
Issue 50  July 2014

How To Be An Open Source
Gardener by Steve Klabnik

2  ﻿

Curator
Lim Cheng Soon

Contributors
Steve Klabnik
Derek Sivers
Alex Krupp
Nathan Kontny
Joe Savage
Jesper Louis Andersen
Hunter Loftis
Andrey Karpov
Callum Jefferies

Illustrators
Jaime G. Wong
Yana Dhyana

Proofreaders
Emily Griffin
Sigmarie Soto

Ebook Conversion
Ashish Kumar Jha

Printer
MagCloud

Hacker Monthly is the print magazine version
of Hacker News — news.ycombinator.com, a social news
website wildly popular among programmers and startup
founders. The submission guidelines state that content
can be “anything that gratifies one’s intellectual curiosity.”
Every month, we select from the top voted articles on
Hacker News and print them in magazine format.
For more, visit hackermonthly.com

Advertising
ads@hackermonthly.com

Contact
contact@hackermonthly.com

Published by
Netizens Media
46, Taylor Road,
11600 Penang,
Malaysia.

Hacker Monthly is published by Netizens Media and not affiliated with Y Combinator in any way.

Cover Illustration: Yana Dhyana [yanadhyana.deviantart.com]

http://news.ycombinator.com
http://hackermonthly.com
mailto:ads@hackermonthly.com
mailto:contact@hackermonthly.com
http://yanadhyana.deviantart.com

  3

For links to Hacker News dicussions, visit hackermonthly.com/issue-50

Contents
FEATURES

04  How To Be An Open Source Gardener
By Steve Klabnik

08  The Meaning of Life
By Derek Sivers

STARTUPS

14  The Most Important Tech Job That Doesn’t Actually Exist
By Alex Krupp

17  How To Get Business Ideas: Remove Steps
By Nathan Kontny

PROGRAMMING

18  Creating a Bare Bones Bootloader
By Joe Savage

23  Erlang and Code Style
By Jesper Louis Andersen

26  A First-Person Engine in 265 Lines
By Hunter Loftis

30  The Last Line Effect
By Andrey Karpov

SPECIAL

36  Is the Toilet Free?
By Callum Jefferies

http://hackermonthly.com/issue-50

4  FEATURES

FEATURES

By Steve Klabnik

How To Be An
Open Source Gardener

I do a lot of work on open source, but my most valuable contributions
haven’t been code. Writing a patch is the easiest part of open source.
The truly hard stuff is all of the rest: bug trackers, mailing lists, docu-

mentation, and other management tasks. Here are some things I’ve learned
along the way.

  5

It was RailsConf 2012. I sat in on
a panel discussion, and the number
of issues open on rails/rails came
up. There were about 800 issues at
the time, and had been for a while.
Inquiring minds wished to know
if that number was ever going to
drop, and how the community
could help. It was brought up that
there was an “Issues team,” whose
job would be to triage issues. I
enthusiastically volunteered.

But what does “issue triage”
mean, exactly? Well, on a project
as large as Rails, there are a ton of
issues that are incomplete, stale,
need more information… and
nobody was tending to them. It’s
kind of like a garden: you need
someone to pull weeds, and do it
often and regularly.

But before we talk about how to
pull the weeds, let’s figure out what
kind of garden we even have on our
hands!

What are Issues?
The very first thing your project
needs to do is to figure out what
Issues are supposed to be for. Each
project is different. For example,
in Rails, we keep Issues strictly for
bugs only. Help questions go to
Stack Overflow, and new feature
discussion and requests go to the
rails-core mailing list. For Rust, we
have issues for feature requests,
meta-issues… everything. For some
repositories, closing all of the issues
is not feasible, and for others, you’re
shooting for zero. (If you don’t
believe that this is even possible,
check out Sequel [hn.my/sequel].
Issues are rarely even open for more
than a few days!)

My personal favorite is to follow
the Rails way. Ideally, you’d be at
zero defects, and you can still have
a place to discuss features. But

really, having some plan is a neces-
sary first step here.

Regular tending
So how do you tackle 800 issues?
The only way I knew how: read all
of them. Yep. Here’s what I did: I
took a Saturday (and a Sunday),
and I went to the list of open Issues,
then control-clicked on each one
in turn to open them in a new tab.
Finally, I also control-clicked on
page 2. Then I closed this tab. Now
I had 31 open tabs: 30 issues, and
the next page. I read through the
whole issue, including comments.
When I got to the last tab, I was
ready to repeat the process: open
30 issues, open page 3, click close.
Next!

See, people think working on
open source is glamorous, but it’s
actually not. Working on open
source is reading 800 issues over
the course of a weekend.

Anyway, once I read all of those
issues, I was significantly more
informed about the kinds of prob-
lems Rails was facing. I had a whole
bunch of common questions, com-
ments, and problems.

The next step was to do it all
again.

Wait, again? Why? Well, now
that I had a handle on things, I
could actually take on the task of
triage-ing the issues. If I’d tried to
do it before I had the context, I
might not have seen the duplicate
issues, I wouldn’t know what the
normal kinds of comments were on
issues, I wouldn’t have known some
common questions that maintainers
had on pull requests, and in general,
things would have just been worse.

This time, when reading the
issue, I went through a little algo-
rithm to sort them out. It looked a
little like this:

1.	 Is this issue a feature request? If
so, copy/paste an answer I wrote
that pointed them to the mail-
ing list, and click close.

2.	 Is this issue a request for help? If
so, copy/paste an answer I wrote
that pointed them to Stack-
Overflow, and click close.

3.	 Was this issue for an older ver-
sion of Rails than is currently
supported? If so, copy/paste
an answer I wrote that asks if
anyone knows if this affects a
supported version of Rails.

4.	 Did this issue provide enough
information to reproduce the
error? If no, copy/paste an
answer I wrote that asks if they
can provide a reproduction.

5.	 If the issue has a reproduction,
and it wasn’t on the latest Rails,
try it against HEAD. If it still
happened, leave a comment that
it was still an issue.

6.	 If we got to this point, this issue
was pretty solid. Leave a com-
ment that I had triaged it, and cc
the maintainer of that relevant
sub-system of Rails, so they
could find issues that pertain to
the things they work on.

At the same time I did this, I
clicked this button on the GitHub
interface:

http://hn.my/sequel

6  FEATURES

 And then set up a Gmail filter
to filter all of the emails into their
own tag, and to skip my inbox:

 Why do this? Well, I didn’t do
all 800 immediately. I decided to
do one page per day. This kept it a
bit more manageable, rather than
taking up entire days of my time.
I need these emails and filters for
the important second part of the
process: tending to the garden
regularly.

Each morning, before I go to
work, I pour a cup of coffee and
check my emails. I don’t handle all
of them before work, but I made an
effort to tackle Rails’ emails first.
There would usually be about 20
or 25 new emails each morning,
and since it was largely just one
new comment, they’d be pretty fast
to get through. 15 minutes later, I
was back to current on all issues. At
lunch, I’d do it again: ten minutes
to handle the ten or so emails by
lunch, and then, before I’d go to
bed, I’d do it again: 15 more min-
utes to handle the next 20 notifica-
tions. Basically, I was spending a
little under an hour each day, but
by doing it every day, it never got
out of hand.

Once I got through all of the
issues, we were down to more like
600. A whole fourth of the issues
shouldn’t even have been open
in the first place. Two weeks in is
when the next big gain kicked in.
Why two weeks? Well, two weeks is
the grace period we decided before
marking an issue as stale. Why two
weeks? Well, that’s kind of arbitrary,
but two weeks feels like enough
time for someone to respond if
they’re actively interested in getting
an issue fixed. See, issues often need

the help of the reporter to truly
fix it, as there just isn’t enough
information in many bug reports
to be able to reproduce and fix the
problem.

