
Issue 52  September 2014

Cover image generated with Clojure: github.com/tombooth/painting-in-clojure

Painting in Clojure
Tom Booth

2  ﻿

The end of procrastination
is the art of letting go.

I’ve been a lifelong
procrastinator, at least until recent
years. I would put things off until
deadline, because I knew I could
come through. I came through on
tests after cramming last minute,
I turned articles in at the deadline
after waiting until the last hour, I
got things done.

Until I didn’t. It turns out
procrastinating caused me to miss
deadlines, over and over. It stressed
me out. My work was less-than-
desirable when I did it last minute.
Slowly, I started to realize that pro-
crastination wasn’t doing me any
favors. In fact, it was causing me a
lot of grief.

But I couldn’t quit. I tried a lot of
things. I tried time boxing and goal
setting and accountability and the
Pomodoro Technique and Getting
Things Done. All are great methods,
but they only last so long. Nothing
really worked over the long term.

That’s because I wasn’t getting to
the root problem.

I hadn’t figured out the skill
that would save me from the
procrastination.

Until I learned about letting go.
Letting go first came to me when

I was quitting smoking. I had to let
go of the “need” to smoke, the use
of my crutch of cigarettes to deal
with stress and problems.

Then I learned I needed to let go
of other false needs that were caus-
ing me problems: sugar, junk food,
meat, shopping, beer, possessions.
I’m not saying I can never do these
things again once I let go of these
needs, but I let go of the idea that
they’re really necessary. I let go of
an unhealthy attachment to them.

Then I learned that distractions

and the false need to check my
email and news and other things
online were causing me prob-
lems. They were causing my
procrastination.

So I learned to let go of those too.
Here’s the process I used to let go

of the distractions and false needs
that cause procrastination:

➊ I paid attention to the pain
they cause me, later, instead

of only the temporary comfort/
pleasure they gave me right away.

➋ I thought about the person
I want to be, the life I want

to live. I set my intentions to do the
good work I think I should do.

➌ I watched my urges to check
things, to go to the comfort

of distractions. I saw that I wanted
to escape discomfort of something
hard, and go to the comfort of
something familiar and easy.

➍ I realized I didn’t need
that comfort. I could be in

discomfort and nothing bad would
happen. In fact, the best things
happen when I’m in discomfort.

And then I smile, and breathe,
and let go.

And one step at a time, become
the person I want to be. n

“You can only lose what you cling
to.” ~Buddha

Leo Babauta is the creator and writer at
Zen Habits. He is a former journalist and
freelance writer of 18 years, a husband
and father of six children, and lives on
the island of Guam where he leads a very
simple life.

Get 50% off your first 6 months
circleci.com/?join=hm

http://circleci.com/?join=hm

  3

Get 50% off your first 6 months
circleci.com/?join=hm

and help change the future of search

http://circleci.com/?join=hm
http://duckduckhack.com

Cover image generated with Clojure: github.com/tombooth/painting-in-clojure
with modifications on the pallette and dimension. Read more in “Paiting in Clojure”.

4  ﻿

Curator
Lim Cheng Soon

Contributors
Carlos Bueno
Tom Booth
Tyler Langlouis
Aaron Bull Schaefer
Justin Palmer
Thomas Burette
Isabelle Park
Paul Buchheit

Proofreaders
Emily Griffin
Sigmarie Soto

Ebook Conversion
Ashish Kumar Jha

Printer
MagCloud

Hacker Monthly is the print magazine version
of Hacker News — news.ycombinator.com, a social news
website wildly popular among programmers and startup
founders. The submission guidelines state that content
can be “anything that gratifies one’s intellectual curiosity.”
Every month, we select from the top voted articles on
Hacker News and print them in magazine format.
For more, visit hackermonthly.com

Advertising
ads@hackermonthly.com

Contact
contact@hackermonthly.com

Published by
Netizens Media
46, Taylor Road,
11600 Penang,
Malaysia.

Hacker Monthly is published by Netizens Media and not affiliated with Y Combinator in any way.

http://news.ycombinator.com
http://hackermonthly.com
mailto:ads@hackermonthly.com
mailto:contact@hackermonthly.com

  5

For links to Hacker News dicussions, visit hackermonthly.com/issue-52

Contents
FEATURES

06  Inside the Mirrortocracy
By Carlos Bueno

10  Painting in Clojure
By Tom Booth

PROGRAMMING

18  SSH Kung Fu
By Tyler Langlois

22  A Proper Server Naming Scheme
By Aaron Bull Schaefer

26  Finding The Perfect House Using Open Data
By Justin Palmer

30  So You Want To Write Your Own CSV Code?
By Thomas Burette

SPECIAL

31  Seven Habits of Highly Fraudulent Users
By Isabelle Park

STARTUP

34  The Technology
By Paul Buchheit

http://hackermonthly.com/issue-52

6  FEATURES

FEATURES

“It is difficult to get a man to
understand something when his
salary depends upon his not under-
standing it.” — Upton Sinclair

There’s a problem with Sili-
con Valley and the subcul-
tures that imitate it. It’s

a design bug woven into people’s
identities and sense of self-worth.
Fixing it will be painful. Influential
and otherwise very smart people
will deny till their last breath that it
even exists. But I believe it should
be fixed before it gets any worse.

Since credentials are so impor-
tant these days, here are mine. I’m
a programmer, and a good one.
I’ve worked at several companies
that went on to be acquired and
one that went IPO. I’ve founded
companies and conducted hun-
dreds of interviews. I’ve written
well-respected books, am regularly
invited to speak, and have been
honored by the White House. I’ve
devised novel ways to optimize
billion-dollar computer clusters.
You’ve almost certainly run code
that I wrote.

I wouldn’t make it past the
résumé screen if I were starting my
career today.

About twenty years ago I
enrolled in a dropout-prevention
program at my high school. It
allowed me to attend class only
half the day. In the afternoons I
worked at a startup. The early '90s
were a wild time. Any idiot who
could spell “HTML” could get a job,
and I was one of them. It didn’t
matter that I had half a high school
diploma and no driver’s license.
They gave me a shot and I ran with
it.

The general quality and profes-
sionalism of programming has gone
up since then. That is a good thing.
That’s not the problem.

The problem is that Silicon
Valley has gone completely to the
other extreme. We’ve created a
make-believe cult of objective meri-
tocracy, a pseudo-scientific mythos
to obscure and reinforce the belief
that only people who look and talk
like us are worth noticing. After
making such a show of burning
down the bad old rules of business,
the new ones we’ve created seem
pretty similar.

“The notion that diversity in an
early team is important or good is
completely wrong. You should try to
make the early team as non-diverse
as possible.” — Max Levchin

Max Levchin, a founder of
PayPal, preaches that mythos to
young hopefuls who want to follow
his success. His thinking is actually
more subtle than that quote, but
subtlety and introspection are not
common traits among young people
out to make a lot of money in a
short period of time. Encourage-
ment from billionaire heroes leads
to even more insularity.

Because the talent market is
tight, that insularity presents a
problem. It’s hard to find good
people to hire. All the Stanford
graduates have offers from multiple
companies and there’s no time to
develop talent. On the other hand,
so many nice-seeming candidates
seem to fail the interview process
for trivial mistakes that fall under
the catch-all category of “culture
fit.”

By Carlos Bueno

Inside the Mirrortocracy

  7

Nerdsplaining
The solution, of course, is not self-
reflection or asking hard questions
about the values and assumptions
that form the process. The solution
is to write “explainer” blog posts to
initiate candidates into the Culture.
As the hiring crunch gets more des-
perate, examples of this genre are
more frequent. They are fascinating
documents of just how discon-
nected insiders have become from
the very people they are trying to
hire. Here’s an excerpt from the
blog of a San Francisco startup:

I asked her how she was doing in
the interview process and she said,
“I’m actually still trying to get an
interview.”

“That’s weird.” I told her. “I
thought you had already met with
them a few times.”

“Well, I grabbed coffee with the
founder, and I had dinner with the
team last night, and then we went
to a bar together.”

I chuckled. She was clearly con-
fused with the whole matter. I told
her, “Look, you just made it to the
third round.”

Clearly, the confusion is her fault,
right? Let’s review the bidding.
A capable professional expressed
interest in working for a company.
Instead of talking with her about
that in plain English, she was held
at arm’s length for days while The
Culture examined her for defects:
coffee dates in the afternoon, con-
versations over dinner. When she
gets the invisible nod, her reward
is a “spontaneous” invitation to a
night of drinking with the team.
You have to wonder why intelligent
people would devise an interview

process so strange & oblique that
the candidate doesn’t even know
it’s happening.

On the surface there’s nothing
wrong with getting to know a job
candidate in a relaxed setting. But
think about who might flunk this
kind of pre-interview accultura-
tion. Say, people who don’t drink.
Or people with long commutes, or
who don’t have the luxury of time
to stay out late with a bunch of
twenty-somethings on a whim. Or,
perhaps, people who don’t like the
passive-aggressive contempt shown
to those who don’t get with The
Culture.

Ignorance of The Culture is a
serious handicap if you want to
land a job out here. Another story
from same post is very tense. (The
emphasis is mine.)

We had a gentleman over to
interview for one of our account
executive positions... great resume,
great cover letter, did well in our
initial phone screen.

He was dressed impeccably in
a suit... I stole a glance to a few of
the people from my team who had
looked up when he walked in. I
could sense the disappointment.

It’s not that we’re so petty or strict
about the dress code that we are
going to disqualify him for not
following an unwritten rule, but
we know empirically that people
who come in dressed in suits rarely
work out well for our team.

He was failing the go-out-for-
a-beer test and he didn’t even
know it...

I told him he could take off his tie
and jacket and loosen up a little
bit, and he acknowledged that he
felt a little out of place but said
that, “you can never overdress for
an interview.”

Well, dude, no, actually you can
overdress for an interview and you
just did. Of course I didn’t say
it...

The cognitive dissonance on
display is painful to see. Clothing is
totally not a big deal! Because we’re
cool like that! But it’s plain that it
biased the interviewers. The team’s
disappointment upon seeing the
suit was immediate and unanimous.
If you truly believe that suit = loser,
you can’t help it. Nevertheless,
the fiction of objectivity has to be
maintained, so he denies it to the
candidate’s face, to us, and himself.

Remember that the entire point of
his article is to convince candidates
to look and act differently: “it’s
your responsibility to learn [our]
cultural norms.” Presumably that
same account exec is supposed to
take the hint, dress in mufti, and do
better at his next startup interview.
But of course, how you dress is
totally not a factor in the scientific
decision process.

Even if you take his statements
at face value, they make no sense.
Suppose that it’s a scientific fact
that wearing a suit signals that a
candidate is unfit for duty. Assum-
ing that’s true, then what does
teaching the poor bastard how
to camouflage himself actually
accomplish? Does clothing indicate
a person’s inner qualities or not?
What, exactly, is the moral we’re
supposed to learn from this grubby
little drama?

8  FEATURES

The theme is familiar to anyone
who’s tried to join a country club
or high-school clique. It’s not sup-
posed to make sense. The Culture
can’t really be written about; it
has to be experienced. You are
expected to conform to the rules of
The Culture before you are allowed
to demonstrate your actual worth.
What wearing a suit really indicates
is — I am not making this up —
non-conformity, one of the gravest of
sins. For extra excitement, the rules
are unwritten and ever-changing,
and you will never be told how you
screwed up.

“PayPal once rejected a candidate
who aced all the engineering tests
because for fun, the guy said that
he liked to play hoops. That single
sentence lost him the job.”
— Max Levchin

Clothing is the least of it. Your
entire lifestyle and outside interests
are under examination, as is your
“commitment.” Say you’re asked
out for coffee on short notice,
which you decline because you’re
busy. Is that a “ding”? Did that lose
you the job? Who knows? Maybe it
did. You’re still trying to figure out
what they mean by “wowing” them.
Should you ask? Maybe you’ll seem
desperate if you ask. Oh, shit!

The obscurity and arbitrariness
are very much by design, and is why
explainer posts are supposed to be
so valuable. Having engineered an
unfair situation, insiders then offer
secret guides to winning it.

How to make it in the Valley
As far as I can tell, these are the
seven rules to follow if you’re going
to have a chance at being snubbed
by a Valley Culture startup. The
initial gauntlet is not as harsh if you
possess trendy technical skills but
that is by no means a free ticket.

