
My Hardest Bug Ever
Dave Baggett

Issue 44  January 2014

2  ﻿

Curator
Lim Cheng Soon

Contributors
Andy Brice
Dave Baggett
Adit Bhargava
Austin Rochford
Gabriel Gonzalez
Joseph Wilk
Troy Hunt
Steve Blank
Alina Vrabie
Jason Heeris

Proofreaders
Emily Griffin
Sigmarie Soto

Illustrator
Mike Smith

Ebook Conversion
Ashish Kumar Jha

Printer
MagCloud

Hacker Monthly is the print magazine ver-
sion of Hacker News — news.ycombinator.com, a
social news website wildly popular among program-
mers and startup founders. The submission guide-
lines state that content can be “anything that grati-
fies one’s intellectual curiosity.” Every month, we
select from the top voted articles on Hacker News
and print them in magazine format.
For more, visit hackermonthly.com

Advertising
ads@hackermonthly.com

Contact
contact@hackermonthly.com

Published by
Netizens Media
46, Taylor Road,
11600 Penang,
Malaysia.

Hacker Monthly is published by Netizens Media and not affiliated with Y Combinator in any way.

Cover Illustration: Mike Smith

http://news.ycombinator.com
http://hackermonthly.com
mailto:ads@hackermonthly.com
mailto:contact@hackermonthly.com

  3

For links to Hacker News dicussions, visit hackermonthly.com/issue-44

Contents
FEATURES

04  Lifestyle Programming
By Andy Brice

08  My Hardest Bug Ever
By Dave Baggett

PROGRAMMING

12  Lenses In Pictures
By Adit Bhargava

18  The Median-of-Medians Algorithm
By Austin Rochford

22  From Zero To Cooperative Threads In
33 Lines Of Haskell Code
By Gabriel Gonzalez

28  Building Clojure Services At Scale
By Joseph Wilk

36  Everything You Wanted To Know
About SQL Injection
By Troy Hunt

SPECIAL

48  My First Job: Fired And Rehired On
Day 1
By Steve Blank

52  The Zeigarnik Effect: The Scientific
Key To Better Work
By Alina Vrabie

55 This Is Why You Shouldn’t Interrupt A
Programmer
By Jason Heeris

http://hackermonthly.com/issue-44

4  FEATURES

“

By Andy Brice

Lifestyle
Programming

I am a lifestyle programmer. I run a
one-man software product business
with the aim of providing myself

with an interesting, rewarding, flexible,
and well-paying job. I have no investors
and no plans to take on employees, let
alone become the next Google or Face-
book. I don’t have my own jet and my
face is unlikely to appear on the cover
of Newsweek any time soon. I am ok
with that.

“Lifestyle business” is often used as
something of an insult by venture capi-
talists. They are looking for the “next
big thing” that is going to return 10x
or 100x their investment. They don’t
care if the majority of their investments
flame out spectacularly and messily,
as long as a few make it really big. By
investing in lots of high-risk start-ups
they are able to reduce their overall risk
to a comfortable level. The risk profile

FEATURES

A man is a success if he gets up in the morning
and gets to bed at night, and in between he
does what he wants to do. — Bob Dylan

  5

is completely different for the found-
ers they invest in. As VC Paul Graham
admits:

“There is probably at most one com-
pany in each [YCombinator] batch
that will have a significant effect on
our returns, and the rest are just a cost
of doing business.”

Ouch. The odds of being the “next
big thing” are even slimmer (of the
order of 0.07%). As a VC-backed start-
up the chances are that you will work
80+ hours a week for peanuts for sev-
eral years and end up with little more
than experience at the end of it.

But high-risk, high-return ventures
are sexy. They sell magazines and
advertising space. Who can resist the
heroic story of odd-couple Woz and
Jobs creating the most valuable com-
pany in the world from their garage?
So that is what the media gives us,
and plenty of it. Quietly ignoring the
thousands of other smart and driven
people who swung for the fences and
failed. Or perhaps succeeded, only to
be pushed out by investors.

If you aren’t going to be satisfied
with anything less than being a multi-
millionaire living in a hollowed out
volcano, then an all-or-nothing, VC-
backed start-up crap shoot is probably
your only option. And there are mar-
kets where you have very little chance
of success without venture capital. But
really, how much money do you need?

Is money going to make you happy?
How many meals can you eat in a
day? How many cars can you drive? It
doesn’t sound that great to me when
you read accounts of what it is like to
be rich. Plenty of studies have shown
that happiness is only weakly corre-
lated with wealth once you can afford
the necessities of life (food, shelter,
clothing). Hedonistic adaption ensure
that no amount of luxury can keep
us happy for long. Anyway, if you are
reading this in English on a computer,
you probably are already rich by global
standards.

Creating a small software business
that provides a good living for just
yourself, or perhaps a few people, isn’t
very newsworthy. But it is a lot more
achievable. The barriers to entry have
fallen. You no longer need thousands
of dollars of hardware and software to
start a software business. Just an idea,
good development skills, and plenty
of time and willpower. Many lifestyle
businesses start off with the founder
creating the product over evenings
and weekends, while doing a full-time
job. I cut my expenses and lived off
savings until my business started gen-
erating enough income for me to live
on (about 6 months). I only spent a
couple of thousand pounds of my own
money before the business became
profitable. There is really no need to
max out your credit cards or take any
big financial risks.

6  FEATURES

So how much money do lifestyle
businesses make? Of course, it varies a
lot. Many fail completely, often due to
a lack of marketing. But I know quite a
few other lifestyle programmers who
have made it a successful full-time
career. I believe many of them do very
nicely financially. Personally, I have
averaged a significantly higher income
from selling my own software than I
ever did from working for other
people, and I made a good wage work-
ing as a senior software engineer. Here
is a comparison of my income from my
last full-time salaried employment vs.
what I have paid out in salary and
dividends from my business over the
last 7 years.

Bear in mind that the above would
look even more favorable if it took into
account business assets, the value of
the business itself, and the tax advan-
tages of running a business vs. earning
a salary.

Sure, I could hire employees and
leverage their efforts to potentially
make more money. Creating jobs for
other people is a worthy thing to do.
Companies like FogCreek and 37Sig-
nals have been very successful without
taking outside investment. But I value
my lifestyle more than I value the
benefits of having a bigger business and
I struggle to think of what I would do
with lots more money. I might end up
having to talk to financial advisers (the
horror). I would also end up manag-
ing other people, while they did all the
stuff I like doing. I am much better at
product development, marketing, and
support than I am at management.

If you can make enough money to
pay the bills, being a lifestyle program-
mer is a great life. I can’t get fired. I
make money while I sleep. I choose
where to live. I don’t have to worry
about making payroll for anyone other
than myself. My commute is about
10 meters (to the end of the garden).
I get to see my son every day before
he goes to school and when he comes
back home. I go to no meetings. I have
no real deadlines. No one can tell me
where to put my curly braces or force
me to push out crappy software just to
meet some arbitrary ship date. When
I’m not feeling very productive I go
for a run or do some chores. I can’t
remember the last time I set an alarm
clock or wore a tie.

  7

My little business isn’t going to
fundamentally change the world in the
way that a big company like Google
or Facebook has. But it has bought me
a lot of happiness and fulfilment and,
judging by the emails I get, improved
the life of a lot of my customers as
well. And some of those really famous
events you hear about in the news
(which I don’t have permission to
name-drop) plan their seating using
PerfectTablePlan.

Of course, it isn’t all milk and money.
The first year was very hard work for
uncertain rewards. I recently happened
across this post I made on a forum back
in August 2005, a few months after I
went full-time:

“I work a 60-70 hour week and pay
myself £100 at the end of it (that’s less
than $200). I could make 3x more
working for minimum wage flipping
burgers. But hopefully it won’t be like
this forever…”

I still work hard. I’m not lying under
a palm tree while someone else “off-
shore” does all the work. And I don’t
get to spend all day programming. If
you want to have any real chance of
succeeding you need to spend plenty of
time on marketing. Thankfully I have
found I actually enjoy the challenge of
marketing. But, because I don’t have
employees, I have to do some of the
crappy jobs that I wouldn’t choose
to do otherwise, including: writing

documentation, chasing invoices,
tweaking the website and doing admin.
And I answer customer support emails
364 days a year. I take my laptop on
holiday, but it really isn’t that bad.
Customer support is frustrating at
times. But it is very rewarding to know
that lots of people are using my soft-
ware. Overall, it’s a great lifestyle. I
don’t miss having a 9-5 job. I wouldn’t
even swap my job for running a bigger,
“more successful” company. n

Andy Brice has run his own one-man soft-
ware product business since 2005. He blogs
about software product and marketing related
topics at successfulsoftware.net. He also runs an
intensive, two day training course in the UK for
people who want to start their own software
product business (see his blog for details).

Reprinted with permission of the original author.
First appeared in hn.my/lp (successfulsoftware.net)

http://successfulsoftware.net
http://hn.my/lp

8  FEATURES

My Hardest Bug Ever
By Dave Baggett

As a programmer, you learn to
blame your code first, second,
and third... and somewhere

around 10,000th you blame the com-
piler. Well down the list after that, you
blame the hardware.

This is my hardware bug story.
Among other things, I wrote the

memory card (load/save) code for
Crash Bandicoot. For a swaggering
game coder, this is like a walk in the
park; I expected it would take a few
days. I ended up debugging that code
for 6 weeks. I did other stuff during
that time, but I kept coming back to
this bug — a few hours every few days.
It was agonizing.

The symptom was that you’d go to
save your progress and it would access
the memory card, and almost all the
time, it worked normally...but every
once in a while the write or read would
time out...for no obvious reason. A

short write would often corrupt the
memory card. The player would go to
save, and not only would we not save,
we’d wipe their memory card. D’Oh.

After a while, our producer at Sony,
Connie Booth, began to panic. We
obviously couldn’t ship the game with
that bug, and after six weeks I still
had no clue what the problem was.
Via Connie we put the word out to
other PS1 devs — had anybody seen
anything like this? Nope. Absolutely
nobody had any problems with the
memory card system.

About the only thing you can do
when you run out of ideas debugging
is divide and conquer: keep removing
more and more of the errant program’s
code until you’re left with something
relatively small that still exhibits the
problem. You keep carving parts away
until the only stuff left is where the
bug is.

  9

asked it to
save and
then write
to the
card.

I ultimately ended
up with a pretty small
amount of code that
exhibited the problem — but still
randomly! Most of the time, it would
work, but every once in a while, it
would fail. Almost all of the actual
Crash code had been removed, but it
still happened. This was really baffling:
the code that remained wasn’t really
doing anything.

