
Tim O’Reilly
How I Failed

Issue 43  December 2013

Metrics and monitoring for people
who know what they want
We know from experience that monitoring your servers and
applications can be painful, so we built the sort of service that
we would want to use. Simple to set up, responsive support
from people who know what they're talking about, and reliably
fast metric collection and dashboards.

Why Hosted Graphite?

• Hosted metrics and StatsD: Metric aggregation without the setup headaches

• High-resolution data: See everything like some glorious mantis shrimp / eagle hybrid*

• Flexibile: Lots of sample code, available on Heroku

• Transparent pricing: Pay for metrics, not data or servers

• World-class support: We want you to be happy!
Promo code: HACKER

*Hosted Graphite’s mantis shrimp / eagle breeding program has been unsuccessful thus far

Dashboards StatsD Happiness

Grab a free trial at http://www.hostedgraphite.com

http://hostedgraphite.com
http://circleci.com/?join=hackermonthly

Metrics and monitoring for people
who know what they want
We know from experience that monitoring your servers and
applications can be painful, so we built the sort of service that
we would want to use. Simple to set up, responsive support
from people who know what they're talking about, and reliably
fast metric collection and dashboards.

Why Hosted Graphite?

• Hosted metrics and StatsD: Metric aggregation without the setup headaches

• High-resolution data: See everything like some glorious mantis shrimp / eagle hybrid*

• Flexibile: Lots of sample code, available on Heroku

• Transparent pricing: Pay for metrics, not data or servers

• World-class support: We want you to be happy!
Promo code: HACKER

*Hosted Graphite’s mantis shrimp / eagle breeding program has been unsuccessful thus far

Dashboards StatsD Happiness

Grab a free trial at http://www.hostedgraphite.com

http://hostedgraphite.com
http://circleci.com/?join=hackermonthly

4  ﻿

Curator
Lim Cheng Soon

Contributors
Tim O’Reilly
Jeff Wofford
David Nolen
Dennis Kubes
Dominic Szablewski
John Croisant
Felix Winkelmann
Francois Zaninotto
Bemmu Sepponen
Dave Gooden

Proofreaders
Emily Griffin
Sigmarie Soto

Illustrator
Joel Benjamin

Ebook Conversion
Ashish Kumar Jha

Printer
MagCloud

Hacker Monthly is the print magazine version
of Hacker News — news.ycombinator.com, a social
news website wildly popular among programmers
and startup founders. The submission guidelines state
that content can be “anything that gratifies one’s
intellectual curiosity.” Every month, we select from
the top voted articles on Hacker News and print
them in magazine format.
For more, visit hackermonthly.com

Advertising
ads@hackermonthly.com

Contact
contact@hackermonthly.com

Published by
Netizens Media
46, Taylor Road,
11600 Penang,
Malaysia.

Hacker Monthly is published by Netizens Media and not affiliated with Y Combinator in any way.

Issue 43 December 2013

How I Failed
Tim O’Reilly

Cover Illustration: Joel Benjamin

http://news.ycombinator.com
http://hackermonthly.com
mailto:ads@hackermonthly.com
mailto:contact@hackermonthly.com

  5

For links to Hacker News dicussions, visit hackermonthly.com/issue-43

Contents
FEATURES

06  How I Failed
By Tim O’Reilly

16  What Programming a Game in 48 Hours
Taught Me About Programming Games
By jeff Wofford

PROGRAMMING

22  ClojureScript 101
By David Nolen

28  Basics of Function Pointers in C
By Dennis Kubes

38  HTML5 Live Video Streaming Via
WebSockets
By Dominic Szablewski

40  Behind the Scenes with CHICKEN
Scheme
By John Croisant

& Felix Winkelmann

48  Client-side Full-text Search in CSS
By François Zaninotto

STARTUPS

50  10 Inglorious Years of Bootstrapping
By Dave Gooden

SPECIAL

58  Hack Your Motivation
By Bemmu SEPPONEN

http://hackermonthly.com/issue-43

6  FEATURES

When you start out as
an entrepreneur, it’s
just you and your idea,

or you and your co-founders, and
your idea. Then you add custom-
ers, and they shape and mold you
and that idea until you achieve the
fabled “product-market fit.” If you
are lucky and diligent, you achieve
that fit more than once, reinventing
yourself with multiple products and
multiple customer segments.

But if you are to succeed in build-
ing an enduring company, it has to
be about more than that: it’s about
the team and the institution you
create together. As a management
team, you aren’t just working for
the company; you have to work
on the company, shaping it, tuning
it, setting the rules that it will live
by. And it’s easy to give that short
shrift.

FEATURES

By Tim O’Reilly

How I Failed
Six Lessons Learned.

  7

At O’Reilly Media, we’ve built a suc-
cessful business and had a big impact
on our industry. But looking back, it’s
clear how often we failed. Some were
failures of vision, some failures of
nerve, but most were failures in build-
ing and cultivating company culture.

What do I mean by culture? Atul
Gawande summed it up perfectly in his
recent New Yorker article “Slow Ideas.”
You have a culture when “X is what
people do, day in and day out, even
when no one is watching. “You must”
rewards mere compliance. Getting to
“X is what we do” means establishing
X as the norm.”

What I Got Right
I did a good job setting the company
goals: “Work on stuff that matters,”
“Create more value than you capture,”
“Change the world by spreading the
knowledge of innovators.” Our prin-
ciples have been the lodestone that led
us into new markets.

We were originally a technical writ-
ing consulting firm, but our desire to
tell the truth about what works and
what doesn’t (rather than telling the
story as the product manufacturer
wanted it told) led us to publish our
own books. We wanted those books to
be available online, so we began work-
ing with eBooks all the way back in
1987. Influenced by the ideals of the
free software movement, we didn’t
want those books to be hostage to

proprietary software, so we worked on
standards for interoperability (what
became Docbook XML) and adopted
the Viola browser (the first graphical
web browser) as a free online book
reader.

Working with Viola led us to the
web, and we got so excited about it
that we went out on a limb to include
it at the last minute in the book we
published about the Internet in 1992,
The Whole Internet User’s Guide and
Catalog, even though there were only
200 websites at the time. The book
sold a million copies.

When Barnes & Noble or Borders
returned books to us, stickered and
unsalable, we didn’t pulp them; we
sent them to Africa, where they could
be useful to people who couldn’t
afford them. We astounded publishing
competitors in the early ‘90s with our
UNIX and X Bibliography for book-
stores, a marketing piece that included
their books as well as our own. We
wanted to build the market, and so
highlighted the best books, not just our
own. We have followed that same logic
in building our digital distribution busi-
ness today, reselling eBooks from other
technology publishers as long as they
agree to go DRM-free.

We started Safari Books Online as
a joint venture with our biggest com-
petitor because we believed publishers
needed to find new business models in
an electronic future, and we thought

8  FEATURES

that the models we were inventing
would be adopted more widely if they
included books from multiple pub-
lishers. We have worked tirelessly on
DRM-free eBooks because we believe
that locking books up in proprietary
file formats is a path toward a digital
dark age.

Our quest to give voice to new
movements and communities led us to
invest for seven years in Make Maga-
zine and Maker Faire before the rest
of the world took notice and came
to the party. We published books on
life-changing diseases as well as life-
changing technologies (Childhood Leu-
kemia, Childhood Cancer Survivors)
until the dot com collapse of 2001
led us into drastic retrenchment. We
have returned to health care with our
StrataRx Conference, because there
is a unique opportunity to apply data
to make the health care system more
effective and to improve people’s lives.

We’ve done the same thing with
open data in government, advocating
the idea that government at its best
acts as a platform, working to bring
citizens, civil servants, and entrepre-
neurs together to solve problems.

And through all this, we built a prof-
itable group of enterprises with nearly
500 employees and collective revenues
approaching $200 million.

So what’s not to like?
We could have been even more effec-

tive by paying attention to some key
management skills.

In that spirit, here are some reflec-
tions on how we failed as an organi-
zation in the past, and what we have
been doing to change that.

Failure #1: People hear only half the
story
There’s a great moment in a Michael
Lewis interview on NPR. Why, Lewis
was asked, would anyone in the finan-
cial industry talk to him for his book
The Big Short after the devastating
picture of Wall Street he’d painted in
his first book, Liar’s Poker, nearly 20
years earlier? Lewis replied that many
of those people got into the financial
industry after reading his book. Their
big takeaway was how easy it was to
make a lot of money without regard to
the niceties of creating much value. He
finished with the memorable line, “You
never know what book you wrote until
you know what book people read.”

That turned out to be a major prob-
lem for me at O’Reilly. I talked so
much about our ideals, our goal to
create more value than we capture,
to change the world by spreading the
knowledge of innovators, that I forgot
to make sure everyone understood that
we were still a business. Even when I
said things like, “Money in a business is
like gas in the car. You have to fill the
tank, but a road trip is not a tour of gas
stations,” people heard the “road trip is
not a tour of gas stations” way louder
than they heard “you have to fill the
tank.”

  9

As a result, we’ve had countless
struggles to have employees take the
business as seriously as they should. I
was always pretty good at finding the
sweet spot where idealism and business
reality meet, but I didn’t spend enough
time teaching that skill my team. And
I didn’t check in enough about what
people were actually hearing.

Reflective listening is an important
skill. If I were starting O’Reilly all over
again, I’d spend a lot more time making
sure the culture I was trying to create
was the one that I actually created.

Failure #2: “That’s how it’s done”
In the early days of the company,
I wrote an employee manual that
reflected my own homegrown HR
philosophy, based on the idea that I
wanted everyone in the company to
have the same freedom, initiative, and
excitement about our work that I did;
it opened with this statement:

“I called this booklet “Rules of Thumb”
because every rule in it is meant to be
broken at some time or another, when-
ever there is good reason. We have no
absolute policies, just guidelines based
on past experience. As we grow, we will
learn, and will make new empirical
rules about what works best in new
situations.”

It also said things like:

“Bring yourself to your work! We
haven’t hired you to act as a cog in the
company machine, but to exercise your
intelligence, your creativity, and your
perseverance. Make things happen.”

And:

“Remember, too, that your job isn’t
just an opportunity to improve your
economic standing, or that of the
company, but to make yourself a better
person, and this world a little better
place to live. Each of your co-workers,
our customers, our suppliers, and
anyone else you deal with is a person,
just like you. Treat them always with
the care, fairness, and honesty that
you’d like to experience in return.”

The only raises we had were merit
raises, as you improved your skills and
impact. You were expected to manage
your own time, with no set hours, and
the only responsibility around vacation
time was to make sure that no balls got
dropped.

Eventually, I hired an employment
lawyer to review my draft, and he said,
“That’s the most inspiring employee
manual I’ve ever read, but I can’t let
you use it.”

I complained, but I eventually gave
in. As we grew, it was harder and
harder to maintain our informal pro-
cesses. (I remember a real inflection
point at about 50-60 employees, and

10  FEATURES

another at about 100.) We gradually
gave up our homegrown way of doing
things, and accepted normal HR prac-
tices — vacation and sick days, regular
reviews, annual salary adjustments
— and bit by bit, I let the “HR profes-
sionals” take over the job of framing
and managing the internal culture. That
was a mistake.

I’ve often regretted that I hadn’t
kept fighting with the lawyers, working
harder to balance all the legal require-
ments (many of them well-intentioned
but designed for a top-down com-
mand-and-control culture) with my
vision of how a company really ought
to work. I focused my energy on prod-
uct, marketing, finance, and strategy,
and didn’t make sure I was building the
organization I wanted.

Reading recently about the HR prac-
tices at Valve and GitHub, so reminis-
cent of early O’Reilly, I’m struck by
the need to redefine how organiza-
tions work in the 21st century. I’m not
saying that Valve or GitHub’s approach
is for everyone, but they indicate a
deep engagement with the problem
space, and fresh approaches managing
an organization. Google’s People Ana-
lytics may be a more scalable applica-
tion of new HR thinking to a company
of serious size.

While there’s a lot of accumulated
wisdom in how to run a company,
there’s a lot still to be invented, and
you should bring the same entrepre-
neurial energy to improving the culture
as you do to improving the product.

