
Issue 54  November 2014

2  ﻿

The end of procrastination
is the art of letting go.

I’ve been a lifelong
procrastinator, at least until recent
years. I would put things off until
deadline, because I knew I could
come through. I came through on
tests after cramming last minute,
I turned articles in at the deadline
after waiting until the last hour, I
got things done.

Until I didn’t. It turns out
procrastinating caused me to miss
deadlines, over and over. It stressed
me out. My work was less-than-
desirable when I did it last minute.
Slowly, I started to realize that pro-
crastination wasn’t doing me any
favors. In fact, it was causing me a
lot of grief.

But I couldn’t quit. I tried a lot of
things. I tried time boxing and goal
setting and accountability and the
Pomodoro Technique and Getting
Things Done. All are great methods,
but they only last so long. Nothing
really worked over the long term.

That’s because I wasn’t getting to
the root problem.

I hadn’t figured out the skill
that would save me from the
procrastination.

Until I learned about letting go.
Letting go first came to me when

I was quitting smoking. I had to let
go of the “need” to smoke, the use
of my crutch of cigarettes to deal
with stress and problems.

Then I learned I needed to let go
of other false needs that were caus-
ing me problems: sugar, junk food,
meat, shopping, beer, possessions.
I’m not saying I can never do these
things again once I let go of these
needs, but I let go of the idea that
they’re really necessary. I let go of
an unhealthy attachment to them.

Then I learned that distractions

and the false need to check my
email and news and other things
online were causing me prob-
lems. They were causing my
procrastination.

So I learned to let go of those too.
Here’s the process I used to let go

of the distractions and false needs
that cause procrastination:

➊ I paid attention to the pain
they cause me, later, instead

of only the temporary comfort/
pleasure they gave me right away.

➋ I thought about the person
I want to be, the life I want

to live. I set my intentions to do the
good work I think I should do.

➌ I watched my urges to check
things, to go to the comfort

of distractions. I saw that I wanted
to escape discomfort of something
hard, and go to the comfort of
something familiar and easy.

➍ I realized I didn’t need
that comfort. I could be in

discomfort and nothing bad would
happen. In fact, the best things
happen when I’m in discomfort.

And then I smile, and breathe,
and let go.

And one step at a time, become
the person I want to be. n

“You can only lose what you cling
to.” ~Buddha

Leo Babauta is the creator and writer at
Zen Habits. He is a former journalist and
freelance writer of 18 years, a husband
and father of six children, and lives on
the island of Guam where he leads a very
simple life.

Get 50% off your first 6 months
circleci.com/?join=hm

http://circleci.com/?join=hm

  3

Get 50% off your first 6 months
circleci.com/?join=hm

and help change the future of search

http://circleci.com/?join=hm
http://duckduckhack.com

Cover Illustration: Matus Garaj

4  ﻿

Curator
Lim Cheng Soon

Contributors
Willem van der Jagt
Daniel Tenner
Andrew Wulf
Eric Adler
André Staltz
Justin Brower

Illustrator
Matus Garaj

Proofreader
Emily Griffin

Printer
Blurb

Hacker Monthly is the print magazine version
of Hacker News — news.ycombinator.com, a social news
website wildly popular among programmers and startup
founders. The submission guidelines state that content
can be “anything that gratifies one’s intellectual curiosity.”
Every month, we select from the top voted articles on
Hacker News and print them in magazine format.
For more, visit hackermonthly.com

Advertising
ads@hackermonthly.com

Contact
contact@hackermonthly.com

Published by
Netizens Media
46, Taylor Road,
11600 Penang,
Malaysia.

Hacker Monthly is published by Netizens Media and not affiliated with Y Combinator in any way.

http://news.ycombinator.com
http://hackermonthly.com
mailto:ads@hackermonthly.com
mailto:contact@hackermonthly.com

  5

For links to Hacker News dicussions, visit hackermonthly.com/issue-54

Contents
FEATURES

06  How I Built an Audio Book Reader for
My Nearly Blind Grandfather

By Willem van der jagt

STARTUP

14  There Are No B Players
By Daniel Tenner

17  What Writing — And Selling — Software Was Like In The ‘80s
By Andrew Wulf

20  How to Read a Patent
By Eric Adler

PROGRAMMING

28  The Introduction to Reactive Programming You’ve Been Missing
By André Staltz

SPECIAL

38  A Scientist Stole my Root Beer
By Justin Brower

http://hackermonthly.com/issue-54

6  FEATURES

FEATURES

By Willem van der jagt

How I Built an Audio Book
Reader for My Nearly

Blind Grandfather

  7

Last year, when visiting
my family back home in
Holland, I also stopped by

my grandparents. My grandfather,
now 93 years old, had always been
a very active man. However, during
the preceding couple of months,
he’d gone almost completely blind
and now spent his days sitting in a
chair. Trying to think of something
for him to do, I suggested he try out
audio books. After finally convinc-
ing him -- he said audio books were
for sad old people -- that listening
to a well performed recording is
actually a wonderful experience, I
realized the problem of this idea.

The problem with audio devices
and the newly blind.
After my first impulse to jump up
and go buy him an iPod Touch, I
soon realized that, to use an iPod,
or any audio device for that matter,
one needs to be able to see the tiny
controls. So I started looking at
existing audio book solutions for
the blind. A couple of things exist,
but this market seems to be mainly
targeted at people that still have a
whole life of being blind ahead of
them and are willing to invest time
into learning very specific tech-
nologies. However, this was not my
grandfather’s situation. I worried
that he would lose his motivation
(of which he didn’t have much left
anyway at that point), so I needed
to come up with something better.
And since I hadn’t found anything
suitable that I could go out and buy,
I would need to build it myself.

Requirements
First of all, of course, whatever I
was going to build needed to have
an interface that didn’t require
(much) vision. Second, the con-
trols needed to be intuitive and
not require learning any com-
pletely new concepts. And last, if
my grandfather paused a book, for
however long, it would need to
continue where he left off, even if
the player had been without power.

I will describe in more detail
below, but I ended up building a
player that used my grandfather’s
very limited vision. However, it
could easily be adapted for some-
one able to read braille. The player
is built using a box the size of a 3
or 4 DVD boxes stacked on top of
each other. Each audio book that is
stored on the reader has a corre-
sponding DVD box with the title
of the book printed in very large
letters on the front. When a “book”
is placed on top of the reader, the
reader starts playing the book. The
reader has four large, bright col-
ored buttons on the front with the
following functions: pause, rewind
twenty seconds, and two buttons
that control volume.

The used technologies
Raspberry Pi
At the heart of the player is a Rasp-
berry Pi running Debian Wheezy.
Getting Linux to play audio is very
easy, so getting to audio books to
play wasn’t that much of a chal-
lenge. For playing audio, I used mpd
[musicpd.org], which is a daemon
that runs a server that plays audio
and that is controlled by sending it
commands over TCP, a very reliable
and easy to use network protocol.

What makes the Raspberry Pi
interesting is not only that it’s a tiny
computer that runs Linux, but also
that it has lots of I/O pins let you
connect anything you can imag-
ine (buttons, LEDs, but also serial
communication devices). When
writing a program for the Rasp-
berry Pi, you’ll be able to read from
these pins and change the behavior
of your program accordingly. The
small program I wrote to control
the audio book player uses these
pins to know when one of the but-
tons is pressed, and to know which
book is placed on the reader. Based
on these inputs, it communicates
with the mpd server to start, stop,
change book etc. etc.

http://musicpd.org

8  FEATURES

RFID
Each of the DVD boxes that cor-
responds to one book, contains an
RFID card. To read these cards, I
connected an RFID card reader
to one of the I/O pins that is able
to do serial communication so my
program knows which book to play.
Each RFID card has its own unique
ID, and each audio book is a series
of MP3 files that have names start-
ing with this ID.

Getting the books on the reader
I built the reader when I was back
in Montreal (which is where I
moved from Holland). When I
finished the reader, I loaded it with
ten books and sent it to my brother
who lives a ten-minute walk from
my grandparents. My brother took
it to my grandfather and explained
how it worked. Every time my
grandfather finishes his books, my
brother takes the reader home with
him to connect it to his router.
The reader, when powered up, will
check for an internet connection,
and if it finds one, it sends a mes-
sage to my phone using Pushover
[pushover.net] containing my
brother’s IP address. I then connect
to the reader from my laptop over
SSH and copy new books to it.

Technical Details

➊ Playing MP3 Files
Some initial configs

When I ordered my Raspberry Pi
(RPi), I also got an SD card already
containing Raspbian Wheezy, a
Debian port for the Raspberry Pi,
which made the setup extremely
easy. A couple of important con-
figurations need to be done, though.
You can do them on first boot,
or skip them because you can’t
wait to play. In this case you can
always go back to the configuration
tool by running raspi-config. The
most important options to set are
expand_rootfs and ssh. The first
expands the partition to use the full
SD card, and the second enables
an ssh server, so we can access the
RPi through ssh later on. SSH is
very useful if you don’t want RPi
running on your TV all the time.
Something else I wanted to get out
of the way was the login prompt
on startup, which my grandfa-
ther would never have to use (he
doesn’t even need to know there is
a computer inside his player). Auto
login behavior is accomplished
by modifying the system’s init-
tab file, located at /etc/inittab.
Later I actually realized that, to
automatically start a script on boot,
you don’t need to be logged in, so
if you’re following along, you can
skip this. But for completeness, and
because you may want this behav-
ior for something else, I will include
it anyway.

I commented out the following
line:

1:2345:respawn:/sbin/getty
--noclear 38400 tty1

and put this in its place:

1:2345:respawn:/bin/login -f pi
tty1 /dev/tty1 2>&1

After rebooting the RPi
(sudo reboot) I was logged in
automatically.

Playing MP3 files
For this project, I would need to
control MP3 files from my python
code. I had never done this before,
and the first thing I found that
came close to what I needed was
the mixer module that’s part of
the pygame library. I won’t bore
you with the code I tried, because
I didn’t end up using it. I still don’t
know why, but in my version of
pygame, the pygame.mixer.music.
set_pos() method didn’t exist. I
briefly verified in the source, but
I couldn’t even find a reference to
it. Since I wasn’t even sure pygame
was the best option, I continued
my search and found the very
awesome MPD (music player
daemon), which is a daemon that
runs a server that plays audio and
is controlled by sending it com-
mands over TCP. It runs really well
on the Raspberry Pi. It can be easily
installed (run sudo apt-get update
first if this is your first interaction
with apt-get) :

sudo apt-get install mpd

http://pushover.net

  9

The Python client python-mpd [hn.my/pythonmpd]
can be installed in any way you prefer. Instructions
are in the GitHub repository. MPD is a daemon that
accepts connections over TCP on a port (6600 by
default, which was fine for me) and are controlled by
sending it control strings. By using the python client, I
didn’t need to worry about formatting the strings and
sending them.

MPD doesn’t allow us to just play audio files from
any location (not that I know of, anyway). You need
to give it a location where it will look for them. The
installation we just did created a global config file at
/etc/mpd.conf. The only setting we really care about
for now is where to place the audio files. I changed the
default setting (which pointed to /var/lib/mpd/music)
to a folder called books in my user folder (/home/pi/
books). For this change to take effect you need to
restart the daemon (sudo /etc/init.d/mpd restart).

MPD is now running exactly how I want, and play-
ing audio files from Python becomes really easy. To
simply play a file “sometestfile.mp3”, which should of
course exist in our newly created books folder, could
be done as follows:

from mpd import MPDClient

client = MPDClient()
instantiate the client object
client.connect(host="localhost", port=6600)
connect to the mpd daemon
client.update() # update the mpd database with
the files in our books folder
client.add("sometestfile.mp3")
add the file to the playlist
client.play() # play the playlist

There’s a lot more MPD can do, but we’ll get to that
when we get to writing the actual code for the book
player.

