functions converting
equivalent units look something like
this:

By Nathan Wong

Make the Type System
Do the Work

PROGRAMMING

  19

Function-Based Conversion
double celsiusToFahrenheit(double
deg_celsius)
{
 return deg_celsius * 9 / 5 + 32;
}

double temperature_fahrenheit =
celsiusToFahrenheit(20);

 OK, it works. It compiles, runs, gives
the right answer, and passes all tests.
The only problem is that you end up
with a variable that fails to describe
itself better than “I’m a number”. We
end up using Hungarian-like system
(apps Hungarian, specifically) to indi-
cate the true units of the variable
(Fahrenheit or Celsius). We recognize
the importance of maintaining unit
analysis, but we fail to enforce this con-
vention; as with all Hungarian systems,
the onus falls on the developer (and
future developers) to maintain the
accuracy of the system.

Instead, we should rely on the type
system of the language to enforce this.

Type-Enforced Conversion
struct Degrees
{
 double val;
 Degrees(double _val) : val(_
val) {}
};
struct DegCelsius : public Degrees
{
 DegCelsius(double deg) :

Degrees(deg) {}
 DegCelsius(const DegFahrenheit
°)
 : Degrees((deg.val - 32)
* 5 / 9) {}
};
struct DegFahrenheit : public
Degrees
{
 DegFahrenheit(double deg) :
Degrees(deg) {}
 DegFahrenheit(const DegCelsius
°)
 : Degrees(deg.val * 9 / 5
+ 32) {}
};

DegFahrenheit input(68);
DegCelsius temperature = input;

Now it’s obvious to any developer
what type of degrees the temperature
variable is holding, and the units are
carried and enforced by the compiler;
you’re physically unable to assign a
Celsius degree to a Fahrenheit degree
without it converting it properly for
you.

The overhead of setting up a coher-
ent type system may seem burden-
some, but in an application or library
that handles many conversions in ways
that should be transparent to the devel-
oper, this time investment will pay for
itself. All units coming from math and
science would benefit from being setup
this way: just think how much easier it
would be if sin took Radians instead

20  PROGRAMMING

of a double, and Radians had a con-
structor that took Degrees: you could
write sin(Degrees(180)) and get the
correct result.

Coordinates
Let’s say you’re plotting points on a
graph (one of the many widgets in
your application). You want the user to
be able to click on a point in the graph
and have it draw the point and log the
graph coordinates.

Since we’re just dealing with x and
y, we could get away with just passing
aint32_t’s around. But often this gets
confusing because the graph widget’s
mouse click event gives you the coor-
dinates relative to itself, whereas the
graph coordinates have the origin at
the center of the graph widget, and y
grows as you go up instead of down.
(And to make things more confusing,
sometimes you have absolute coordi-
nates relative to your graph widget’s
parent, too.)

As with before, we may have a
function with the signature Point
pointCoordToGraphCoord(const
Point &coord);, but this requires the
programmer to remember what type of
coordinates they have when handling
the data, and creating a developer-
enforced naming convention to help
convey this meaning is error-prone and
tedious. Instead, the type system will
not only enforce this convention, it will
convert between the coordinate sys-
tems as well.

Type-Enforced Coordinates
// just holds an (x,y), oblivious
// to its purpose in life
struct Point
{
 int32_t x, y;
 Point(int32_t _x, int32_t _y)
: x(_x), y(_y) {}
 Point() : x(0), y(0) {}
};
// represents a point where (0,0)
// is the top-left of the widget
struct RealPoint : public Point
{
 RealPoint(int32_t x, int32_t
y) : Point(x, y) {}
 RealPoint() : Point() {}
};
// represents a point where (0,0)
// is in the center, & y grows up
struct GraphPoint : public Point
{
 GraphPoint(int32_t x, int32_t
y) : Point(x, y) {}
 GraphPoint() : Point() {}
};

Our mouse handler event, being
a system call, probably still gives us
a raw x and y, with which we can
immediately construct a RealPoint
for further use. Now our conversion
function can be called GraphPoint
realToGraphCoords(const RealPoint
&point);, and it’s clear what type of
coordinate system any given variable is
using.

  21

Naturally, this conversion function
should be part of GraphPoint, such
as static GraphPoint GraphPoint:
:FromRealCoords(const RealPoint
&coords);. Once the problem has been
reduced to just converting real coor-
dinates to graph coordinates, though,
it makes the most sense to just create
a constructor in the GraphPoint to
handle the conversion for us.

Implicit Unit Conversion
// represents a point where (0,0)
is in the center, and y grows up
struct GraphPoint : public Point
{
 GraphPoint(int32_t x, int32_t
y) : Point(x, y) {}
 GraphPoint() : Point() {}
 GraphPoint(const RealPoint
&coords) {
 x = coords.x -
GraphWidget::width / 2;
 y = GraphWidget::height -
coords.y - GraphWidget::height /
2;
 }
};

Now, as a developer, we don’t even
have to think about which coordinates
we have on-hand.

Example Usage
bool GraphWidget::clickHandler(int
32_t x, int32_t y)
{
 RealPoint coords(x, y);

 drawPoint(coords);
 logPoint(coords, "user
click");

 return true;
}

void GraphWidget::drawPoint(const
RealPoint &coords)
{
 DrawingLibrary::Circle(coords,
2); // etc.
}

void GraphWidget::logPoint(const
GraphPoint &coords,
 const string &action)
{
 logfile << action << " at (" <<
coords.x << ", " << coords.y <<
")"
 << endl;
}

22  PROGRAMMING

The type system does all the work
for us. The click handler (i.e., the user
of our system) does not need to know
that drawing and logging require differ-
ent coordinates systems, and perhaps
even better, the drawPoint and log-
Point functions don’t need to worry
about what’s being passed in. Nobody
needs to make assumptions, which
means less human errors and more reli-
able code.

Further Reading
The type system affords develop-
ers an opportunity to save time and
reduce bugs. Writing maintainable
code should be a first priority, and
embracing the power of static typing
can make code easier to work with
down the road. Wrong code should
look wrong, and failing to compile
is even better. There are numerous
everyday examples of how types can
help. One such example is handling
safe and unsafe strings to prevent XSS
attacks by having the type-system
enforce unsafe-by-default output:
print(NoEscapeString("Note:</
b>)); print(usermsg); is easy to
reason with.

Since first writing this article in Janu-
ary, I’ve been exposed to Bjarne Strous-
trup’s C++11 Style talk [hn.my/cpp11]
which inspired me to finally edit and
post it. Stroustrup’s talk includes a
great demonstration of how to imple-
ment a unit system using C++11’s new
user-defined literals, and makes a great
argument for type-rich programming.

It’s time to start embracing type
systems instead of using non-descript
number types and to ask ourselves:
how else can I take advantage of the
type system to make my life easier? n

Nathan Wong is the Co-Founder and CTO of
BuySellAds, an ad-tech startup focused on
making advertising more accessible. You can
read his blog about the intersection of business
and technology at nathan.ca, or follow him on
Twitter at @nathandev

Reprinted with permission of the original author.
First appeared in hn.my/typesystem (nathan.ca)

http://hn.my/cpp11
http://nathan.ca
http://twitter.com/@nathandev
http://hn.my/typesystem

  23

Why Registers Are Fast
and RAM Is Slow

Distance
Let’s start with distance. It’s not neces-
sarily a big factor, but it’s the most fun
to analyze. RAM is farther away from
the CPU than registers are, which can
make it take longer to fetch data from
it.

Take a 3GHz processor as an
extreme example. The speed of light
is roughly one foot per nanosecond, or
about 30cm per nanosecond for you
metric folk. Light can only travel about
four inches in time of a single clock
cycle of this processor. That means a
roundtrip signal can only get to a com-
ponent that’s two inches away or less,
and that assumes that the hardware is
perfect and able to transmit informa-
tion at the speed of light in vacuum.
For a desktop PC, that’s pretty signifi-
cant. However, it’s much less important
for an iPhone, where the clock speed is
much lower (the 5S runs at 1.3GHz)
and the RAM is right next to the CPU.

Cost
As much as we might wish it wasn’t,
cost is always a factor. In software,
when trying to make a program run
fast, we don’t go through the entire
program and give it equal attention.
Instead, we identify the hotspots that
are most critical to performance, and
give them the most attention. This
makes the best use of our limited
resources. Hardware is similar. Faster
hardware is more expensive, and that
expense is best spent where it’ll make
the most difference.

Registers get used extremely fre-
quently, and there aren’t a lot of
them. There are only about 6,000 bits
of register data in an A7 (32 64-bit
general-purpose registers plus 32 128-
bit floating-point registers, and some
miscellaneous ones). There are about
8 billion bits (1GB) of RAM in an
iPhone 5S. It’s worthwhile to spend a
bunch of money making each register

By Mike Ash

24  PROGRAMMING

bit faster. There are literally a million
times more RAM bits, and those 8
billion bits pretty much have to be as
cheap as possible if you want a $650
phone instead of a $6,500 phone.

Registers use an expensive design
that can be read quickly. Reading a
register bit is a matter of activating the
right transistor and then waiting a short
time for the register hardware to push
the read line to the appropriate state.

