
Issue 51  August 2014

My Quest to Build the
Ultimate Music Player

Andrew Kelley

2  ﻿

Curator
Lim Cheng Soon

Contributors
Andrew Kelley
Yu Jiang Tham
Chris Loukas
Hadi Hariri
Robert Muth
Brian Green

Proofreaders
Emily Griffin
Sigmarie Soto

Ebook Conversion
Ashish Kumar Jha

Printer
MagCloud

Hacker Monthly is the print magazine version
of Hacker News — news.ycombinator.com, a social news
website wildly popular among programmers and startup
founders. The submission guidelines state that content
can be “anything that gratifies one’s intellectual curiosity.”
Every month, we select from the top voted articles on
Hacker News and print them in magazine format.
For more, visit hackermonthly.com

Advertising
ads@hackermonthly.com

Contact
contact@hackermonthly.com

Published by
Netizens Media
46, Taylor Road,
11600 Penang,
Malaysia.

Hacker Monthly is published by Netizens Media and not affiliated with Y Combinator in any way.

Issue 51 August 2014

My Quest to Build the
Ultimate Music Player

Andrew Kelley

http://news.ycombinator.com
http://hackermonthly.com
mailto:ads@hackermonthly.com
mailto:contact@hackermonthly.com

  3

For links to Hacker News dicussions, visit hackermonthly.com/issue-51

Contents
FEATURE

04  My Quest to Build the Ultimate Music Player
By Andrew Kelley

PROGRAMMING

14  Build Your Own Drink Mixing Robot
By Yu Jiang Tham

24  Testing with Jenkins, Ansible, and Docker
By Chris Loukas

27  Build Tools – Make, No More
By Hadi Hariri

30  Better Bash Scripting in 15 Minutes
By Robert Muth

SPECIAL

34  How to Convert a Digital Watch to a Negative Display
By Brian Green

http://hackermonthly.com/issue-51

4  FEATURE

FEATURE

By Andrew Kelley

My Quest to Build the
Ultimate Music Player

  5

Over the past few years,
I have been slowly but
surely building my own

music player. It’s been a wild ride.
The codebase has radically changed
several times, but it is always con-
verging on a better music listening
experience.

In this article my goal is to take
you along for the ride.

I <3 Amarok 1.4
Back in 2009, my music player of
choice was Amarok 1.4. This was by
far the best music player I had ever
used on Windows, Mac, or Linux,
especially when combined with
the wonderful ReplayGain plugin.
Here’s a screenshot:

One way you can tell how much
people loved this music player is
by looking at the comments on the
release blog articles for Amarok
2.0, which rebuilt the player from
scratch and took it in a completely
different direction. Arguably, they
should have picked a different proj-
ect name and logo. Look at some
of these comments, how angry and
vitriolic they are:

■■ 2.0 [hn.my/amarok20]

■■ 2.1 [hn.my/amarok21]

■■ 2.2 [hn.my/amarok22]

Even now, 4 years later, the
project is at version 2.8 and the
release name is titled “Return To
The Origin”:

Amarok 1.8 is titled “Return To
The Origin” as we are bringing
back the polish that many users
loved from the original 1.x series!

That should give you an idea
of how much respect Amarok 1.4
commanded.

Even so, it was not perfect. Nota-
bly, the ReplayGain plugin I men-
tioned above had several shortcom-
ings. Before I get into that, however,
let me take a detour and explain
what ReplayGain, or more gener-
ally, loudness compensation, is and

some of its implications.

A Short Explanation of
Loudness Compensation
Have you ever seen this
2-minute video explain-
ing the Loudness War?
[hn.my/loudnesswar]

The video demonstrates
a trend in digital audio
mastering where songs
are highly compressed to
sound louder, and how

this can compromise the integrity
of the music.

While thinking about building
a music player, we’re not going
to make moral judgments about
whether or not compression is ruin-
ing music for everybody. If users
want to listen to highly compressed
music, that’s a valid use case. So
we have to consider a music library
which contains both compressed
songs and dynamic songs.

Here is a song called The Hap-
piest Days of Our Lives by Pink
Floyd, mastered in 1979:

 Here is a song called Saying
Sorry by Hawthorne Heights, mas-
tered in 2006:

 It is immediately obvious that
the second one is much louder than
the other. So what happens when
they are played one after the other
in a music player?

When the quieter song comes
on first, the user reaches for the
volume knob to turn it up so they
can hear. Oops. When the next song
begins, a surge of adrenaline shoots
through the user’s body as they
scramble to turn the volume down.
This goes beyond poor usability;
this problem can cause hearing loss.

The solution is to analyze each
song before playing it to figure out
how “loud” it sounds to humans.
Then the music player adjusts the
playback volume of each track to
compensate for the perceived loud-
ness. This way, the user does not
have to adjust the volume for each
track that comes on.

The idea is simple enough, but it
poses a few subtle challenges.

For one, the loudness of an
individual track might be different
than the loudness of the album as a
whole. A complete loudness com-
pensation solution has to take this
into account, both during scanning
and playback.

http://hn.my/amarok20
http://hn.my/amarok21
http://hn.my/amarok22
http://hn.my/loudnesswar

6  FEATURE

An even trickier problem is
avoiding clipping. Music is com-
posed of samples which have a
fixed range. For example in float-
ing point format, samples can be
between 0.0 and 1.0. Even quiet
songs usually have some samples
which peak at 1.0, for example on
the drums. But we need to turn the
volume up on these quiet songs to
make them sound as loud as the
highly compressed ones.

If we naïvely increased the
volume on such a song, we would
end up with something like this:

 The grey bars above the red lines
represent clipping. This causes dis-
tortion and generally sounds awful.

The solution is not to increase
the volume of the quiet song, but
to decrease the volume of the loud
song. In order to do this, we intro-
duce an amount called pre-gain.
All songs are turned down by this
amount, which gives us the head-
room we need to turn the quieter
ones back up.

It’s not a perfect solution though.
The lower the pre-gain, the more

the music player will sound quieter
than other applications on the com-
puter. The higher the pre-gain, the
more likely that there is not enough
headroom to increase the volume of
a quiet song enough.

In 2010, the European Broad-
casting Union introduced a new
standard called R128. This standard
outlines a strategy for analyzing
media and determining how loud
it is. There is a motion to make
ReplayGain 2.0 use this standard.

Shortcomings of Amarok 1.4
As much as I loved Amarok 1.4,
it did not even attempt to address
these loudness issues. There is no
built-in loudness compensation.

The ReplayGain plugin I men-
tioned earlier was great, but it was
limited in usefulness:

■■ It had to scan every time the
playlist updated; it didn’t cache
the data.

■■ Each format that you wanted to
scan had a different command-
line utility which had to be
installed. This means that the set
of songs that Amarok 1.4 could
play was completely different
than the set of songs that it could
scan.

■■ It applied the volume changes
on a gradient instead of instantly,
and timing was not precise. This
means that it might erroneously
turn up the loudness far too high
in the transition time to the next
track. This behavior was distract-
ing and sometimes ear-piercingly
painful.

■■ You had to manually decide
between track and album mode.
This is a pointless chore that the
music player should do automati-
cally. Here’s a simple algorithm:

If the previous item in the play-
list is the previous item from
the same album, or the next
item in the playlist is the next
item from the same album,
use the album ReplayGain
information.

Otherwise, use the track
ReplayGain information.

Aside from the loudness compen-
sation, I had a couple other nits to
pick:

■■ Dynamic Mode was a useful fea-
ture that could continually play
random songs from the library.
But the random selection was too
random; it would often queue the
same song within a short period
of time.

■■ If the duration tag was incorrect
in a song, or if in was a variable
rate MP3, the song would seem-
ingly end when the song had not
yet gotten to the end. Or in other
words, the reported duration was
incorrect and seeking would be
broken.

I’ve spent some time criticizing,
now let me be more constructive
and actually specify some features
that I think music players should
have.

My Laundry List of Music Player
Features
Loudness Compensation using the
same scanner as decoder
This is absolutely crucial. If you
want to solve the loudness com-
pensation problem, the set of songs
which you can decode and play
back must be the same set of songs
which you can scan for loudness.
I should never have to manually
adjust the volume because a differ-
ent song or album came on.

Ideally, loudness scanning should
occur lazily when items are added
to the play queue and then the
generated values should be saved so
that the loudness scanning would
not have to be repeated.

  7

Do not trust duration tags
A music player already must
scan songs to determine loudness
compensation values. At the same
time, it should determine the true
duration of the file and use that
information instead of a tag which
could be wrong.

If my friends come over, they can
control the music playback
Friends should be able to upload
and download music, as well as
queue, skip, pause, and play.

Ability to listen to my music library
even when I’m not home
I should be able to run the music
player on my home computer and
listen to a real-time stream from
work, for example.

Gapless Playback
Many albums are created in order
to be a listening experience that
transcends tracks. When listening to
an album, songs should play seam-
lessly and without volume changes
at the seams. This means that loud-
ness scanning must automatically
take into account albums.

Robust codec support
You know how when you need to
play some obscure video format,
you can always rely on VLC to play
it? That must be true for the ulti-
mate music player as well. A music
player must be able to play music.
If you don’t have a wide range of
codecs supported, you don’t have a
music player.

Keyboard Shortcuts for Everything
I should be allowed to never touch
the mouse when operating the
music player.

Clean up my messy files
One thing that Amarok 1.4 got
right is library organization. It
offered a powerful way to specify

the canonical location for a music
file, and then it had an option to
organize properly tagged music files
into the correct file location.

I don’t remember the exact
format, but you could specify a
format something like this:

%artist/%album/%track %title%extension

Filter Search
There should be a text box where I
can type search terms and instantly
see the search results live. And
it should ignore diacritics. For
example, I could type “jonsi ik” and
match the song Boy Lilikoi by Jónsi.

Playlist Mode that Automatically
Queues Songs
Some names for this feature are:

■■ Dynamic Mode

■■ Party Mode

■■ DJ Mode

The idea is that it automatically
queues songs — kind of like a real-
time shuffle — so that you don’t
have to manually decide what to
listen to.

One common flaw found in
many players is using a truly
random algorithm. With true ran-
domness, it will frequently occur
that a song which has recently been
randomly chosen will be randomly
chosen again.

A more sophisticated algorithm
weights songs by how long it has
been since they have been queued.
So any song would be possible to
be queued, but songs that have not
been queued recently are much
more likely to be queued. Queue
date is chosen rather than play date
because if a song is queued and the
user skips the song, this should still
count in the weight against it being
chosen again.

