
Issue 49  June 2014

The Lost
Art of the
Saturn V
Amy Shira Teitel

There are more than just emails, phone calls and pressing issues –

hackers often forget that. This book was written by a programmer

who remembered a time in his life that didn't include a project

manager dictating into his left ear on every little thing that needed

to be completed. Just to calm him down, he started to meditate.

After studying Zen for years, he wrote this book to help others escape

from the hamster wheel.

Practice Zen at any time and anywhere. Read what Zen teachers knew

about the modern day programmer, even hundreds of years ago!

Available in paperback and PDF.

For more information and samples, visit:
www.zenprogrammer.org

Declutter your mind ...

D
es

ig
n

: a
h

oj
6

8
.d

e

As featured in

Hacker Monthly

Issue 22

2  ﻿

and help change the future of search

http://www.zenprogrammer.org/
http://duckduckhack.com

There are more than just emails, phone calls and pressing issues –

hackers often forget that. This book was written by a programmer

who remembered a time in his life that didn't include a project

manager dictating into his left ear on every little thing that needed

to be completed. Just to calm him down, he started to meditate.

After studying Zen for years, he wrote this book to help others escape

from the hamster wheel.

Practice Zen at any time and anywhere. Read what Zen teachers knew

about the modern day programmer, even hundreds of years ago!

Available in paperback and PDF.

For more information and samples, visit:
www.zenprogrammer.org

Declutter your mind ...
D

es
ig

n
: a

h
oj

6
8

.d
e

As featured in

Hacker Monthly

Issue 22

http://www.zenprogrammer.org/

4  ﻿

Curator
Lim Cheng Soon

Contributors
Amy Shira Teitel
Matt Jaynes
David Cramer
Peter Nixey
Gabriel Gonzalez
Amit Patel
James Hague
Gabriele Cirulli

Proofreaders
Emily Griffin
Sigmarie Soto

Ebook Conversion
Ashish Kumar Jha

Printer
MagCloud

Hacker Monthly is the print magazine version
of Hacker News — news.ycombinator.com, a social news
website wildly popular among programmers and startup
founders. The submission guidelines state that content
can be “anything that gratifies one’s intellectual curios-
ity.” Every month, we select from the top voted articles
on Hacker News and print them in magazine format.
For more, visit hackermonthly.com

Advertising
ads@hackermonthly.com

Contact
contact@hackermonthly.com

Published by
Netizens Media
46, Taylor Road,
11600 Penang,
Malaysia.

Hacker Monthly is published by Netizens Media and not affiliated with Y Combinator in any way.

Issue 49 June 2014

The Lost
Art of the
Saturn V
Amy Shira Teitel

http://news.ycombinator.com
http://hackermonthly.com
mailto:ads@hackermonthly.com
mailto:contact@hackermonthly.com

  5

For links to Hacker News dicussions, visit hackermonthly.com/issue-49

Contents
FEATURE

06  The Lost Art of the Saturn V
By Amy Shira Teitel

STARTUPS

12  Boring Systems Build Badass Businesses
By Matt JaYNES

PROGRAMMING

16  Scaling SQL with Redis
By David Cramer

20  How To Be A Great Software Developer
By Peter Nixey

26  Scalable Program Architectures
By Gabriel Gonzalez

28  Pathfinding with A*
By Amit Patel

35  You Don’t Read Code, You Explore It
By James Hague

SPECIAL

36  2048, Success and Me
By Gabriele Cirulli

http://hackermonthly.com/issue-48

6  FEATURE

FEATURE

By Amy Shira Teitel

The Lost Art of the Saturn V

  7

I’ve previously mentioned that
once the Shuttle program ends
this year, there will be no way

for NASA to launch manned mis-
sions. It simply doesn’t have the
necessary rockets to launch such a
heavy payload into orbit, let alone a
rocket capable of launching a heavy
payload to another planet. A good
example is the case of Mars. The
Delta II hit its payload limit with
the Mars Exploration Rovers Spirit
and Opportunity, and that’s with
each rover launched separately. The
upcoming Mars Science Labora-
tory rover Curiosity is significantly
larger and will use an Atlas family
launch vehicle. For NASA’s Martian
exploration plan to progress, as well
as for the continuation of manned
spaceflight, the organization needs a
heavy lifting vehicle.

But NASA doesn’t necessarily
need a new launch vehicle. The
organization had the means to
launch a manned mission to Mars
in the 1960s using only technol-
ogy of the day. The whole mission,
however, depended on the titanic
Saturn V rocket, a technology that
is lost to the current generation.

The Saturn V was the brainchild
of Wernher von Braun, the man
behind the Nazi V-2 missile that
rained down on London in the final
days of the Second World War. In
1945, with the Germans defeated
and the Allies closing in to collect
the brightest Nazi scientists as a
form of intellectual reparations,
von Braun and his team of rock-
eteers surrendered themselves to
the Americans. They hoped their
expertise in rocketry would be
their ticket to continued work. It
was; von Braun hand-selected 110
men to move to White Sands, New
Mexico to join the Army Ballistic
Missile Association (ABMA).

 The German rocketeers worked
on developing improved missiles to
launch the lightweight American
warheads. But the Soviets soon
proved the might of their rockets.
The powerful R-7 launched the
182-pound Sputnik satellite, fol-
lowed a month later by the 1,120-
pound Sputnik II. The US was
well behind in brute force lifting
vehicles; the first successful US
satellite was the 30-pound Explorer
1. The launch vehicle was the von
Braun-designed, 69.5 foot high
Jupiter C.

As the space race quickly picked
up steam in the late 1950s, von
Braun and his team in New Mexico
found themselves with a new
project: building a more powerful
launch vehicle than anything the
US currently had.

To this end, the rocketeers set
to work in 1960 developing a new
family of missiles named Saturn,
the new rocket built on the success-
ful Jupiter family of missiles and
given the name of the next furthest
planet from Earth. Their headquar-
ters also received a new name. The
ABMA became NASA’s Marshall
Spaceflight Centre (MSC) with von
Braun as its first director.

The new Saturn family of rockets
was tied to NASA’s long-term
goals; though unofficial in 1960, the
moon was an objective. But to build
a rocket capable of sending men to
the Moon, MSC engineers had to
know how NASA intended to get
there. There is more than one way
to go to the Moon, and each deci-
sion requires different capabilities
of its launch vehicle. In preparing
Apollo, NASA considered three
options called mission modes.

Wernher von Braun The Jupiter C rocket launches Explorer
1. 1958.

8  FEATURE

 The first mode is the brute force
method of direct ascent. A mam-
moth rocket is required to send a
spacecraft on a straight path from
the Earth to the Moon. The space-
craft would also have to land and
relaunch from the Moon, making
it heavy. Von Braun calculated that
such a rocket would require around
12 million pounds of thrust at lift-
off provided by eight engines. This
method would require develop-
ment of Nova, a missile of unparal-
leled power.

The second mode of Earth
Orbit Rendezvous (EOR) uses two
smaller rockets to assemble the
same spacecraft in orbit around the
Earth.

 The third mode of Lunar Orbit
Rendezvous (LOR) is the recogniz-
able method that NASA used for
the Apollo program. Two spacecraft
would be launched on one power-
ful rocket, the lighter of which
would land on the Moon while the
heavier stayed in lunar orbit. This
significantly lightened the payload
and simplified the launch vehicle.

This method also brought an
added safety measure to the lunar
mission; it provided the astronauts
with a stopping point in Earth orbit
as well as lunar orbit. With more
places to pause during a mission,
there was more leeway to catch
up on late maneuvers as well as
a safe place to double check the
mission profile. If any problems
were detected, the crew could be
brought home from Earth or lunar
orbit much more easily than they
could be from a lunar transit.

Within the developing Saturn
family, only the Saturn V (so called
as it was the fifth in the family)
could launch the lunar spacecraft
into Earth orbit then onto the
Moon under its own power. At 364

feet tall, the three-stage rocket was
the most powerful ever built.

 The Saturn V’s stages are the key
to its power. The stages are stacked:
the first stage on the bottom, the
second stage on top of the first,
and the third stage on top of the
second. Above the third stage is
the spacecraft. The stages burn and
are discarded in sequence; as spent
pieces of the rocket fall away, the
payload headed towards the Moon
became increasingly lighter and
easier to lift.

 The first stage (called the S-IC)
provided the raw power. Two huge
tanks, one containing 800,000
liters of refined kerosene the other
1.3 million pounds of other liquid
oxygen (LOX), fuel five powerful
engines. These engines produce 7.5
million pounds of thrust for about
two and a half minutes, bringing the
spacecraft to an altitude of about
38 miles. Once exhausted, the first

stage falls away and the second
stage takes over.

The second stage (called the S-II)
burns for about six minutes, pro-
ducing 1 million pounds of thrust
from its five liquid hydrogen and
LOX fuelled engines. The second
stage shoots the spacecraft to an
altitude of about 114 miles before
it falls away exhausted.

The third stage (S-IVB) fires
last and is responsible for propel-
ling only the spacecraft. Its liquid
hydrogen and LOX-fuelled engine
fires twice; once for 2.75 minutes to
bring the spacecraft to an altitude
of 115 miles, and again for 5.2
minutes to initiate the lunar transit.
With the final firing of the S-IVB,
the Apollo crew is on their way to
the Moon.

A comparison of Saturn and Nova launch vehicles. Research into Nova develop-
ment was cancelled in 1962 when the LOR mission mode was selected. This art-
ist’s conception is from 1962.

  9

While its three stages were
responsible for the Saturn V’s spec-
tacular power, it wasn’t the only
factor that made it such a sophis-
ticated launch vehicle. It also had
a certain degree of autonomy. The
brain of the Saturn V was its instru-
ment unit, a ring of computerized
components situated above the

third stage. This included a digital
computer, a stabilized guidance
platform, and sequencers.

The rocket was able to guide
itself into orbit and readjust its
trajectory to achieve the orbital
insertion point specified by the mis-
sion profile. Directional control was
achieved through the first stages’

engine configuration. The central
engine was fixed, but the outer four
were on gimbals and could swivel
to direct the rocket’s thrust in the
desired direction.

This level of control was due
to the rocket’s inertial guidance
system. Like the Apollo space-
craft, the Saturn V was aligned to
the stars rather than any point on
Earth. It used “fixed” stars to orient
itself. The Saturn V’s own guidance
system wasn’t only responsible for a
successful orbital insertion; this was
the guidance that shot the Apollo
crew towards the Moon with the
translunar injection or TLI burn.

The idea was that separating the
rocket’s computer and guidance

systems from that of the space-
craft would provide an added
redundancy. Apollo’s onboard

computer could control and steer
the Saturn V. The Command
Module (CM) was also aligned to
the “fixed” stars for guidance with
its own inertial guidance platform.
But in the event Apollo’s computer
failed, NASA would have a poten-
tially rogue Saturn V on its hands.
With separate guidance systems, the
crew was almost guaranteed a safe
arrival into orbit at which point any
problems could be addressed.

 This proved to be a fortunate
decision. When lightning struck
Apollo 12 soon after launch (pic-
tured), the CM’s guidance system
and computers were knocked
offline. The Saturn V’s systems,
however, were unscathed. The
crew and mission control were
able to correct the problem in the
spacecraft knowing they were still
safely on course for orbit where an
emergency abort and splashdown
was simpler and safer.

A cutaway of the Saturn V’s stages.

A cutaway of the Saturn V’s instrument unit.

10  FEATURE

The Saturn V’s sophistication
also makes it a complicated piece of
technology. There are a lot of parts
that have to function independently
while simultaneously working
together as a cohesive unit. And so
von Braun, as the rocket’s designer
and director of the MSC, had to
answer the same question that
faced every new aspect of the space
program: who would build it?