Audio through 3.5mm jack
One last detail before we continue. By default the RPi
sends audio over HDMI, and not to the 3.5mm jack I
plan to use. I read somewhere that actually by default
it detects where it should send it, and at the time of
testing, mine was connected to a TV, so that’s where it
sent it. But I wanted to make sure it didn’t automati-
cally send it to HDMI by mistake when my grandfa-
ther got the player, so I found out how to configure the
built-in audio mixer to always send audio to the analog

headphone output (cset is to set a configuration vari-
able, we’re setting configuration number 3, which is the
playback route, to 1, which is the analog out):

sudo amixer cset numid=3 1

PulseAudio
I found that the playback quality of the RPi when
using the standard ALSA sound driver that comes
with the Raspbian distribution was pretty good. It did
however have one nasty habit: it would generate a loud
sharp pop whenever playback was paused. Installing
PulseAudio solved this problem, see here for instruc-
tions. [hn.my/pulseaudio]

➋ Reading RFID Cards
Connecting the RFID reader

I ordered the cheapest RFID reader I could find,
because they basically all do the same thing: read an
RFID tag and transmit the ID of the card over a serial
signal. Some readers offer NFC capabilities (allow-
ing you to store a small amount of data on the card),
but I didn’t need that. I got mine from robotshop.com.
It’s an Electronic Brick from Seeedstudio. I couldn’t
find anything on how to connect it to a RPi, but since
it communicates over standard UART, I assumed it
couldn’t be that hard if I just used the Python serial
library. [pyserial.sourceforge.net]

Voltage
Even though an RFID device outputs a pretty stan-
dard serial signal, something you really need to keep in
mind if you don’t want to damage your RPi, is that the
voltage that the RFID reader outputs on the Tx (the
transmitting pin) is 5 volts, and the Rx (the receiving
pin) on the RPi only expects 3.3 volts. Connecting this
RFID reader directly to the RPi would burn out the Rx
pin in the best case. To bring the voltage down to 3.3
volts, I got a logic level converter. Hooking it up to the
RPi and the card reader is really simple, even though I
did it wrong the first time, because I got confused by
the labels on the converter. The 5 volt signal coming
from the reader is connected to the RXI on the HV
(high voltage) side of the converter, which makes a 3.3
volt signal available on the RXO pin on the LV (low
voltage) side, which is then connected to the Rx pin of
the RPi. I found several descriptions of how to connect
this converter, but the clearest I found was actually an
image on hackaday.com [hn.my/sparkfun].

http://hn.my/pythonmpd
http://hn.my/pulseaudio
http://robotshop.com
http://pyserial.sourceforge.net
http://hn.my/sparkfun

10  FEATURES

Reading from serial
After this was connected correctly, reading RFID cards
on the serial port can be done in only a couple of lines
of code:

import the serial library providing all
functionality to interact with serial ports
import serial

"/dev/ttyAMA0" is the name of the serial port
on the Raspberry Pi the RFID reader from
Seeedstudio sends serial data at a baudrate of
9600 a timeout of 1 second will wait for data
on the serial port for
one second before continuing
port = serial.Serial("/dev/ttyAMA0", bau-
drate=9600, timeout=1)

while True:
 # the RFID reader sends the data for one tag
 # as a 14 character string
 rcv = self.port.read(14)
 print rcv

Even though this will successfully display the raw
data from the RFID tag, it’s not actually the ID of
the card. The details are available in the wiki of the
reader [hn.my/rfidwiki], but since this product has
been retired by Seeedstudio since I got it, there won’t
be much value in me explaining it. The only informa-
tion on how to get the actual card ID I found was
this C library [hn.my/rfidlib]. It was actually pretty
trivial to express in Python code and can be found
in the code that runs on the audio book player here.
[hn.my/rfidpy]

Reading the RFID cards was easy, but as soon as
I saw how the reader worked, I realized there was a
flaw in my plan. I really wanted the play and pause of
the audio playback to be controlled by the RFID card
only. Placing the card on top would start playing the
corresponding book, and removing it would pause it. I
assumed I could “ping” the RFID reader for the ID of
the card within its range, but instead of this, the reader
sends the ID of the card over serial as soon as it’s in
range. It does this only once. This meant I needed an
additional button on the reader to be able to pause/
resume playback. A small deception, but four buttons
is still very acceptable.

➌ Interrupts and Thread Safety
How it all starts

When the RPi that powers the audio book
reader boots, it starts a service called supervisord
[supervisord.org]. Supervisord is a process that can
be configured to keep other processes running. If, for
whatever reason, the code on the RPi crashes, super-
visord will notice and restart it. An advantage of using
supervisord is that it daemonizes my code, so I don’t
have to worry about daemonizing it myself (if you
were to run the python code from the command line,
it would stay in the foreground). Supervisord is also
configured to start main.py [hn.my/mainpy] as soon as
the RPi boots, making the reader ready to be used.

The main loop
Let’s take a look at this file. If we execute main.py, it
will create an instance of BookReader and call the loop
method on it. Important to understand here are the fol-
lowing lines:

def loop(self):
 while True:
 rfid_card = self.rfid_reader.read()

 if not rfid_card:
 continue

I left most of the code out, but the above lines show
that this function enters in an endless loop. In each
iteration of the loop, the read method is called on
the rfid_reader object that is set on the book reader
object. The most important lines in this method (leav-
ing out some error handling) are:

def read(self):
 rcv = self.port.read(self.string_length)

 if not rcv:
 return None

 tag = { "raw" : rcv,
 "mfr" : int(rcv[1:5], 16),
 "id" : int(rcv[5:11], 16),
 "chk" : int(rcv[11:13], 16)}

 return Card(tag)

http://hn.my/rfidwiki
http://hn.my/rfidlib
http://hn.my/rfidpy
http://supervisord.org
http://hn.my/mainpy

  11

We see that serial data is being
read from self.port, which is an
instance of serial.Serial. This
port was setup with a timeout of
one second, which means this line
of code will block for a maximum
of one second. If during that second
serial data was received on the port,
the rcv variable will contain that
data which is then used to instanti-
ate and return a Card object. If no
data was returned, the rcv value
will contain a None object. You may
remember from the previous sec-
tion that putting an RFID card on
the reader only causes the ID to be
sent once. This means that this read
method will almost always block
for precisely one second.

Interrupts
The simplest way to check if a
button is pressed, is to keep check-
ing the state of the button in a loop,
and wait for it to change. However,
if the main loop spends most of its
time being blocked by waiting on
data on the serial port, we can’t
really use this loop to see if my
grandfather has pressed a button
because a button press is usually a
lot shorter than one second so we
may miss it if the button is pressed
and released within the second that
the loop was blocked on the serial
port.

This is where interrupts come
into play. The main idea is that
instead of continuously checking
the state of button ourselves from
the code, we can use the button to
send a signal to the processor and
only act if this happens. If we take
a look at the setup_gpio method in
the BookReader class, we see how
this is setup for the buttons of the
book reader. This method loops
through the config values to setup
each button. If we were to extract

the setup of one of the buttons, it
would look like this (I’m leaving
out the last arguments on purpose,
because they’re not relevant just
yet):

GPIO.setup(9, GPIO.IN)
GPIO.add_event_detect(9, GPIO.
FALLING, callback=self.player.
rewind)

In the first line, we’re setting up
pin 9 (which is one of the physi-
cal pins on the RPi board) to be an
input. After that we’re setting up
this pin to listen to interrupts using
the add_event_detect method. The
second argument here (GPIO.FALL-
ING) says we want to listen for an
edge triggered interrupt, and more
specifically the transition of the
voltage on the pin from high to low
(the falling edge). If this happens,
we want to call the rewind method
on the player object that is set on
the book reader object. In short:
if the voltage on pin 9 drops from
high to low, we call self.player.
rewind.

The other three buttons function
in the exact same way. They’re all
connected to their own pin, and
all have their own callback on the
self.player object.

Threads and thread safety
The main loop described above
runs in the main thread of the
program. It keeps looping and
blocking on the serial port. If an
interrupt occurs on one of the
button’s pins, a separate thread is
created to execute the code of the
callback in parallel with the main
thread. This means that the main
loop is not blocking the new thread.
If, for example, the pause button
is pressed, a new thread is created,
and the pause method is executed,
which sends an instruction to the
mpd server (that’s playing the
audio) to tell it to pause.

If you’re using multiple threads
like this, strange things can happen
though. For example, within the
main thread, the mpd server is con-
stantly queried to get the current
status (which includes information
like the current volume, the track
that’s playing, etc.). As you may
remember, this information is trans-
mitted over a local port. If I don’t
keep thread safety in mind, press-
ing the pause button will spawn
a thread that also communicates
over this local port, and the two
information streams will interfere. I
actually encountered this bug while
developing this code, which mani-
fested itself by occasionally throw-
ing an exception when I pressed a
button while a book was playing.
The pause command to the mpd
server (in the new thread) received
information it shouldn’t, and the
status command in the main thread
was receiving an incomplete one.

12  FEATURES

The problem is that both threads are sharing a
resource (the mpd server), and they’re doing it at
the same time. A solution (the one that I chose), is
for a thread to lock access to the resource while it’s
using it. I extended the MPDClient class into my own
LockableMPDClient.

class LockableMPDClient(MPDClient):
 def __init__(self, use_unicode=False):
 super(LockableMPDClient, self).__init__()
 self.use_unicode = use_unicode
 self._lock = Lock()
 def acquire(self):
 self._lock.acquire()
 def release(self):
 self._lock.release()
 def __enter__(self):
 self.acquire()
 def __exit__(self, type, value, traceback):
 self.release()

When instantiating the mpd client, we give the
object a threading.Lock object, which provides a very
easy locking interface. Since the mpd client object is
shared by all threads, once one thread has acquired the
lock, another one can’t acquire it until it’s released.
If you’re familiar with python, you’ll notice the __
enter__ and __exit__ methods. Providing these two
methods allow me to do the following whenever I need
to call a method on the mpd client:

def get_status(self):
 with self.mpd_client:
 return self.mpd_client.status()

When a with statement is executed, the __enter__
method is called on the object. When all code within
the with block is executed, __exit__ is called on the
object, meaning that for the duration of self.mpd_
client.status() access to the mpd client is locked for
all other threads. Actually this use of with is only half
of what it can do, because I don’t need context guard-
ing, but it is enough to achieve locking.

➍ Finishing Up
The Buttons

The buttons may seem like the easiest part because a
button is a very simple device. In the previous post,
I told you about interrupts and how they make the
buttons work: the program detects changes in the level
on the pins to which the buttons are connected, and
executes corresponding code in a separate thread.

Button Bounce
The problem, though, with any button is that they
“bounce:”

Contact bounce (also called chatter) is a common
problem with mechanical switches and relays. Switch
and relay contacts are usually made of springy metals.
When the contacts strike together, their momentum and
elasticity act together to cause them to bounce apart one
or more times before making steady contact. The result
is a rapidly pulsed electric current instead of a clean
transition from zero to full current. The effect is usu-
ally unimportant in power circuits, but causes prob-
lems in some analogue and logic circuits that respond
fast enough to misinterpret the on off pulses as a data
stream. From: Wikipedia

If this problem isn’t solved in hardware (by using a
capacitor) or in software (by detecting quick changes
and waiting for the signal to settle), the program will
interpret the bouncing of the button as multiple button
presses and will behave in unpredictable ways.