“PartyBeat”
It would be a long time before my
wish list of features would become
a reality. Meanwhile, back in college
my buddy made a fun little project
[hn.my/partybeat] which served as
a music player that multiple people
could control at the same time with
a web interface. He installed it in
my and my roommate’s apartment,
and the three of us used it in our
apartment as a shared jukebox;
anarchy deciding what we would
listen to while we worked on our
respective jobs, homework, or proj-
ects. We dubbed it “PartyBeat.”

Here’s a screenshot:

This project used Django and
xmms2 and had a bug-ridden,
barren, and clunky web-based user
interface. It was so lacking com-
pared to my usual Amarok 1.4
experience, yet somehow I could
not give up the “shared jukebox”
aspect. It was simply too fun to
listen to music together, regardless
of the interface.

So finally I decided to build the
ultimate music player. It would still
have a web-based interface, but it
would behave like a native applica-
tion — both in feel and in respon-
siveness. It should be nice enough
that even when you want to listen
alone it would still be your go-to
player of choice.

http://hn.my/partybeat

8  FEATURE

Fumbling Around with
Technology
In early 2011 I started investigat-
ing what technology to use to build
this thing. I knew that I wanted a
backend which could decode many
audio formats, do gapless playback,
and provide some kind of interface
for a web server to control it.

I tinkered a bit with Qt and the
Phonon framework, but I didn’t
get as far as having a web interface
controlling it.

Eventually I stumbled upon
Music Player Daemon. At the
time this seemed like a perfect fit,
especially since the XMMS2 wiki
admitted that if they had known
that MPD existed when they
started the project, they would
probably have just used it. MPD
is a service — it has a config file
which tells it, among other things,
the location of your music library,
and then it runs in the background,
listening on a port (typically 6600),
where you can issue commands via
the protocol telling it to pause, play,
skip, queue, unqueue, and all that
jazz.

The first iteration of “PartyBeat2”
was a small Python 3 server which
was merely a proxy between the
client-side JavaScript code and
MPD, as well as a file server to
serve the client-side HTML and
JavaScript.

At this point I had a basic
proof-of-concept. However, prog-
ress slowed for a few months as I
embarked on a 12-day hiking trip
followed immediately by the first
day of work at Amazon, my first
out-of-college job.

After a short hiatus, I revisited
the project. This was right when
socket.io was getting a lot of hype,
and it seemed like the perfect fit
for my design. Also I had just given
Coffee-Script a real chance after
snubbing it initially. So I ported
over the proxy/file server to Node.js
and got a prototype working:

A week of iterating later, I had
the basics of a user interface, and a
name:

I named it Groove Basin, after
the Sonic the Hedgehog 3 Azure
Lake Remix by Rayza. As homage
to the original project, I picked a
JQuery UI theme for the UI, except
this time I chose Dot Luv.

Building a Music Player Backend
So, how hard could it be to build
my own music player backend?
Seems like it would be a matter of
solving these things:

■■ Use a robust library for audio
decoding. How about the same
one that VLC uses?

■■ Support adding and removing
entries on a playlist for gapless
playback.

■■ Support pause, play, and seek.

■■ Per-playlist-item gain adjustment
so that perfect loudness compen-
sation can be implemented.

■■ Support loudness scanning to
make it easy to implement, for
example, ReplayGain.

■■ Support playback to a sound
device chosen at runtime.

■■ Support transcoding audio into
another format so a player can

implement, for example,
HTTP streaming.

■■ Give raw access to decoded
audio buffers just in case a
player wants to do some-
thing other than one of the
built-in things.

■■ Try to get other projects to
use it to benefit from code reuse.

Make the API generic enough
to support other music players
and other use cases.

Get it packaged into Debian
and Ubuntu.

Make a blog post about it to
increase awareness.

  9

After reading up a little bit on
the insane open-source soap-opera
that was the forking of libav from
ffmpeg (here are two sides to the
story: libav side, ffmpeg side), I
went with libav simply because
it is what is in the Debian and
Ubuntu package managers, and
one of my goals is to get this music
player backend into their package
managers.

Several iterations later, I now
have libgroove, a C library with
what I think is a pretty solid API.
How it works:

 The API user creates a Groove-
Playlist which spawns its own
thread and is responsible for
decoding audio. The user adds and
removes items at will from this
playlist. They can also call pause,
play, and seek on the playlist. As
the playlist decodes audio, where
does the decoded audio go? This is
where those sinks come in.

A sink is a metaphor of a real-life
sink that you would find in a bath-
room or kitchen. Sinks can fill up
with water, and unless the water is
drained the sink will continue to fill
until it overflows. Likewise, in audio
processing, a sink is an object which
collects audio buffers in a queue.

In libgroove, decoded audio is
stored in reference-counted buffer
objects and passed to each con-
nected sink. Each sink does what-
ever processing it needs to do and
then calls “unref” on the buffer.
Typically each sink will have its
own thread which hungrily waits
for buffers and devours them as fast
as possible. However the playlist is
also decoding audio as fast as pos-
sible and pushing it onto each sink’s
queue. It is quite possible, that a
sink’s queue fills up faster than it
can process the buffers. When the
playlist discovers that all its sinks
are full, it puts its thread to sleep,
waiting to be woken up by a sink
which has drained enough.

libgroove provides some higher-
level sink types in addition to the
basic sink. Each higher level sink
runs in its own thread and is built
using the basic sink. These include:

■■ playback sink: opens a sound
device and sends the decoded
audio to it. This sink fills up
with events that signal when the
sink has started playing the next
track, or when a buffer underflow
occurs.

■■ encoder sink: encodes the audio
buffers it receives and fills up
with encoded audio buffers.
These encoded buffers can then
be written to a file or streamed
over the network, for example.

■■ loudness scanner sink: uses the
EBU R 128 standard to detect
loudness. This sink fills up with
information about each track,
including loudness, peak, and
duration.

The API is designed carefully
such that even though the primary
use case is for a music player back-
end, libgroove can be used for other
use cases, such as transcoding audio,
editing tags, or ReplayGain scan-
ning. Here is an example of using
libgroove to for a simple transcode
command line application:

/* transcode one or more files into one output file */

#include <groove/groove.h>
#include <groove/encoder.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

static int usage(char *arg0) {
 fprintf(stderr, "Usage: %s file1 [file2 ...] --output outputfile [--bitrate 320] [--format name]
[--codec name] [--mime mimetype]\n", arg0);
 return 1;
}

10  FEATURE

int main(int argc, char * argv[]) {
 // arg parsing
 int bit_rate_k = 320;
 char *format = NULL;
 char *codec = NULL;
 char *mime = NULL;

 char *output_file_name = NULL;

 groove_init();
 atexit(groove_finish);
 groove_set_logging(GROOVE_LOG_INFO);
 struct GroovePlaylist *playlist = groove_playlist_create();

 for (int i = 1; i < argc; i += 1) {
 char *arg = argv[i];
 if (arg[0] == '-' && arg[1] == '-') {
 arg += 2;
 if (i + 1 >= argc) {
 return usage(argv[0]);
 } else if (strcmp(arg, "bitrate") == 0) {
 bit_rate_k = atoi(argv[++i]);
 } else if (strcmp(arg, "format") == 0) {
 format = argv[++i];
 } else if (strcmp(arg, "codec") == 0) {
 codec = argv[++i];
 } else if (strcmp(arg, "mime") == 0) {
 mime = argv[++i];
 } else if (strcmp(arg, "output") == 0) {
 output_file_name = argv[++i];
 } else {
 return usage(argv[0]);
 }
 } else {
 struct GrooveFile * file = groove_file_open(arg);
 if (!file) {
 fprintf(stderr, "Error opening input file %s\n", arg);
 return 1;
 }
 groove_playlist_insert(playlist, file, 1.0, NULL);
 }
 }
 if (!output_file_name)
 return usage(argv[0]);

 struct GrooveEncoder *encoder = groove_encoder_create();
 encoder->bit_rate = bit_rate_k * 1000;
 encoder->format_short_name = format;

  11

 encoder->codec_short_name = codec;
 encoder->filename = output_file_name;
 encoder->mime_type = mime;
 if (groove_playlist_count(playlist) == 1) {
 groove_file_audio_format(playlist->head->file, &encoder->target_audio_format);

 // copy metadata
 struct GrooveTag *tag = NULL;
 while((tag = groove_file_metadata_get(playlist->head->file, "", tag, 0))) {
 groove_encoder_metadata_set(encoder, groove_tag_key(tag), groove_tag_value(tag), 0);
 }
 }

 if (groove_encoder_attach(encoder, playlist) < 0) {
 fprintf(stderr, "error attaching encoder\n");
 return 1;
 }

 FILE *f = fopen(output_file_name, "wb");
 if (!f) {
 fprintf(stderr, "Error opening output file %s\n", output_file_name);
 return 1;
 }

 struct GrooveBuffer *buffer;

 while (groove_encoder_buffer_get(encoder, &buffer, 1) == GROOVE_BUFFER_YES) {
 fwrite(buffer->data[0], 1, buffer->size, f);
 groove_buffer_unref(buffer);
 }

 fclose(f);

 groove_encoder_detach(encoder);
 groove_encoder_destroy(encoder);

 struct GroovePlaylistItem *item = playlist->head;
 while (item) {
 struct GrooveFile *file = item->file;
 struct GroovePlaylistItem *next = item->next;
 groove_playlist_remove(playlist, item);
 groove_file_close(file);
 item = next;
 }
 groove_playlist_destroy(playlist);

 return 0;
}

12  FEATURE

Note that this code contains no
threading. Even so, because of the
way libgroove is designed, when
this app runs, one thread will work
on decoding the audio while the
main thread seen in this code will
work on writing the encoded buf-
fers to disk.

Once I had this backend built, I
needed to use it in Groove Basin,
which you may recall is a Node.
js app. To do this I built a native
add-on node module called groove.
It uses libuv and v8 to interface
between C and Node.js. I wrote
the majority of this code at Hacker
School, an experience which I
highly recommend.

With the groove node module
complete, the new architecture
looked like this:

 No longer did Groove Basin
need to run a third party server
to make everything work — just a
single Node.js application with the
correct libraries installed. This put
me in control of the audio backend
code which meant that I had the
power to make everything work
exactly like I wanted it to.

Packaging
Nothing turns away potential users
faster than a cumbersome install
process. I knew that I had to make
Groove Basin easy to install, so I
took several steps to make it so.