So, after two weeks, I did one
more thing each evening: I fil-
tered by “least recently updated,”
and checked to see if any of those
issues were stale. You just go back
until they say “two weeks,” and
then, if you haven’t heard from the
reporter, mention that it’s stale and
give the issue a close. This is one of
the other things I had to kind of let
go of when working on a real proj-
ect: closing an issue isn’t forever.
You can always re-open the issue
later if it turns out you were wrong.
So when trying to get a handle
on 800 open issues, I defaulted
to “guilty until proven innocent.”
Terminate issues with extreme
prejudice. Leaving old, inconclusive
issues doesn’t help anyone. If it’s a
real bug that matters to someone,
they’ll come along and help repro-
duce it. If not, maybe someone else
will later.

After a month or two, keeping on
it, we got down to 450 or so issues.
Members of the core team joked
that they had to set up extra email
filters from me, because they could
tell exactly when I was doing triage.
Slow and steady wins the race!

At this point, I knew enough
about Rails to actually start writ-
ing some patches. And I happened
to be familiar with basically every
open bug. So it was easy to start
picking some of them and try to
reproduce them locally. So I’d do
that, and then try to write a patch.
If I couldn’t, I’d at least upload my
reproduction of the issue, and then
leave a note on the Issue, point-
ing to my reproduction. That way,
another team member could simply

clone my repository and get to it.
The only thing better than repro-
duction instructions are when those
instructions say git clone.

But I managed to get a few
patches in, and then a few more.
Doing all of this janitorial work
directly led the way towards attain-
ing a commit bit on Rails. It was
a long slog at first, but it just got
easier the more I did it. A lot of
work in open source is this way:
it’s really easy once you’ve done
it a lot, but it is hard for newbies.
I’m not yet sure how to tackle this
problem…

I’ve since taken this approach
on basically every repository I’ve
worked on, and it’s worked really
well. But it only works if you
keep at it: if you don’t tend your
garden, you’ll get weeds. I haven’t
had as much time for Rails over
the last few months, and it’s back
to 800 issues again. I’m not sure if
these are real issues or not, as I’ve
stopped tending. But without some-
one actively paying attention, it’s
only a matter of time before things
get unseemly. If you’re looking to
help out an open source project, it’s
not a glamorous job, but all it takes
is a little bit of work, and develop-
ing a habit. n

Steve Klabnik is a Rails committer, Rust
enthusiast, and works for Balanced Pay-
ments in San Francisco. He has authored
“Designing Hypermedia APIs,” “Rust for
Rubyists,” and “Rails 4 in Action.” Whenhe’s
not programming, he reads philosophy
books and plays Android: Netrunner.

Reprinted with permission of the original author.
First appeared in hn.my/osgarden (steveklabnik.com)

Illustration by Yana Dhyana.

http://hn.my/osgarden

  7

and help change the future of search

http://duckduckhack.com

8  FEATURES

By Derek Sivers

The Meaning of Life

There’s a true story about the
student who showed up late
to math class. He copied the

problem that was already written on
the board, assuming it was homework,
and solved it that week. Only after-
wards did he find out the teacher put
it on the board as an example of an
unsolvable problem.

This question — “What is the mean-
ing of life?” — is the classic unsolv-
able problem. For thousands of years,
people have been trying to figure it
out. It’s the punch line cliché of unan-
swerable questions.

But right now, let’s be the naive
ones that don’t know it’s considered
unsolvable, and just figure out the
meaning of life in under 20 minutes.
OK?

  9

LIFE IS __________
What word do you think goes in
that blank? Life is what? Any ideas?

Let’s look at some of the differ-
ent options that philosophers and
smarties have said.

LIFE IS TIME
Some say life is time. Life is all
about time. The definition of life is
the time between when you’re born
and when you die. So the literal
meaning of life is time.

So if life is time, the way to have
a good life is to use time wisely.

How can you use time wisely?
Five ways.

➊ Remember it’s limited
If you find out tonight that you’ve
only got one year left to live, you’ll
make the most of this next year.
If you act like life is infinite, you
won’t.

To achieve great things, two
things are needed: a plan, and not
quite enough time.

Give yourself tight deadlines.
Remember you could die at any
time. Don’t delay.

How can you use time wisely?

➋ Be mostly future-focused
Make most of your current actions
serve your future self. Learn, prac-
tice, exercise, delay gratification,
save and invest your money, and
build towards your ideal future.
People who do this are more suc-
cessful and even happier.

But too much future focus leads
to being a successful person on your
4th marriage, with no true friends.
Too much future focus can take
time away from important things
that need you to be in the moment.

How can you use time wisely?

➌ Be somewhat present-focused
Sometimes, pull your head out of
the future, and give your full atten-
tion to the present. Relationships,
communication, and sex require
this.

But too much present focus is
hedonism: living only for imme-
diate gratification with as much
excitement and novelty as possible.

Too much present focus leads
to an empty bank account and no
impulse control.

Too much present focus robs you
of the deeper happiness of delayed
gratification, achieving long-term
goals, and developing valuable
expertise.

How can you use time wisely?

➍ Be somewhat past-focused
To remember your past is to live
twice.

Keep your life in the context
of the past, to see how far you’ve
come.

Put aside time to re-interpret
your past events, as a powerful
reminder that you can re-interpret
your present and future, too.

How can you use time wisely?

➎ Get in the zone
You know the feeling of flow —
where you’re focused on work
that’s not too easy and not too hard
- where the work itself has clear
goals and is its own reward.

People at the end of their life
who claimed to be the happiest
with their life were the ones who
had spent the most time in this
state of flow.

For a good life, pursue the work
that puts you in this state, and
avoid the things that pull you from
this state.

Let’s say life is time. What do you
think? Pretty good argument?

Let’s look at another perspective.

LIFE IS CHOICE
Some say life is choice. Life is all
about choice. You make a hundred
little choices a day, and a hundred
big choices in your life. These
choices change your entire life.
Your life is created by your choices.
Therefore life is choice.

So if life is choice, the way to
have a good life is to make good
choices.

How can you make good
choices? Four ways.

➊ Let instinct trump logic
The different parts of your brain
started developing at different
periods in evolution. The oldest
part of your brain, the one that’s
been evolving since we were fish,
deals with instincts, fears, and gut
feelings. The newest part of your
brain, the one that’s pretty uniquely
human, deals with logic, language,
and predictions.

This newest part is still in beta.
A $5 calculator can beat it at math.
But this oldest part was launched
a billion years ago, and has been in
production and development ever
since.

Everything you observe and
learn is first processed by your
logical brain, but then the results
are permanently stored as instincts,
fears, and gut feelings. Your instincts
and emotions hold the culmina-
tion of everything you’ve ever
observed and learned. So you’ll
make better choices if you listen to
your instincts, instead of relying too
much on your $5 calculator beta
brain.

How can you make good
choices?

10  FEATURES

➋ Stop at good enough
You now have more options than
ever. You try to choose the best
option, the best career, the best
school, and the best boyfriend/
girlfriend/partner/spouse.

But thinking this way makes you
feel worse about the choices you’ve
made. You’re more aware than ever
of all the options you didn’t choose,
and the benefits of each.

So don’t seek the absolute best.
Stop when you find an option
that is good enough. You’ll make
an equally good choice, but more
importantly, you’ll feel much better
about it. Happiness counts.

How can you make good choices?