In the case of the Saturn V, the
question was not only which sub-
contractor would build it, but how
many. Should one contractor build
the whole thing or should each
stage be built by a different con-
tractor? What about the instrumen-
tation unit, the onboard computer,
as well as the telemetry and radio
systems? If each piece was made by
a different contractor, who would
oversee the final assembly and
testing of the completed launch
vehicle?

Von Braun made the decision
to give each piece of the rocket to
a different contractor, a decision
that yielded mutual gain. From the
contractors’ standpoint, multiple
companies were able to benefit
financially as well as partake in the
challenge of building the Saturn
V. From von Braun’s perspective,
it enabled him to pull together
the best in the industry; the top
men from each company worked
towards building his launch vehicle.

 Three main companies were
awarded Saturn V contracts. Boeing
built the first stage, North American
Aviation (who built the X-15 and
the Apollo CM) built the second
stage, and Douglas Aircraft built
the third stage. The inertial guid-
ance system and instrumentation
was built in-house by the Marshall
Spacecraft Centre — it made sense
to keep the brains of the rocket

close to the men who
would control it during a
launch.

To simplify the over-
sight of proceedings
around the Saturn V’s
construction, von Braun
created two groups within
the MSC. The Research
and Development Opera-
tions team became the
architects overseeing the
rocket’s integrity and
structure, and the Indus-
trial Operations team
funded and oversaw the
subcontractors.

The Saturn V was com-
pleted at an impressive
speed. Construction began
in 1960. Each element
was tested individually
before the first launch of a
complete Saturn V in 1967, which
launched an unmanned Apollo
CSM as payload. There was no time
to waste a launch using a dummy
spacecraft or a water tank as ballast.
Everything had to advance the goal
of the lunar landing.

After only two unmanned
launches, the third Saturn V took
Apollo 8 to the Moon.

 The Saturn V fell out of favor
with NASA in the mid-1970s;
Apollo was no longer a viable pro-
gram and NASA had begun to favor
the reusable low Earth orbital space
shuttle. There were no immediate
plans to return to the Moon or any
foreseeable need for such a power-
ful launch vehicle. In the interven-
ing nearly 40 years, the technology
behind the Saturn V has been all
but lost.

The division of labor on the
Saturn V’s construction proved, in
retrospect, to be a double-edged
sword. On the one hand, it allowed
the rocket to be completed at an
incredible rate, certainly respon-
sible for the success of the Apollo
program.

But on the other hand, building
the rocket at such a rate and with
so many subcontractors means the
people who oversaw and under-
stood the actual assembly and over-
all working of the Saturn V were
few. Each contractor recorded the
workings of their stage and records
survive about the engines used, but
only a handful of engineers from
the MSC knew how the Saturn V
puzzle fit together.

The launch of Apollo 8. 1968.

  11

It is possible to work backwards
to recreate individual aspects of the
technology, but the men who knew
how the whole vehicle worked are
gone. No one alive today is able to
recreate the Saturn V as it was.

Worse is the lack of records.
Without a planned used for the
Saturn V after Apollo, most of the
comprehensive records of the rock-
et’s inner workings stayed with the
engineers. Any plans or documents
explaining the inner workings of
the completed rocket that remain
are possibly living in someone’s
basement, unknown and lost in a
pile of a relative’s old work papers.

Two Saturn Vs remain today as
museum pieces, but it is likely that
the rocket will never see a rebirth
and reuse in manned spaceflight.

Yes, NASA put men on the Moon
with 1960s technology, but that
technology doesn’t exist anymore.
By default, neither does the possi-
bility of a manned lunar or Martian
mission for that matter without a
new launch vehicle. A new heavy
lifting vehicle will eventually come
about — it will have to for NASA
to pursue its longer-term goals.
Until then, NASA is bound to low
Earth orbit and minimal interplan-
etary unmanned spacecraft. n

Amy Shira Teitel is a spaceflight historian
and freelance writer fascinated with the
early history of the space age, particularly
the unflown technologies, unrealized pro-
grams, and all the details that never make
it into the popular histories. She writes,
among other sites, for Motherboard,
DVICE, Discovery News, and her blog, Vin-
tage Space, is hosted at Popular Science.

Composite image of every Saturn V launch. Apollo 5 and Apollo 7 were launched
on the slightly smaller Saturn IVB launch vehicle.

Reprinted with permission of the original author.
First appeared in hn.my/satv (amyshirateitel.com)

http://hn.my/satv

12  STARTUPS

By Matt JaYNES

STARTUPS

Let me tell you a story
about systems do’s and
don’ts and how they relate

to business success. Of all the
mistakes I see businesses make, this
is one of the most common. It’s a
critical failing that cripples or kills
many businesses that could have
otherwise been successful.

Background
Alice and Zola were rivals who
both had dreams of building their
own restaurant empires.

They each applied for and won
$1 million grants to open their
restaurants — yay!

Alice’s Build
Alice spent $500K to build a large
restaurant and hired a handyman
named Albert to lead the effort.

Albert was one of the most cre-
ative and smartest handymen in the
world. Alice quizzed him directly
from the manuals of all the top
plumbing and electrician books and
he passed with flying colors!

So, when designing the plumb-
ing and electrical systems for the
restaurant, Albert chose all the
most exciting and cutting edge
technologies!

He put a different brand of
plumbing system in each section
of the restaurant because each area
had slightly different needs. One
system went in the bathrooms, the
second went in the kitchen, the
third went in the lobby, and the
fourth went outside.

He was even more innovative
with the electrical systems — and
put in a total of 10 different sys-
tems throughout the restaurant.

They were now 6 months behind
schedule, but Alice now had the
restaurant with the most innovative
plumbing and electrical systems
in the whole country. So, naturally
Alice and Albert busted open the
champagne to celebrate!

Zola’s Build
Zola’s path to launch was a bit
different.

She also spent $500K to build a
large restaurant but hired a handy-
man named Zip to lead the effort.

Zip had a reputation for building
simple systems that required little
maintenance and just worked. Zola
hired him based on his track record
and they got to building.

When choosing the electrical and
plumbing systems, Zip just chose
the industry standard systems that
had been around for years. These
systems had great manuals and
great companies backing them with
plentiful support and spare parts.

Since they chose simple standard
systems, they got done 2 months
early and even had money left over
to create a gorgeous atrium they
knew the customers would love.

Boring Systems Build
Badass Businesses

  13

Alice’s Run
When Alice’s restaurant finally
opened everything went great!
Well, until the lunch rush. Then the
power went out.

Albert spent the next 2 days
without sleep trying to track down
the problem. It turned out that
the fancy electric toilets were used
too frequently during the rush and
burned out the relays in 4 of the 10
electrical systems.

Over the next 3 months the
restaurant would open for a few
days, then close to deal with some
technical problem. Albert would
heroically work nights and week-
ends to solve the problem so that
the restaurant could stay open at
least some of the time.

Alice was sooo grateful she had
hired Albert since he was super
smart and could always eventually
figure out and fix even the tough-
est problems with the systems.
In Alice’s eyes, Albert was a real
hero to work overtime to fix the
problems.

However, Albert eventually got
burned out and bored with Alice’s
restaurant, so he left. He figured all
the problems were just bad luck —
maybe next time he’d be luckier!

Alice now had to try to hire a
replacement for Albert. The reputa-
tion of her restaurant was very
poor now, so it was difficult to find
applicants. Finally she found some-
one willing to take the job. Unfor-
tunately he couldn’t figure out the
complex interactions between the
systems since Albert hadn’t left any
notes. Alice hired more and more
technicians to try and figure out
the systems. Eventually after hiring
10 full-time technicians, they were
able to figure out the systems and
get them working again after a few
months.

During that time, they discov-
ered that 2 of the electrical systems
and 1 of the plumbing systems had
been abandoned by their creators
and there was no longer support or
parts for those systems. So, Alice
had to hire 2 more technicians to
support these now defunct systems.

All these technicians ate up the
remaining money she had and made
it impossible for her to ever get
cash-flow positive.

The restaurant went bust and
Alice decided to apply to grad
school.

Zola’s Run
Since the plumbing and electri-
cal systems just worked, Zola was
able to put all her focus into hiring
great chefs, great entertainers, and
great serving staff. She was able to
innovate and come up with new
exciting events and dishes for her
dining guests.

Zip was rarely needed. He once
fixed a cracked pipe, but it only
took him 5 minutes. After a couple
months he got another job and
moved out of state.

Zola quickly found Zed as a
replacement. He was eager to work
there because of Zola’s reputation
and because he was very familiar
with the standard systems they
used.

Her restaurant’s reputation grew
every day and so did the demand
to eat there. Soon there was nearly
always an hour’s wait to get in.

She still had $400K left from the
grant and had earned another $1.2
million over the last year. With all
that cash, she was able to start her
true restaurant empire by opening
another 2 restaurants.

Extreme?
This may seem like an extreme
story - but I’ve seen much more
drastic outcomes in the tech space.

I had a front-row seat to watch
a company spend $14+ million on
a system that was so complex and
buggy it was eventually abandoned
as a complete loss. In contrast, I was
there when a startup scaled to over
100 million users with just a couple
good engineers with simple stan-
dard systems.

If you follow tech news, you’ll
have heard of even more extreme
scenarios — where the losses or
wins were in the billions.

Common Objections
This makes sense for the underly-
ing systems, but what about devel-
opment of the actual products?
Build the most minimal solution
you possibly can. See if customers
will like it, use it, and pay enough
for it. Only then build it into a
full solution. Simplicity, great test
coverage, and great documentation
will ensure what you build retains
its value long-term. You’ll save a ton
of time and money going this route
which you can then use to create
even more profitable products for
your customers. Always be asking
“How can I do this faster, simpler,
cheaper?”

But don’t you want your develop-
ers to be engaged and working on
interesting projects?
If your developers are desperate
to play with novel technologies -
just give them more time off work
to play with their own projects.
Google, 37Signals, and GitHub
have all done this to great benefit.
There are many ways to achieve
developer happiness, but making
your core business products a

14  STARTUPS

playground for developers seeking
novelty is the path to hell.

But [some new unproven system]
is really cool! Even [some big com-
pany] uses it!
Great! Then play with it to your
heart’s delight. However, do it on
your own time. Don’t jeopardize
your business with it. Do you care
more about playing with novel
technologies than spending your
energy and innovation on the prod-
ucts your customers actually care
about? Remember, you’re a busi-
ness, not a college R&D lab.

But [some company] I know used
a ton of crazy cool new tech and
still got acquired for millions!
I’ve certainly seen this happen.
However, often those companies
are acquired for much less than
they could have been and fre-
quently dissolve once they’ve been
bought. I worked for a startup that
made these mistakes and lost ~$2
million due to it (buying $1 million
of cool hardware they didn’t need,
hiring awesome data warehous-
ing engineers when there were no
data warehousing needs, etc). They
still got acquired, but for probably
1/3 of what they could have been
if they had spent that lost money
on marketing and a better product.
Within a year, the acquirer realized
it had purchased a huge mess and
dissolved the acquired company.
Tens of millions of dollars down the
drain.

Avoid the Pitfalls
In my contracting career, I’ve seen
the inner workings of many differ-
ent companies. Here are a couple
rules to avoid the most common
mistakes I see:

■■ Innovate on your core product,
not on your plumbing (this rule is
extremely tempting for develop-
ers to break — see next rule)

■■ Choose developers based on their
track record and their commit-
ment to ruthless simplicity and
business growth

In the end, your business exists
to create business value, not be a
plumbing showcase. n

Matt Jaynes is a systems engineer. He
recently founded DevOps University to
help developers learn how to build and
manage their own systems.

Reprinted with permission of the original author.
First appeared in hn.my/badass (devopsu.com)

http://hn.my/badass

  15

Metrics and monitoring for people
who know what they want
We know from experience that monitoring your servers and
applications can be painful, so we built the sort of service that
we would want to use. Simple to set up, responsive support
from people who know what they're talking about, and reliably
fast metric collection and dashboards.