One thing I did was bundle some
of the harder-to-find dependencies
along with it. Specifically, libav10,
libebur128, and SDL2. This way if
the user is on a computer that does
not have those packages
readily available, they may
still install libgroove.

This convenience is less
desirable than relying on
existing system depen-
dencies, however, so if the
configure script detects
system libraries, it happily
prefers them.

Next, I made a libgroove PPA for
Ubuntu users. This makes installing
libgroove as easy as:

sudo apt-add-repository
ppa:andrewrk/libgroove
sudo apt-get update
sudo apt-get install lib-
groove-dev libgrooveplayer-dev
libgrooveloudness-dev

Then I joined the Debian multi-
media packaging team. This team is
dedicated to making Debian a good
platform for audio and multimedia
work. They kindly accepted me
and coached me while I worked
on packaging up libebur128 and
libgroove for Debian. After a few
back and forths, a libebur128
Debian package is ready to be
installed from testing, and a lib-
groove Debian package can be
installed from experimental. Once
the libav10 transition is complete,
libgroove can be submitted to
unstable, where it will move into
testing, and then finally be released
to all of Debian!

After a few more months of
progress, I’d like to package up
Groove Basin itself. This way, the
entire installation process could be
just an apt-get install away.

Conclusion
3 years, 6 months from git init and
Groove Basin is still under active
development. Here’s what the UI
looks like today:

 Some of the features that it
provides are:

■■ Fast, responsive UI. It feels like a
desktop app, not a web app.

■■ Dynamic playlist mode which
automatically queues random
songs, favoring songs that have
not been queued recently.

■■ Drag and drop upload. Drag and
drop playlist editing. Rich key-
board shortcuts.

■■ Lazy multi-core EBU R128 loud-
ness scanning (tags compatible
with ReplayGain) and automatic
switching between track and
album mode. “Loudness Zen”

■■ Streaming support. You can listen
to your music library — or share
it with your friends — even when
you are not physically near your
home speakers.

■■ MPD protocol support. This
means you already have a selec-
tion of clients which integrate
with Groove Basin. For example
MPDroid.

  13

■■ Last.fm scrobbling.

■■ File system monitoring. Add songs anywhere
inside your music directory and they instantly
appear in your library in real time.

■■ Supports GrooveBasin Protocol on the same
port as MPD Protocol — use the “protocol
upgrade” command to upgrade.

If you like you can try out the web interface
client of Groove Basin on the live demo site.
It will probably be chaotic and unresponsive if
there is a fair amount of traffic to this blog post,
as it’s not designed for a large number of anony-
mous people to use it together; it’s more for
groups of 10 or less people who actually know
each other in person.

The roadmap moving forward looks like this:

1.	 Tag Editing

2.	 Music library organization

3.	 Accoustid Integration

4.	 Playlists

5.	 User accounts / permissions rehaul

6.	 Event history / chat

7.	 Finalize GrooveBasin protocol spec

Groove Basin still has lots of issues but
it’s already a solid music player and it’s only
improving over time.

Feel free to star or watch the Groove Basin
GitHub repository if you want to keep track of
progress. [github.com/andrewrk/groovebasin] n

Andrew Kelley is born and raised in Phoenix, Arizona.
He learned programming from wanting to make video
games. Andrew is in love with free and open source
software.

Reprinted with permission of the original author.
First appeared in hn.my/music (andrewkelley.me)

http://github.com/andrewrk/groovebasin
http://hn.my/music

14  PROGRAMMING

PROGRAMMING

By Yu Jiang Tham

I built a robot that mixes drinks
named Bar Mixvah. It utilizes
an Arduino microcontroller

switching a series of pumps via
transistors on the physical layer,
and the MEAN stack (MongoDB,
Express.js, Angular.js, Node.js) and
jQuery for the frontend and back-
end. In this article, I’ll teach you
how I made it. You can follow along
and build one just like it! I’ve also
put the 3d model (blender), stl files,
and the code up on GitHub for you
guys to download. See the link at
the bottom of the article. Here’s the
video of the robot:
[hn.my/drinkbotdemo]

First, a little bit more about
the robot. The entire thing costs
approximately $180 to make. All of
the parts are 3d printed, so you’ll
need a 3d printer to build this. I
used the MakerBot Replicator 2X,
but any 3d printer should do. Total
time to print the pieces is about 18
hours, depending on your settings,
and assembly wiring. Here’s a list of
parts that need to be purchased:

■■ 5x 12V DC peristaltic pumps

■■ 11x 5/16“ steel square 12” rods

■■ Clear tubing

■■ Arduino Nano

■■ 5x TIP120 w/ Diodes

■■ 400-point breadboard and
jumper wire

■■ 5x 2.2kOhm resistor

■■ 4x #6-32 2" machine screws

■■ 10x #4-40 3/4" machine screws

■■ 12V power supply rated at (or
greater than) 1.5A - or you can
use an old laptop power supply
(as long as it’s 12V DC).

■■ 5.5mm x 2.1mm coaxial power
connector (female) - or if you’re
using a laptop power supply,
5.5mm x 2.5mm

■■ Male pin connectors

■■ Female housing for the male pin
connectors

Other tools required for the job
are: a hacksaw to cut two of the
12" rods in half, a wire stripper,
soldering iron, and solder to con-
nect the wire to the pin connectors
and coaxial power connector, and a
multimeter to check your work.

Design
Bar Mixvah is designed to use a
system of 5 peristaltic pumps that
are switched by 5 bipolar junction
transistors (TIP120), all controlled
by an Arduino, which itself is con-
trolled by the Johnny-Five package
on the node.js/express web server
that is running on your laptop/Win-
dows tablet (or maybe Raspberry
Pi? I haven’t tried). Having it on
a web server allows users to order
from any device, be it a phone,
tablet, or other laptop that can
connect to your WiFi access point’s
internal network. Practicality-wise,
maybe it’s not necessary. However,
in my experience, people seem to
enjoy ordering from a tablet that
they’re holding in their hands more

Build Your Own
Drink Mixing

Robot

http://hn.my/drinkbotdemo

  15

than a stationary screen attached to
the robot.

The physical design of Bar
Mixvah is around the usage of
5/16“x12” steel rods. I chose this
length and size because they’re
sturdy, readily available at your
local hardware store, and not too
big or small. They’re also relatively
cheap at ~$2-3 per piece, depend-
ing on where you buy from. The
problem with 3d printing is that it’s
goddamn slow. If you want to build
a medium sized robot like this one,
it would take days to print all of the
necessary parts. In fact, you don’t
even need to print these parts; you
could fasten them together using
plenty of other methods. However,
I don’t have access to a metal shop,
am a terrible welder, and wanted a
friendly looking robot, so I chose
this combination of 3d printing
the joints and connecting them via
metal shafts.

Here’s a screenshot of the 3d
model, which, fortunately, looks
exactly like the real thing after I fin-
ished building it. Ah, the miracles
of science!

Printing the Parts
The stl files can mostly be printed
in the orientation that they are in,
however two files should be rotated
180 degrees on the x-axis so that
they can be printed without major
supports. These two pieces are
Center – Board Cover – Top.stl
and Center – Common Drink Chan-
nel.stl. Additionally, Center –
Pump Holder.stl should be printed
flat by rotating it 90 degrees so that
no support pieces are needed. You
will need to turn on printing with
supports to ensure that the holes
where we will be inserting the
5/16" steel rods are printed to the
right size.

One more thing that has been
brought to my attention: the .stl
files may be 10x smaller than they
should be in your 3d printing
software. If that’s the case, you will
need to scale up the objects 10x in
all dimensions. It seems to happen
regardless of the 3d software that I
use when I convert to .stl. No idea
why.

The Peristaltic Pumps
What is a peristaltic pump? If the
word sounds familiar to you, it’s
because you most likely heard of
peristalsis in one of your biology
classes at some point in time. Peri-
stalsis is the system that your body
uses to swallow food. Your throat
muscles contract and relax in a way
to create a waveform that pushes
food in your throat down into your
stomach. Peristaltic pumps work
on the same principle, albeit with
a slightly different execution. The
clear plastic tube extends through
the pump, and rollers propelled by
a DC motor create a waveform that
pushes liquid through the tube. Per-
istaltic pumps are safe and hygienic
because liquid never actually

contacts any part of the pump; only
the plastic tubing is ever in contact
with the liquid.

The peristaltic pumps come with
some very short plastic tubing.
This is obviously inadequate for
our current application, so we’ll
have to replace the plastic tubing.
This requires us to take apart the
pump. Fortunately, this is not a hard
thing. Instead of trying to explain
it, you can view the following
video to figure out how it is done.
[hn.my/peripump]

Soldering
Before connecting any wires, you’ll
want to do all of the soldering.
You’ll have to solder the 5.5mm
x 2.1mm coaxial power connec-
tor to two jumper wires, one for
the positive lead and one for the
negative lead. Plug in your 12V DC
power supply to the wall, then plug
the coaxial power connector into
the DC power supply. Use your
multimeter to find out which lead
is positive and negative by placing
the probes on two of the leads until
you find that the multimeter says
12V; those are your positive and
negative leads (if it says -12V, then
you’ve got the positive and nega-
tive leads switched). Unplug the
coaxial power connector. Strip two
wires and solder one to each of the
coaxial power connector’s leads.
After you’re done soldering, wrap
any exposed metal around the leads
in electrical tape.

Next, you’ll want to solder
wires to the leads of the peristaltic
pumps. The positive lead of the
pump should be labeled, so you
should not need to guess. If it is
not labeled, you will just need to
make note of which way the pump
is turning and make sure that all
of them are turning in the same

http://hn.my/peripump

16  PROGRAMMING

direction. Don’t worry about the
polarity of the leads on the pump
breaking anything, since connecting
them backwards will just make the
pump go in the opposite direction.
However, I want to emphasize that
you’ll probably want to ensure all
of the pumps are pumping clock-
wise (if they are facing you; you can
see through the tiny circle in the
middle which direction they are
pumping when turned on). After
this is done, once again wrap
the leads in electrical tape.

Wiring
Here’s where it gets a little
bit tricky. The actual wiring
is not too complicated,
but it requires a little bit
of finesse due to the con-
fines of space that we are
working with. Since we are
fitting everything on a single
breadboard, we need to
ensure everything is placed
in the right spot.

In case you haven’t used
a breadboard in a while,
each of the numbers run-
ning down the breadboard
indicate an individual node.
The center divides the two sides, so
they are separate nodes. The (+) rail
running up the left and right side of
the breadboard is one node per side,
and it is the same with the (-) rail.