At some moment — it was probably
3am — a thought entered my mind.
Reading and writing (I/O) involves
precise timing. Whether you’re dealing
with a hard drive, a compact flash card,
a Bluetooth transmitter — whatever
— the low-level code that reads and
writes has to do so according to a clock.

The challenge with this in the con-
text of, say, a video game is that it’s
very hard to remove pieces. How do
you still run the game if you remove
the code that simulates gravity in the
game? Or renders the characters?

What you have to do is replace all
modules with stubs that pretend to do
the real thing, but actually do some-
thing completely trivial that can’t be
buggy. You have to write new scaffold-
ing code just to keep things working at
all. It is a slow, painful process.

Long story short: I did this. I kept
removing more and more hunks of
code until I ended up, pretty much,
with nothing but the startup code —
just the code that set up the system to
run the game, initialized the rendering
hardware, etc. Of course, I couldn’t put
up the load/save menu at that point
because I’d stubbed out all the graph-
ics code. But I could pretend the user
used the (invisible) load/save screen and

10  FEATURES

The clock lets the hardware device
— which isn’t directly connected to the
CPU — stay in sync with the code the
CPU is running. The clock determines
the Baud Rate — the rate at which data
is sent from one side to the other. If the
timing gets messed up, the hardware or
the software — or both — get confused.
This is really, really bad, and usually
results in data corruption.

What if something in our setup code
was messing up the timing somehow?
I looked again at the code in the test
program for timing-related stuff, and
noticed that we set the programmable
timer on the PS1 to 1kHz (1000 ticks/
second). This is relatively fast; it was
running at something like 100Hz in its
default state when the PS1 started up.
Most games, therefore, would have this
timer running at 100Hz.

Andy, the lead (and only other)
developer on the game, set the timer to
1kHz so that the motion calculations
in Crash would be more accurate. Andy
likes overkill, and if we were going to
simulate gravity, we ought to do it as
high-precision as possible!

But what if increasing this timer
somehow interfered with the overall
timing of the program, and therefore
with the clock used to set the baud
rate for the memory card?

I commented the timer code out. I
couldn’t make the error happen again.
But this didn’t mean it was fixed; the
problem only happened randomly.
What if I was just getting lucky?

As more days went on, I kept playing
with my test program. The bug never
happened again. I went back to the
full Crash code base, and modified the
load/save code to reset the program-
mable timer to its default setting (100
Hz) before accessing the memory card,
then put it back to 1kHz afterwards.
We never saw the read/write problems
again.

But why?
I returned repeatedly to the test

program, trying to detect some pattern
to the errors that occurred when the
timer was set to 1kHz. Eventually, I
noticed that the errors happened when
someone was playing with the PS1
controller. Since I would rarely do this
myself — why would I play with the
controller when testing the load/save
code? — I hadn’t noticed it. But one
day one of the artists was waiting for
me to finish testing — I’m sure I was
cursing at the time — and he was ner-
vously fiddling with the controller. It
failed. “Wait, what? Hey, do that again!”

Once I had the insight that the two
things were correlated, it was easy to
reproduce: start writing to memory
card, wiggle controller, corrupt
memory card. Sure looked like a hard-
ware bug to me.

  11

I went back to Connie and told her
what I’d found. She relayed this to one
of the hardware engineers who had
designed the PS1. “Impossible,” she was
told. “This cannot be a hardware prob-
lem.” I told her to ask if I could speak
with him.

He called me and, in his broken
English and my (extremely) broken
Japanese, we argued. I finally said, “just
let me send you a 30-line test program
that makes it happen when you wiggle
the controller.” He relented. This would
be a waste of time, he assured me, and
he was extremely busy with a new
project, but he would oblige because
we were a very important developer
for Sony. I cleaned up my little test
program and sent it over.

The next evening (we were in LA
and he was in Tokyo, so it was evening
for me when he came in the next day)
he called me and sheepishly apolo-
gized. It was a hardware problem.

I’ve never been totally clear on what
the exact problem was, but my impres-
sion from what I heard back from Sony
HQ was that setting the programmable
timer to a sufficiently high clock rate
would interfere with things on the
motherboard near the timer crystal.
One of these things was the baud rate
controller for the memory card, which
also set the baud rate for the control-
lers. I’m not a hardware guy, so I’m
pretty fuzzy on the details.

But the gist of it was that crosstalk
between individual parts on the moth-
erboard, and the combination of send-
ing data over both the controller port
and the memory card port while run-
ning the timer at 1kHz would cause
bits to get dropped... and the data
lost... and the card corrupted.

This is the only time in my entire pro-
gramming life that I’ve debugged a prob-
lem caused by quantum mechanics. n

Dave Baggett was the first employee at
Naughty Dog and one of two programmers on
Crash Bandicoot. Dave now focuses on curing
inbox overload at his new startup, Inky.

Reprinted with permission of the original author.
First appeared in hn.my/bugs (quora.com)

Illustration by Mike Smith.

http://hn.my/bugs

12  PROGRAMMING

You should know what a
functor is before read-
ing this article. Read this

[hn.my/functors] to learn about
functors.

Suppose you want to make a game:

data Point = Point { _x, _y ::
Double }
data Mario = Mario { _location ::
Point }

player1 = Mario (Point 0 0)

Ok, now how would you move this
player?

moveX (Mario (Point xpos ypos))
val = Mario (Point (xpos + val)
ypos)

Instead, lenses allow you to write
something like this:

location.x `over` (+10) $ player1

Or this is the same thing:

over (location . x) (+10) player1

Lenses allow you to selectively
modify just a part of your data:

Much clearer!
location is a lens. And x is a lens.

Here I composed these lenses together
to modify a sub-part of player1.

By Adit Bhargava

Lenses In Pictures

PROGRAMMING

http://hn.my/functors

  13

Fmap
You probably know how fmap works,
Doctor Watson:

Well old chap, what if you have
nested functors instead?

You need to use two fmaps!

Now, you probably know how func-
tion composition works:

What about function composition
composition?

 “If you want to do function com-
position where a function has two
arguments,” says Sherlock, “you need
(.).(.)!”

“That looks like a startled owl,”
exclaims Watson.

“Indeed. Let’s see why this works.”
The type signature for function

composition is:

(.) :: (b -> c) -> (a -> b) -> (a
-> c)

Which looks a heck of a lot like fmap!

fmap :: (a -> b) -> f a -> f b

In fact, if you replace a -> with f it’s
exactly fmap!

And guess what! a -> is a functor!
It’s defined like this:

instance Functor ((->) r) where
 fmap = (.)

So for functions, fmap is just function
composition! (.).(.) is the same as
fmap . fmap!

(.).(.) :: (b -> c) -> (a1 -> a2
-> b) -> (a1 -> a2 -> c)
fmap . fmap :: (a -> b) -> f (f1
a) -> f (f1 b)

There’s a pattern happening here:
fmap . fmap and (.) . (.) both allow
us to go “one level deeper.” In fmap it
means going inside one more layer of
functors. In function composition your
functor is r ->, so it means you can
pass in one more argument to your
function.

14  PROGRAMMING

Setters
Suppose you have a function double
like so:

double :: Int -> Maybe Int
double x = Just (x * 2)

You can apply it to a list with
traverse:

So you pass in a traversable and a
function that returns a value wrapped
in a functor. You get back a traversable
wrapped in that functor. As usual, you
can go one level deeper by composing
traverse:

 traverse :: (a -> m b) -> f
a -> m (f b)
 traverse.traverse :: (a ->
m b) -> f (g a) -> m (f (g
b))

traverse is more powerful than
fmap though because it can be
defined with traverse:

fmapDefault :: Traversable t =>
(a -> b) -> t a -> t b
fmapDefault f = runIdentity .
traverse (Identity . f)

Using fmapDefault, let’s make a
function called over. over is just like
fmapDefault except we pass traverse
in too:

over :: ((a -> Identity b) -> s
-> Identity t) -> (a -> b) -> s
-> t
over l f = runIdentity . l (Iden-
tity . f)

-- over traverse f ==
fmapDefault f

 We’re so close to lenses! “Mmm, I
can taste the lenses, Watson,” drools
Sherlock, “Lenses allow you to compose
functors, folds and traversals together. I
can feel those functors and folds mixed
up in my mouth right now!”

  15

I’ll make a quick type alias here:

type Setter s t a b = (a -> Iden-
tity b) -> s -> Identity t

Now we can write over more cleanly:

over :: Setter s t a b -> (a -> b)
-> s -> t

-- same as:
over :: ((a -> Identity b) -> s ->
Identity t) -> (a -> b) -> s -> t

1.	over takes a Setter

2.	And a transformation function

3.	And a value to apply it to

4.	Then it uses the setter to modify just
a part of the value with the function.

Remember Mario? Now this line
makes more sense:

location.x `over` (+10) $ player1

location . x is a setter. And guess
what: location and x are setters too!
Just like composing fmap or (.) allows
you to go “one level deeper,” you can
compose setters and go one level
deeper into your nested data! Cool!

Folds

So we are one step closer to making
lenses. We just made setters, which
allow us to compose functors.

Turns out, we can do the same
thing for folds. First, we define
foldMapDefault:

foldMapDefault :: (Traversable t,
Monoid m) => (a -> m) -> t a -> m
foldMapDefault f = getConst . tra-
verse (Const . f)

It looks very similar to our definition
of fmapDefault above! We end up get-
ting a new type alias called Fold:

type Fold s t a b = forall m.
Monoid m => (a -> Const m b) -> s
-> Const m t

Which looks pretty similar to a
Setter:

type Setter s t a b = (a -> Iden-
tity b) -> s -> Identity t

Since the signatures of
Fold and Setter are so
similar, we should be able to
combine them into one type
alias. And we sure can!

type Lens s t a b =
forall f. Functor f => (a

-> f b) -> s -> f t

16  PROGRAMMING

Lenses
Setters are for functors and Folds are
for folds, but lenses are a more general
type. They allow us to compose func-
tors, functions, folds and traversals
together! Here’s an example:

Don’t you hate when you fmap over
a tuple, and it only affects the second
part?

> fmap (+10) (1, 2)
 (1,12)

What if you want it to apply to both
parts? Write a lens!

> both f (a,b) = (,) <$> f a <*>
f b

And use it:

> both `over` (+10) $ (1, 2)
 (11,12)

And lenses can be composed to go
deeper! Here we apply the function to
both parts of both parts:

> (both . both) `over` (+2) $ ((1,
2), (3, 4))
((3,4),(5,6))

And we can also compose them with
setters or folds!