You may remember the following code snippet from
the previous section:

GPIO.setup(9, GPIO.IN)
GPIO.add_event_detect(9, GPIO.FALLING,
callback=self.player.rewind)

  13

If you compare it to the code I actually use, you’ll
see I pass an extra argument bouncetime to GPIO.add_
event_detect, which is a value in milliseconds. I am
not absolutely sure what the GPIO library does inter-
nally with this value, but I found the optimal values by
experimentation, and by adjusting them later on when
my grandfather was experiencing problems (I found
out he keeps the buttons pressed a lot longer than me).
Looking back, I think it would have been better to go
for hardware debouncing, because the current version
seems somewhat picky. My impression is that the com-
plete sequence of press and “unpress” need to fall in
the debounce time. But I could be wrong because I was
adjusting these values over SSH from Canada while
my brother was interpreting the results from what he
observed when my grandfather used reader.

Pull Up vs. Pull Down
You may also remember from the previous post that
the program detects the falling edge on the button
pin to run the corresponding code. As a reminder: this
means that it’s waiting for the voltage on the pin to go
from high (3.3 v) to low (0 v). This normally means
we need to make sure that the voltage on the pin is
pulled up to a default state of 3.3 volts. This is done by
connecting the pin, through a very high value resistor,
to the + 3.3 volts pin on the RPi. However, the RPi has
built-in pull up and pull down resistors, so we don’t
need to do this. We can activate this with the pull_up_
down argument to GPIO.setup().

In the previous section I left out button bounce and
pull up to describe how I use interrupts. Adding these
two to the previous example, we get:

GPIO.setup(9, GPIO.IN, pull_up_down=GPIO.PUD_UP)
GPIO.add_event_detect(9, GPIO.FALLING,
 callback=self.player.rewind, bouncetime=1000)

The button connects the pin to ground through a
high value resistor (1.2 k ohms, if I remember cor-
rectly) when pressed to make the state of the pin low.

The Status Light
One detail I added, a bit for my own pleasure because I
thought it looked nice, was a status light on the front of
the reader. It has the following functions: it’s off when
the reader is powered off or booting. It’s on when the
player has booted and is ready to use. It blinks slowly
while playing. It will give three fast flashes when a
button is pressed or an RFID card is placed on the reader.
It blinks once every 1.5 seconds if the player is paused.

The logic for the status light runs in a separate
thread. A slightly simplified version looks like this:

instantiate a status light object, and tell it
the light is connected to pin 23
status_light = StatusLight(23)

start a new thread and give it the start
method on the status light object as target
thread = Thread(target=status_light.start)

start the new thread
thread.start()

While the status light object is looping through
“on” and “off” states in a pattern (“on” and “off” for
blinking, just “on” for on, etc.), the main thread can
set the action property on the status light object to
the name of a different pattern. For example here
[hn.my/playerpy70] the property is set to blink. The
currently running pattern can also be interrupted by
a different pattern by calling the interrupt method
on the status light object. If, for example, the player
is playing a book, and the light blinks slowly, a button
press action can insert three quick flashes into the run-
ning pattern, after which the active one continues.

One year later
I spoke to my grandmother today because it’s her
birthday, and almost one year after having finished the
reader, my grandfather still uses it daily, and proudly
shows it to anyone who’s visiting. He started requesting
for music on it too, and whenever the reader is at my
brother’s house, he’s having a hard time not being able
to use it. I’m so happy that this little project was able
to give some pleasure to a person that’s been so enor-
mously important in my life. It’s harsh to say it with
these words, but when I saw him last year, I was afraid
he was close to being bored to death, literally. n

Willem van der Jagt is a Dutch developer from Montreal and father
of three. He has a passion for software design, and technology
that helps people. He loves to learn new things. Willem is the
lead developer at CakeMail.

Reprinted with permission of the original author.
First appeared in hn.my/bookreader (willemvanderjagt.com)

http://hn.my/playerpy70
http://hn.my/bookreader

14  STARTUP

STARTUP

By Daniel Tenner

“Only hire A players! Fire the B
players!”

“If you hire B players, then they
will hire C players!”

“Over time, the A players will get
frustrated with the B players and
will leave to go to other companies
and you’ll be left only with B and
C players, unless you regularly cull
B players.”

Hands up if you’ve read
this advice before. Keep
your hands up if you’ve

believed it. I see that’s all of you
still. Now keep your hand up if you
think you’re a B player, that it’s
your nature to be one, that you’ll
never be an A player. Oh, where’d
all the hands go?

“Everybody is a genius. But if you
judge a fish by its ability to climb a
tree, it will live its whole life believ-
ing that it is stupid.”
— Albert Einstein

I was a B player
Once upon a time, I worked for
Accenture. I started out fairly moti-
vated and did some good work (or
so it felt) in my first year, and then

I got progressively more demoti-
vated. I have no doubt that most
of the people I worked with, or at
least most of the people who had to
rate my performance, rated me as a
B player. Not a bad contributor, but
not the kind of balls-to-the-walls
excellence that they hoped for from
a super-keen, motivated Accenture
consultant.

I missed two rounds of promo-
tions before I finally left Accenture.
In theory this was due to one-off
structural stuff happening while I
was there (like Accenture taking
a $450 million write off on the
NHS project), but I knew that if
I had been rated as one of the top
people, they would have figured out
a way to promote me even during
a promotion freeze (Accenture
works like that, with special deals
for special people). So I was clearly
not at the top. At Accenture, I was a
consistent B player.

Even in my two subsequent
startups I was a B player. It turns
out that I don’t operate at my full
potential when I believe someone
else will find and fix my mistakes.
I play better without a safety net.
I also have a burning need to work
on stuff that I feel I own com-
pletely. The two combined mean
that on Vocalix and Woobius, I was

working at maybe 10–20% of my
capacity at the time (probably less
than 5% of my current capacity).
I was not in a state of flow. I was
easily distracted. I frequently felt
demotivated because of what I per-
ceived as unfair ownership/shares
split. I still got stuff done, of course,
but most people who are not in an
absolutely abysmal environment
will get shit done.

Long before these events, I was
a B player at school and then at
university. I might have been smart,
but I never felt like putting in
the seemingly unending amounts
of largely pointless effort that
academic excellence would have
required. Add to this that I was
undisciplined, didn’t have many
friends, and in fact was constantly
bullied in my early years of school.
For most of school, I was a B player,
if not a C player.

So, shall we consign me to the B
player trash can and forget about
this person called Daniel Tenner?
Or, as my dad suggested, in a skilful
reductio ad absurdum, to the head-
master who declared me “unsal-
vageable” and wanted to expel me,
“so do we take him out back and
shoot him now?”

There Are No B Players

  15

People are not cogs
The A/B player mentality comes
out of a worldview where people
are replaceable cogs in a machine
that you’re building to make
money. In this context, they are
measured mostly by their abil-
ity to produce a positive effect on
the bottom line. Sure, there may
be some qualities or defects that
don’t have an immediately appar-
ent effect on profits, but in this
worldview, it all comes down to the
numbers in the end, to one number
in particular: profit.

Within that worldview, the
concept of A and B players makes
sense. An A player has an outsized
positive effect on your profits. A B
player has a more moderate posi-
tive effect. A C player may have no
effect or worse. It stands to reason
that the best thing to do in this
context is to have only A players:
this way you’ll have more revenue,
more opportunities being grabbed,
and fewer people to share the
pot with. If that’s all that matters
to you, then please disregard my
article: it’s not addressed to you.

If, however, the thought of mea-
suring your entire human output
with a single number makes you
shudder or at least makes you a little
bit uncomfortable, please read on.

Human beings are deep, complex
creatures with many subtleties and
nuances. They can contribute to a
variety of endeavors in a whole lot
of ways. The key to unlocking this
human potential in yourself is to
find the stuff you’re good at, that
you enjoy doing, and that you think
is worth doing to make a positive
difference. Then find that elusive
state of flow where work becomes
more like play, where despite deal-
ing with a variety of tasks (some of
which may seem boring), you take
the time to love what you do and
do what you love. When you find
that place, you’re an A player.

Everyone seems perfectly will-
ing to accept the above statement
when it comes to their own self.
Even better, we all breathlessly
repeat this pearl of wisdom to
friends, family, and sometimes com-
plete strangers that we feel some
sympathy towards. We believe in its
deeper Truth, on its positive impact
on our lives.

And yet when it comes to hiring
and firing, we suddenly conclude
that some people are hopeless
B players to be culled, lest they
pollute our precious company by
hiring even worse examples of
themselves, or setting a low hiring
standard for the whole company.

That is elitist crap, merely there
as a consequence of a narrow-
minded worldview and as an escape
hatch to allow us to blame poor
performance on other people rather
than ourselves. There are no B play-
ers, only people whose potential is
not being brought to life, fish which
are made to climb trees and then
told they suck.

A better view of hiring
Pretty much everyone in the
world has the potential to make a
great contribution to some human
endeavor. Sure, some people are
cleverer or stronger or faster or
more nimble or more diligent or
more patient or more helpful or
more of a zillion different qualities
humans can be evaluated on. How-
ever, this contribution is only pos-
sible when the said human being
is placed in a context that gets the
best out of them.

Most of humanity labors in
terrible, dehumanizing, boring,
uninspiring contexts. Too many
still are slaves, or toil for survival
or safety or comfort rather than
for inspiration, fulfilment, or any
kind of meaningful purpose. That
is a tragedy first of all for ourselves
as a species, as we miss out on
great contributions from billions

“There are no B players, only people
whose potential is not being brought
to life, fish which are made to climb
trees and then told they suck.”

16  STARTUP

of people who could give so much
more to the world around them.
A few of us are lucky to be able
to find or fashion an environment
which enables us to give our best
day after day. Calling the latter “A
players” and firing the rest is not
only callous, it is immensely short-
sighted and bone-headed on both a
personal, a business, and a societal
level.

When it comes to hiring, not
everyone is right for your company.
Some people will thrive in the
open environment we’ve built at
GrantTree. Others will excel in a
numbers-and-measurements-ori-
ented, strictly hierarchical company.
Others yet will thrive in a socially
oriented context where they feel
part of a family. Others may give
their best when surrounded by
chaos and relying on themselves
alone. To make matters worse,
people will shift between these and
other categories throughout their
life, depending on many factors
including personal growth, external
demands on their resources, etc. In
addition, people have skills, abilities
and aspirations that will determine
whether there is useful work for
them to do within a given company.

Anyone who thrives in the
environment you’ve built for your
company and wants to contribute
something important will be by
definition an A player. Your job
when recruiting is to find those
people who will do well in the
environment you’ve built, and who
have skills, abilities, and aspirations
that complement the needs of your
company. Depending on how dif-
ferent your company is from the
norm, there may be no one who fits
so well outright. Perhaps they will
need some coaching to embrace
your unique culture. Perhaps some

training to learn the ropes. Your job
then becomes to find people with
the right potential to thrive in your
company, and then to coach them,
train them, and help them to unfold
their potential.

Whatever you do, though, don’t
make the mistake of thinking that
those who don’t fit your specific
environment are unworthy human
beings, categorized forever with
the “B” brush stroke, unlikely ever
to amount to much, and don’t let
yourself fall into the trap of think-
ing you’re better than them. You’re
not better, you’re merely in a better
place, and with some humility
perhaps you will be able to see that
your role is not to sort the deserv-
ing from the unworthy, but merely
to help those whose way you’re
lucky to cross to contribute at their
best, whether in your company or
somewhere else. n

Daniel Tenner is the founder of Woobius
and GrantTree. Known as “swombat” on
Hacker News and Twitter, he is now pro-
ducing swombat.com, a daily updated
resource for people who like to read
startup articles.