Failure #3: Cash and control
In today’s venture-capital-fueled
market of “build it and see if they will
come,” it’s often hard to remember
that there are businesses built without
investors, funded by revenue from real
customers. I never took VC money
because in my early days as a tech-
writing consultant, I saw lots of compa-
nies go from being great places to work
to being just another company, and I
wanted to keep control of what I did
and did not do.

I wanted control, but I missed one of
the most powerful ways to have it.

Bill Janeway is the author of the out-
standing book Doing Capitalism in the
Internet Economy. In it, he recounts
the lesson of one of his own mentors,
Fred Adler, “Happiness is positive cash
flow,” and talks about his working prin-
ciple of “Cash and Control”: “assured
access to sufficient cash in time of crisis
to buy the time needed to understand
the unanticipated, and sufficient con-
trol to use the time effectively.”

I learned the truth of Bill’s statement
about cash and control in the ‘90s.
Publishing is a fairly cash-intensive
business. You pay advances to authors

  11

— many of whom never come through
with the books they promised to
write, or take way longer to complete
them — and as your editorial, design,
and production teams work hand in
hand with the author, you may have
years of investment before you see a
penny back. And in the old days, before
eBooks and print-on-demand, you then
had to invest tens of thousands of dol-
lars in inventory costs for each book.

O’Reilly was like a leaky bucket. We
were always profitable on a P&L basis,
but we never had enough cash. And
as our publishing business accelerated
through the “90s, we needed more
and more of it. We borrowed against
our receivables and our inventory,
juggled payables till our CFO was blue
in the face, but we ended up funding
our growth through equity exits from
companies we”d spun out and sold or
invested in.

We’d sold GNN to AOL for what
seemed at the time the princely sum
of $15 million, much of it in stock.
We were locked up for a couple of
years, but because of our pressing cash
needs, we had to sell our stock as soon
as it became available, netting $30 or
$40 million because of the increase
in AOL’s value as the Internet bubble
inflated. That was a nice win, but if
we’d had the leisure to hold on till
the peak, our stock would have been
worth $1 billion, and even if we hadn’t
timed things perfectly, several hundred
million.

Where the shit really hit the fan was
after the dot com bust of 2001. We
were seriously in debt again, our busi-
ness was in free, our banks pulled our
loans and nearly put us out of busi-
ness. I still remember the day I had to
decide which employees to cut in our
first-ever layoffs. As I pored over the
worksheets, I noticed hair all over my
papers; I was so stressed that my hair
was falling out.

It didn’t need to be that way.
In the depths of the crisis, we hired a

CFO who instituted new financial con-
trols and discipline. She renegotiated
contracts with suppliers. She ruthlessly
cut non-performing titles, freeing up
the cash from inventory. And she per-
suaded me to do the layoffs rather than
going down with the ship and all hands.

The difference was enormous. We
rebuilt O’Reilly’s revenues and prof-
its through successful new books and
conferences, the growth of Safari Books
Online, Maker Media, and other new
businesses. But the biggest impact was
the one that Laura had — on our cash.

12  FEATURES

There are four lessons here:

➊ Financial discipline matters. If
you’re a venture-backed startup,

financial discipline gives you more
control over when you have to go out
for that next round. If you’re self-
funded, financial discipline lets you
invest in what’s important in your busi-
ness. So many companies agonize over
the quality of their product, and work
tirelessly to build their brand, yet pay
the barest attention to their financials.
Money is the lifeblood of your busi-
ness. Take it seriously. Manage it well.

➋ Treat your financial team as
co-founders. They aren’t just

bean counters. They can make the dif-
ference between success and failure.
Don’t just look for rockstar developers
or designers, look for a rockstar CFO.
Hire someone who is better than you
are, who can be a real partner in grow-
ing the business. Before Laura came on
board, I was always the most numer-
ate person in the organization, the one
with the most sensitive finger on the
pulse of our financials.

➌ Hold teams accountable for
their numbers. Every manager

— in fact, every employee — needs
to understand the financial side of the
business. One of my big mistakes was
to let people build products, or do mar-
keting, without forcing them to under-
stand the financial impact of their
decisions. Anyone running a group
with major financial impact should
have their P&L tattooed on their brain.
It isn’t someone else’s job to pay atten-
tion. Make sure financial literacy is part
of your employee training, and hold
people accountable for their numbers.

➍ Run lean; reinvent tirelessly.
After the bust, we laid off 20%

of our staff, and while we missed many
of them intensely on a personal level,
as a business, we didn’t skip a beat.

The Lean Startup methodology
emphasizes measurement in quest
of product-market fit, describing a
startup as “a machine for learning.” This
is great. But you need to turn these
measurements not just outward on the
market but inward on your organiza-
tion. What is the impact of each activ-
ity? Who could be repurposed toward
something with greater impact? Does
this job really need doing? Can it be
done more efficiently and effectively?

  13

Failure #4: Tolerating mediocrity
There was another lesson learned from
those 2001 layoffs. While most of the
people we laid off were great employ-
ees who went on to find good jobs
elsewhere, we were appalled to dis-
cover there were some people who had
built themselves a nice, cozy position
but weren’t working very hard. While
most of us were pulling the wagon,
they were simply riding on it. We even
discovered several cases of fraud! That
goes back to my point above about the
importance of a crack financial team —
one of their key jobs is to have strong
controls in place. I would never have
believed that one of my employees
would do that. It can happen to any
company. The longer you are in busi-
ness, the more outrageous things you
will have employees do on your watch!

Looking back, I had an extremely
naive view: everyone was inspired by
the same motivations as I was, passion-
ate about their work and the impact
that we were having. They loved their
jobs and wanted to be great at them.

If you want that to be true, you can’t
just believe it; you have to work at it!
You need a real emphasis on hiring,
training, and mentorship — and firing!
Every manager in the company has to
be an expert on his or her staff and on
finding “employee-company fit.” HR
needs to be an active partner in talent
acquisition, culture, and leadership
development.

When someone isn’t right for the job,
it’s easy to shrink from the confronta-
tion of telling them so, or to accept
60% of what you wanted because you
think you can’t afford the time and
trouble to find a replacement. You
aren’t doing anyone any favors. An
employee who is not performing at
100% is just as aware as of that, and
most likely isn’t happy about it. Having
the courage to ask them to move on
is an essential management skill. (It
doesn’t even have to be firing; it can be
coaching them to make the decision on
their own.)

So, if you have a bad feeling about
the role someone is playing in your
organization, work the issue until you
feel right about it. Take management
seriously!

Failure #5: Hiring supplements, not
complements
Another thing I wish I’d done earlier
was to hire people who were good
at things I wasn’t. As a founder, you
often seem to be the best at every-
thing — the best product designer, the
best marketer, the best sales person.
Sometimes that’s really true, but often
it’s just because you hire people who
aren’t as good as you are at the things
you’re good at, and don’t hire people
who are better than you are at the
things you don’t do so well. You hire
supplements to do more of what you
already do, rather than people who
really complement your skills.

14  FEATURES

I already mentioned how I went
through the first 20 years of my com-
pany’s life without hiring someone
who was better on the financial side
than I was. We didn’t build a sales and
marketing culture either. We were
product driven, idea driven, and while
we developed a unique and powerful
style of activism-driven marketing, we
never developed analytical marketing
discipline. And as for sales, that felt a
little dirty to many of our employees.

In the past few years, we’ve worked
hard to change that. Laura has led a
successful effort to develop that analyt-
ical marketing competency and to add
sales thinking to the company DNA.
We now have sales training for anyone
who has customer contact. We’ve built
a team to focus on sponsorship sales
for our events, more than doubling our
yield and vastly improving the profit-
ability of our events.

Failure #6: I’ll take care of that
I believe it was Harold Geneen who
once said, “The skill of management
is to achieve your objectives through
the efforts of others.” Yet, like so many
entrepreneurs, my first instinct was
not to hire the team to go after a new
product or market, but to do it myself,
or with the team I already had.

Some of that was a byproduct of
being a scrappy, self-funded organiza-
tion, where the existing team tries
new things and hires only after it is
clear there’s really an opportunity. It’s
great when your management team
leads from the front. But overall, we
took it too far and didn’t build a strong
enough culture of deliberate hiring to
go after new opportunities.

Anthropologist Claude Levi-Strauss
wrote in his book The Savage Mind
about the difference between the bri-
coleur (handyman) and the engineer.
The handyman makes do with what he
has at hand. The engineer thinks more
abstractly, figures out what he or she
needs, and acquires it before beginning
work. I was always a bricoleur. As we
go forward, I aspire to be more of an
engineer. Although it’s good to remem-
ber that, as Marc Hedlund, former SVP
of product development and engineer-
ing at Etsy, remarked, “People and code
are…different. The approaches that
work so well for getting new software
to run are not directly applicable to
getting people to work well together.”n

Tim O’Reilly is the founder and CEO of O’Reilly
Media Inc., thought by many to be the best
computer book publisher in the world.

Reprinted with permission of the original author.
First appeared in hn.my/failed (oreilly.com)

http://hn.my/failed

  15

Now you can hack on DuckDuckGo

Create instant answer plugins for DuckDuckGo

duckduckhack.com

Now you can hack on DuckDuckGo

Create instant answer plugins for DuckDuckGo

DuckDuckHackDuckDuckHack

package DDG::Goodie::Unidecode;# ABSTRACT: return an ASCII version of the search query use
DDG::Goodie; use Text::Unidecode; zci is_cached => 1; zci answer_type => "convert to ascii"; triggers
startend => "unidecode"; handle remainder => sub { my $u = unidecode $_; # unidecode output some-
times contains trailing spaces $u =~ s/\s+$//; return $u; }; 1; package DDG::Goodie::Rot13; #
ABSTRACT: Rotate chars by 13 letters use DDG::Goodie; triggers start => 'rot13'; handle remainder =>
sub { if ($_) { $_ =~ tr[a-zA-Z][n-za-mN-ZA-M]; return "ROT13: $_"; }; return }; zci is_cached => 1; 1;
package DDG::Goodie::Base64; use DDG::Goodie; use MIME::Base64; use Encode; triggers startend =>
"base64"; zci answer_type => "base64_conversion"; zci is_cached => 1; handle remainder => sub {
return unless $_ =~ /^(encode|decode|)\s*(.*)$/i; my $command = $1 || ''; my $str = $2 || ''; if ($str) { if (
$command && $command eq 'decode') { $str = decode_base64($str); $str = decode("UTF-8", $str);
return "Base64 decoded: $str"; } else { $str = encode_base64(encode("UTF-8", $str)); return "Base64
encoded: $str"; } } return; }; 1; package DDG::Goodie::Chars; # ABSTRACT: Give the number of charac-
ters (length) of the query. use DDG::Goodie; triggers start => 'chars'; zci is_cached => 1; zci
answer_type => "chars"; handle remainder => sub { return "Chars: " .length $_ if $_; return; }; 1; pack-
age DDG::Goodie::ABC; use DDG::Goodie; triggers any => "or"; zci answer_type => "rand"; handle
query_parts => sub { my @choices; my @collected_parts; while (my $part = shift) { if (lc($part) eq 'or') {
return unless @collected_parts; push @choices, join(' ', @collected_parts); my $length =
@collected_parts; return if $length > 1; @collected_parts = (); } elsif ($part) { push @collected_parts,
$part; } } push @choices, join(' ', @collected_parts) if @choices && @collected_parts; return if
scalar(@choices) <= 1; my $choice = int(rand(@choices)); if (my @duck = grep { $_ eq 'duckduckgo' || $_
eq 'duck' || $_ eq 'ddg' } @choices) { return $duck[0]." (not random)", answer_type => 'egg'; } return
$choices[$choice]." (random)"; return; }; 1; package DDG::Goodie::PublicDNS; use DDG::Goodie; use

sub { if ($_) { $_ =~ tr[a-zA-Z][n-za-mN-ZA-M]; return "ROT13: $_"; }; return }; zci is_cached => 1; 1;
package DDG::Goodie::Base64; use DDG::Goodie; use MIME::Base64; use Encode; triggers startend =>
"base64"; zci answer_type => "base64_conversion"; zci is_cached => 1; handle remainder => sub {
return unless $_ =~ /^(encode|decode|)\s*(.*)$/i; my $command = $1 || ''; my $str = $2 || ''; if ($str) { if (
$command && $command eq 'decode') { $str = decode_base64($str); $str = decode("UTF-8", $str);
return "Base64 decoded: $str"; } else { $str = encode_base64(encode("UTF-8", $str)); return "Base64
encoded: $str"; } } return; }; 1; package DDG::Goodie::Chars; # ABSTRACT: Give the number of charac
ters (length) of the query. use DDG::Goodie; triggers start => 'chars'; zci is_cached => 1; zci
answer_type => "chars"; handle remainder => sub { return "Chars: " .length $_ if $_; return; }; 1; pack
age DDG::Goodie::ABC; use DDG::Goodie; triggers any => "or"; zci answer_type => "rand"; handle
query_parts => sub { my @choices; my @collected_parts; while (my $part = shift) { if (lc($part) eq 'or') {
return unless @collected_parts; push @choices, join(' ', @collected_parts); my $length =
@collected_parts; return if $length > 1; @collected_parts = (); } elsif ($part) { push @collected_parts,
$part; } } push @choices, join(' ', @collected_parts) if @choices && @collected_parts; return if
scalar(@choices) <= 1; my $choice = int(rand(@choices)); if (my @duck = grep { $_ eq 'duckduckgo' || $_

16  FEATURES

What Programming a Game
in 48 Hours Taught Me

About Programming Games
By jeff Wofford

I participated in Ludum Dare 27 this
weekend, programming a complete
game, Spacetime Adventure, in 48

hours. I make games for a living, but I’d
never done that before. It was fun.