Conclusion
Lenses can be really handy if you have a
lot of nested data. Their derivation had
some pretty cool parts too! Here’s the
full derivation. [hn.my/derivation] n

Adit thinks everyone should try Haskell so he
is trying to make it more accessible! He has
been doodling for ten years. The rest of his
blog is at adit.io

Reprinted with permission of the original author.
First appeared in hn.my/lenses (adit.io)

http://hn.my/derivation
http://adit.io
http://hn.my/lenses

  17

Metrics and monitoring for people
who know what they want
We know from experience that monitoring your servers and
applications can be painful, so we built the sort of service that
we would want to use. Simple to set up, responsive support
from people who know what they're talking about, and reliably
fast metric collection and dashboards.

Why Hosted Graphite?

• Hosted metrics and StatsD: Metric aggregation without the setup headaches

• High-resolution data: See everything like some glorious mantis shrimp / eagle hybrid*

• Flexibile: Lots of sample code, available on Heroku

• Transparent pricing: Pay for metrics, not data or servers

• World-class support: We want you to be happy!
Promo code: HACKER

*Hosted Graphite’s mantis shrimp / eagle breeding program has been unsuccessful thus far

Dashboards StatsD Happiness

Grab a free trial at http://www.hostedgraphite.com

http://hostedgraphite.com

18  PROGRAMMING

The Median-of-Medians
Algorithm

In this article, we consider the prob-
lem of selecting the i-th smallest
element from an unsorted list of n

elements. Somewhat surprisingly, there
is an algorithm that solves this problem
in linear time. This surprising algorithm
is one of my favorites.

We will arrive at this algorithm
gradually by considering progressively
more sophisticated approaches to this
problem.

The naive approach to this problem
is simply to sort the list and choose the
i-th element. This approach gives us
an upper bound of O(n log n) on the
complexity of this problem’s solution.
This approach does, however, seem to
be overkill. We don’t need to know all
of the order statistics in order to solve
the problem, which is what sorting the
list gives us.

In order to prove the plausibility of a
more efficient algorithm, it is instruc-
tive to consider a special case of the
selection problem, finding the smallest
element in the list. It is immediately
clear that this problem may be solved
in linear time by iterating over the list
while keeping track of the smallest ele-
ment seen so far.

Finally, we arrive at the median-of-
medians algorithm, which solves the
general selection problem in linear
time. The idea behind the algorithm is
similar to the idea behind quicksort.

1.	Select a pivot element, and partition
the list into two sublists, the first of
which contains all elements smaller
than the pivot, and the second of
which contains all elements greater
than the pivot.

2.	Call the index of the pivot in the
partitioned list k. If k = i, then return
the pivot element.

By Austin Rochford

  19

3.	If i < k, recurse into the sublist of
elements smaller than the pivot,
looking for the i-th smallest element.

4.	If i > k, recurse into the sublist of
elements larger than the pivot, look-
ing for the (i − k − 1)-th smallest
element.

Nothing in the above outline is ter-
ribly deep; it’s just a straightforward
divide-and-conquer approach to solv-
ing the selection problem. The clever
part of the algorithm is the choice of
pivot element.

It is not hard to see that, much like
quicksort, if we naively choose the
pivot element, this algorithm has a
worst case performance of O(n2).
Continuing the parallel with quicksort,
if we choose a random pivot, we get
expected linear time performance, but
still a worst case scenario of quadratic
time.

To guarantee the linear running time
of our algorithm, however, we need
a strategy for choosing the pivot ele-
ment that guarantees that we partition
the list into two sublists of relatively
comparable size. Obviously the median
of the values in the list would be the
optimal choice, but if we could find
the median in linear time, we would
already have a solution to the general
selection problem (consider this a
small exercise).

The median-of-medians algorithm
chooses its pivot in the following clever
way.

1.	Divide the list into sublists of length
five. (Note that the last sublist may
have length less than five.)

2.	Sort each sublist and determine its
median directly.

3.	Use the median of medians algo-
rithm to recursively determine the
median of the set of all medians
from the previous step. (This step is
what gives the algorithm its name.)

4.	Use the median of the medians from
step 3 as the pivot.

The beauty of this algorithm is that
it guarantees that our pivot is not too
far from the true median. To find an
upper bound on the number of ele-
ments in the list smaller than our pivot,
first consider the half of the medians
from step 2 which are smaller than the
pivot. It is possible for all five of the
elements in the sublists corresponding
to these medians to be smaller than the
pivot, which leads to an upper bound
of such elements. Now consider
the half of the medians from step 2
which are larger than the pivot. It is
only possible for two of the elements
in the sublists corresponding to these
medians (the elements smaller than
the median) to be smaller than the
pivot, which leads to an upper bound
of such elements. In addition, the
sublist containing the pivot contributes

5

2
�n
5
�

�n
5
�

20  PROGRAMMING

exactly two elements smaller than the
pivot. It total, we may have at most

elements smaller than the pivot, or
approximately 70% of the list. The
same upper bound applies the number
of elements in the list larger than the
pivot. It is this guarantee that the parti-
tions cannot be too lopsided that leads
to linear run time.

Since step 3 of the divide-and-con-
quer strategy involves recursion on a
list of size , the run time T of this
algorithm satisfies the following recur-
rence inequality.

The final O(n) term comes from
partitioning the list. It can be shown
inductively that this inequality implies
linear run time for the median-of-
medians algorithm.

An interesting application of the
median-of-median algorithms is bal-
anced quicksort, which uses the algo-
rithm to pick a good pivot, resulting in
worst-case O(n log n) run time. n

Austin is a math PhD student turned data
scientist.

T (n) ≤ T
(⌈

n
5

⌉)
+ T

(
7n
10 + 6

)
+ O(n)

Reprinted with permission of the original author.
First appeared in hn.my/medians (austinrochford.com)

5

2

⌈n

5

⌉
+

⌈n

5

⌉
+ 2 =

7

2

⌈n

5

⌉
+ 2 ≤ 7n

10
+ 6

�n
5
�

http://hn.my/medians

  21

Now you can hack on DuckDuckGo

Create instant answer plugins for DuckDuckGo

duckduckhack.com

Now you can hack on DuckDuckGo

Create instant answer plugins for DuckDuckGo

DuckDuckHackDuckDuckHack

package DDG::Goodie::Unidecode;# ABSTRACT: return an ASCII version of the search query use
DDG::Goodie; use Text::Unidecode; zci is_cached => 1; zci answer_type => "convert to ascii"; triggers
startend => "unidecode"; handle remainder => sub { my $u = unidecode $_; # unidecode output some-
times contains trailing spaces $u =~ s/\s+$//; return $u; }; 1; package DDG::Goodie::Rot13; #
ABSTRACT: Rotate chars by 13 letters use DDG::Goodie; triggers start => 'rot13'; handle remainder =>
sub { if ($_) { $_ =~ tr[a-zA-Z][n-za-mN-ZA-M]; return "ROT13: $_"; }; return }; zci is_cached => 1; 1;
package DDG::Goodie::Base64; use DDG::Goodie; use MIME::Base64; use Encode; triggers startend =>
"base64"; zci answer_type => "base64_conversion"; zci is_cached => 1; handle remainder => sub {
return unless $_ =~ /^(encode|decode|)\s*(.*)$/i; my $command = $1 || ''; my $str = $2 || ''; if ($str) { if (
$command && $command eq 'decode') { $str = decode_base64($str); $str = decode("UTF-8", $str);
return "Base64 decoded: $str"; } else { $str = encode_base64(encode("UTF-8", $str)); return "Base64
encoded: $str"; } } return; }; 1; package DDG::Goodie::Chars; # ABSTRACT: Give the number of charac-
ters (length) of the query. use DDG::Goodie; triggers start => 'chars'; zci is_cached => 1; zci
answer_type => "chars"; handle remainder => sub { return "Chars: " .length $_ if $_; return; }; 1; pack-
age DDG::Goodie::ABC; use DDG::Goodie; triggers any => "or"; zci answer_type => "rand"; handle
query_parts => sub { my @choices; my @collected_parts; while (my $part = shift) { if (lc($part) eq 'or') {
return unless @collected_parts; push @choices, join(' ', @collected_parts); my $length =
@collected_parts; return if $length > 1; @collected_parts = (); } elsif ($part) { push @collected_parts,
$part; } } push @choices, join(' ', @collected_parts) if @choices && @collected_parts; return if
scalar(@choices) <= 1; my $choice = int(rand(@choices)); if (my @duck = grep { $_ eq 'duckduckgo' || $_
eq 'duck' || $_ eq 'ddg' } @choices) { return $duck[0]." (not random)", answer_type => 'egg'; } return
$choices[$choice]." (random)"; return; }; 1; package DDG::Goodie::PublicDNS; use DDG::Goodie; use

sub { if ($_) { $_ =~ tr[a-zA-Z][n-za-mN-ZA-M]; return "ROT13: $_"; }; return }; zci is_cached => 1; 1;
package DDG::Goodie::Base64; use DDG::Goodie; use MIME::Base64; use Encode; triggers startend =>
"base64"; zci answer_type => "base64_conversion"; zci is_cached => 1; handle remainder => sub {
return unless $_ =~ /^(encode|decode|)\s*(.*)$/i; my $command = $1 || ''; my $str = $2 || ''; if ($str) { if (
$command && $command eq 'decode') { $str = decode_base64($str); $str = decode("UTF-8", $str);
return "Base64 decoded: $str"; } else { $str = encode_base64(encode("UTF-8", $str)); return "Base64
encoded: $str"; } } return; }; 1; package DDG::Goodie::Chars; # ABSTRACT: Give the number of charac
ters (length) of the query. use DDG::Goodie; triggers start => 'chars'; zci is_cached => 1; zci
answer_type => "chars"; handle remainder => sub { return "Chars: " .length $_ if $_; return; }; 1; pack
age DDG::Goodie::ABC; use DDG::Goodie; triggers any => "or"; zci answer_type => "rand"; handle
query_parts => sub { my @choices; my @collected_parts; while (my $part = shift) { if (lc($part) eq 'or') {
return unless @collected_parts; push @choices, join(' ', @collected_parts); my $length =
@collected_parts; return if $length > 1; @collected_parts = (); } elsif ($part) { push @collected_parts,
$part; } } push @choices, join(' ', @collected_parts) if @choices && @collected_parts; return if
scalar(@choices) <= 1; my $choice = int(rand(@choices)); if (my @duck = grep { $_ eq 'duckduckgo' || $_

http://duckduckhack.com

22  PROGRAMMING

By Gabriel Gonzalez

From Zero To Cooperative
Threads In 33 Lines Of

Haskell Code

Haskell differentiates itself from
most functional languages by
having deep cultural roots

in mathematics and computer science,
which gives the misleading impression
that Haskell is poorly suited for solv-
ing practical problems. However, the
more you learn Haskell, the more you
appreciate that theory is often the most
practical solution to many common
programming problems. This post will
underscore this point by mixing off-
the-shelf theoretical building blocks
to create a pure user-land threading
system.