Reading a RAM bit, on the other
hand, is more involved. A bit in the
DRAM found in any smartphone or
PC consists of a single capacitor and
a single transistor. The capacitors are
extremely small, as you’d expect given
that you can fit 8 billion of them in
your pocket. This means they carry a
very small amount of charge, which
makes it hard to measure. We like to
think of digital circuits as dealing in
ones and zeroes, but the analog world
comes into play here. The read line is
pre-charged to a level that’s halfway
between a one and a zero. Then the
capacitor is connected to it, which
either adds or drains a tiny amount of
charge. An amplifier is used to push the
charge towards zero or one. Once the
charge in the line is sufficiently ampli-
fied, the result can be returned.

The fact that a RAM bit is only one
transistor and one tiny capacitor makes
it extremely cheap to manufacture.
Register bits contain more parts and
thereby cost much more.

There’s also a lot more complex-
ity involved just in figuring out what
hardware to talk to with RAM because
there’s so much more of it. Reading
from a register looks like:

1.	Extract the relevant bits from the
instruction.

2.	Put those bits onto the register file’s
read lines.

3.	Read the result.

Reading from RAM looks like:

1.	Get the pointer to the data being
loaded. (Said pointer is probably in a
register. This already encompasses all
of the work done above!)

2.	Send that pointer off to the MMU.

3.	The MMU translates the virtual
address in the pointer to a physical
address.

4.	Send the physical address to the
memory controller.

5.	Memory controller figures out what
bank of RAM the data is in and asks
the RAM.

6.	The RAM figures out particular
chunk the data is in, and asks that
chunk.

  25

7.	Step 6 may repeat a couple of more
times before narrowing it down to a
single array of cells.

8.	Load the data from the array.

9.	Send it back to the memory
controller.

10.	Send it back to the CPU.

11.	Use it!

Whew.

Dealing With Slow RAM
That sums up why RAM is so much
slower. But how does the CPU deal
with such slowness? A RAM load is a
single CPU instruction, but it can take
potentially hundreds of CPU cycles
to complete. How does the CPU deal
with this?

First, just how long does a CPU take
to execute a single instruction? It can
be tempting to just assume that a single
instruction executes in a single cycle,
but reality is, of course, much more
complicated.

Back in the good old days, when
men wore their sheep proudly and the
nation was undefeated in war, this was
not a difficult question to answer. It
wasn’t one-instruction-one-cycle, but
there was at least some clear corre-
spondence. The Intel 4004, for exam-
ple, took either 8 or 16 clock cycles to
execute one instruction, depending on
what that instruction was. Nice and
understandable. Things gradually got
more complex, with a wide variety of

timings for different instructions. Older
CPU manuals will give a list of how
long each instruction takes to execute.

Now? Not so simple.
Along with increasing clock rates,

there’s also been a long drive to
increase the number of instructions
that can be executed per clock cycle.
Back in the day, that number was
something like 0.1 of an instruction per
clock cycle. These days, it’s up around
3-4 on a good day. How does it per-
form this wizardry? When you have a
billion or more transistors per chip, you
can add in a lot of smarts. Although the
CPU might be executing 3-4 instruc-
tions per clock cycle, that doesn’t mean
each instruction takes 1/4th of a clock
cycle to execute. They still take at least
one cycle, often more. What happens is
that the CPU is able to maintain mul-
tiple instructions in flight at any given
time. Each instruction can be broken
up into pieces: load the instruction,
decode it to see what it means, gather
the input data, perform the computa-
tion, and store the output data. Those
can all happen on separate cycles.

26  PROGRAMMING

On any given CPU cycle, the CPU is
doing a bunch of stuff simultaneously:

1.	Fetching potentially several instruc-
tions at once.

2.	Decoding potentially a completely
different set of instructions.

3.	Fetching the data for potentially yet
another different set of instructions.

4.	Performing computations for yet
more instructions.

5.	Storing data for yet more
instructions.

But, you say, how could this possibly
work? For example:

 add x1, x1, x2
 add x1, x1, x3

These can’t possibly execute in paral-
lel like that! You need to be finished
with the first instruction before you
start the second!

It’s true, that can’t possibly work.
That’s where the smarts come in. The
CPU is able to analyze the instruction
stream and figure out which instruc-
tions depend on other instructions and
shuffle things around. For example,
if an instruction after those two adds
doesn’t depend on them, the CPU
could end up executing that instruc-
tion before the second add, even
though it comes later in the instruction
stream. The ideal of 3-4 instructions
per clock cycle can only be achieved
in code that has a lot of independent
instructions.

What happens when you hit a
memory load instruction? First of all, it
is definitely going to take forever, rela-
tively speaking. If you’re really lucky
and the value is in L1 cache, it’ll only
take a few cycles. If you’re unlucky
and it has to go all the way out to main
RAM to find the data, it could take lit-
erally hundreds of cycles. There may be
a lot of thumb-twiddling to be done.

The CPU will try not to twiddle its
thumbs, because that’s inefficient. First,
it will try to anticipate. It may be able
to spot that load instruction in advance,
figure out what it’s going to load, and
initiate the load before it really starts
executing the instruction. Second, it
will keep executing other instructions
while it waits, as long as it can. If there
are instructions after the load instruc-
tion that don’t depend on the data
being loaded, they can still be exe-
cuted. Finally, once it’s executed every-
thing it can and it absolutely cannot
proceed any further without that data
it’s waiting on, it has little choice but
to stall and wait for the data to come
back from RAM.

  27

Conclusion
■■ RAM is slow because there’s a ton of
it.

■■ That means you have to use designs
that are cheaper, and cheaper means
slower.

■■ Modern CPUs do crazy things inter-
nally and will happily execute your
instruction stream in an order that’s
wildly different from how it appears
in the code.

■■ That means that the first thing a
CPU does while waiting for a RAM
load is run other code.

■■ If all else fails, it’ll just stop and wait,
and wait, and wait, and wait. n

Mike Ash has been programming for Apple
platforms for over two decades and for Mac OS
X since the Public Beta. He is the author of the
bi-weekly Friday Q&A [mikeash.com/pyblog]
blog series on deep technical topics related
to Mac and iOS programming, as well as the
compilation book The Complete Friday Q&A:
Volume I. In between abusing the Objective-C
runtime, he flies his glider over the beautiful
Shenandoah Valley. When not flying, he holds
down a day job at Plausible Labs.

Reprinted with permission of the original author.
First appeared in hn.my/registers (mikeash.com)

http://mikeash.com/pyblog
http://hn.my/registers

28  PROGRAMMING

By Seth Brown

Vim Croquet

I recently discovered an inter-
esting game called VimGolf
[vimgolf.com]. The objective of the

game is to transform a snippet of text
from one form to another in as few
keystrokes as possible. As I was playing
around with different puzzles on the
site, I started to get curious about my
text editing habits. I wanted to better
understand how I manipulated text
with vim and to see if I could identify
any inefficiencies in my workflow. I
spend a huge amount of time inside
my text editor, so correcting even slight
areas of friction can result in worth-
while productivity gains. This post
explains my analysis and how I reduced
the number of keystrokes I use in vim.
I call this game Vim Croquet.

Data Acquisition
I started my analysis by collecting data.
All my text editing on a computer is
done with vim, so for 45 days I logged
every keystroke I used in vim with
the scriptout flag. For convenience, I

aliased vim in my shell to record all my
keystrokes into a log file:

alias vim='vim -w ~/.vimlog "$@"'

Next, I needed to parse the resulting
data. Parsing vim is complicated. vim is
a modal editor where a single command
can have different meanings in different
modes. Commands can also have con-
textual effects where the behavior of
certain actions can be different depend-
ing on where they are executed within
a buffer. For example, typing cib in
normal mode moves the user into insert
mode if the command is executed
between parentheses, but leaves the
user in normal mode if executed out-
side of parentheses. If cib is executed in
insert mode it has an altogether differ-
ent behavior; it writes the characters
cib into the current buffer.

I looked at several candidate tools
for parsing vim commands including
industrial parser libraries like antler
[antlr.org] and parsec [hn.my/parsec]
as well as a vim-specific project called

http://vimgolf.com
http://antlr.org
http://hn.my/parsec

  29

vimprint [hn.my/vimprint]. After some
deliberation, I decided to write my
own tool. I don’t do a lot of language
processing, so investing the time to
learn a sophisticated parser seemed
unwarranted.