➊ Live in the Valley. If you
don’t, move. The pioneers

who are connecting the global
human family and removing bar-
riers of time and space won’t take
you seriously unless you brunch at
the same restaurants they do. Ide-
ally you should live in “The City,”
which is on a peninsula, and not
on “The Peninsula,” [en.wikipedia.
org/wiki/San_Francisco_Peninsula]
which is in a valley.

➋ We expect you to click
with us “organically,” which

means on our schedule. Be flex-
ible with your time. It’s best to
behave as though you have nothing
better to do all day but wait for us
to call you in for coffee or some
skateboarding.

➌ Don’t overdress, but don’t
underdress. You should

mirror as precisely as possible our
socioeconomic level, social cues,
and idiom. Remember unlucky Mr.
Hoops. But no pressure, you know?
Laid back.

➍ To distinguish yourself from
the throngs, find a way to

surprise us that has nothing to do
with your ability to perform your
job. Maybe you could bring some
appropriately quirky luxury foods
as tribute.

➎ You are expected to read
everything we blog about

and work it into the conversation.
This shows commitment.

➏ We don’t actually want to
talk to you. You need to

locate someone else in our social
circle and convince them to send
us a “warm intro.” This is a wonder-
fully recursive time-waster, as those
people will want a warm intro from
someone they know before talking
to you, and so on.

➐ We’re objective meritocratic
folks and will violently

reject any suggestion that we are
not. We totally won’t “ding” you for
not doing steps 1-6, we swear. But
they help. Totally.

Watch yourself
The problem with gathering a
bunch of logically-oriented young
males together and encourag-
ing them to construct a Culture
gauntlet has nothing to do with
their logic, youth, or maleness.
The problem is that all cliques are
self-reinforcing. There is no way
to re-calibrate once the insiders
have convinced themselves of their
greatness.

It’s astonishing how many of the
people conducting interviews and
passing judgment on the careers of
candidates have had no training at
all on how to do it well. Aside from
their own interviews, they may
not have ever seen one. I’m all for
learning on your own but at least
when you write a program wrong it
breaks. Without a natural feedback
loop, interviewing mostly runs on
myth and survivor bias. “Empiri-
cally,” people who wear suits don’t
do well; therefore anyone in a
suit is judged before they open
their mouths. On my interview

http://en.wikipedia.org/wiki/San_Francisco_Peninsula
http://en.wikipedia.org/wiki/San_Francisco_Peninsula

  9

I remember we did thus and so,
therefore I will always do thus
and so. I’m awesome and I know
X; therefore anyone who doesn’t
know X is an idiot. Exceptions, also
known as opportunities for learn-
ing, are not allowed to occur. This
completes the circle.

You can protest your logic and
impartiality all day long, but the
only honest statement is that
we’re all biased. The decisions
of parole judges, professionals
who spend their entire careers
making decisions about the fate of
others, are measurably affected by
whether they had just eaten lunch
[hn.my/lunch]. And that’s with a
much more rigorous and formal
process whose rules are in the open.
But you’re sure your process is
totally solid, right?

If spam filters sorted messages
the way Silicon Valley sorts people,
you’d only get email from your
college roommate. And you’d never
suspect you were missing a thing.

“I want to stress the importance of
being young and technical.Young
people are just smarter.”
— Mark Zuckerberg

I was in the audience when a
22-year-old Zuck led with that drop
of wisdom during his first Startup
School talk. It wasn’t a slip of the
tongue, it was the thesis of his
entire 30 minutes on stage. It would
have been forgettable startup blah-
blah except that his talk followed
Mitch Kapor’s. The contrast could
not have been more raw. Ironically,
Zuck had arrived late and didn’t
hear Kapor speak. He’s since
evolved his views, thanks to Sheryl
Sandberg’s influence and (ahem)
getting older himself.

Kapor is the legendary founder
of Lotus, which more or less kicked
off the personal computer revolu-
tion by making desktop comput-
ers relevant to business. He spoke
about the dangers of what he called
the “mirror-tocracy”: confirmation
bias, insularity, and cliquish modes
of thinking. He described the work
of his institute [kaporcenter.org] to
combat bias, countering the anec-
dotes and fantasies that pass for
truth with actual research about
diversity in the workplace.

The first step toward dissolv-
ing these petty Cultures is writing
down their unwritten rules for all
to see. The word “privilege” literally
means “private law.” It’s the secrecy,
deniable and immune to analysis,
that makes the balance of power so
lopsided in favor of insiders.

Calling it out and making fun of
it is not enough. Whatever else one
can say about the Mirrortocracy, it
has the virtue of actually working,
in the sense that the lucky few who
break in have a decent rate of suc-
cess. Compared to what? Well, that
is carefully left unasked. The col-
lateral damage of “false negatives”
is as large as it is invisible. But it is
difficult to argue with success. It
takes a humility and generosity that
must come from within. It can’t be
forced on others, only encouraged
to develop.

Lest you get the wrong idea,
I’m not making a moral case but a
fairly amoral one. It’s hard to argue
against the fact that the Valley is
unfairly exclusionary. This implies
that there is a large untapped talent
pool to be developed. Since the
tech war boils down to a talent war,
the company that figures out how
to get over itself and tap that pool
wins.

So the second step is on you.
Instead of demanding that others
reflect your views, reflect on your-
self. Try to remember the last time
someone successfully changed your
mind. Try, just for a moment, to
suppose that it’s probably unnatu-
ral for an industry to be so heavily
dominated by white/Asian middle-
class males under 30 who keep
telling each other to only hire their
friends. Having supposed that, think
about what a just future should
look like, and how to get there.

You want a juicy industry to dis-
rupt? How about your own? n

Carlos Bueno is an engineer at Facebook.
He writes occasionally about program-
ming, performance, internationalization,
and why everyone should learn computer
science.

Reprinted with permission of the original author.
First appeared in hn.my/mirror (bueno.org)

http://hn.my/lunch
http://kaporcenter.org
http://hn.my/mirror

10  FEATURES

Learning Clojure by building a digital Jackson
Pollock. This article and the source code back-
ing it can be found on GitHub.

[github.com/tombooth/painting-in-clojure]

Jackson Pollock
He was an abstract artist who lived through the first
half of the 20th century and is most famous for his
drip paintings. This style of painting involves him using
brushes, sticks, and cans to apply paint to the canvas
with the motion of his gestures causing the artworks to
come alive. You can get a good idea of how this comes
together from this YouTube video. [hn.my/pollock]

Setting the scene
We want to define some facts about the space that our
digital Pollock will work in. These facts will not change
over the execution of our model and fit Clojure’s
preference for immutability perfectly. For those who
have not come across the idea of mutability before, it
is simply whether something can be changed in place.
In most languages if you set the label some_number to
equal 5, further on you can increment the value of
some_number to 6 or even 7. In Clojure if you tried to
increment some_number you would get a new value
rather than changing some_number.

Clojure will let us define facts using one of the fol-
lowing value types:

■■ A number. This could be 5 (an integer), 3/2 (a ratio/
fraction), or 3.14 (a floating point number).

■■ A string, represented as a sequence of characters, for
example “Hello world!”

■■ A keyword, which consists of very similar to strings
preceded by a colon, e.g. :an-identifier. As alluded
to in the example, they are usually used for identi-
fiers or labels and do not allow spaces.

■■ A list (...). This is a way of grouping values into a
collection with an explicit order. You may notice all
of the code written takes the form of lists. By default
if you have written (...), Clojure will assume the
first item is a function and the rest are arguments to
be passed in. In order for the list not to be executed,
you should prefix it with a '.

■■ A vector [...]. This is a lot like a list except that it is
optimized for appending to the end of the sequence
rather than to the front.

■■ A set #{...}. If you are not particularly bothered by
the order of the values stored in your collection then
you can use a set.

■■ Lastly there are maps {...}. These store pairs of
values where the first is a key and the second is a
value.

The most important fact about the space is its size.
We will use meters to measure the size, only convert-
ing to pixels when we need to draw to the screen. We
are going to define size as a vector containing its width,
height, and depth.

(def space [8 ;; width
 5 ;; height
 6]) ;; depth

By Tom Booth

Painting in Clojure

http://github.com/tombooth/painting-in-clojure
http://hn.my/pollock

  11

We need to know the gravity of the space so it can
influence the flow of paint as it leaves the brush. This
will be defined as a vector that represents acceleration
influenced by gravity.

(def gravity [0 -9.8 0])

Lastly, we need to know the normal of the surface
of the canvas that the paint will impact with. This will
be used to dictate how paint acts when it spatters from
the impact with the canvas.

(def canvas-normal [0 1 0])

Starting points and projection
Our digital Pollock is going to start a stroke of the
brush by picking a random point in space. This point
will then be projected to find where it impacts with
the canvas.

In order to generate a random point inside of the
space, we need to define a function that will emit a
vector containing the position of the point each time it
is called. Function values can be created by calling (fn
[...] ...) with the first vector being the arguments
the function should receive and any follow items in
the list are the body of the function and are executed
with the arguments bound. Rather than calling (def
name (fn ...)), Clojure has provided a shortcut func-
tion (defn name [...] ...). An example of a defined
function is (defn say-hello [name] (str "Hello "
name)), this creates a function called say-hello that
when called (say-hello "James") will return the
string “Hello James”.

We are going to cover a common functional idiom
when dealing with lists to change the dimensions of
the space above into a random point inside that space.
To do this, we want to iterate over each dimension of
the size of space, generate a random number between
0 and the magnitude of each dimension and then
return the resultant list of random numbers as a list. To
generate a random number in Clojure, we can use the
(rand) function, which will return a random number
between 0 (inclusive) and 1 (exclusive). The rand func-
tion can take an optional parameter `(rand 100); this
will define the bounds of the number generated to 0
and 100.

The function map (map [fn] [sequence]) will iter-
ate through the sequence executing the function with
the current value of the sequence as its first parameter,
the values returned from the function will be stored in

a list the same length as the sequence and returned by
the function.

We can now define a random point inside of space as
follows:

(defn starting-point [] (map rand space))

Now that we can generate a random point in space,
we want to project this onto the canvas. We are going
to use Newtonian equations of motion. We know the
position, velocity, and acceleration of the point, and we
want to know what the position and velocity are when
y is 0. In order to work out final positions, we need to
know the total time the point spent falling. We can do
this using the y position, since we know that the final
position should be 0.

To work out the time it takes for the point to reach
the canvas, we will solve the following equation for t:

■■ r = final displacement

■■ r0 = initial displacement

■■ v0 = initial velocity

■■ a = acceleration

■■ t = time

r = r0 + v0 * t + at2/2

This rearranges to:

at2 + 2v0t + 2r0 − 2r = 0

We can solve this using the Quadratic Equation,
but this will yield us two results. In general we can say
that we are interested in the result with the maximum
value.

In the next block of code you can see an example of
call out to Java(Script). Clojure doesn’t have an in-
built square root function, so we are calling out to the
Java(Script) version. A function named in the form foo/
bar means it will call the function bar in the namespace
foo. You might be wondering, what is a namespace?

All good languages need a way to bundle up code
that is related so that it can be reused and accessed
only when needed. Clojure’s take on this is to provide
namespaces. Every Clojure source file will declare its
namespace at the top of the file so that other files can
reference it, extract values, and use functions. Given
that Clojure is a hosted language, its namespace will be
related to packages in Java and Google Closure Library
namespaces in JavaScript.

12  FEATURES

When hosted on Java, all of java.util.* is automati-
cally imported. When on JavaScript, assorted core and
Google Closure Library modules are imported. Both
of these languages provide us with a Math namespace
which contains a sqrt function.

 (defn time-to-canvas [position velocity accel-
eration]
 (let [a acceleration
 b (* 2 velocity)
 c (* 2 position)
 discriminant (- (* b b) (* 4 a c))
 minus-b (- 0 b)
 add-sqrt (/ (+ minus-b (Math/sqrt
discriminant)) (* 2 a))
 minus-sqrt (/ (- minus-b (Math/sqrt
discriminant)) (* 2 a))]
 (max add-sqrt minus-sqrt)))

We can now calculate the time to impact, but we
want the final position and velocity. For position we
can use the same function that we rearranged above to
derive the time.