It was also enlightening. For the
past several years I’ve spent most of
my development time with C++11 in
Xcode. I like it. Nah, I love it. But this
weekend, working in Adobe Flash Pro-
fessional with ActionScript 3.0, I could
not believe how high my productivity
was. I was knocking off tasks like they
were popcorns in a fire. It helps that I
used to work in Flash a lot, so I knew
the drill. But I had forgotten how easy
and quick it is to make games in that
system.

The contest limit is 48 hours, but I
actually spent 30 hours. In that time I
made an entire game, and not a terribly
simple one: it involves Box2D phys-
ics and time travel. It’s not a highly
polished game, of course. I’m going to
work on it some more before really
“releasing” it (though you can play it
now if you want). But it has all the
main bells and whistles: front end,
HUD, user interface, the game proper,
victory screens — even music. Not that
that’s anything special — the contest is
to make a complete game, and over a
thousand contestants did so.

  17

Yet most of the games I make in my
professional job take much longer than
this. As I reached the end of the week-
end, I couldn’t help but ask myself,
“How is it that you were able to com-
plete this game in less than 48 hours,
when most of the games you work on
take upwards of several months?”

 The last game I shipped, House
of Shadows, took 11 months. Even if
you assume that it was 10 times more
complicated than Spacetime Adven-
ture, this still leaves a productivity ratio
of about 6:1. This means that if I could
transfer the pace of production from
Ludum Dare into my normal work, I
would complete a game like House of
Shadows in less than 2 months.

Now no doubt some of the differ-
ences between a Ludum Dare project
and a “real” project are esoteric and
non-transferable. House of Shadows,
for example, is really probably more
than ten times more complicated than
Spacetime Adventure, thinking in
terms of the internal game mechan-
ics, rules, variation, and user interface.
Spacetime Adventure gets away with
being pretty simple really. But along
with this kind of non-transferable dif-
ference, perhaps there are other dif-
ferences that are transferable. Maybe
there are things about creating a 48
hour project that can make a “real”
project faster and maybe even more
fun.

Differences
Intensity of focus. Almost all my
waking hours were dedicated to pro-
gramming during the 48 hours of the
contest. I even took less sleep. This
intensity of focus allowed me to main-
tain contact with the concepts and
issues in the game so that I was able
to remain productive without costly
ramp-up and ramp-down times.

Expectation of constant closure. I
expected to be done fast. At the macro
level for the game as a whole. At the
micro level for individual tasks. I was
not at all happy with tasks, bugs, or set-
backs that threatened the rigid dead-
line. I expected to make rapid, constant
progress, and I made sure I did.

Freedom from IDE distractions. One
of the worst hits to productivity in my
usual development setup — although
fortunately this is not a daily problem
— is when some aspect of the tools
themselves go so slow that they lose
my attention. If I have to Rebuild All,
or work with a slow Photoshop, or if
Xcode is hanging and crashing, not
only does this cost time immediately,
but it also causes me to get distracted. I
try to fill the time by checking email or
Hacker News, and this costs yet more
time. During Ludum Dare, I remained
tightly interfaced with Flash. I was
continually in the midst of the edit ->
compile -> test -> edit loop. This was
one of the largest reasons for the high
pace of production. The IDE did not
kick me out at any time. It gave me no

18  FEATURES

reason to look away. I need that in my
daily work.

Easy object placement and animation
tools. The UI work in particular went
incredibly fast and this was entirely
due to working in Flash. I could drag
a bitmap into Flash to import it, then
place it, position it, add filters, animate
it, and attach the animations to code
all in one tight motion, all within Flash.
Tasks that can take a whole day took
minutes. I need this all the time.

Lower degree of polish. Spacetime
Adventure is reasonably complete
but it’s not a final, shippable, polished
game. Part of the slowness of a normal,
professional game project is the degree
of polish that goes into the product.
As a rough estimate, I’d say that polish
approximately doubles the length of
a project. If I had to add features like
sound effects, particles, more UI anima-
tions, button states, higher-quality art,
variety of art, and additional gameplay
features to Spacetime Adventure, it
would have taken at least twice as long.

No responsibility for maintenance.
Creating a maintainable game — one
that is capable of long-term repair and
expansion — is more difficult than a
quick, throw-away game like Spacetime
Adventure. In actual fact, Spacetime
Adventure’s code is generally pretty
clean and maintainable, but this qual-
ity happened to come easily, in part
because of the smallness of the game;
it wasn’t hard-won. And there is “slop”

in the code that I would not have been
comfortable with if I expected to have
to live with the game for longer or
expand it much larger. When you can
write sloppy, get-it-done code, it pays to
do so. When you can’t, it doesn’t. With
Ludum Dare you always can. With pro-
duction code, you rarely can.

C++ headers. More than once during
the competition I would reach a point
in the code and think, “Argh, I don’t
want to have to add/change/look up/
remove that function because it would
mean having to mess with the header
file.” Then I thought, “Oh wait, this
isn’t C++. There are no header files.”
The feeling of liberation and simplic-
ity that hit me in those moments
convinced me that for a great deal of
coding situations, headers are a serious
bane. They impart a constant agony of
redundancy onto everything you write.
Every substantial (i.e. semantic) change
must touch two files, and do so in a
coordinated way. The simplicity and
immediacy of single-file ActionScript
classes felt like a breath of fresh air.

There is a place for the header/
source division. For established code,
dividing classes makes for faster compi-
lation for both the user and the pro-
vider. This is rarely an issue in “game
programming” proper (as opposed to
“engine programming”).

  19

This point, along with a few others
in this list, convinces me once and for
all that scripting languages are the way
to go for most game programming.
When these aren’t available, my friend
Wouter van Oortmerssen’s Java Style
Classes in C++ may provide a handy
workaround. I’m thinking of trying it
for my current project’s game code.

Performance and safety oblivious-
ness. I know this is an old lesson that
needs no explication, but I was struck
more forcefully than ever how C++
imposes a significant mental cost on
programmers to use the language care-
fully. This sounds like more of a bash
against C++ than it really is. You use
C++ precisely when you need high
performance. The reason I normally
program games in C++ instead of in
Flash is that my performance testing of
ActionScript reveals that it is at least
an order of magnitude too slow for the
kind of games I make on the kinds of
platforms I normally make them for. I
like C++ because it gives me many of
the benefits of ActionScript (and other
high level languages) while enabling
lightning speed performance.

But this weekend I felt more than
ever the liberation that comes when
you don’t have to dance the C++
dance. When deleting something I
simply set the reference to null. I can
do the same thing in C++ by using
std::shared_ptr, but even then one still
has to be mindful of cycles. The word

“mindful” here is not as innocent as it
sounds. The detection and anticipa-
tion of object graph cycles while in the
middle of coding is non-trivial. A pro-
grammer’s chief resource is the energy
of his or her mind. Everything that
expends or depletes that energy makes
him or her less effective, more tired,
and less happy. There were several
moments during the competition when
I thought, “I need to delete this expen-
sive resource. I’ll set it to null. Ah, but
are there any cycles that might keep
it afloat?” And then I remembered,
“Yes, but the whole cycle will die along
with it.” There was a palpable feeling
of relief when I realized that I didn’t
need to worry about the cycles. I could
use that mental energy to focus on the
game itself.

It’s not just memory management.
The whole context of Flash/Action-
Script made me less concerned about
performance. I know Flash is slow. At
the beginning of the project I did some
testing and confirmed that it was fast
enough. From that point on I never
worried about performance again.

It’s remarkable how subtle and
constant the performance concern is.
A good C++ programmer — especially
one working on a relatively slow plat-
form like mobile phones — is continu-
ally assessing the cost of what he or
she is writing. Should I use a vector
here? A map? An unordered map?
Will it be faster to pass this argument

20  FEATURES

by reference? Should I reserve() this
vector so that it doesn’t overshoot its
necessary size? You use C++ because
you want to squeeze frame rate out
of tightly constrained hardware. Every
variable, every function becomes a
potential choke point, and a seasoned
programmer is always measuring the
ramifications of each choice. The C++
programmer is a deer sniffing the air
for the scent of boots and gunpow-
der: everything’s an opportunity for
gain; everything’s an opportunity for
calamity.

When performance is of the essence,
this state of alertness is an appropriate
price to pay. But when you don’t have
to pay that price — and in every game
there are systems that have no serious
likelihood of bottlenecking — you will
gain mental energy back by essentially
ignoring performance. You cannot do
this in C++: it requires an awareness of
execution and memory costs at every
step. This is another argument in favor
of never building a game without a
good scripting language for the highest-
level code. In ActionScript I fell into
an easy rhythm of doing what I needed
to do for the game behavior. I did not
worry about the cost of an Array vs. a
Vector: I used what was convenient. I
felt a little lazy being so carefree. But
the approach cost me nothing: the
game runs like butter even on older
desktop systems.

Minimal Snowballing. In the broad-
est sense, a 48 hour project minimizes
a problem that plagues all projects.
Work tends to snowball. For every task
there are “task addendums” that extend
the total effort. It’s not enough just to
put an asteroid into the game. Before-
hand you have to design the asteroid,
talk about the asteroid, and sched-
ule the asteroid. Once the asteroid is
written you have to test the asteroid,
commit the code, adjust the asteroid,
review the code, adjust it some more,
document it, adjust the comments,
fix the commit, refactor, optimize,
extend. This sounds like the standard
complaint about project management:
projects should be simple but manage-
ment adds cruft. Yet in some sense any
project — even one undertaken by a
single person — is susceptible to snow-
balling. It’s an odd thing, hard to put
your finger on. Every task begets more
tasks at the code level (typing, com-
menting, optimization) and the quality
level (testing, debugging, refining).

  21

It’s almost mathematical. For every
hour you spend working, you must spend
another 10 minutes responding to or
expanding that work. After six hours of
working you have accumulated an addi-
tional 1 hour of this metawork, which of
course — being work — needs its own 10
minutes of response and expansion. Six
hours of metawork later, you’ve accumu-
lated an hour of metametawork, which
needs yet another layer of response
and expansion, and so on. Each layer of
metawork is another layer of snow on
the snowball. The larger the tasks get, the
larger the tasks get.