➌ Set limits
Every choice you have to make
causes a little bit of pain. Having
choice in life is good, but having
more choice is not always better.

You’re happier when you let
other people make some choices
for you. If you’re very sick, you
want your doctor to choose what’s
best, not say, “There are dozens of
good options. What do you want to
do?” This is the appeal of religion.
It gives you rules. It makes many of
the choices for you.

So set limits to your choices in
life. Cut off some options. Give
yourself rules.

How can you make good choices?

➍ Choose important not urgent
You know the difference between
what’s long-term important versus
short-term urgent.

What’s urgent are emails, texts,
tweets, calls, and news.

What’s important is spending a
thousand hours to learn a new skill
that will really help you in your life
or work. What’s important is giving
your full undistracted attention to
the important people in your life.

What’s important is taking time to
get exercise, or to collect and share
what you’ve learned.

But none of these things will ever
be urgent.

So you have to ignore the tempt-
ing cries of the urgent, and delib-
erately choose what you know is
important.

So life is choice? What do you
think? Pretty good argument? Let’s
try another.

LIFE IS MEMORY
Some say life is memory. The
future doesn’t exist. It’s something
we imagine. The present is gone
in a millisecond, so everything we
experience in life is a memory. You
could live a long life, but without
a lot of memories, you only expe-
rience a short life. If you don’t
remember your life, it’s like it never
happened. So life is memory.

So if life is memory, the way to
have a good life is to make more
memories.

How can you make memories?
Change routines. Break monot-

ony. Move. Make a major change
whenever you can. These are your
chronological landmarks. These are
the hooks where you’ll hang your
memories.

Document it. Blog it. Not in a
company’s walled garden, but in a
format you can archive and look
through in 50 years, or your grand-
kids can look through in 100 years.
Keep a private blog for your future
self, and tell the tales of where
you’ve been, what you did, and the
quirky people you’ve met along the
way. You’ll be surprised how much
you forget if you don’t record it.

Socrates said the unexamined life
is not worth living. What about the
forgotten life?

So life is memory? What do you
think? Want to do another?

LIFE IS LEARNING
Both my smart friends and my spiri-
tual friends insist that the meaning
life is learning - that the reason
you’re here is to learn. Not just for
your own sake, but for everyone
alive, and future generations, the
meaning of your life is to learn.

So if life is learning, the way to
have a good life is to learn a lot.

How can you learn a lot?
Instead of talking about learning

techniques, let’s talk about getting
the right mindset, so you can learn
more than you realize.

You’ve probably heard about
the Fixed mindset and the Growth
mindset.

The Fixed mindset says, “I am
good at this” or “I am bad at this”.
This starts in childhood when
your parents say, “You’re so good
at math!” You think, “I’m good
at math!” But then when you do
poorly on one test, you think, “They
were wrong. I’m not good at math.”
Most people think this way. You
can hear it when they say, “She’s a
great singer” or “I’m just no good at
dancing.”

The Growth mindset says,
“Anyone can be good at anything.
Skill comes only from practice.”

Two impossibly hard tests were
given to hundreds of children. After
the first test, all of the students
were praised, but half of the stu-
dents were privately told these 6
words: “You must be good at this.”
The other half were privately told
these 6 words: “You must have
worked really hard.”

When they were given the
second test, the students who were
told, “You must be good at this”, did
20% worse on the 2nd test. Those 6

  11

words encouraged a fixed mindset
that made them feel there was no
point in trying. You either are or
you aren’t.

The students who were told “You
must have worked really hard,” did
30% better on the 2nd test. Those 6
words encouraged a growth mind-
set that made them feel that work-
ing harder made all the difference.

So that’s a +-50% difference in
performance because of 6 quick
words by one teacher.

Multiply that by all the people
in your life, all the days you hear
feedback, and all the things you tell
yourself, and you can see how this
simple difference in mindset can
make or break a life of learning.

Parents, pay attention to this.
You may be harming your kids
when you tell them they’re good at
things.

Successful people, pay attention
to this. You may be harming your-
self if you believe the praise that
people give you. People tell you
you’re great at what you do, never
just that you must have worked
hard.

So... life is learning? What do you
think?

Something else?
■■ Should we look at the Buddhist
idea that life is SUFFERING?
Nah, that’s no fun.

■■ Life is LOVE? Too ambiguous.

■■ Life is NOTHING BUT REPLI-
CATING DNA? Too accurate.

Let’s change the subject.

Chinese
A few years ago, I started learning
Chinese. I’m fascinated with the
writing. I’m trying to memorize
how to write these characters.

Chinese characters look compli-
cated, but they’re mostly made up
of smaller simpler characters, the
way that English words are made
up of Latin roots and such. So you
can remember the meaning of each
character by knowing the meaning
of its ingredients. For example:

语 language = words 讠+ five 五+
mouth 口

So… Language is words that at
least five mouths speak? Brilliant!

谢 thank you = words 讠+ body 身
+ inch 寸

Hmmm... This one is not so obvi-
ous. Maybe the idea is that when
you say thanks, you speak words
that give a body an inch of respect-
ful space? That’s interesting.

名 name = evening 夕 + mouth 口

So your real name is what’s
spoken by a mouth in the evening?
That’s kind of romantic.

I get so curious about the histori-
cal or cultural meaning behind each
one.

Let’s change the subject.

Talking Heads
Talking Heads were a great band
from the late-70s to mid-80s. Their
lyrics were really evocative and
mysterious. They made you wonder
what they were really about.

Then I read an interview with
the Talking Heads where they said
that many of their lyrics were just
random. They would write evoca-
tive phrases onto little pieces of
paper, then throw them into a
bowl, and shuffle them up. Then

they’d pull them out, and put them
into the song in that order. They
did this because they liked how the
listener creates meaning that wasn’t
intended.

We assume that if someone
writes a song, then sings it on stage
into a microphone, that it must
have meaning to them.

But nope. It was just random.
Any meaning you think it contains
was put there by you, the listener,
not the writer. Like a Rorschach
test.

Back to Chinese.
I got so curious about the historical
meaning of these Chinese charac-
ters that I got a Chinese etymo-
logical dictionary that tells the full
history behind every one.

I looked up the examples I gave
here, and found out those char-
acters were just phonetic! Those
composite character bits were NOT
chosen for their meaning at all, just
their sound!

So it seems I’ve just been putting
the meanings into them, myself.
They actually had no meaning at
all!

It blew my mind. I had been
memorizing hundreds of charac-
ters for months, reading all kinds
of meaning into the ingredients of
each one.

After recovering from that, I
thought: How many other things in
life really have no meaning? What
else have I been putting my own
meaning into, thinking it was true?

12  FEATURES

Wired
I know that we’re wired to do it. I
know we survived on the savannah
for eons because we evolved to look
for patterns. Our ancestors are the
ones who noticed the patterns of
the tiger stripes or the lion face in
the grass.

A moth is so deeply wired to fly
towards the light that it may never
accept that your light bulb is not
the moon.

We are so deeply wired to find
patterns that we may never accept
that many things are just random.

We should have the same sympa-
thy for our faulty wiring as we do
for the moth. Evolution taught us
to do this thing, but didn’t teach us
to stop.

Give us some dots and a line, and
we’ll see a face. Burn some toast
and we’ll find Elvis in it.

A carrot from my garden looks
like Jesus. What does it mean?

A black cat crossed my path as I
walked under a ladder on Friday the
13th. What does it mean?

An old friend calls just a minute
after I was thinking about them.
What does it mean?

What does it mean that you went
to a prestigious well-known school?
What does it mean that you didn’t?