The Type
Haskell is a types-first language, so we
will begin by choosing an appropri-
ate type to represent threads. First we
must state in plain English what we
want threads to do:

■■ Threads must extend existing
sequences of instructions

■■ Threads must permit a set of opera-
tions: forking, yielding control, and
terminating.

■■ Threads should permit multiple
types of schedulers

Now we translate those concepts into
Haskell:

■■ When you hear “multiple interpret-
ers/schedulers/backends” you should
think “free” (as in “free object”)

■■ When you hear “sequence of instruc-
tions” you should think: “monad”

■■ When you qualify that with
“extend” you should think: “monad
transformer”

Combine those words together and
you get the correct mathematical solu-
tion: a “free monad transformer.”

  23

Syntax trees
“Free monad transformer” is a fancy
mathematical name for an abstract
syntax tree where sequencing plays an
important role. We provide it with an
instruction set and it builds us a syntax
tree from those instructions.

We said we want our thread to be
able to fork, yield, or terminate, so
let’s make a data type that forks, yields,
or terminates:

{-# LANGUAGE DeriveFunctor #-}

data ThreadF next = Fork next
next
 | Yield next
 | Done
 deriving
(Functor)

ThreadF represents our instruction
set. We want to add three new instruc-
tions, so ThreadF has three construc-
tors, one for each instruction: Fork,
Yield, and Done.

Our ThreadF type represents one
node in our syntax tree. The next fields
of the constructors represent where the
children nodes should go. Fork cre-
ates two execution paths, so it has two
children. Done terminates the current
execution path, so it has zero children.
Yield neither branches nor termi-
nates, so it has one child. The deriv-
ing (Functor) part just tells the free
monad transformer that the next fields
are where the children should go.

Now the free monad transformer,
FreeT, can build a syntax tree from our
instruction set. We will call this tree a
Thread:

import Control.Monad.Trans.Free
-- from the `free` package

type Thread = FreeT ThreadF

An experienced Haskell programmer
would read the above code as saying
"A Thread is a syntax tree built from
ThreadF instructions."

Instructions
Now we need primitive instructions.
The free package provides the liftF
operation which converts a single
instruction into a syntax tree one node
deep:

yield :: (Monad m) => Thread m ()
yield = liftF (Yield ())

done :: (Monad m) => Thread m r
done = liftF Done

cFork :: (Monad m) => Thread m
Bool
cFork = liftF (Fork False True)

You don’t need to completely under-
stand how that works, except to notice
that the return value of each command
corresponds to what we store in the
child fields of the node:

24  PROGRAMMING

■■ The yield command stores () as its
child, so its return value is ()

■■ The done command has no children,
so the compiler deduces that it has
a polymorphic return value (i.e. r),
meaning that it never finishes

■■ The cFork command stores boolean
values as children, so it returns a Bool

cFork gets its name because it
behaves like the fork function from
C, meaning that the Bool return value
tells us which branch we are on after
the fork. If we receive False then we
are on the left branch and if we receive
True then we are on the right branch.

We can combine cFork and done
to re-implement a more traditional
Haskell-style fork, using the convention
that the left branch is the “parent” and
the right branch is the “child”:

import Control.Monad

fork :: (Monad m) => Thread m a ->
Thread m ()
fork thread = do
 child <- cFork
 when child $ do
 thread
 done

The above code calls cFork and then
says “if I am the child, run the forked
action and then stop; otherwise pro-
ceed as normal.”

Free monads
Notice that something unusual hap-
pened in the last code snippet. We
assembled primitive Thread instruc-
tions like cFork and done using do
notation and we got a new Thread
back. This is because Haskell lets us use
do notation to assemble any type that
implements the Monad interface and
our free monad transformer type auto-
matically deduces the correct Monad
instance for Thread. Convenient!

Actually, our free monad transformer
is not being super smart at all. When
we assemble free monad transformers
using do notation, all it does is connect
these primitive one-node-deep syntax
trees (i.e. the instructions) into a larger
syntax tree. When we sequence two
commands like:

 do yield
 done

... this desugars to just storing the
second command (i.e. done) as a child
of the first command (i.e. yield).

  25

The scheduler
Now we’re going to write our own thread scheduler. This
will be a naive round-robin scheduler:

import Data.Sequence -- Queue with O(1) head and 	
 -- tail operations

roundRobin :: (Monad m) => Thread m a -> m ()
roundRobin t = go (singleton t)
-- Begin with a single thread
 where
 go ts = case (viewl ts) of
 -- The queue is empty: we're done!
 EmptyL -> return ()

 -- The queue is non-empty:
 -- Process the first thread
 t :< ts' -> do
 x <- runFreeT t -- Run this 			
			 -- thread's effects
 case x of
 -- New threads go to the back of
		 -- the queue
 Free (Fork t1 t2) -> go (t1 <| 		
				 (ts' |> t2))

 -- Yielding threads go to the
 -- back of the queue
 Free (Yield t') -> go (ts' |> 	
 t')

 -- Thread done: Remove the 	 	
 -- thread from the queue
 Free Done -> go ts'
 Pure _ -> go ts'

... and we’re done! No really, that’s it! That’s the whole
threading implementation.

26  PROGRAMMING

User-land threads
Let’s try out our brave new threading
system. We’ll start off simple:

mainThread :: Thread IO ()
mainThread = do
 lift $ putStrLn "Forking
thread #1"
 fork thread1
 lift $ putStrLn "Forking
thread #1"
 fork thread2
thread1 :: Thread IO ()
thread1 = forM_ [1..10] $ \i -> do
 lift $ print i
 yield

thread2 :: Thread IO ()
thread2 = replicateM_ 3 $ do
 lift $ putStrLn "Hello"
 yield

Each of these threads has type
Thread IO (). Thread is a “monad
transformer,” meaning that it extends
an existing monad with additional
functionality. In this case, we are
extending the IO monad with our
user-land threads, which means that
any time we need to call IO actions we
must use lift to distinguish IO actions
from Thread actions.

When we call roundRobin we
unwrap the Thread monad transformer,
and our threaded program collapses to
a linear sequence of instructions in IO:

>>> roundRobin mainThread :: IO ()
Forking thread #1
Forking thread #1
1
Hello
2
Hello
3
Hello
4
5
6
7
8
9
10

Moreover, this threading system is
pure! We can extend monads other
than IO, yet still thread effects. For
example, we can build a threaded
Writer computation, where Writer is
one of Haskell’s many pure monads:

import Control.Monad.Trans.Writer

logger :: Thread (Writer [String])
()
logger = do
 fork helper
 lift $ tell ["Abort"]
 yield
 lift $ tell ["Fail"]

  27

helper :: Thread (Writer [String])
()
helper = do
 lift $ tell ["Retry"]
 yield
 lift $ tell ["!"]

This time roundRobin produces
a pure Writer action when we run
logger:

roundRobin logger :: Writer
[String] ()

... and we can extract the results of
that logging action purely, too:

execWriter (roundRobin logger) ::
[String]

Notice how the type evaluates to a
pure value, a list of Strings in this case.
Yet, we still get real threading of logged
values:

 >>> execWriter (roundRobin
logger)
["Abort","Retry","Fail","!"]

Conclusion
You might think I’m cheating by off-
loading the real work onto the free
library, but all the functionality I used
from that library boils down to 12
lines of very generic and reusable code
(see the Appendix). This is a recur-
ring theme in Haskell: when we stick
to the theory we get reusable, elegant,
and powerful solutions in a shockingly
small amount of code.

The inspiration for this article was
a computer science paper written by
Peng Li and Steve Zdancewic titled A
Language-based Approach to Unify-
ing Events and Threads [hn.my/unify].
The main difference is that I converted
their continuation-based approach to a
simpler free monad approach. n

Gabriel Gonzalez builds search tools for biol-
ogy and designs stream computing and ana-
lytics software. He currently works at UCSF
where he is completing his PhD in biochem-
istry and biophysics. He blogs about his work
on haskellforall.com and you can reach him at
Gabriel439@gmail.com

Reprinted with permission of the original author.
First appeared in hn.my/cooperative (haskellforall.com)

http://hn.my/unify
http://haskellforall.com
http://hn.my/cooperative

28  PROGRAMMING

By Joseph Wilk

Building Clojure Services
At Scale

At SoundCloud I’ve been
experimenting over the last
year with how we build the

services that power a number of heav-
ily loaded areas across our site. All
these services have been built in Clo-
jure with bits of Java tacked on the
sides. Here are some of my personal
thoughts on how to build Clojure
services:

Netflix or Twitter
 At some point when you require a
sufficient level of scaling you turn to
the open source work of Twitter with
Finagle [hn.my/finagle] or Netflix with
Hystrix [hn.my/hystrix]/RxJava [hn.
my/rxjava]. Netflix libs are written
in Java while Twitter’s are written in
Scala. Both are easy to use from any
JVM-based language, but the Finagle
route will bring in an extra dependency
on Scala. I’ve heard little from people

using interop between Clojure & Scala
and that extra Scala dependency makes
me nervous. Further, I like the simplic-
ity of Netflix’s libs, and they have been
putting a lot of effort into pushing sup-
port for many JVM-based languages.

Hence with Clojure, Netflix projects
are my preference. (I should add we do
use Finagle with Scala at SoundCloud
as well).

Failure, Monitoring & Composition
Complexity
In a service reliant on other services,
databases, caches any other exter-
nal dependencies, it’s a guarantee at
some-point some of those will fail.
When working with critical services we
want to gracefully provide a degraded
service.

http://hn.my/finagle
http://hn.my/hystrix
http://hn.my/rxjava
http://hn.my/rxjava

  29

While we can think about degrading
gracefully in the case of failure, ulti-
mately we want to fix what’s broken
as soon as possible. An eye into the
runtime system allows us to moni-
tor exactly what’s going on and take
appropriate action.

Your service needs to call other
services. Dependent on those service
results, you might need to call other
services which in turn might require
calls to other services. Composing ser-
vice calls is hard to get right without a
tangle of complex code.