In a 48 hour project this cycle is
defeated — or at least minimized — by
the sheer concentration of focus. There
are no “metatasks” — there are only tasks.
You don’t have to re-learn what you did
yesterday, because there was no yes-
terday. You don’t have to plan for next
week. You don’t have time to talk about
what you’re doing — you think fast, then
you act. This can’t be the best way to
accomplish just any project, but when it’s
possible it is incredibly efficient, and that
efficiency is incredibly satisfying. n

Jeff Wofford has worked in game development
since 1995. Currently he is the Duke of Develop-
ment for Mobile Games at Armor Games and a
lecturer at Southern Methodist University’s Guild-
hall game development program.

Reprinted with permission of the original author.
First appeared in hn.my/48hrs (jeffwofford.com)

http://hn.my/48hrs

22  PROGRAMMING

While none of the ideas
in core.async are new,
understanding how to

solve problems with CSP is simply
not as well documented as using plain
callbacks or Promises. My previous
articles have mostly explored fairly
sophisticated uses of core.async, this
one instead takes the form of a very
basic tutorial on using core.async with
ClojureScript.

We’re going to demonstrate all the
steps required to build a simple search
interface, and we’ll see how core.
async provides some unique solutions
to problems common to client-side
user interface programming.

I recommend using Google Chrome
so that you can get good source map
support. You don’t need Emacs to have
fun with Lisp. SublimeText 2 is pretty
nice these days, I recommend installing
the paredit and lispindent packages via
Sublime Package Control.

If you have Leiningen installed you
can run the following at the command
line in whatever directory you like:

lein new mies async-tut1

This will create a template project so
you don’t have to worry about config-
uring lein-cljsbuild yourself.

Unless otherwise noted, files are rela-
tive to the project directory.

Change the :dependencies in the
project.clj file to look like the
following:

:dependencies
 [[org.clojure/clojure
"1.5.1"]
 [org.clojure/clojurescript
"0.0-2030"]
 [org.clojure/core.async
"0.1.256.0-1bf8cf-alpha"]] ;; ADD

In the project directory run the
following to start the auto compile
process:

lein cljsbuild auto async-tut1

By David Nolen

ClojureScript 101

PROGRAMMING

  23

First off we want to add the follow-
ing markup to index.html before the
first script tag which loads goog/base.
js:

<input id="query" type="text"></
input>
<button id="search">Search</
button>
<p id="results"></p>

Open index.html in Chrome and
make sure you see an input field and a
text button.

Now we want to write some code so
that we can interact with the DOM.
We want our code to be resilient to
browser differences so we’ll use Google
Closure to abstract this stuff away as
we might with jQuery.

We require goog.dom and give it a
less annoying alias. Change the ns form
in src/async_tut1/core.cljs to the
following:

(ns async-tut1.core
 (:require [goog.dom :as dom]))

We want to confirm that this will
work, so let’s change the console.log
expression so it looks this instead:

(.log js/console (dom/getElement
"query"))

Save the file and it should be recom-
piled instantly. We should be able
to refresh the browser and see that
a DOM element got printed in the
JavaScript Console (View > Developer

> JavaScript Console). Remove this
little test snippet after you’ve con-
firmed it works.

So far so good.
Now we want a way to deal with

the user clicking the mouse. Instead of
just setting up a callback on the button
directly, we’re going to make the
button put the click event onto a core.
async channel.

Let’s write a little helper called listen
that will return a channel of the events
for a particular element and particular
event type. We need to require core.
async macros and functions. Our ns
should now look like the following:

(ns async-tut1.core
 (:require-macros [cljs.core.
async.macros :refer [go]])
 (:require [goog.dom :as dom]
 [goog.events :as
events]
 [cljs.core.async
:refer [put! chan <!]]))

Again we want to abstract away
browser quirks so we use goog.events
for dealing with that. We include only
the core.async macros and functions
that we intend to use.

Now we can write our listen fn; it
looks like this:

(defn listen [el type]
 (let [out (chan)]
 (events/listen el type
 (fn [e] (put! out e)))
 out))

24  PROGRAMMING

We want to verify our function
works as advertised, so we check it
with following snippet of code at the
end of the file:

(let [clicks (listen (dom/getEle-
ment "search") "click")]
 (go (while true
 (.log js/console (<!
clicks)))))

Note that we’ve created what
appears to be an infinite loop here,
but actually it’s a little state machine.
If there are no events to read from
the click channel, the go block will be
suspended.

Let’s search Wikipedia. Define the
basic URL we are going to hit via
JSONP and put this right after the ns
form.

(def wiki-search-url
 "http://en.wikipedia.org/w/api.
php?action=opensearch&format=json
&search=")

Now we want to make a function
that returns a channel for JSONP
results.

We again reach for Google Closure
to avoid browser quirks. Make your ns
form look like the following:

(ns async-tut1.core
 (:require-macros [cljs.core.
async.macros :refer [go]])
 (:require [goog.dom :as dom]
 [goog.events :as
events]
 [cljs.core.async
:refer [<! put! chan]])
 (:import [goog.net Jsonp]
 [goog Uri]))

Here we use :import so that we can
use short names for the Google Clo-
sure constructors.

Note: :import is only for this use case;
you never use it with ClojureScript
libraries.

Our JSONP helper looks like the fol-
lowing (put it after listen in the file):

(defn jsonp [uri]
 (let [out (chan)
 req (Jsonp. (Uri. uri))]
 (.send req nil (fn [res]
(put! out res)))
 out))

This looks pretty straight forward,
very similar to listen. Let’s write a
simple function for constructing a
query url:

(defn query-url [q]
 (str wiki-search-url q))

  25

Again let’s test this by writing a snip-
pet of code at the bottom of the file.

(go (.log js/console (<! (jsonp
(query-url "cats")))))

In the JavaScript Console we should
see we got an array of JSON data back
from Wikipedia. Success!

It’s time to hook everything together.
Remove the test snippet and replace it
with the following:

(defn user-query []
 (.-value (dom/getElement
"query")))

(defn init []
 (let [clicks (listen (dom/
getElement "search") "click")]
 (go (while true
 (<! clicks)
 (.log js/console
(<! (jsonp (query-url (user-
query)))))))))

(init)

Try it now. You should be able to
write a query in the input field, click
“Search”, and see results in the JavaS-
cript Console.

If you’ve done any JavaScript pro-
gramming, this way of writing the code
should be somewhat surprising — we
don’t need a callback to work with
button clicks!

Think about how this works: when
the page loads, init will run, the go
block will try to read from clicks, but
there will be nothing to read, so the go
block becomes suspended. Only when
you click on the button can it proceed,
at which point we’ll run the query and
loop around. The code reads exactly
how it would if you didn’t have to con-
sider asynchrony!

Instead of printing to the console we
would like to render the results to the
page. Let’s do that now, add the follow-
ing before init:

(defn render-query [results]
 (str
 ""
 (apply str
 (for [result results]
 (str "" result "</
li>")))
 ""))

The usual string concatenation stuff.
We use a list comprehension here just
for fun.

26  PROGRAMMING

Now change init to look like the following:

(defn init []
 (let [clicks (listen (dom/getElement "search") "click")
 results-view (dom/getElement "results")]
 (go (while true
 (<! clicks)
 (let [[_ results] (<! (jsonp (query-url (user-query))))]
 (set! (.-innerHTML results-view) (render-query
results)))))))

Hopefully this code at this point just makes sense.
Notice how we can use destructuring on the JSON
array of Wikipedia results.

A beautiful succinct program! The complete listing
follows:

(ns async-tut1.core
 (:require-macros [cljs.core.async.macros :refer [go]])
 (:require [goog.dom :as dom]
 [goog.events :as events]
 [cljs.core.async :refer [<! put! chan]])
 (:import [goog.net Jsonp]
 [goog Uri]))

(def wiki-search-url
 "http://en.wikipedia.org/w/api.php?action=opensearch&format=json&se
arch=")

(defn listen [el type]
 (let [out (chan)]
 (events/listen el type
 (fn [e] (put! out e)))
 out))

  27

(defn jsonp [uri]
 (let [out (chan)
 req (Jsonp. (Uri. uri))]
 (.send req nil (fn [res] (put! out res)))
 out))

(defn query-url [q]
 (str wiki-search-url q))
(defn user-query []
 (.-value (dom/getElement "query")))

(defn render-query [results]
 (str
 ""
 (apply str
 (for [result results]
 (str "" result "")))
 ""))

(defn init []
 (let [clicks (listen (dom/getElement "search") "click")
 results-view (dom/getElement "results")]
 (go (while true
 (<! clicks)
 (let [[_ results] (<! (jsonp (query-url (user-query))))]
 (set! (.-innerHTML results-view) (render-query
results)))))))

(init) n

David Nolen is a JavaScript developer for The
New York Times. In his free time he works on a
variety of open source Clojure projects includ-
ing core.match, core.logic, and ClojureScript.

Reprinted with permission of the original author.
First appeared in hn.my/cs101 (swannodette.github.io)

http://hn.my/cs101

28  PROGRAMMING

Basics of Function
Pointers in C

Function pointers are an interesting and powerful tool
but their syntax can be a little confusing. This post
will going into C function pointers from the basics

to simple usage to some quirks about function names and
addresses. In the end it will give you an easy way to think
about function pointers so their usage is clearer.

A Simple Function and Function Pointer
Let’s start with a very simple function to print out the mes-
sage “hello world” and see how we can create a function
pointer from there.

#include <stdio.h>
// function prototype
void sayHello();

// function implementation
void sayHello() {
 printf("hello world\n");
}
// calling from main
int main() {
 sayHello();
}

By Dennis Kubes

  29

Here we have a function called sayHello along with its
function prototype. This function returns nothing (void)
and doesn’t take any parameters. We call the function from
main and it prints out “hello world”. Pretty simple. Now let’s
convert main to use a function pointer instead of calling the
function directly.

int main() {
 void (*sayHelloPtr)() = sayHello;
 (*sayHelloPtr)();
}

The syntax void (*sayHelloPtr)() on line 2 may look a
little weird so let’s look at it step by step.

1.	We are creating a function pointer to a function that
returns nothing (void) so the return type is void. That is the
void keyword.

2.	We have the pointer name sayHelloPtr. This is similar to
creating any other pointer and it has to have a name.

3.	We use the * notation to signify that it is a pointer. This is
no different than declaring an int pointer or a char pointer.

4.	We must have parentheses around the pointer (*sayHello-
Prt). If we don’t have parentheses it is seen as void *say-
HelloPtr, which is a void pointer instead of a pointer to a
void function. This is a key point; function pointers must
have parentheses around them.

5.	We have the parameter list. Since there isn’t one in this
case, we just have empty parentheses (*sayHelloPrt)().

6.	Putting it all together we get void (*sayHelloPtr)(),
a pointer to a function that returns void and takes no
parameters.

On line 2 above we are assigning the sayHello function
name to our newly created function pointer like this: void
(*sayHelloPtr)() = sayHello. We will go into more detail
about function names later, but for now understand that a
function name (label) is the address of the function and it can

30  PROGRAMMING

be assigned to a function pointer. This is similar to int *x =
&myint where we assign the address of myint to an int pointer.
Only in the case of a function, the address-of the function is
the function name and we don’t need the address-of operator.
Simply put, the function name is the address-of the function.
On line 3 we dereference and call our function pointer like this
(*sayHelloPtr)().

1.	Once created on line 2, sayHelloPtr is our function pointer
name and can be treated just like any other pointer,
assigned, and stored.

2.	We dereference our sayHelloPtr pointer the same as we
dereference any other pointer, by using the value-at-address
(*) operator. This gives us *sayHelloPtr.

3.	Again we must have parentheses around the pointer
(*sayHelloPrt). If we don’t, it isn’t a function pointer. We
must have parentheses when creating a function pointer
and when dereferencing it.

4.	The () operator is used to call a function in C. It is no
different on a function pointer. If we had a parameter list
there would be values in the parentheses similar to any
other function call. This gives us (*sayHelloPrt)().

5.	This function has no return value so there is no need to
assign its return to any variable. The function call can
standalone similar to sayHello().