What does it mean that your
good friend died? What does it
mean that you’re tall?

What does it mean that you have
a lot of followers online? What does
it mean that you don’t?

What does it mean that you’re
female? What does it mean that
you’re male?

What does it mean that you’re an
entrepreneur? What does it mean
that you’re not?

What does it mean that all of
your previous attempts at some-
thing have failed?

Nothing! Nothing at all.
Nothing has inherent meaning.

Everything is only what it is and
that’s it.

So let’s get back to our original
question and wrap this up.

Life Is __�___
What is the meaning of life? LIFE
IS ______

TIME?
CHOICE?
MEMORY?
LEARNING?
SUFFERING?
LOVE?
REPLICATING DNA?
You can tell by the variety of

answers that they are just projected
meanings.

You can choose to project one of
these meanings onto your life, if it
makes you feel good, or improves
your current actions.

But you know the real answer is
clear and obvious now.

LIFE IS (just) LIFE. IT DOESN’T
MEAN ANYTHING.

Erase any meaning you put into
past events. Erase any meaning
that’s holding you back. Erase those
times where people said that this
means that. None of it is real.

Life has no inherent meaning.
Nothing has inherent meaning.

Life is a blank slate.
You’re free to project any mean-

ing that serves you.
You’re free to do with it, any-

thing you want.
Thank you. n

Originally a professional musician and
circus clown, Derek Sivers created CD Baby
in 1998. He is a frequent speaker at the TED
Conference, with over 5 million views of
his talks. His new company is Wood Egg,
publishing annual guides to 16 countries
in Asia.

Reprinted with permission of the original author.
First appeared in sivers.org/ml

Illustration by Jaime G. Wong.

http://sivers.org/ml

  13

I’ll often come up with an idea
that I get excited about.

Then I brainstorm a catchy
name for it, check the availability
of urls and social media accounts,
maybe even set up a landing page.
It gives me a big rush, and I imagine
a dazzlingly bright future ahead for
the concept.

And then the idea crawls up and
dies inside of me.

Why?
Because I don’t actually do

anything.
To finish things, you need to fall

in love with the part of the pro-
cess that’s harder to love — the bit
where you roll up your sleeves and
do the damn thing.

Maybe that’s why it’s got another
much tougher sounding name:
execution.

The human brain is a brilliant
idea-generating machine. In the past
we had to convert our ideas into
solutions just to stay alive: to make
sure that we had enough food... or
didn’t get eaten. But now, in the
safety of our comfortable, hygienic,
homogenized 21st century lives,
it’s all too easy to fall asleep on our
true potential.

Wake Up and Smell the Hard
Work
Your idea doesn’t mean diddly-
squat until it’s out in the world.
And to do that is going to take
some hard manual labor.

So to stay on track, you’ll need to
engage with the execution process
as much as the idea itself.

None of my various bright ideas
— a social network for sneaker
collectors, customizable artwork
of your bicycle, a recipe sharing
platform, a book about designers
turned entrepreneur (OK, that last

one I am actually set on doing) —
have come to fruition yet.

And whilst CycleLove (and its
sister shop CycleLux) might be
building momentum, I still have
a huge hang-up about creating
the eBooks or information-based
content about cycling or whatever
it is that I’ve been talking about
for months and months. It’s still a
blog, not a business, and costing me
money instead of making it.

I chickened out of the work.
You need graft, or grit, or gump-

tion, or whatever you want to call
it.

Whether it’s by actually blog-
ging on your blog, or starting your
startup, value is created by doing.

It’s easier to sit around and talk
about building a startup than it
is to actually start a startup. And
it’s fun to talk about. But over
time, the difference between fun
and fulfilling becomes clear. Doing
things is really hard — it’s why,
for example, you can generally tell
people what you’re working on
without NDAs, and most patents
never matter. The value, and the
difficulty, comes from execution
— Sam Altman

Dial Down the Resolution(s)
When I looked back at the list of
goals I’d set out for 2013 the other
day, I felt pretty embarrassed. Espe-
cially as it’s published in plain sight
on the internet. I didn’t come close
to achieving any of my resolutions.
Not one thing on the list.

But I know that beating yourself
up about this kind of stuff is stupid.
(Make changes, not criticisms).

So…I haven’t made any New
Year’s resolutions this year.

You don’t want high resolu-
tions anyhow — you want low

resolution.
You want to let go of the fear of

fucking up, of it not being perfect,
of what other people think, of
things that probably won’t ever
happen, and just crank that stuff
out, baby.

Instead of Trying to Finish Every-
thing, Try to Finish One Thing.
Today if possible.
And then another...
And another...
And...
(I think I just finished this article).

What are you going to finish
today? n

James Greig is a London-based graphic
designer/writer [greig.cc] and the founder
of CycleLove [cyclelove.net]

http://greig.cc
http://cyclelove.net
http://mailjet.com

14  STARTUPS

STARTUPS

By Alex Krupp

Yesterday I asked a promi-
nent VC a question:

“Why is it that, despite the
fact that so many successful startup
ideas come from academic research,
on the investment side there doesn’t
seem to be anyone vetting compa-
nies on the basis of whether or not
what they’re doing is consistent
with the relevant research and best
practices from academia?”

His response was that, unlike
with startups in other sectors (e.g.
biotech, cleantech, etc.), most tech
startups don’t come out of aca-
demia, but rather are created to fill
an unmet need in the marketplace.
And that neither he nor many of his
colleagues spent much time talking
with academics for this reason.

This seems to be the standard
thinking across the industry right
now. But despite having nothing
but respect for this investor, I think
the party line here is unequivocally
wrong.

Let’s start with the notion that
most tech startups don’t come out
of academia. While this may be
true if you consider only the one-
sentence pitch, once you look at the

actual design and implementation
choices these startups are making
there is typically quite a lot to work
with.

For example, there is a startup
I recently looked at that works
to match mentors with mentees.
Though one might not be aware
of it, there is actually a wealth of
research into best practices:

■■ What factors should be used
when matching mentors with
mentees?

■■ How should the relationship
between the mentor and mentee
be structured?

■■ What kind of training, if
any, should be given to the
participants?

That’s not to say that a startup
that’s doing something outside the
research, or even contraindicated by
the research, is in any way suspect.
But it does raise some questions:
Does the startup have a good
reason for what they’re doing? Are
they aware of the relevant research?
Is there something they know that
we don’t?

If the entrepreneurs have good
answers to these questions then it’s
all the more reason to take them
seriously. But if they don’t then this
should raise a few red flags. And it’s
not only niche startups in wonky
areas where this is an issue.

For example, I rarely post to
Facebook anymore, but people who
follow me can still get a good idea
of what I’m up to. Why? Because
Facebook leverages the idea of
behavioral residue to figure out
what I’m doing (and let my friends
know) without me having to explic-
itly post updates. It does this by
using both interior behavioral resi-
due, e.g. what I’m reading and click-
ing on within the site, and exterior
behavioral residue, e.g. photos of
me taken outside of Facebook.

To understand why leveraging
behavioral residue is so important
for social networks, consider that of
people who visit the typical web-
site only about 10% will make an
account. Of those who do, about
10% will make at least one content
contribution, and of those about
10% will become core contributors.
So if you consider your typical user
with a couple hundred friends, this

The Most Important Tech Job
That Doesn’t Actually Exist

  15

translates into seeing content from
only a tiny handful of other people
on a regular basis.

In contrast with Facebook, one
of the reason why FourSquare has
yet to succeed is due to significant
problems with their initial design
decisions:

■■ The only content on the site
comes from users who manu-
ally check into locations and
post updates. This means that of
my 150 or so friends, I’m only
seeing what one or two of them
are actually doing, so what’s the
value?