Fault Tolerance
How should we build fault tolerance
into our Clojure services?

Single thread pool
Consider you have this line within a
service response:

{:body @(future (client/get
"http://soundcloud.com/blah/wah"))
:status 200}

Now http://soundcloud.com/
blah/wah goes down and those client
requests start getting blocked on the
request. In Clojure all future calls
acquire a thread from the same thread
pool. In our example the service is
blocked up, is pilling new requests onto
the blocked pool and we are in trouble.

My first solution to this problem was
to introduce circuit breakers[hn.my/
circuitbreaker]. I also stop using @ to
dereference futures and used deref
[hn.my/deref]which supports defaults
and timeouts.

(defncircuitbreaker :blah-http
{:timeout 30 :threshold 2})

(def future-timeout 1000)
(def timeout-value nil)

(defn http-get [url]
 (with-circuit-breaker :blah-http
{
 :connected (fn [] (client/get
"http://soundcloud.com/blah/wah"))
 :tripped (fn [] nil)}))

{:body (http-get http://www.sound-
cloud.com/blah/wah) :status 200}

Problem solved. Now even though
the thread pool may become blocked
we back off the following requests
and avoid pilling more work onto the
blocked thread pool.

This worked pretty well, but then
we decided we would go even further
in gracefully degrading. Why don’t we
serve from a cache on failure? Slightly
stale data is better than none.

http://hn.my/circuitbreaker
http://hn.my/circuitbreaker
http://hn.my/deref

30  PROGRAMMING

(defn http-get [url]
 (with-circuit-breaker :blah-http
{
 :connected (fn [] (client/get
"http://soundcloud.com/blah/wah"))
 :tripped (fn [] (memcache/get
client url))}))

Now consider (client/get
"http://soundcloud.com/blah/
wah") starts failing, the thread pool
gets blocked up, the circuit trigger flips
and (memcache/get client url) is
now fighting to get threads from the
blocked thread pool.

Pants.

Scheduling over thread pools: Hystrix
Hystrix [hn.my/hystrix] is a Netf-
lix library, which I think of as circuit
breakers on steroids.

 Hystrix is a latency and fault toler-
ance library designed to isolate points
of access to remote systems, services
and 3rd party libraries, stop cascading
failure and enable resilience in com-
plex distributed systems where failure
is inevitable.

Dave Ray [darevay.com] has been
doing lots of excellent work on produc-
ing Clojure bindings for Hystrix.

Hystrix gives me 2 big wins:

1. Separation of thread pools
Hystrix creates a separate thread

pool for each Clojure namespace. If
one thread pool becomes blocked due
to a failure, then a circuit breaker can
be triggered with a fallback that uses a
different thread pool.

This however does come with a cost:

1.	We have a performance hit due
to moving to a scheduling-based
method for executing Hystrix
commands.

2.	We cannot use Clojure’s concur-
rency primitives.

Here is an example of our service
rewritten with Hystrix:

(ns example
 (:require [[com.netflix.hystrix.
core :as hystrix]]))

(hystrix/defcommand http-get
 {:hystrix/fallback-fn (fn [url]
(memcache-get url)}
 [url]
 (client/get url))

(hystrix/defcommand memcache-get
 {:hystrix/fallback-fn (con-
stantly nil)}
 [url]
 (memcache/get client key))

(defn http-get [url]
 {:body (http/get "http://sound-
cloud.com/blah/wah") :status 200})

http://darevay.com

  31

Beautiful. Just adding the defcommand brings us fault
tolerance with no other changes to the shape of our code.

See the Hystrix Clojure adapter for all the possible
configurations: hn.my/hystrixclj

2. Monitoring
Hystrix supports exposing metrics on all circuit breakers
within a process. It exposes these calls through an event
stream.

How you expose that Hystrix event stream depends
slightly on which web server you are using with your
Clojure app.

Netty and Hystrix Event Streams (without servlets)
[hn.my/hystrixeventstreamclj]

(:require [hystrix-event-stream-clj.core as hystrix-event])
(defroutes app (GET "/hystrix.stream" (hystrix-event/stream))

Jetty and Hystrix Event Streams (with servlets)
If they are using Jetty you will need to change your app
to add your main web app as a servlet. Then we can also
add the Hystrix event stream servlet.

(ns sc-clj-kit.hystrix.jetty
 (:import [com.netflix.hystrix.contrib.metrics.eventstream Hystrix-
MetricsStreamServlet])
 (:import [org.eclipse.jetty.server Server])
 (:import [org.eclipse.jetty.servlet ServletContextHandler])
 (:import [org.eclipse.jetty.servlet ServletHolder])
 (:import [org.eclipse.jetty.server.bio SocketConnector])
 (:import [org.eclipse.jetty.server.ssl SslSocketConnector])

 (:import (org.eclipse.jetty.server Server Request)
 (org.eclipse.jetty.server.handler AbstractHandler)
 (org.eclipse.jetty.server.nio SelectChannelConnector)
 (org.eclipse.jetty.server.ssl SslSelectChannelConnector)
 (org.eclipse.jetty.util.thread QueuedThreadPool)
 (org.eclipse.jetty.util.ssl SslContextFactory)
 (javax.servlet.http HttpServletRequest HttpServletResponse))

http://hn.my/hystrixclj
http://hn.my/hystrixeventstreamclj

32  PROGRAMMING

 (:require
 [compojure.core :refer :all]
 [ring.adapter.jetty :as jetty]
 [ring.util.servlet :as servlet]))

(defn run-jetty-with-hystrix-stream [app options]
 (let [^Server server (#'jetty/create-server (dissoc options :con-
figurator))
 ^QueuedThreadPool pool (QueuedThreadPool. ^Integer (options
:max-threads 50))]
 (when (:daemon? options false) (.setDaemon pool true))
 (doto server (.setThreadPool pool))
 (when-let [configurator (:configurator options)]
 (configurator server))
 (let [hystrix-holder (ServletHolder. HystrixMetricsStreamServ-
let)
 app-holder (ServletHolder. (servlet/servlet app))
 context (ServletContextHandler. server "/" ServletContex-
tHandler/SESSIONS)]
 (.addServlet context hystrix-holder "/hystrix.stream")
 (.addServlet context app-holder "/"))
 (.start server)
 (when (:join? options true) (.join server))
 server))

(defroutes app (GET "/hello" {:status 200 :body "Hello"})

(run-jetty-with-hystrix app {:port http-port :join? false})

Aggregation and discovery
While you can monitor a single process using Hystrix in
our example, we have many processes serving an end-
point. To aggregate all these Hystrix metric services we
use Turbine. [hn.my/turbine]

Physical endpoints for a service at SoundCloud are
discovered using DNS lookup. We configured Turbine
to use this method to auto discover which machines are
serving an endpoint.

http://hn.my/turbine

  33

(ns sc-turbine.discovery
 (:import [org.xbill.DNS Type]
 [com.netflix.turbine.discovery InstanceDiscovery Instance])
 (:require [clj-dns.core :refer :all]))

(gen-class
 :name ScInstanceDiscovery
 :implements [com.netflix.turbine.discovery.InstanceDiscovery])

(defn -getInstanceList [this]
 (map (fn [instance]
 (Instance. (str (:host instance) ":" (:port instance))
"example-prod" true))
 (map (fn [answer] {:host (-> answer .getTarget str) :port
(.getPort answer)})
 (:answers (dns-lookup "" Type/SRV)))))

And the config.properties:

InstanceDiscovery.impl=ScInstanceDiscovery
turbine.aggregator.clusterConfig=example-prod
turbine.instanceUrlSuffix=/hystrix.stream

Putting this all together our monitoring
looks like this:

Pretty graphs: Hystrix Dashboard
Finally we run the Hystrix Dashboard
and watch our circuit breakers live.

34  PROGRAMMING

Complexity & Composition
Working with many services, composition of service calls
becomes hard to think and write about. Callbacks try to
solve this but nested callbacks leave us with a mess.

RxJava [hn.my/rxjava] tries to solve this using the
Reactive Functional model. While RxJava provides
lots of features, I see it primarily as a way of express-
ing concurrent actions as a directed graph which pro-
vides a single callback on success or failure. The graph is
expressed in terms or maps/reduces/filters/etc. — things
we are familiar with in the functional world.

To separate the request thread from the response
thread we use RxJava with Netty [netty.io] and Aleph.
[hn.my/aleph]

Here is a very simple example firing 2 concurrent
requests and then joining the results into a single map
response:

;;Hystrix integrates with RxJava and can return Observables for use
with Rx.
(defn- find-user-observable [id] (hystrix/observe #'find-user id))

(defn- meta-data [user-urn]
 (let [user-observable (-> (find-user-observable id) (.map (λ [user]
...)))
 meta-observable (-> (find-user-meta-observable id) (.map (λ
[subscription] ...))))
 (-> (Observable/zip user-observable
 meta-observable
 (λ [& maps] {:user (apply merge maps)}))))

The function meta-data returns an Observerable
which we subscribe to and using Aleph return the result-
ing JSON to a channel.

http://netty.io
http://hn.my/aleph

  35

(defn- subscribe-request [channel request]
 (let [id (get-in request [:route-params :id])]
 (-> (meta-data id)
 (.subscribe
 #(enqueue channel {:status 200 :body %}))
 #(logging/exception %))))))

(defroutes app
 (GET "/users/:id" [id] (wrap-aleph-handler subscribe-request)))

Reprinted with permission of the original author.
First appeared in hn.my/clojureservice (josephwilk.net)

The shape of the RxJava Clojure bindings is still under
development.

That single thread pool again…
With RxJava we are also in a situation where we cannot
use Clojure’s future. In order for RxJava to block opti-
mally we don’t want to use a single thread pool. Hence
we use Hystrix as our means of providing concurrency.

Clojure services at scale
I’m very happy with the shape of these services running at
SoundCloud. In production they are performing very well
under heavy load with useful near real-time monitoring.
In part thanks to Netflix’s hard work there is no reason
you cannot write elegant Clojure services at scale. n

Joseph Wilk is an engineer at SoundCloud helping shape the future
of sound.

http://hn.my/clojureservice

36  PROGRAMMING

By Troy Hunt

Everything You Wanted To
Know About SQL Injection

Put on your black hats folks, it’s
time to learn some genuinely
interesting things about SQL

injection. Now remember — y’all play
nice with the bits and pieces you’re
about to read, ok?

SQL injection is a particularly inter-
esting risk for a few different reasons:

1.	 It’s getting increasingly harder to
write vulnerable code due to frame-
works that automatically parameter-
ise inputs — yet we still write bad
code.