Reprinted with permission of the original author.
First appeared in hn.my/bplayer (danieltenner.com)

http://swombat.com
http://hn.my/bplayer

  17

By Andrew Wulf

I started my career in 1981,
working for 3 years at a defense
contractor. By 1985 I started

my first company to develop and
then sell a spreadsheet-like applica-
tion for the Mac called Trapeze. It
shipped in January 1987, but by
the end of the year we sold it, and
then I started a new company to
just develop for other people. We
worked on the presentation app
Persuasion (for the author) and
then spent 6 years working on Del-
tagraph for its publisher.

So what was it like back then in
the dark ages? Quite different from
today in many ways; not so dif-
ferent in others. Warning, antique
history!

I quit my job in late 1984 and
then came up with the idea that
became Trapeze. Like any young
person with an idea, I got people I
knew excited and we got a group
of investors together. As it is today,
there were people who liked to
invest in new ideas, but unlike

today many of them had no idea
what we were doing. The whole
idea of software was unfamiliar to
many. I remember talking with a
banker who upon hearing we were
going to work on software thought
we were making lingerie!

There was little email (at my
first job I had an email address
outside of work but I only knew
one person with one — my boss
— and we sat next to each other at
work) and of course, there was no
internet. Learning meant librar-
ies, or magazines, or maybe a user
group. If you wanted to know what
a piece of software did, you had to
buy a copy. Just finding out what
software existed meant reading ads
or magazine reviews or attending a
computer show.

We started development in late
1985. We had two 512K Macs
and one Mac XL (a Lisa running
MacOS) that had a small hard
drive we all shared. I used the
XL, and the other two developers

could access the hard drive over
Appletalk. At first we used some
C compiler whose name I don’t
remember. It was pretty slow. The
linker spent most of its time draw-
ing icons on the screen. At some
point we started using Lightspeed-
C (later named Think C), which
helped a lot. Even though Apple
had mostly Pascal interfaces, we
used C, because I thought C was
the future.

Development was slow as we
were basically inventing a new idea,
working in a new language on a
new platform, and on ridiculously
slow machines (5 and 8 MHz)
with tiny screens compared to
today. In May of 1986 I went to the
first Apple developer conference
(not yet named WWDC) where
basically the entire world of Mac
developers showed up — we all fit
in a single hotel ballroom! During
the week, Apple took us out on a
boat in SF harbor for some fun. We
all thought it would be funny if we

What Writing — And
Selling — Software Was

Like In The ‘80s

18  STARTUP

sank and the whole Mac industry
vanished with us.

Today people think everyone did
Waterfall in the old days. We didn’t
even know that word, and we never
gave much thought to processes.
We organized the app development
into three pieces with a reasonable
contract on an informal API. In
fact it had to be informal as when
we started C didn’t even have
prototypes — you had to manually
make sure a function’s parameter
and calls matched! We also had no
repository as they weren’t available
on MacOS at the time, so we had
to have a manual process to keep
track of files. I did all the “official”
builds.

In August we all went to Mac-
world Boston where we started
doing press demos in a hotel room
as well as wandering the floor
looking at other people’s apps. This
was the first time I really saw what
other people were doing (remem-
ber no websites, no free demos,
spending money to even see an
app) and was horrified by the inter-
face I had designed. It reeked. Now
that I could see other people’s work
it didn’t measure up.

I would work 90-hour weeks for
the next four months to completely
rewrite the interface while sup-
porting the old one so the other
two could keep working. Of course
while I was doing this I had to
talk with the press, do demos, deal
with investors, find suppliers, hire
people, and all the usual business
stuff. Unlike today you had to do
everything yourself. Jolt Cola was
my friend.

We finally shipped it at Mac-
world SF in January 1987.

Now what does that mean?
Today shipping is nothing, push
a few buttons and it’s uploaded
somewhere. In those days ship-
ping meant floppy disk duplicators,
printers for manuals, boxes, and
actual shipping. Who did you ship
to? Distributors and mail order
houses. You rarely sold to end users.
Distributors took cases of boxes,
putting a short description into a
paper catalog they gave to retail-
ers. If they sold any they sent you a
check 90-180 days later. Anything
they didn’t sell came back 6 months
later. Mail order usually paid
quicker. Distributors would pay
you around 30% of the retail price;
the mail order people were a little
better. If you wanted a retailer to
stock your app you were expected
to advertise; no one did anything
free for you other than put you in a
catalog. This made making money a
pain in the ass.

Of course potential custom-
ers had to figure out you existed,
demand you from their retailer
who hopefully ordered from the
distributor. If they did buy a copy
you only found out who they were
if they filled out a registration card
or called for support. When I think
back at how crappy this all was
I wonder why I ever got into it!
Today it all sounds stupid.

We got a good review in Mac-
world, but the guy who wrote the
MacUser review had a bad day and
the review was horrible. Of course
these were written in January and
only came out 3 months later. The
one bad review killed our sales.
When the only source of informa-
tion is reviews it only took one
bad one. Being a small developer
we couldn’t fix it fast enough — it
took months to make changes, ship
it, and then wait for an updated

review 4 months or so later in the
magazine. A year later we met the
author and he admitted he hadn’t
been fair and took his personal
issues out on us. We sold Trapeze to
a company in Boston which then
split and formed Deltapoint in Cali-
fornia. Eventually we would start
Deltagraph for them.

Apple helped bring my second
company together with the author
of a drawing program who wanted
to make a presentation program out
of it. He had seen Cricket Presents
in an early alpha and thought he
had the right stuff to do one as
well, but knew nothing of charts,
so that’s where we came in. He and
I sat in his condo in Brooklyn for
three days and figured out what a
presentation package should look
like. He had briefly seen Presents,
and I knew nothing, so we just
made it up.

We worked in Texas and he was
in New York, so since there was
no email, we worked out a system
by sending first floppies and later
cartridge drives back and forth
every other day, merging each
side’s changes by hand. Persuasion
shipped in August, 1988. He had it
published by Aldus. Eventually in
the ‘90s it was acquired by Adobe
who killed it as PowerPoint become
a virtual monopoly by being part of
Office.

So in late 1988, we and Delta-
point decided to start building a
charting and graphing program to
challenge the market leader, Cricket
Graph. Of course it was on Mac;
Windows was not a viable plat-
form until 3.1 in 1992. Everything
appeared first on the Mac.

  19

With Deltagraph we again wrote
in C. We had four programmers
including me, plus one QA. The
publisher had a product manager
and another QA, plus a lot of sup-
port people. They were in Califor-
nia and we were still in Texas. Until
1990 we had no reliable email that
could send binaries, so we still used
FedEx. Until the last version we did
in 1993, we were the only program-
mers. Each version would start with
a page or two of ideas. We again
broke the development into pieces
with careful APIs. We still didn’t
have any repository software. Now
that we had a real product manager,
we found it worked best to talk
on the phone about an idea first;
then often I would prototype it in
HyperCard, Apple’s nifty little app.
Usually that resulted in speculative
coding. We would write enough
to build a version and send it via
FedEx so that the product manager
could see it. This would go back
and forth until it was happy, or
tabled. Note there was no advance
planning; this was real lean type
development long before agile was
a thing. Everything in Deltagraph
was built in parallel streams during
the usual six-to-eight month devel-
opment cycle.

Now I had read at some point the
famous Byte magazine Smalltalk
issue and wanted to use OO pro-
gramming in Deltagraph. Of course
there was no language I could use
yet, so I rolled my own extensions
to C, some incredibly lame ones
involving switch statements. It
made it easy to have a single output
driver, and “subclasses” for each
output type. This became Delta-
graph’s biggest feature; it produced
Postscript and Adobe Illustrator
native format files which meant
you could build a complex chart

in Deltagraph and then have your
artist monkey with it in Illustrator.
I reverse engineered their format.
This format later become the basis
of PDF.

We barely finished Deltagraph
before the publisher ran out of
money. We were actually owed
$150,000 by the shipping date, but
it was a big hit and became a huge
money maker for them. We worked
on five major release.

In those days, you almost never
sent out patch disks. Generally you
had to wait six-to-eight months to
ship a new version and you had to
charge the customer for the update.
Trapeze only needed one floppy but
Deltagraph shipped on something
like 10 disks. Paying for hundreds of
thousands of disks is expensive; add
to that printing of manual updates
and boxes and shipping and you
never did this casually. So the ver-
sion we sent to the duplicators had
to be perfect and live for months. I
was always the final arbiter of what
shipped. Thankfully we never had
an issue with either four versions of
Trapeze or the five of Deltagraph.

Of course we didn’t write unit
tests or anything like that. I never
even heard the term until ten years
later. But we tested the builds con-
tinuously every day and kept care-
ful record of anything that didn’t
work correctly. Having QA use the
app all day every day from start
to finish meant it was well tested
by the ship date. It also helped in
finding irritations in features or UI
before the customers found it —
use an app for months and every-
thing bad is magnified! I still believe
strongly that hard core continuous
QA produces quality apps. I still try
to get people to do this today, and it
gets the same results.

Deltapoint eventually sold Del-
tagraph in the mid ‘90s, and it wan-
dered around but is still available
today — sadly still from the same
codebase we started in 1988! It
has to be seriously awful today. We
wanted to rewrite it in C++ in 1993
but Deltapoint said no. Now twenty
years and hundreds of engineers
later, it must be horrible. But for
the longest time it was the standard
for printed charts.

Hopefully you get a vague idea of
what writing — and selling — soft-
ware was like back then. Everything
is so much easier today, but users
expect so much more. You need
to ship continuously; feedback is
instant, but so is disgust; and you
have to know way more technolo-
gies to write anything. Back then all
I needed was K&R C, Inside Macin-
tosh and imagination.

The only thing I miss is the
constant opportunity for invention:
when you are doing something
brand new and have nothing to help
you, it’s all up to your imagination
and creativity. There was no inter-
net, no Google, no StackOverflow.
It was just you and your friends and
your brain.

Other than that I don’t miss it at
all, but it was fun! n

In 3 decades of programming Andrew
has worked on almost every kind of soft-
ware. Currently he works in mobile at a
well known travel brand and writes in his
blog, thecodist.com

Reprinted with permission of the original author.
First appeared in hn.my/software80 (thecodist.com)

http://hn.my/software80

20  STARTUP

Patents are complex docu-
ments that bury a handful
of important sentences

under a mountain of fluff and
jargon. If you’re going to read a
patent (and I urge you not to) you
might as well start with the impor-
tant parts, and read them correctly.

Let’s suppose you want to figure
out whether your new technology
might infringe some patent. Here’s
a simple strategy I might use to
start the infringement analysis.

First, skip down to the “claims.”
The claims are a numbered list of
run-on sentences buried toward the
end of the patent. Although they
come last, the claims are actually
the meat of the patent. They define
the actual patent rights. The other
sections are auxiliary; they are sup-
posed to help explain the claims.

Next, highlight all the “indepen-
dent claims.” These are the claims
starting with the word “A”. For
example, “1. A swizzle stick adapted
to…” or “9. A computer imple-
mented method for….” There are
probably 2 or 3 of these indepen-
dent claims, but there can be more.

The others claims are the “depen-
dent claims.” The dependent claims
start with a phrase like “The ____

of claim _____” and refer back to
a previous claim. For example, “7.
The swizzle stick of claim 1, further
comprising…” Ignore the depen-
dent claims for now. Google Patents
actually displays dependent claims
in gray text, making it easy to skim
past them (UX!).