The first thing that you should
do before getting any wiring done
is to hook up your pumps individu-
ally and ensure they are all working.
The photo below shows a little bit
more complex of a circuit. To check
if it’s working, you can just connect
the coaxial power connector and
pump on a breadboard and plug
in the power and ensure that the
pump works.

Here’s the wiring diagram for the
robot. As you can see, it’s relatively
simple:

The tough part is that there is
not much space, so you may need
to have a set of needle-nosed pliers
ready to put some of the things in.
I recommend adding everything
except transistors in first. Here’s
how my breadboard looked like
after I finished wiring it up:

 Obviously, yours may look
slightly different. However, I
recommend placing the Arduino’s
nano so that its USB port is on
the edge of either side of the
breadboard.

Assembly
After printing all of the pieces,
remember which piece is which
based on the 3d model. Remove all
of the support pieces from the 3d
printed items with pliers and/or a
flathead screwdriver. It is likely that
it will be a very tight fit for the steel
rods, so you’ll need to push the rods
in with a lot of force. I recommend
using gloves.

 Also, the order in which you
assemble the robot IS important.
Here’s the order that I used to
assemble. Basically, you need to
remember to assemble the middle
parts first before connecting the left
and right sides to them.

1.	 Insert all 5 of the pump holders
onto one of the steel rods

2.	 Insert the drink tray into the
center of two of the steel rods

3.	 Insert the breadboard holder
(bottom piece) into the center
of one steel rod

4.	 Assemble the left side, then
assemble the right side

5.	 Insert the steel rods for the
drink tray, pump holders, and

  17

breadboard holder into the left
side

6.	 Connect all of the parts of the
right side

7.	 Insert each of the pumps into a
pump holder and screw them in
with two #4 screws each

8.	 Attach the center channel to the
top center section using two #6
screws

9.	 Tape the breadboard to the
center of the top-middle section,
ensuring that the top piece of
this section will fit over it

10.	Wire everything up based on the
circuit schematic

11.	Place the top piece (labeled
#BarMixvah in the photo below)
over the breadboard, moving
wires around until everything
fits snugly inside

12.	Insert two #6 screws through
the screw hole and tighten the
nuts at the bottom to secure it
in place

Software Design
In this section, I will be discussing
the software design of the robot,
as well as the considerations that I
took in designing it. I’m assuming
that you have some working knowl-
edge of JavaScript and MongoDB. I
realize that the Angular.js code that
is written here may not be the most
efficient, since the whole point of
me building the robot was to learn
Angular (and also make something
awesome). Therefore, if you spot
any changes that need to be made
to the code to increase efficiency or
whatnot, please let me know in the
comments or send a pull request to
the Bar Mixvah GitHub.

Why the MEAN Stack
So, before I proceed, a few people
have asked why we need so much
technology to do something so
simple as mixing drinks. What is
the MEAN stack? It consists of
MongoDB, Express.js, Angular.
js, and Node.js. Everything works
beautifully together because it’s all

JavaScript (and MongoDB, which
uses BSON, similar to JavaScript’s
JSON). Why do we need the
MEAN stack? Well, we don’t need
it. But it makes things easier, so
that’s why I’m using it.

■■ MongoDB is used to store all of
the drink and pump information

■■ Express.js is the web server so
that your WiFi-connected devices
can access the interface

■■ Angular.js is used on the front
end to filter drinks based on what
ingredients have been selected

■■ Node.js is used on the backend to
communicate with the Arduino

Preparing Your Arduino
The Arduino Nano talks to the
Johnny-Five node.js package via the
Standard Firmata protocol. You will
need to flash Standard Firmata onto
your Arduino:

1.	 Download the Arduino software

2.	 Plug in the Arduino to your USB
port on your computer

3.	 Open the Arduino software

4.	 Go to File > Examples > Firmata
> StandardFirmata

5.	 Click the Upload button in the
top-left

Starting the App
Bar Mixvah requires node.js, Mon-
goDB, and git. Follow the respective
links to download and install them
if you haven’t already. The com-
mands here are run in the Mac OS
or Linux shell; I don’t have much
experience with the Windows
command line, but I believe most
of the stuff is the same (except you
should remove sudo if you see it,
and run your command prompt as

18  PROGRAMMING

an administrator). To start off, clone the Bar Mixvah
GitHub repository onto your local hard drive:

git clone https://github.com/ytham/barmixvah.git

cd into the directory and install all node.js packages:

cd barmixvah
npm install

This will install all of the packages required for the
node.js app to run. Before you can run it, you must
start mongodb:

sudo mongod

In a new terminal window, cd to the barmixvah
directory again. Plug in the Arduino to your computer
via USB. You can now start the robot app:

node app.js

Congrats! It should now be up and running. You can
now point your web browser to http://localhost:3000
to check it out. The rest of this post will go towards
explaining the code for the robot. If you haven’t yet set
up the Arduino, you can read the next section to set up
the UI without having it connected to an Arduino for
testing purposes.

Debugging the App Without the Arduino
The app can be started without an Arduino by com-
menting out the following section:

> public/javascripts/robot/backend.js
var board, pump0, pump1, pump2, pump3, pump4;
/*
var five = require('johnny-five');

board = new five.Board();
board.on('ready', function () {
 // Counting down pins because that's the orien-
tation
 // that my Arduino happens to be in
 pump0 = new five.Led(7);
 pump1 = new five.Led(6);
 pump2 = new five.Led(5);
 pump3 = new five.Led(4);
 pump4 = new five.Led(3);

 board.repl.inject({
 p0: pump0,
 p1: pump1,

 p2: pump2,
 p3: pump3,
 p4: pump4
 });

 console.log("\033[31m[MSG] Bar Mixvah
Ready\033[91m");
});
*/

This will prevent Johnny-Five from initializing the
Arduino. This is useful for testing UI or backend code
on the go if you’re not tethered to an Arduino.

General Flow
Here’s a pretty simplified design that gives you a gen-
eral picture of how the code works with the physical
elements:

 When a user interacts with the UI, Angular.js (or
some custom JavaScript/jQuery) will change what is
displayed on the screen. If the user decides to make
a drink with the Make button, the selected drink JS
object and drink size are passed to the backend via
socket.io. From there, the app passes the data to the
Johnny-Five package and communicates when to start/
stop the array of pumps.

Drink and Pump Schemas
The drink schema that will be saved into MongoDB
(via the Mongoose node.js package) is specified below:

> models/Drink.js
exports.DrinkSchema = new Mongoose.Schema({
 name: { type: String, required: true },
 image: { type: String, required: false },
 ingredients: [{
 name: String,
 amount: Number
 }]
});

  19

The drink objects have a name, image, and an array
of ingredient objects that contain their name and rela-
tive amount. Ingredient amounts are relative and unit-
less because then the user can specify the drink size
and get the actual amount of each ingredient to pump
based on the specified drink size.

Here is the pump schema:

> models/Pump.js
exports.PumpSchema = new Mongoose.Schema({
 label: { type: String, unique: true, sparse:
true, required: true },
 ingredients: [{
 label: String,
 ingredient: String
 }]
});

We have one pump object that contains an array of
pumps that have a label (such as “pump0”, “pump1”,
etc…) and an ingredient associated with that pump. In
this case, we use the label because order is important
and we want to ensure that the pumps are in the cor-
rect order regardless of how they are modified. When
any pump is updated via the UI, the entire pump
object that contains all of the (up to five) pumps is
updated in MongoDB. This keeps things consistent and
ensures that pumps are updated correctly.

> routes/index.js
exports.updatePump = function (Pump) {
 return function (req, res) {
 Pump.findOneAndUpdate({ _id: req.body._id },
 {
 ingredients: req.body.ingredients
 },
 function (err, pump) {
 if (pump == null) {
 Pump.create(req.body);
 pump = req.body;
 }
 res.send(pump);
 });
 }
}

Choosing Pumps
The pump system is set up so that as soon as the any
of the pump ingredients are changed, the entire pumps
object (containing all of the individual pump ingredi-
ents) is changed. The ng-click directive in this case calls
two functions. One function saves the pumps object
by overriding the previous pumps object, the other
figures out the number of duplicate ingredients and
writes the number of duplicates that are checked at
other times (such as when the Make button is pressed).
The reason why we don’t just check pumps for dupli-
cates immediately is if, say you are a user and you want
to move “Orange Juice” from pump0 to pump2. You
might change pump2 to “Orange Juice” first, but if that
throws an error since “Orange Juice” is also currently
on pump0, that is not a very good user experience.

> views/index.jade
div.pumpContainer(ng-repeat="pump in pumps.
ingredients")
 select.mixers(ng-change="savePumpValue($index);
writeNumDuplicates()", ng-model="pump.ingredi-
ent", ng-options="i for i in ingredientsList")

The savePumpValue function sends a post request
with the $scope.pumps object. The pumps object is
data bound to the view via Angular, so the changes in
the dropdown are automatically modified on the front
end, but we just need to save it into the database so
that when the user refreshes the page, they get the
same pumps instead of having to start over.

> public/javascripts/controller/DrinkController.js
$scope.savePumpValue = function (pumpNumber) {
 $http.post('/updatepump.json', $scope.pumps).
success(function (data) {
 if (data) {
 console.log(data);
 }
 });
};

From here, the web server receives the HTTP POST
request via the updatepump.json endpoint.

> app.js
var routes = require('./routes/index');
...
app.post('/updatepump.json', routes.
updatePump(Pump));

20  PROGRAMMING

And then the updatePump function is run, creating a
pump if there is none, and updating the current pumps
object if it already exists.

> routes/index.js
exports.updatePump = function (Pump) {
 return function (req, res) {
 Pump.findOneAndUpdate({ _id: req.body._id },
 {
 ingredients: req.body.ingredients
 },
 function (err, pump) {
 if (pump == null) {
 Pump.create(req.body);
 pump = req.body;
 }
 res.send(pump);
 });
 }
}

 Pump Operation
The pumps are switched on/off by the 5V from the
Arduino pins going to the each of the TIP120 transistors,
which in turn switch the 12V for the individual pumps.
Since the Johnny-Five package contains a simple inter-
face for LEDs, I decided to use its switch on/off proper-
ties for switching the pumps because it’s just a simple
digitalWrite(HIGH/LOW). Here’s the code for it:

> public/javascripts/robot/backend.js
 pump0 = new five.Led(7);
 pump1 = new five.Led(6);
 pump2 = new five.Led(5);
 pump3 = new five.Led(4);
 pump4 = new five.Led(3);

The pumpMilliseconds function is used to run
a single pump for a number of milliseconds. The
usePump function (not shown here) determines which
pump to use based on the pump input string.