■■ The heavy use of extrinsic
motivation (e.g. badges) has
been shown time and again that
extrinsic motivation undermines
intrinsic motivation.

The latter especially is a good
example of why investing on trac-
tion alone is problematic: many
startups that leverage extrinsic
rewards are able to get a good
amount of initial traction, but
almost none of them are able to
retain users or cross the chasm
into the mainstream. Why isn’t it

anyone’s job to know this, even
though the research is readily avail-
able for any who wants to read it?
And why is it so hard to go to any
major startup event without seeing
VCs showering money on these
sorts of startups that are so contra-
indicated by the research that they
have almost no realistic chance of
succeeding?

This same critique of investors
applies equally to the startups
themselves. You probably wouldn’t
hire an attorney who wasn’t will-
ing to familiarize himself with the
relevant case law before going to
court. So why is it that the vast
majority of people hired as commu-
nity managers and growth market-
ers have never read Robert Kraut?
And the vast majority of people
hired to create mobile apps have
never heard of Mizuko Ito?

A lot of people associate the
word design with fonts, colors, and
graphics, but what the word actu-
ally means is fate — in the most
existential sense of the word. That
is, good design literally makes it
inevitable that the user will take
certain actions and have certain
subjective experiences. While good

UX and graphic design are essential,
they’re only valuable to the extent
that the person doing them knows
how to create an authentic connec-
tion with the users and elicit spe-
cific emotional and social outcomes.
So why are we hiring designers
mainly on their Photoshop skills
and maybe knowing a few tricks for
optimizing conversions on landing
pages? What a waste.

Of all the social sciences, the
following seem to be disproportion-
ately valuable in terms of creating
and evaluating startups:

■■ Psychology / Social Psychology

■■ Internet Psychology / Computer
Mediated Communication

■■ Cognitive Development / Early
Childhood Education

■■ Organizational Behavior

■■ Sociology

■■ Education Research

■■ Behavioral Economics

“Have we really become so myopic as to place
zero value on knowing whether or not a
startup is congruent or contraindicated by
the last 80+ years of research? ”

16  STARTUPS

And yet not only is no one hiring
for this, but having expertise in
these areas likely won’t even get
you so much as a nominal bonus. I
realize that traction and team will
always be the two biggest factors
in determining which startups get
funded, but have we really become
so myopic as to place zero value on
knowing whether or not a startup is
congruent or contraindicated by the
last 80+ years of research?

So should you invest in (or
work for) the startup that sends
text messages to people reminding
them to take their medicine? How
about the one that lets you hire
temp laborers using cell phones?
Or the app for club owners that
purports to increase the amount
of money spent on drinks? In each
of these cases there is a wealth
of relevant literature that can be
used to help figure out whether or
not the founders have done their
homework and how likely they are
to succeed. And it seems like if you
don’t have someone who’s willing
to invest a few hours to read the
literature then you’re playing with a
significant handicap.

Investors often wait months
before investing in order to let a
little more information surface,
during which time the valuation
can (and often does) increase by lit-
erally millions. Given that the cost
of doing the extra research for each
deal would be nominal in the grand
scheme of things, and given the fact
that this research can benefit not
only the investors but also the port-
folio companies themselves, does it
really make sense to be so confident
that there’s nothing of value here?

What makes the web special
is that it’s not just a technology
or a place, but a set of values.
That’s what we were all originally
so excited about. But as startups
become more and more prosaic,
these values are largely becoming
lost. As Howard Rheingold once
said, “The “killer app” of tomor-
row won’t be software or hardware
devices, but the social practices
they make possible.” You can’t step
in the same river twice, but I think
there’s something to be said for
startups that make possible truly
novel and valuable social practices,
and for creating a larger ecosystem
that enables them. n

Alex studied marketing as part of Seth
Godin’s six-month alternative MBA pro-
gram, and was the first single non-techni-
cal founder ever accepted into Y Combina-
tor. He then taught himself to code, and
now specializes in frontend web develop-
ment and Big Data analytics.

Reprinted with permission of the original author.
First appeared in hn.my/techjobs (alexkrupp.typepad.com)

http://hn.my/techjobs

  17

By Nathan Kontny

I see so many aspiring entrepre-
neurs stressed out hoping to
find some spark of a business

idea, but the common complaint is:

Everything good has already been
done.

I used to feel like that too, but it
doesn’t have to be hard. It can be as
simple as:

1.	 Find a job people have.

2.	 List out every step people take
to complete that job.

3.	 Remove as many steps as you
can.

Look at measuring cups.
People have been using cups to

measure things for thousands of
years. And standardized measuring
cups have been around since Fannie
Farmer invented them in 1896.

You can’t possibly come up with
a new idea for a measuring cup.
Right?

But then someone does. A guy
named Steve Hoeting was trying
to come up with a new recipe for
brownies, and realized he spent too
many steps in the process reading
the level of stuff on the side of his
measuring cup. Could he shave
steps from that process, by putting
the ruler at an angle to read it from
above? A couple prototypes later,
he had a crude design, which went
onto become the wild success of
the OXO measuring cup.

What about S’mores?

You can hardly come up with
a simpler dessert: graham crack-
ers + chocolate + marshmallow,
a recipe that’s been around for at
least 90 years when it first appeared
recorded in a Girl Scouts’ book in
1927.

How can you simplify this into a
business idea?

Well, three college kids had to
come up with a last-minute idea
for an entrepreneurial class project
a day before it was due. Realiz-
ing the chocolate step of S’mores
was a small nuisance and that the
chocolate is hard to get consistently
melted in your recipe, they created
Stuff n’ Mallows - marshmallows
with the chocolate already stuffed
inside. [stuffnmallows.com]

 They shaved off the steps of
buying chocolate bars, and adding it
to your S’more. Now, just heat the
Stuff n’ Mallows for your S’more,

and you’ve already accomplished
the chocolate part.

Simple. I bet someone reading
this even said to themselves, “That’s
a trivial idea. It’s dumb.”

Now, just a year later, their
product is in over 40 stores across
the United States, and they’re win-
ning innovation awards from one of
the oldest trade associations in the
world, the National Confectioners
Association.

If Steve Hoeting and these col-
lege kids successfully simplified
what already appeared so simple
and had been around for hundreds
of years, imagine how many things
you can find to improve.

Want a good place to start
looking for jobs to simplify?

One of my favorite overlooked
resources for business ideas is For
Dummies books. [dummies.com]

Make everything easier in your life
with step-by-step instruction.
– For Dummies website description

For Dummies has already done a
ton of the work laying out job after
job and the steps involved. Grab a
Dummies book and use it as a start-
ing point to find steps to try and
remove. n

Nathan Kontny Founder of two YC com-
panies: Inkling & Cityposh. Engineer for
President Obama’s re-election campaign.
Now working on Draft.

How To Get Business Ideas:
Remove Steps

Reprinted with permission of the original author. First appeared in hn.my/steps (ninjasandrobots.com)

http://stuffnmallows.com
http://dummies.com
http://hn.my/steps

18  PROGRAMMING

PROGRAMMING

Upon hearing the word
“bootloader”, many
people cower in fear. It

seems like a scary low-level thing
that’s very easy to mess up. To
dispel some of this fear, I’m going
to walk through making a super
simple bootloader/OS, assuming
only a basic level of familiarity with
assembly language and how com-
puters work.