In 2 minutes, we’ve narrowed
a huge patent document down
to a small handful of important
sentences: the independent claims.
Next we will break down the inde-
pendent claims and compare them
to our technology.

Any Infringement?
We want to determine whether
our technology would infringe this
patent we’re reading. It will infringe
if it incorporates every element of
any one of the claims. Fortunately,
we only need to check the indepen-
dent claims at this point.

Claims read like run-on sen-
tences, but if you’re lucky the
run-ons will be broken down into
sections and even subsections.
Take a look at the first claim in our
annotated patent. The first claim is
a method with 3 steps, and the first
step has 4 qualifications:

1.	 A computer implemented
method of scoring a plurality of
linked documents, comprising:

■■ Obtaining a plurality of
documents,

At least some of the documents
being linked documents,

At least some of the documents
being linking documents, and

At least some of the documents
being both linked documents
and linking documents,

Each of the linked documents
being pointed to by a link in
one or more of the linking
documents;

■■ Assigning a score to each of the
linked documents based on scores
of the one or more linking docu-
ments and

■■ Processing the linked documents
according to their scores.

If your technology does not
incorporate even one of these steps
or qualifications, it’s (probably)
not infringing this claim. Let’s
say your technology does 90% of
the things described in claim 1,
except that none of the documents
are both “linked documents and

By Eric Adler

How to Read a Patent

  21

linking documents” (as required
by the claim). Then your technol-
ogy is (probably) not infringing on
this claim 1. It’s an all-or-nothing
analysis, at least at this preliminary
stage. If even one element of the
patent claim is missing from your
technology, your tech is (probably)
not infringing on the patent.

Parts of the claim might be
ambiguous on their own. So at this
point, we start referring back to the

rest of the patent document to try
to understand whether words in the
claim have some special meaning.
This type of claim interpretation
analysis is complicated, and beyond
the scope of this post. In theory,
if you are a reasonably competent
engineer/scientist in the field of this
patent, the claims should be written
in language you can understand.
(This is rarely true, but in theory,
it’s required).

Annotated Patent
When reading a patent, first skip
to the independent claims and
read them carefully. The rest of
the document is far less important.
Here’s an annotated patent explain-
ing some of the other parts of the
patent document.

How To Read a Patent
The section called the “Claims” defines the actual
patent rights. I’ll point the claims out in red. The rest of
the patent document is supposed to help us understand
and interpret the claims.

Strategy for Reading a Patent

1.	 Start by reading the first “claim.” It will be buried
towards the end of the patent, but its the most
important part.

2.	 Try to put the claim in context by skimming
through the drawings and reading the “summary”
section. Hopefully the first claim will start to make
some sense.

3.	 Someone is infringing the patent if their technology
incorporates every element of one of the patent’s
claims.
[Your milage may vary. Patent infringement rules
are extremely complicated.]

■■ Not Patent Rights

■■ Patent Rights

22  STARTUP

TITLE
This is just a name. The
title might suggest a
broad patent, but only
the claims define the
actual patent rights.
Don’t be fooled by
broad-sounding titles.
In fact, just ignore the
title.

ASSIGNEE
The true owner. This
assignee is often the
company that the
inventor works for.

REFERENCES
Some documents the
examiner reviewed
before granting this
patent. More references
may suggest a stronger
patent.

PRETTY PICTURE
This is literally just a picture
slapped onto the cover to look cool.

ABSTRACT
A quick summary of the
technology involved in the
patent. The abstract may
suggest a broad or improb-
able technology, but only
the claims define the actual
patent rights.

INVENTOR
The patent must correctly identify the
inventor(s). However, the “assignee”
owns the real patent rights.

  23

DRAWINGS
The drawings help explain or
interpret the claims. But only the
claims define the patent rights.

24  STARTUP

RELATED APPLICATIONS
One application can often branch
off into several patents. This
section keeps track of the prior
applications in the chain.

FIELD OF INVENTION
Described the field of technology
in general terms. But remember
that only the claims define the
patent rights.

BACKGROUND
Discusses the problems that this
invention purports to solve. Since
its not required, many patents
include only a cursory “back-
ground” section.

SUMMARY
is supposed to quickly describe how
the invention works. It does not define
the patent rights. Only the claims
grant patent rights.

  25

DETAILED DESCRIPTION
The detailed description section
may continue for several pages.

CLAIMS!!!
These are the weird run-on sen-
tences that actually define the
scope of the patent rights.

Independent Claims
Pay attention to independent
claims. They start with the word
“A” as in “A widget that...” or
“A computer implemented
method of...”
The independent claims are the
broadest.

26  STARTUP

Dependent Claims
These claims branch off an inde-
pendent claim and add additional
limitations to the parent claim.
They start with the word “The” as
in “the widget of claim 1...”
A dependent claim is always more
narrow than its parent indepen-
dent claim.

  27

The Rest of the Patent
It’s easy to forget that the claims,
and only the claims, define patent
rights. The rest of the patent docu-
ment is auxiliary to the claims. So
remember:

■■ The title does not define the
patent rights. If the title is
“toaster”, the patent probably
covers some minor aspect of a
toaster. It does not cover every
aspect of every toaster, and cer-
tainly not the very concept of a
toaster. It’s usually best to ignore
the title.

■■ The drawings do not define the
patent rights. The claims prob-
ably highlight some small aspect
of the drawings, and this small
aspect is part of the patent rights.
The rest of the drawings may
help explain the claims, but that
is all they do.

■■ The summary is just a summary
of some technology. The claims
probably highlight some small
part of the summary, and this
small part is part of the patent
rights. The rest is fluff.

Prior Art
A prior art analysis is similar to an
infringement analysis. I’ll explain a
quick taste of the prior art analysis
because it’s useful to compare it
to the infringement analysis. First,
check the prior art reference’s date.
Is it older than the patent? If so, it
might be prior art. If the reference
is newer than the patent, it’s not
prior art.

Next, skip down to the claims. As
with the infringement analysis, the
claims are the most important part
of the patent for a prior art analysis.
But unlike infringement, we will
need to review all the claims, not
just the independent claims.

Check to see whether the prior
art reference explains every element
of a claim in the patent. If so, the
reference “anticipates” the claim,
and the claim is invalid. Repeat this
process for each claim. If an inde-
pendent claim is anticipated and
invalid, the dependent claims that
branch off of it might still be valid.

The prior art reference might
be another patent, or it might be a
journal article, white paper, or most
any other published document. If
the prior art reference happens to
be another patent, the claims in this
prior art patent are not particularly
important. Any part of a prior art
patent (let’s call it “old-patent”)
can help invalidate a later patent
(“new-patent”). The claims are the
critical part of new-patent, but not
of old-patent.

Even if a patent claim is not
anticipated, it might still be invalid
as obvious. The obviousness analysis
basically asks whether someone
might reasonably combine two or
more references to teach every ele-
ment of a patent claim. It’s compli-
cated, so we will save the details for
another post.

Conclusion
I hope this helps provide a gen-
eral overview of how to read a
patent. Patent law is complicated
and full of traps for the unwary.
This quick guide provides you
with just enough information to be
dangerous. If you have an impor-
tant patent question, hire a patent
lawyer. n

Eric is a NYC startup and technology lawyer
at Adler Vermillion LLP. He works with the
Brooklyn Law school technology clinic to
provide free defense against patent trolls,
and sits on the board of the NYC Legal
Hackers. Follow him on @teachingaway

Reprinted with permission of the original author.
First appeared in hn.my/patent (adlervermillion.com)

http://twitter.com/teachingaway

28  PROGRAMMING

PROGRAMMING

By André Staltz

So you’re curious in learning this new thing
called (Functional) Reactive Programming
(FRP).

Learning it is hard, even harder by the lack of good
material. When I started, I tried looking for tutorials. I
found only a handful of practical guides, but they just
scratched the surface and never tackled the challenge
of building the whole architecture around it. Library
documentation often doesn’t help when you’re trying
to understand some function. I mean, honestly, look at
this:

Rx.Observable.prototype.flatMapLatest(selector,
[thisArg])

Projects each element of an observable sequence into a
new sequence of observable sequences by incorporating
the element’s index and then transforms an observable
sequence of observable sequences into an observable
sequence producing values only from the most recent
observable sequence.

Holy cow.
I’ve read two books, one just painted the big picture,

while the other dived into how to use the FRP library.
I ended up learning Reactive Programming the hard
way: figuring it out while building with it. At my work
in Futurice I got to use it in a real project, and had the
support of some colleagues when I ran into troubles.

The hardest part of the learning journey is thinking
in FRP. It’s a lot about letting go of old imperative and
stateful habits of typical programming, and forcing
your brain to work in a different paradigm. I haven’t
found any guide on the internet in this aspect, and I
think the world deserves a practical tutorial on how
to think in FRP, so that you can get started. Library
documentation can light your way after that. I hope
this helps you.

“What is Functional Reactive Programming
(FRP)?”
There are plenty of bad explanations and definitions
out there on the internet. Wikipedia is too generic and
theoretical as usual. Stackoverflow’s canonical answer
is obviously not suitable for newcomers. Reactive
Manifesto sounds like the kind of thing you show to
your project manager or the businessmen at your com-
pany. Microsoft’s Rx terminology “Rx = Observables +
LINQ + Schedulers” is so heavy and Microsoft-ish that
most of us are left confused. Terms like “reactive” and
“propagation of change” don’t convey anything specifi-
cally different to what your typical MV* and favorite
language already does. Of course my framework views
react to the models. Of course change is propagated. If
it wouldn’t, nothing would be rendered.

So let’s cut the bullshit.

The Introduction to
Reactive Programming

You’ve Been Missing

  29

FRP is programming with asynchronous data streams.
In a way, this isn’t anything new. Event buses or your
typical click events are really an asynchronous event
stream, on which you can observe and do some side
effects. FRP is that idea on steroids. You are able to
create data streams of anything, not just from click and
hover events. Streams are cheap and ubiquitous, any-
thing can be a stream: variables, user inputs, properties,
caches, data structures, etc. For example, imagine your
Twitter feed would be a data stream in the same fash-
ion that click events are. You can listen to that stream
and react accordingly.

On top of that, you are given an amazing toolbox
of functions to combine, create and filter any of those
streams. That’s where the “functional” magic kicks in.
A stream can be used as an input to another one. Even
multiple streams can be used as inputs to another
stream. You can merge two streams. You can filter a
stream to get another one that has only those events
you are interested in. You can map data values from
one stream to another new one.

If streams are so central to FRP, let’s take a careful
look at them, starting with our familiar “clicks on a
button” event stream.

A stream is a sequence of ongoing events ordered
in time. It can emit three different things: a value (of
some type), an error, or a “completed” signal. Consider
that the “completed” takes place, for instance, when
the current window or view containing that button is
closed.

We capture these emitted events only asynchro-
nously, by defining a function that will execute when
a value is emitted, another function when an error is
emitted, and another function when “completed” is
emitted. Sometimes these last two can be omitted and
you can just focus on defining the function for values.
The “listening” to the stream is called subscribing. The
functions we are defining are observers. The stream is
the subject (or “observable”) being observed. This is
precisely the Observer Design Pattern.

An alternative way of drawing that diagram is with
ASCII, which we will use in some parts of this tutorial:

--a---b-c---d---X---|->

a, b, c, d are emitted values
X is an error
| is the 'completed' signal
---> is the timeline

Since this feels so familiar already, and I don’t want
you to get bored, let’s do something new: we are going
to create new click event streams transformed out of
the original click event stream.