I wrote a crude lexer in Haskell to
tokenize the keystrokes I collected into
individual vim commands. My lexer
uses monoids to extract normal mode
commands from my log for further
analysis. Here’s the source code for the
lexer:

import qualified Data.ByteString.
Lazy.Char8 as LC
import qualified Data.List as DL
import qualified Data.List.Split
as LS
import Data.Monoid
import System.IO

main = hSetEncoding stdout utf8
>>
 LC.getContents >>= mapM_
putStrLn . process

process = affixStrip
 . startsWith
 . splitOnMode
 . modeSub
 . capStrings
 . split mark
 . preprocess

subs = appEndo . mconcat . map
(Endo . sub)

sub (s,r) lst@(x:xs)
 | s `DL.isPrefixOf` lst = sub'
 | otherwise = x:sub (s,r) xs
 where
 sub' = r ++ sub (s,r) (drop
(length s) lst)
sub (_,_) [] = []

preprocess = subs meta
 . DL.intercalate " "
 . DL.words
 . DL.unwords
 . DL.lines
 . LC.unpack

splitOnMode = DL.concat $ map (\
el -> split mode el)

startsWith = filter (\el -> mark
`DL.isPrefixOf` el && el /= mark)

modeSub = map (subs mtsl)

split s r = filter (/= "") $ s
`LS.splitOn` r

affixStrip = clean
 . concat
 . map (\el -> split
mark el)

capStrings = map (\el -> mark ++
el ++ mark)

clean = filter (not . DL.isInfixOf
"[M")

http://hn.my/vimprint

30  PROGRAMMING

(mark, mode, n) = ("-(*)-","-(!)-
", "")
meta = [("\"",n),("\\",n),
 ("\195\130\194\128\195\13
1\194\189`",n),
 ("\194\128\195\189`",n),
 ("\194\128kb\ESC",n),
 ("\194\128kb",n),("[>0;95
;c",n),
 ("[>0;95;0c",n),
 ("\ESC",mark),("\
ETX",mark),("\r",mark)]
mtsl = [(":",mode),("A",mode),
("a",mode),
 ("I",mode), ("i",mode),
 ("O",mode),("o",mode),
 ("v", mode),("/",mode),("\
ENQ","⌃e"),
 ("\DLE","⌃p"),("\NAK","⌃u"),
 ("\EOT","⌃d"),("\ACK","⌃f"),
 ("\STX","⌃f"),("\EM","⌃y"),
 ("\SI","⌃o"),("\SYN","⌃v"),
 ("\DC2","⌃r")]

Here’s a sample of the data in its
unprocessed form and its structure
after lexing:

cut -c 1-42 ~/.vimlog | tee >(cat
-v;echo)
| ./lexer
`Mihere's some text^Cyyp$bimore
^C0~A.^C:w^M:q
`M
yyp$b
0~

My lexer reads from stdin and sends
processed normal mode commands
to stdout. In the above example pipe,
I use a process substitution to print
a representation of the unprocessed
data on the second line and the result-
ing output of the lexer on subsequent
lines. Each line in the output of the
lexer represents a grouping of normal
mode commands executed in sequence.
The lexer correctly determined that I
started in normal mode by navigating
to a specific buffer using the `M mark;
then typing here's some text in insert
mode; then copying and pasting the
line and moving to the start of the last
word on the line using yyp$b; then
entering additional text; and finally
navigating to the start of the line and
capitalizing the first character using 0~.

Key Heat Map
After lexing my log data, I forked
Patrick Wied’s awesome heatmap-
keyboard project [hn.my/heatmap]
and added my own custom layout to
read the output of my lexer. Patrick’s
project does not detect most meta-
characters like escape, control, and
command, so it was necessary for me
to write a data loader in JavaScript and
make some other modifications so the
heatmap would accurately depict key
usage in vim. I translated metacharac-
ters used in vim to unicode represen-
tations and mapped these onto the
keyboard. Here’s what my key usage

http://hn.my/heatmap

  31

looked like based on ≈500,000 normal
mode keystrokes processed by my
lexer. Increasing wavelengths denotes
more prevalent key usage:

 A prominent feature of the heatmap
is the prevalent usage of the control
key. I use control for numerous move-
ment commands in vim. For example, I
use ⌃p for Control P [hn.my/ctrlp] and
I cycle forward and backward through
open buffers with ⌃j and ⌃k, respec-
tively. Control is an efficient movement
on my Kinesis Advantage because I
remap it to left thumb delete.

Another pattern in the heatmap
that jumped out at me was my heavy
use of ⌃E and ⌃Y. I routinely use these
commands to navigate up and down
through source code, but moving
vertically with these commands is
inefficient. Each time one of these
commands is executed, the cursor only
moves a few lines at a time. A more
efficient pattern would be to use larger
vertical movements with ⌃U and ⌃D.
These commands move the cursor
up or down a half screen at a time,
respectively.

Command Frequency
The heatmap gives a good overview
of how I use individual keys, but I also
wanted to learn more about how I
used different key sequences. I sorted
the lines in the output of my lexer by
frequency to uncover my most used
normal commands using a simple
one-liner:

$ sort normal_cmds.txt | uniq -c
| sort -nr | head -10 | \
 awk '{print NR,$0}' | column
-t

1 2542 j
2 2188 k
3 1927 jj
4 1610 p
5 1602 ⌃j
6 1118 Y
7 987 ⌃e
8 977 zR
9 812 P
10 799 ⌃y

Seeing zR rank as my 8th most used
sequence was unexpected. After pon-
dering this, I realized a huge inefficiency
in my text editing. My .vimrc is setup
to automatically fold text. The problem
with this configuration is that I almost
immediately unfold all folded text, so it
makes no sense for my vim configura-
tion to use automatically fold text by
default. Therefore, I removed this set-
ting so that I would no longer need to
repeatedly use the zR command.

http://hn.my/ctrlp

32  PROGRAMMING

Command Complexity
Another optimization I wanted to look
at was normal mode command com-
plexity. I was curious to see if I could
find any commands that I routinely
used which also required an exces-
sive number of keystrokes to execute.
I wanted to find these commands so
that I could create shortcuts to speed
up their execution. I used entropy as a
proxy to measure command complex-
ity using a short script in Python:

#!/usr/bin/env python
import sys
from codecs import getreader, get-
writer
from collections import Counter
from operator import itemgetter
from math import log, log1p

sys.stdin = getreader('utf-8')
(sys.stdin)
sys.stdout = getwriter('utf-8')
(sys.stdout)

def H(vec, correct=True):
 """Calculate the Shannon
Entropy of a vector
 """
 n = float(len(vec))
 c = Counter(vec)
 h = sum(((-freq / n) *
log(freq / n, 2)) for freq in
c.values())

 # impose a penality to correct
for size

 if all([correct is True, n >
0]):
 h = h / log1p(n)

 return h

def main():
 k = 1
 lines = (_.strip() for _ in
sys.stdin)
 hs = ((st, H(list(st))) for st
in lines)
 srt_hs = sorted(hs,
key=itemgetter(1), reverse=True)
 for n, i in enumerate(srt_
hs[:k], 1):
 fmt_st = u'{r}\t{s}\
t{h:.4f}'.format(r=n, s=i[0],
h=i[1])
 print fmt_st

if __name__ == '__main__':
 main()

The entropy script reads from stdin
and finds the normal mode command
with the highest entropy. I used the
output of my lexer as input for my
entropy calculation:

$ sort normal_cmds.txt | uniq -c
| sort -nr | sed "s/^[\t]*//" | \
 awk 'BEGIN{OFS="\t";}{if
($1>100) print $1,$2}' | \
 cut -f2 | ./entropy.py

1 ggvG$"zy 1.2516

  33

In the command above, I first filtered
all the normal mode commands that I
executed more than 100 times. Then,
among this subset, I found the com-
mand with the highest entropy. This
analysis precipitated the command
ggvG$"zy, which I executed 246 times
in 45 days. The command takes an
unwieldy 11 keystrokes and yanks the
entire current buffer into the z register.
I typically use this command to move
the contents of one buffer into another
buffer. Since I use this sequence so
frequently, I added a short cut to my
.vimrc to reduce the number of key-
strokes I need to execute:

nnoremap <leader>ya ggvG$"zy

Conclusions
My Vim Croquet match revealed three
optimizations to decrease the number
of keystrokes I use in vim:

■■ Use coarser navigation commands
like ^U and ^D instead of ^E and ^Y

■■ Prevent buffers from automatically
folding text to obviate using zR

■■ Create shortcuts for verbose com-
mands that are frequently used like
ggvG$"zy

These 3 simple changes have saved
me thousands of superfluous key-
strokes each month.

The code snippets above are pre-
sented in isolation and may be difficult
to follow. To help clarify the steps in
my analysis, here’s my Makefile, which
shows how the code presented in this
post fits together:

SHELL := /bin/bash
LOG := ~/.vimlog
CMDS := normal_cmds.txt
FRQS := frequencies.txt
ENTS := entropy.txt
LEXER_SRC := lexer.hs
LEXER_OBJS := lexer.{o,hi}
LEXER_BIN := lexer
H := entropy.py
UTF := iconv -f iso-
8859-1 -t utf-8

.PRECIOUS: $(LOG)
.PHONY: all entropy clean dist-
clean

all: $(LEXER_BIN) $(CMDS) $(FRQS)
entropy

$(LEXER_BIN): $(LEXER_SRC)
 ghc --make $^

$(CMDS): $(LEXER_BIN)
 cat $(LOG) | $(UTF) | ./$^ >
$@

34  PROGRAMMING

$(FRQS): $(H) $(LOG) $(CMDS)
 sort $(CMDS) | uniq -c | sort
-nr | sed "s/^[\t]*//" | \
 awk 'BEGIN{OFS="\t";}{if
($$1>100) print NR,$$1,$$2}' > $@
entropy: $(H) $(FRQS)
 cut -f3 $(FRQS) | ./$(H)
clean:
 @- $(RM) $(LEXER_OBJS)
$(LEXER_BIN) $(CMDS) $(FRQS)
$(ENTS)

distclean: clean

n

Seth Brown is a Data Scientist in the telecom-
munications industry. His research focuses
on understanding the topology of the global
Internet using large-scale computing, statis-
tical modeling, and data visualization tech-
niques. Prior to computer networking, he was
a research scientist in bioinformatics where
he studied the structure and function of gene
regulatory networks. Seth writes about topics
in data analysis and data visualization on his
website, drbunsen.org. He can be found on
Twitter @drbunsen

Reprinted with permission of the original author.
First appeared in hn.my/vimcroquet (drbunsen.org)

http://drbunsen.org
http://twitter.com/@drbunsen
http://hn.my/vimcroquet

  35

By Rich Adams

AWS Tips I Wish I’d Known
Before I Started

Moving from physical serv-
ers to the “cloud” involves a
paradigm shift in thinking.