(defn position-at [time initial-position ini-
tial-velocity acceleration]
 (+ initial-position
 (* initial-velocity time)
 (/ (* acceleration time time) 2)))

For velocity we can use another equation of motion:

v = at + v0

(defn velocity-at
[time initial-velocity acceleration]
 (+ (* acceleration time) initial-velocity))

These functions we just implemented can be joined
up so that, given an initial position and velocity, we
can return the final position and velocity. This func-
tion doesn’t explicitly ask for the acceleration acting
on the paint. It assumes only gravity is acting using the
constant defined earlier on.

(defn project-point [position velocity]
 (let [[i j k] position
 [vi vj vk] velocity
 [ai aj ak] gravity

 time (time-to-canvas j vj aj)

projected-position [(position-at time i vi ai)
 0 ;; we don't need to
			 ;; calculate as it should	
			 ;; be 0, on the canvas
 (position-at time k vk ak)]

projected-velocity [(velocity-at time vi ai)
 (velocity-at time vj aj)
 (velocity-at time vk ak)]]
[projected-position
projected-velocity]))

Paint splatter
An important aspect of Pollock’s painting is the splatter
of the paint hitting the canvas and what this adds to
the images. We are going to add a simple splatter model
based of the velocity at impact we calculated in the last
part.

Not all paint that hits the canvas will splatter, so we
need to work out the impact force of the paint and use
this as a cutoff for whether the paint should splatter.

We will work out the impact force of the paint by
taking the velocity at impact and calculating the force
required to reduce that velocity to 0 over a set impact
distance.

(def impact-distance 0.05)

We can now use the work-energy principle to calcu-
late the impact force. On one side of the equation we
will have the forces at play, and on the other side we’ll
have the energy:

■■ Fi = impact force

■■ d = impact distance

■■ m = mass

■■ g = gravity

■■ v = velocity at impact

−Fid + mgd = 0 − ½ mv2

This equation can be rearranged to:

Fi = mg + mv2/2d

For simplicity of code, we are just going to consider
the y axis, since this is most important when it comes
to working out the impact force of the paint into the
canvas. The above equation can therefore be expressed
as:

  13

(defn impact-force [mass velocity]
 (let [y-gravity (second gravity)
 y-velocity (second velocity)]
 (+ (* mass y-gravity) (/ (* mass y-velocity
y-velocity)
 	 (* 2 impact-distance)))))

Based on this function for calculating the impact
force, we can define a predicate that will tell us
whether paint should splatter based on its mass and
velocity. It is idiomatic in Clojure to end predicates
with a ?. We are going to add some randomness to this
function so that we don’t necessarily just get a uniform
line of points. Also defined is a minimum force for us
to consider whether some paint could splatter.

(def min-impact-force-for-splatter 30)

(defn does-impact-splatter? [mass velocity]
 (and (> (impact-force mass velocity)
	 min-impact-force-for-splatter)
 (> (rand) 0.8)))

If an impact splatters, then we will need to bounce
its velocity vector, since this is the direction in which it
will leave its current position.

The equation to bounce a vector, V, off a plane with
normal, N, is:

■■ N is the normal vector of the plane

■■ V = the incoming vector

■■ B is the outgoing, bounced, vector

B = V − (2 * (V . N) * N)

We are missing a few of the required vector opera-
tions used in this equation, so we should define some
more functions before trying to implement it. The first
is the vector dot product. This is defined as the sum of
the multiples of each dimension. Otherwise we need
subtraction of two vectors and a function to multiply a
vector by a constant.

(defn dot-product [vector1 vector2]
 (reduce + (map * vector1 vector2)))

(defn vector-subtraction [vector1 vector2]
 (map - vector1 vector2))

This function will introduce a shorthand for defin-
ing functions that is very useful in combination with
functions like map and reduce. Rather than writing (fn

[args...] body), you can use #(body), and if you want
access to the arguments, use %n where n is the position
of the argument. If you are only expecting one argu-
ment, then you can use just % on its own.

(defn vector-multiply-by-constant
[vector constant]
 (map #(* % constant) vector))

Using the above functions we can now implement
the vector bouncing equation. I have pulled B = V − (2
* (V . N) * N out into a variable called extreme for
clarity.

(defn bounce-vector [vector normal]
 (let [vector-dot-normal
(dot-product vector normal)
 extreme (vector-multiply-by-constant normal
(* 2 vector-dot-normal))]
 (vector-subtraction vector extreme)))

When an impact splatters, it will only take a fraction
of the velocity; this is an inelastic rather than elastic
collision. We can define a constant that will be used
to reduce the total velocity of the bounced vector to
reflect this elasticity.

(def splatter-dampening-constant 0.7)

(defn splatter-vector [velocity]
 (let [bounced-vector (bounce-vector velocity
canvas-normal)]
 (vector-multiply-by-constant bounced-vector
 splatter-dampening-constant)))

Paths vs Points
All gestures Pollock makes are fluid paths, even if the
velocity along the path might be rather erratic. We now
need to work out how to generate a path of points that
we can project and splatter using the code we have
written above.

A Bezier curve is a commonly used curve for gen-
erating a smooth curve that can be scaled indefinitely,
allowing us to have as many points along our path as
we care to calculate.

Bezier curves are defined by a list of control
points, so we need to be able to generate a potential
unbounded list of random control points that should
give us limitless different paths to paint.

In order to generate a list of control points, we need
to:

14  FEATURES

■■ Get a random number between two points for dis-
tance and steps

■■ Get a random unit vector for the initial direction of
the generation

■■ Add vectors together to move between our control
points

(defn random-between [lower-bound upper-bound]
 (+ lower-bound (rand (- upper-bound
lower-bound))))

Below is an algorithm that will give well-distributed
random unit vectors. It was ported from code found in
the GameDev forums. [hn.my/ruv]

(defn random-unit-vector []
 (let [asimuth (* (rand) 2 Math/PI)
 k (- (rand 2) 1)
 a (Math/sqrt (- 1 (* k k)))
 i (* (Math/cos asimuth) a)
 j (* (Math/sin asimuth) a)]
 [i j k]))

(defn vector-add [vector1 vector2]
 (map + vector1 vector2))

Now that we have a random direction in which to
move, we need to generate an unbounded path that
will move in that direction, but randomize the position
of each point within provided bounds.

First, we can define a function that will generate a
random vector inside of lower and upper bounds that
can be combined with the non-randomized position to
provide a randomized path.

(defn random-vector-between [lower upper]
 [(random-between lower upper)
 (random-between lower upper)
 (random-between lower upper)])

In order to provide an unbounded path, we can use
a lazy sequence. This function returns a value that is
somewhat akin to a list that never ends. Every time you
try to look at the next value in the list, it will generate
another one.

In this function the first value returned should
always be the initial starting position, and each follow-
ing value should be a step along the path. You can see
this below: it returns the position argument cons’d with
another iteration of random-path with the position
randomized.

(defn random-path [position step-vector bounds]
 (cons position
 (lazy-seq (random-path
 (vector-add (vector-add position step-vector)
 (random-vector-between (- 0 bounds) bounds))
 step-vector bounds))))

We can now use this random-path lazy sequence to
generate a list of control points given an initial starting
point and some bounding variables. The distance, step,
and variation allow us to request long winding paths or
short flicks.

(defn control-points [position min-distance max-
distance min-steps max-steps variation]
 (let [direction (random-unit-vector)
 distance (random-between min-dis-
tance max-distance)
 steps (random-between min-
steps max-steps)
 step-vector (vector-multiply-by-con-
stant direction (/ distance steps))
 random-positions (take steps (random-
path position step-vector variation))
 end-position (vector-add position
 (vector-
multiply-by-constant step-vector steps))]
 (conj (vec random-positions) end-position)))

In order to turn this list of control points into a list
of points that represent a path we need an algorithm.
The most commonly used is a recursive algorithm
proved by De Casteljau. There is a great video on You-
Tube explaining this algorithm [hn.my/casteljau] that I
recommend you watch.

At the core of the algorithm is an equation that will
return a point along a line weighted by a variable, t
which dictates how close it is to each end of the line:

P = (1 − t)P0 + tP1

For example, if a line runs from P0 to P1 and t is 0
then the outputted point with be equal to P0 and if it is
1 then P1.

De Casteljau’s algorithm recursively creates a new
set of points by using the above equation for a fixed
t against all the lines created by the control points. It
does this until there is just a single point; this is a point
on the Bezier curve. It’s t from 0 to 1 and for each step
gets a point along the curve.

http://hn.my/ruv
http://hn.my/casteljau

  15

(defn recur-relation [t a b]
 (+ (* t b) (* a (- 1 t))))

(defn for-component [t component-vals]
 (if (= (count component-vals) 1)
 (first component-vals)
 (for-component t
 (map #(recur-relation t %1 %2) component-
vals (rest component-vals)))))

(defn for-t [t components]
 (map #(for-component t %) components))

(defn de-casteljau [control-points step-amount]
 (let [x-vals (map first control-points)
 y-vals (map second control-points)
 z-vals (map #(nth % 2) control-points)
 points (map #(for-t % [x-vals y-vals
z-vals]) (range 0 1 step-amount))]
 points))

This can generate paths that go below the canvas, so
we should set these to 0 as it is the equivalent of paint-
ing on the canvas.

(defn ensure-above-canvas [path]
 (map (fn [[i j k]] [i (if (< j 0) 0 j) k])
path))

Motion, going through the paces
All the points along the generated path should have
an associated velocity. To start with we can generate a
linear velocity along the path, given a randomized total
time to traverse the path and the total length of the
path.

In order to calculate the length of the paths, we will
want to do something similar to a map but with pairs
of values. Using this we can take two points, calcu-
late the distance between them, and then sum all the
distances.

(defn map-2 [f coll]
 (when-let [s (seq coll)]
 (let [s1 (first s)
 s2 (second s)]
 (if (not (nil? s2))
 (cons (f (first s) (second s)) (map-2 f
(rest s)))))))

In order to find the distance between two points, we
need to subtract the two vectors, square and sum the
resultant dimensions, and then take the root.

(defn vector-multiply [vector1 vector2]
 (map * vector1 vector2))

(defn distance-between-points [point1 point2]
 (let [difference-vector (vector-subtraction
point1 point2)
 summed-vector (reduce + (vector-multiply
difference-vector difference-vector))]
 (Math/sqrt summed-vector)))

(defn path-length [path]
 (reduce + (map-2 distance-between-points
path)))

(defn vector-divide-by-const [vector const]
 (map #(/ % const) vector))

(defn velocity-between [point1 point2 total-time
total-distance]
 (let [difference-vector (vector-subtraction
point1 point2)
 time-between (* total-time (/ (distance-
between-points point1 point2)
 total-distance))]
 (vector-divide-by-const difference-vector
time-between)))

This calculation will leave off the last point’s veloc-
ity, so we can just set it to 0.

(defn path-velocities [path total-time]
 (let [total-distance (path-length path)
 number-of-points (count path)]
 (conj (vec (map-2 #(velocity-between %1 %2
 total-time
 total-distance)
 path))
 [0 0 0])))

In addition to the velocity at each point along the
path, we also need to know the quantity of paint fall-
ing. Again to keep life simple we are going to model
this as a linear flow along the path with there always
being no paint left.

16  FEATURES

(defn path-masses [path initial-mass]
 (let [number-of-points (count path)
 step (- 0 (/ initial-mass number-of-
points))]
 (take number-of-points (range initial-mass 0
step))))

Putting it all together
I’ve pulled a bunch of colors that Pollock used in his
seminal work “Number 8” so that each flick of paint
can be rendered in a random color from this palette.

(def canvas-color [142 141 93])

(def paint-colors
 [[232 51 1]
 [248 179 10]
 [247 239 189]
 [29 16 8]])

(defn pick-a-color []
 (nth paint-colors (rand-int (count
paint-colors))))

Now we need to assemble all of the above functions
into something that resembles Jackson Pollock apply-
ing paint to a canvas. We start with a point, project a
path, work out masses and velocities, project, and then
splatter. This is all then packaged up with a color for
drawing onto our canvas.