Why Hosted Graphite?

• Hosted metrics and StatsD: Metric aggregation without the setup headaches

• High-resolution data: See everything like some glorious mantis shrimp / eagle hybrid*

• Flexibile: Lots of sample code, available on Heroku

• Transparent pricing: Pay for metrics, not data or servers

• World-class support: We want you to be happy!
Promo code: HACKER

*Hosted Graphite’s mantis shrimp / eagle breeding program has been unsuccessful thus far

Dashboards StatsD Happiness

Grab a free trial at http://www.hostedgraphite.com

http://hostedgraphite.com

16  PROGRAMMING

By David Cramer

PROGRAMMING

I love Redis. It’s one of those technologies that is so
obvious it makes you wonder why it took so long
for someone to build it. Predictable, performant,

and adaptable, it’s something I’ve come to use more
and more over the last few years. It’s also no secret that
Sentry is run primarily on PostgreSQL (though it now
also relies on a number of other technologies).

A little over a week ago I gave a keynote at Python
Nordeste. At some point it was suggested I give a
lightning talk. I decided I’d talk about some of the cool
hacks we use to scale Sentry, specifically with Redis.
This article is an expanded version of that five-minute
talk.

Alleviating Row Contention
Something we adopted early on in Sentry development
was what’s become known as sentry.buffers. It’s a
simple system which allows us to implement very effi-
cient buffered counters with a simple Last Write Wins
strategy. It’s important to note that we completely
eliminate almost any form of durability with this
(which is very acceptable for the way Sentry works).

The operations are fairly straightforward, and when-
ever an update comes in we do the following:

1.	 Create a hash key bound to the given entity

2.	 Increment “counter” using HINCRBY

3.	 HSET any various LWW data (such as “last time seen”)

4.	 ZADD the hash key to a “pending” set using the cur-
rent timestamp

Now every tick (in Sentry’s case, this is 10 seconds)
we’re going to dump these buffers and fanout the
writes. This looks like the following:

1.	 Get all keys using ZRANGE

2.	 Fire off a job into RabbitMQ for each pending key

3.	 ZREM the given keys

Now the RabbitMQ job will be able to fetch and
clear the hash, and the “pending” update has already
been popped off of the set. There are a few things to
note here:

■■ We use a sorted set for the case where we would
want to only pop off a set amount (e.g., we want to
process the 100 oldest).

■■ If we end up with multiple queued jobs to process
a key, one could get no-oped due to another already
processing and removing the hash.

■■ The system scales consistently on many Redis nodes
simply by putting a “pending” key on each node.

With this model we mostly guarantee that only a
single row in SQL is being updated at once, which
alleviates most locking contention that we’d see. This
greatly benefits Sentry given that it might deal with a
burst of data that all ends up grouping together into
the same counter.

Scaling SQL with Redis

  17

Rate Limiting
Due to the nature of Sentry we end up dealing with
a constant denial-of-service attack. We’ve combatted
this with a number of rate limiters, one of which is
powered by Redis. This is definitely one of the more
straightforward implementations and lives within
sentry.quotas.

The logic is very straightforward, and looks some-
thing like this:

def incr_and_check_limit(user_id, limit):
 key = '{user_id}:{epoch}'.format(user_id,
int(time() / 60))

 pipe = redis.pipeline()
 pipe.incr(key)
 pipe.expire(key, 60)
 current_rate, _ = pipe.execute()

 return int(current_rate) > limit

The way we do rate limiting illustrates one of the
most fundamental benefits of Redis over memcache:
incr’s on empty keys. To achieve the same behavior
in memcache would likely end up with this kind of
approach:

def incr_and_check_limit_memcache(user_id,
limit):
 key = '{user_id}:{epoch}'.format(user_id,
int(time() / 60))

 if cache.add(key, 0, 60):
 return False

 current_rate = cache.incr(key)

 return current_rate > limit

We actually end up employing this strategy on a
few various things within Sentry to do short-term data
tracking. In one such case we actually store the user’s
data in a sorted set so we can quickly find the most
active users within a short time period.

Basic Locks
While Redis isn’t highly available, our use case for locks
makes it a good tool for the job. We don’t use them in
Sentry’s core anymore, but an example use case was
where we wanted to minimize concurrency and to
simply no-op an operation if something appeared to be
running already. This can be useful for cron-like tasks
that may need to execute every so often, but don’t
have strong coordination.

In Redis, doing this is fairly simple using the SETNX
operation:

from contextlib import contextmanager

r = Redis()

@contextmanager
def lock(key, nowait=True):
 while not r.setnx(key, '1'):
 if nowait:
 raise Locked('try again soon!')
 sleep(0.01)

 # limit lock time to 10 seconds
 r.expire(key, 10)

 # do something crazy
 yield

 # explicitly unlock
 r.delete(key)

While the Lock() within Sentry makes use of mem-
cached, there’s absolutely no reason we couldn’t switch
it over to Redis.

18  PROGRAMMING

Time Series Data
Recently we wrote a new mechanism for storing
time-series data in Sentry (contained in sentry.tsdb).
This was heavily inspired by RRD models, specifically
Graphite. We wanted a simple and fast way to store
short-period (e.g. one month) time-series data that
would allow us to handle very high throughput for
writes, and allow us extremely low latency for com-
puting short-term rates. While this is the first model
where we actually want to persist data in Redis, it’s yet
another simple case of using counters.

Our current model stores an entire interval’s series
within a single hash map. For example, this means all
counts for a given key-type and for a given 1-second
live in the same hash key. It looks something like this:

{
 "<type enum>:<epoch>:<shard number>": {
 "<id>": <count>
 }
}

So in our case, let’s say we’re tracking the number of
events. Our enum maps the Event type to “1”. The reso-
lution is 1s, so our epoch is simply the current time in
seconds. The hash ends up looking something like this:

{
 "1:1399958363:0": {
 "1": 53,
 "2": 72,
 }
}

An alternative model might just use simple keys and
just perform incrs on those buckets:

 "1:1399958363:0:1": 53

We chose the hash map model for two reasons:

■■ We can TTL the entire key at once (this also has
negative side effects, but so far has been stable).

■■ The key gets greatly compressed, which is a fairly
significant deal.

Additionally, the shard number key allows us to dis-
tribute a single bucket over a fixed number of virtual
shards (we use 64, which map to 32 physical nodes).

Now querying the data is done using Nydus
[hn.my/nydus] and its map() (which relies on a worker
pool). The code is pretty hefty for this operation, but
hopefully it’s not too overwhelming:

def get_range(self, model, keys, start, end, rollup=None):
 """
 To get a range of data for group ID=[1, 2, 3]:

 Start and end are both inclusive.

 >>> now = timezone.now()
 >>> get_keys(tsdb.models.group, [1, 2, 3],
 >>> start=now - timedelta(days=1),
 >>> end=now)
 """
 normalize_to_epoch = self.normalize_to_epoch
 normalize_to_rollup = self.normalize_to_rollup
 make_key = self.make_key

 if rollup is None:
 rollup = self.get_optimal_rollup(start, end)

 results = []
 timestamp = end
 with self.conn.map() as conn:

http://hn.my/nydus

  19

 while timestamp >= start:
 real_epoch = normalize_to_epoch(timestamp, rollup)
 norm_epoch = normalize_to_rollup(timestamp, rollup)

 for key in keys:
 model_key = self.get_model_key(key)
 hash_key = make_key(model, norm_epoch, model_key)
 results.append((real_epoch, key, conn.hget(hash_key, model_key)))

 timestamp = timestamp - timedelta(seconds=rollup)

 results_by_key = defaultdict(dict)
 for epoch, key, count in results:
 results_by_key[key][epoch] = int(count or 0)

 for key, points in results_by_key.iteritems():
 results_by_key[key] = sorted(points.items())
 return dict(results_by_key)

It boils down to the following:

■■ Generate all of the required keys.

■■ Using the worker pool, fetch all of the results in the
minimum number of network operations (Nydus
takes care of this).

■■ Given the results, map them to a result set that rep-
resents the buckets based on the given intervals, and
the given keys.

Simple Choices
I’m a huge fan of simple solutions to problems, and
Redis definitely fits in that bucket. Its documenta-
tion [redis.io/commands] is amazing, and it’s the
lowest barrier of entry you’re going to find outside of
something like memcached. While it has its tradeoffs
(primarily if you’re using it with persistence), they’re
up front and fairly straightforward.

What can Redis solve for you? n

David is the founder of Sentry and works in engineering at Drop-
box. He’s an active member of the open source community,
passionate about scale, simplicity, and usability

Reprinted with permission of the original author.
First appeared in hn.my/sqlredis (cramer.io)

http://redis.io/commands
http://hn.my/sqlredis

20  PROGRAMMING

By Peter Nixey

If there’s one thing that soft-
ware developers care about, it’s
becoming even better software

developers. Where do you start
though? Should you accumulate
the bells and whistles: deepen your
knowledge of Node and no-sequel?
Should you rote-learn the answers
to the profession’s gateway ques-
tions and be able to produce bubble
sort or link shortener algorithms
on demand? Or are there perhaps
more fundamental roots that you
can put down?

I believe that your seniority and
value as a programmer is measured
not in what you know, it’s measured
in what you put out. The two are
related but definitely not the same.
Your value is in how you move
your project forward and how you
empower your team to do the same.
In fifteen years of programming I’ve
never had to implement a bubble
sort or a link shortener. However I
have had to spend thousands and
thousands of hours writing and
refactoring account management

tools, editing suites, caching logic,
mailing interfaces, test suites,
deployment scripts, JavaScript
layers, analytics architecture and
documentation. These were the
things that mattered, the comple-
tion of these were what moved us
forward.

Those humble components are
the bricks and mortar of projects
and take hundreds or thousands
of hours of hard work to assemble.
And even though they combine to
form complex systems, they them-
selves should not be complicated.

You should aim for simplicity,
and over the years I have learned
that simplicity is far more easily
attained by time spent working
and refactoring than hours of pure
thought and “brilliance.”

Simplicity and excellence are
most reliably attained by starting
with something, anything, that gets
the job done and reworking back
from that point. We know this is
true of companies and the concept
of the MVP is burned deep into

our consciousness. So, too, with
software. Start with something ugly
but functional and then apply and
reapply yourself to that ugly and
misshapen solution and refactor it
back into its simplest form. Sim-
plicity comes far more reliably from
work than from brilliance. It comes
more predictably from code writ-
ten, than from thought expended. It
comes from effort.

Your value as a developer is
measured not in the height of your
peaks, but the area under your line.

It is all too easy for smart lazy
people to flash spikes of brilliance
and wow their contemporaries, but
companies are not built on those
people and product does not sit
well on spikes. Companies are built
on people and teams who day in,
day out, commit good code that
enables others do the same. Great
product is built by work horses, not
dressage horses.

How To Be A Great
Software Developer

  21

Years after Joel coined the term
“Rockstar Programmer,” it lives on
along with the misapprehension
that companies need such geeky
micro-celebrities in order to do
anything. While those characters
do exist there aren’t many of them.
When you do find them they’re
often erratically brilliant — aston-
ishing at the things that interest
them but hopeless at working
consistently or smoothly with their
team.

Not only is their output erratic
but their superiority is aspirational
and infectious. Their arrogance
bleeds toxically into the rest of the
team. It signals loud and clear that
if you’re smart enough you choose
when you work and what you work
on. You become a “Developer in
Residence.” And you not only soak
up a salary but you distort the
values of those who work around
you.

So the reality is that in all
likelihood you and your team will
depend, should depend not on
those who think they are “Rock-
stars” or “Ninjas” but on reliable
people who work in reliable ways.