Now that we have shown the weird syntax, understand
that often function pointers are just treated and called as
regular functions after being assigned. To modify our previous
example:

int main() {
 void (*sayHelloPtr)() = sayHello;
 sayHelloPtr();
}

  31

As before we assign the sayHello function to our func-
tion pointer, but now we call the function pointer just like
we would call a regular function. We will get into function
names later which will show why this works but for now
understand that calling a function pointer with full syntax
(*sayHelloPtr)() is the same as calling the function pointer
as a regular function sayHelloPtr().

A Function Pointer with Parameters
Now lets create a function pointer that still doesn’t return
anything (void) but now has parameters.

#include <stdio.h>

// function prototype
void subtractAndPrint(int x, int y);

// function implementation
void subtractAndPrint(int x, int y) {
 int z = x - y;
 printf("Simon says, the answer is: %d\n", z);
}

// calling from main
int main() {
 void (*sapPtr)(int, int) = subtractAndPrint;
 (*sapPtr)(10, 2);
 sapPtr(10, 2);
}

As before, we have our function prototype, our function
implementation and the executing of the function from main
using a function pointer. The signature of both the prototype
and its implementation has changed. Where before our say-
Hello function didn’t have parameters, the subtractAndPrint
function takes two parameters, both integers, and subtracts
one from the other and prints the result.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

32  PROGRAMMING

1.	We create our sapPtr function pointer on line 14 with void
(*sapPtr)(int, int). The only difference from before is
that instead of empty parentheses on the end when creat-
ing the function we have (int, int), which matches the
signature of our new function.

2.	On line 15 when dereferencing and executing the func-
tion, everything is the same as when we called our sayHello
function except now we have (10, 2) on the end passing
parameters.

3.	On line 16 we show executing the function pointer as a
regular function.

A Function Pointer with Parameters and Return Value
Let’s change our subtractAndPrint function to be called sub-
tract and to return the result instead of printing it.

#include <stdio.h>

// function prototype
int subtract(int x, int y);

// function implementation
int subtract(int x, int y) {
 return x - y;
}

// calling from main
int main() {
 int (*subtractPtr)(int, int) = subtract;

 int y = (*subtractPtr)(10, 2);
 printf("Subtract gives: %d\n", y);

 int z = subtractPtr(10, 2);
 printf("Subtract gives: %d\n", z);
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

  33

This is similar to the subtractAndPrint function, except
now the subtract function returns an int. The prototype and
function signatures have changed as would be expected.

1.	We create our subtractPtr function pointer on line 13 with
int (*subtractPtr)(int, int). The only difference from
before is instead of void we have an int return value. This
matches our subtract method signature.

2.	On line 15 when dereferencing and executing the func-
tion pointer, everything is the same as when we called our
subtractAndPrint function, except now we have int y =,
which assigns the return value of the function to y.

3.	On line 16 we print out the return value.

4.	On lines 18 – 19 we execute the function pointer as a regu-
lar function and print the results.

This isn’t much different from before; we just added the int
return value. Let’s move on to a little more complex example
where we pass a function pointer into another function as a
parameter.

34  PROGRAMMING

Passing a Function Pointer as a Parameter
We have stepped through the main parts of the declaring and
executing function pointers with and without parameters and
return values. Now let’s look at using a function pointer to
execute different functions based on input.

#include <stdio.h>

// function prototypes
int add(int x, int y);
int subtract(int x, int y);
int domath(int (*mathop)(int, int), int x, int y);

// add x + y
int add(int x, int y) {
 return x + y;
}

// subtract x - y
int subtract(int x, int y) {
 return x - y;
}

// run the function pointer with inputs
int domath(int (*mathop)(int, int), int x, int y) {
 return (*mathop)(x, y);
}

// calling from main
int main() {

 // call math function with add
 int a = domath(add, 10, 2);
 printf("Add gives: %d\n", a);

 // call math function with subtract
 int b = domath(subtract, 10, 2);
 printf("Subtract gives: %d\n", b);
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

  35

Let’s break this down:

1.	We have two functions with the same signature int
function(int, int), add and subtract. Both return an
integer and both take two integers as parameters.

2.	On line 6 we have int domath(int (*mathop)(int, int),
int x, int y). The first parameter int (*mathop)(int,
int) is a pointer to a function that takes two integers as
input and returns an integer. We have seen this before, and
the syntax is no different here. The last two parameters x
and y are just integer inputs into the domath function. So
the domath function takes a function pointer and two inte-
gers as parameters.

3.	On lines 19 – 21 the domath function executes the func-
tion pointer passed with the x and y integers passed. This
could also have been done as mathop(x, y);.

4.	Lines 27 and 31 are somewhat new. We are calling the
domath function and we are passing in the function names.
Function names are the address-of the function and can be
used in place of function pointers.

The main function calls domath twice, once for add and
once for subtract, printing out the results.

Function Names and Addresses
Let’s wrap up by talking a bit about function names and
addresses as promised. A function name (label) is converted
into a pointer to itself. This means that function names can
be used where function pointers are required as input. It also
leads to some very funky looking code that actually works.
Take a look at some examples:

36  PROGRAMMING

#include <stdio.h>

// function prototypes
void add(char *name, int x, int y);

// add x + y
void add(char *name, int x, int y) {
 printf("%s gives: %d\n", name, x + y);
}

// calling from main
int main() {

 // some funky function pointer assignment
 void (*add1Ptr)(char*, int, int) = add;
 void (*add2Ptr)(char*, int, int) = *add;
 void (*add3Ptr)(char*, int, int) = &add;
 void (*add4Ptr)(char*, int, int) = **add;
 void (*add5Ptr)(char*, int, int) = ***add;

 // execution still works
 (*add1Ptr)("add1Ptr", 10, 2);
 (*add2Ptr)("add2Ptr", 10, 2);
 (*add3Ptr)("add3Ptr", 10, 2);
 (*add4Ptr)("add4Ptr", 10, 2);
 (*add5Ptr)("add5Ptr", 10, 2);

 // this works too
 add1Ptr("add1PtrFunc", 10, 2);
 add2Ptr("add2PtrFunc", 10, 2);
 add3Ptr("add3PtrFunc", 10, 2);
 add4Ptr("add4PtrFunc", 10, 2);
 add5Ptr("add5PtrFunc", 10, 2);
}

Run this code and every function pointer will execute. Yes,
you will get some warnings about char conversion as this is a
simple example. But the function pointers still work.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

  37

1.	Line 15: the function name add by itself gives the address
of the function. It is implicitly converted to a function
pointer. Function names can be used where function point-
ers are required as input.

2.	Line 16: the value-at-address operator *add when applied
to the function name gives the function at that address,
which is converted to a function pointer implicitly just like
the function name.

3.	Line 17: address-of (&) operators when applied to a func-
tion name gives the address of the function. This yields a
function pointer, too.

4.	Lines 18 and 19: the pointers to the function keep yield-
ing themselves over and over again, returning the function
address, which is converted to a function pointer. In the
end, it is same as just the function name.

5.	This code isn’t an example of best practice. The takeaway is
this: One, function names are converted to function point-
ers implicitly the same way that array names are converted
to pointers implicitly when passed into functions. Function
names can be used wherever a function pointer is required.
Two, the address-of (&) and value-at-address (*) operators are
almost always redundant when used against function names.

Conclusion
I hope this helps clarify some things about function pointers
and their usage. When understood, function pointers become
a powerful tool in the C toolbox. In future posts I may go
into more detailed usage of function pointers for things like
callbacks and basic OOP in C. n

Dennis lives in Plano, Texas and has been programming for over 15
years. He uses many different languages, whatever works best for the
job. He thinks programming is an art, algorithms can be elegant and
mathematics can be beautiful.

Reprinted with permission of the original author. First appeared in hn.my/cpointer (denniskubes.net)

http://hn.my/cpointer

38  PROGRAMMING

By Dominic Szablewski

HTML5 Live Video Streaming
Via WebSockets

When I built my Instant
Webcam App, I was
searching for a solution

to stream live video from the iPhone’s
Camera to browsers. There were none.

When it comes to (live) streaming
video with HTML5, the situation is
pretty dire. HTML5 Video currently
has no formalized support for stream-
ing whatsoever. Safari supports the
awkward HTTP Live Streaming, and
there’s an upcoming Media Source
Extension standard as well as MPEG-
DASH. But all these solutions divide
the video in shorter segments, each
of which can be downloaded by the
browser individually. This introduces a
minimum lag of 5 seconds.

So here’s a totally different solution
that works in any modern browser:
Firefox, Chrome, Safari, Mobile Safari,
Chrome for Android, and even Internet
Explorer 10.

It’s quite backwards, uses outdated
technology, and doesn’t support audio
at the moment. But it works. Surpris-
ingly well.

The Camera Video is encoded by
ffmpeg sent to a tiny nodejs script
over HTTP that simply distributes the
MPEG stream via WebSockets to all
connected Browsers. The Browser then
decodes the MPEG stream in JavaS-
cript and renders the decoded pictures
into a Canvas Element.

You can even use a Raspberry Pi to
stream the video. It’s a bit on the slow
side, but in my tests it had no problem
encoding 320x240 video on the fly
with 30fps. This makes it, to my knowl-
edge, the best video streaming solution
for the Raspberry Pi right now.

Here’s how to set this up. First get a
current version of ffmpeg. Up-to-date
packages are available at deb-multime-
dia. If you are on Linux, your Webcam
should be available at /dev/video0 or /
dev/video1. On OSX or Windows you
may be able to feed ffmpeg through
VLC somehow.

  39

Make sure you have nodejs installed
on the server through which you
want to distribute the stream. Get the
stream-server.js script from jsmpeg
and change the default password at the
top of the file. This password is there to
ensure that no one can hijack the video
stream.

Now install its dependency to the
ws WebSocket package and start the
server:

npm install ws
node stream-server.js yourpassword

You should see the following output
when the server is running correctly:

Listening for MPEG Stream on http
://127.0.0.1:8082/<secret>/<width
>/<height>
Awaiting WebSocket connection on
ws://127.0.0.1:8084

With the server started, you can now
start ffmpeg and point it to the domain
and port where it is running:

ffmpeg -s 640x480 -f video4linux2
-i /dev/video0 \ -f mpeg1video -b
800k -r 30
\ http://example.com:8082/
yourpassword/640/480/

This starts capturing the webcam
video in 640x480 and encodes an
MPEG video with 30fps and a bitrate
of 800kbit/s. The encoded video is
then sent to the specified host and
port via HTTP. Make sure to provide

the correct secret as specified in the
stream-server.js. The width and
height parameters in the destination
URL also have to be set correctly; the
stream server otherwise has no way to
figure out the correct dimensions.

On the Raspberry Pi you will prob-
ably have to turn down the resolution
to 320x240 to still be able to encode
with 30fps.

To view the stream, get the stream-
example.html and jsmpg.js from the
jsmpeg project [hn.my/jsmpeg]. Change
the WebSocket URL in the stream-
example.html to your server’s and open
it in your favorite browser.

If everything works, you should be
able to see a smooth camera video with
less than 100ms lag. Quite nice for such
hackery and a humble MPEG decoder in
JS. n

Dominic is the author of the HTML5 Game
Engine Impact [impactjs.com]. He writes about
all things JavaScript and Web-Technology on
his personal blog PhobosLab [phoboslab.org]
and create games in his free time.

Reprinted with permission of the original author.
First appeared in hn.my/websockets (phoboslab.org)

http://hn.my/jsmpeg
http://hn.my/websockets

40  PROGRAMMING

By John Croisant & Felix Winkelmann

Behind the Scenes with
CHICKEN Scheme

For the past couple years, I’ve
been playing with the Lisp
family of languages, namely

Common Lisp, Clojure, and Scheme.
One of my favorite languages for
hobby coding is CHICKEN Scheme
[call-cc.org], a mature, high-perfor-
mance implementation of Scheme that
compiles to portable C code. CHICK-
EN’s variety of built-in features and
downloadable libraries, excellent FFI
support, and helpful community make
it a very appealing language.