(defn fling-paint []
 (let [position (starting-point)
 total-time (random-between 1 5)
 path (ensure-above-canvas (de-
casteljau (control-points position 0.1 2 3 15
0.4) 0.01))
 velocities (path-velocities path
total-time)
 masses (path-masses path (ran-
dom-between 0.1 1))
 projected-path (map #(project-point %1
%2) path velocities)
 splatter (map (fn [[position
velocity] mass]
 (if (does-impact-
splatter? mass velocity)
 [position
(splatter-vector velocity) (* mass splatter-
dampening-constant)]

 nil))
 projected-path
masses)
 projected-splatter (map (fn [[position
velocity mass :as point]]
 (if (nil? point)
 nil
 (conj (vec
(project-point position velocity)) mass)))
 splatter)]
 {:color (pick-a-color)
 :air-path path
 :canvas-path (map #(conj %1 %2) projected-
path masses)
 :splatter (filter #(not-any? nil? %)
(partition-by nil? projected-splatter))}))

Rendering the canvas
We need to know the available size for the outputted
image to fit in. To work this out we are going to have to
interface with JavaScript directly. Luckily ClojureScript
makes this very easy using the js namespace.

(def image-width (.-clientWidth (.querySelector
js/document "#pollock")))

Now we have the width of the image we can use
the dimensions of the space to work out the pixel size
of the image and how to convert between meters and
pixels.

(def pixels-in-a-metre
 (let [[width _ _] space]
 (/ image-width width)))

(defn meters-to-pixels [meters]
 (Math/floor (* meters pixels-in-a-metre)))

We can now use this function to work out the size
the sketch should be and how to convert a position in
meters over to a position to be drawn in the image.

(def sketch-size
 (let [[width _ height] space]
 [(meters-to-pixels width)
 (meters-to-pixels height)]))

(defn position-to-pixel [[i j k]]
 [(meters-to-pixels i)
 (meters-to-pixels k)])

  17

Now that the dimensions of the image are calcu-
lated, we can use Quil to define the sketch that we will
draw into. We also need to define a function that will
initialize the image into the state we want it. This func-
tion will be run when the sketch is defined.

(defn setup-image []
 (apply q/background canvas-color)
 (q/fill 0))

(q/defsketch pollock
 :setup setup-image
 :host "pollock" ;; the id of the <canvas>
 ;; element
 :size sketch-size)

To draw the trails of paint across the canvas, we need
draw a path following the defined positions, taking into
account the amount of paint at each position and using
this to set the width of the path. In order to do this
cleanly in Quil we need to consider the path as pairs of
positions that we draw paths between using the initial
paint amount as the stroke-weight. This allows for a
smooth decrease in the width of the path.

(defn mass-to-weight [mass]
 (* 50 mass))

(defn draw-path [path]
 (doall
 (map-2 (fn [[position1 _ mass] [position2 _
_]]
 (q/stroke-weight (mass-to-weight
mass))
 (apply q/line (concat (position-
to-pixel position1) (position-to-pixel posi-
tion2))))
 path)))

For splatter we are just going to draw a point that
has a stroke-weight proportional to the amount of
paint.

(defn draw-splats [path]
 (doall (map (fn [[position _ mass]]
 (q/stroke-weight (mass-to-weight
mass))
 (apply q/point (position-to-
pixel position)))
 path)))

Now that we can render the result of flinging some
paint around, we need a function that will fling the
paint and render the result.

(defn fling-and-render [& any]
 (q/with-sketch (q/get-sketch-by-id "pollock")
 (let [{:keys [color canvas-path splatter]}
(fling-paint)]
 (q/stroke (apply q/color color))
 (draw-path canvas-path)
 (doall (map draw-splats splatter)))))

Lastly, we attach to the buttons, and our image
comes to life.

(.addEventListener (.querySelector js/document
"#add")
 "click"
 fling-and-render)

(def interval-ref (atom nil))
(def fill-count (atom 0))
(.addEventListener (.querySelector js/document
"#fill")
 "click"
 (fn [e]
 (reset! interval-ref
 (js/setInterval (fn []

(if (> @fill-count 500)

(js/clearInterval @interval-ref)

(do (fling-and-render) (swap! fill-count inc))))
100)))) n

Tom Booth is a developer currently twiddling bits at the Govern-
ment Digital Service. He spends my days working with Python
and Javascript, and his nights playing with Clojure, Golang or
anything he can get his hands on.

Reprinted with permission of the original author.
First appeared in hn.my/painting (tombooth.co.uk)

http://hn.my/painting

18  PROGRAMMING

PROGRAMMING

By Tyler Langlois

OpenSSH [openssh.com] is an incredible tool.
Though primarily relied upon as a secure
alternative to plaintext remote tools like

telnet or rsh, OpenSSH (hereafter referred to as plain
old ssh) has become a swiss army knife of functionality
for far more than just remote logins.

I rely on ssh every day for multiple purposes and feel
the need to share the love for this excellent tool. What
follows is a list for some of my use cases that leverage
the power of ssh.

 Public-Key Cryptography
This is kind of a prerequisite for supercharging ssh
usage. It’s a pretty straightforward concept:

■■ Generate a public key and private key. The private
key can prove ownership of a public key

■■ Place the public key on any servers you need to log
in to

■■ No more password prompts

Sound good? Let’s do it:

$ ssh-keygen -t rsa
$ cat ~/.ssh/id_rsa.pub
... your public key here ...

Paste that into the ~/.ssh/authorized_keys file
of any server account you need to log in to, then any
subsequent

$ ssh user@host

will be automatic. Now you’re prepared to really make
ssh useful.

Bonus: ssh-copy-id
As this process of copying public keys is a fairly
common task, you can usually get the ssh-copy-id
command on most platforms do to this automagically
for you. For example, if you’ve generated your keys and
want to set up key login for the user bob at the host
fortknox:

$ brew install ssh-copy-id # (if needed)
$ ssh-copy-id bob@fortknox

Done!

Tunneling
Need access to a port behind a firewall? ssh has got you
covered. If you need to access the remote endpoint
http://no-public-access:80 but can reach that host from
another host that you can log in to (let’s call it ssh-
host), just try this:

$ ssh -L 8080:no-public-access:80 user@ssh-host

Then browse to http://localhost:8080. Your requests
are being routed through ssh-host and hit no-public-
access:80 and are routed back to you. Tremendously
useful.

SSH Kung Fu

http://openssh.com

  19

Mounting Filesystems
NFS, while venerable, is pretty shoddy when it comes
to securely sharing directories. You can share to an
entire subnet, but anything beyond that gets tricky.
Enter SSHFS, the ssh filesystem.

I’ve got a machine called wonka trying to share the
directory /srv/factory with the host bucket. Assum-
ing that the user charlie on bucket has keys set up
on wonka, and assuming that I’ve got SSHFS available
(install it via your package manager of choice if which
sshfs returns nothing), try this out:

$ sshfs wonka:/srv/factory /mnt -o idmap=user

Everything is pretty self-explanatory except for the
filesystem mount option idmap. That just tries to map
the Unix numeric IDs from the server to the user
you’re mounting the filesystem as (it’s the least trou-
blesome option.)

And presto, you’re sharing a filesystem quickly, easily,
and securely. The caveat here is that filesystem changes
can take a little longer to propagate than with similar
file-sharing schemes like SMB or NFS.

Remote File Editing
This trick relies on the netrw capabilities of vim (a
directory browsing function) and SCP (a sister program
of ssh.)

Netrw allows vim to browse the filesystem on the
local filesystem easily (try it in a terminal with $ vim
[path], such as $ vim .. However, we can pass vim
a remote path using scp:// to achieve remote file
editing:

$ vim scp://wonka/

You’re now browsing your home directory’s contents
on wonka within vim. Any file edits you make will be
synced over on write via SCP.

Tab-Completion
Not a trick, but really useful.

Have you ssh-ed into a machine like this in the past?

$ ssh supercalifragilisticexpialidocious

Good news, you can probably do this:

$ ssh sup<TAB>

and the shell will auto-complete hostnames drawn
from the ~/.ssh/known_hosts file.

Lightweight Proxy
This is probably one of my favorite tricks, and is very
useful when the need for it arises.

The previous tunneling example was simple: we’re
forwarding a local port such as 8080 to a remote end-
point, and ssh handles passing packets through your
intermediate ssh host. However, what if you want to
place a program entirely behind an ssh host? Doing
so enables you to essentially create a very lightweight
proxy, independent of some sort of VPN solution like
PPTP or OpenVPN.

ssh has an option for this, the -D flag. Invoking ssh
with the following options:

$ ssh -D 9090 user@host

exposes the local port 9090 as a SOCKS proxy. You
can then alter your browser settings to use your local
SOCKS proxy to route browsing traffic. My configura-
tion in Firefox for the previous example is shown here:

 Note that for Firefox at least, I had to set the fol-
lowing flag in my http://about:config in order for
everything to work correctly:

Try browsing to a site like geoiptool and you should
find that your IP is now originating from your ssh host.

ssh SOCKS proxy settings in Firefox

Firefox SOCKS DNS settings

20  PROGRAMMING

This may initially seem a little useless, but when you
consider that you can also use a cheap (or free) EC2
instance anywhere in the world… there are a lot of
possibilities. For example, I’ve used this trick to access
US-only services when traveling abroad and it has
worked very well.

Accessing NAT-ed Hosts Directly
Before diving into this one, I want to emphasize that if
you aren’t taking full advantage of your ~/.ssh/config,
you really should. Stop using alias and starting using
shorthand hostnames in the ssh config file. Doing so
allows you do use the same shortname in any ssh-
friendly application (SCP, rsync, vim, etc.) and lends
itself well to providing a unified environment if you
distribute your dotfiles across machines.

Moving on. ssh config files follow this syntax:

Host foobar
 Option value

For example, you can reduce the command

$ ssh -p12345 foo@bar.baz.edu -i ~/.ssh/
customkey

to

$ ssh bar

by adding the following to ~/.ssh/config:

Host bar
 User foo
 Port 12345
 IdentityFile ~/.ssh/customkey
 HostName bar.baz.edu

Now that we’ve dabbled in the config, look at this
configuration stanza:

Host behind.bar
 # ProxyCommand ssh bar exec nc behind %p
 # I've since been educated that invoking 	
 # netcat for forwarding is deprecated,
 # use the -W flag instead:
 ProxyCommand ssh -q -W %h:%p bar

ProxyCommand directs ssh how to connect to behind.
bar: connect to bar (previously defined) and connect
to the port that ssh would normally connect to. ssh’s -W
flag intelligently forwards traffic to the interpolated %h
(hostname) and %p (port) variable placeholders. The
following diagram demonstrates.

If you’ve ever tried to copy a file from a NAT-ed
machine, you’ll see the usefulness in this: you can
essentially treat the NAT-ed host as if there were no
intermediate hosts between the ssh client and daemon.

Sharing Connections
I often find that when I’m working on a remote host,
there’s a pretty good chance I’ll need to SCP a file over
or log in again over another ssh session. While you
could negotiate another asymmetric ssh handshake,
why not use your pre-existing connection to make
speedier file copies or logins?

Use Controlpath:

Host busyserver
 Controlmaster auto
 Controlpath ~/.ssh/ssh-%r@%h:%p.sock

This means upon first connection to busyserver, ssh
will create a socket in ~/.ssh/ which can be shared
by other commands. If you’re using commands like
rsync or SCP, this can make repetitive copy tasks much
quicker.

 ssh ProxyCommand diagram

  21

Bonus Round!
There’s been great reception for this post both on
reddit and twitter, so I couldn’t help but add some of
the great tips that people have been throwing at me.

Credit goes to the ssh savants commenting on this
blog post and over at the reddit thread.

Remote File Editing in Emacs
I’m a vim man, so I hadn’t the slightest clue that you
could leverage ssh equally well using Emacs by opening
a file path of the format //user@host:/file in order to
remotely edit files.

The Secure Shell… Shell
This one was new to me: try the key combination ~C
while in an ssh session and you’ll get a prompt that
looks like this:

ssh>

(I have to hit return before the ~C key combo in zsh, but
your shell’s behavior may vary.)

Try entering help at this prompt to get a summary of
the commands you can enter at the prompt. Essentially
you can dynamically allocate forwarded ports from
within your active ssh session. Who knew?

I’ve actually used the key combination ~. many
times to kill a hung ssh session but had no idea that I
was using this feature of ssh.

Agent Forwarding
I actually use this pretty heavily but failed to mention
it because I got lazy.

When you negotiate pubkey authentication with ssh,
you’re just validating that your key gives you the rights
to log in the remote server. What if you want to get
from that remote server to another server?

You could use password authentication to get to the
other machine (ugly), place your private on the inter-
mediate host (not a good idea to spread your private
key around), or you could use agent forwarding.