First, let’s make a counter stream that indicates how
many times a button was clicked. In common FRP
libraries, each stream has many functions attached to
it, such as map, filter, scan, etc. When you call one of
these functions, such as clickStream.map(f), it returns
a new stream based on the click stream. It does not
modify the original click stream in any way. This is a
property called immutability, and it goes together with
FRP streams just like pancakes are good with syrup.
That allows us to chain functions like clickStream.
map(f).scan(g):

 clickStream: ---c----c--c----c------c-->
 vvvvv map(c becomes 1) vvvv
 ---1----1--1----1------1-->
 vvvvvvvvv scan(+) vvvvvvvvv
counterStream: ---1----2--3----4------5-->

The map(f) function replaces (into the new stream)
each emitted value according to a function f you
provide. In our case, we mapped to the number 1
on each click. The scan(g) function aggregates all
previous values on the stream, producing value x =
g(accumulated, current), where g was simply the add
function in this example. Then, counterStream emits
the total number of clicks whenever a click happens.

To show the real power of FRP, let’s just say that
you want to have a stream of “double click” events. To
make it even more interesting, let’s say we want the
new stream to consider triple clicks as double clicks, or
in general, multiple clicks (two or more). Take a deep
breath and imagine how you would do that in a tradi-
tional imperative and stateful fashion. I bet it sounds
fairly nasty and involves some variables to keep state
and some fiddling with time intervals.

30  PROGRAMMING

Well, in FRP it’s pretty simple. In fact, the logic
is just 4 lines of code. But let’s ignore code for now.
Thinking in diagrams is the best way to understand and
build streams, whether you’re a beginner or an expert.

Grey boxes are functions transforming one stream
into another. First we accumulate clicks in lists, when-
ever 250 milliseconds of “event silence” has happened
(that’s what buffer(stream.throttle(250ms)) does, in
a nutshell. Don’t worry about understanding the details
at this point, we are just demoing FRP for now). The
result is a stream of lists, from which we apply map()
to map each list to an integer matching the length of
that list. Finally, we ignore 1 integers using the filter(x
>= 2) function. That’s it: 3 operations to produce our
intended stream. We can then subscribe (“listen”) to it
to react accordingly how we wish.

I hope you enjoy the beauty of this approach. This
example is just the tip of the iceberg: you can apply
the same operations on different kinds of streams, for
instance, on a stream of API responses; on the other
hand, there are many other functions available.

“Why should I consider adopting FRP?”
FRP raises the level of abstraction of your code so you
can focus on the interdependence of events that define
the business logic, rather than having to constantly
fiddle with a large amount of implementation details.
Code with FRP will likely be more concise.

The benefit is more evident in modern web apps
and mobile apps that are highly interactive with a
multitude of UI events related to data events. Ten years
ago, interaction with web pages was basically about
submitting a long form to the backend and performing
simple rendering to the frontend. Apps have evolved
to be more real-time: modifying a single form field can
automatically trigger a save to the backend, “likes” to
some content can be reflected in real-time to other
connected users, and so forth.

Apps nowadays have an abundance of real-time
events of every kind that enable a highly interactive
user experience. We need tools for properly dealing
with that, and Reactive Programming is an answer.

Thinking in FRP, with examples
Let’s dive into the real stuff. A real-world example with
a step-by-step guide on how to think in FRP. No syn-
thetic examples, no half-explained concepts. By the end
of this tutorial we will have produced real functioning
code, while knowing why we did each thing.

I picked JavaScript and RxJS [hn.my/rxjs] as the
tools for this for a reason: JavaScript is the most famil-
iar language out there at the moment, and the Rx*
library family [rx.codeplex.com] is widely available
for many languages and platforms (.NET, Java, Scala,
Clojure, JavaScript, Ruby, Python, C++, Objective-C/
Cocoa, Groovy, etc.). So whatever your tools are, you
can concretely benefit by following this tutorial.

Implementing a “Who to follow” suggestions box
In Twitter there is this UI element that suggests other
accounts you could follow:

We are going to focus
on imitating its core
features, which are:

■■ On startup, load
accounts data from
the API and display 3
suggestions

http://hn.my/rxjs
http://rx.codeplex.com

  31

■■ On clicking “Refresh,” load 3 other account sugges-
tions into the 3 rows

■■ On click “x” button on an account row, clear only
that current account and display another

■■ Each row displays the account’s avatar and links to
their page

We can leave out the other features and buttons
because they are minor. And, instead of Twitter, which
recently closed its API to the unauthorized public, let’s
build that UI for following people on Github. There’s a
Github API for getting users.

The complete code for this is ready at http://jsfiddle.
net/staltz/8jFJH/48/ in case you want to take a peak
already.

Request and response
How do you approach this problem with FRP? Well,
to start with, (almost) everything can be a stream. That’s
the FRP mantra. Let’s start with the easiest feature:
“on startup, load 3 accounts data from the API.” There
is nothing special here, this is simply about (1) doing
a request, (2) getting a response, and (3) rendering the
response. So let’s go ahead and represent our requests
as a stream. At first this will feel like overkill, but we
need to start from the basics, right?

On startup we need to do only one request, so if we
model it as a data stream, it will be a stream with only
one emitted value. Later, we know we will have many
requests happening, but for now, it is just one.

--a------|->

Where a is the string 'https://api.github.com/
users'

This is a stream of URLs that we want to request.
Whenever a request event happens, it tells us two
things: when and what. “When” the request should
be executed is when the event is emitted. And “what”
should be requested is the value emitted: a string con-
taining the URL.

To create such stream with a single value is very
simple in Rx*. The official terminology for a stream is
“Observable,” for the fact that it can be observed, but I
find it to be a silly name, so I call it stream.

var requestStream = Rx.Observable.
returnValue('https://api.github.com/users');

But now, that is just a stream of strings, doing no
other operation, so we need to somehow make some-
thing happen when that value is emitted. That’s done
by subscribing to the stream.

requestStream.subscribe(function(requestUrl) {
 // execute the request
 jQuery.getJSON(requestUrl,
function(responseData) {
 // ...
 });
}

Notice we are using a jQuery Ajax callback (which
we assume you should know already) to handle the
asynchronicity of the request operation. But wait a
moment, FRP is for dealing with asynchronous data
streams. Couldn’t the response for that request be a
stream containing the data arriving at some time in the
future? Well, at a conceptual level, it sure looks like it,
so let’s try that.

requestStream.subscribe(function(requestUrl) {
 // execute the request
 var responseStream = Rx.Observable.
create(function (observer) {
 jQuery.getJSON(requestUrl)
 .done(function(response) { observer.
onNext(response); })
 .fail(function(jqXHR, status, error) {
observer.onError(error); })
 .always(function() { observer.onCompleted();
});
 });

 responseStream.subscribe(function(response) {
 // do something with the response
 });
}

What Rx.Observable.create() does is create your
own custom stream by explicitly informing each
observer (or in other words, a “subscriber”) about data
events (onNext()) or errors (onError()). What we did
was just wrap that jQuery Ajax Promise. Excuse me,
does this mean that a Promise is an Observable?

Yes.
Observable is Promise++. In Rx you can easily con-

vert a Promise to an Observable by doing var stream
= Rx.Observable.fromPromise(promise), so let’s use
that. The only difference is that Observables are not

http://jsfiddle.net/staltz/8jFJH/48/
http://jsfiddle.net/staltz/8jFJH/48/

32  PROGRAMMING

Promises/A+ compliant, but conceptually there is no
clash. A Promise is simply an Observable with one
single emitted value. FRP streams go beyond promises
by allowing many returned values.

This is pretty nice, and shows how FRP is at least as
powerful as Promises. So if you believe the Promises
hype, keep an eye on what FRP is capable of.

Now back to our example, if you were quick to
notice, we have one subscribe() call inside another,
which is somewhat akin to callback hell. Also, the
creation of responseStream is dependent on request-
Stream. As you heard before, in FRP there are simple
mechanisms for transforming and creating new streams
out of others, so we should be doing that.

The one basic function that you should know by
now is map(f), which takes each value of stream A,
applies f() on it, and produces a value on stream B. If
we do that to our request and response streams, we can
map request URLs to response Promises (disguised as
streams).

var responseMetastream = requestStream
 .map(function(requestUrl) {
 return Rx.Observable.fromPromise(jQuery.
getJSON(requestUrl));
 });

Then we will have created a beast called metastream,
a stream of streams. Don’t panic yet. A metastream is a
stream where each emitted value is yet another stream.
You can think of it as pointers: each emitted value
is a pointer to another stream. In our example, each
request URL is mapped to a pointer to the promise
stream containing the corresponding response.

A metastream for responses looks confusing, and
doesn’t seem to help us at all. We just want a simple
stream of responses, where each emitted value is a
JSON object, not a “Promise” of a JSON object. Say
hi to Mr. Flatmap: a version of map() than “flattens” a
metastream by emitting on the “trunk” stream every-
thing that will be emitted on “branch” streams. Flatmap
is not a “fix” and metastreams are not a bug; these are
really the tools for dealing with asynchronous responses
in FRP.

var responseStream = requestStream
 .flatMap(function(requestUrl) {
 return Rx.Observable.fromPromise(jQuery.
getJSON(requestUrl));
 });

Nice. And because the response stream is defined
according to request stream, if we have more events
happening on request stream later on, we will have the
corresponding response events happening on response
stream, as expected:

requestStream: --a-----b--c------------|->
responseStream: -----A--------B-----C---|->

(lowercase is a request, uppercase is its
response)

Now that we finally have a response stream, we can
render the data we receive:

responseStream.subscribe(function(response) {
 // render `response` to the DOM however you
 // wish
});

  33

Joining all the code until now, we have:

var requestStream = Rx.Observable.
returnValue('https://api.github.com/users');

var responseStream = requestStream
 .flatMap(function(requestUrl) {
 return Rx.Observable.fromPromise(jQuery.
getJSON(requestUrl));
 });

responseStream.subscribe(function(response) {
 // render `response` to the DOM however you
 // wish
});

The refresh button
I did not yet mention that the JSON in the response is
a list with 100 users. The API only allows us to specify
the page offset, and not the page size, so we’re using
just 3 data objects and wasting 97 others. We can
ignore that problem for now, since later on we will see
how to cache the responses.

Every time the refresh button is clicked, the request
stream should emit a new URL, so that we can get
a new response. We need 2 things: a stream of click
events on the refresh button (mantra: anything can be
a stream), and we need to change the request stream to
depend on the refresh click stream. Gladly, RxJS comes
with tools to make Observables from event listeners.

var refreshButton = document.querySelector('.
refresh');
var refreshClickStream = Rx.Observable.
fromEvent(refreshButton, 'click');

Since the refresh click event doesn’t itself carry
any API URL, we need to map each click to an actual
URL. Now we change the request stream to be the
refresh click stream mapped to the API endpoint with
a random offset parameter each time.

var requestStream = refreshClickStream
 .map(function() {
 var randomOffset = Math.floor(Math.
random()*500);
 return 'https://api.github.com/users?since='
+ randomOffset;
 });

Because I’m dumb and I don’t have automated tests,
I just broke one of our previously built features. A
request doesn’t happen anymore on startup; it happens
only when the refresh is clicked. Urgh. I need both
behaviors: a request when either a refresh is clicked or
the webpage was just opened.