> public/javascripts/robot/backend.js
function pumpMilliseconds(pump, ms) {
 exports.startPump(pump);
 setTimeout(function () {
 exports.stopPump(pump);
 }, ms);
}
exports.startPump = function (pump) {

 console.log("\033[32m[PUMP] Starting " + pump +
"\033[91m");
 var p = exports.usePump(pump);
 p.on();
}

exports.stopPump = function (pump) {
 console.log("\033[32m[PUMP] Stopping " + pump +
"\033[91m");
 var p = exports.usePump(pump);
 p.off();
}

Making a Drink
The simplicity of the UI hides much of the complexity
behind the actual making of a drink. We want to make
a drink that is top-biased in terms of ingredients. That
is, all of the ingredients with smaller amounts should
be on top so that gravity will cause them to mix into
the drink. This adds a little bit of complexity in that we
need to also pass a delay amount for each pump, but
it is worth it for a drink that is mixed better! Here’s a
diagram of how the pump timings will work out:

When the user picks a drink and size, the data is
stored as a local variable in the Angular $scope.

> views/index.jade
div.drinkContainer(ng-repeat="drink in drinks |
orderBy: 'name' | filter: containsIngredients",
ng-click="selectDrink(drink)")

> public/javascripts/controllers/DrinkController.js
$scope.selectDrink = function (drink) {
 $scope.selectedDrink = drink;
 if ($scope.lastSelected) {
 $scope.lastSelected.selectedDrink = '';

  21

 }

 this.selectedDrink = 'selectedDrink';
 $scope.lastSelected = this;
};

The Angular ng-click directive in the jade template
file specifies the function to be run in the Angular
$scope when the div is clicked. In this case, when the
div is clicked, the $scope.selectedDrink variable gets
set to the current drink object. When the Make button
is pressed, code on frontend.js does two things: 1) it
does some visual trickery to turn the Make button into
a progress bar, and 2) it does the calculations required
to determine how long each of the pumps should fire
for based on the ingredients in the drink and the size of
the drink selected. So, here’s the code for what hap-
pens when we tap the Make button:

> public/javascripts/robot/frontend.js
$('#make').on('click touch', function () {
 if ($('#make').hasClass('noselection') ===
true) {
 alert('Please select a drink first.');
 return;
 }

 if ($('#make').hasClass('disabled') === true) {
 return;
 }

First, we double check to make sure that a drink has
been selected first. We can’t make anything if there is
no selected drink. Additionally, if the robot is already
making a drink, the Make button will be disabled and
should not make a drink until it is done with the drink
it is already making. Next, in the following code, you’ll
see how we do the visual progress bar for the Make
button. We add the “disabled” class to prevent addi-
tional drinks from being made until the current one is
done, show the hidden #makeProgress div, and then
animate it via its margin-left style. At the end of the
animation, the anonymous callback function hides the
makeProgress bar and removes the “disabled” class. The
whole thing is wrapped around a 200ms delay in order
for us to get the $scope.pumpTime, which is calculated
in the makeDrink function that is explained further
down in this section. After this, we call the makeDrink
function with the drink’s ingredients, the pumps, and
the selected drink size ($scope.drinkTime).

> public/javascripts/robot/frontend.js (continu-
ing $('#make').on...)
 console.log('Making Drink');
 $('#make').addClass('disabled');
 $('#makeProgress').show();
 setTimeout(function () {
 console.log("Time to Dispense Drink: " +
$scope.pumpTime + "ms");
 $('#makeProgress').animate({
 'margin-left': String($(window).width()) +
'px'
 }, parseInt($scope.pumpTime), 'linear', func-
tion () {
 $('#make').removeClass('disabled');
 $('#makeProgress').hide();
 $('#makeProgress').css('margin-left',
'-10px');
 });
 }, 200);

 // Start dispensing drink
 makeDrink($scope.selectedDrink.ingredients,
$scope.pumps, parseInt($scope.drinkTime));
 });

The code below goes through getting the total
amount of all of the ingredients, finding the ingredi-
ent with the largest amount, and also appending pump
labels to the ingredients as a string so that we will be
able to determine which pump to use after this data is
sent to the backend.

> public/javascripts/robot/frontend.js
function makeDrink(ingredients, pumps, drink-
Size) {
 // Check that there are no duplicate pumps
ingredients
 if ($scope.pumpDuplicates > 0) {
 alert("Pump values must be unique");
 return;
 }

// Get largest amount and index of that ingredient
 var largestAmount = 0;
 var amountTotal = 0;
 var largestIndex = 0;
 for (var i in ingredients) {
 amountTotal += Number(ingredients[i].amount);
 if (Number(ingredients[i].amount) > largestA-
mount) {

22  PROGRAMMING

 largestAmount = ingredients[i].amount;
 largestIndex = i;
 }

 // Append pump numbers to the ingredients
 for (var j in pumps.ingredients) {
 if (ingredients[i].name === pumps.
ingredients[j].ingredient) {
 ingredients[i].pump = pumps.ingredients[j].
label;
 continue;
 }
 }
 }

After all of this, in the code below, you will see that
we get the normalization factor, which is the drinkSize
divided by the total amount of all drinks. With this nor-
malization factor, we can multiply the largest amount
of drink by this value in order to get the total pump
time (since pumps will be running in parallel, the total
pump time is the pump time of the ingredient with the
highest amount). If you recall from above, this is the
$scope.pumpTime that we delayed 200ms to get on
the front end. After this, we modify the amounts all of
the ingredients in the array based on the normalization
factor, and add the delay so that we can top-weight the
ingredients in the drink. At the end, we use socket.io to
pass the ingredients object to the backend.

> public/javascripts/robot/frontend.js (continu-
ation of makeDrink function)
 // Normalize
 var normFactor = drinkSize/amountTotal;

 var totalPumpMilliseconds = parseInt(normFactor
* largestAmount);
 $scope.pumpTime = totalPumpMilliseconds;

 // Set the normalized amount and delay for each
ingredient
 ingredients[largestIndex].amount =
parseInt(normFactor * Number(ingredients[largest
Index].amount));
 ingredients[largestIndex].delay = 0;
 for (var i in ingredients) {
 if (i === largestIndex) continue;
 ingredients[i].amount = parseInt(normFactor *
Number(ingredients[i].amount));
 ingredients[i].delay =

ingredients[largestIndex].amount -
ingredients[i].amount;
 }

 socket.emit("Make Drink", ingredients);
}

At the backend, app.js catches the “Make Drink”
event from the frontend and passes it to the robot por-
tion that handles the actual pumping.

> app.js
var robot = require('./public/javascripts/robot/
backend.js');
...
io.sockets.on('connection', function (socket) {
 socket.on("Make Drink", function (ingredients)
{
 robot.pump(ingredients);
 });
> public/javascripts/robot/backend.js
exports.pump = function (ingredients) {
 for (var i in ingredients) {
 (function (i) {
 setTimeout(function () { // Delay implemented
to have a top-biased mix
 pumpMilliseconds(ingredients[i].pump,
ingredients[i].amount);
 }, ingredients[i].delay);
 })(i);
 }
};

And that’s all there is to it! Thanks for taking the
time to read through my post. Hopefully you have
learned something; I know I have definitely learned a
lot in the process. n

GitHub link: github.com/ytham/barmixvah

Yu Jiang Tham is a graduate from UCLA in electrical engineering.
He loves all of the possibilities 3d printing offers and finds pleasure
in creating both hardware and software projects. Yu Jiang creates
how-tos on all of his projects at his website yujiangtham.com
Follow him on Twitter: @yujiangtham

Reprinted with permission of the original author.
First appeared in hn.my/barmixvah (yujiangtham.com)

http://github.com/ytham/barmixvah
http://yujiangtham.com
http://twitter.com/yujiangtham
http://hn.my/barmixvah

  23

and help change the future of search

http://duckduckhack.com

24  PROGRAMMING

By Chris Loukas

One of our highest priorities at Mist.io is to
never break production. Our users depend
on it to manage and monitor their serv-

ers, and we depend on them, too. At the same time,
we need to move fast with development and deliver
updates as soon as possible. We want to be able to
easily deploy several times per day.

A big part of Mist.io is the web interface so we use
tools like Selenium, Splinter and Behave for headless
web interface testing. However testing the UI is time-
consuming. Having to wait 40 minutes to get a green
light before merging each pull request is not very agile.

In this post we’ll describe the setup we’ve used to
reduce testing time. It is based on Jenkins, Ansible, and
Docker, and its main mission is to automate build steps
and run tests in parallel as quickly as possible.

Since execution time is essential for us, we opted to
run our CI suite on one of Rackspace’s High-Perfor-
mance Cloud Servers due to their fast performance and
short provisioning times. In general, make sure you give
your test server enough RAM and a fast disk.

Jenkins
Our first stop for our testing suite
is Jenkins. We’ve used Jenkins in
other projects before and we feel
comfortable with it since it is
mature, widely used, and provides
great flexibility through its plugin
system. Jenkins has very good
Github integration, which is another plus for us. It
is quite simple to set it up so that every commit in a
branch will trigger the tests.

When our needs started growing, our first thought
was to add more Jenkins nodes and have multiple tests
running in parallel. But there are many different envi-
ronments that we want to test every commit against:

■■ Test the deployment of the app in a clean environ-
ment, a fresh build.

■■ Test the deployment of the app in a staging envi-
ronment where you want to ensure backwards
compatibility.

■■ Test the web interface against all supported browsers.

All these meant that testing requirements would
grow over time, and a testing infrastructure based
solely on Jenkins would not do the job fast enough.

Enter Docker
Docker helps you easily
create lightweight,
portable, self-sufficient
containers from any
application. It is fast,
reliable, and a perfect
fit for our needs. The
idea is to set up Jenkins
so that every pull
request to a specific
branch (e.g., staging) triggers a job. Jenkins then com-
mands our testing infrastructure to spawn different
Docker applications simultaneously and runs the tests
in parallel.

Testing with Jenkins,
Ansible, and Docker

  25

This way, we can test any environment. We just have
to describe each application the same way we would’ve
done manually. On the plus side, we can use pre-made
images from the Docker repository to jumpstart our
tests.