Generally in a physical environment
you care about each individual host;
they each have their own static IP,
you probably monitor them individu-
ally, and if one goes down you have to
get it back up ASAP. You might think
you can just move this infrastructure
to AWS and start getting the benefits
of the “cloud” straight away. Unfortu-
nately, it’s not quite that easy (believe
me, I tried). You need to think differ-
ently when it comes to AWS, and it’s
not always obvious what needs to be
done.

So, inspired by Sehrope Sarkuni’s
recent post [hn.my/sarkuni], here’s a
collection of AWS tips I wish someone

had told me when I was starting out.
These are based on things I’ve learned
deploying various applications on AWS
both personally and for my day job.
Some are just “gotcha”’s to watch out
for (and that I fell victim to), some are
things I’ve heard from other people
that I ended up implementing and
finding useful, but mostly they’re just
things I’ve learned the hard way.

Application Development
Store no application state on your
servers.
The reason for this is so that if your
server gets killed, you won’t lose any
application state. To that end, sessions
should be stored in a database, not on
the local filesystem. Logs should be
handled via syslog (or similar) and sent

A collection of random tips for Amazon Web Services
(AWS) that I wish I’d been told a few years ago.

http://hn.my/sarkuni

36  PROGRAMMING

to a remote store. Uploads should go
direct to S3 (don’t store on local file-
system and have another process move
to S3 for example). And any post-pro-
cessing or long running tasks should be
done via an asynchronous queue (SQS
is great for this).

Store extra information in your logs.
Log lines normally have information
like timestamp, pid, etc. You’ll also
probably want to add instance-id,
region, availability-zone and environ-
ment (staging, production, etc.), as
these will help debugging considerably.
You can get this information from the
instance metadata service. The method
I use is to grab this information as part
of my bootstrap scripts, and store it in
files on the filesystem (/env/az, /env/
region, etc). This way I’m not con-
stantly querying the metadata service
for the information. You should make
sure this information gets updated
properly when your instances reboot,
as you don’t want to save an AMI and
have the same data persist, as it will
then be incorrect.

If you need to interact with AWS, use
the SDK for your language.
Don’t try to roll your own; I did this at
first as I only needed a simple upload
to S3, but then you add more services
and it’s just an all-around bad idea. The
AWS SDKs are well written, handle
authentication automatically, handle
retry logic, and they’re maintained and

iterated on by Amazon. Also, if you use
EC2 IAM roles (which you absolutely
should, more on this later) then the
SDK will automatically grab the cor-
rect credentials for you.

Have tools to view application logs.
You should have an admin tool, syslog
viewer, or something that allows you to
view current real-time log info without
needing to SSH into a running instance.
If you have centralized logging (which
you really should), then you just want
to be sure you can read the logs there
without needing to use SSH. Need-
ing to SSH into a running applica-
tion instance to view logs is going to
become problematic.

Operations
Disable SSH access to all servers.
This sounds crazy, I know, but port
22 should be disallowed for everyone
in your security group. If there’s one
thing you take away from this post, this
should be it: If you have to SSH into
your servers, then your automation has
failed. Disabling it at the firewall level
(rather than on the servers themselves)
will help the transition to this frame of
thinking, as it will highlight any areas
you need to automate, while still let-
ting you easily re-instate access to solve
immediate issues. It’s incredibly freeing
to know that you never need to SSH
into an instance. This is both the most
frightening and yet most useful thing
I’ve learned.

  37

Servers are ephemeral; you don’t care
about them. You only care about the
service as a whole.
If a single server dies, it should be of no
big concern to you. This is where the
real benefit of AWS comes in compared
to using physical servers yourself. Nor-
mally if a physical server dies, there’s
panic. With AWS, you don’t care,
because auto-scaling will give you a
fresh new instance soon anyway. Net-
flix has taken this several steps further
with their simian army, where they
have things like Chaos Monkey, which
will kill random instances in production
(they also have Chaos Gorilla to kill
AZs and I’ve heard rumor of a Chaos
Kong to kill regions...). The point is
that servers will fail, but this shouldn’t
matter in your application.

Don’t give servers static/elastic IPs.
For a typical web application, you
should put things behind a load bal-
ancer, and balance them between AZs.
There are a few cases where Elastic IPs
will probably need to be used, but in
order to make best use of auto-scaling
you’ll want to use a load balancer
instead of giving every instance their
own unique IP.

Automate everything.
This is more of general operations advice
than AWS specific, but everything needs
to be automated. Recovery, deployment,
failover, etc. Package and OS updates
should be managed by something,

whether it’s just a bash script, or Chef/
Puppet, etc. You shouldn’t have to care
about this stuff. As mentioned earlier,
you should also make sure to disable
SSH access, as this will pretty quickly
highlight any part of your process that
isn’t automated. Remember the key
phrase from earlier, if you have to SSH
into your servers, then your automation
has failed.

Everyone gets an IAM account. Never
login to the master.
Usually you’ll have an “operations
account” for a service, and your entire
ops team will have the password. With
AWS, you definitely don’t want to do
that. Everyone gets an IAM user with
just the permissions they need (least
privilege). An IAM user can control
everything in the infrastructure. At the
time of writing, the only thing an IAM
user can’t access are some parts of the
billing pages.

If you want to protect your account
even more, make sure to enable multi-
factor authentication for everyone (you
can use Google Authenticator). I’ve
heard of some users who give the MFA
token to two people, and the password
to two others, so to perform any action
on the master account, two of the users
need to agree. This is overkill for my
case, but worth mentioning in case
someone else wants to do it.

38  PROGRAMMING

Get your alerts to become
notifications.
If you’ve set everything up correctly,
your health checks should automati-
cally destroy bad instances and spawn
new ones. There’s usually no action to
take when getting a CloudWatch alert,
as everything should be automated.
If you’re getting alerts where manual
intervention is required, do a post-mor-
tem and figure out if there’s a way you
can automate the action in the future.
The last time I had an actionable alert
from CloudWatch was about a year
ago, and it’s extremely awesome not to
be woken up at 4am for ops alerts any
more.

Billing
Set up granular billing alerts.
You should always have at least one
billing alert set up, but that will only
tell you on a monthly basis once you’ve
exceeded your allowance. If you want
to catch runaway billing early, you
need a more fine grained approach. The
way I do it is to set up an alert for my
expected usage each week. So the first
week’s alert for say $1,000, the second
for $2,000, third for $3,000, etc. If
the week-2 alarm goes off before the
14th/15th of the month, then I know
something is probably going wrong.
For even more fine-grained control,
you can set this up for each individual
service, that way you instantly know
which service is causing the problem.

This could be useful if your usage on
one service is quite steady month-to-
month, but another is more erratic.
Have the individual weekly alerts for
the steady one, but just an overall one
for the more erratic one. If everything
is steady, then this is probably overkill,
as looking at CloudWatch will quickly
tell you which service is the one caus-
ing the problem.

Security
Use EC2 roles, do not give applica-
tions an IAM account.
If your application has AWS credentials
baked into it, you’re “doing it wrong.”
One of the reasons it’s important to
use the AWS SDK for your language
is that you can really easily use EC2
IAM roles. The idea of a role is that
you specify the permissions a certain
role should get, then assign that role
to an EC2 instance. Whenever you use
the AWS SDK on that instance, you
don’t specify any credentials. Instead,
the SDK will retrieve temporary
credentials which have the permis-
sions of the role you set up. This is all
handled transparently as far as you’re
concerned. It’s secure, and extremely
useful.

Assign permissions to groups, not
users.
Managing users can be a pain, if you’re
using Active Directory, or some other
external authentication mechanism
which you’ve integrated with IAM,

  39

then this probably won’t matter as
much (or maybe it matters more). But
I’ve found it much easier to manage
permissions by assigning them only to
groups, rather than to individual users.
It’s much easier to rein in permissions
and get an overall view of the system
than going through each individual
user to see what permissions have been
assigned.

Set up automated security auditing.
It’s important to keep track of changes
in your infrastructure’s security set-
tings. One way to do this is to first
set up a security auditor role [hn.
my/secaudit], which will give anyone
assigned that role read-only access to
any security-related settings on your
account. You can then use this rather
fantastic Python script [hn.my/secco-
nfig], which will go over all the items
in your account and produce a canoni-
cal output showing your configuration.
You set up a cronjob somewhere to
run this script, and compare its output
to the output from the previous run.
Any differences will show you exactly
what has been changed in your security
configuration. It’s useful to set this up
and just have it email you the diff of
any changes.