Agent forwarding allows you to validate against that
second machine by verifying that you’re the owner of
the permissioned private key somewhere down the
chain. I don’t want to make more diagrams so I’ll make
some ASCII art. Here are your hostnames:

sol --------------> terra --------------> luna

Your pubkey from sol is listed in terra:~/.ssh/
authorized_keys. Great! You ssh into terra:

sol ==============> terra --------------> luna

Now you want to get to luna. You can get there
without your private key on terra by using a plain old

$ ssh luna

Nice! With any key credentials stored on terra,
you’ve authenticated to luna using the private key
stored on sol. The only requirements for this feature
are:

■■ On the client (sol in this example)

Make sure you have the ssh-agent program run-
ning (check if it’s running with ssh-add -L to list
cached private keys)

Cache your key with ssh-add

Prepend the line ForwardAgent yes to your
~/.ssh/config

■■ Each intermediate server

Ensure the line AllowAgentForwarding yes is in /
etc/ssh/sshd_config

That’s all there is. If this fails to work for you for
some reason, the most common problem is that your
key isn’t cached in ssh-agent on your local machine
(again, confirm it’s cached with ssh-add -L.)

Note that this technique of caching your key in ssh-
agent also alleviates the annoyance of having to unlock
a password-protected private key every time it’s used
by caching it for an extended period (with the associ-
ated security/convenience tradeoff of keeping your
private key cached in memory.) n

Tyler Langlois designs, builds, and maintains systems at scale as
a site reliability engineer at Qualtrics [qualtrics.com], a research
solutions company based in Provo, Utah. Outside of systems
engineering, he also enjoys security research, all things Linux,
and writes about these topics and more on his blog [blog.tjll.net].

Reprinted with permission of the original author.
First appeared in hn.my/sshfu (tjll.net)

http://qualtrics.com
http://blog.tjll.net
http://hn.my/sshfu

22  PROGRAMMING

By Aaron Bull Schaefer

Here at MNX, we’ve
been busy setting up a
brand new data center

for our cloud hosted services. We
started off as a consulting company
providing managed Linux services,
which means we have been exposed
to a ton of different customer envi-
ronments and an equal number of
schemes for naming equipment…
not all of them good. It’s a problem
that goes back as far as computers
have existed, and everyone has their
own opinion on the “best” way to
name hosts. Most methods start out
fine at the beginning, but quickly
become unwieldy as infrastructure
expands and adapts over time.

Since we’re starting fresh with
this data center, we wanted to
come up with our own naming
scheme to address the common
problems we’ve seen elsewhere.
We gleaned ideas from numerous
sources such as data published by
large-scale companies, various RFCs
on the topic, and blog/forum posts
a’plenty. Taking all of that into
account, we’ve developed some
best practices that should work for
most small-to-medium businesses
naming their own hardware.

 First, I’ll go over the naming
scheme then cover some of the
finer points and justification for our
choices.

A Records
To start off, name each host (via the
appropriate method for your oper-
ating system) and set its DNS A
record to a randomly chosen word
pulled from a list:

crimson.example.com. A
192.0.2.11

There are many pools of words to
choose from, but the specific word
list we recommend comes from
Oren Tirosh’s mnemonic encod-
ing project. These 1633 words
were chosen very specifically to
be short (4-7 letters), phonetically
different from one another, easy
to understand over the phone, and
also recognizable internationally.
The mnemonic word list should be
much less prone to typos and trans-
posed characters when compared
to more structural names. A lot of
time and research went into these
words, and their properties make
them ideal for our purpose.

Essentially, the hostname should
not have any indication of the
host’s purpose or function, but
instead should act as a permanent,
unique identifier to reference a par-
ticular piece of hardware through-
out its lifecycle (try not to reuse
names when hardware dies). This
name should be used to physically
label the equipment and will mostly
be useful to operations engineers,
remote hands, and for record keep-
ing. It’s also what the reverse DNS
PTR record should resolve to.

CNAME Records
Next, assign one or more DNS
CNAME records to cover useful
functional details about the
machine such as geography, envi-
ronment, work department, pur-
pose, and so on. This is all informa-
tion that will be mirrored in your
CMDB and easily referenced.

The CNAME records are what
developers should know and use for
interconnecting services. Keeping
the structure of these names con-
sistent will lower the mental effort
necessary to remember a hostname
when you need it…

A Proper Server Naming
Scheme

  23

Standardized CNAME Structure
Start with your registered domain,
and segment each piece of addi-
tional information as a proper
subdomain going down from there.
DNS is hierarchical by design, so
taking advantage of that will pro-
vide us with some benefits later on.

<wip>.example.com. CNAME
crimson.example.com.

Specify Geography
After your domain name, add a
subdomain referencing the geogra-
phy of the host. Use the 5-character
United Nations Code for Trade
and Transport Locations (UN/
LOCODE) value based on the
address of the host’s data center. It
covers more specific locations than
something like the IATA airport
codes, and is still a well-defined
standard.

In most cases, you can drop the
2-character country code portion
and just use the remaining 3-char-
acter location code. That is, unless
you have data centers in multiple
countries and the locations happen
to use conflicting codes, just use
nyc.example.com and not nyc.
us.example.com.

<wip>.nyc.example.com. CNAME
crimson.example.com.

Specify Environment
Next up, specify the environment
that the host is a part of:

■■ dev – Development

■■ tst – Testing

■■ stg – Staging

■■ prd – Production

These should be based on what-
ever process model you follow for
release management…you may

have more or less designations as
well as environments like sandbox,
training, etc..

<wip>.prd.nyc.example.com.
CNAME crimson.example.com.

Specify Purpose and Serial Number
Last up, specify the basic category
of the host’s function and append a
serial number:

■■ app – Application Server
(non-web)

■■ sql – Database Server

■■ ftp – SFTP server

■■ mta – Mail Server

■■ dns – Name Server

■■ cfg – Configuration Management
(puppet/ansible/etc.)

■■ mon – Monitoring Server (nagios,
sensu, etc.)

■■ prx – Proxy/Load Balancer
(software)

■■ ssh – SSH Jump/Bastion Host

■■ sto – Storage Server

■■ vcs – Version Control Software
Server (Git/SVN/CVS/etc.)

■■ vmm – Virtual Machine Manager

■■ web – Web Server

For the serial number, use zero-
padded numbers based on your
expected capacity. Plan for expan-
sion, but usually two digits will be
more than sufficient.

web01.prd.nyc.example.com.
CNAME crimson.example.com.

Increment the serial numbers
sequentially and segment them
based on the type of server in a
particular data center, rather than a
globally-unique index. That means

you may have a web01 in multiple
data centers.

Convenience Names
Beyond the standardized structure,
you may want additional CNAME
records for convenience; words like
webmail, cmdb, puppet, etc..

webmail.example.com. CNAME
crimson.example.com.

Special Cases
Networking and Power Equipment
For networking and power equip-
ment, the hardware dictates the
purpose and it’s not likely that you
can just move them without recon-
figuration. Knowing that, ignore the
random word naming convention
and use functional abbreviations for
the DNS A record itself:

■■ con – Console/Terminal Server

■■ fwl – Firewall

■■ lbl – Load Balancer (physical)

■■ rtr – L3 Router

■■ swt – L2 Switch

■■ vpn – VPN Gateway

■■ pdu – Power Distribution Unit

■■ ups – Uninterruptible Power
Supply

…you’ll probably want the data
center geographical info in there
as well. You can still add CNAME
records for more specific info like
core/dist, public vs. private, etc. if
desired.

rtr01.nyc.example.com. A
192.0.2.1

24  PROGRAMMING

Secondary and Virtual IP Addresses
The tricky part with secondary and virtual IPs
(used for high availability, web services, net-
work migrations, VLAN tagged traffic, etc.)
are that they might be floating and not tied
to a specific piece of hardware. That being
the case, it’s easiest to just assign the func-
tional name directly to the DNS A record
and follow the normal naming convention.

Mail and Name Servers
For your mail and name servers, you have
to utilize DNS A records since MX and NS
records must never point to a CNAME alias.
That said, you can have more than one DNS
A record, so stick with the regular scheme
and add something else for the public MX
and NS records to utilize.

puma.example.com. A 192.0.2.20
mta01.example.com. A 192.0.2.20

DNS Configuration
Since we used proper DNS subdomains
for each unit of data, we can set the search
domains on each host to only pay attention
to their own local category of machines:

search prd.nyc.example.com example.com

This makes it convenient when working on
the machines, as you can use the shorter ver-
sion of hostnames to, for instance, ping sql01
rather than having to type in the full ping
sql01.prd.nyc.example.com when communi-
cating within a data center.

In general, our naming scheme also allows
you to prevent inadvertent information
disclosure by publicly exposing only the short
random hostname while resolving the func-
tional names solely on the internal network.
It’s a bit of security through obscurity, but
something to consider. (Note: you’d have to
tweak the “special cases” naming convention
if you want to hide those as well.)

Private Network and Out-of-Band Addressing
You can also take advantage of internal DNS resolution to
expose private network addresses and out-of-band/IPMI/iDRAC
addresses. The domains should match the other records, but once
again, utilize a proper subdomain. Note that best practices dic-
tate not using a fake TLD, as ICANN could register them at any
time and combining networks becomes trickier.

Complete Naming Scheme Example

crimson.example.com. A 192.0.2.11
crimson.lan.example.com. A 10.0.2.11
crimson.oob.example.com. A 10.42.2.11
web01.prd.nyc.example.com. CNAME crimson.example.com.

melody.example.com. A 192.0.2.12
melody.lan.example.com. A 10.0.2.12
melody.oob.example.com. A 10.42.2.12
web02.prd.nyc.example.com. CNAME melody.example.com.

verona.example.com. A 192.0.2.13
verona.lan.example.com. A 10.0.2.13
verona.oob.example.com. A 10.42.2.13
cfg01.prd.nyc.example.com. CNAME verona.example.com.
mon01.prd.nyc.example.com. CNAME verona.example.com.
puppet.example.com. CNAME verona.example.com.
nagios.example.com. CNAME verona.example.com.

banjo.example.com. A 192.0.2.104
banjo.lan.example.com. A 10.0.2.104
banjo.oob.example.com. A 10.42.2.104
web01.dev.pdx.example.com. CNAME banjo.example.com.
martinlutherkingsr.melblanc.kugupu.stevejob.kenkesey.
music.filmhistory.calligraphy.example.com CNAME banjo.
example.com.

Capacity
This naming scheme will easily support 1500+ global servers. If
you have more servers than that, you could add in the geography
portion for the random names and then reuse words from the
list. The downside being that crimson.nyc.example.com might
have a completely different purpose than crimson.pdx.example.
com, so there’s a bit of a mental barrier. Alternatively, you could
expand the initial word list, trying to add words similar in spirit
to the mnemonic encoding words.

If you’re managing 10,000+ servers, the host is much more
likely to only have a single segmented purpose, so ignore every-
thing we’ve written above and just go with a location-based or
functional naming scheme.

  25

Tips & Tricks

■■ You should remove potentially
confusing words like “email” from
the mnemonic encoding word list
if it’s technical jargon for your
environment.

■■ Keep the purpose abbreviations
consistent in length and always
have the serial number padding
match (i.e., don’t have 01 some
places and just 1 in others; always
use the longer 01 for everything).

■■ The actual purpose abbrevia-
tions you use aren’t important,
just pick a scheme, make sure it’s
documented, and stick to it.

■■ It’s easiest to keep the purpose
abbreviations somewhat general-
ized, as more detailed informa-
tion can be pulled from your
CMDB.

■■ No matter what, all info should
be in a CMDB and easily
accessible!

■■ Set multiple CNAME records
when logical, but keep in mind
that the more records you
have, the more there will be to
maintain.

■■ Automate as much of this as
possible.

■■ We have written a short script
named genhost that can help you
to randomly pick and keep track
of the words you’ve used for
hostnames.

Conclusion
Our server naming scheme lowers
the mental effort required to keep
track of machines and makes con-
necting services and maintaining
proper hardware records straight-
forward. The aspects of a machine
that are likely to change over time
are contained only within the
CNAME records. That means if a
server dies, you don’t have to go
and update all references to that
host on other machines, as you can
just update the CNAME records
to point to a new host altogether.
While our scheme does add some
complexity up front, it strikes a
good balance between usability,
maintainability, and support for
long-term growth. n

Aaron Bull Schaefer is a Linux Systems
Engineer and habitual Hacker News lurker
from Spokane, WA. He can be found at his
standing desk and has worked in environ-
ments ranging from small-scale startups to
large-scale educational institutes.