The Plan
The first thing to understand or
research if we’re looking to write
something that runs when the
computer starts up, is exactly
what the boot process is. Typically
computers will first boot into the
BIOS (Basic Input/Output System)
firmware, which performs some
tests (often while showing a logo of
sorts onscreen) and then boots into
an operating system. There’s also a
new standard, UEFI, coming into
play as an alternative to BIOS, but
we aren’t going to talk about that
here.

More precisely, the standard
BIOS boot process is as follows:

■■ The computer boots into the
BIOS.

■■ The BIOS performs a Power-on
Self-test (POST).

■■ Using information from POST
and BIOS configuration details,
possible boot devices are selected.

■■ For disk drives (or similar
devices), the first 512 bytes of the
disk - termed the “boot sector” —
is considered for booting. If the
sector can be read and the stan-
dard boot signature is present in
the last two bytes (0x55 0xAA),
the device is considered bootable.
Otherwise, the next device in the
list of candidates is checked.

■■ Assuming the disk drive is
bootable, the 512 byte boot
sector is copied to address
0x007C00 at which point the
BIOS transfers control to the
loaded sector through a jump
instruction to 0x007C00.

When booting from partitioned
devices, the boot sector of the drive
will commonly be a Master Boot
Record (MBR), in which case the
boot sector generally consists of a
bootstrap which identifies a certain
partition on the drive — usually
via a partition table (which may
also reside in the first sector of the
drive) — and proceeds to load the
boot sector of that particular parti-
tion, sometimes called a Volume
Boot Record (VBR). The structure
of a number of modern MBR boot
sectors is as follows:

0x7C00: Bootstrap
0x????: Disk Information
0x????: Partition Table
0x7DFE: Boot Signature (0x55
0xAA)
0x7E00:

By Joe Savage

Creating a Bare Bones
Bootloader

 A typical Dell BIOS boot screen

  19

In our case, however, dealing with disk partitions
is a bit fancy and overcomplicated. Since complete
control is handed to us when the BIOS jumps to our
boot sector in RAM, we can just work with an un-
partitioned disk and go straight into our Volume Boot
Record in the first 512 bytes (the boot sector) of our
disk image. Technically that means we’re not really cre-
ating a bootloader, more of a really really really small
operating system. Realistically though, what we’re
creating is exactly like a bootloader - just without the
loading of and jumping into some other portion of
code on the disk. And so I’ll continue referring to our
bootloader as such. Thus the structure of our boot
sector will be the code we want to execute, followed
by the standard boot signature.

So the plan is that the BIOS will copy our boot
sector to 0x007C00 and transfer control to this point,
and then we... do something. Since we’re just creating
a bare bones bootloader, let’s make our goal to output
some text. Note that in the x86 BIOS process, the
BIOS will transfer control while the processor is still
operating in real-mode. This has its advantages and
disadvantages, but to keep things simple here we’ll just
keep things in real-mode (keeping it real, bro) for the
entirety of our bootloader.

With all this research and theory out of the way, let’s
actually write some code!

The Code
We’re going to be using NASM here, because it hap-
pens to be the x86 assembler I’m most familiar with.
Since x86 real-mode defaults to using 16-bit instruc-
tions, we want the assembler to output instructions as
such. We can still use 32-bit registers if we so wish, but
as we’re operating in 16-bit mode we need to prefix
any instructions that do this with the “Operand Size
Override Prefix” (0x66). All of this is accomplished by
using the “BITS” NASM directive - in this case: BITS
16.

Addresses in x86 assembly are determined from
the segment address plus an offset. As both real and
protected mode of the x86 processor use 16-bit seg-
ment registers, we should ensure that our segments - in
particular the stack segment (ss) and data segment
(ds) — refer to sensible 64K regions. Since real-mode
limits absolute addresses/offsets to 16-bits in length,
segments can help us access more than one 64K por-
tion of memory.

Regardless of whether we’ll make explicit use of the
stack segment in this example, it seems good practice
to set up a stack — especially given that some instruc-
tions make implicit use of segments (e.g. push, which
uses the Stack Segment with a Stack Pointer offset),
and it would be irresponsible not to define a stack if
the bootloader were to be expanded beyond our basis
of outputting some text.

In this case, I’m going to structure our bootloader
such that it has a 4K stack just after the location of the
boot sector in memory. Remember that the boot sector
is loaded into 0x7C00 and is 0x200 (512) bytes long,
and so we want our stack to reside just after this. Due
to the way that segments work in x86 assembly (they
refer to 64K chunks of memory, not specific locations,
as noted previously), we actually want to divide both
of those values by 16 before assigning the final location
to the stack segment — Effective Address = Seg-
ment*16 + Offset. So the code to set up our stack
segment is as follows:

mov ax, 07C0h ; Set 'ax' equal to the location
of this bootloader divided by 16
add ax, 20h ; Skip over the size of the
bootloader divided by 16
mov ss, ax ; Set 'ss' to this location (the
beginning of our stack region)

Since space is often precious in a mere 512 bytes,
assuming we don’t get the assembler to optimise this
code it might be more appropriate to save a few bytes
by doing the add instruction manually, and simply
changing the mov to mov ax, 07E0h. I’ll keep things as
they are for now though since keeping the add separate
offers more clarity to what we’re actually doing.

As noted previously, operations involving the stack
involve the stack pointer offset from the stack seg-
ment: SS:SP. As the stack pointer grows downwards
in memory address (i.e. towards 0x00) by default, we
want to define the stack pointer to point to the bottom
of the stack which is 4K away from our stack segment:
mov sp, 4096. At this point our bootloader memory
footprint should look like the following:

20  PROGRAMMING

 |ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ|
0x7C00: |-----------------|
 | Boot Sector |
0x7E00: |-----------------| <-SS
 | |
 | |
 | Stack Space |
 | |
 | |
0x8E00: |-----------------| <-SS:SP
 | | (grows upwards)
 ˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇˇ

With regards to the data segment, we can just set the
segment to the start of our bootloader code. Remem-
ber that the real purpose of segments in real-mode is
to allow us to access more than a single 64K of data
(in real-mode, there is a little over 1MB of addressable
memory — 0xFFFF0 + 0xFFFF bytes to be exact), and
any static or global data in our little bootloader will
most definitely live within our little 512 codebase. So
with the ds pointed towards the start of our bootloader
code, we can definitely access all of the data we might
need to in Segment:Offset form. Thus the code to
initialise our data segment:

mov ax, 07C0h ; Set 'ax' equal to the location
of this bootloader divided by 16
mov ds, ax ; Set 'ds' to the this location

From here, we can actually go ahead and do some-
thing interesting before we tie up. As we’re in real-
mode and haven’t specified any custom interrupt
handling, we can make use of some standard BIOS
interrupts to accomplish tasks. Looking at the list on
Wikipedia [hn.my/biosi], the “Video Services” inter-
rupt 10h seems interesting. Upon closer inspection, the
interrupt when AH is 0Eh seems particularly interesting
as it provides teletype output. Looking at the particular
parameters for this interrupt it seems that AL should
contain the character to be printed to the screen, BH
should contain the page number, and BL should contain
the colour (only in graphic mode). Thus writing assem-
bly to print a string using int 10h from here is trivial.