Use CloudTrail to keep an audit log.
CloudTrail will log any action per-
formed via the APIs or web console
into an S3 bucket. Set up the bucket
with versioning to be sure no one can

modify your logs, and you then have a
complete audit trail of all changes in
your account. You hope that you will
never need to use this, but it’s well
worth having for when you do.

S3
Use “-” instead of “.” in bucket names
for SSL.
If you ever want to use your bucket
over SSL, using a “.” will cause you to
get certificate mismatch errors. You
can’t change bucket names once you’ve
created them, so you’d have to copy
everything to a new bucket.

Avoid filesystem mounts (FUSE, etc.).
I’ve found them to be about as reli-
able as a large government department
when used in critical applications. Use
the SDK instead.

You don’t have to use CloudFront in
front of S3 (but it can help).
If all you care about is scalability, you
can link people directly to the S3 URL
instead of using CloudFront. S3 can
scale to any capacity (although some
users have reported that it doesn’t scale
instantly), so it is great if that’s all your
care about. Additionally, updates are
available quickly in S3, yet you have to
wait for the TTL when using a CDN to
see the change (although I believe you
can set a 0s TTL in CloudFront now, so
this point is probably moot).

If you need speed, or are handling
very high bandwidth (10TB+), then

http://hn.my/secaudit
http://hn.my/secaudit
http://hn.my/secconfig
http://hn.my/secconfig

40  PROGRAMMING

you might want to use a CDN like
CloudFront in front of S3. Cloud-
Front can dramatically speed up
access for users around the globe, as
it copies your content to edge loca-
tions. Depending on your use case, this
can also work out slightly cheaper if
you deal with very high bandwidth
(10TB+) with lower request num-
bers, as it’s about $0.010/GB cheaper
for CloudFront bandwidth than S3
bandwidth once you get above 10TB,
but the cost per request is slightly
higher than if you were to access the
files from S3 directly. Depending on
your usage pattern, the savings from
bandwidth could outweigh the extra
cost per request. Since content is only
fetched from S3 infrequently (and at
a much lower rate than normal), your
S3 cost would be much smaller than
if you were serving content directly
from S3. The AWS documentation on
CloudFront explains how you can use
it with S3.

Use random strings at the start of your
keys.
This seems like a strange idea, but one
of the implementation details of S3
is that Amazon uses the object key to
determine where a file is physically
placed in S3. So files with the same
prefix might end up on the same hard
disk for example. By randomizing your
key prefixes, you end up with a better
distribution of your object files.

EC2/VPC
Use tags!
Pretty much everything can be given
tags, use them! They’re great for orga-
nizing things, make it easier to search
and group things up. You can also use
them to trigger certain behaviors on
your instances, for example a tag of
env=debug could put your application
into debug mode when it deploys, etc.

Use termination protection for
non-auto-scaling instances. Thank me
later.
If you have any instances which are
one-off things that aren’t under auto-
scaling, then you should probably
enable termination protection, to stop
anyone from accidentally deleting the
instance. I’ve had it happen, it sucks,
learn from my mistake!

Use a VPC.
VPC either wasn’t around, or I didn’t
notice it when I got started with AWS.
It seems like a pain at first, but once
you get stuck in and play with it, it’s
surprising easy to set up and get going.
It provides all sorts of extra features
over EC2 that are well worth the extra
time it takes to set up a VPC. First, you
can control traffic at the network level
using ACLs, you can modify instance
size, security groups, etc. without need-
ing to terminate an instance. You can
specify egress firewall rules (you cannot
control outbound traffic from normal
EC2). But the biggest thing is that you

  41

have your own private subnet where
your instances are completely cut off
from everyone else, so it adds an extra
layer of protection. Don’t wait like I
did, use VPC straight away to make
things easy on yourself.

Use reserved instances to save big $$$.
Reserving an instance is just putting
some money upfront in order to get a
lower hourly rate. It ends up being a lot
cheaper than an on-demand instance
would cost. So if you know you’re going
to be keeping an instance around for
1 or 3 years, it’s well worth reserving
them. Reserved instances are a purely
logical concept in AWS, you don’t
assign a specific instance to be reserved,
but rather just specify the type and size,
and any instances that match the crite-
ria will get the lower price.

Lock down your security groups.
Don’t use 0.0.0.0/0 if you can help
it; make sure to use specific rules to
restrict access to your instances. For
example, if your instances are behind
an ELB, you should set your security
groups to only allow traffic from the
ELBs, rather than from 0.0.0.0/0. You
can do that by entering “amazon-elb/
amazon-elb-sg” as the CIDR (it should
auto-complete for you). If you need
to allow some of your other instances
access to certain ports, don’t use their
IP, but specify their security group
identifier instead (just start typing “sg-”
and it should auto-complete for you).

Don’t keep unassociated Elastic IPs.
You get charged for any Elastic IPs you
have created but not associated with an
instance, so make sure you don’t keep
them around once you’re done with
them.

ELB
Terminate SSL on the load balancer.
You’ll need to add your SSL certificate
information to the ELB, but this will
take the overhead of SSL termina-
tion away from your servers which can
speed things up. Additionally, if you
upload your SSL certificate, you can
pass through the HTTPS traffic and
the load balancer will add some extra
headers to your request (x-forwarded-
for, etc.), which are useful if you want
to know who the end user is. If you just
forward TCP, then those headers aren’t
added and you lose the information.

Pre-warm your ELBs if you’re expect-
ing heavy traffic.
It takes time for your ELB to scale up
capacity. If you know you’re going to
have a large traffic spike (selling tickets,
big event, etc.), you need to “warm up”
your ELB in advance. You can inject
a load of traffic, and it will cause ELB
to scale up and not choke when you
actually get the traffic; however, AWS
suggests you contact them instead to
pre-warm your load balancer. Alter-
natively you can install your own load
balancer software on an EC2 instance
and use that instead (HAProxy, etc).

42  PROGRAMMING

ElastiCache
Use the configuration endpoints,
instead of individual node endpoints.
Normally you would have to make
your application aware of every Mem-
cached node available. If you want
to dynamically scale up your capac-
ity, then this becomes an issue as you
will need to have some way to make
your application aware of the changes.
An easier way is to use the configura-
tion endpoint, which means using an
AWS version of a Memcached library
that abstracts away the auto-discovery
of new nodes. The AWS guide to
cache node auto-discovery has more
information.

RDS
Set up event subscriptions for failover.
If you’re using a Multi-AZ setup, this
is one of those things you might not
think about which ends up being
incredibly useful when you do need it.

CloudWatch
Use the CLI tools.
It can become extremely tedious to
create alarms using the web console,
especially if you’re setting up a lot of
similar alarms, as there’s no ability to
“clone” an existing alarm while making
a minor change elsewhere. Scripting
this using the CLI tools can save you
lots of time.

Use the free metrics.
CloudWatch monitors all sorts of
things for free (bandwidth, CPU usage,
etc.), and you get up to 2 weeks of
historical data. This saves you having
to use your own tools to monitor you
systems. If you need longer than 2
weeks, unfortunately you’ll need to use
a third-party or custom built monitor-
ing solution.

Use custom metrics.
If you want to monitor things not
covered by the free metrics, you can
send your own metric information
to CloudWatch and make use of the
alarms and graphing features. This can
not only be used for things like tracking
disk space usage, but also for custom
application metrics too. The AWS page
on publishing custom metrics has more
information.

Use detailed monitoring.
It’s ~$3.50 per instance/month, and
well worth the extra cost for the extra
detail. 1 minute granularity is much
better than 5 minutes. You can have
cases where a problem is hidden in the
5 minute breakdown but shows itself
quite clearly in the 1 minute graphs.
This may not be useful for everyone,
but it’s made investigating some issues
much easier for me.

  43

Auto-Scaling
Scale down on INSUFFICIENT_
DATA as well as ALARM.
For your scale-down action, make sure
to trigger a scale-down event when
there’s no metric data, as well as when
your trigger goes off. For example, if
you have an app which usually has
very low traffic, but experiences occa-
sional spikes, you want to be sure that
it scales down once the spike is over
and the traffic stops. If there’s no traf-
fic, you’ll get INSUFFIFIENT_DATA
instead of ALARM for your low traffic
threshold and it won’t trigger a scale-
down action.

Use ELB health check instead of EC2
health checks.
This is a configuration option when
creating your scaling group, you can
specify whether to use the standard
EC2 checks (is the instance connected
to the network), or to use your ELB
health check. The ELB health check
offers way more flexibility. If your
health check fails and the instance gets
taken out of the load balancing pool,
you’re pretty much always going to
want to have that instance killed by
auto-scaling and a fresh one take its
place. If you don’t set up your scaling
group to use the ELB checks, then that
won’t necessarily happen. The AWS
documentation on adding the health
check has all the information you need
to set this up.

Only use the availability zones (AZs)
your ELB is configured for.
If you add your scaling group to
multiple AZs, make sure your ELB
is configured to use all of those AZs,
otherwise your capacity will scale up,
and the load balancer won’t be able to
see them.