Reprinted with permission of the original author.
First appeared in hn.my/servername (mnx.io)

http://hn.my/servername

26  PROGRAMMING

By Justin Palmer

Growing up in rural Mis-
sissippi had its perks.
Most days my brother

and I would come home from
school, grab a snack from the fridge,
and head outside to fish in the
pond tucked behind the tree line
or play basketball with the neigh-
borhood kids. It was very much a
community where everyone knew
everyone. I had known many of the
kids from my graduating class since
second grade and my parents knew
their parents since high school and
earlier.

As beautiful as my hometown
was, it was, like many small towns,
economically depressed and void
of all but the necessities. As I grew
older, I became frustrated by this.
We had one small grocery store, one
stop light, two movie rental places,
and not a single fast food restaurant.
We had no book stores, no elec-
tronic stores, no big-box stores, and
only a couple of places to grab a
bite to eat.

Truth be told, the gas station (one
of those big ones, forever known as
“The BP” long after a name change)
was where we picked up most of
our take out. When highway 72 was

expanded to four lanes, a nearby gas
station was converted to a “super”
station. It was packed with a pizza
place, fresh sub sandwiches, and the
best chicken strips that have ever
graced the space below a heat lamp.
It was the community watering
hole.

The lack of access eventually
wore on me. As I started to grow
my design skills (my Hail Mary
escape from factory work), I would
hear of my peers in larger cities
going out to eat, to the movies, or
just having a beer at a nearby bar.
Beer, by the way, was illegal where I
grew up. Not just the consumption
of it, the mere possession of it.

 By 2007, after a couple of
years on the outskirts of Memphis,
TN, I had finally had enough and
convinced my wife to move to
Portland, OR. We knew very little
about Portland at the time. In fact,
we knew so little about the Pacific
Northwest, we moved in the dead
of winter, in a sports car, driving
through the Cascade mountain
range. It’s not exactly something
I’m proud of; a hilariously ill-con-
ceived cross-country trip.

When we moved to Portland we
decided we wanted to be in the
center of it all. There was so much
life around us; so much happening
relative to our rural upbringing. I
wanted to be as close to Downtown
as I could be so I could go as often
as I liked.

We eventually settled on the
Pearl District. A relatively new
residential development that was
previously occupied by a rail yard.
Finally, I would have the access that
I once craved. Almost anything I
wanted was a short walk or street-
car ride away. All that I wished for
growing up, I would have.

 Fast forward 7 years and we’re
still in the Pearl District. We’ve
added a member to our family who
now desires access to the things I
had while growing up. He wants a
yard to play in, a basketball goal,
and a proper house where he can
get excited without disturbing our
neighbors.

It’s an interesting scenario. The
Pearl District and Downtown aren’t
exactly teaming with affordable
single family homes and the further
you move out of the city center,
generally the less access you have

Finding The Perfect House
Using Open Data

  27

to the many things a dense urban area has to offer. But,
in reality, I only wished for a couple of things out of a
new location.

The journey begins
After thinking about the problem, I decided to list
out a set of criteria for a location I would want to live.
Other factors will eventually come into play, but I
wanted to narrow down the city into “target zones” —
that is, zones that meet a set of defined criteria.

■■ Walking distance to a grocery store: Living across
the street from a grocery store has spoiled me.

■■ Walking distance to a rail stop: This will allow me
to get to other locations in the city without a car
relatively quickly. One could argue the bus system
is just as good, but I would argue that it isn’t and I
much prefer rail.

I defined walking distance as ~5 blocks, but ~10
blocks is still a pretty sane distance. I want to be close
to a grocery store and close to a MAX or Streetcar
stop. Unfortunately, none of the real estate applications
I tried had a feature like this so I decided to create
what I needed using open data that I had already been
working with for some time now.

Gathering the data
We’ll need 3 open datasets.

■■ Open Streetmap polygons

■■ Trimet rail stops

■■ Portland building footprints

After downloading the data, we’ll want to re-project
the building dataset to EPSG:4326 so that all of the
data shared the same projection. EPSG:4326 (WGS84)
is a common projection and the projection of the other
two datasets so I went with that.

ogr2ogr -t_srs EPSG:4326 -f "ESRI Shapefile"
building-footprints.shp Building_Footprints_
pdx.shp

Now we need to create a PostGIS-enabled Postgres
database:

createdb portland
psql -c "create extension postgis" -d portland

Finally, we need to import the datasets to our freshly
created Postgres database. See the shp2pqsql docs for
an explanation of the flags used. Essentially we want
to import as latin1 (there are some encoding errors in
the building dataset), force 2d geometry, and create an
index on the geometry column.

shp2pgsql -W "latin1" -t 2D -I -D -d -s 4326
building-footprints.shp building_footprints |
psql -d portland

shp2pgsql -W "latin1" -t 2D -I -D -d -s 4326
osm-polygons.shp osm_polygons | psql -d portland

shp2pgsql -W "latin1" -t 2D -I -D -d -s 4326
trimet-rail-stops.shp trimet_rail_stops | psql
-d portland

After we have the data imported into Posgtres, we
can begin to find target geometries (buildings) that
meet the criteria we set. The first thing we want to
do is find the zones around all supermarkets using
st_expand. Our units are decimal degrees and 0.0045 is
about the desired distance of ~5 blocks. We’re not too
worried about being a little off here.

select st_expand(geom, 0.0045) as zone, 5 as
score from osm_polygons where osm_polygons.
shop='supermarket'

 At this point, we have large rectangle geometries. As
you can tell from the image above, some buildings lie
in overlapping zones. We want to score those buildings

28  PROGRAMMING

for every zone they intersect with. In similar fashion,
we want to find the zones around rail stops and public
parks.

The next thing we want to target individual build-
ings instead of merely drawing a large box around a
zone. We can find all buildings that intersect a zone
using st_intersects.

select * from supermarket_zones inner join
buildings on st_intersects(supermarket_zones.
zone, buildings.geom) where buildings.
subarea='City of Portland'

 Finally, we want to group identical geometries,
sum the score, and stuff the target buildings into a
new table. We don’t necessarily need to add the target
buildings to a new table, but continuously running
these queries across the entire building set can be slow.

select sum(score) as rank, gid, geom into
target_homes from target_buildings group by 2,
3;

Here’s what everything looks like combined which
can be run using psql -f score-buildings.sql -d portland.

drop table if exists target_homes;

with
supermarket_zones as (select st_expand(geom,
0.0045) as zone, 5 as score from osm_polygons
where osm_polygons.shop='supermarket'),
rail_stop_zones as (select st_expand(geom,
0.0045) as zone, 5 as score from trimet_rail_
stops),
park_zones as (select st_expand(geom, 0.0045) as

zone, 2 as score from osm_polygons where osm_
polygons.leisure='park'),
target_buildings as (
 select * from supermarket_zones inner join
buildings on st_intersects(supermarket_zones.
zone, buildings.geom) where buildings.
subarea='City of Portland'
 union select * from rail_stop_zones inner join
buildings on st_intersects(rail_stop_zones.zone,
buildings.geom) where buildings.subarea='City of
Portland'
)

select sum(score) as rank, gid, geom into
target_homes from target_buildings group by 2,
3;
create index target_homes_gix on target_homes
using gist (geom);

Styling the results
The last major thing we need to do is to visualize the
results on a map. For this, I’ll use the open source
editor Tilemill by Mapbox. This step is pretty straight
forward since we’ve already done the hard work of
extracting and scoring the buildings we’re interested in.
We only need to supply Tilemill with the name of the
table we stored our target homes in.

 Finally, let’s fill each building with a color based on
its score using CartoCSS.

  29

#homes {
 [rank >= 5] {
 polygon-fill: #ea97ca;
 }

 [rank >= 10] {
 polygon-fill: #3581ac;
 }

 [rank >= 15] {
 polygon-fill: #4dac26;
 }

 [rank >= 20] {
 polygon-fill: #a9bb29;
 }
}

We can add more layers to help give some context to
our results. Here’s what I ended up with after adding
layers for rail lines, rail stops, and supermarkets.

And that’s it. Now I have a good idea of locations
I can check out in my quest to find a house nearby a
supermarket and rail line. Nothing like quickly grab-
bing a beer for a backyard barbecue and a little game
of basketball. And hey, when the Trail Blazers play? I’ll
just walk a few blocks and hop on the MAX. n

Justin is a Designer and Engineer at GitHub who lives and works
from Portland, OR.

Reprinted with permission of the original author.
First appeared in hn.my/househunt (dealloc.me)

http://hn.my/househunt

30  PROGRAMMING

By Thomas Burette

So you want to write your
own CSV code? Fields sepa-
rated by commas and rows

separated by newline. Easy right?
You can write the code yourself in
just a few lines.

Hold on a second...

What if there are commas inside
the fields?
You need to enclose the field with
quotes ("). Easy right?

But can only some fields but not
all be quoted?

What if there are quotes in the
fields?
You need to double each instance
of quote in the field, and god forbid
you forget to enclose the field in
quotes.

Also make sure not to mistake a
quoted empty field (...,“”,...) for a
double quote.

What if there is a newline inside a
field?
Of course you must enclose the
field using quotes.

What are the accepted newline
characters?
CRLF? CR? LF? What if there are
multiple newlines?

What if the newline characters
change?
For example, what if newlines
within a fields are different from
newlines at the end of a line?

Still with me?

So You Want To Write
Your Own CSV Code?

What if the program reading the
CSV uses an encoding depending
on the locale?
A program can’t magically know
what encoding a file is using. Some
will use an encoding depending on
the locale of the machine.

Meaning if you save a CSV on a
machine and open it on another, it
may silently corrupt the data.

Do you really still want to roll
your own code to handle CSV?
CSV is not a well-defined file-
format. The RFC4180 does not
represent reality. It seems like every
program handles CSV in subtly
different ways. Please do not inflict
another one onto this world. Use a
solid library.

If you have full control over the
CSV provider, supplier, and the
data they emit, you’ll be able to
build a reliable automated system.

If a supplied CSV is arbitrary, the
only real way to make sure the data
is correct is for a user to check it
and eventually specify the delim-
iter, quoting rule....Barring that, you
may end up with an error, or worse,
silently corrupted data.

Writing CSV code that works
with files out there in the real
world is a difficult task. The rabbit
hole goes deep. Ruby CSV library is
2321 lines. n

Thomas Burette is a Software Developer
who has lived and worked in Brussels,
Ottawa and Paris. When not crafting robust
applications for clients, you’ll find him
traveling thousands of miles on a bicycle
and musing on various personal software
projects.

What if there is an extra comma at
the end of a line?
Is there an empty field at the end,
or is that just a superfluous comma?

What if there is a variable amount
of field per line?

What if there is an empty line?
Is that an EOF, a single empty field,
or no field at all?

What about whitespace?
What if there are heading/trailing
whitespaces in the fields?

What if the CSV you get always
has a space after a comma but it’s
not part of the data?

What if the character separating
fields is not a comma?
Not kidding.

Some countries use a comma
as decimal separator instead of a
colon. In those countries Excel will
generate CSVs with semicolon
as separator. Some files use tabs
instead of comma to avoid this
specific issue. Some even use non-
displayable ASCII characters.

Don’t forget to account for it
when reading an arbitrary CSV file.
No, there’s no indication which
delimiter a file uses.

What if the program reading CSV
use multiple delimiters?
Some program (including Excel)
will assume different delimiters
when reading a file from the disk
and reading it from the web. Make
sure to give it the right one!

What if there is non ASCII data?
Just use utf8 right? But wait...

Reprinted with permission of the original author.
First appeared in hn.my/csv (tburette.github.io)

http://hn.my/csv

  31

SPECIAL

By Isabelle Park

At Sift Science, we analyze a lot of data.
We distill fraud signals in real-time from
terabytes of data and more than a billion

global events per month. Previously, we discovered that
the U.S. has more fraud than Nigeria and solved the
mystery of Doral, FL. At our “Cats N’ Hacks” Hack-
athon last week, I decided to put some of our fraud
signals to the test. Working with our Machine Learning
Engineer, Keren Gu, we discovered some interesting
fraud patterns[1]:

Habit #1: Fraudsters Go Hungry

When we looked at total non-fraudulent (normal)
transactions by hour, normal users had slow starts to
their mornings. We noticed a slight dip in transaction
volume around lunchtime and suspect that’s because

people are taking lunch breaks! Happily fed, they
resumed activity in the afternoon and activity petered
out as users went home for the day.