2.	 You’re not necessarily in the clear
just because you use stored pro-
cedures or a shiny ORM (you’re
aware that SQLi can still get
through these, right?) — we still
build vulnerable apps around these
mitigations.

3.	 It’s easily detected remotely by
automated tools which can be

orchestrated to crawl the web
searching for vulnerable sites — yet
we’re still putting them out there.

It remains number one on the
OWASP Top 10 for a very good reason
— it’s common, it’s very easy to exploit
and the impact of doing so is severe.
One little injection risk in one little
feature is often all it takes to disclose
every piece of data in the whole system
— and I’m going to show you how to
do this yourself using a raft of different
techniques.

I demonstrated how to protect
against SQLi a couple of years back
when I wrote about the OWASP Top
10 for .NET developers so I’m not
going to focus on mitigation here, this
is all about exploiting. But enough
of the boring defending stuff, let’s go
break things!

  37

All your datas are belong to us (if we
can break into the query context)
Let’s do a quick recap on what it is
that makes SQLi possible. In a nutshell,
it’s about breaking out of the data
context and entering the query con-
text. Let me visualise this for you; say
you have a URL that includes a query
string parameter such as “id=1” and
that parameter makes its way down
into a SQL query such as this:

The entire URL probably looked
something like this:

 Pretty basic stuff, but where it starts
to get interesting is when you can
manipulate the data in the URL such
that it changes the value passed to the
query. Ok, changing “1” to “2” will give
you a different widget and that’s to be
expected, but what if you did this:

http://widgetshop.com/widget/?id=1
or 1=1

That might then persist through to
the database server like so:

SELECT * FROM Widget WHERE ID = 1
OR 1=1

What this tells us is that the data is
not being sanitised — in the examples
above the ID should clearly be an
integer yet the value “1 OR 1=1” has

been accepted. More importantly,
however, because this data has simply
been appended to the query, it has
been able to change the function of the
statement. Rather than just selecting a
single record, this query will now select
all records as the “1=1” statement will
always be true. Alternatively, we could
force the page to return no records by
changing “or 1=1” to “and 1=2” as it
will always be false, hence no results.
Between these two alternatives we can
easily assess if the app is at risk of an
injection attack.

This is the essence of SQL injection
— manipulating query execution with
untrusted data — and it happens when
developers do things like this:

query = "SELECT * FROM Widget
WHERE ID = "+ Request.
QueryString["ID"];
// Execute the query...

Of course what they should be doing
is parameterising the untrusted data,
but I’m not going to go into that here.
Instead, I want to talk more about
exploiting SQLi.

Ok, so that background covers how
to demonstrate that a risk is present,
but what can you now do with it? Let’s
start exploring some common injection
patterns.

38  PROGRAMMING

Joining the dots: Union query-based
injection
Let’s take an example where we expect
a set of records to be returned to the
page. In this case, it’s a list of widgets of
“TypeId” 1 on a URL like this:

http://widgetshop.com/
Widgets/?TypeId=1

The result on the page then looks
like so:

Shiny
Round
Fuzzy

 We’d expect that query to look
something like this once it hits the
database:

SELECT Name FROM Widget WHERE
TypeId = 1

But if we can apply what I’ve out-
lined above, namely that we might be
able to just append SQL to the data in
the query string, we might be able to
do something like this:

http://widgetshop.com/
Widgets/?TypeId=1 union all
select name from sysobjects where
xtype='u'

Which would then create a SQL
query like so:

SELECT Name FROM Widget WHERE
TypeId = 1 union all select name
from sysobjects where xtype='u'

Now keep in mind that the sysob-
jects table is the one that lists all the
objects in the database and in this case
we’re filtering that list by xtype “u”
or in other words, user tables. When
an injection risk is present that would
mean the following output:

Shiny
Round
Fuzzy
Widget
User

This is what’s referred to as a union
query-based injection attack as we’ve
simply appended an additional result
set to the original and it has made
its way out directly into the HTML
output — easy! Now that we know
there’s a table called “User” we could
do something like this:

http://widgetshop.com/
Widgets/?TypeId=1 union all select
password from [user]

SQL Server gets a bit uppity if the
table name of “user” is not enclosed
in square brackets given the word
has other meanings in the DB sense.
Regardless, here’s what that gives us:

Shiny
Round
Fuzzy
P@ssw0rd

  39

 Of course the UNION ALL state-
ment only works when the first
SELECT statement has the same
number of columns as the second.
That’s easily discoverable though;
you just try going with a bit of “union
all select ‘a’” then if that fails “union
all select ‘a’, ‘b’” and so on. Basically
you’re just guessing the number of
columns until things work.

We could go on and on down this
path and pull back all sorts of other
data, but let’s move on to the next
attack. There are times when a union-
based attack isn’t going to play ball
either due to sanitisation of the input or
how the data is appended to the query
or even how the result set is displayed
to the page. To get around that we’re
going to need to get a bit more creative.

Making the app squeal: Error-based
injection
Let’s try another pattern — what if we
did this:

http://widgetshop.com/widget/?id=1
or x=1

Hang on, that’s not valid SQL syntax.
The “x=1” piece won’t compute, at least
not unless there’s a column called “x,”
so won’t it just throw an exception?
Precisely — in fact, it means you’ll see
an exception like this:

 This is an ASP.NET error and other
frameworks have similar paradigms, but
the important thing is that the error
message is disclosing information about
the internal implementation, namely
that there is no column called “x.” Why
is this important? It’s fundamentally
important because once you establish
that an app is leaking SQL exceptions,
you can do things like this:

http://widgetshop.com/
widget/?id=convert(int,(select
top 1 name from sysobjects where
id=(select top 1 id from (select
top 1 id from sysobjects where
xtype='u' order by id) sq order by
id DESC)))

That’s a lot to absorb and I’ll come
back to it in more detail. The impor-
tant thing is though that it will yield
this result in the browser:

And there we have it. We’ve now
discovered that there is a table in the
database called “Widget.” You’ll often
see this referred to as “Error-based SQL
injection” due to the dependency on
internal errors. Let’s deconstruct the
query from the URL:

40  PROGRAMMING

convert(int, (
 select top 1 name from sysob-
jects where id=(
 select top 1 id from (
 select top 1 id from sys-
objects where xtype='u' order by
id
) sq order by id DESC
)
)
)

Working from the deepest nesting
up, get the first record ID from the
sysobjects table after ordering by ID.
From that collection, get the last ID
(this is why it orders in descending)
and pass that into the top select state-
ment. That top statement is then only
going to take the table name and try
to convert it to an integer. The conver-
sion to integer will almost certainly fail
(please people, don’t name your tables
“1” or “2” or any other integer for that
matter!) and that exception then dis-
closes the table name in the UI.

Why three select statements?
Because it means we can go into that
innermost one and change “top 1” to
“top 2” which then gives us this result:

 Now we know that there’s a table
called “User” in the database. Using
this approach we can discover all the

column names of each table (just
apply the same logic to the syscolumns
table). We can then extend that logic
even further to select data from table
columns:

 In the screen above, I’d already
been able to discover that there was a
table called “User” and a column called
“Password.” All I needed to do was
select out of that table (and again, you
can enumerate through all records one
by one with nested select statements),
and cause an exception by attempting
to convert the string to an int (you can
always append an alpha char to the
data if it really is an int then attempt to
convert the whole lot to an int which
will cause an exception).

But there’s a problem with all this
— it was only possible because the app
was a bit naughty and exposed internal
error messages to the general public. In
fact the app quite literally told us the
names of the tables and columns and
then disclosed the data when we asked
the right questions, but what happens
when it doesn’t? I mean what happens
when the app is correctly configured
so as not to leak the details of internal
exceptions?

This is where we get into “blind”
SQL injection which is the genuinely
interesting stuff.

  41

Hacking blind
In the examples above (and indeed in
many precedents of successful injection
attacks), the attacks are dependent on
the vulnerable app explicitly disclosing
internal details either by joining tables
and returning the data to the UI or by
raising exceptions that bubble up to
the browser. Leaking of internal imple-
mentations is always a bad thing and as
you saw earlier, security misconfigura-
tions such as this can be leveraged to
disclose more than just the application
structure; you can actually pull data
out through this channel as well.

A correctly configured app should
return a message more akin to this one
here when an unhandled exception
occurs:

 This is the default error page from a
brand new ASP.NET app with custom
errors configured, but again, similar
paradigms exist in other technology
stacks. Now this page is exactly the
same as the earlier ones that showed
the internal SQL exceptions but rather
than letting them bubble up to the UI
they’re being hidden and a friendly
error message shown instead. Assuming
we also couldn’t exploit a union-based
attack, the SQLi risk is entirely gone,
right? Not quite…

Blind SQLi relies on us getting a lot
more implicit or, in other words, draw-
ing our conclusions based on other
observations we can make about the
behaviour of the app that aren’t quite
as direct as telling us table names or
showing column data directly in the
browser by way of unions or unhan-
dled exceptions. Of course this now
begs the question — how can we make
the app behave in an observable fash-
ion such that it discloses the informa-
tion we had earlier without explicitly
telling us?

We’re going to look at two
approaches here: boolean-based and
time-based.

Ask, and you shall be told: Boolean-
based injection
This all comes down to asking the right
questions of the app. Earlier on, we
could explicitly ask questions such as
“What tables do you have” or “What
columns do you have in each table” and
the database would explicitly tell us.
Now we need to ask a little bit differ-
ently, for example like this:

http://widgetshop.com/widget/?id=1
and 1=2

Clearly this equivalency test can
never be true — one will never be
equal to two. How an app at risk of
injection responds to this request is the
cornerstone of blind SQLi and it can
happen in one of two different ways.

42  PROGRAMMING

Firstly, it might just throw an excep-
tion if no record is returned. Often
developers will assume that a record
referred to in a query string exists
because it’s usually the app itself that
has provided the link based on pull-
ing it out of the database on another
page. When there’s no record returned,
things break. Secondly, the app might
not throw an exception but then it also
won’t display a record either because
the equivalency is false. Either way,
the app is implicitly telling us that
no records were returned from the
database.