We know how to make a separate stream for each
one of those cases:

var requestOnRefreshStream = refreshClickStream
 .map(function() {
 var randomOffset = Math.floor(Math.
random()*500);
 return 'https://api.github.com/users?since='
+ randomOffset;
 });

var startupRequestStream = Rx.Observable.
returnValue('https://api.github.com/users');

But how can we “merge” these two into one? Well,
there’s merge(). Explained in the diagram dialect, this
is what it does:

stream A: ---a--------e-----o----->
stream B: -----B---C-----D-------->
 vvvvvvvvv merge vvvvvvvvv
 ---a-B---C--e--D--o----->

It should be easy now:

var requestOnRefreshStream = refreshClickStream
 .map(function() {
 var randomOffset = Math.floor(Math.
random()*500);
 return 'https://api.github.com/users?since='
+ randomOffset;
 });

var startupRequestStream = Rx.Observable.
returnValue('https://api.github.com/users');

var requestStream = Rx.Observable.merge(
 requestOnRefreshStream, startupRequestStream
);

34  PROGRAMMING

There is an alternative and cleaner way of writing
that, without the intermediate streams.

var requestStream = refreshClickStream
 .map(function() {
 var randomOffset = Math.floor(Math.
random()*500);
 return 'https://api.github.com/users?since='
+ randomOffset;
 })
 .merge(Rx.Observable.returnValue('https://api.
github.com/users'));

Even shorter, even more readable:

var requestStream = refreshClickStream
 .map(function() {
 var randomOffset = Math.floor(Math.
random()*500);
 return 'https://api.github.com/users?since='
+ randomOffset;
 })
 .startWith('https://api.github.com/users');

The startWith() function does exactly what you
think it does. No matter how your input stream looks
like, the output stream resulting of startWith(x) will
have x at the beginning. But I’m not DRY enough, I’m
repeating the API endpoint string. One way to fix this
is by moving the startWith() close to the refresh-
ClickStream, to essentially “emulate” a refresh click on
startup.

var requestStream = refreshClickStream.
startWith('startup click')
 .map(function() {
 var randomOffset = Math.floor(Math.
random()*500);
 return 'https://api.github.com/users?since='
+ randomOffset;
 });

Nice. If you go back to the point where I “broke
the automated tests,” you should see that the only
difference with this last approach is that I added the
startWith().

Modeling the 3 suggestions with streams
Until now, we have only touched a suggestion UI
element on the rendering step that happens in the
responseStream’s subscribe(). Now with the refresh
button, we have a problem: as soon as you click
“refresh,” the current 3 suggestions are not cleared.
New suggestions come in only after a response has
arrived, but to make the UI look nice, we need to clean
out the current suggestions when clicks happen on the
refresh.

refreshClickStream.subscribe(function() {
 // clear the 3 suggestion DOM elements
});

No, not so fast, pal. This is bad, because we now have
2 subscribers that affect the suggestion DOM elements
(the other one being responseStream.subscribe()),
and that doesn’t really sound like Separation of con-
cerns. Remember the FRP mantra?

So let’s model a suggestion as a stream, where each
emitted value is the JSON object containing the sug-
gestion data. We will do this separately for each of the
3 suggestions. This is how the stream for suggestion #1
could look like:

var suggestion1Stream = responseStream
 .map(function(listUsers) {
 // get one random user from the list
 return listUsers[Math.floor(Math.
random()*listUsers.length)];
 });

The others, suggestion2Stream and suggestion-
3Stream can be simply copied and pasted from sug-
gestion1Stream. This is not DRY, but it will keep our
example simple for this tutorial. Plus, I think it’s a good
exercise on how to avoid repetition in this case.

  35

Instead of having the rendering happen in respons-
eStream’s subscribe(), we do that here:

suggestion1Stream.subscribe(function(suggestion)
{
 // render the 1st suggestion to the DOM
});

Back to the “on refresh, clear the suggestions,” we can
simply map refresh clicks to null suggestion data, and
include that in the suggestion1Stream, as such:

var suggestion1Stream = responseStream
 .map(function(listUsers) {
 // get one random user from the list
 return listUsers[Math.floor(Math.
random()*listUsers.length)];
 })
 .merge(
 refreshClickStream.map(function(){ return
null; })
);

And when rendering, we interpret null as “no data,”
hence hiding its UI element.

suggestion1Stream.subscribe(function(suggestion)
{
 if (suggestion === null) {
 // hide the first suggestion DOM element
 }
 else {
 // show the first suggestion DOM element
 // and render the data
 }
});

The big picture is now:

refreshClickStream: ----------o--------o---->
 requestStream: -r--------r--------r---->
 responseStream: ----R---------R------R-->
 suggestion1Stream: ----s-----N---s----N-s-->
 suggestion2Stream: ----q-----N---q----N-q-->
 suggestion3Stream: ----t-----N---t----N-t-->

Where N stands for null.

As a bonus, we can also render “empty” suggestions
on startup. That is done by adding startWith(null) to
the suggestion streams:

var suggestion1Stream = responseStream
 .map(function(listUsers) {
 // get one random user from the list
 return listUsers[Math.floor(Math.
random()*listUsers.length)];
 })
 .merge(
 refreshClickStream.map(function(){ return
null; })
)
 .startWith(null);

Which results in:

refreshClickStream: ----------o---------o---->
 requestStream: -r--------r---------r---->
 responseStream: ----R----------R------R-->
 suggestion1Stream: -N--s-----N----s----N-s-->
 suggestion2Stream: -N--q-----N----q----N-q-->
 suggestion3Stream: -N--t-----N----t----N-t-->

Closing a suggestion and using cached responses
There is one feature remaining to implement. Each
suggestion should have its own “x” button for closing it,
and loading another in its place. At first thought, you
could say it’s enough to make a new request when any
close button is clicked:

var close1Button = document.querySelector('.
close1');
var close1ClickStream = Rx.Observable.
fromEvent(close1Button, 'click');
// and the same for close2Button and close3But-
ton

var requestStream = refreshClickStream.
startWith('startup click')
 .merge(close1ClickStream) // we added this
 .map(function() {
 var randomOffset = Math.floor(Math.
random()*500);
 return 'https://api.github.com/users?since='
+ randomOffset;
 });

36  PROGRAMMING

That does not work. It will close and reload all sug-
gestions, rather than just only the one we clicked on.
There are a couple of different ways of solving this, and
to keep it interesting, we will solve it by reusing previ-
ous responses. The API’s response page size is 100 users
while we were using just 3 of those, so there is plenty
of fresh data available. No need to request more.

Again, let’s think in streams. When a “close1” click
event happens, we want to use the most recently emitted
response on responseStream to get one random user
from the list in the response. As such:

 requestStream: --r--------------->
 responseStream: ------R----------->
close1ClickStream: ------------c----->
suggestion1Stream: ------s-----s----->

In Rx* there is a combinator function called com-
bineLatest that seems to do what we need. It takes
two streams A and B as inputs, and whenever either
stream emits a value, combineLatest joins the 2 most
recently emitted values a and b from both streams and
outputs a value c = f(x,y), where f is a function you
define. It is better explained with a diagram:

stream A: --a-----------e--------i-------->
stream B: -----b----c--------d-------q---->
 vvvvvvvv combineLatest(f) vvvvvvv
 ----AB---AC--EC---ED--ID--IQ---->

where f is the uppercase function

We can apply combineLatest() on close1Click-
Stream and responseStream, so that whenever the close
1 button is clicked, we get the latest response emitted
and produce a new value on suggestion1Stream. On
the other hand, combineLatest() is symmetric: when-
ever a new response is emitted on responseStream, it
will combine with the latest “close 1” click to produce a
new suggestion. That is interesting, because it allows us
to simplify our previous code for suggestion1Stream,
like this:

var suggestion1Stream = close1ClickStream
 .combineLatest(responseStream,
 function(click, listUsers) {
 return listUsers[Math.floor(Math.
random()*listUsers.length)];
 }
)
 .merge(

 refreshClickStream.map(function(){ return
null; })
)
 .startWith(null);

One piece is still missing in the puzzle. The com-
bineLatest() uses the most recent of the two sources,
but if one of those sources hasn’t emitted anything yet,
combineLatest() cannot produce a data event on the
output stream. If you look at the ASCII diagram above,
you will see that the output has nothing when the first
stream emitted value a. Only when the second stream
emitted value b could it produce an output value.

There are different ways of solving this, and we will
stay with the simplest one, which is simulating a click
to the “close 1” button on startup:

var suggestion1Stream = close1ClickStream.
startWith('startup click') // we added this
 .combineLatest(responseStream,
 function(click, listUsers) {l
 return listUsers[Math.floor(Math.
random()*listUsers.length)];
 }
)
 .merge(
 refreshClickStream.map(function(){ return
null; })
)
 .startWith(null);

Wrapping up
And we’re done. The complete code for all this was:

var refreshButton = document.querySelector('.
refresh');
var refreshClickStream = Rx.Observable.
fromEvent(refreshButton, 'click');

var closeButton1 = document.querySelector('.
close1');
var close1ClickStream = Rx.Observable.
fromEvent(closeButton1, 'click');
// and the same logic for close2 and close3

var requestStream = refreshClickStream.
startWith('startup click')
 .map(function() {
 var randomOffset = Math.floor(Math.
random()*500);

  37

 return 'https://api.github.com/users?since='
+ randomOffset;
 });

var responseStream = requestStream
 .flatMap(function (requestUrl) {
 return Rx.Observable.fromPromise($.
ajax({url: requestUrl}));
 });

var suggestion1Stream = close1ClickStream.
startWith('startup click')
 .combineLatest(responseStream,
 function(click, listUsers) {
 return listUsers[Math.floor(Math.
random()*listUsers.length)];
 })
 .merge(
 refreshClickStream.map(function(){ return
null; })
)
 .startWith(null);
// and the same logic for suggestion2Stream and
// suggestion3Stream

suggestion1Stream.subscribe(function(suggestion)
{
 if (suggestion === null) {
 // hide the first suggestion DOM element
 }
 else {
 // show the first suggestion DOM element
 // and render the data
 }
});

You can see this working example at http://jsfiddle.
net/staltz/8jFJH/48/

That piece of code is small but dense: it features
management of multiple events with proper separation
of concerns, and even caching of responses. The func-
tional style made the code look more declarative than
imperative: we are not giving a sequence of instructions
to execute, we are just telling what something is by
defining relationships between streams. For instance,
with FRP we told the computer that suggestion-
1Stream is the “close 1” stream combined with one user
from the latest response, besides being null when a refresh
happens or program startup happened.

Notice also the impressive absence of control
flow elements such as if, for, while, and the typical
callback-based control flow that you expect from a
JavaScript application. You can even get rid of the if
and else in the subscribe() above by using filter() if
you want (I’ll leave the implementation details to you
as an exercise). In FRP, we have stream functions such
as map, filter, scan, merge, combineLatest, startWith,
and many more to control the flow of an event-driven
program. This toolset of functions gives you more
power in less code.

What comes next
If you think Rx* will be your preferred library for Reac-
tive Programming, take a while to get acquainted with
the big list of functions for transforming, combining,
and creating Observables. If you want to understand
those functions in diagrams of streams, take a look
at RxJava’s very useful documentation with marble
diagrams [hn.my/observables]. Whenever you get stuck
trying to do something, draw those diagrams, think on
them, look at the long list of functions, and think more.
This workflow has been effective in my experience.

Once you start getting the hang of programming
with Rx*, it is absolutely required to understand the
concept of Cold vs Hot Observables [hn.my/coldhot].
If you ignore this, it will come back and bite you bru-
tally. You have been warned. Sharpen your skills further
by learning real functional programming, and getting
acquainted with issues such as side effects that affect
Rx*.

FRP works great for event-heavy frontends and apps.
But it is not just a client-side thing, it works great also
in the backend and close to databases. In fact, RxJava is
a key component for enabling server-side concurrency
in Netflix’s API. FRP is not a framework restricted to
one specific type of application or language. It really is
a paradigm that you can use when programming any
event-driven software. n

André is a frontend developer and designer, founder of Iroquote.
com and consultant at Futurice.com. He is MSc in Cloud Computing
and BSc in Computational Mathematics. André discovered Rx as
a sweet spot between his event-driven development skills and
theoretical knowledge.