For example we could do this:

docker pull ubuntu

And we will end up with an ubuntu image/applica-
tion. We can then run the Docker container by typing:

docker run -i -t ubuntu /bin/bash

And we will be in a fresh, newly created ubuntu
environment.

But we don’t want to manually run Docker com-
mands after every pull request. What we need are
Dockerfiles. Dockerfiles are sets of steps that describe
an image/container. We’ll use them to build our
custom Docker images.

Dockerfile commands are fairly simple. For exam-
ple:
FROM ubuntu:latest
MAINTAINER mist.io
RUN echo "deb http://archive.ubuntu.com/ubuntu
precise main universe" > /etc/apt/sources.list
RUN apt-get update
RUN apt-get upgrade -y
RUN apt-get install -y build-essential git
python-dev python-virtualenv
RUN apt-get install -y xterm
RUN apt-get install -y -q x11vnc xvfb
RUN apt-get install -y xfonts-100dpi xfonts-
75dpi xfonts-scalable xfonts-cyrillic
RUN add-apt-repository -y ppa:mozillateam/
firefox-next
RUN apt-get update
RUN apt-get install -y firefox
RUN mkdir MIST
RUN cd MIST && git clone https://github.com/
mistio/mist.io
WORKDIR MIST/mist.io
RUN git pull
RUN cp settings.py.dist settings.py
RUN echo JS_BUILD = True >> settings.py
RUN echo CSS_BUILD = True >> settings.py
RUN echo SSL_VERIFY = True >> settings.py
RUN virtualenv . && ./bin/pip install --upgrade
setuptools

RUN ./bin/python bootstrap.py && ./bin/buildout
-N
ADD ./test_config.py src/mist/io/tests/features/
ADD ./init.sh /
ENTRYPOINT ./init.sh

■■ FROM chooses the base image (ubuntu/latest).

■■ RUN runs the following commands. First, we update
the system and then we install Xvfb, the latest
Firefox, etc., in order to run headless browser steps.
Finally, we build the Mist.io app.

■■ ADD adds files from our host machine to the Docker
image. In this example, we added the configuration
for tests and an init.sh script. The init.sh script could
be as simple as this:

#!/bin/bash
cd MIST/mist.io
git checkout $BRANCH
./bin/run_test

■■ ENTRYPOINT tells Docker to start with ./init.sh script
every time we run the image.

To build the Docker image for future reuse:

docker build -t mist/iotest /path/to/Dockerfile

Now we have a test environment. If there are more
tests in other branches that need to be spawned, we
can use it for every one of them:

docker run -e BRANCH=your_branch mist/iotest

If we had multiple test servers, we would have to
build every custom image in every test server. Fortu-
nately, Docker lets you have your own private reposi-
tory of Docker images. You can build your custom
image once, say mist/iotest, push it to the repository,
and run:

docker pull mist:iotest

This is a simple test scenario, but the possibilities are
endless. For example, in another of our test scenarios
we want to spawn a docker application with our moni-
tor service and one with the mist web app.

The problem is that we need every test server con-
figured with Docker and every Docker image available.
And we need to automate the procedure to be able to
scale our test server infrastructure whenever needed.

26  PROGRAMMING

Ansible to the rescue
Ansible automates deploy-
ment. It is written in Python
and installation is relatively
simple. It is available through
most Linux distro repositories, you can clone it from
Github or install it via pip.

Configuring ansible is also easy. All you have to do
is group your servers in an ansible_hosts file and use
ansible’s playbooks and roles to configure them.

For example, this is a simple ansible_hosts file:

[testservers]
testserver1 ansible_ssh_host=178.127.33.109
testserver2 ansible_ssh_host=178.253.121.93
testserver3 ansible_ssh_host=114.252.27.128

[testservers:vars]
ansible_ssh_user=mister
ansible_ssh_private_key_file=~/.ssh/testkey

We just told Ansible that we have three test serv-
ers, grouped as testservers. For each one the user is
mister and the ssh key is testkey, as defined in the
[testservers:vars] section.

Each test server should have Docker installed and a
specified Docker image built and ready for use. To do
that, we have to define some playbooks and roles:

- name: Install new kernel
 sudo: True
 apt:
 pkg: "{{ item }}"
 state: latest
 update-cache: yes
 with_items:
 - linux-image-generic-lts-raring
 - linux-headers-generic-lts-raring
 register: kernel_result

- name: Reboot instance if kernel has changed
 sudo: True
 command: reboot
 register: reboot_result
 when: "kernel_result|changed"

- name: Wait for instance to come online
 sudo: False
 local_action: wait_for host={{ ansible_ssh_
host }} port=22 state=started

 when: "reboot_result|success"

- name: Add Docker repository key
 sudo: True
 apt_key: url="https://get.docker.io/gpg"

- name: Add Docker repository
 sudo: True
 apt_repository:
 repo: 'deb http://get.docker.io/ubuntu
docker main'
 update_cache: yes

- name: Install Docker
 sudo: True
 apt: pkg=lxc-docker state=present
 notify: "Start Docker"

- name: Make dir for io docker files
 command: mkdir -p docker/iotest

- name: Copy io Dockerfiles
 template:
 src=templates/iotest/Dockerfile.j2
dest=docker/iotest/Dockerfile

- name: Copy io init scripts
 copy: src=templates/iotest/init.sh
dest=docker/iotest/init.sh

- name: Build docker images for io
 sudo: True
 command: docker build -t mist/iotest docker/
iotest

After that, we just have to set Ansible to trigger the
tests and spawn these Docker applications. All Jenkins
has to do is catch the webhook of a new pull request
and issue one command:

ansible-playbook runtests.yml

That’s it.
We have set up Jenkins to respond to Github com-

mits and call Ansible to automatically spawn and
configure our test servers, and we have optimized our
testing speed by using pre-made Docker images. n

Chris studied Computer Engineering and Informatics at the Uni-
versity of Patras, Greece and is now a Backend Developer, CI/QA
Engineer at Mist.io

Reprinted with permission of the original author. First appeared in hn.my/mist (mist.io)

http://Mist.io

  27

I had to update some CSS on my site over the
weekend, which led me to updating some LESS
file. The template I use for the site uses Grunt,

which forced me to download the entire Internet via
npm. And all I wanted to do was set a text-indent to 0.

If you’ve never seen Grunt, here’s what it looks like:

module.exports = function(grunt) {

 grunt.initConfig({
 jshint: {
 options: {
 jshintrc: '.jshintrc'
 },
 all: [
 'Gruntfile.js',
 'asselts/js/*.js'
]
 }

 ...

I find it’s very appropriately named, like the ugly
little creatures in Halo.

Of course, you don’t have to use Grunt. In fact,
Grunt is already dead [hn.my/gruntout]. It’s all about
Gulp nowadays:

var gulp = require('gulp');

var coffee = require('gulp-coffee');
var concat = require('gulp-concat');
var uglify = require('gulp-uglify');
var imagemin = require('gulp-imagemin');

var paths = {
 scripts: ['client/js/**/*.coffee', '!client/
external/**/*.coffee'],
 images: 'client/img/**/*'
};

gulp.task('scripts', function() {
 // Minify and copy all JavaScript (except
vendor scripts)
 return gulp.src(paths.scripts)
 .pipe(coffee())
 .pipe(uglify())
 .pipe(concat('all.min.js'))
 .pipe(gulp.dest('build/js'));
});

But if you don’t like JavaScript, you could probably
go with Rake, which is Ruby:

task :default => [:test]

task :test do
 ruby "test/unittest.rb"
end

By Hadi Hariri

Build Tools – Make, No More

http://hn.my/gruntout

28  PROGRAMMING

If you like Ruby but don’t want to install it, and
you’re on Windows, just use PSake:

properties {
 $testMessage = 'Executed Test!'
 $compileMessage = 'Executed Compile!'
 $cleanMessage = 'Executed Clean!'
}

task default -depends Test

task Test -depends Compile, Clean {
 $testMessage
}

task Compile -depends Clean {
 $compileMessage
}

task Clean {
 $cleanMessage
}

task ? -Description "Helper to display task
info" {
	 Write-Documentation
}

If you don’t like Ruby, install Java and use Gradle.
It’s Groovy and has 65 chapters of documentation as
well as a few appendices in case you run out of things
to read.

buildscript {
 project.ext.kotlinVersion = "0.7.270"

 version = "0.1-SNAPSHOT"

 repositories {
 mavenCentral()
 maven {
 url 'http://oss.sonatype.org/con-
tent/repositories/snapshots'
 }
 }
 dependencies {
 classpath "org.jetbrains.kotlin:kotlin-
gradle-plugin:$ext.kotlinVersion"
 }
}

apply plugin: 'kotlin'
apply plugin: 'maven'
apply plugin: 'maven-publish'

repositories {
 mavenLocal()
 mavenCentral()
 maven {
 url 'http://oss.sonatype.org/content/
repositories/snapshots'
 }
}

And if you do like Rake but don’t like Ruby, but do
like JavaScript, try Jake. [hn.my/jake]

Finally, if you really have nothing better to do, pick
one of your favourite XML-based build tools such as
Ant, NAnt or MSBuild.

<Project xmlns="http://schemas.microsoft.com/
developer/msbuild/2003">
 <ItemGroup>
 <Compile Include="helloworld.cs" />
 </ItemGroup>
 <Target Name="Build">
 <Csc Sources="@(Compile)"/>
 </Target>
</Project>

Of course, you could have just used Make to begin
with:

all: hello

hello: main.o factorial.o hello.o
	 g++ main.o factorial.o hello.o -o hello

main.o: main.cpp
	 g++ -c main.cpp

factorial.o: factorial.cpp
	 g++ -c factorial.cpp

hello.o: hello.cpp
	 g++ -c hello.cpp

clean:
	 rm -rf *o hello

http://hn.my/jake

  29

DSL’s over Make
If you look at all the examples
above, they are nothing but DSLs
over Make in your language of
choice. In some cases not even
that, but just some syntactic sugar.
They still focus on the same core
concepts:

■■ Primitives

■■ Targets

■■ Tasks

and still force us to transcribe the
complexity of a build system in
written form.

And with each new Build tool, all
we do is just add yet another gram-
mar to learn, another series of tools
and plugins to download, configure
and install. And for what? Just to
have a bit of a nicer syntax? With-
out for a moment thinking of the
legacy that we leave behind with all
these new “inventions”? Of course,
some languages and platforms
might need technology-specific
tasks, but is a new build tool and
syntax all that necessary?