Perhaps in the context of our bootloader it makes
sense to write a proper routine for writing strings
which expects a single parameter — the address of
a null-terminated string — through the si (Source
Index) register. The next portion in our bootloader
code will hence be to call this routine (which we’ll

name “print”), and stop execution such that our string
remains on the screen and nothing else happens:

mov si, message ; Put address of the null-termi-
nated string to output into 'si'
call print ; Call our string-printing routine
cli ; Clear the Interrupt Flag (dis-
able external interrupts)
hlt ; Halt the CPU (until the next
external interrupt)
message db 'This was outputted by a basic boot-
loader!', 0

Now we just need to define our print function to
make use of the standard BIOS interrupt 10h previ-
ously described:

; Routine for outputting string in 'si' register
to screen
print:
	 mov ah, 0Eh ; Specify 'int 10h'
'teletype output' function
	 ; [AL = Character, BH =
Page Number, BL = Colour (in graphics mode)]
.printchar:
	 lodsb ; Load byte at address SI
into AL, and increment SI
	 cmp al, 0
	 je .done ; If the character is
zero (NUL), stop writing the string
	 int 10h ; Otherwise, print the
character via 'int 10h'
	 jmp .printchar ; Repeat for the next
character
.done:
	 ret

Now that we’ve finished writing the main bulk of the
code, we just need to pad the code out with 0s to byte
510, and then use bytes 511 and 512 for the standard
byte signature (as previously mentioned, 0x55 and 0xAA
— which we’ll specify backwards in our code due to little
endian byte order). Using the NASM times directive for
the padding, we can do all of this with the following:

; Pad to 510 bytes (boot sector size minus 2)
with 0s, and finish with the two-byte standard
boot signature
times 510-($-$$) db 0
dw 0xAA55 ; => 0x55 0xAA (little
endian byte order)

http://hn.my/biosi

  21

And we’re done! We finished writing our little boot-
loader — the final product of which, “bootloader.asm”,
is broadly as follows:

	 BITS 16

start:
	 ; Set up 4K stack after this bootloader
	 ; [Remember: Effective Address = Segment*16 + Offset]
	 mov ax, 07C0h ; Set 'ax' equal to the location of this bootloader divided by 16
	 add ax, 20h ; Skip over the size of the bootloader divided by 16
	 mov ss, ax ; Set 'ss' to this location (the beginning of our stack region)
	 mov sp, 4096 ; Set 'ss:sp' to the top of our 4K stack

	 ; Set data segment to where we're loaded so we can implicitly access all 64K from here
	 mov ax, 07C0h ; Set 'ax' equal to the location of this bootloader divided by 16
	 mov ds, ax ; Set 'ds' to the this location

	 ; Print our message and stop execution
	 mov si, message ; Put address of the null-terminated string to output into 'si'
	 call print ; Call our string-printing routine
	 cli ; Clear the Interrupt Flag (disable external interrupts)
	 hlt ; Halt the CPU (until the next external interrupt)

data:
	 message db 'This was outputted by a basic bootloader!', 0

; Routine for outputting string in 'si' register to screen
print:
	 mov ah, 0Eh ; Specify 'int 10h' 'teletype output' function
	 ; [AL = Character, BH = Page Number, BL = Colour (in graphics mode)]
.printchar:
	 lodsb ; Load byte at address SI into AL, and increment SI
	 cmp al, 0
	 je .done ; If the character is zero (NUL), stop writing the string
	 int 10h ; Otherwise, print the character via 'int 10h'
	 jmp .printchar ; Repeat for the next character
.done:
	 ret

; Pad to 510 bytes (boot sector size minus 2) with 0s, and finish with the two-byte standard boot
signature
times 510-($-$$) db 0
dw 0xAA55	 ; => 0x55 0xAA (little endian byte order)

This code, along with the bits I use to compile and
test the bootloader can be found at the associated
GitHub repo, here. [hn.my/bootcode]

22  PROGRAMMING

Testing The Code
Now we’ve actually finished writ-
ing our bootloader, we need some
way to test it. I use Vagrant with a
“lucid32” box for all my OS testing,
but in this case you might be able
to get by in your local environment.
You can first compile the NASM via
something along the lines of nasm
-f bin -o bootloader.bin boot-
loader.asm, and you can then use a
utility such as “dd” to copy the data
to a floppy disk image file (or to a
real floppy disk!): dd conv=notrunc
bs=512 count=1 if=bootloader.
bin of=bootloader.flp. Using
QEMU, you could then boot the
floppy disk image in a virtual
machine with something like qemu
-fda bootloader.flp -curses. And
voilà, it works.

Now, I appreciate that this seems
like an awful lot of work for a single
line of text. There certainly is a fair
bit of theory behind this, but at the
end of the day the resulting assem-
bly is actually relatively simple, and
we’ve created a disk sector that a
real x86 BIOS could boot into. If
you wanted to actually test this
“properly”, you could apply the
disk image in the correct manner
to a USB stick, floppy disk, or CD,
and actually boot your computer
into our little bootloader. Into our
little world from which we have
full CPU control and a number of
powerful extensions could easily be
added. If you’re looking for some

cool extensions you could add right
now (still in real-mode), just take a
look at some of the other standard
BIOS interrupts, or alternatively
you could start looking at other
more complex bootloader goals.

Generally if you’re interested
in writing the core of an operat-
ing system, I’d actually suggest
that you start out by using GRUB,
which takes care of the process of
taking control and switching into
protected mode for you in a very
standardised way (this is a pretty
nice tutorial for getting started writ-
ing a very basic kernel which boots
from GRUB). There’s something
interesting to me, however, about
being able to write the code to actu-
ally take control — from the very
first stage — all on our own, and
that’s exactly what we’ve achieved
here. n

Joe Savage is a computer science student
and software developer from England,
interested in a wide variety of areas rang-
ing from reverse engineering to game
development. He writes about technical
topics on his blog at reinterpretcast.com Our bootloader in action!

Reprinted with permission of the original author.
First appeared in hn.my/bones (reinterpretcast.com)

http://reinterpretcast.com
http://hn.my/bones

  23

Correct Erlang usage mandates that you do
not write any kind of defensive code. This
is called intentional programming. You write

code for the intentional control flow path which you
expect the code to take. And you don’t write any code
for the paths which you think are not possible. Further-
more, you don’t write code for data flow which was not
the intention of the program.

It is an effect, silly
If an Erlang program goes wrong, it crashes. Say we are
opening a file. We can guard the file open call like so:

{ok, Fd} = file:open(Filename, [raw, binary,
read, read_ahead]),

What happens if the file doesn’t exist? Well, the
process crashes. But note we did not have to write any
code for that path. The default in Erlang is to crash
when a match isn’t valid. We get a badmatch error with
a reason as to why we could not open the file.

A process crashing is not a problem. The program is
still operating, and supervision — an important fault-
tolerance concept in Erlang — will make sure that we
try again in a little while. Say we have introduced a
race condition on the file open, by accident. If it hap-
pens rarely, the program would still run, even if the file
open fails from time to time.

You will often see code that looks like:

ok = foo(...),
ok = bar(...),
ok = ...

which then asserts that each of these calls went well,
making sure code crashes if the control and data flow is
not what is expected.

Notice the complete lack of error handling. We don’t
write

case foo(...) of
 ok -> case bar(...) of ... end;
 {error, Reason} -> throw({error, Reason})
end,

Nor do we fall into the trap of the Go programming
language and write:

res, err := foo(...)
if err != nil {
 panic(...)
}
res2, err := bar(...)
if err != nil {
 panic(...)
}

because this is also plain silly, tedious, and cumbersome
to write.

The key is that we have a crash-effect in the Erlang
interpreter which we can invoke where the default is
to crash the process if something goes wrong. And have
another process clean up. Good Erlang code abuses this
fact as much as possible.