Don’t use multiple scaling triggers on
the same group.
If you have multiple CloudWatch
alarms which trigger scaling actions for
the same auto-scaling group, it might
not work as you initially expect it to.
For example, let’s say you add a trigger
to scale up when CPU usage gets too
high, or when the inbound network
traffic gets high, and your scale down
actions are the opposite. You might
get an increase in CPU usage, but your
inbound network is fine. So the high
CPU trigger causes a scale-up action,
but the low inbound traffic alarm
immediately triggers a scale-down
action. Depending on how you’ve set
your cool down period, this can cause
quite a problem as they’ll just fight
against each other. If you want mul-
tiple triggers, you can use multiple
auto-scaling groups.

44  PROGRAMMING

IAM
Use IAM roles.
Don’t create users for application,
always use IAM roles if you can. They
simplify everything, and keeps things
secure. Having application users just
creates a point of failure (what if some-
one accidentally deletes the API key?)
and it becomes a pain to manage.

Users can have multiple API keys.
This can be useful if someone is work-
ing on multiple projects, or if you want
a one-time key just to test something
out, without wanting to worry about
accidentally revealing your normal key.

IAM users can have multi-factor
authentication, use it!
Enable MFA for your IAM users to add
an extra layer of security. Your master
account should most definitely have
this, but it’s also worth enabling it for
normal IAM users too.

Route53
Use ALIAS records.
An ALIAS record will link your record
set to a particular AWS resource
directly (i.e., you can map a domain
to an S3 bucket), but the key is that
you don’t get charged for any ALIAS
lookups. So whereas a CNAME entry
would cost you money, an ALIAS
record won’t. Also, unlike a CNAME,
you can use an ALIAS on your zone
apex. You can read more about this
on the AWS page for creating alias
resource record sets.

Elastic MapReduce
Specify a directory on S3 for Hive
results.
If you use Hive to output results to
S3, you must specify a directory in
the bucket, not the root of the bucket,
otherwise you’ll get a rather unhelp-
ful NullPointerException with no real
explanation as to why.

Miscellaneous Tips
Scale horizontally.
I’ve found that using lots of smaller
machines is generally more reliable
than using a smaller number of larger
machines. You need to balance this
though, as trying to run your appli-
cation from 100 t1.micro instances
probably isn’t going to work very well.
Breaking your application into lots
of smaller instances means you’ll be
more resilient to failure in one of the

  45

machines. If you’re just running from
two massive compute cluster machines,
and one goes down, things are going to
get bad.

Your application may require changes
to work on AWS.
While a lot of applications can prob-
ably just be deployed to an EC2
instance and work well, if you’re
coming from a physical environment,
you may need to re-architect your
application in order to accommodate
changes. Don’t just think you can copy
the files over and be done with it.

Decide on a naming convention early,
and stick to it.
There’s a lot of resources on AWS
where you can change the name later,
but there’s equally a lot where you
cannot (security group names, etc.).
Having a consistent naming convention
will help to self-document your infra-
structure. Don’t forget to make use of
tags too. n

Rich Adams is a systems engineer at Grace-
note who used to work on departure control
systems for the airline industry. He now splits
his time between playing with Amazon Web
Services and making sure there’s enough
Mountain Dew flowing through him. Say hi
to him on Twitter at @r_adams

Reprinted with permission of the original author.
First appeared in hn.my/awstips (wblinks.com)

http://twitter.com/@r_adams
http://hn.my/awstips

46  PROGRAMMING

Why I’m Betting on Julia

The problem with most pro-
gramming languages is they’re
designed by language geeks,

who tend to worry about things that I
don’t much care for. Safety, type sys-
tems, homoiconicity, and so forth. I’m
sure these things are great, but when
I’m messing around with a new proj-
ect for fun, my two concerns are 1)
making it work and 2) making it fast.
For me, code is like a car. It’s a means
to an end. The “expressiveness” of a
piece of code is about as important to
me as the “expressiveness” of a catalytic
converter.

This approach to programming
is often (derisively) called cowboy
coding. I don’t think a cowboy is quite
the right image, because a cowboy
must take frequent breaks due to the
physical limitations of his horse. A
better aspirational image is an obsessed
scientist who spends weeks in the
laboratory and emerges, bleary-eyed,
exhausted, and wan, with an ingenious

new contraption that possibly causes a
fire on first use.

Enough about me. Normally I use one
language to make something work, and
a second language to make it fast, and a
third language to make it scream. This
pattern is fairly common. For many
programmers, the prototyping language
is often Python, Ruby, or R. Once the
code works, you rewrite the slow parts
in C or C++. If you are truly insane,
you then rewrite the inner C loops
using assembler, CUDA, or OpenCL.

Unfortunately, there’s a big wall
between the prototyping language and
C, and another big wall between C and
assembler. Besides having to learn three
different languages to get the job done,
you have to mentally switch between
the layers of abstraction. At a more
quotidian level, you have to write a sig-
nificant amount of glue code, and often
find yourself switching between differ-
ent source files, different code editors,
and disparate debuggers.

By Evan Miller

  47

I read about Julia [julialang.org] a
while back, and thought it sounded
cool, but not like something I urgently
needed. Julia is a dynamic language
with great performance. That’s nice, I
thought, but I’ve already invested a lot
of time putting a Ferrari engine into my
VW Beetle — why would I buy a new
car? Besides, nowadays a number of
platforms — Java HotSpot, PyPy, and
asm.js, to name a few — claim to offer
“C performance” from a language other
than C.

Only later did I realize what makes
Julia different from all the others. Julia
breaks down the second wall — the
wall between your high-level code
and native assembly. Not only can you
write code with the performance of C
in Julia, you can take a peek behind the
curtain of any function into its LLVM
Intermediate Representation as well
as its generated assembly code — all
within the REPL. Check it out.

emiller ~/Code/julia (master) ./
julia

| A fresh approach to technical
| computing Documentation:
| http://docs.julialang.org
| Type "help()" to list help
| topics
| Version 0.3.0-prerelease+261
| (2013-11-30)
| Commit 97b5983 (0 days old
| master)
| x86_64-apple-darwin12.5.0

julia> f(x) = x * x
f (generic function with 1 method)

julia> f(2.0)
4.0

julia> code_llvm(f, (Float64,))

define double @julia_f662(double) {
top:
 %1 = fmul double %0, %0, !dbg
!3553
 ret double %1, !dbg !3553
}

julia> code_native(f, (Float64,))
 .section __TEXT,__
text,regular,pure_instructions
Filename: none
Source line: 1
 push RBP
 mov RBP, RSP
Source line: 1
 vmulsd XMM0, XMM0, XMM0
 pop RBP
 ret

Bam — you can go from writing
a one-line function to inspecting its
LLVM-optimized X86 assembler code
in about 20 seconds.

So forget the stuff you may have
read about Julia’s type system, multiple
dispatch and homoiconi-whatever. That
stuff is cool (I guess), but if you’re like
me, the real benefit is being able to go
from the first prototype all the way
to balls-to-the-wall multi-core SIMD

http://julialang.org

48  PROGRAMMING

performance optimizations without
ever leaving the Julia environment.

That, in a nutshell, is why I’m betting
on Julia. I hesitate to make the com-
parison, but it’s poised to do for tech-
nical computing what Node.js is doing
for web development — getting dispa-
rate groups of programmers to code in the
same language. With Node.js, it was the
front-end designers and the back-end
developers. With Julia, it’s the domain
experts and the speed freaks. That is a
major accomplishment.

Julia’s only drawback at this point is
the relative dearth of libraries — but
the language makes it unusually easy
to interface with existing C libraries.
Unlike with native interfaces in other
languages, you can call C code with-
out writing a single line of C, and so
I anticipate that Julia’s libraries will
catch up quickly. From personal expe-
rience, I was able to access 5K lines of
C code using about 150 lines of Julia
— and no extra glue code in C.

If you work in a technical group
that’s in charge of a dizzying mix of
Python, C, C++, Fortran, and R code
— or if you’re just a performance-
obsessed gun-slinging cowboy shoot-
from-the-hip Lone Ranger like me — I
encourage you to download Julia and
take it for a spin. If you’re hesitant to
complicate your professional life with
Yet Another Programming Language,
think of Julia as a tool that will even-
tually help you reduce the number of

languages that your project depends
on.

I almost neglected to mention: Julia
is actually quite a nice language, even
ignoring its excellent performance
characteristics. I’m no language aes-
thete, but learning it entailed remark-
ably few head-scratching moments. At
present Julia is in my top 3 favorite
programming languages.

Finally, you’ll find an active and sup-
portive Julia community. My favorite
part about the community is that it
is full of math-and-science types who
tend to be very smart and very friendly.
That’s because Julia was not designed
by language geeks — it came from
math, science, and engineering MIT
students who wanted a fast, practi-
cal language to replace C and Fortran.
So it’s not designed to be beautiful
(though it is); it’s designed to give you
answers quickly. That, for me, is what
computing is all about. n

Evan Miller is the creator of Wizard
[wizardmac.com], a next-generation statistics
package for Mac.