Great developers are not people
who can produce bubble sorts or
link shorteners on demand. They
are the people who when you har-
ness them up to a project, never
stop moving and inspire everyone
around them to do the same. Fuck
Rockstars. Hire workhorses. Here
are some ways to become one:

Name your functions and vari-
ables well (write Ronseal Code)
Such an incredibly simple place
to start, and yet I think it is one of
THE most important skills in pro-
gramming. Function naming is the
manifestation of problem definition
which is frankly the hardest part of
programming.

Names are the boundary condi-
tions on your code. Names are what
you should be solving for.

If you name correctly and then
solve for the boundary condi-
tions that that name creates, you
will almost inevitably be left with
highly functional code.

Consider the function:

def process_text string
 …
end

It tells someone almost nothing
about what it’s going to do or how
it’s been implemented in the code.
However:

def safe_convert_to_html string
 ...
end

tells someone exactly what’s going
to happen. It’s also a good indicator
as to what’s not going to happen. It
tells you both what you can expect
the method to do but also how far
you can overload that method.

A developer might happily
refactor “process_text” to not only
convert text to HTML but to
auto-embed videos. However that
may be resolutely not what was
expected in some of the places that
function was used. Change it and
you’ve created bugs. A good clear
name is a commitment to not just
what a function does but also what
it won’t do.

Function names create contracts
between functions and the code
that calls them. Good naming
defines good architecture.

A good function promises what
it will deliver and then delivers it.
Good function and variable naming
makes code more readable and
tightens the thousands of contracts
which crisscross your codebase.
Sloppy naming means sloppy
contracts, bugs, and even sloppier
contracts built on top of them.

It’s not just functions that you
can leverage to describe your code.
Your variable names should also be
strong. Sometimes it can even be
worth creating a variable simply in
order to document the logic itself.

Consider the line:

if (u2.made < 10.minutes.ago)
 && !u2.tkn
 && (u2.made == u2.l_edit)
 ...

It’s pretty hard to figure out what
the hell is happening there, and
even once you have done so, it’s not
100% clear what the original author
was trying to achieve with it. The
variable names are horrible and tell
you nothing.

The “and not” statement is always
confusing to read (please never
write “and not” clauses which end
with a noun), and if your job was
to refactor this code, you’d have to
do some acrobatics to guess exactly
what the original intent was.

22  PROGRAMMING

However, if we change the vari-
ables names into something more
meaningful then things immedi-
ately start to become clearer:

if (new_user.created_at <
10.minutes.ago)
 && !new_user.invitation_token
 && (new_user.created_at ==
new_user.updated_at)

We can go further still and forc-
ibly document the intent of each
part of the if statement by separat-
ing and naming the components:

user_is_recently_created =
user.created_at < 10.minutes.
ago
invitation_is_unsent = !user.
invitation_token
user_has_not_yet_edited_pro-
file = (user.created_at == user.
updated_at)

if user_is_recently_created
 && invitation_is_unsent
 && user_has_not_yet_edited_
profile
 ...

It takes some courage to write a
line like “user_is_recently_created”
because it’s such fuzzy logic, but we
all do it at times, and owning up to
that helps inform the reader about
the assumptions you’ve made.

Notice also how much stronger
this approach is than using com-
ments. If you change the logic there
is immediate pressure on you to
change the variable names. Not so
with comments. I agree with DHH,
comments are dangerous and tend
to rot — much better to write self-
documenting code.

The better code describes
itself, the more likely someone
will implement it the way it was
intended and the better their code
will be. Remember, there are only
two hard problems in computer
science: cache invalidation, naming,
and off-by-one errors.

If you want to be a great developer,
make sure you write Ronseal Code
that does exactly what it says on
the tin.

Go deep before you go wide:
learn your chosen stack inside
out
Very few programming problems
are genuinely new. Very few com-
panies are doing technical work
that hasn’t already been done by
50 teams before them. Very few
problems attract Stack Overflow
eyeballs that haven’t already seen
them somewhere else before.

For that exact reason, the major-
ity of the things you are trying to
do have already been solved by the
very stack you’re already using. I
once refactored 60 lines of someone
else’s Rails code to one line using
the delightfully simple and power-
ful methods that Rails ships with.

Most programmers waste huge
amounts of time by lazily re-creat-
ing implementations of pre-existing
functionality.

Not only do they waste time but
they create verbosity and errors.
Their code requires new documen-
tation to describe it, new tests to
monitor it, and it makes the page
noisier and harder to read. Like
any new code, it’s also buggy. War-
tested (and actually-tested) stack
code is very seldom buggy.

If you are a Ruby developer, take
time to learn Ruby, especially the
incredible range of array methods.
If you are a Node developer, take
time to understand the architecture,
the methods and the mindset of
Node. If you are an Angular devel-
oper, go right up to the rock-face
and understand the logic behind of
the incredible architecture the core
team is forging there right now. Ask
before you invent. You are walk-
ing in the shadows of giants. Take
time to find their tracks and then
marvel at how beautifully they
have been built. Because if you
don’t, you simply punt the problem
downstream and someone will just
have to figure out why the hell you
chose the sub-standard path you
did.

Learn to detect the smell of bad
code
Something I’ve noticed in pro-
grammers who are good but who
have plateaued is that they simply
don’t realize that their code could
be better. That is one of the worst
things that can happen to your
personal development. You need to
know what has to improve before
you can figure out how to improve
it. Learn both what good code looks
like and what bad code looks like.
It is said that grand chessmasters
spend proportionally much more
time studying previous other good
chess player’s games than the aver-
age players. I’m quite certain that
the same is true for top developers.

An important part of your
improvement arsenal is your ability
to detect bad code — even when
it’s only slightly bad or perhaps
“a bit smelly.” Smelly code is code
which, while you can’t quite articu-
late why, just doesn’t feel right.

  23

It may be that you’ve used 60
lines of code for something which
feels fundamentally simpler; it
might be something which feels
like it should be handled by the
language but has been manually
implemented instead; it might just
be code that is complicated as hell
to read. These are your code smells.

It’s not an easy thing to do, but
over the years you should learn
what bad code smells like and also
what beautiful code looks like. You
should develop an aesthetic appre-
ciation for code. Physicists and
mathematicians understand this.
They feel very uneasy about an ugly
theory based on its ugliness. Sim-
plicity is beautiful and simplicity is
what we want.

The truth is that the truth is
sometimes ugly, but you should
always strive for beauty. And when
ugly is the only way, know how to
present it well. If you can’t create
beautiful code, at least create Shrek
code, but before you do either
you need to develop your sense of
smell. If you don’t know what good
code looks like and know what bad
code smells like, then why would
you ever improve it?

Write code to be read
I once heard Joel Spolsky say that
Stack Exchange optimizes not for
the person asking questions but
for the person reading the answers.
Why? Because there are far more
of them than the single person who
asks the question: utility is maxi-
mized by optimizing for readers,
not questioners.

I think you can view code in
a similar way. It will be written
just once by you and you alone.
However it will be read and edited
many, many times, by many others.
Your code has two functions:

the first is its immediate job. The
second is to get out of the way of
everyone who comes after you, and
it should therefore always be opti-
mized for readability and resilience.

Write your code through the eyes of
someone who is coming at it fresh
in a year’s time.

What assumptions have you
made, what do your methods actu-
ally return, what on earth does that
quadruple nested if / else / and not
/ unless, statement actually select
for? Sometimes you’ll need more
than just good variable naming and
you should ring fence it with tests,
but do what it takes (and only just
what it takes) to make it durable.
Great code is code that does its
job and that continues to do its
job even when git blame returns
a who’s who of your company
payroll.

Write every line to be read
through the eyes of a disinterested
and time-pressured team mate
needing to extend it in a year’s
time. Remember that that disinter-
ested and pressured team mate may
be you.

Weigh features on their lifetime
cost, not their implementation
cost
New developers want to explore
and to play. They love the latest
shiniest things. Whether they’re
no-sequel databases or high concur-
rency mobile servers, they want to
unwrap all the toys as fast as pos-
sible, run out of the room to play
with them, and leave the mess for
the next dev to clear up.

Dogs aren’t just for Christmas and
features aren’t just for the next
release.

Features and architecture choices
have maintenance costs that affect
everything you ever build on top
of them. Abstractions leak, and the
deeper you bury badly insulated
abstractions, the more things will
get stained or poisoned when they
leak through.

Experimental architecture and
shiny features should be embarked
on very carefully and only for very
good reasons. Build the features you
need before the features you want,
and be VERY careful about archi-
tecture. Save toys for side projects.
Every component you invent, every
piece of bleeding edge, fast-chang-
ing software you incorporate will
bleed and break directly into your
project. If you don’t want to spend
the latter stages of the project doing
nothing but mopping up blood,
then don’t use it in the first place.

Or, as a friend once tweeted:

“Stop being a hipster, and just use
Postgres.” — @tonymillion

Understand the liability AND the
leverage of Technical Debt
Technical debt is the code you
write which, while sub-optimal,
gets you to where you need to go.
It’s the errors which, while annoy-
ing, are still sub-critical. It’s the
complexity of a single-app archi-
tecture when you know that the
future lies in service-orientation. It’s
the twenty-minute cron job which
could be refactored to twenty
seconds.

The cost of these not only adds
up — it compounds. Einstein once
said that “there is no force so pow-
erful in the universe as compound
interest.” Equally there is no force
more destructive in a large software
project as compounding techni-
cal debt. Most of us have seen (or

24  PROGRAMMING

built) these projects. Codebases
where even the smallest change
takes months of time. Codebases
where people have lost the will to
write good code and hope only to
get in and get back out without
bringing the site down.

Technical debt is an awful burden
on a project.

Except when it’s not.

Like all debt, when used correctly,
technical debt can give you tremen-
dous leverage.

Not only that, but technical
debt is the best type of debt in the
world, because you don’t always
have to pay it back. When you
build out a feature that turns out
to be wrong, when you build out
a product which turns out not to
work, you will drop it and move on.
You will also drop every optimiza-
tion, every test, and every refactor-
ing you ever wrote for that feature.
So if you don’t absolutely need
them; don’t write them. This is the
time to maximize your leverage,
leave gaps, ignore errors, test only
what you need to test.

In the early stages of a product
or a feature, the likelihood is that
what you are building is wrong.
You are in an exploratory phase.
You will pivot both on product and
on technical implementation. This
is the time to borrow heavily on
technical debt. This is not the time
to fix those sporadic errors or to
do massive refactorings. This is the
time to run through with guns blaz-
ing and keep firing till you burst out
the other side.

When that happens though,
when you’re sure that you’re in
the right place and out the other
side, then it’s time to tidy up and to
strengthen your position. Get things
in good enough shape to keep on

rolling, and repay enough of the
debt to get you on to the next stage.

Technical debt is (like so many
other things in a startup) a game
of leapfrog. Your initial code is
scouting code. It should move you
forward fast, illuminate the prob-
lem and the solution, and give you
just enough space to build camp.
The longer you stay, the more of
the system that camp has to sup-
port, the bigger and stronger you
build it. If you’re only ever staying
for a week, though, don’t burn time
laying down infrastructure to sup-
port a decade.

 Check and re-check your code.
Your problems are yours to fix
Engineers who “throw code over
the fence” are awful engineers. You
should make sure your code works.
It’s not the testers’ job and it’s
not your teammates’ job. It’s your
job. Lazily written code slows you
down, increases cycle times, releases
bugs, and pisses everyone off.

If you constantly commit code that
breaks things then you are a con-
stant tax on the rest of your team.

Don’t kid yourself that you’re
anything less than a burden and get
it fixed.

Do actual work for at least (only)
four hours every day
For all the talk about self optimiza-
tion, focus, and life hacking that
goes on amongst developers, the
simple truth is that you don’t need
to do that much work to be effec-
tive. What really matters is that you
do it consistently. Do proper work
for at least four solid hours each
day, every day, and you will be one
the best contributing members of
your team.

However, doing four hours of
work every day is harder than it
seems.