I think Gradle’s tagline is some-
what appropriate to describe all
these different build tools: “Auto-
mation Evolved”. Yes, we’ve evolved
because we’ve moved from tabs
and lines, to XML and then to, well,
hmm, tabs, lines and curly braces.

Make, no more.
If you’re setting out to make
another build tool, think about
what benefit you’re going to pro-
vide over the existing ones. Adding
yet another custom DSL and gram-
mar isn’t going to really solve any
problem.

I feel there is innovation possible
in build automation. We have a
vast amount of existing knowledge
on how software is built and the
needs required, we have seen the
benefits of using convention over
configuration, we have created
powerful analysis tools. Combining
these things, I feel there is potential
to create a build tool that focuses
more on discoverability than it does
on us having to explicitly declare
what we want done.

So please, no more Makes. n

Hadi Hariri is a Software Developer, cur-
rently working at JetBrains. His passions
include Web Development and Software
Architecture. He has written a few books
and have been speaking at conferences
for over a decade, on things he’s passion-
ate about.

Reprinted with permission of the original author.
First appeared in hn.my/nomakes (hadihariri.com)

http://hn.my/nomakes

30  PROGRAMMING

The tips and tricks below originally appeared as one of
Google’s “Testing on the Toilet” (TOTT) episodes. This is a
revised and augmented version.

Safer Scripting
I start every bash script with the following prolog:

#!/bin/bash
set -o nounset
set -o errexit

This will take care of two very common errors:

1.	 Referencing undefined variables (which default to
"")

2.	 Ignoring failing commands

The two settings also have shorthands (“-u” and “-e”)
but the longer versions are more readable.

If a failing command is to be tolerated, use this
idiom:

if ! <possible failing command> ; then
 echo "failure ignored"
fi

Note that some Linux commands have options
which, as a side-effect, suppress some failures, e.g.:
“mkdir -p” and “rm -f”.

Also note, that the “errexit” mode, while a valuable
first line of defense, does not catch all failures, i.e.,
under certain circumstances failing commands will go
undetected.

Functions
Bash lets you define functions which behave like other
commands — use them liberally; it will give your bash
scripts a much needed boost in readability:

ExtractBashComments() {
 egrep "^#"
}
cat myscript.sh | ExtractBashComments | wc
comments=$(ExtractBashComments < myscript.sh)

Some more instructive examples:

SumLines() { # iterating over stdin - similar
to awk
 local sum=0
 local line=””
 while read line ; do
 sum=$((${sum} + ${line}))
 done
 echo ${sum}
}
SumLines < data_one_number_per_line.txt
log() { # classic logger
 local prefix="[$(date +%Y/%m/%d\ %H:%M:%S)]: "
 echo "${prefix} $@" >&2
}
log "INFO" "a message"

Try moving all bash code into functions, leaving only
global variable/constant definitions and a call to “main”
at the top-level.

By Robert Muth

Better Bash Scripting in
15 Minutes

  31

Variable Annotations
Bash allows for a limited form of variable annotations.
The most important ones are:

■■ local (for local variables inside a function)

■■ readonly (for read-only variables)

a useful idiom: DEFAULT_VAL can be overwritten
with an environment variable of the same name
readonly DEFAULT_VAL=${DEFAULT_VAL:-7}
myfunc() {
 # initialize a local variable with the global
default
 local some_var=${DEFAULT_VAL}
 ...
}

Note that it is possible to make a variable read-only
that wasn’t before:

x=5
x=6
readonly x
x=7 # failure

Strive to annotate almost all variables in a bash script
with either local or read-only.

Favor $() over backticks (`)
Backticks are hard to read and in some fonts can be
easily confused with single quotes. $() also permits
nesting without the quoting headaches.

both commands below print out: A-B-C-D
echo "A-`echo B-\`echo C-\\\`echo D\\\`\``"
echo "A-$(echo B-$(echo C-$(echo D)))"

Favor [[]] (double brackets) over []
[[]] avoids problems like unexpected pathname
expansion, offers some syntactical improvements, and
adds new functionality:

Operator Meaning
||	 logical or (double brackets only)
&&	 logical and (double brackets only)
< string comparison (no escaping necessary
	 within double brackets)
-lt numerical comparison
= 	 string matching with globbing

== string matching with globbing
	 (double brackets only, see below)
=~ string matching with regular expressions 	
	 (double brackets only, see below)
-n string is non-empty
-z string is empty
-eq numerical equality
-ne numerical inequality

single bracket
["${name}" \> "a" -o ${name} \< "m"]

double brackets
[["${name}" > "a" && "${name}" < "m"]]

Regular Expressions/Globbing
These new capabilities within double brackets are best
illustrated via examples:

t="abc123"
[["$t" == abc*]] # true (globbing)
[["$t" == "abc*"]] # false (literal matching)
[["$t" =~ [abc]+[123]+] # true
			 # (regular expression)
[["$t" =~ "abc*"]] # false (literal matching)

Note, that starting with bash version 3.2, the regular
or globbing expression must not be quoted. If your
expression contains whitespace you can store it in a
variable:

r="a b+"
[["a bbb" =~ $r]] # true

Globbing-based string matching is also available via
the case statement:

case $t in
abc*) <action> ;;
esac

32  PROGRAMMING

String Manipulation
Bash has a number of (underappreciated) ways to
manipulate strings.

Basics

f="path1/path2/file.ext"
len="${#f}" # = 20 (string length)
slicing: ${<var>:<start>} or
${<var>:<start>:<length>}
slice1="${f:6}" # = "path2/file.ext"
slice2="${f:6:5}" # = "path2"
slice3="${f: -8}" # = "file.ext"(Note: space
before "-")
pos=6
len=5
slice4="${f:${pos}:${len}}" # = "path2"

Substitution (with globbing)

f="path1/path2/file.ext"
single_subst="${f/path?/x}" # = "x/path2/file.ext"
global_subst="${f//path?/x}" # = "x/x/file.ext"
string splitting
readonly DIR_SEP="/"
array=(${f//${DIR_SEP}/ })
second_dir="${array[1]}" # = path2

Deletion at beginning/end (with globbing)

f="path1/path2/file.ext"
deletion at string beginning
extension="${f#*.}" # = "ext"
greedy deletion at string beginning
filename="${f##*/}" # = "file.ext"
deletion at string end
dirname="${f%/*}" # = "path1/path2"
greedy deletion at end
root="${f%%/*}" # = "path1"

Avoiding Temporary Files
Some commands expect filenames as parameters so
straightforward pipelining does not work.

This is where <() operator comes in handy as it takes
a command and transforms it into something which
can be used as a filename:

download and diff two webpages
diff <(wget -O - url1) <(wget -O - url2)

Also useful are “here documents,” which allow
arbitrary multi-line string to be passed in on stdin. The
two occurrences of “MARKER” brackets the document.
“MARKER” can be any text.

DELIMITER is an arbitrary string
command << MARKER
...
${var}
$(cmd)
...
MARKER

If parameter substitution is undesirable, simply put
quotes around the first occurrence of MARKER:

command << 'MARKER'
...
no substitution is happening here.
$ (dollar sign) is passed through verbatim.
...
MARKER

Built-In Variables
For reference
$0 name of the script
$n positional parameters to script/function
$$ PID of the script
$! PID of the last command executed (and run in the
 background)
$? exit status of the last command (${PIPESTATUS}
 for pipelined commands)
$# number of parameters to script/function
$@ all parameters to script/function (sees arguments as
 separate word)
$* all parameters to script/function (sees arguments as
 single word)

  33

Note
$* is rarely the right choice
$@ handles empty parameter list and white-space
 within parameters correctly
$@ should usually be quoted like so "$@"

Debugging
To perform a syntax check/dry run of your bash script,
run:

bash -n myscript.sh

To produce a trace of every command executed, run:

bash -v myscripts.sh

To produce a trace of the expanded command, use:

bash -x myscript.sh

-v and -x can also be made permanent by adding set
-o verbose and set -o xtrace to the script prolog.
This might be useful if the script is run on a remote
machine, e.g., a build-bot and you are logging the
output for remote inspection.

Signs you should not be using a bash script
■■ Your script is longer than a few hundred lines of
code

■■ You need data structures beyond simple arrays

■■ You have a hard time working around quoting issues

■■ You do a lot of string manipulation

■■ You do not have much need for invoking other pro-
grams or pipelining them

■■ You worry about performance

Instead consider scripting languages like Python or
Ruby.

References
■■ Advanced Bash-Scripting Guide: hn.my/abs

■■ Bash Reference Manual: hn.my/bashref n

Robert Muth is a software engineer at Google New York. In his
spare time he develops Android apps and dances tango, though
usually not at the same time.

Reprinted with permission of the original author.
First appeared in hn.my/bash15 (robertmuth.blogspot.com)

http://hn.my/abs
http://hn.my/bashref
http://hn.my/bash15

34  SPECIAL

SPECIAL

This project was quite
adventurous for me and
quite a bit more compli-

cated than some of the other proj-
ects I’ve done with my G-Shock
watches. It involves doing some
pretty nasty things to the screen
of a “naked” G-Shock, so if you’re
faint-hearted this is probably not
the ideal DIY starter project for
you. If you’re still reading this and
desperately wanting to try reversing
the display of one of your digital
watches, read on!

I’m going to be taking my plain
Casio G-Shock DW-5600 and
converting the regular display into
a negative one with the use of
some self-adhesive polarizing film.
I bought mine from Polarization.
com in Texas. I ordered the thinnest
self-adhesive film they had in a rela-
tively small size, part name: “Linear
Polarizer w/adhesive PFA.”

Ok, on to the project. First let
me show you some of the tools you
might like to have ready for this.

■■ Plastic tweezers

■■ Spring bar removal tool

■■ Small flat head screwdriver

■■ Several clean Q-Tips

■■ A surgical scalpel or sharp mod-
eling knife and fresh blades

■■ The all-important Husky mini
screwdriver (a must-have item)

With all the necessary tools in
hand, it’s time to start thinking
about how to tackle this. I will be
using the DW-5600 that I recently
stealthed the bezel on. By reversing
the display, it should be a pretty
fine-looking little watch. The next
few steps will be obvious to most
of you, but I figured I’d snap some
pictures anyway.

By Brian Green

How to Convert a Digital
Watch to a Negative Display

  35

 Take off the straps so that you can remove the back
cover and so that they won’t get in the way while you
are working on the body of the watch. I like to use
my nifty little Bergeon spring bar tool that is designed
specifically for this.