Reprinted with permission of the original author.
First appeared in hn.my/julia (evanmiller.org)

  49

https://www.mailjet.com/?utm_source=hackermonthly&utm_medium=pdf&utm_campaign=October-hackermonthly

50  SPECIAL

By Jonathan E. Chen

Forever Alone
Why Loneliness Matters In The Social Age

Loneliness was a problem I expe-
rienced most poignantly in col-
lege. In the three years I spent at

Carnegie Mellon, the crippling effects
of loneliness slowly pecked away at
my enthusiasm for learning and for
life, until I was drowning in an endless
depressive haze that never completely
cleared until I left Pittsburgh.

It wasn’t for lack of trying either.
At the warm behest of the orienta-
tion counselors, I joined just the right
number of clubs, participated in most
of the dorm activities, and tried to
expand my social portfolio as much as
possible.

None of it worked.

To the extent that I sought out CAPS
(our student psych and counseling
service) for help, the platitudes they
offered as advice (“Just put yourself
out there!”) only served to confirm my
suspicion that loneliness isn’t a very
visible problem. (After all, the cure
for loneliness isn’t exactly something
that could be prescribed. “Have you
considered transferring?” they finally

I got up and went over and looked
out the window. I felt so lonesome,
all of a sudden. I almost wished I
was dead. Boy, did I feel rotten. I
felt so damn lonesome. I just didn’t
want to hang around anymore. It
made me too sad and lonesome.
— J.D. Salinger in Catcher in the Rye

SPECIAL

Photo credit: flickr.com/photos/vinothchandar/6646251667

  51

suggested, after exhausting their list of
thought-terminating clichés. I gradu-
ated early instead.)

As prolonged loneliness took its toll,
I became very unhappy — to put it
lightly — and even in retrospect I have
difficulty pinpointing a specific cause.
It wasn’t that I didn’t know anyone
or failed to make any friends, and it
wasn’t that I was alone more than I
liked.

Sure, I could point my finger at the
abysmally fickle weather patterns of
Pittsburgh, or the pseudo-suburban
bubble that envelops the campus.
There might even be a correlation
between my academic dissonance with
computer science and my feelings
of loneliness. I might also just be an
extremely unlikable person.

For whatever the reason (or a conflu-
ence thereof) the reality remained that
I struggled with loneliness throughout
my time in college.

I recall a conversation with my
friend Dev one particular evening on

the patio of our dormitory. It was the
beginning of my junior and last year at
CMU, and I had just finished throwing
an ice cream party for the residents I
oversaw as an RA.

“Glad to be back?” he asked as he
plopped down on a lawn chair beside
me.

“No, not really.”
The sun was setting, and any good

feelings about the upcoming semester
with it. We made small talk about the
school in general, as he had recently
transferred, but eventually Dev asked
me if I was happy there.

“No, not really.”
“Why do you think you’re so miser-

able here?”
“I don’t know. A lot of things, I guess.

But mostly because I feel lonely. Like
I don’t belong, like I can’t relate to or
connect with anyone on an emotional
level. I haven’t made any quality rela-
tionships here that I would look back
on with any fond memories. Fuck… I
don’t know what to do.”

College, at least for me, was a har-
rowing exercise in how helplessly
debilitating, hopelessly soul-crushing,
and at times life-threatening loneliness
could be. It’s a problem nobody talks
about, and it’s been a subject of much
personal relevance and interest.

By Jonathan E. Chen

Why Loneliness Matters In The Social Age

Photo credit: flickr.com/photos/vinothchandar/6646251667

52  SPECIAL

Loneliness as a Health Problem
A recent article published on Slate
outlines the hidden dangers of social
isolation. Chronic loneliness, as Jessica
Olien discovered, poses serious health
risks that not only impact mental
health but physiological well-being as
well.

The lack of quality social relation-
ships in a person’s life has been linked
to an increased mortality risk compa-
rable to smoking and alcohol consump-
tion and exceeds the influence of other
risk factors like physical inactivity and
obesity. It’s hard to brush off loneliness
as a character flaw or an ephemeral
feeling when you realize it kills more
people than obesity.

Research also shows that loneliness
diminishes sleep quality and impairs
physiological function, in some cases
reducing immune function and boost-
ing inflammation, which increases risk
for diabetes and heart disease.

Why hasn’t loneliness gotten much
attention as a medical problem? Olien
shares the following observation:

As a culture we obsess over strategies
to prevent obesity. We provide resources
to help people quit smoking. But I have
never had a doctor ask me how much
meaningful social interaction I am
getting. Even if a doctor did ask, it is
not as though there is a prescription for
meaningful social interaction.

As a society we look down upon
those who admit to being lonely, we
cast and ostracize them with labels like
“loners” insofar as they prefer to hide
behind shame and doubt rather than
speak up. This dynamic only makes it
harder to devise solutions to what is
clearly a larger societal issue, and it cer-
tainly brings to question the effects of
culture on our perception of loneliness
as a problem.

Loneliness as a Culture Problem
Stephen Fry, in a blog post titled Only
the Lonely which explains his suicide
attempt last year, describes in detail his
struggle with depression. His account
offers a rare and candid glimpse into
the reality of loneliness with which
those afflicted often hide from the
public:

“Lonely? I get invitation cards through
the post almost every day. I shall be
in the Royal Box at Wimbledon and I
have serious and generous offers from
friends asking me to join them in the
South of France, Italy, Sicily, South
Africa, British Columbia and America
this summer. I have two months to
start a book before I go off to Broad-
way for a run of Twelfth Night there.

“I can read back that last sentence and
see that, bipolar or not, if I’m under
treatment and not actually depressed,
what the fuck right do I have to be
lonely, unhappy or forlorn? I don’t

  53

have the right. But there again I don’t
have the right not to have those feel-
ings. Feelings are not something to
which one does or does not have rights.

“In the end loneliness is the most terri-
ble and contradictory of my problems.”

In the United States, approximately
60 million people, or 20% of the popu-
lation, feel lonely. According to the
General Social Survey, between 1985
and 2004, the number of people with
whom the average American discusses
important matters decreased from
three to two, and the number with no
one to discuss important matters with
tripled.

Modernization has been cited as a
reason for the intensification of loneli-
ness in every society around the world,
attributed to greater migration, smaller
household sizes, and a larger degree of
media consumption.

In Japan, loneliness is an even more
pervasive, layered problem mired in
cultural parochialisms. Gideon Lewis-
Kraus pens a beautiful narrative on
Harper’s in which he describes his
foray into the world of Japanese co-
sleeping cafés:

“Why do you think he came here, to
the sleeping café?”

“He wanted five-second hug maybe
because he had no one to hug. Japan is
haji culture. Shame. Is shame culture.

Or maybe also is shyness. I don’t know
why. Tokyo people...very alone. And
he does not have...” She thought for
a second, shrugged, reached for her
phone. “Please hold moment.”

She held it close to her face, multi-
touched the screen not with thumb and
forefinger but with tiny forefinger and
middle finger. I could hear another
customer whispering in Japanese in
the silk-walled cubicle at our feet. His
co-sleeper laughed loudly, then laughed
softly. Yukiko tapped a button and
shone the phone at my face. The screen
said COURAGE.

It took an enormous effort for me to
come to terms with my losing battle
with loneliness and the ensuing depres-
sion at CMU, and an even greater leap
of faith to reach out for help. (That it
was to no avail is another story alto-
gether.) But what is even more discon-
certing to me is that the general stigma
against loneliness and mental health
issues, hinging on an unhealthy stress
culture, makes it hard for afflicted stu-
dents to seek assistance at all.

As Olien puts it, “In a society that
judges you based on how expansive
your social networks appear, loneli-
ness is difficult to fess up to. It feels
shameful.”

54  SPECIAL

To truly combat loneliness from
a cultural angle, we need to start by
examining our own fears about being
alone and to recognize that as humans,
loneliness is often symptomatic of our
unfulfilled social needs. Most impor-
tantly, we need to accept that it’s okay
to feel lonely. Fry, signing off on his
heartfelt post, offers this insight:

“Loneliness is not much written about
(my spell-check wanted me to say that
loveliness is not much written about —
how wrong that is) but humankind is
a social species and maybe it’s some-
thing we should think about more than
we do.”

Loneliness as a Technology Problem
Technology, and by extension media
consumption in the Internet age, adds
the most perplexing (and perhaps the
most interesting) dimension to the
loneliness problem. As it turns out,
technology isn’t necessarily helping us
feel more connected; in some cases, it
makes loneliness worse.

The amount of time you spend on
Facebook, as a recent study found, is
inversely related to how happy you feel
throughout the day.

Take a moment to watch this video:
http://vimeo.com/70534716

It’s a powerful, sobering reminder
that our growing dependence on tech-
nology to communicate has serious
social repercussions, to which Cohen
presents his central thesis:

We are lonely, but we’re afraid of inti-
macy, while the social networks offer
us three gratifying fantasies: 1) That
we can put our attention wherever we
want it to be. 2) That we will always
be heard. 3) That we will never have
to be alone.

And that third idea, that we will never
have to be alone, is central to changing
our psyches. It’s shaping a new way of
being. The best way to describe it is:

I share, therefore I am.

Public discourse on the cultural rami-
fications of technology is certainly not
a recent development, and the general
sentiment that our perverse obsession
with sharing will be humanity’s down-
fall continues to echo in various forms
around the web: articles proclaiming
that Instagram is ruining people’s lives,
the existence of a section on Reddit
called cringepics where people congre-
gate to ridicule things others post on
the Internet, the increasing number of
self-proclaimed “social media gurus” on
Twitter, to name a few.