Proper work is work that includes
no email, no Hacker News, no
meetings, no dicking around. It
means staying focused for at least
45 minutes at a time. Four hours of
work a day means that one day lost
in meetings or on long lunches and
foosball breaks means you have to
do eight hours the next one. Believe
me, eight hours of solid work is
almost impossible. Four hours a day
on average also means you should
be aiming for five or six in order to
prep for the day when you only get
two.

However it also means you can
be a huge contributor to your team
while still having a fully rounded
life. It means that you don’t need to
post that self-indulgent “I’m burn-
ing out, please help me” post on
HN. It means that by simply being
consistent, you can be valued and
respected.

Software teams don’t slow down
because people work four pure
hours a day rather than seven
(which is insanely hard to do con-
sistently by the way). They slow
down because people spend weeks
with no direction, or because the
louder and emptier vessels dedicate
their paid time to discussing Google
vs. Facebook’s acquisition strategies
over endless extended coffee breaks.

Just work. Doesn’t matter how
incremental or banal your progress
seems….

Do four pure hours of work each
day, every day and you’ll be one of
the best people on your team.

  25

Write up the things you’ve done
and share them with the team
However you document things,
whether it’s through a mailing list
like Copyin, a wiki, or even just
inline documentation in the code,
you should take the time to explain
your architectural approach and
learnings to the rest of the team.

Have a tough time getting a fresh
install of Postgres or ImageMagik to
work? If you found it hard, the rest
of your team will probably also find
it hard, so take a moment to throw
down a few paragraphs telling them
what you did and saving them your
hassles.

One of the worst parts of pro-
gramming is losing whole days to
battling bugs or installation issues.
If you take the time to document
and distribute the way you found,
you could buy back five-times your
wasted time by forearming your
colleagues.

Understand and appreciate the
exquisite balance between too
much testing and too little
Testing is a powerful tool. It allows
you to set a baseline for the reli-
ability of your releases and makes
you less fearful to make them. The
less fearful you are to release, the
more you do so and the faster you
improve.

However it’s also an overhead.
Tests take time to write, time
to run, and even more time to
maintain.

Think of testing like armour. The
more of it you wear the harder it is
to hurt you but the harder it is to
fight too.

You become too heavy to move,
too encumbered to flex your limbs,
immobile. Too little testing, and
the first skid across a concrete floor
is going to cut you open and leave
you bleeding.

 There is no intuitive answer to
what the right amount of testing is.
Some projects require more testing
than others, and testing is a whole
new piece of expertise you need to
learn in and of itself.

Take the time to understand
what really needs tests and how to
write good tests. Take the time to
see when tests add value and what
the least you need from them really
is. Don’t be afraid to test, but don’t
be afraid not to test either. The
right point is a balance; take time to
explore where the equilibrium lies.

Make your team better
This is different from the other
points in that it’s not something
you can action so much as an indi-
cator of whether your other actions
are working.

Does your presence make your
team better or worse? Does the
quality of your code, your docu-
mentation, and your technical skills
help those around you? Do you
inspire and encourage your team-
mates to become better developers?
Or are you the one who causes the
bugs, argues during stand-ups, and
wastes hours discussing irrelevant
architectural nuances because it
helps cover the fact that you’ve
done no actual work?

You should make your team
better. There should always be at
least one or two ways in which
you make those people around
you better and through which
you strengthen them. However,
be aware that being “smart” alone
is probably the least valuable and

arguably most destructive dimen-
sion you can choose. In fact, if your
chosen dimension doesn’t actually
make you tired, it’s probably not a
valid one.

It’s not who you are on the
inside that defines you
There is one humbly brilliant line
in Batman Begins which has always
stayed with me. At some point in
the film where he’s fooling around
and acting up as a billionaire play-
boy, Christian Bale implores Katie
Holmes to believe that he’s still a
great guy on the inside. She answers
simply: “it’s not who you are under-
neath, it’s what you do that defines
you.”

Your contribution as a developer
is defined not by the abstraction of
how smart you are or how much
you know. It’s not defined by the
acronyms on your resume, the com-
panies you’ve worked at, or which
college you went to. They hint at
what you’re capable of, but who
you are is defined by what you do
and how that changes the projects
and the people around you.

If you want to be good, apply
yourself. n

Peter Nixey is a Rails developer and entre-
preneur. After starting his career in com-
puter vision at Oxford he then pivoted
hard to Consumer Web and on getting
investment from YCombinator, took his
first company to San Francisco where it
was later acquired. He has since built and
sold software across the full stack and is
now the CTO of Brojure which lets you
easily create online e-brochures.

Reprinted with permission of the original author.
First appeared in hn.my/greatdev (peternixey.com)

http://hn.my/greatdev

26  PROGRAMMING

By Gabriel Gonzalez

Haskell design patterns differ from main-
stream design patterns in one important
way:

■■ Conventional architecture: Combine several compo-
nents of type A together to generate a “network” or
“topology” of type B.

■■ Haskell architecture: Combine several components
of type A to generate a new component of the same
type A, indistinguishable in character from its sub-
stituent parts.

This distinction affects how the two architectural
styles evolve as code bases grow.

The conventional architecture requires layering
abstraction on top of abstraction:

Oh no, these Bs are not connectable, so let’s make a
network of Bs and call that a C.

Well, I want to assemble several Cs, so let’s make a
network of Cs and call that a D....

Wash, rinse, and repeat until you have an unmanage-
able tower of abstractions.

With a Haskell-style architecture, you don’t need to
keep layering on abstractions to preserve combinabil-
ity. When you combine things together the result is
still itself combinable. You don’t distinguish between
components and networks of components.

In fact, this principle should be familiar to anybody
who knows basic arithmetic. When you combine a
bunch of numbers together you get back a number:

3 + 4 + 9 = 16

Zero or more numbers go in and exactly one number
comes out. The resulting number is itself combinable.
You don’t have to learn about “web”s of numbers or
“web”s of “web”s of numbers.

If elementary school children can master this prin-
ciple, then perhaps we can, too. How can we make
programming more like addition?

Well, addition is simple because we have (+) and 0.
(+) ensures that we can always convert more than one
number into exactly number:

(+) :: Int -> Int -> Int

... and 0 ensures that we can always convert less than
one number into exactly one number by providing a
suitable default:

0 :: Int

Scalable Program
Architectures

  27

This will look familiar to Haskell programmers: these
type signatures resemble the methods of the Monoid
type class:

class Monoid m where
 -- `mappend` is analogous to `(+)`
 mappend :: m -> m -> m

 -- `mempty` is analogous to `0`
 mempty :: m

In other words, the Monoid type class is the canonical
example of this Haskell architectural style. We use map-
pend and mempty to combine 0 or more ms into exactly
1 m. The resulting m is still combinable.

Not every Haskell abstraction implements Monoid,
nor do they have to, because category theory takes this
basic Monoid idea and generalizes it to more powerful
domains. Each generalization retains the same basic
principle of preserving combinability.

For example, a Category is just a typed monoid,
where not all combinations type-check:

class Category cat where
 -- `(.)` is analogous to `(+)`
 (.) :: cat b c -> cat a b -> cat a c

 -- `id` is analogous to `0`
 id :: cat a a

... a Monad is like a monoid where we combine functors
“vertically”:

-- Slightly modified from the original type class
class Functor m => Monad m where
 -- `join` is analogous to `(+)`
 join :: m (m a) -> m a

 -- `return` is analogous to `0`
 return :: a -> m a

... and an Applicative is like a monoid where we com-
bine functors “horizontally”:

-- Greatly modified, but equivalent to, the
original type class
class Functor f => Applicative f where
 -- `mult` is is analogous to `(+)`
 mult :: f a -> f b -> f (a, b)

 -- `unit` is analogous to `0`
 unit :: f ()

Category theory is full of generalized patterns like
these, all of which try to preserve that basic intuition
we had for addition. We convert more than one thing
into exactly one thing using something that resembles
addition, and we convert less than one thing into
exactly one thing using something that resembles zero.
Once you learn to think in terms of these patterns,
programming becomes as simple as basic arithmetic:
combinable components go in and exactly one combin-
able component comes out.

These abstractions scale limitlessly because they
always preserve combinability, therefore we never need
to layer further abstractions on top. This is one reason
why you should learn Haskell: you learn to how to
build flat architectures. n

Gabriel Gonzalez builds search tools for biology and designs
stream computing and analytics software. He currently works
at UCSF where he is completing his PhD in biochemistry and
biophysics. He blogs about his work on haskellforall.com and you
can reach him at gabriel439@gmail.com

Reprinted with permission of the original author.
First appeared in hn.my/scalable (haskellforall.com)

http://haskellforall.com
http://hn.my/scalable

28  PROGRAMMING

By Amit Patel

Movement for a single
object seems easy.
Pathfinding is com-

plex. Why bother with pathfinding?
Consider the following situation:

 The unit is initially at the
bottom of the map and wants to
get to the top. There is nothing in
the area it scans (shown in pink) to
indicate that the unit should not
move up, so it continues on its way.
Near the top, it detects an obstacle
and changes direction. It then finds
its way around the “U”-shaped
obstacle, following the red path. In
contrast, a pathfinder would have
scanned a larger area (shown in
light blue), but found a shorter path
(blue), never sending the unit into
the concave shaped obstacle.

Pathfinders let you plan ahead
rather than waiting until the
last moment to discover there’s
a problem. There’s a tradeoff
between planning with pathfind-
ers and reacting with movement
algorithms. Planning generally is
slower but gives better results;
movement is generally faster but
can get stuck. If the game world is
changing often, planning ahead is
less valuable. I recommend using
both: pathfinding for big picture,
slow-changing obstacles, and long
paths; and movement for local area,
fast-changing, and short paths.

How A* Works
The pathfinding algorithms from
computer science textbooks work
on graphs in the mathematical
sense — a set of vertices with edges
connecting them. A tiled game map
can be considered a graph with
each tile being a vertex and edges
drawn between tiles that are adja-
cent to each other:

 For now, I will assume that we’re
using two-dimensional grids. Later
on, I’ll discuss how to build other
kinds of graphs out of your game
world.

Most pathfinding algorithms
from AI or algorithms research are
designed for arbitrary graphs rather
than grid-based games. We’d like to
find something that can take advan-
tage of the nature of a game map.
There are some things we consider
common sense, but that algorithms
don’t understand. We know some-
thing about distances: in general,
as two things get farther apart, it
will take longer to move from one
to the other, assuming there are no
wormholes. We know something
about directions: if your destina-
tion is to the east, the best path is
more likely to be found by walking
to the east than by walking to the
west. On grids, we know something
about symmetry: most of the time,
moving north then east is the same
as moving east then north. This
additional information can help us
make pathfinding algorithms run
faster.

Pathfinding with A*

  29

Dijkstra’s Algorithm and
Best-First-Search
Dijkstra’s algorithm works by visit-
ing vertices in the graph starting
with the object’s starting point. It
then repeatedly examines the closest
not-yet-examined vertex, adding its
vertices to the set of vertices to be
examined. It expands outwards from
the starting point until it reaches the
goal. Dijkstra’s algorithm is guaran-
teed to find a shortest path from the
starting point to the goal, as long as
none of the edges have a negative
cost. In the following diagram, the
pink square is the starting point, the
blue square is the goal, and the teal
areas show what areas Dijkstra’s
algorithm has scanned. The lightest
teal areas are those farthest from
the starting point, and thus form the
“frontier” of exploration:

 The Greedy Best-First-Search
algorithm works in a similar way,
except that it has some estimate
(called a heuristic) of how far from
the goal any vertex is. Instead of
selecting the vertex closest to the
starting point, it selects the vertex
closest to the goal. Greedy Best-
First-Search is not guaranteed to
find a shortest path. However, it
runs much quicker than Dijks-
tra’s algorithm because it uses the
heuristic function to guide its way
towards the goal very quickly. For
example, if the goal is to the south
of the starting position, Greedy

Best-First-Search will tend to focus
on paths that lead southwards.
In the following diagram, yellow
represents those nodes with a high
heuristic value (high cost to get
to the goal) and black represents
nodes with a low heuristic value
(low cost to get to the goal). It
shows that Greedy Best-First-
Search can find paths very quickly
compared to Dijkstra’s algorithm:

 However, both of these exam-
ples illustrate the simplest case —
when the map has no obstacles, and
the shortest path really is a straight
line. Let’s consider the concave
obstacle as described in the previ-
ous section. Dijkstra’s algorithm
works harder but is guaranteed to
find a shortest path:

 Greedy Best-First-Search on the
other hand does less work but its
path is clearly not as good:

 The trouble is that Greedy Best-
First-Search is “greedy” and tries
to move towards the goal even if
it’s not the right path. Since it only
considers the cost to get to the goal
and ignores the cost of the path so
far, it keeps going even if the path
it’s on has become really long.