Recently, I came across SPOCK,
a compiler and runtime system for
compiling Scheme code into JavaS-
cript. As it turns out, SPOCK and
CHICKEN have the same creator:
Felix Winkelmann, a software devel-
oper in Göttingen, Germany. Intrigued,
I got in touch with Felix to ask him
about CHICKEN, SPOCK, how he got

started, and what keeps him motivated
to keep working on CHICKEN after
more than a decade.

http://call-cc.org

  41

Felix, thanks for agreeing to an inter-
view. Many of our readers probably
haven’t heard of CHICKEN Scheme
before. What is it? What kinds of soft-
ware is it good for? What sets it apart
from other Scheme implementations?
CHICKEN is, at its core, just another
implementation of the Scheme pro-
gramming language. It is R5RS-com-
pliant and provides numerous exten-
sion libraries for all sorts of things.
CHICKEN compiles Scheme into por-
table C code, which can subsequently
be compiled into a standalone execut-
able or a library. An interpreter is also
available for interactive development.

There are a large number of exten-
sions (what we call “eggs”) that cover
a large spectrum of functionality, like
bindings to C and C++ libraries and
handling of many databases, protocols,
networking, graphics, and user inter-
face programming. So I’d say it is good
for a lot of things. Dynamic typing
combined with a compiler that can
generate quite efficient code allows
CHICKEN to be used for everything
including scripting, application pro-
gramming, and systems programming.

What I like about CHICKEN is
that it makes it very easy to work
with existing libraries. The foreign
function interface makes integrat-
ing C code a snap. Many people have
contributed extensions to our library,
and installing these extensions is
straightforward. CHICKEN tries to be

developer-friendly and easy to use, and
it puts an emphasis on making those
things simple that have traditionally
been neglected in dynamic languages,
like generating real standalone exe-
cutables. Full support for Scheme is
provided, including the parts that are
usually hard to implement or imple-
mented inefficiently.

But what really makes CHICKEN
special is its community. A group of
helpful and faithful fanatics is actively
maintaining and improving it, some-
times at a frightening pace. If you need
help, ask on the mailing lists or IRC
channel and you get it. Always.

What motivated you to create
CHICKEN?
I was scratching my own itch: having
a decent compiler for a powerful and
elegant language, one that I can use
for day-to-day programming instead
of banging my head against the limita-
tions of the mainstream languages that
I have to use otherwise. Something
that doesn’t get in the way of solving a
particular programming problem.

42  PROGRAMMING

Do you often use CHICKEN in your
own programming? What kinds of
software to you create with it?
I use CHICKEN as much as I can. I
have done some freelancing writing
Scheme, but haven’t had the chance
so far to use it at work (I’d love to,
though). Unfortunately, I don’t have
much time left between work and
maintenance, even though my head
is exploding with ideas. If I find the
time, I usually implement other pro-
gramming languages — I’m one of
those programmers that always end up
implementing programming languages
in the hope of using them to write
something interesting in the future…
But I never get beyond the first stage.
:-)

When did you first become interested
in computers or programming? How
did you learn to program?
I started around the age of 12, I think,
at the start of the home computing
era. I never got the computers with
the cool games like the other kids, so I
had to dive into BASIC programming
pretty early. Later I studied mathemat-
ics and computer science but quickly
realized that I’m way too dumb for
math and dropped out after just a year
or so.

I’m addicted to computer books, so
I was able to pick up a lot of different
subjects, but I always ended up learn-
ing about programming languages.

How did you first learn about
Scheme/Lisp? Did you find it challeng-
ing at first, or did it come easily? What
made you like it enough to create a
Scheme implementation?
I somehow came upon a small book
about Lisp, which was very challenging
and strange. But my fascination started
early and I sucked up everything I
could about Lisp, its various variants
and the implementation techniques
involved in making it run. Scheme,
being such a clean, minimal and ele-
gant language got me quickly hooked,
as it did to so many others.

Internet access came very late, so
to get access to a Lisp system I had
to write one myself. I wrote countless
Lisp and Scheme implementations —
most of them were rubbish, and none
was ever complete. But implement-
ing Lisp is the true way of learning
the language, and in the end, reading
Henry Baker’s “Cheney on the M.T.A.”
paper and Andrew Appel’s wonderful
book “Compiling with Continuations”
showed a way that was just so elegant
that I had to try it out.

  43

You first released CHICKEN in 2000
— over a decade ago! What motivates
you to keep working on it after so
many years? Have you ever had times
of low motivation, where you didn’t
want to work on it anymore? How did
you cope?
Yes, I think hacking began about 15
years ago. It’s hard to believe that it
has been such a long time. I wanted to
stop more than once, but what made
the difference was the feedback I got.
Even when the system was barely
usable (actually even when it wasn’t
usable at all), people tried it out, sent
patches, suggested improvements and,
most surprisingly, they used it! For real
stuff! That was both baffling and highly
motivating. Being so grateful for the
feedback, I couldn’t stop working on it.

Maintaining such a project, especially
one that is growing very fast, can be
quite a piece of work. Over the years,
a core team of very capable, motivated
and friendly folks has emerged that
do all the hard work and additionally
keep up with my moods. But before
that, keeping up with the project (bug-
fixing, porting, testing) turned out to
be a full-time job. I was ready to walk
away more than once, and not having
the time to use the stuff you worked
on for such a long time can be quite
frustrating. Usually, taking a few weeks
of vacation from all things CHICKEN
related helps, until my fingers start
itching, the ideas start flowing, and I
throw myself back into the project.

In your initial announcement of
CHICKEN, you included a disclaimer:
“This is *not* a production quality/
high-performance system.” A lot has
changed since then. Would you say
now that CHICKEN is a “production
quality/high performance system”?
Yes, I think I’d say that. The compiler
can generate very fast code, if you know
what you’re doing and if you have
an idea of how it operates. A massive
amount of code has been fed to the
system, which weeded out a countless
number of bugs. So it is not too immod-
est to say that CHICKEN has become
quite mature.

It will never be bug free, of course,
but that is the price you pay for keep-
ing up a fast pace of development.
With maturity, the class of bugs shifts
to more advanced and obscure parts
of the system. Additionally, we do an
awful lot of automated testing, which
is of tremendous help.

44  PROGRAMMING

Do you have future plans for
CHICKEN? Where would you like it to
be in 5 years?
There are many things that need to be
improved. People are using it heavily,
and companies have started using it
for getting real stuff done, so there is
always something to fix and improve.
The next Scheme standard (R7RS) is
around the corner, and we plan to sup-
port it, which will be another piece of
work. A lot of infrastructure has been
created (testing, bug-tracking, code
repositories, documentation, etc.) that
needs constant attention.

I don’t know. I think in 5 years I
would like it to be like it is now — just
better.

 Let’s talk about SPOCK. What is it? Is
it ready for people to use? Why would
someone want to use it?
SPOCK is a compiler from a subset
of R5RS Scheme to JavaScript. It
uses a compilation strategy similar to
CHICKEN, but it is more lightweight
and cuts a few corners of the Scheme
standard to be practical. It has not
been used a lot so far, but it works, and
I think it has some potential to be a
useful glue language for Scheme-based
web software. But, I’m not an expert
in web programming, so my opinions
must be taken with a grain of salt.

The interesting bit is that the distinc-
tion between server-side and client-
side gets fuzzier — a Scheme server
can emit Scheme code to run on the

client, and Scheme’s powerful syntactic
extension mechanisms can make this
look like a single piece of code. SPOCK
is not what I’d call ready for produc-
tion yet. But I’d say there is potential.

What motivated you to create
SPOCK?
Originally, I wanted to have a clean
compiler core for Scheme, using the
“Cheney on the M.T.A.” compila-
tion strategy (which is also used in
CHICKEN). JavaScript is an interest-
ing and powerful target language that
already takes care of a lot of things
(garbage collection, dynamic typing,
etc.), so it was a natural choice. After
the usual frustration of getting it to
work on all major browsers, the parts
just fell into place.

Have you used it for any projects yet?
I have only done experiments with it.
I’d love to do more, but I severely lack
the experience in web programming.

You mentioned that CHICKEN and
SPOCK both use Henry Baker’s
“Cheney on the M.T.A.” compilation
strategy. How much did your experi-
ence developing CHICKEN help with
creating SPOCK? Are the implementa-
tions similar?
Baker’s method is really incredibly
clever — naturally, I have to say that
— but the code that it produces takes
some getting used to. It’s a bit of a
challenge to read code that has been

  45

converted to continuation-passing style
(CPS) and translated to another lan-
guage. Without the experience I gained
from CHICKEN, SPOCK would have
taken much more time. SPOCK is a
good deal simpler and cleaner than
CHICKEN, but of course it supports
a much smaller language, it’s not fully
R5RS compliant, and it doesn’t have to
cope with the horrors of POSIX, the
Windows API, or C compiler issues.
And JavaScript takes care of a lot of
dirty details, of course.

Much of Baker’s paper seems pretty
specific to the memory management
and function call conventions of C.
What gave you the idea of applying
it to JavaScript? Are the techniques
described in the paper relevant in
JavaScript?
I think they are relevant to every
language. Baker’s compilation strategy
is applicable to nearly every language
that has activation frames with limited
extent. It elegantly combines garbage
collection with stack frame manage-
ment and continuation creation, so
static languages like C are a natural
choice. JavaScript already provides
garbage collection, but Baker’s method
gives us tail-call optimization and first-
class continuations. There has been at
least one CPS-based Scheme-to-JavaS-
cript compiler before, but it didn’t
explicitly use Baker’s method, as far as
I know.

SPOCK’s documentation includes a
warning that it “stresses JavaScript
implementations in unusual ways.”
Are there significant performance
issues with SPOCK? If so, do you
think performance will improve as
SPOCK matures?
That is possible, yes. SPOCK cre-
ates deeply nested functions, and this
stresses existing JavaScript engines in
unexpected ways. It even uncovered
a bug in Mozilla’s JavaScript engine
— which is fixed now, thanks to the
engine’s maintainers. There may be
corner cases that haven’t been thought
of yet. SPOCK just needs more users
and more testing.

What’s next for SPOCK? Are you
going to continue developing it?
Currently, I’m just waiting for people
to use it.

But, SPOCK is clean enough to be
grokked by whoever wants to hack
on it. It is not under active develop-
ment at the moment, but it has a
reasonable size and complexity, which
makes it easier to maintain than, say,
CHICKEN. It would be interesting to
see how people use it, and I’ll be avail-
able in case something breaks.

Both CHICKEN and SPOCK are
open source. If someone is interested
in contributing, what is the best way to
get started?

46  PROGRAMMING

Just give it a try. Play with it, learn
about it, write something useful, or
even something useless. Then get in
touch with the community, ask ques-
tions on the mailing list, or enjoy the
daily fun on our IRC channel. Sub-
mitting a new CHICKEN library or
extension module is very easy. There
are endless things to do, even if it is
just testing, and we are happy about
every little bit of help we can get, and
happy to provide help to those that
need it themselves. Every line of code
contributed makes CHICKEN better,
increases our corpus of testing code,
or at least gives us something to think
about.

One last question: What inspired the
names CHICKEN and SPOCK? Do
they mean anything, aside from the
bird and the well-known Star Trek
character?
That question always comes up, sooner
or later.

I had a plastic toy of Feathers
McGraw on my desk, the evil penguin
(disguised as a chicken!) from the Wal-
lace and Gromit movie, “The Wrong
Trousers.” Looking for a preliminary
working title for the compiler, I used
the first thing that came to my mind
that day. I’m somewhat superstitious
about names for software projects, and
things were progressing well, so I didn’t
dare to change the name.

Also, there is the old philosophical
question: which came first, the chicken
or the egg? This applies to CHICKEN,
too. The compiler is written in Scheme,
so you need CHICKEN in order to
compile CHICKEN.

For SPOCK, the story is not that
interesting. I just like whacky names,
and it seemed nice to have some sort of
“persona” to associate with the com-
piler. Like CHICKEN, “Spock” was just
the first thing that came to mind.

After SPOCK, I worked for a while
on a rudimentary compiler that pro-
duced C++ instead of JavaScript, but
it was never finished. It was quite
bare “bones,” so naturally I called it
MCCOY. n

John Croisant is a self-taught programmer
in a variety of languages, including Python,
C/C++, Lisp/Scheme, and especially Ruby.
In his downtime, he enjoys reading fiction,
watching old movies and TV series, and (of
course) playing video games.