The signs seem to suggest we have
reached a tipping point for “social”
media that’s not very social on a per-
sonal level, but whether it means a
catastrophic implosion or a gradual
return to more authentic forms of
interpersonal communications remains
to be seen.

http://vimeo.com/70534716

  55

While technology has been a source
of social isolation for many, it has the
capacity to alleviate loneliness as well.
A study funded by the online dating
site eHarmony shows that couples who
met online are less likely to divorce and
achieve more marital satisfaction than
those who met in real life.

The same model could potentially be
applied to friendships, and it’s frus-
trating to see that there aren’t more
startups leveraging this opportunity
when the problem is so immediate and
in need of solutions. It’s a matter of
exposure and education on the truths
of loneliness, and unfortunately we’re
just not there yet.

The perils of loneliness shouldn’t
be overlooked in an increasingly

hyper-connected world that often
tells another story through rose-tinted
lenses. Rather, the gravity of loneli-
ness should be addressed and brought
to light as a multifaceted problem,
one often muted and stigmatized in
our society. I learned firsthand how
painfully real of a problem loneliness
could be, and more should be done to
spread its awareness and to help those
affected.

“What do you think I should do?”
I looked at Dev as the last traces of
sunlight teetered over the top of More-
wood Gardens. It was a rhetorical
question — things weren’t about to get
better.

“Find better people,” he replied.
I offered him a weak smile in return,

but little did I know then how pre-
scient those words were.

In the year that followed, I started a
fraternity with some of the best kids I’d
come to know (Dev included), gradu-
ated college and moved to San Fran-
cisco, made some of the best friends
I’ve ever had, and never looked back, if
only to remember, and remember well,
that it’s never easy being lonely. n

Jonathan E. Chen (@wikichen) is a designer
based in California. He received his B.S. in
computer science from Carnegie Mellon Uni-
versity. In the past he’s worked as a front-end
developer and interaction designer at various
startups. He is currently taking some time off to
explore his interests in food and photography
and is looking for new opportunities.

Reprinted with permission of the original author.
First appeared in hn.my/foreveralone (wikichen.is)

http://twitter.com/@wikichen
http://hn.my/foreveralone

56  SPECIAL

By Chad Fowler

Killing the Crunch Mode
Anti-pattern

In the software industry, especially
the startup world, Crunch Mode is
a ubiquitous, unhealthy anti-pat-

tern. Crunch Mode refers to periods of
overtime work brought on by the need
to meet a project deadline. Developers
stereotypically glorify the ability and
propensity to stay up all night grinding
through a difficult problem. It’s part
of our folklore. It’s part of how we’re
measured. It’s something companies
and leaders take advantage of in order
to accomplish more with less.

And it’s stupid.
If you want a “knowledge worker”

to be as ineffective and produce the
lowest level of quality possible, deprive
them of their sleep and hold them to
an unrealistic deadline. In other words,
activate Crunch Mode.

Why Not Crunch?
■■ It makes us stupid. The more I work,
the less relevant my years of expe-
rience become. I constantly make
rookie mistakes. I break things in
production. I leave messes behind. I
waste hours going down the wrong
train of thought.

■■ It burns people out, sometimes per-
manently. They burn up their passion
that takes down time to replenish.
Unless the non-Crunch work is suf-
ficiently energizing (and frequent),
enough crunching can cause your
best people to leave.

■■ It makes people lazy and less pro-
ductive. This may seem ironic, but
when someone puts in heroic levels
of effort, they start to place less value
on each minute. I know that if I work
all night, then an hour brain-break
mid-day sounds very reasonable. The
problem is that these breaks become
a habit that can persist between
Crunch times.

  57

■■ It’s a risky way to make your com-
mitments. Crunch Mode means you
are using your team beyond capacity.
That’s like trying to drive 50km on
40km of gas. It might be OK, but if
you do it all the time you’re going
to end up broken down on the side
of the road waiting for help at some
point. Maybe more often than not.

■■ Accountability is lost. When some-
one is working all hours, they can’t
be blamed for mistakes. They can’t
be blamed for coming in late, forget-
ting an email, introducing bugs, not
writing tests, cutting technical cor-
ners, and doing all sorts of things that
don’t describe how you want people
on your team behaving.

■■ It puts the credibility of management
in question every time. Because,
managers, believe it or not, every
single time it happens, the entire
team asks themselves, “But why?”

■■ It shows a team that the leader cares
about meeting a business goal more
than he or she cares about their
health. This may sound harsh, but it
is literally true.

The more you have to use your brain,
the less effective and healthy Crunch
Mode is. In fields that require less
creativity and thought, it might even
really work as a (ruthless) management
technique. In software development, it
just doesn’t.

Why do we do it?
The number one reason teams go into
Crunch Mode is that their leaders have
failed to understand and/or set realistic
expectations for the time it takes to
complete a project. In worst cases, the
deadlines are arbitrarily set by manage-
ment and not tied to any specific busi-
ness need. In other cases, the deadlines
are inflexible, but the scope can and
should be adjusted to a realistic level.
Sure, it may be that the team com-
mitted to those incorrect deadlines,
but it’s up to the ones deciding on the
deadlines to verify that they’re realistic
before making a commitment.

Fear and the resulting breakdown
of communication also drive us into
Crunch Mode. “Can you get this done
by ?” “Uh…yes?” Developers fear
saying “no.” Managers fear looking bad
by committing to what seem like far
off dates. Managers fear setting far off
deadlines, because developers miss
dates more often than not. “If we pad
the estimates are we going to miss
those by 20% too?”

Another reason we go into Crunch
Mode is that we are perpetuating a
culture of cowboy heroism which
many of us unwittingly get caught up
in. The feeling of finishing tons of work
in a short period and depriving oneself
of quality personal time can be addict-
ing, especially when it results in “saving
the day” for a project. Rolling up your
sleeves and cranking to the end of a

58  SPECIAL

deadline makes you feel valuable in a
very concrete way. Without your over-
time, the project doesn’t get done on
time. With it, the project is saved. It’s
hard to find such black and white ways
to add value in daily “normal” work.

Maybe the most addictive feature
of Crunch Mode is it’s the easiest
way to see a team really click. At the
beginning of Crunch Mode, people
get intensely focused. Communica-
tion is streamlined. The big important
stuff gets tackled quickly and finished.
A team can initially raise its skill level
a notch with the focus alone. It feels
great as both a manager and a team
member to work that efficiently and
effectively. Unfortunately it’s difficult
(not impossible) to work this way all
the time, so we’re tempted to activate
Crunch Mode on occasion just to feel
this way again.

Alternatives to Crunch-Mode
■■ Miss the deadline. Ya, that’s right.
Let your customers down this time.
Make less money. Incur opportunity
cost. Just fail. You already failed to
manage your team and your time.
Maybe you should let that have more
visible consequences?

■■ Set smaller goals. When you set a
massive goal, way off in the future,
it’s impossible to estimate whether
it’s actually realistic. However, if you
set a goal for this afternoon, you’re
probably going to be pretty accurate
with your estimates.

■■ Measure progress concretely and
in small steps. Never trust a status
report, even from yourself. In soft-
ware, the only deliverable that mat-
ters is one that you can execute.

■■ Set more realistic goals for the
team and the problems you face.
If you’re continually having to slip
into Crunch Mode, you clearly don’t
understand your capabilities. Admit
that you’re going to go slower than
you expected and adjust for it.

As unhealthy, counterproductive, and
just plain stupid as Crunch Mode is,
sometimes you just have to do it. We
all accept that. Crunch Mode is the
nuclear option. A leader needs to have
it available as a tool, but each time he
or she wields this tool, he or she pays
in long-term credibility and trust.

  59

Can we stop it?
It’s time to finally stop this insan-
ity. Think of the time, money, energy,
and potential happiness wasted on
poor planning, communication, and
leadership.

Managers, hold yourself accountable
for Crunch Mode when it happens. See
it as a personal failure.

Everyone else, hold yourself account-
able for every non-crunch minute you
work. Make them count. Over-commu-
nicate. Focus. n

Chad Fowler is an internationally known soft-
ware developer, trainer, manager, speaker, and
musician. Over the past decade he has worked
with some of the world’s largest companies
and most admired software developers. Chad
is the author or co-author of a number of popu-
lar software books, including “The Passionate
Programmer: Creating a Remarkable Career in
Software Development”.

Reprinted with permission of the original author.
First appeared in hn.my/crunchmode (chadfowler.com)

http://hn.my/crunchmode

http://circleci.com/?join=hackermonthly

	Contents
	FEATURES
	How to Win as a First-Time Founder
	On Hacking

	PROGRAMMING
	Make the Type System
Do the Work
	By Nathan Wong
	Why Registers Are Fast
and RAM Is Slow
	By Mike Ash
	Vim Croquet
	By Seth Brown
	AWS Tips I Wish I’d Known Before I Started
	By Rich Adams
	Why I’m Betting on Julia
	By Evan Miller

	SPECIAL
	Forever Alone
	Killing the Crunch Mode Anti-pattern
	By Chad Fowler