Wouldn’t it be nice to combine
the best of both? A* was devel-
oped in 1968 to combine heuristic
approaches like Greedy Best-First-
Search and formal approaches like
Dijsktra’s algorithm. It’s a little
unusual in that heuristic approaches
usually give you an approximate
way to solve problems without
guaranteeing that you get the best
answer. However, A* is built on top
of the heuristic, and although the
heuristic itself does not give you a
guarantee, A* can guarantee a short-
est path.

The A* Algorithm
I will be focusing on the A* Algo-
rithm [hn.my/astar]. A* is the most
popular choice for pathfinding
because it’s fairly flexible and can
be used in a wide range of contexts.

A* is like Dijkstra’s algorithm
in that it can be used to find a
shortest path. A* is like Greedy
Best-First-Search in that it can use
a heuristic to guide itself. In the
simple case, it is as fast as Greedy
Best-First-Search:

http://hn.my/astar

30  PROGRAMMING

In the example with a concave
obstacle, A* finds a path as good as
what Dijkstra’s algorithm found:

 The secret to its success is that
it combines the pieces of informa-
tion that Dijkstra’s algorithm uses
(favoring vertices that are close to
the starting point) and information
that Greedy Best-First-Search uses
(favoring vertices that are close to
the goal). In the standard terminol-
ogy used when talking about A*,
g(n) represents the exact cost of
the path from the starting point to
any vertex n, and h(n) represents
the heuristic estimated cost from
vertex n to the goal. In the above
diagrams, the yellow (h) represents
vertices far from the goal and teal
(g) represents vertices far from the
starting point. A* balances the two
as it moves from the starting point
to the goal. Each time through the
main loop, it examines the vertex n
that has the lowest f(n) = g(n) +
h(n).

Heuristic Functions
The heuristic function h(n) tells
A* an estimate of the minimum
cost from any vertex n to the goal.
A* uses the heuristic to search the
graph more quickly.

■■ At one extreme, if h(n) is 0, then
only g(n) plays a role, and A*
turns into Dijkstra’s algorithm,
which is guaranteed to find a
shortest path.

■■ If h(n) is always lower than (or
equal to) the cost of moving from
n to the goal, then A* is guaran-
teed to find a shortest path. The
lower h(n) is, the more node A*
expands, making it slower.

■■ If h(n) is exactly equal to the
cost of moving from n to the goal,
then A* will only follow the best
path and never expand anything
else, making it very fast. Although
you can’t make this happen in
all cases, you can make it exact
in some special cases. It’s nice to
know that given perfect informa-
tion, A* will behave perfectly.

■■ If h(n) is sometimes greater than
the cost of moving from n to the
goal, then A* is not guaranteed
to find a shortest path, but it can
run faster.

■■ At the other extreme, if h(n)
is very high relative to g(n),
then only h(n) plays a role,
and A* turns into Greedy
Best-First-Search.

On a grid, there are well-known
heuristic functions to use. Use the
distance heuristic that matches the
allowed movement:

■■ On a square grid that allows 4
directions of movement, use
Manhattan distance (L1).

■■ On a square grid that allows 8
directions of movement, use
Diagonal distance (L∞).

■■ On a square grid that allows
any direction of movement, you
might or might not want Euclid-
ean distance (L2). If A* is finding
paths on the grid but you are
allowing movement not on the
grid, you may want to consider
other representations of the map.

■■ On a hexagon grid that allows
6 directions of movement, use
Manhattan distance adapted to
hexagonal grids.

Do not use Euclidean distance
squared.

Performance
The main loop of A* reads from
a priority queue, analyzes it, and
inserts nodes back into the priority
queue. In addition, it tracks which
nodes have been visited. To improve
performance, consider:

■■ Can you decrease the size of
the graph? This will reduce the
number of nodes that are pro-
cessed, both those on the path
and those that don’t end up on
the final path. Consider naviga-
tion meshes instead of grids. Con-
sider hierarchical map represen-
tations. [hn.my/hierarchical]

■■ Can you improve the accu-
racy of the heuristic? This will
reduce the number of nodes
that are not on the final path.
The closer the heuristic to the
actual path length (not the dis-
tance), the fewer nodes A* will
explore. Consider these heuris-
tics [hn.my/heuristic] for grids.
Consider ALT (A*, Landmarks,
Triangle Inequality) for graphs in
general (including grids).

■■ Can you make the priority queue
faster? Consider other data
structures such as binary heaps
for your priority queue. Consider
processing nodes in batches,
as fringe search does. Consider
approximate sorting.

http://hn.my/hierarchical
http://hn.my/heuristic

  31

■■ Can you make the heuristic
faster? The heuristic function is
called for every open node. Con-
sider caching its result. Consider
in-lining the call to it.

For grid maps, see these sugges-
tions. [hn.my/grids]

Non-grid Maps
Through most of this document
I’ve assumed that A* was being
used on a grid of some sort, where
the “nodes” given to A* were grid
locations and the “edges” were
directions you could travel from
a grid location. However, A* was
designed to work with arbitrary
graphs, not only grids. There are a
variety of map representations that
can be used with A*.

The map representation can
make a huge difference in the per-
formance and path quality.

Pathfinding algorithms tend to be
worse than linear: if you double the
distance needed to travel, it takes
more than twice as long to find the
path. You can think of pathfind-
ing as searching some area like a
circle — when the circle’s diameter
doubles, it has four times the area.
In general, the fewer nodes in your
map representation, the faster A*
will be. Also, the more closely your
nodes match the positions that
units will move to, the better your
path quality will be.

The map representation used for
pathfinding does not have to be the
same as the representation used for
other things in the game. However,
using the same representation is a
good starting point, until you find
that you need better paths or more
performance.

Grids
A grid map uses a uniform subdivi-
sion of the world into small regular
shapes sometimes called “tiles.”
Common grids in use are square,
triangular, and hexagonal. Grids are
simple and easy to understand, and
many games use them for world
representation; thus, I have focused
on them in this document.

 I used grids for BlobCity
[hn.my/blobcity] because the
movement costs were different in
each grid location. If your move-
ment costs are uniform across large
areas of space (as in the examples
I’ve used in this document), then
using grids can be quite wasteful.
There’s no need to have A* move
one step at a time when it can just
skip across the large area to the
other side. Pathfinding on a grid also
yields a path on grids, which can
be post-processed to remove the
jagged movement. However, if your
units aren’t constrained to move on
a grid, or if your world doesn’t even
use grids, then pathfinding on a grid
may not be the best choice.

Tile Movement
Even within grids, you
have a choice of tiles,
edges, and vertices for
movement. Tiles are
the default choice,
especially for games in which units
only move to the center of a tile.
In this diagram, the unit at A can
move to any of the spots marked B.
You may also wish to allow diagonal

movement, with the same or higher
movement cost.

If you’re using grids for pathfind-
ing, your units are not constrained
to grids, and movement costs
are uniform, you may want to
straighten the paths by moving in
a straight line from one node to a
node far ahead when there are no
obstacles between the two.

Edge Movement
 If your units can
move anywhere
within a grid space, or
if the tiles are large,
think about whether
edges or vertices would be a better
choice for your application.

A unit usually enters a tile at one
of the edges (often in the middle)
and exits the tile at another edge.
With pathfinding on tiles, the unit
moves to the center of the tile,
but with pathfinding on edges,
the unit will move directly from
one edge to the other. I wrote a
Java applet demo of road drawing
[hn.my/roads] between edges that
might help illustrate how edges can
be used.

Vertex Movement
Obstacles in a grid
system typically have
their corners at vertices.
The shortest path around
an obstacle will be to go
around the corners. With pathfind-
ing on vertices, the unit moves from
corner to corner. This produces the
least wasted movement, but paths
need to be adjusted to account for
the size of the unit.

http://hn.my/grids
http://hn.my/blobcity
http://hn.my/roads

32  PROGRAMMING

Polygonal Maps
The most common alternative to
grids is to use a polygonal represen-
tation. If the movement cost across
large areas is uniform, and if your
units can move in straight lines
instead of following a grid, you may
want to use a non-grid representa-
tion. You can use a non-grid graph
for pathfinding even if your game
uses a grid for other things.

Here’s a simple example of one
kind of polygonal map representa-
tion. In this example, the unit needs
to move around two obstacles:

Imagine how your unit will move
in this map. The shortest path will
be between corners of the obstacles.
So we choose those corners (red
circles) as the key “navigation
points” to tell A* about; these can
be computed once per map change.
If your obstacles are aligned on a
grid, the navigation points will be
aligned with the vertices of the
grid. In addition, the start and end
points for pathfinding need to be in
the graph; these are added once per
call to A*.

In addition to the navigation
points, A* needs to know which
points are connected. The simple
algorithm is to build a visibility
graph: pairs of points that can be
seen from each other. The simple
algorithm may be fine for your
needs, especially if the map doesn’t
change during gameplay, but you

may need a more sophisticated
algorithm if the simple one is too
slow. In addition, since we have
added the start and end navigation
points to the graph, we check line
of sight from those to existing ver-
tices and each other, and add edges
where needed.

The third piece of information
A* needs is travel times between
the points. That will be Manhattan
distance or diagonal grid distance
if your units move on a grid, or
straight line distance if they can
move directly between the naviga-

tion points.
A* will then consider

paths from navigation
point to navigation point.
The pink line is one such
path. This is much faster
than looking for paths
from grid point to grid
point, when you have only
a few navigation points,
instead of lots of grid loca-

tions. When there are no obstacles
in the way, A* will do very well
— the start point and end point
will be connected by an edge, and
A* will find that path immediately,
without expanding any other navi-
gation points. Even when there are
obstacles to consider, A* will jump
from corner to corner until it finds
the best path, which will still be
much faster than looking for a path
from a grid location to another.

Wikipedia has more about vis-
ibility graphs [hn.my/vgraph] from
the robotics literature.

Managing Complexity
The above example was rather
simple and the graph is reasonable.
In some maps with lots of open
areas or long corridors, a problem
with visibility graphs becomes
apparent. A major disadvantage of
connecting every pair of obstacle
corners is that if there are N corners
(vertices), you have up to N2 edges.
This example demonstrates the
problem:

 These extra edges primarily
affect memory usage. Compared to
grids, these edges provide “short-
cuts” that greatly speed up path-
finding. There are algorithms for
simplifying the graph by removing
redundant edges. However, even
after removing redundancies, there
will still be a large number of edges.

Another disadvantage of the vis-
ibility graphs is that we have to add
start/end nodes along with their
new edges to the graph for every
invocation of A*, and then remove
them after we find a path. The
nodes are easy to add but adding
edges requires line of sight from
the new nodes to all existing nodes,
and that can be slow in large maps.
One optimization is to only look
at nearby nodes. Another option
is to use a reduced visibility graph
that removes the edges that aren’t
tangent to both vertices (these will
never be in the shortest path).

http://hn.my/vgraph

  33

Navigation Meshes
Instead of representing the obstacles
with polygons, we can represent the
walkable areas with non-overlap-
ping polygons, also called a navi-
gation mesh. The walkable areas
can have additional information
attached to them (such as “requires
swimming” or “movement cost 2”).
Obstacles don’t need to be stored in
this representation.