Reprinted with permission of the original author.
First appeared in hn.my/rx (github.com)

http://jsfiddle.net/staltz/8jFJH/48/
http://jsfiddle.net/staltz/8jFJH/48/
http://hn.my/observables
http://hn.my/coldhot
http://Futurice.com
http://hn.my/rx

38  SPECIAL

SPECIAL

By Justin Brower

I’m not ashamed to say that I
like root beer. There’s some-
thing about the herbal and

woodsy flavors that I enjoy. It’s
refreshing, but also a time machine.
A sip of root beer brings me back
to my childhood and makes me feel
like a little kid again. More so than
any other drink, it is classic Ameri-
cana. And if I ever have the option
of drinking root beer, I’ll choose it
over any another soda. But as much
as I love root beer, there’s one thing
that really grinds my gears, gets my
goat, and burns my bacon: A scien-
tist stole my root beer.

Root beer has, in some way,
shape, or form, been around for
centuries. People undoubtedly
mixed roots, berries, and herbs
together in water to create teas
and elixirs, either to make polluted

water more palatable or as some
sort of remedy. Throw in some
sugar to make it go down easier
and a little local yeast from, well,
everywhere, and voila, you’ve got
fermentation and beer. These types
of drinks were popular in colonial
America, and called “small beers”
because of their low alcohol con-
tent, around 2%.

But the man that gets the glory
for “inventing” root beer is Charles
Hires, a pharmacist with an entre-
preneurial spirit. Legend has it he
was on his honeymoon and came
across a tea that he particularly
liked. Upon his return home he
replicated the recipe and sold it as
a “cure-all” elixir, which were all
the rage at the time. His concoc-
tion was originally called root tea,
but he renamed it root beer shortly

before he displayed it at the 1876
Centennial Exposition*, supposedly
to make it more appealing to the
working class. Hey, it works for me.
His genius came in not just selling
root beer, but marketing it, and sell-
ing kits so that people could brew
their own at home. Then in 1884
he made a liquid concentrate, a.k.a.
syrup, so that people could skip
the brewing process and “just add
water.” This is still how we deliver
and sell root beer and other sodas
today.

A Scientist Stole my Root Beer

  39

So what’s the “root” in root beer?
That would be the roots and bark
of the Sassafras tree, which was
used in making America’s iconic
root beer all the way up to 1960.
Native to the Eastern United States,
Sassafras albidum is a deciduous
tree of medium height (~30 feet)
that is often grown for its ornamen-
tal appearance and fragrance. In
the fall the leaves turn spectacular
shades of red and orange. In the
woodsy wild, Sassafras trees are
easy to identify because the leaves
are shaped like mittens. Seriously.
You’ve got a left and right handed
mitten, and a double mitten, like
for people with two thumbs on
each hand. Just look at the photo
(on the right), it’s easier that way.

 The fragrance of Sassafras comes
from essential oils present in the
roots and bark of the tree. Notable
chemicals include aromatic com-
pounds like α-pinene (pine scented,
duh) and camphor (Vicks Vapo-
Rub) as well as possible hallucino-
gens thujone and ,myristicin which
you’ve read about here, of course.
But the chemical getting all the
glory, or the blame, is safrole — and
if you remember your myristicin,
you’d see that they look a lot alike.

Safrole is the primary constituent
of Sassafras oil, but when read-
ing about safrole I see a lot of bad
math, which I think propagates
itself into other write-ups — with-
out references of course. But here’s
what I came up with, which is
the absolute best case scenario for
determining safrole concentration
in Sassafras root, but also not an
indicator of what you’d find in a
steeped tea. I’ll explain.

From 150 grams of ground Sas-
safras root a total of 0.68 grams
(680 milligrams) of safrole was
extracted using 3 liters of petrol, a
low boiling mixture of hydrocar-
bons that dissolves non-polar (read:
greasy) things, like safrole, giving a
total percent yield of 0.4% safrole.
And that’s coming from two sets
of extracts: one that yields 0.44
grams of oil that is 90% safrole
and one which is 4.87 grams of oil
but only 6% safrole. What I often
read is along the lines of: Sassafras
contains ~3% essential oil of which
90% is safrole. It’s true that there
is ~3% essential oil, but only one
extract in this case is 90% safrole.
If you do the math, you’d calculate
that safrole makes up 2.8% of the
total extracted oil. So right off the
bat, people estimate safrole almost
10-times too high.

Enough math. The point I really
want to make is that this is a best
case scenario and not representative
of a real world scenario. First, the
above experiment is using ground
Sassafras. And when I say ground I
mean like coffee grounds. Second,
they are extracting out safrole (and
other oils) using a non-polar sol-
vent. They have to, because safrole
is insoluble in water. It is literally
like oil in water. I don’t know how
you make your Sassafras tea, but
most people don’t have the abil-
ity to grind wood into a powder
and they sure as hell aren’t mixing
it with gasoline. So the amount of
safrole extracted from small chunks
of root in hot water? I don’t know,
but I can guarantee you it’s much,
much less than 0.4%, and likely
more along the lines of 0.04%.

I’m actually getting a bit worked
up. Can you tell? So why my
fixation on safrole? Because some
jackass thought it would be a good
idea to feed it to rats and see what
happens. And if your agenda is to
show that safrole is toxic, feed them
huge amounts. Like 0.5 grams per
kilogram of body weight every day
for 2 months. To obtain this much
safrole naturally, the rat would have
to eat its body weight in sassafras

Sassafras albidum leaves

Safrole

40  SPECIAL

root every day. What happened?
They established an LD50 (lethal
dose for 50% of the population) in
rats of 1950 mg/kg. They also saw
liver damage and tumor formation,
at high doses, due to safrole-DNA
adducts attributed to a metabolite
found in rats, 1’-hydroxysafrole.

 Liver damage and cancer is bad.
Period. But obviously I’ve got some
issues, at least that’s what every-
one tells me. I hate the “scale-up
game” between rats and humans.
It just doesn’t work. Rats and
humans aren’t the same, and we
don’t metabolize things the same.
With that said, to just give you an
idea of the magnitude we’re talking
about, if I wanted to consume 0.5
grams/kg of safrole, and assuming I
can extract out 0.04% safrole from
Sassafras root chunks in water, I’d
need to boil up 170 pounds of sas-
safras root…in about 400 gallons
of water. If I had to dig up 170
pounds of Sassafras root every day
for 2 months I’d die from exhaus-
tion long before the cancer got me.
Now obviously you don’t want liver
damage. Or cancer. I don’t even
want an LD1, let alone an LD50.
But hopefully you can see how
ridiculous this is. But the best part
is that hepatocarcinogenic metabo-
lite, 1′-hydroxysafrole. Remember
that one, the one that messes with
the DNA? Well, it’s not even found
in humans. Really? Seriously.

So we’re left with a chemical
that’s insoluble in water, in already
low concentrations, that causes
damage in rats at obscenely high
amounts via a metabolite not even
found in man. What’s the U.S.
government to do? Ban it of course.
In 1960 the U.S. Food and Drug
Administration banned the addition
of safrole in foods. Never mind that
safrole is present in everyday foods

like cinnamon and basil. This bone-
headed decision forced root beer
brewers to abandon Sassafras roots
and extracted oils, and instead turn
toward other additives to make up
for the flavor loss.

I know this is getting long, but
there are two conspiracy theories
out there regarding why the FDA
banned safrole, and you know I love
me some conspiracy theories:

1.	 Cola companies, particularly
Coca-Cola, was concerned that
root beer was cutting into their
sales and profit margins, and
coerced the FDA into banning
safrole to put the hurt on the
brewers. This I could buy into,
because Coca-Cola has butted
heads with the FDA before.
Around 1910 the FDA wanted
Coca-Cola to stop adding caf-
feine to their products, and even
sued them. Coca-Cola said no,
flipped them the bird, and went
about their merry way. So there
is some history of big business
having power over government.

2.	 Safrole is a building block in
the synthesis of MDMA, also
known worldwide as Ecstasy. In
two easy steps (or less if you’re
clever), you can synthesize a
whole range of MDMA and
related designer stimulant drugs.
This has the negative effect of
massive deforestation in Asian
countries of safrole containing
trees, with a large portion of it
being funneled towards ille-
gal MDMA manufacturing in
China and the U.S. The prob-
lem with this theory though is
that although MDMA has been
known since the early 1900’s,
and tested in humans in the ‘50s,
it wasn’t used as a recreational
drug until the late Alexander

Shulgin’s lab synthesized and
tried it out in the early ‘80s.
Then in 1985 the DEA sched-
uled MDMA as a schedule-1
drug. So the timing is a bit off
for the FDA to become involved
in the MDMA scene.

Throw in the fact that I can’t find
any cases of people becoming ill,
let alone developing cancer from
drinking root beer or tea made from
Sassafras root, despite being used
for centuries, makes me think there
were either some shenanigans going
on at the FDA or some really bad
science. I vote for bad science . . .
with a dash of conspiracy.

So what does “real” root beer
taste like? I have no idea…some
scientist stole it from me. n

Justin Brower, Ph.D. is a forensic toxicolo-
gist and chemist living and working in
North Carolina. He combined his love of
chemistry with things that kill and started
NaturesPoisons.com, where he writes about
the history and science of poisons, venoms
and toxins.

Metrics and monitoring for people
who know what they want
We know from experience that monitoring your servers and
applications can be painful, so we built the sort of service that
we would want to use. Simple to set up, responsive support
from people who know what they're talking about, and reliably
fast metric collection and dashboards.

Why Hosted Graphite?

• Hosted metrics and StatsD: Metric aggregation without the setup headaches

• High-resolution data: See everything like some glorious mantis shrimp / eagle hybrid*

• Flexible: Lots of sample code, available on Heroku

• Transparent pricing: Pay for metrics, not data or servers

• World-class support: We want you to be happy!

Now with Grafana!

Promo code: HACKER

*Hosted Graphite’s mantis shrimp / eagle breeding program has been unsuccessful thus far

Dashboards StatsD Happiness

Grab a free trial at http://www.hostedgraphite.com

Reprinted with permission of the original author.
First appeared in hn.my/rootbeer (naturespoisons.com)

http://NaturesPoisons.com
http://hostedgraphite.com
http://hn.my/rootbeer

  41

Metrics and monitoring for people
who know what they want
We know from experience that monitoring your servers and
applications can be painful, so we built the sort of service that
we would want to use. Simple to set up, responsive support
from people who know what they're talking about, and reliably
fast metric collection and dashboards.

Why Hosted Graphite?

• Hosted metrics and StatsD: Metric aggregation without the setup headaches

• High-resolution data: See everything like some glorious mantis shrimp / eagle hybrid*

• Flexible: Lots of sample code, available on Heroku

• Transparent pricing: Pay for metrics, not data or servers

• World-class support: We want you to be happy!

Now with Grafana!

Promo code: HACKER

*Hosted Graphite’s mantis shrimp / eagle breeding program has been unsuccessful thus far

Dashboards StatsD Happiness

Grab a free trial at http://www.hostedgraphite.com

http://hostedgraphite.com

	FEATURES
	How I Built an Audio Book Reader for My Nearly Blind Grandfather

	STARTUP
	There Are No B Players
	What Writing — And Selling — Software Was Like In The ‘80s
	How to Read a Patent

	PROGRAMMING
	The Introduction to Reactive Programming You've Been Missing

	SPECIAL
	A Scientist Stole my Root Beer