Felix Winkelmann is the implementor and
lead-maintainer of CHICKEN, a popular Scheme
implementation.

Reprinted with permission of the original author.
First appeared in hn.my/chicken (atomicobject.com)

http://hn.my/chicken

  47
The fast and easy way to accept affiliates into your online business

AFFILIATE.IO
Visit affiliate.io/hacker for discount

Without affiliate.io...

With affiliate.io...

Just you - 7 sales/week

Affiliate #042
- Lisa, Marketing expert

Affiliate #011
- Tim, power user & ambassador

Affiliate #094
- Diana, owns 7 blogs

Affiliate #027
- Tom, industry expert

Recruit, track, and promote your business

http://affiliate.io/hacker

48  PROGRAMMING

Client-side Full-text Search
in CSS By François Zaninotto

Using data- attributes for indexation and a dynamic
stylesheet with a CSS3 selector for search is is
straightforward way to implement a client-side

full-text search in CSS rather than JavaScript. Here is an
example.

The Searchable List
<ul class="contacts">
<!-- Add text to the data-index attr to enable full-text search -->
<!-- Don't forget to lowercase it to make search case-insensitive -->
 <li class="searchable" data-index="onabednarschamberger.frank@wuck-
ert.com1-265-479-1196x714">
 <dl>
 <dt>First Name</dt><dd>Ona</dd>
 <dt>Last Name</dt><dd>Bednar</dd>
 <dt>Email</dt><dd>schamberger.frank@wuckert.com</dd>
 <dt>Phone</dt><dd>1-265-479-1196x714</dd>
 </dl>

 <li class="searchable" data-index="newtoncronintorphy.dorothea@
gmail.com(121)644-5577">
 <dl>
 <dt>First Name</dt><dd>Newton</dd>
 <dt>Last Name</dt><dd>Cronin</dd>
 <dt>Email</dt><dd>torphy.dorothea@gmail.com</dd>
 <dt>Phone</dt><dd>(121)644-5577</dd>
 </dl>

 <!-- add as much data as you want -->

  49

The Search Code
The search is very straightforward: it relies on two well-
supported CSS3 selectors (:not() and [attr*=]) and
the rewriting of a style rule each time the search input is
modified:

Reprinted with permission of the original author. First appeared in hn.my/csssearch (redotheweb.com)

By François Zaninotto
<input type="text" placeholder="search" id="search">
<style id="search_style"></style>
<script type="text/javascript">
var searchStyle = document.getElementById('search_style');
document.getElementById('search').addEventListener('input', function()
{
 if (!this.value) {
 searchStyle.innerHTML = "";
 return;
 }
 // look ma, no indexOf!
 searchStyle.innerHTML = ".searchable:not([data-index*=\"" + this.
value.toLowerCase() + "\"]) { display: none; }";
 // beware of css injections!
});
</script>

The advantage of using CSS selectors rather than JavaS-
cript indexOf() for search is speed: you only change one
element at each keystroke (the <style> tag) instead of
changing all the elements matching the query. Using the
:not() selector, this implementation works on IE9+, but it
could easily be made compatible with IE8+ by using two
rules instead of one. n

François Zaninotto is the CEO a digital innovation workshop named
marmelab, located in eastern France. Former Propel lead developer,
former Symfony lead documenter, he is still involved in various
open-source projects in PHP and Node.js. He regularly blogs about
open-source, Lean Startup, Domain-Drive Design and tech trends
in redotheweb.com

http://hn.my/csssearch
http://redotheweb.com

STARTUPS

50  STARTUPS

By Dave Gooden

10 Inglorious Years of
Bootstrapping

In 2002, after several years of
running a small but successful
e-commerce business, my busi-

ness partner (and friend since kinder-
garten) Cameron Henkel and I were
both searching for vacation homes to
purchase as family getaways. After a
lot of hassle (I’ll spare you the details),
we realized that there could be a big
opportunity in the space. In 2002
the real estate industry was way, way
behind the curve when it came to
applying technology to the process, so
we set out to fix the problem.

In 2003 we launched LakePlace.com,
a niche classified ads website for lake
homes and lake lots in Minnesota and
Wisconsin. Like all marketplaces, we
faced the chicken and the egg prob-
lem. We had no listings and no visitors.
Common sense told us that we needed

to build the supply side first and worry
about the demand side later…so that’s
what we set out to do.

We spent the next 12 months on the
phones, sending emails, attending con-
ferences and trade shows, and meeting
with real estate agents in person to
convince them to list their properties
on LakePlace.com. We offered every-
one a free trial and 100% satisfaction
guarantee (people like 100% satisfac-
tion guarantees). Our e-commerce
success of the past was built on SEO,
before it was called SEO, so we knew
if we could get listings, we could get
visitors…and that’s exactly what hap-
pened. We started getting some listings
and then started getting some traffic,
more listings, more traffic. Once we
noticed specific agents getting multiple
contacts on properties, we swooped

  51

in with the sales call. It was time to
upgrade to a paid account or lose the
service. By 2006 we had 600+ paying
customers listing thousands of lake-
shore properties on our site.

Along the way, something else hap-
pened. We noticed our visitors asking
our listing agents if any of their listings
were available for rent. After the 100th
(or 500th) request, we decided to
open up a vacation rental marketplace.
Using what we learned the first time
around, we got back on the phones
and offered resort owners and vacation
rental managers free trials. We went as
far as inputting all of their information,
uploading their pictures, etc…what-
ever it took to get them to try Lake-
Place.com. Once they received 10-20
inquiries, we let them know that the
free trial was over and it was time to
become a paying customer. I think we
had a 99% retention rate when con-
verting free trial users to paying cus-
tomers. Today, LakePlace.com’s Minne-
sota vacation rental section is about the
same size as Homeaway and VRB —
and way bigger than AirBnB’s — and
we are a very close second in Wisconsin
(I hope to fix that this year).

Lesson #1: What’s one way to make a
free-to-pay (free trial) transition work?
Base it on a success rate, not a time
limit.

The (first) Big Pivot
In 2006, at the height of the real estate
boom, some of our 600+ real estate
advertisers were closing 6-8 transac-
tions per month that could be directly
attributed to LakePlace.com leads. If
you multiply that number out, the top
agents using our website were clear-
ing $30k+ per month for a $59/month
investment. Crazy. After looking at
all of our options, we decided that we
needed to wiggle our way into a piece
of the action, and there was only one
way to do it: we needed to become a
real estate brokerage.

We concluded that we should be
“referring” leads to agents in exchange
for a 25% referral fee on closed transac-
tions. Because real estate is so heavily
regulated, this required us to become
a licensed real estate brokerage in two
states, which presented a couple of
problems:

1.	My partner and I were not real estate
agents. To become a broker/broker-
age in MN and WI (besides a bunch
of class hours and exams), you need
to have at least two years of experi-
ence as a licensed agent.

2.	We would have to cancel all of our
subscriptions (lose most of our rev-
enue and upset a lot of people).

We decided to make a call to the
commercial banker who helped us
purchase an office building during our
e-commerce days. Not only was he the

52  STARTUPS

top commercial banker in the U.S. at
a huge bank, he was also an attorney
and licensed real estate broker. After
a dozen meetings and several dinners
with him and his wife, we convinced
him to resign his position at the bank,
invest some money, and join our team
as the broker and CEO. Before jumping
in though, he wanted to make sure that
the idea for our new business model
was sound…so he picked us up in his
S600 and we drove 200 miles north to
visit our biggest advertiser.

Our top advertiser was a young real
estate broker in a popular resort town
in northern Minnesota. Every time we
launched a new advertising opportu-
nity, he signed up (and paid up) almost
immediately. He had just been named
one of the “30 Under 30” by Real-
tor Magazine and was selling $60M
in lakeshore properties every year. If
we could convince him to buy into
our new model, everything else would
probably fall into place pretty easily.
When we asked him if he was willing
to pay a $1,000 annual fee + a 25%
referral fee in exchange for market
exclusivity on LakePlace.com (vs. $59/
month flat fee and no exclusivity),
he said “yes” without hesitation. The
conversations on the drive back to the
Twin Cities were filled with excite-
ment as we solidified the deal with
our new CEO and discussed the wire
transfer and his start date.

The Call
In preparation for our new business
model, Cam and I hit the phones hard.
We studied the maps, carved out 53
unique lakeshore markets throughout
Minnesota and Wisconsin, and called
our top advertiser in each market. We
let them all know that we were going
to be changing our model and asked
if they would be interested in joining
LakePlace.com as our exclusive affili-
ate in their market (annual fee + 25%
referral fee). In short order, we filled all
53 slots and validated our new model.
On the other side of the coin, the news
of our changes spread quickly through-
out the real estate industry and we had
to field a lot of calls and emails from
angry advertisers. Some agents can-
celled their advertising subscriptions
immediately, others decided to con-
tinue advertising to the end and join a
waiting list to become an affiliate.

The fuse was lit. In about a month
our company would have a licensed
broker and a healthy bank account.
The plan was to join every MLS (19
in all) in Minnesota and Wisconsin
(expensive), pull and combine all of
the lakeshore listings from these differ-
ent databases and build an easy-to-use,
seamless search function (difficult). If
we could make this happen we would
be able to give our users a complete
market overview…which is exactly
what Cam and I wanted when we were
searching for our vacation homes.

  53

The night before our investor/CEO
was to give his 30 day notice at the
bank, Cam and I were working late.
Cam’s cell phone rang at about 10pm,
it was our investor/CEO’s wife. She
asked if I was present and then asked
Cam to put her on speaker. She started
with “I need to have a difficult conver-
sation with you guys….” She went on
to tell us that her husband left his law
practice because of heart problems,
he was put on beta blockers at a very
early age, and she could see all of his
symptoms coming back. She told us, in
no short order: “I’m sorry, but I’m not
going to let him do this.”

We were floored. We were dead. We
had put our reputations on the line
with 53 agents/brokers and burned
bridges with many others. I can’t really
explain the feeling that came over
me that night, but I can tell you that
I hope I never feel it again. Anyway,
the next morning, after confirming the
news, we had to make our own difficult
phone calls. It was time to pull back
the curtain and admit that we had no
clue about what we were doing. We
were junior varsity level players, and
it was time to come clean and own up
to our inadequacies. The first, dread-
ful call we decided to make was to
our top advertiser, the “30 Under 30”
guy. He sat quiet on the other end of
the phone while Cam and I did our
best to explain why we could not
move forward. After a long, awkward

silence, the first words he said were “…
it sounds like you need a broker and
some money. What if I can bring that
to the table?” Cam and I looked at each
other, eyes wide open, and one of us
said “…it would be game on.” Forty-five
days later he had sold his brokerage,
moved his family to the Twin Cities,
and joined our company as a minority
shareholder and COO. We were back.

Lesson #2: A deal isn’t done until it’s
done.

Lesson #3: Good things are sometimes
born of disasters.

The Trough of Sorrow
2006-2009 was full of ups and downs.
Almost immediately after launching
our new model we entered acquisition
talks with 3 large companies. The one
company we were most interested in
working with took the talks very far,
but after several meetings with their
C-level execs, lawyers, and IT teams,
the deal fell apart. Our new model
started out great and was a moderate
success, but as the housing market col-
lapsed, our referral fee revenue began
to dry up. Markets that were closing 20
referred deals per year in 2006 turned
into 1 or 2 closed deals by 2009. Less
revenue meant that we did not have
the resources to audit our affiliates
and the whole thing was spiraling in
the wrong direction. To make matters

54  STARTUPS

worse, it didn’t take long for Cam and
I to realize that we had some major
personality conflicts with our new
COO. After 12 months on the team,
we all agreed it would be best if he
moved on. The terms of our buy/sell
agreement required him to remain the
broker of record for 2 years while we
bought our shares back. This gave my
business partner Cam time to get a real
estate license and eventually his bro-
ker’s license. It also allowed our former
COO to earn 3x on his investment
(not great, but not bad).