The previous example becomes
this:

 We can then treat this much
like we treat a grid. As with a grid,
we have a choice of using polygon
centers, edges, or vertices as naviga-
tion points.

Polygon Movement
As with grids, the center of each
polygon provides a reasonable set of
nodes for the pathfinding graph. In
addition, we have to add the start
and end nodes, along with an edge
to the center of the polygon we’re
in. In this example, the yellow path
is what we’d find using a pathfinder
through the polygon centers, and
the pink path is the ideal path.

 The visibility graph representa-
tion would produce the pink path,
which is ideal. Using a navigation
mesh makes the map manageable
but the path quality suffers. We
can make the path look better by
smoothing it.

Polygon edge movement
Moving to the center of the poly-
gon is usually unnecessary. Instead,
we can move through the edges
between adjacent polygons. In this
example, I picked the center of
each edge. The yellow path is what
we’d find with a pathfinder through
the edge centers, and it compares
pretty well to the ideal pink path.

 You can pick more points along
the edge to produce a better path,
at increased cost.

Polygon Vertex Movement
The shortest way around an obsta-
cle is to go around the corner. This
is why we used corners for the vis-
ibility graph representation. We can
use vertices with navigation meshes:

There’s only one obstacle in the
way in this example. When we
need to go around the obstacle,
the yellow path goes through a
vertex, just as the pink (ideal) path
does. However, whereas the vis-
ibility graph approach would have
a straight line from the start point
to the corner of the obstacle, the
navigation mesh adds some more
steps. These steps typically should
not go through vertices, so the path
looks unnatural, with “wall hugging”
behavior.

Hybrid Movement
There aren’t any restrictions on
what parts of each polygon can be
made into navigation points for
pathfinding. You can add multiple
points along an edge, and the ver-
tices are good points too. Polygon
centers are rarely useful. Here’s a
hybrid scheme that uses both the
edge centers and vertices:

 Note that to get around the
obstacle, the path goes through
a vertex, but elsewhere, it can go
through edge centers.

Path Smoothing
Path smoothing is fairly easy with
the resulting paths, as long as the
movement costs are constant. The
algorithm is simple: if there’s line
of sight from the navigation point
i to point i+2, remove point i+1.
Repeat this until there is no line of
sight between adjacent points in the
path.

34  PROGRAMMING

What will be left is only the
navigation points that go around
the corners of obstacles. These are
vertices of the navigation mesh. If
you use path smoothing, there’s no
need to use edge or polygon centers
as navigation points; use only the
vertices.

In the above examples, path
smoothing would turn the yellow
path into the pink one. However,
the pathfinder has no knowledge of
these shorter paths, so its decisions
won’t be optimal. Shortening the
path found in an approximate map
representation (navigation meshes)
will not always produce paths that
are as good as those found in a
more exact representation (visibil-
ity graphs).

Graph Format Recommendations
Start by pathfinding on the game
world representation you already
use. If that’s not satisfactory, con-
sider transforming the game world
into a different representation for
pathfinding.

In many grid games, there are
large areas of maps that have uni-
form movement costs. A* doesn’t
“know” this, and wastes effort
exploring them. Create a simpler
graph (navigation mesh, visibility
graph, or hierarchical representa-
tion of the grid map), or use a
variant of A* optimized for grid
maps. The visibility graph repre-
sentation produces the best paths
when movement costs are constant,
and allows A* to run rather quickly,
but can use lots of memory for
edges. Grids allow for fine varia-
tion in movement costs (terrain,
slope, penalties for dangerous areas,
etc.), use very little memory for
edges, but use lots of memory for
nodes, and pathfinding can be slow.
Navigation meshes are in between.

They work well when movement
costs are constant in a larger area,
allow for some variation in move-
ment costs, and produce reasonable
paths. The paths are not always
as short as with visibility graph
representation, but they are usually
reasonable. Hierarchical maps use
multiple levels of representation to
handle both coarse paths over long
distances and detailed paths over
short distances. n

Amit Patel explores visual explanations
of math and computer science topics at
redblobgames.com. He has a wide range
of interests and previously worked on
programming languages, scientific equip-
ment, data analysis, visualization, geologi-
cal exploration, simulation of complex sys-
tems, economic modeling, maps, trend
analysis, artificial intelligence, and web
software.

Reprinted with permission of the original author.
First appeared in hn.my/pathfinding (theory.stanford.edu/~amitp)

http://redblobgames.com
http://hn.my/pathfinding

  35

I used to study the program
listings in magazines like
Dr. Dobb’s, back when they

printed the source code to substan-
tial programs. While I learned a few
isolated tricks and techniques, I
never felt like I was able to com-
prehend the entirety of how the
code worked, even after putting in
significant effort.

It wasn’t anything like sitting
down and reading a book for
enjoyment; it took work. I marked
up the listings and kept notes as I
went. I re-read sections multiple
times, uncovering missed details.
But it was easy to build up incor-
rect assumptions in my head, and
without any way of proving them
right or wrong I’d keep seeing what
I wanted to instead of the true pur-
pose of one particular section. Even
if the code was readable in the
software engineering sense, bound-
ary cases and implicit knowledge
lived between the lines. I’d under-
stand 90% of this function and 90%
of that function and all those extra
ten percents would keep accumu-
lating until I was fooling myself if I
thought I had the true meaning in
my grasp.

That experience made me realize
that read isn’t a good verb to apply
to a program.

It’s fine for hunting down par-
ticular details (“let’s see how many
buffers are allocated when a file is
loaded”), but not for understanding
the architecture and flow of a non-
trivial code base.

I’ve worked through tutorials in
the J language [jsoftware.com] —
called “labs” in the J world — where
the material would have been
opaque and frustrating had it not
been interactive. The presentation
style was unnervingly minimal:
here’s a concept with some sen-
tences of high-level explanation,
and here are some lines of code that
demonstrate it. Through experi-
mentation and trial and error, and
simply because I typed new state-
ments myself, I learned about the
topic at hand.

Of particular note are Ken
Iverson’s interactive texts on
what sound like dry, mathemati-
cal subjects, but they take on new
life when presented in exploratory
snippets. That’s even though they
are reliant on J, the most mind-
melting and nothing-at-all-like-C
language in existence.

I think that’s the only way to
truly understand arbitrary source
code. To load it up, to experiment,
to interactively see how weird cases
are handled, then keep expanding
that knowledge until it encom-
passes the entire program. I know,
that’s harder to do with C++ than
with Erlang and Haskell (and more
specifically, it’s harder to do with
languages where functions can have
wide-ranging side effects that can
change the state of the system in
hidden ways), and that’s part of
why interactive, mostly-functional
languages can be more pleasant
than C++ or Java. n

James Hague has been Design Director
for Red Faction: Guerrilla, editor of “Hal-
cyon Days: Interviews with Classic Com-
puter and Video Game Programmers,”
co-founder of an indie game studio, and
a published photographer. He started his
blog “Programming in the 21st Century,”
in 2007.

You Don’t Read Code, You Explore It
By James Hague

Reprinted with permission of the original author.
First appeared in hn.my/explore (prog21.dadgum.com)

http://jsoftware.com
http://hn.my/explore

36  SPECIAL

SPECIAL

By Gabriele Cirulli

In March, I built a game
called 2048 [git.io/2048]
just for fun, and released it as

open-source software on GitHub
[hn.my/gh2048]. Over the course
of the following weeks it unexpect-
edly became a worldwide hit, and
it has been played by more than 23
million people.

This period has been one of the
most exciting of my life, as well as
one of the most stressful. Know-
ing that millions of people have
played and enjoyed something
you’ve built can be a great feeling.
For many (including me), it’s what
gives you the motivation to keep
coming up with new creations. At
the same time, when something you
made becomes known worldwide
you have to face a whole new set
of challenges. The attention you
get and the things people come to
expect of you can become over-
whelming if you’ve never had to
handle them.

In this article, I’ll share what this
experience has been like for me and
how I dealt with it, both on a per-
sonal and professional level. I will
also explain the path that led me
to changing my mind on building a
mobile version of the game.

It’s a long read, but I hope that
this article will provide some mean-
ingful insights and hopefully help
those who might be facing similar
issues.

How it all started
I built 2048 in a weekend, just
for fun. I had become addicted
to two other games, called 1024!
[hn.my/1024] and 2048 [saming.
fr/p/2048]. I loved playing both,
and I wanted to create my own ver-
sion with a different visual style and
quicker animations, just to see if I
could. At that time, I did not know
about Threes, [asherv.com/threes]
the game from which all the others
(including 2048) originated.

Asher Vollmer and Greg Wohl-
wend, its creators, have poured a
huge amount of time and effort
into it. They’ve recently expressed
their frustration [hn.my/threemails]
over the popularity that the clones
of their game experienced. I under-
stand what they must have felt like,
and I have a huge appreciation of
the amount of work and love they
put into building Threes. 2048 owes
its existence to it.

While building 2048, I decided
that I should just put it on GitHub

and be done with it. I didn’t feel
good about keeping it private, since
it was heavily based off of someone
else’s work.

Once I was done with the game,
I published it on GitHub Pages and
posted it on Designer News, simply
interested in getting feedback over
the visuals.

The explosion
The following day, I received a
message from a friend telling me
to have a look at the front page of
Hacker News. Someone had posted
2048 there and it was at the #1
position. Google Analytics reported
thousands of people on the site.
I just couldn’t believe what was
happening.

Although it just looked like a
sudden spike in interest, one which
would fade away quickly, I spent
the entire day looking at the stats.
Seeing the counts continuously
going up made me excited and a
little terrified at the same time.

I was surprised by the amount of
positive feedback I was getting in
the comments. Everyone was talk-
ing about how they just couldn’t
stop playing this game, even at the
expense of their productivity.

2048, Success and Me

http://git.io/2048
http://hn.my/gh2048
http://hn.my/1024
http://saming.fr/p/2048
http://saming.fr/p/2048
http://asherv.com/threes
http://hn.my/threemails

  37

The following days
I thought the interest in 2048
would fade away soon, but it didn’t
stop even after a few days. In fact,
it just kept getting larger. At some
point, 2048 had gone from being a
popular topic amongst HN readers
(it became the third most up-voted
post in the history of the site) to
being talked about on Twitter, Face-
book, and even offline. Seeing it
turn into a worldwide phenomenon
felt a bit unsettling.

At the same time, my inbox had
started growing with emails from
people interested in the game, as
well as developers asking for autho-
rization to port the app to mobile
to profit off of it.

The first problem I faced was
figuring out what I should do about
2048 and how I should respond to
those emails. Although 2048 was
just a small side project for me, and
I had no particular expectations
about it, the people around me
were suggesting that should I jump
at the opportunity to make money
out of it.

Personally, I didn’t feel comfort-
able about the idea of profiting
off of the concept, since 2048 was
mostly based on other games.

What also caused me a consider-
able amount of distress was know-
ing that, in order to focus on 2048,
I’d have to give up on all my other
commitments. At the time, I was
working on a freelance project, and
focusing on 2048 meant I’d have to
pause it or end it altogether.

I had to bring the game to
mobile, a field I had no experience
in, and do it quickly enough to be
first. The prospect of doing this
scared me because it would be a
big jump out of my comfort zone,
having no idea of what lied ahead.

Those two factors caused me a
lot of distress during those days. I
felt as if there was no way out, and
every decision I may take would
only lead to more trouble.

On one side, I could embrace this
opportunity (which felt like a “once
in a lifetime” deal) and get a return,
at the cost of wronging the people
behind the original concepts.