Next, carefully remove the four small screws that
hold on the case back. Always make sure to put these
somewhere safe and keep them together. This is where
the Husky Mini Screwdriver comes in very handy.

Remove the metal case back carefully, trying not to
disturb the rubber gasket that creates the watertight
seal around the module.

You should see the rubber spacer that covers and
adds protection to the inner module. Remove the
rubber spacer using the tweezers for extra grip. It
can sometimes feel like it is deliberately stuck to the
module, but it isn’t, it just gets pressed tightly and
sticks a bit. It should come off very easily.

36  SPECIAL

You should now be able to lift out the entire module
by one of its edges using your tweezers. Mine actually
fell right out when I flipped it over. Be patient, there’s
really nothing holding it in other than the pressure of
the buttons against the spring contacts.

I took off on a bit of a tangent here and decided to
remove the black outer rubber protector and the metal
inner ring casing. I also removed the glass screen from
the module and spent the next three hours shouting
and cursing at how hard it was to put the darn glass
screen back in. I was also extremely annoyed at my
stupidity as I discovered that it was not necessary to
remove the glass at all (I learn by trial and errors as I
go along). I have deliberately omitted the next six or
so images that I took of me removing the glass and
putting it back in because it is not necessary and very
nearly screwed up my display and module!

Next remove the polarizing film that is glued to the
surface of the glass. The film is slightly smaller than the
glass and can be seen easily if you look close up. I am
using my scalpel to gently lift up the polarizing film a
bit at a time. The trick is to slide the blade between the
polarizing film and the glass.

 Take your time and work from one edge of the
polarizing film across to the other, slowly pushing the
blade of your knife under more and more while still
moving it from side to side. Eventually you will have
the blade under far enough to lift off the polarizing
film.

The film is stuck to the glass by a thin layer of tacky
glue. It’s pretty nasty stuff so be patient and it will
come up eventually. Lift off the polarizing film using
your plastic tweezers. You can see that the film looks
almost transparent while over the display and the digits
are only visible on the parts of the display that are
covered by the film. It’s quite amazing.

  37

Here’s where it gets very cool. Simply turn the
polarizing film around 90 degrees and as if by magic
the digital display becomes reversed! The polarizing
film does not need to be in contact with the glass to
work.

 At this point I used my Q-Tips and some Goof Off
to clean the tacky glue residue from the glass and the
old piece of polarizing film. Make sure you get the glass
as “squeaky” clean as you can. It took me several Q-Tips
and about 15 minutes to get it perfectly clean. I prom-
ise you that the time spent getting the glue off as much
as possible will be worth it. If there is any glue residue
left on the glass it will show up when you stick on the
new piece of polarizing film, and you don’t want that.

Dry Run With New Polarizing Film

Now let’s take a look at the digital module display
using the new sheet of polarizing film. Here is the
display with the film held in the regular position. The
display is shown as normal, and we can see the module
is still ticking away quite happily.

Rotate the polarizing film 90 degrees just like you
did with the piece that was removed from the glass and
the display is reversed. Excellent, this ensures that the
film is going to work. Until this point it was a bit of a
gamble on whether or not this particular type of polar-
izing film would work. Looks good.

Adding the New Polarizing Film
Next you’ll need to cut out a piece of the new polar-
izing film to the exact shape of the original piece. Make
sure that you are cutting out the film with it turned in
the right direction. Make doubly sure you have the film
oriented so that it will make the display look reversed
before you place the old piece on top as a cutting
guide.

Hint: you can tell when the two pieces are the right
way because the original piece that you are using
as a cutting template should look completely black.
Notice in the picture below how the display is invis-
ible without the polarizing film. Also notice the small
box on the display in the upper right corner; this will
be disappearing when we reverse the display using this
hack. The factory reversed modules manage to reverse
the box, too — interesting distinction.

38  SPECIAL

Hold the original piece of film tightly up to the
corner of the new sheet and gently cut around it using
your sharp knife. Make several slices using medium
pressure rather than trying to cut all the way through
on the first pass. By making several slices you will avoid
slipping and hopefully avoid the loss of any finger tips!
Just take your time.

Once you have cut out the new piece of polarizing
film, hold it over the display to make sure that it fits
and that it will create the desired negative effect. The
film used here (details at top) was self-adhesive on one
side and had a protective cover on the other. Remove
the cover from the self-adhesive side and without
touching it carefully place the new piece of polarizing
film onto the glass screen.

Use your tweezers for better precision. Gently rub
the polarizing film with a soft cloth or clean Q-Tip to
make sure it is adequately stuck down. Then use your
tweezers again to lift of the protective cover from the
front of the film. You should be left with a smudge-
and fingerprint-free surface.

The final step is to reassemble the whole thing. Care-
fully put the whole module back into the watch casing,
making sure it is seated down. I find that I nearly
always have to use my tiny screwdriver to hold in the
metal connectors where the buttons are in order to get
a module back in.

Replace the rubber spacer making sure that the
protruding metal contacts show through. Then replace
the metal case back and four screws. I’m not showing
pictures of these steps because most of you know how
to do this and if you don’t simply read through the
steps above that describe how to take the module out.

When the case back is firmly screwed down, flip the
whole thing over and admire your handwork: a beauti-
ful, negative display module. Notice how the small box
in the upper right corner of the display is no longer
visible. This is one difference between the DIY reverse
display and the factory fitted version, but I kind of like
the minimal look anyway so no great loss for me.

Well that’s it. The hardest part of this whole project
was biting the bullet on the polarizing film and waiting
the couple of days it took for it to arrive. The rest was
relatively easy.

I hope you found this a little bit useful and I also
hope this encourages a few of you to pop open that
old G-Shock and hack a negative display. It took me
a little over four hours to do this, but nearly three of
those were spent trying to replace the glass display that
I shouldn’t have removed in the first place. There were
also some other distractions along the way.

Happy hacking! n

Brian Green is the founder of Brian’s Backpacking Blog
[briangreen.net]. His hacks have been published in MAKE Mag-
azine, featured on Instructables.com and won awards. He’s not
afraid to hack any piece of gear if he thinks he can improve it.

Reprinted with permission of the original author. First appeared in hn.my/negative (briangreen.net)

http://briangreen.net
http://Instructables.com
http://hn.my/negative

  39

I’ll often come up with an idea
that I get excited about.

Then I brainstorm a catchy
name for it, check the availability
of urls and social media accounts,
maybe even set up a landing page.
It gives me a big rush, and I imagine
a dazzlingly bright future ahead for
the concept.

And then the idea crawls up and
dies inside of me.

Why?
Because I don’t actually do

anything.
To finish things, you need to fall

in love with the part of the pro-
cess that’s harder to love — the bit
where you roll up your sleeves and
do the damn thing.

Maybe that’s why it’s got another
much tougher sounding name:
execution.

The human brain is a brilliant
idea-generating machine. In the past
we had to convert our ideas into
solutions just to stay alive: to make
sure that we had enough food... or
didn’t get eaten. But now, in the
safety of our comfortable, hygienic,
homogenized 21st century lives,
it’s all too easy to fall asleep on our
true potential.

Wake Up and Smell the Hard
Work
Your idea doesn’t mean diddly-
squat until it’s out in the world.
And to do that is going to take
some hard manual labor.

So to stay on track, you’ll need to
engage with the execution process
as much as the idea itself.

None of my various bright ideas
— a social network for sneaker
collectors, customizable artwork
of your bicycle, a recipe sharing
platform, a book about designers
turned entrepreneur (OK, that last

one I am actually set on doing) —
have come to fruition yet.

And whilst CycleLove (and its
sister shop CycleLux) might be
building momentum, I still have
a huge hang-up about creating
the eBooks or information-based
content about cycling or whatever
it is that I’ve been talking about
for months and months. It’s still a
blog, not a business, and costing me
money instead of making it.

I chickened out of the work.
You need graft, or grit, or gump-

tion, or whatever you want to call
it.

Whether it’s by actually blog-
ging on your blog, or starting your
startup, value is created by doing.

It’s easier to sit around and talk
about building a startup than it
is to actually start a startup. And
it’s fun to talk about. But over
time, the difference between fun
and fulfilling becomes clear. Doing
things is really hard — it’s why,
for example, you can generally tell
people what you’re working on
without NDAs, and most patents
never matter. The value, and the
difficulty, comes from execution
— Sam Altman

Dial Down the Resolution(s)
When I looked back at the list of
goals I’d set out for 2013 the other
day, I felt pretty embarrassed. Espe-
cially as it’s published in plain sight
on the internet. I didn’t come close
to achieving any of my resolutions.
Not one thing on the list.

But I know that beating yourself
up about this kind of stuff is stupid.
(Make changes, not criticisms).

So…I haven’t made any New
Year’s resolutions this year.

You don’t want high resolu-
tions anyhow — you want low

resolution.
You want to let go of the fear of

fucking up, of it not being perfect,
of what other people think, of
things that probably won’t ever
happen, and just crank that stuff
out, baby.

Instead of Trying to Finish Every-
thing, Try to Finish One Thing.
Today if possible.
And then another...
And another...
And...
(I think I just finished this article).

What are you going to finish
today? n

James Greig is a London-based graphic
designer/writer [greig.cc] and the founder
of CycleLove [cyclelove.net]

http://greig.cc
http://cyclelove.net
http://mailjet.com

40  SPECIAL

Metrics and monitoring for people
who know what they want
We know from experience that monitoring your servers and
applications can be painful, so we built the sort of service that
we would want to use. Simple to set up, responsive support
from people who know what they're talking about, and reliably
fast metric collection and dashboards.

Why Hosted Graphite?

• Hosted metrics and StatsD: Metric aggregation without the setup headaches

• High-resolution data: See everything like some glorious mantis shrimp / eagle hybrid*

• Flexible: Lots of sample code, available on Heroku

• Transparent pricing: Pay for metrics, not data or servers

• World-class support: We want you to be happy!

Now with Grafana!

Promo code: HACKER

*Hosted Graphite’s mantis shrimp / eagle breeding program has been unsuccessful thus far

Dashboards StatsD Happiness

Grab a free trial at http://www.hostedgraphite.com

http://hostedgraphite.com

	FEATURE
	My Quest to Build the Ultimate Music Player

	PROGRAMMING
	Build Your Own Drink Mixing Robot
	Testing with Jenkins, Ansible, and Docker
	Build Tools – Make, No More
	Better Bash Scripting in 15 Minutes

	SPECIAL
	How to Convert a Digital Watch to a Negative Display