Note: While things did not go as
planned, our COO was able to parlay
his experience at LakePlace.com into
a Director of Franchise Sales position
at a big, national real estate company
(he also became a contestant on “The
Apprentice”), and we were able to
keep our business alive as a licensed
real estate brokerage. All in all, we have
no hard feelings and I look back on it
as a win-win. I think he feels the same.

A New Beginning (The Second Pivot)
By late 2009, after reclaiming 100%
ownership of our company, it was
becoming obvious to Cam and me
that our referral brokerage model was
probably not going to be the driver
of success that we had hoped for. We
had spent more than six years search-
ing for a successful model that we
could attempt to scale, and during this
time companies like Zillow, Trulia,

and Redfin had soared (Facebook and
LinkedIn launched at about the same
time as LakePlace.com) while we were
spinning our wheels. After 30+ years as
bff’s and more than a decade as busi-
ness partners, the stress of long hours
and shrinking incomes was coming to
a head, and Cam and I were starting
to resent one another. And then we
got the phone call that would change
everything.

At the beginning of 2009, I helped
one of our affiliates set up a blog, and
over the course of the year, I gave him
a little SEO advice that helped his
blog rise to the top of the SERPs. He
worked for a large brokerage that was
in the largest lakeshore market in Min-
nesota (probably the largest lakeshore
market in the country). When sh*t
hit the fan at his company, he called
us right away and asked if we ever
thought about opening our own real
estate office. It’s kind of funny, because
even though we had been working
directly with realtors and brokers, day
in and day out for 6 years, the thought
of opening up our own real estate
office was never really on the table.
Like I mentioned above, our goal was
to build a scalable product (“products
scale, services don’t…blah, blah, blah”).
After a lengthy conversation, Cam
and I got excited and agreed to setup
a “secret” meeting at a remote lake
home with a dozen realtors from our
affiliate’s brokerage. At the end of our

  55

presentation, all twelve agents at the
table committed to joining LakePlace.
com if we committed to opening an
office. In April of 2010 LakePlace.com-
Crosslake (Brainerd Lakes) opened its
doors.

Lesson #4: Helping people can provide
unexpected returns on investment.

So how’s switching from a product
to a service going so far? In 2009 we
received two (2) referral fee checks
from our affiliate in 1/53 markets. In
2010 (April-Dec), after opening our
own office, our agents closed 53 trans-
actions from company generated leads
in that market. When we ran the num-
bers across all of our affiliate markets,
the path forward was obvious…so we
started executing. Here’s the timeline:

■■ 2003: LakePlace.com launches as
classified ads website

■■ 2006: LakePlace.com pivots into a
referral brokerage

■■ 2010: LakePlace.com opens first real
estate office in Crosslake, MN (Lake-
Place.com-Crosslake)

■■ 2011: LakePlace.com acquires
ReMax Woodland Realty (now Lake-
Place.com-Birchwood)

■■ 2011: LakePlace.com-Crosslake
merges with Century 21 Gold Shores
(now LakePlace.com-Crosslake)

■■ 2012: LakePlace.com opens Wayzata,
MN office (LakePlace.com-Metro)

■■ 2012: LakePlace.com opens new
headquarters in Bloomington, MN

■■ 2012: LakePlace.com merges with
ReMax Northwoods Realty (now
LakePlace.com-Siren)

■■ 2012: LakePlace.com acquires
ReMax North Country (now Lake-
Place.com-Hackensack)

■■ 2012: LakePlace.com opens Detroit
Lakes, MN office (LakePlace.com-
Detroit Lakes)

■■ 2013: LakePlace.com opens Alex-
andria, MN office (LakePlace.
com-Alexandria)

■■ 2013: Loads of new bullet points
coming (“knock on wood”)

Our sales and revenue doubled in
2010, 2011, and 2012 but we still
have a long, long way to go. And even
though our business isn’t quite the
technology product we envisioned
when we started, Cam and I are happy
again and loving what we do. Every
day presents a new challenge, and we
get to attack it from an angle that most
companies in our industry can’t see. We
may not be “changing the world,” but
we feel like we are pioneering a new
way to build a successful real estate
company, and that in and of itself has
been very satisfying.

Lesson #5: Hard work and persever-
ance pays off.

56  STARTUPS

Final Thoughts
I’m not going to pretend I’m some sort
of startup guru with magic advice that
will change your life. There are already
tons of people out here doing that, and
plenty of them have built things that
make our company look like a lemon-
ade stand. I will, however, share some
things (read: anecdotes) that have
worked for me.

➊ Never quit. I don’t mean be
irresponsible. I mean if you are

working on something that you truly,
wholeheartedly believe in, but it’s
taking longer than you anticipated
to get traction, don’t stop. It takes
time, and it’s probably going to be a
lot harder and more painful than you
thought it would be, but don’t quit.

➋ There are riches in niches.
Niches are almost always the

best/easiest place to start if you’re a
bootstrapper.

➌ Sales cure (almost) everything.
Money isn’t the most important

thing in the world, but it’s what we use
to keep score…and it keeps the lights
on. More money = less pressure…so
always be selling

➍ Know your customer. Your
customer is the person who

gives you money in exchange for your
product or service. It’s easier than you
might think to get confused about this
one.

➎ Listen to your users. Don’t add/
remove features on every whim,

but if you ask and then listen very
closely, you’ll find nuggets of gold.

➏ Everything scales. If you build a
successful business model (prod-

uct, service, whatever), it’s scalable. It
might not be easy, but it can be scaled.
Don’t believe me? Ask the founders of
Walmart, Home Depot, McDonald’s,
HandR Block, Re/Max or Fantastic
Sam’s.

➐ Always think big. Cameron and I
operate with a short-term, mid-

term, and long-term plan. The long
term plan is our “take over the world”
plan. Our 3-plan approach helps to
keep us focused on our day-to-day
operations but also keeps us alert and
looking for opportunities that may help
us reach our ultimate goal.

➑ No Excuses. Can’t raise money?
Figure something else out. Don’t

have connections? Neither do we.
Cam and I started out on our entre-
preneurial journey with $600/each on
credit cards (no savings) and did $1M
in revenue our first year…because we
needed to. I’ve applied to Y-Combina-
tor twice and talked to local investors a
few times. Everyone said “no.” We said
“fuck “em, we”re doing it anyway.”

  57

➒ Pick a fight. Don’t do this pub-
licly, but always have an enemy:

at least one person and/or company
whose ass you are trying to kick. Don’t
stop until you have their head on a
stick…and then pick a bigger enemy.

➓ It’s really, really hard. Cam and I
have gone several months work-

ing insane hours without a pay check
or health insurance (multiple times).
Entrepreneurship is definitely not for
everyone, but if you’re like me, you
can’t imagine doing anything else. Ever.
n

Dave Gooden is the co-founder and CEO of
LakePlace.com, an accidental (but awesome)
real estate brokerage. Follow @davegooden on
Twitter.

Reprinted with permission of the original author.
First appeared in hn.my/10years (davegooden.com)

http://LakePlace.com
http://twitter.com/davegooden
http://hn.my/10years

SPECIAL

58  SPECIAL

By Bemmu SEPPONEN

Hack Your Motivation

Nothing is better than being
truly motivated by an excit-
ing project. But if you’re

stuck, here are some things to try for a
temporary boost. The common theme
among these is switching your perspec-
tive from thinking about your project
as a huge endeavor and instead concen-
trating on the next practical step.

“Just one change”
You should really be working on your
project, but it just seems too daunting
today to get into it. Open one file in
your project and try to improve just
one line. Just make one tiny change.
That change often leads to another and
can get you going.

Time challenge
This can turn a mundane task into an
interesting challenge. Should you need
to gather some receipts or other docu-
ments to submit to your bookkeeper
each month, turn the boring task into

a challenge by keeping a high score
list of how long it takes you each time.
Last month you did it in four hours.
Can you do it in less time? Try to beat
your record.

Time slotting
Sometimes you are not in the mood
for speed challenges and even a bit
of progress today would be a victory.
Maybe in reality you have the whole
evening to work, but pretend it is not
so. Try allocating just an hour. If you
could choose, what would be the best
thing to work on today between 10
- 11am. If you could clone yourself
for an hour and make the clone do
that task, what would you have it do?
When the hour comes, you might actu-
ally find yourself doing the task you
allocated, because after all you yourself
decided that to be the most important
thing you could be working on at that
point in time.

  59

Make a list of goals
Make a list of current goals or revisit an
existing one. That, and the realization
that your time on this planet is limited,
might scare you into action.

Help one person
If you have received some feedback
related to your project, go read some.
Could you help this person, or better
yet improve your project in some small
way to make it less likely for the same
trouble to happen in the future?

Structured procrastination
If nothing helps you get started in
your current task, is there another task
which seems more appealing? Think-
ing about all the things you need to do,
can you find the motivation to do one
of them? If none of these help to get
you started, maybe your mind or body
is trying to tell you something. It could
be time to take a break.

How to maintain your motivation
You managed to get started, now how
to keep going?

Seinfeld method
Jerry Seinfeld once described his
method for making better jokes: work
on it every day. His system is to have
a wall calendar and mark an X on it
for every day that he put effort into
writing his jokes. After getting a chain
of X marks in the calendar, you are

motivated by not wanting to break the
chain. GitHub also has this feature,
every day you contribute to a repo,
they mark that day in green.

Solicit feedback
If you already have some audience,
try to get them to interact with you.
If you start getting emails or tweets
about your task, it becomes natural to
put more effort into working on it. For
example if you have a blog, at the end
you could invite users to vote on new
topics for you to write about. If you
have a web app, you could add a live
chat or feedback widget or prominently
mention your email address to make
it easy for people to reach out to you.
If you receive a problem report this
way, it feels wrong NOT to get to work
immediately.

Install RescueTime
This is an app you can install on your
computer that monitors which apps
you are using. You can mark activities
as productive or not productive. You
can tell RescueTime that being in a
text editor is productive, but being on
Facebook is not. Based on this it knows
how many productive hours you had
and can send you a congratulation
email when you reach your daily pro-
ductivity goal and make you have an
extra feel-good association with staying
productive.

60  SPECIAL

Make a dollar
If you have a side project that you are
currently doing for free, try asking for
payment. Not because you are greedy,
but because getting paid is a strong
signal from others that they find value
in what you are doing and want you to
work on that thing. You might find that
having even one person paying for your
stuff will greatly increase how moti-
vated you get in trying to improve it.
If you feel like “I can’t do that, I could
let them down,” well, that’s exactly the
point: you’ll get a boost of motivation
from it. And if you really do feel that
you let them down, there are always
refunds.

Write a ridiculously detailed battle
plan for tomorrow
Before going to bed, think about what
the perfect day would look like. Maybe
you would get up, get your inbox
to zero, write some code, do some
copywriting or have a nice session of
exercise or study. If you can picture
the perfect day, you could try writing
it down in detail, down to the hour
(remember to leave plenty of room for
rest and breaks, too). Now tomorrow it
will be clear what constitutes a success
for that day.

Leave a small task undone
To jump start your productivity the
next day, leave a task open from today.
Before calling it a night, leave just
one line of code unfinished so you
can jump in and finish that as the first
natural task for getting into a produc-
tive mood tomorrow. n

Bemmu Sepponen is an expat developer. He
also runs Candy Japan [candyjapan.com], a
Japanese sweets subscription service.

Reprinted with permission of the original author.
First appeared in hn.my/hackmotivate (bemmu.com)

http://candyjapan.com
http://hn.my/hackmotivate

https://www.mailjet.com/?utm_source=hackermonthly&utm_medium=pdf&utm_campaign=October-hackermonthly

	Contents
	FEATURES
	How I Failed
	What Programming a Game in 48 Hours Taught Me About Programming Games

	PROGRAMMING
	Basics of Function
Pointers in C
	HTML5 Live Video Streaming Via WebSockets
	Behind the Scenes with CHICKEN Scheme
	Client-side Full-text Search in CSS

	STARTUPS
	10 Inglorious Years of Bootstrapping

	SPECIAL
	Hack Your Motivation