On the other hand, I could just
do nothing and go on with my life.
I knew I would regret it when, later
on, someone would tell me I missed
out on my opportunity.

In the end, I convinced myself
that I should just do nothing,
because I thought that was the only
way to end the stress I was expe-
riencing. I decided that the game
would remain open-source, and
that I wouldn’t bring it to mobile.

After making that decision, I
immediately started feeling better.
That made me think that I had
done the right thing, and I wouldn’t
regret it.

Falling back into the circle
For the next few days, I felt better
again.

At that time, the first mobile
versions of the game had started
appearing. Some of them would not
even credit me or the other games
they were based on, some would
outright impersonate me. After
seeing the reaction of the people
behind Threes, I thought that not
pursuing this myself had been the
right choice.

Many of the people around me,
however, didn’t feel the same. My
friends and parents thought that my
choice was honorable, but at the
same time I was probably throw-
ing away a chance that I would be
unlikely to get a second time.

Initially, their opinions didn’t
phase me. I knew that by choosing
this path I had saved myself from
the stress I was feeling before, and I
considered that far more important
than money or popularity.

This feeling didn’t last long,
however. A few days later, all of the
issues I thought I had overcome
crumbled back on me much harder
than before. I had started to regret
“wasting” this opportunity, and I
felt as if the people around me
were disappointed by my actions.
What made me feel even worse
was seeing a 2048 app made by
someone else get to the top of the
leaderboards in the App Store.

Silver linings
I was distraught because of my situ-
ation, but I also had reasons to be
happy.

Even though some people don’t
care about taking someone else’s
work and using it for profit, there
are also many creative people in the
open-source community who care
about improving what’s out there.
They just want to take something
and make it better, or even bring it
to entirely new levels.

Seeing the countless derivative
versions of 2048 that had appeared
made me incredibly happy. I had a
lot of fun playing each one of them,
and it just felt great to see what
others were coming up with.

People poured a lot of creativity
into tweaking the game and shap-
ing it into completely new things.
Knowing that someone else spent
their time on improving something
you’ve built can be elating, espe-
cially if what motivates you the
most is just making people happy
through your work.

38  SPECIAL

Changing my mind
Thanks to the help of my parents
and my friends, I realized that the
only way to get over this without
feeling like I had missed an oppor-
tunity would be to embrace it and
produce an app. I wouldn’t be
doing it for profit, though. In fact,
that is not what matters to me.
All that matters is knowing that I
didn’t waste a chance, no matter if
I’m going to succeed or fail.

What would people think of
me, though? In every interview, I
said that I wouldn’t try to profit
from the game for ethical reasons. I
thought that if I changed my mind,
I’d be seen as a hypocrite, and I
really didn’t want to be that kind
of guy.

The hardest thing about this
decision was that I felt it would
betray other people’s expectations
of me. After all, I would be chang-
ing my mind and pursuing some-
thing I was outspokenly against.
It took me a few days, but what
eventually led me to accept this was
knowing that my change of heart
would not be motivated by greed.
I chose to do it to save myself from
feeling like I missed my chance for
the rest of my life.

Due to my choices, those who
took these issues at heart and
appreciated my previous stance will
probably feel deceived. That’s one
of the reasons why I chose to write
this article: I wanted to give my
perspective over this controversial
choice, one which was mandated by
extreme conditions.

Hopefully, the context in which
this decision was taken will be
enough of an explanation for my
actions. If not, I hope I at least
somehow helped people under-
stand where all of this came from.

Building the application
I still thought that just taking the
game as it is and wrapping it in an
application would be a bad thing
to do. 2048 was not really mine
anymore. Instead, it belonged to the
countless contributors who believed
in it, and I had no right to use it for
myself. If I wanted my decision to
feel reasonable, I would have to put
a considerable amount of work into
creating the application.

In the end, it took me a full
month to develop the application
from scratch and bring it to a state
of polish that would motivate its
existence.

Being a web
developer
and having no
mobile devel-
opment skills,
I couldn’t just
start building
an app for iOS
and Android and
expect to come
up with anything
decent. Because
of that, I decided
to use Phonegap.
Phonegap allows

you to build an app using HTML,
CSS and JavaScript in the same way
you’d build a mobile website.

The problem with Phonegap is
that if you want to build a native-
looking app, you have a long, hard
road ahead of you. Fortunately, I
was trying to build a game, which
meant I wouldn’t have to strictly
abide to the visual styles of each OS.

I wanted the application to have
a menu, because dropping the
player into a game when launching
the app wouldn’t make for a good
experience. A menu would also let
me introduce new game modes,
which would add value to the game.

I wanted the game logic to be
generic enough to be allow the
inclusion of new game modes just
by creating new objects that “hook”
into the core game and modify its
behaviors as needed.

I ended up writing most of the
application’s code from scratch.
The only part I kept from the
open-source version of 2048 is the
logic to move the tiles, to keep true
to the original experience. Since
the app will be closed-source for
now (but I might publish it in the
future), it wouldn’t be fair if it used
code that other people contributed.

The codebase turned out to be
almost 3 times
the size of the
web version,
with most of the
code being new.

While build-
ing the app, I
found many
ways to improve
and streamline
the code and
the interface.
I’d really love
to give back to
the open-source

version of 2048 by porting these
back into it. I also want to eventu-
ally refactor its code, to make it a
better asset for the open-source
community.

If you’re interested in seeing what
I ended up with, you can download
the application for iOS [hn.my/
i2048] and Android [hn.my/a2048].
I hope you’ll like it. n

Gabriele is from Italy. He graduated from
high school a year ago and jumped straight
into work afterwards. He began as a free-
lancer, then after created 2048, he joined
a web startup.

The main menu
of the application.

The screen you see
when you win.

Reprinted with permission of the original author.
First appeared in hn.my/2048 (gabrielecirulli.com)

http://hn.my/i2048
http://hn.my/i2048
http://hn.my/a2048
http://hn.my/2048

  39

I’ll often come up with an idea
that I get excited about.

Then I brainstorm a catchy
name for it, check the availability
of urls and social media accounts,
maybe even set up a landing page.
It gives me a big rush, and I imagine
a dazzlingly bright future ahead for
the concept.

And then the idea crawls up and
dies inside of me.

Why?
Because I don’t actually do

anything.
To finish things, you need to fall

in love with the part of the pro-
cess that’s harder to love — the bit
where you roll up your sleeves and
do the damn thing.

Maybe that’s why it’s got another
much tougher sounding name:
execution.

The human brain is a brilliant
idea-generating machine. In the past
we had to convert our ideas into
solutions just to stay alive: to make
sure that we had enough food... or
didn’t get eaten. But now, in the
safety of our comfortable, hygienic,
homogenized 21st century lives,
it’s all too easy to fall asleep on our
true potential.

Wake Up and Smell the Hard
Work
Your idea doesn’t mean diddly-
squat until it’s out in the world.
And to do that is going to take
some hard manual labor.

So to stay on track, you’ll need to
engage with the execution process
as much as the idea itself.

None of my various bright ideas
— a social network for sneaker
collectors, customizable artwork
of your bicycle, a recipe sharing
platform, a book about designers
turned entrepreneur (OK, that last

one I am actually set on doing) —
have come to fruition yet.

And whilst CycleLove (and its
sister shop CycleLux) might be
building momentum, I still have
a huge hang-up about creating
the eBooks or information-based
content about cycling or whatever
it is that I’ve been talking about
for months and months. It’s still a
blog, not a business, and costing me
money instead of making it.

I chickened out of the work.
You need graft, or grit, or gump-

tion, or whatever you want to call
it.

Whether it’s by actually blog-
ging on your blog, or starting your
startup, value is created by doing.

It’s easier to sit around and talk
about building a startup than it
is to actually start a startup. And
it’s fun to talk about. But over
time, the difference between fun
and fulfilling becomes clear. Doing
things is really hard — it’s why,
for example, you can generally tell
people what you’re working on
without NDAs, and most patents
never matter. The value, and the
difficulty, comes from execution
— Sam Altman

Dial Down the Resolution(s)
When I looked back at the list of
goals I’d set out for 2013 the other
day, I felt pretty embarrassed. Espe-
cially as it’s published in plain sight
on the internet. I didn’t come close
to achieving any of my resolutions.
Not one thing on the list.

But I know that beating yourself
up about this kind of stuff is stupid.
(Make changes, not criticisms).

So…I haven’t made any New
Year’s resolutions this year.

You don’t want high resolu-
tions anyhow — you want low

resolution.
You want to let go of the fear of

fucking up, of it not being perfect,
of what other people think, of
things that probably won’t ever
happen, and just crank that stuff
out, baby.

Instead of Trying to Finish Every-
thing, Try to Finish One Thing.
Today if possible.
And then another...
And another...
And...
(I think I just finished this article).

What are you going to finish
today? n

James Greig is a London-based graphic
designer/writer [greig.cc] and the founder
of CycleLove [cyclelove.net]

http://greig.cc
http://cyclelove.net
http://mailjet.com

40  SPECIAL

The end of procrastination
is the art of letting go.

I’ve been a lifelong
procrastinator, at least until recent
years. I would put things off until
deadline, because I knew I could
come through. I came through on
tests after cramming last minute,
I turned articles in at the deadline
after waiting until the last hour, I
got things done.

Until I didn’t. It turns out
procrastinating caused me to miss
deadlines, over and over. It stressed
me out. My work was less-than-
desirable when I did it last minute.
Slowly, I started to realize that pro-
crastination wasn’t doing me any
favors. In fact, it was causing me a
lot of grief.

But I couldn’t quit. I tried a lot of
things. I tried time boxing and goal
setting and accountability and the
Pomodoro Technique and Getting
Things Done. All are great methods,
but they only last so long. Nothing
really worked over the long term.

That’s because I wasn’t getting to
the root problem.

I hadn’t figured out the skill
that would save me from the
procrastination.

Until I learned about letting go.
Letting go first came to me when

I was quitting smoking. I had to let
go of the “need” to smoke, the use
of my crutch of cigarettes to deal
with stress and problems.

Then I learned I needed to let go
of other false needs that were caus-
ing me problems: sugar, junk food,
meat, shopping, beer, possessions.
I’m not saying I can never do these
things again once I let go of these
needs, but I let go of the idea that
they’re really necessary. I let go of
an unhealthy attachment to them.

Then I learned that distractions

and the false need to check my
email and news and other things
online were causing me prob-
lems. They were causing my
procrastination.

So I learned to let go of those too.
Here’s the process I used to let go

of the distractions and false needs
that cause procrastination:

➊ I paid attention to the pain
they cause me, later, instead

of only the temporary comfort/
pleasure they gave me right away.

➋ I thought about the person
I want to be, the life I want

to live. I set my intentions to do the
good work I think I should do.

➌ I watched my urges to check
things, to go to the comfort

of distractions. I saw that I wanted
to escape discomfort of something
hard, and go to the comfort of
something familiar and easy.

➍ I realized I didn’t need
that comfort. I could be in

discomfort and nothing bad would
happen. In fact, the best things
happen when I’m in discomfort.

And then I smile, and breathe,
and let go.

And one step at a time, become
the person I want to be. n

“You can only lose what you cling
to.” ~Buddha

Leo Babauta is the creator and writer at
Zen Habits. He is a former journalist and
freelance writer of 18 years, a husband
and father of six children, and lives on
the island of Guam where he leads a very
simple life.

Get 50% off your first 6 months
circleci.com/?join=hm

http://circleci.com/?join=hm

	FEATURE
	The Lost Art of the Saturn V

	STARTUPS
	Boring Systems Build Badass Businesses

	PROGRAMMING
	Scaling SQL with Redis
	How To Be A Great Software Developer
	Scalable Program Architectures
	Pathfinding with A*
	You Don't Read Code, You Explore It

	SPECIAL
	2048, Success and Me