What about fraudsters?

 Fraudsters, however, work through lunch. We don’t
see the same dip in activity during lunchtime in the
fraudulent sample. It seems that fraudsters are too busy
scheming their next move.

Seven Habits of Highly
Fraudulent Users

32  SPECIAL

Habit #2: Fraudsters Are Night Owls

When we analyzed fraudulent transactions as a per-
centage of all transactions, 3AM was the most fraudu-
lent hour in the day, and night-time in general was a
more dangerous time. This finding is consistent with
our historical findings and it makes sense: fraudsters are
more likely to execute attacks outside of normal busi-
ness hours when employees aren’t around to monitor
fraud.

Habit #3: Fraudsters Are International

Indian email address domains had one of the highest
fraud rates when compared to other top-level domains.
However, don’t give up on those great Bollywood
movies just yet! We’re only looking at data from the
past three months. We’ve seen this list fluctuate quite a
bit depending on what new tactics fraudsters use.

Habit #4: Fraudsters Don Multiple Identities

Fraudsters tend to make multiple accounts on their
laptop or phone to commit fraud. When multiple
accounts are associated with the same device, the
higher the likelihood of fraud. The graph above shows
how many times more likely a user is fraudulent given
the number of accounts associated with the user’s
device. Phew, that was a mouthful! Said in another way,
a user who has 6 accounts on her laptop is 15 times
more likely to be fraudulent than the average person.
Users with only 1 account however, are less likely to be
fraudulent.

 Habit #5: Fraudsters Still Use Microsoft

Some of the most fraudulent email domains are oper-
ated by Microsoft. Why could this be? Two possible
reasons are that 1) Microsoft has been around for a
lot longer and 2) email addresses were easier to create
back in the day. Today, websites use challenge responses
such as image verification or two-factor authentication
to verify your legitimate identity.

  33

Habit #6: Fraudsters Are Really Boring

One of the most widely recognized predictors of fraud
is the number of digits in an email address. The more
numbers, the more likely that it’s fraud. Why? Because
fraudsters are boring (and lazy). They use computer
programs to sequentially generate email addresses so
they don’t have to think of new ones. Emails such as
“foo1234@test.com” or “foo1234568@testing.com” are
highly suspicious. However, detecting fraud using email
address alone can be really difficult. The only way to
really get good at detecting fraud is to look at hundreds
of signals, sometimes in the thousands (that’s where
machine learning can help).

Habit #7: Fraudsters Are Sneaky

Fraudsters like to create disposable accounts that are
short-lived. In analyzing the age of fraudulent user
accounts (meaning, the amount of time between
account creation and a fraudulent transaction), we
found that they sign up on sites and then quickly
commit fraud. The longer the account age, the less

likely the user is committing fraud. Nonetheless, expe-
rienced fraudsters know that fraud detection compa-
nies track this type of signal. In the graph above, we
noticed “sleeper” fraud agents became active after 30
and 60 days of account creation. Fraudsters are sneaky!

Obviously, the above is not a definitive sample set.
Data can help us find potential answers as to why
fraudsters behave in the ways that they do, but as stat-
isticians say, “correlation is not causation”! It’s impor-
tant to use common sense and human intuition when it
comes to dealing with fraud. n

[1] Data was collected from the past three months over
our entire network. From the hundreds of millions of
transactions we processed during that time, we analyzed
about 6 million. Our “fraud” sample consisted of transac-
tions confirmed fraudulent by our customers; our “normal”
sample consisted of transactions confirmed by our custom-
ers to be non-fraudulent, as well as a subset of unlabeled
transactions. Please keep in mind that every company
faces different type of fraud, and that our findings may not
be representative of what you see. All transaction time-
stamps are local to the user.

Izzy is pursuing her MBA at Wharton with a major in Statistics.
This summer, she interned at Sift Science, where she applied
machine learning methods and visualized big data to predict
fraudulent behavior. She envisions a not too distant future where
knowledge is democratized for all.

Reprinted with permission of the original author.
First appeared in hn.my/fraudster (siftscience.com)

http://hn.my/fraudster

34  STARTUP

STARTUP

By Paul Buchheit

Note: This is the talk I gave at
Startup School Europe.

You’ve heard a lot of great
startup advice today.
This is going to be a little

different.
I often advise startups that it’s

better to seek deep appeal, to
create something that a few people
love, even if most people don’t
get it right away. In that spirit, I’ve
decided to share the technology and
dreams that matter to me, with the
hope that it will be very appealing
to the right person. This is, after all,
a business defined by outliers. Some-
one in this room is going to create
something very important. That’s
the person I’m hoping to reach.

We talk a lot about technology,
and its ability to transform and
improve the world. But technology
is more than just transistors and
algorithms. Those are just pat-
terns on silicon. The technology
that really drives the world are the
patterns in your head. Those are
the patterns that give rise to the
patterns in silicon, the patterns in
our society, and our whole concept
of reality. Change those patterns,

and you change your world. Maybe
not overnight, but like steering
the rudder on a great ship, a small
change now makes a big difference
later.

We often sweat life’s big deci-
sions, but it’s the little decisions
that matter the most — the ones
we make thousands of times a day,
often without even realizing it.
The big decisions are the inevitable
result of those small decisions. They
steered the ship into port and cre-
ated the conditions that gave rise to
the situation. And then perhaps we
feel that our hand has been forced
— the big decision must be made
— but really it was made by the
thousands of small decisions leading
up to it.

We all know the power of
defaults. This is about my defaults,
the things I keep top of mind and
return to when I’m stuck, con-
fused, or doubtful. It’s an effort to
tune and improve my patterns, my
technology.

First, I don’t know anything.
That’s a warning. If you take this all
on my authority, then you’re miss-
ing the point. You must own your
own programming.

It’s also the first pattern.
If I believe that I already know

the answer and possess the truth,
then I’m not genuinely open to
learning larger truths.

This is the danger of experience.
We already know better and we
already know that an idea or busi-
ness won’t work. This is one reason
that naive, young founders are
often the ones who start the most
successful companies — they just
don’t know any better, and they’re
often too arrogant to listen to those
who do.

I don’t want to downplay the
value of experience. This whole
event is about sharing and learning
from the experiences of others. But
don’t be limited by our experiences.
Just because it didn’t work in the
past doesn’t mean it won’t work in
the future. Likewise, what worked
before may not work again.

This is especially important for
startup founders. The best oppor-
tunities live in our collective blind
spots. To most, they appear to be
bad ideas, or simply unimportant. If
everyone could see the opportunity,
someone else would have already
taken it.

The Technology

  35

In 1997, Larry and Sergey tried
to sell Google for a million dol-
lars. Fortunately, they were unable
to find a buyer. The conventional
wisdom of the time was that search
was neither important, nor valuable.

Of course experience isn’t the
only danger. Dogma and ideology
are even worse. They provide us
with the answers, and put bound-
aries around our thinking. Ignor-
ing the dogma invites ridicule, or
even punishment. I suspect that’s
why more ideological societies are
less innovative. If we aren’t free to
wander outside the realms of con-
ventional thinking, then we won’t
happen upon the opportunities that
others have missed.

Escaping dogma is hard. From
the inside, it simply looks like truth
and reality. Watch out for any belief
that limits the range of your think-
ing and exploration. This includes
logic and reason. They are useful
tools, but just as often work to keep
us trapped inside of exclusionary
belief systems. If you believe your-
self to be a rational person, then
you’re in the trap.

To be innovative in our work,
we need to evade the limitations of
established thinking.

Which brings me to the second
pattern: Kill all daemon processes.

For those of you who aren’t
familiar with operating system
internals, daemons are computer
programs that run in the back-
ground performing various services,
often invisible to the user. Some-
times they get out of control and
start consuming all of the machine’s
memory, processor, or other com-
puting resources. This is one reason
why your computer or phone often
works better after a reboot.

I like using this as an analogy for
the same kinds of loops that oper-
ate in our brains, like when a song
gets stuck in your head. The more
insidious loops are the voices of
doubt, anger, and self-loathing that
infect our minds. Often they are the
internalized voices of our parents,
peers, the media, or just random
people on the Internet. Other
times, they pose as our own voice,
possibly one that has been there for
as long as we can remember. Either
way, these loops are often parasitic
and limiting. Anytime we take a risk
or move in a new direction, they
are there to doubt and criticize us.
Anytime we seek to escape dogma,
they are there to ridicule and con-
demn us.

Creating an innovative new
product often means spending years
working on something that most
people doubt the value of. It’s hard
to do that with a head full of noise,
voices telling us that we’re being
foolish and should just cut our
losses.

Before we launched Gmail, many
people inside of Google thought
that the whole project should be
scrapped. One notable executive
predicted that we would never even
get to a million users. We can’t let
those voices drag us down.

In order to grow, be free, and
reclaim our mental resources, it
helps to clear out these voices. It’s
simple, yet very difficult, because
they’ll keep coming back. But with
practice, we get better.

Right now, stop, observe your
breath, and enjoy a moment of
stillness in your mind. The voices
that keep interrupting the silence
are the runaway processes. Keep
dismissing them until there aren’t
any left.

Our days are full of spare
moments. Instead of filling them
with Flappy Bird or Facebook, take
the opportunity to find a calm
and clear mind. Even if you don’t
always succeed, it’s the practice
that matters. Walking in nature also
helps.

The voices will resist of course.
Continuing to assert their own
importance is one way they survive.

My response: Yes, and thank you.
That’s the third pattern.

Life rarely goes the way we want
it to. When we’re taking risks and
trying something new, we should
expect that it often won’t work out
the way we had planned. And even
if we try to keep our lives narrow
and risk free, things still won’t work
out the way we had planned. We
can get angry and frustrated and
stuck, or we can accept and move
forward, assuming that whatever
happened is somehow for the best.

I’ve found that this is a great
predictor of success among startups.
They all face setbacks, but some
are able to take those setbacks and
use them to their advantage. Others
just keep slamming their head
against the same wall, never making
any real progress. Uber has been
rather masterful at this. Here in
London, they turned the taxi strike
into a huge growth opportunity for
themselves.

In my own life, I’ve observed that
many of the best things are rooted
in some of the worst events, and
that I would not have one without
the other. But this about the small
decisions more than the big ones.
Every day is full of setbacks and
disappointments, but I do my best
to say, “Yes, and thank you,” accept-
ing it as a gift, however improbable
that may seem at the time. This
pattern has an almost magical way

36  STARTUP

of transforming reality and main-
taining the forward flow of life.

The ability to accept a greater
range of outcomes opens the door
to pattern number four: Choose the
more interesting path.

People often ask how I decide
which startups to invest in. There’s
no simple answer, but this is a big
part of it.

When I heard about Justin.tv in
early 2007, my first response was to
laugh and ask if they were serious.
They said yes, so I offered to invest.
The plan at the time was for Justin
Kan to attach a camera to his head
and stream it live on the Internet,
24/7. It seemed a little insane, but
I was very curious to find out what
would happen. I’ve found that that
kind of interestingness is a very
useful signal.

The immediate answer to, “What
would happen?” was a lot of people
trolling Justin. Next they added
the ability for anyone to stream
their lives. Most of it was boring, or
possibly illegal, but one thing really
caught on: video game streaming.
Eventually they changed their name
to Twitch.tv to focus exclusively on
competitive gaming. They are now
one of the most valuable properties
on the Internet. Their average daily
viewer watches over 100 minutes

per day, and they are the 4th largest
source of US Internet traffic after
Netflix, Google, and Apple.

I had no idea that would happen.
I mainly invested because it
sounded like an interesting experi-
ment, and the founders seemed to
genuinely believe that they were on
to something.

Interestingness is a sign of unex-
plored or under-explored territory.
If I already know what the outcome
is going to be, that’s not very inter-
esting. If it’s completely random,
like gambling, that’s also not inter-
esting. But I find that great start-
ups exist in a space of productive
uncertainty. Regardless whether
they succeed or fail, I’m likely to
learn something interesting.

That was my logic when joining
Google in 1999. I expected that
they would likely get squashed by
the much larger Alta Vista, but
the people were really smart, so I
believed that I could learn a lot in
the process.