Now let’s try this:

1 and
(
 select top 1 substring(name, 1,
1) from sysobjects where id=(
 select top 1 id from (
 select top 1 id from sysob-
jects where xtype='u' order by id
) sq order by id desc
)
) = 'a'

Keeping in mind that this entire
block replaces just the query string
value, so instead of “?id=1” it becomes
“?id=1 and…” It’s actually only a
minor variation on the earlier requests
intended to retrieve table names. In
fact, the main difference is that rather
than attempting to cause an exception
by converting a string to an integer, it’s
now an equivalency test to see if the
first character of the table name is an

“a” (we’re assuming a case-insensitive
collation here). If this request gives
us the same result as “?id=1” then it
confirms that the first table in sysob-
jects does indeed begin with an “a” as
the equivalency has held true. If it gives
us one of the earlier mentioned two
scenarios (an error or shows no record),
then we know that the table doesn’t
begin with an “a” as no record has been
returned.

Now all of that only gives us the
first character of the table name from
sysobjects. When you want the second
character then the substring statement
needs to progress to the next position:

select top 1 substring(name, 2, 1)
from sysobjects where id=(

You can see it now starts at position
2 rather than position 1. Of course this
is laborious; as well as enumerating
through all the tables in sysobjects you
end up enumerating through all the
possible letters of the alphabet until
you get a hit then you have to repeat
the process for each character of the
table name. There is, however, a little
shortcut that looks like this:

  43

1 and
(
 select top 1
ascii(lower(substring(name, 1,
1))) from sysobjects where id=(
 select top 1 id from (
 select top 1 id from sysob-
jects where xtype='u' order by id
) sq order by id desc
)
) > 109

There’s a subtle but important dif-
ference here in that what’s it doing is
rather than checking for an individual
character match, it’s looking for where
that character falls in the ASCII table.
Actually, it’s first lowercasing the table
name to ensure we’re only dealing with
26 characters (assuming alpha-only
naming, of course), then it’s taking the
ASCII value of that character. In the
example above, it then checks to see if
the character is further down the table
than the letter “m” (ASCII 109) and
then of course the same potential out-
comes as described earlier apply (either
a record comes back or it doesn’t).
The main difference is that rather
than potentially making 26 attempts
at guessing the character (and conse-
quently making 26 HTTP requests), it’s
now going to exhaust all possibilities
in only 5 — you just keep halving the
possible ASCII character range until
there’s only one possibility remaining.

For example, if greater than 109
then it must be between “n” and “z” so
you split that (roughly) in half and go
greater than 115. If that’s false then
it must be between “n” and “s” so you
split that bang in half and go greater
than 112. That’s true so there are only
three chars left which you can narrow
down to one in a max of two guesses.
Bottom line is that the max of 26
guesses (call it average of 13) is now
done in only 5 as you simply just keep
halving the result set.

By constructing the right requests
the app will still tell you everything
it previously did in that very explicit,
rich error message way. It’s just that it’s
now being a little coy and you have to
coax the answers out of it. This is fre-
quently referred to as “Boolean-based”
SQL injection and it works well where
the previously demonstrated “Union-
based” and “Error-based” approaches
won’t fly. But it’s also not fool proof;
let’s take a look at one more approach
and this time we’re going to need to be
a little more patient.

44  PROGRAMMING

Disclosure through patience: Time-
based blind injection
Everything to date has worked on the
presumption that the app will disclose
information via the HTML output. In
the earlier examples the union-based
and error-based approaches gave us
data in the browser that explicitly told
us object names and disclosed internal
data. In the blind boolean-based exam-
ples we were implicitly told the same
information by virtue of the HTML
response being different based on a
true versus a false equivalency test. But
what happens when this information
can’t be leaked via the HTML either
explicitly or implicitly?

Let’s imagine another attack vector
using this URL:

http://widgetshop.com/
Widgets/?OrderBy=Name

In this case it’s pretty fair to assume
that the query will translate through to
something like this:

SELECT * FROM Widget ORDER BY Name

Clearly we can’t just start adding
conditions directly into the ORDER
BY clause (although there are other
angles from which you could mount
a boolean-based attack), so we need
to try another approach. A common
technique with SQLi is to terminate
a statement and then append a subse-
quent one, for example like this:

http://widgetshop.com/
Widgets/?OrderBy=Name;SELECT
DB_NAME()

That’s a pretty innocuous one
(although certainly discovering the
database name can be useful), a more
destructive approach would be to
do something like “DROP TABLE
Widget.” Of course the account the
web app is connecting to the database
with needs the rights to be able to do
this. The point is that once you can
start chaining together queries then the
potential really starts to open up.

Getting back to blind SQLi though,
what we need to do now is find
another way to do the earlier boolean-
based tests using a subsequent state-
ment and the way we can do that is to
introduce a delay using the WAITFOR
DELAY syntax. Try this on for size:

Name;
IF(EXISTS(
 select top 1 * from sysobjects
where id=(
 select top 1 id from (
 select top 1 id from sysob-
jects where xtype='u' order by id
) sq order by id desc
) and
ascii(lower(substring(name, 1,
1))) > 109
))
WAITFOR DELAY '0:0:5'

  45

This is only really a slight variation
of the earlier examples in that rather
than changing the number of records
returned by manipulating the WHERE
clause, it’s now just a totally new state-
ment that looks for the presence of a
table at the end of sysobjects beginning
with a letter greater than “m” and if it
exists, the query then takes a little nap
for 5 seconds. We’d still need to narrow
down the ASCII character range and
we’d still need to move through each
character of the table name and we’d
still need to look at other tables in
sysobjects (plus of course then look at
syscolumns and then actually pull data
out), but all of that is entirely possible
with a bit of time. 5 seconds may be
longer than needed or it may not be
long enough; it all comes down to how
consistent the response times from the
app are because ultimately this is all
designed to manipulate the observable
behaviour which is how long it takes
between making a request and receiv-
ing a response.

This attack — as with all the pre-
vious ones — could, of course, be
entirely automated as it’s nothing
more than simple enumerations and
conditional logic. Of course it could
end up taking a while but that’s a rela-
tive term; if a normal request takes
1 second and half of the 5 attempts
required to find the right character
return true then you’re looking at 17.5
seconds per character. Say 10 chars in

an average table name is about 3 min-
utes a table and there are maybe 20
tables in a DB. Within one hour, you’ve
discovered every table name in the
system. And that’s if you’re doing all
this in a single-threaded fashion.

It doesn’t end there…
This is one of those topics with a heap
of different angles, not least of which
is because there are so many different
combinations of database, app frame-
work and web server not to mention a
whole gamut of defences such as web
application firewalls. An example of
where things can get tricky is if you
need to resort to a time-based attack
yet the database doesn’t support a
delay feature. For example, an Access
database (yes, some people actually
do put these behind websites!) One
approach here is to use what’s referred
to as heavy queries or in other words,
queries which by their very nature will
cause a response to be slow.

The other thing worth mentioning
about SQLi is that two really signifi-
cant factors play a role in the success
an attacker has exploiting the risk: The
first is input sanitisation in terms of
what characters the app will actually
accept and pass through to the data-
base. Often we’ll see very piecemeal
approaches where, for example, angle
brackets and quotes are stripped but
everything else is allowed. When this
starts happening the attacker needs

46  PROGRAMMING

to get creative in terms of how they
structure the query so that these road-
blocks are avoided. And that’s kind of
the second point — the attacker’s SQL
prowess is vitally important. This goes
well beyond just your average TSQL
skills of SELECT FROM, the proficient
SQL injector understands numerous
tricks to both bypass the input sanitisa-
tion and select data from the system in
such a way that it can be retrieved via
the web UI. For example, little tricks
like discovering a column type by using
a query such as this:

http://widgetshop.com/Widget/?id=1
union select sum(instock) from
widget

In this case, error-based injection
will give tell you exactly what type the
“InStock” column is when the error
bubbles up to the UI (and no error will
mean it’s numeric):

 Or once you’re totally fed up with
the very presence of that damned vul-
nerable site still being up there on the
web, a bit of this:

http://widgetshop.com/
Widget/?id=1;shutdown

But injection goes a lot further
than just pulling data out via HTTP.
For example, there are vectors that
will grant the attacker shell on the
machine. Or take another tangent —
why bother trying to suck stuff out
through HTML when you might be
able to just create a local SQL user and
remotely connect using SQL Server
Management Studio over port 1433?
But hang on — you’d need the account
the web app is connecting under to
have the privileges to actually create
users in the database, right? Yep, and
plenty of them do, in fact you can find
some of these just by searching Google
(of course there is no need for SQLi in
these cases, assuming the SQL servers
are publicly accessible). n

Troy Hunt is an Aussie Developer Security
Microsoft MVP specialising in web security
and working to help developers learn their XSS
from their CSRF from their XFO. He’s a frequent
blogger at troyhunt.com, the author of the free
eBook “OWASP Top 10 for .NET developers” and
regular conference speaker. Most recently he’s
completed his second Pluralsight course “Hack
Yourself First: How to go on the Cyber-Offence”
where Troy intends to turn web developers of
all kinds into self-hacking machines!

Reprinted with permission of the original author.
First appeared in hn.my/sqli (troyhunt.com)

http://troyhunt.com
http://hn.my/sqli
https://www.mailjet.com/?utm_source=hackermonthly&utm_medium=pdf&utm_campaign=October-hackermonthly

https://www.mailjet.com/?utm_source=hackermonthly&utm_medium=pdf&utm_campaign=October-hackermonthly

SPECIAL

48  SPECIAL

By Steve Blank

My First Job:
Fired And Rehired On Day 1

Entrepreneurs tend to view
adversity as opportunity.

You’re Hired, You’re Fired
My first job in Silicon Valley: I was
hired as a lab technician at ESL to sup-
port the training department. I packed
up my life in Michigan and spent five
days driving to California to start work.
(Driving across the U.S. is an adven-
ture; everyone ought to do it. It makes
you appreciate that the Silicon Valley
technology-centric culture-bubble
has little to do with the majority of
Americans.)

 With my offer letter in-hand, I
reported to ESL’s Human Resources
(HR) department. I was met by a very
apologetic manager who said, “We’ve
been trying to get ahold of you for the
last week. The manager of the training

department who hired you wasn’t
authorized to do so — and he has been
fired. I am sorry there really isn’t a job
for you.”

I was stunned. I had quit my job,
given up my apartment, packed every-
thing I owned in the back of my car,
knew no one else in Silicon Valley and
had about $200 in cash. This could
be a bad day. I caught my breath and
thought about it for a minute and said,
“How about I go talk to the new train-
ing manager? Could I work here if he
wanted to hire me?” Taking sympathy
on me, the HR person made a few calls,
and said, “Sure, but he doesn’t have the
budget for a lab tech. He’s looking for
a training instructor.”

  49

You’re Hired Again
Three hours and a few more meetings
later I discovered the training depart-
ment was in shambles. The former
manager had been fired because:

1.	 ESL had a major military contract
to deploy an intelligence gathering
system to Korea

2.	 They needed to train the Army
Security Agency on maintenance of
the system

3.	 The 10-week training course (6
hours a day) hadn’t been written

4.	 The class was supposed to start in 6
weeks

As I talked to the head of train-
ing and his boss, I pointed out that
the clock was ticking down for them,
I knew the type of training military
maintenance people need, and I had
done some informal teaching in the
Air Force. I made them a pretty good
offer — hire me as a training instructor
at the salary they were going to pay me
as a lab technician. Out of desperation
and with a warm body right in front
of them, they realized I was probably
better than nothing. So I got hired for
the second time at ESL, this time as a
training instructor.

The good news is that I had just
gotten my first promotion in Silicon
Valley, and I hadn’t even started work.

The bad news is that I had 6 weeks
to write a 10-week course on three
30-foot vans full of direction-finding
electronics plus a small airplane stuffed
full of receivers. “And, oh by the way,
can you write the manuals for the
operators while you’re at it?” Since
there was very little documentation,
my time was split between the design
engineers who built the system and
the test and deployment team getting
the system ready to go overseas. As I
poured over the system schematics,
I figured out how to put together a
course to teach system theory, opera-
tions and maintenance.

Are You Single?
After I was done teaching each day,
I continued to write the operations
manuals and work with the test engi-
neers. (I was living the dream — work-
ing 80-hour weeks and all the technol-
ogy I could drink with a fire hose.) Two
weeks before the class was over, the
head of the deployment team asked,
“Steve, are you single?” Yes. “Do you
like to travel?” Sure. “Why don’t you
come to Korea with us when we ship
the system overseas?” Uh, I think I
work for the training department. “Oh,
don’t worry about that, we’ll get you
temporarily assigned to us and then
you can come back as a Test Engineer/
Training Instructor and work on a
much more interesting system.” More
interesting than this? Sign me up.

50  SPECIAL

“You’re Not So Smart, You Just Show
Up a Lot”
While this was going on, my roommate
(who I knew from Ann Arbor where
he got his master’s degree in computer
science) couldn’t figure out how I
kept getting these increasingly more
interesting jobs. His theory, he told me,
was this: “You’re not so smart, you just
show up a lot in a lot of places.” I wore
it as a badge of honor.

But over the years I realized his
comment was actually an astute obser-
vation about the mental mindset of
an entrepreneur, and therein lies the
purpose of this post.

Congratulations, You’re Now in
Charge of Your Life
Growing up at home, our parents tell
us what’s important and how to priori-
tize. In college we have a set of classes
and grades needed to graduate. (Or in
my case the military set the structure
of what constituted success and fail-
ure.) In most cases until you’re in your
early 20s, someone else has planned a
defined path of what you’re going to
do next.

When you move out on your own,
you don’t get a memo that says, “Con-
gratulations, you’re now in charge of
your life.” Suddenly you are in charge
of making up what you do next. You
have to face dealing with uncertainly.

 Most normal people (normal as
defined as being someone other than
an entrepreneur) seek to minimize
uncertainty and risk, and take a job
with a defined career path like lawyer,
teacher or firefighter. A career path is
a continuation of the direction you’ve
gotten at home and school — do these
things and you’ll get these rewards.

Even with a career path you’ll dis-
cover that you need to champion your
own trajectory down that path. No one
will tell you that you are in a dead-end
job. No one will say when it’s time
to move on. No one will tell you that
you are better qualified for something
elsewhere. No one will say work less
and go home and spend time with
your partner and/or family. And many
end up near the end of their careers
trapped, saying, “I wish I could have… I
think I should have…”

Non-Linear Career Path
But entrepreneurs instinctually realize
that the best advocate for their careers
is themselves and that there is no such
thing as a linear career path. They
recognize they are going to have to
follow their own internal compass and
embrace the uncertainty as part of the
journey.

  51

In fact, using uncertainty as your
path is an advantage entrepreneurs
share. Their journey will have them try
more disconnected paths than someone
on a traditional career track. And one
day all the seemingly random data and
experience they’ve acquired will end
up as an insight in building something
greater than the sum of the parts.

Steve Job’s 2005 Stanford com-
mencement speech still says it best:

Stay Hungry, Stay Foolish.

Lessons Learned
■■ Trust your instincts

■■ Showing up a lot increases your odds

■■ Trust that the dots in your career will
connect

■■ Have a passion for Doing something
rather than Being a title on a business
card. n

Steve Blank is a retired serial entrepreneur
and the author of Four Steps to the Epiphany
[hn.my/foursteps] as well at the The Startup
Owners Manual [hn.my/startupowners].
Today he teaches entrepreneurship to both
at U.C. Berkeley, Stanford University, U.C.S.F
and Columbia University. He’s the architect of
the National Science Foundation Innovation
Corps. He blogs about entrepreneurship at
steveblank.com

Reprinted with permission of the original author.
First appeared in hn.my/firedhired (linkedin.com)

http://steveblank.com
http://hn.my/firedhired

52  SPECIAL

 By Alina Vrabie

The Zeigarnik Effect:
The Scientific Key To

Better Work

If you, like us, are constantly look-
ing for more efficient ways to work,
then you will really appreciate

what the Zeigarnik effect has to offer.
It carries the name of Bluma Zeigar-
nik, a Lithuanian-born psychologist
who first described this effect in her
doctoral thesis in the late 1920s. Some
accounts have it that Zeigarnik noticed
this effect while she was watching
waiters in a restaurant. The waiters
seemed to remember complex orders
that allowed them to deliver the right
combination of food to the tables, yet
the information vanished as the food
was delivered. Zeigarnik observed that
the uncompleted orders seemed to
stick in the waiters’ minds until they
were actually completed.

Zeigarnik didn’t leave it at that,
though. Back in her laboratory, she
conducted studies in which subjects
were required to complete various
puzzles. Some of the subjects were
interrupted during the tasks. All the
subjects were then asked to describe
what tasks they had done. It turns out
that adults remembered the inter-
rupted tasks 90% better than the
completed tasks, and that children
were even more likely to recall the
uncompleted tasks. In other words,
uncompleted tasks will stay on your
mind until you finish them!

If you look around you, you will start
to notice the Zeigarnik effect pretty
much everywhere. It is especially used
in media and advertising. Have you
ever wondered why cliffhangers work

  53

so well or why you just can’t get your-
self to stop watching that series on
Netflix (just one more episode)?

As writer Ernest Hemingway once
said about writing a novel, “it is the
wait until the next day that is hard to
get through.” But the Zeigarnik effect
can actually be used to positively
impact your work productivity.

The Zeigarnik effect and
productivity
Now you’re probably wondering how
the Zeigarnik effect improves produc-
tivity. Since we experience intrusive
thoughts about uncompleted tasks,
the key to productivity is working in
focused periods of time, while avoiding
multi-tasking and disruptions. Get-
ting a task done means peace of mind,
while the intrusive thoughts mean
that you will experience anxiety when
leaving a task unfinished to focus on
something else. Since multi-tasking is
simply diverting your attention from
one task to another (basically making
the new task an interruption), your
brain won’t allow you to fully focus on
the new task because you have left the
previous one uncompleted. That is why
productivity techniques such as the
Pomodoro technique work so well. Of
course, another key element is adapting
the time spent on focused work to the
task at hand; some tasks will require
a longer period of focused work than
others.

Good news for procrastinators
The Zeigarnik effect means good news
for procrastinators: you are less likely
to procrastinate once you actually start
a task. You’re more inclined to finish
something if you start it. So how do
you actually get started? It depends on
what kind of procrastinator you are. If
you’re likely to procrastinate because
you’re faced with a big project, then
don’t think about starting with the
hardest chunk of work. Start with what
seems manageable in the moment.
You’ll be more likely to finish the task
simply because you started. The Zei-
garnik effect shows us that the key
to beating procrastination is starting
somewhere… anywhere.

Reward expectancy & the Zeigarnik
effect: why the 8-hour work day
doesn’t work
A study published in the Journal of
Personality in 2006 showed that the
Zeigarnik effect is undermined by
reward expectancy. The study had
subjects working on a task, interrupt-
ing them before the task was finished.
While one group of subjects was told
that they would receive an amount of
money for participating in the study,
the other group wasn’t told anything.
The result was that 86% of the subjects
who didn’t know about the reward
chose to return to the task after they
were interrupted, while only 58% of
the subjects who were expecting the
reward returned to the task. As the

54  SPECIAL

study was over and the reward was
there, they found no reason to return
to the task. What’s more, the subjects
who were expecting the reward actu-
ally spent less time on the task once
they did return to it.

Compare this to the 8-hour work
day. The end of the work-day is just
like the interruption in the study:
once the 8 hours are done, the task
is interrupted. And the pay for the 8
hours of work is the expected reward.
The above study shows that reward
expectancy actually undermines the
Zeigarnik effect, and that rewarding
task performance can lead to early
task disengagement. In other words,
the 8 hour work-day actually makes
us unattached to our work. A great
way to fight this sort of complacency
is offering flexible work arrange-
ments for your employees and offering
rewards in the way of a healthy work-
life balance. n

Alina is addicted to discovering life hacks
and sharing them with others. If she can sim-
plify your life in any way, then her mission is
accomplished. She enjoys communication in
all its forms and is passionate about constantly
improving her writing process. From Romania,
but has a Latin American heart.

Reprinted with permission of the original author.
First appeared in hn.my/zeigarnik (sandglaz.com)

http://hn.my/zeigarnik

  55

This Is Why You Shouldn’t Interrupt
A Programmer By Jason Heeris

Jason is a physicist and engineer currently
working as a DSP engineer. He also used to
be involved in politics, but now devote his
spare time to his altruistic-yet-misunderstood
scheme to destroy the sun [heeris.id.au/sol].

Reprinted with permission of the original author.
First appeared in hn.my/interrupt (heeris.id.au)

http://heeris.id.au/sol
http://hn.my/interrupt

	Contents
	FEATURES
	Lifestyle Programming
	My Hardest Bug Ever

	PROGRAMMING
	Lenses In Pictures
	The Median-of-Medians Algorithm
	From Zero To Cooperative Threads In 33 Lines Of Haskell Code
	Building Clojure Services At Scale
	Everything You Wanted To Know About SQL Injection

	SPECIAL
	My First Job: Fired And Rehired On Day 1
	The Zeigarnik Effect: The Scientific Key To Better Work
	This Is Why You Shouldn’t Interrupt A Programmer