In fact, I can guarantee success by
simply redefining success to include
learning something interesting. In
this way, I’ve always succeeded, and
also learned a lot. :)

If your startup has only one
definition of success, then you’re
setting yourself up for failure.

It’s tragic how many people
are sacrificing their lives on some
startup that they don’t really care
about, in pursuit of some external
success they’ll likely never achieve.
Personally, I think it’s a mistake.

Which leads me to pattern
number five: Love what you do.

It’s often said that you should
“Do what you love,” but that’s
mostly bad advice. It encourages
people to grind away their lives in
pursuit of some mostly unattainable
goal, such as being a movie star or
a billionaire startup founder. And
even if they do make it, often the
reality is nothing like they imag-
ined it would be, so they’re still
unhappy.

Do what you love is in the future.
Love what you do is right now. As
with the other patterns, it’s meant
to guide the small decisions that we
make every moment of every day.
It’s less about changing what you
do, and more about changing how
you do it.

One of the problems with having
a goal-oriented, extrinsic mindset
is that it treats the time between
now and task completion as an
annoying obstacle to be endured.
If you’re doing something that is
difficult, uncertain, and takes a
long time, such as building a new

“If your startup has only one definition of success,
then you’re setting yourself up for failure.”

“

  37

product or company, and you have
that mindset, then you’re likely
gambling away a big chunk of your
life. Subconsciously, you may also
compensate by choosing smaller,
more realistic goals, and that’s
unfortunate. Plus, it’s unpleasant.

When I was working long hours
at Google, it wasn’t because they
were whipping us to work harder.
I would have quit. I was doing it
because I genuinely love building
things. It wasn’t all fun of course,
but I typically enjoyed at least 80%
of my day.

“Do what you love” treats “what
you love” as a fixed thing, but it’s
not. I used to hate running. I would
sometimes force myself to run a
few miles because it’s supposed
to be healthy, but I never liked it.
Then I read a book that said we are
born to run, and that it can be fun.
Inspired, I decided to try running
just for fun, focus on the quality
of every step, and forget about the
goal completion aspect of it. Very
quickly, I learned to enjoy running,
and over time I’ve transformed
my entire relationship with fitness
and exercise to be oriented more
toward enjoyment.

Naturally, this more intrinsic
approach ultimately improves
the quality of our efforts, which
generally leads to greater extrinsic
rewards as well. Intrinsic motivation
and extrinsic motivation are best
when they are both pointed in the
same direction.

Real work always seems to
involve a certain amount of
unpleasant, grinding effort though,
and startups often have a lot of it.
It’s like having a baby. It’s 5% cute,
adorable moments, and 95% dirty
diapers and vomit.

The key to loving these more
unpleasant moments is meaning.
If we genuinely care about and
believe in our mission, then those
difficult times begin to take on a
more heroic quality.

Although it’s critical for a startup
to have very immediate and action-
able plans, such as write code and
talk to users, I believe it’s also
important to maintain a meaningful
and inspiring vision.

The sixth, and final pattern for
today is one that I borrowed from
Google: Maintain a healthy disre-
gard for the impossible.

I think Larry Page learned this
as a kid at summer camp, and to
me it represents the true innova-
tive spirit of the company. Now

that Google is huge and many have
grown cynical about the company,
it’s easy to dismiss such things. But
I remember when it was a tiny
startup that nobody had heard of,
and I had to explain to people that
it was like Yahoo! minus all of the
features other than search. People
would just give me this sad look
that seemed to say, “I’m sorry you
can’t get a real job.”

But inside the company there
were these absurdly ambitious ideas
that made it feel like we were going
to take over the world. It was an
exciting place to be.

Larry wanted to store and search
the whole web in memory, even
though our machines only had 1/4
GB of RAM. It was unrealistic at
the time, but Moore’s law moves
fast and very soon we were doing it,
but only because everyone’s think-
ing was already oriented in that
direction.

He also wanted self-driving cars
that would deliver hamburgers.
That hasn’t happened yet, but I bet
it will.

For me, potentially impossible
goals are much more inspiring
than realistic ones. I’d rather fail at
something awesome, than succeed
at something inconsequential.

I’d rather fail at something awesome, than
succeed at something inconsequential.”

38  STARTUP

As with many of the other pat-
terns, this one is about continually
shedding the limitations of out-
dated thinking.

When I decided to write the
Gmail interface in JavaScript,
pretty much everyone who knew
anything about JavaScript or web
browsers told me that it was a bad
idea. It had been tried in the past,
and always ended in disaster. But
times change fast, and fortunately
I was in an environment where
doing impossible things was not
just permitted, but encouraged.
After we launched, the impossible
quickly became the new normal,
completely changing how we think
about web apps. That’s fun.

For me, startups are more than
just a clever way to make money.
They are machines for harness-
ing the fire of human self-interest,
creating a self-sustaining reaction
capable of rapidly transforming the
world. Self-interest is often treated
as if it were dirty or wrong, but
NASA didn’t get to the moon by
vilifying gravity.

It’s often assumed that business
is all about money, but to me that’s
like saying that rockets are all about
rocket fuel. On some level it’s true.
You won’t even make it off the
launch pad without fuel. But that
myopic view misses out on the
larger purpose and mission of the
machine. Certainly some businesses
really are about nothing more than
making money, but among the truly
significant founders I’ve known,
there’s always a larger purpose. It’s
not just a nihilistic pursuit of rocket
fuel.

Before I finish, I want to mention
my impossible goal.

We now, for the first time ever,
have the technology and resources
necessary to make the world a great

place for everyone. We can provide
adequate food, housing, educa-
tion, and healthcare for everyone,
using only a fraction of our labor
and resources. This means that we
can put an end to wage-slavery.
I don’t have to work. I choose to
work. And I believe that everyone
deserves the same freedom I have.
If done right, it’s also economically
superior, meaning that we will all
have more wealth.

We often talk about how bril-
liant or visionary Steve Jobs was,
but there are probably millions of
people just as brilliant as he was.
The difference is that they likely
didn’t grow up with great parents,
amazing teachers, and an environ-
ment where innovation was the
norm. Also they didn’t live down
the street from Steve Wozniak.

Economically, we don’t need
more jobs. We need more Steve
Jobs. When we set everyone free,
we enable the outliers everywhere.
The result will be an unprec-
edented boom in human creativity
and ingenuity.

And now the impossible part.
First we have to learn how to get
along with each other, and with
ourselves.

I’m looking for full-stack hackers.
People who understand that tech-
nology is more than just patterns in
silicon. The same patterns and sys-
tems of patterns exist everywhere.
Capitalism is a technology. Like
the internal combustion engine,
it’s tremendously valuable and
transformative, but it’s not beyond
improvement. The same goes for
government, religion, and every-
thing else. We have an incredible
future ahead of us, but we won’t
get there by clinging to obsolete
patterns.

As founders, we must start small,
and work with the grain of what
is. The path is never obvious, and
innovation happens in the most
unexpected ways. The personal
computer was originally dismissed
as a toy. If you think Instagram is
just a collection of photo filters,
you’re missing the big picture.
Maybe photo sharing won’t lead
directly to world peace, but helping
people to see the world through
the eyes of others looks like a step
in the right direction to me. And
they grew to over 200 million users
in less than four years. That’s larger
than most countries. That’s the
power of a startup.

As Richard Feynman said, “The
worthwhile problems are the ones
you can really solve or help solve,
the ones you can really contribute
something to.” Don’t be discour-
aged by people who dismiss your
efforts as trivial just because you
aren’t curing cancer or traveling to
Mars. The patterns I’ve presented
today are about developing an
independent mind, unburdened by
the limitations of other people’s
thinking. Then you can judge for
yourself what is worthwhile, and
move forward with the conviction
necessary to do something great. A
journey of a thousand miles begins
with a single step.

Thank you. n

Paul Buchheit is a partner at the ven-
ture capital firm Y Combinator. He previ-
ously co-founded FriendFeed, which was
acquired by Facebook in 2009, and was
one of the first engineers at Google. At
Google, he started Gmail, suggested the
“Don’t be evil” motto, and created the first
AdSense prototype.

Reprinted with permission of the original author.
First appeared in hn.my/tech (paulbuchheit.blogspot.com)

http://hn.my/tech

  39

I’ll often come up with an idea
that I get excited about.

Then I brainstorm a catchy
name for it, check the availability
of urls and social media accounts,
maybe even set up a landing page.
It gives me a big rush, and I imagine
a dazzlingly bright future ahead for
the concept.

And then the idea crawls up and
dies inside of me.

Why?
Because I don’t actually do

anything.
To finish things, you need to fall

in love with the part of the pro-
cess that’s harder to love — the bit
where you roll up your sleeves and
do the damn thing.

Maybe that’s why it’s got another
much tougher sounding name:
execution.

The human brain is a brilliant
idea-generating machine. In the past
we had to convert our ideas into
solutions just to stay alive: to make
sure that we had enough food... or
didn’t get eaten. But now, in the
safety of our comfortable, hygienic,
homogenized 21st century lives,
it’s all too easy to fall asleep on our
true potential.

Wake Up and Smell the Hard
Work
Your idea doesn’t mean diddly-
squat until it’s out in the world.
And to do that is going to take
some hard manual labor.

So to stay on track, you’ll need to
engage with the execution process
as much as the idea itself.

None of my various bright ideas
— a social network for sneaker
collectors, customizable artwork
of your bicycle, a recipe sharing
platform, a book about designers
turned entrepreneur (OK, that last

one I am actually set on doing) —
have come to fruition yet.

And whilst CycleLove (and its
sister shop CycleLux) might be
building momentum, I still have
a huge hang-up about creating
the eBooks or information-based
content about cycling or whatever
it is that I’ve been talking about
for months and months. It’s still a
blog, not a business, and costing me
money instead of making it.

I chickened out of the work.
You need graft, or grit, or gump-

tion, or whatever you want to call
it.

Whether it’s by actually blog-
ging on your blog, or starting your
startup, value is created by doing.

It’s easier to sit around and talk
about building a startup than it
is to actually start a startup. And
it’s fun to talk about. But over
time, the difference between fun
and fulfilling becomes clear. Doing
things is really hard — it’s why,
for example, you can generally tell
people what you’re working on
without NDAs, and most patents
never matter. The value, and the
difficulty, comes from execution
— Sam Altman

Dial Down the Resolution(s)
When I looked back at the list of
goals I’d set out for 2013 the other
day, I felt pretty embarrassed. Espe-
cially as it’s published in plain sight
on the internet. I didn’t come close
to achieving any of my resolutions.
Not one thing on the list.

But I know that beating yourself
up about this kind of stuff is stupid.
(Make changes, not criticisms).

So…I haven’t made any New
Year’s resolutions this year.

You don’t want high resolu-
tions anyhow — you want low

resolution.
You want to let go of the fear of

fucking up, of it not being perfect,
of what other people think, of
things that probably won’t ever
happen, and just crank that stuff
out, baby.

Instead of Trying to Finish Every-
thing, Try to Finish One Thing.
Today if possible.
And then another...
And another...
And...
(I think I just finished this article).

What are you going to finish
today? n

James Greig is a London-based graphic
designer/writer [greig.cc] and the founder
of CycleLove [cyclelove.net]

http://greig.cc
http://cyclelove.net
http://mailjet.com

40  STARTUP

Metrics and monitoring for people
who know what they want
We know from experience that monitoring your servers and
applications can be painful, so we built the sort of service that
we would want to use. Simple to set up, responsive support
from people who know what they're talking about, and reliably
fast metric collection and dashboards.

Why Hosted Graphite?

• Hosted metrics and StatsD: Metric aggregation without the setup headaches

• High-resolution data: See everything like some glorious mantis shrimp / eagle hybrid*

• Flexible: Lots of sample code, available on Heroku

• Transparent pricing: Pay for metrics, not data or servers

• World-class support: We want you to be happy!

Now with Grafana!

Promo code: HACKER

*Hosted Graphite’s mantis shrimp / eagle breeding program has been unsuccessful thus far

Dashboards StatsD Happiness

Grab a free trial at http://www.hostedgraphite.com

http://hostedgraphite.com

	FEATURES
	Inside the Mirrortocracy
	Painting in Clojure

	PROGRAMMING
	SSH Kung Fu
	A Proper Server Naming Scheme
	Finding The Perfect House Using Open Data
	So You Want To Write Your Own CSV Code?

	SPECIAL
	Seven Habits of Highly Fraudulent Users

	STARTUP
	The Technology