Intentional?
Note the word intentional. In some cases, we do expect
calls to fail. So we just handle it like everyone else
would, but since we can emulate sum-types in Erlang,

By Jesper Louis Andersen

Erlang and Code Style
Musings On Mostly Defensive Programming Styles

24  PROGRAMMING

we can do better than languages with no concept of a
sum-type:

case file:open(Filename, [raw, read, binary]) of
 {ok, Fd} -> ...;
 {error, enoent} -> ...
end,

Here we have written down the intention that the
file might not exist. However:

■■ We only worry about nonexistence.

■■ We crash on eaccess, which means an access error
due to permissions.

■■ Likewise for eisdir, enotdir, enospc.

Why?
Leaner code, that’s why.

We can skip lots of defensive code which often more
than halves the code size of projects. There is much
less code to maintain so when we refactor, we need to
manipulate less code as well.

Our code is not littered with things having nothing
to do with the “normal” code flow. This makes it far
easier to read code and determine what is going on.

Erlang process crashes give lots of information when
something dies. For a proper OTP process, we get the
State of the process before it died and what message
was sent to it that triggered the crash. A dump of this is
enough in about 50% of all cases, and you can repro-
duce the error just by looking at the crash dump. In
effect, this eliminates a lot of silly logging code.

Data flow defensive programming
Another common way of messing up Erlang programs
is to mangle incoming data through pattern matching.
Stuff like the following:

convert(I) when is_integer(I) -> I;
convert(F) when is_float(F) -> round(F);
convert(L) when is_list(L) ->
list_to_integer(L).

The function will convert “anything” to an integer.
Then you proceed to use it:

process(Anything) -> I = convert(Anything),
...I...

The problem here is not with the process function,
but with the call-sites of the process function. Each

call-site has a different opinion on what data is being
passed in this code. This leads to a situation where
every subsystem handles conversions like these.

There are several disguises of this anti-pattern. Here
is another smell:

convert({X, Y}) -> {X, Y};
convert(B) when is_binary(B) ->
 [X, Y] = binary:split(B, <<"-">>),
 {X, Y}.

This is stringified programming where all data are
pushed into a string and then manually deconstructed
at each caller. It leads to a lot of ugly code with little
provision for extension later.

Rather than trying to handle different types, enforce
the invariant early on the API:

process(I) when is_integer(I) -> ...

And then never test for correctness inside your sub-
system. The dialyzer is good at inferring the use of I as
an integer. Littering your code with is_integer tests is
not going to buy you anything. If something is wrong
in your subsystem, the code will crash, and you can go
handle the error.

There is something to be said about static typing
here, which will force you out of this unityped world
very easily. In a statically typed language, I could still
obtain the same thing, but then I would have to define
something along the lines of (* Standard ML code fol-
lows *)

datatype anything = INT of int
 | STRING of string
 | REAL of real

and so on. This quickly becomes hard to write pattern
matches for, so hence people only define the anything
type if they really need it.

The scourge of undefined
Another important smell is that of the undefined value.
The story here is that undefined is often used to program
an Option/Maybe monad. That is, we have the type:

-type option(A) :: undefined | {value, A}.

It is straightforward to define reflection/reification
into an exception-effect for these. Jakob Sievers stdlib2
library already does this, as well as define the monadic
helper called do (though the monad is of the Error-
type rather than Option).

  25

But I’ve seen:

-spec do_x(X) -> ty() | undefined
 when X :: undefined | integer().
do_x(undefined) -> undefined;
do_x(I) -> ...I....

which leads to complicated code. You need to be
100% in control of what values can fail and what values
cannot. Constructions like the above silently pass unde-
fined on. This has its uses — but be wary when you see
code like this. The undefined value is essentially a NULL.
And those were C.A.R Hoare’s billion dollar mistake.

The problem is that the above code is nullable. The
default in Erlang is that you never have NULL-like
values. Introducing them again should be used sparingly.
You will have to think long and hard because once a
value is nullable, it is up to you to check this all the time.
This tends to make code convoluted and complicated. It
is better to test such things up front and then leave it out
of the main parts of the code base as much as possible.

“Open” data representations
Whenever you have a data structure, there is a set of
modules which knows about and operates on that data
structure. If there is only a single module, you can emu-
late a common pattern from Standard ML or OCaml
where the concrete data structure representation is
abstract for most of the program and only a single
module can operate on the abstract type.

This is not entirely true in Erlang, where anyone can
introspect any data. But keeping the illusion is handy
for maintainability.

The more modules that can manipulate a data struc-
ture, the harder it is to alter that data structure. Con-
sider this when putting a record in a header file. There
are two levels of possible creeping insanity:

■■ You put the record definition in a header file in src.
In this case only the application itself can see the
records, so they don’t leak out.

■■ You put the record definition in a header file in
include. In this case the record can leak out of the
application and often will.

A good example is the HTTP server cowboy where its
request object is manipulated through the cowboy_req
module. This means the internal representation can
change while keeping the rest of the world stable on
the module API.

There are cases where it makes sense to export
records. But think before doing so. If a record is manip-
ulated by several modules, chances are that you can
win a lot by re-thinking the structure of the program.

The values “true” and “false” are of type atom()
As a final little nod, I see too much code looking like

 f(X, Y, true, false, true, true),

Which is hard to read. Since this is Erlang, you can just
use a better name for the true and false values. Just
pick an atom which makes sense and then produce
that atom. It also has the advantage to catch more bugs
early on if arguments get swapped by accident. Also
note you can bind information to the result, by pass-
ing tuples. There is much to be said about the concept
of boolean blindness, which in typical programs means
to rely too much on boolean() values. The problem is
that if you get a true say, you don’t know why it was
true. You want evidence as to its truth. And this can be
had by passing this evidence in a tuple. As an example,
we can have a function like this:

case api:resource_exists(ID) of
 true -> Resource = api:fetch_resource(ID), ...;
 false -> ...
end.

But we could also write it in a more direct style:

case api:fetch_resource(ID) of
 {ok, Resource} -> ...;
 not_found -> ...
end.

which in the long run is less error prone. We can’t by
accident call the fetch_resource call, and if we look
up the resource, we also get hold of the evidence of
what the resource is. If we don’t really want to use the
resource, we can just throw it away.

Closing remarks
Rules of thumb exists to be broken. So once in a while
they must be broken. However, I hope you learned
something or had to stop and reflect on something if
you happened to get here. n

Jesper Louis Andersen is a functional programmer, mostly work-
ing in Erlang, Standard ML and OCaml. He has a keen interest in
concurrent and distributed programming and their application
to old and new problems.

Reprinted with permission of the original author. First appeared in hn.my/erlangstyle

http://hn.my/erlangstyle

26  PROGRAMMING

By Hunter Loftis

Today, let’s drop into a world you can reach
out and touch. In this article, we’ll compose a
first-person exploration from scratch, quickly

and without difficult math, using a technique called
raycasting. You may have seen it before in games like
Daggerfall and Duke Nukem 3D, or more recently in
Notch Persson’s ludum dare entries. If it’s good enough
for Notch, it’s good enough for me!

 Raycasting feels like cheating, and as a lazy program-
mer, I love it. You get the immersion of a 3D environ-
ment without many of the complexities of “real 3D” to
slow you down. For example, raycasts run in constant
time, so you can load up a massive world and it will
just work, without optimization, as quickly as a tiny
world. Levels are defined as simple grids rather than as
trees of polygon meshes, so you can dive right in with-
out a 3D modeling background or mathematics PhD.

It’s one of those techniques that blows you away with
simplicity. In fifteen minutes you’ll be taking photos of
your office walls and checking your HR documents for
rules against “building workplace gunfight simulations.”

The Player
Where are we casting rays from? That’s what the player
is all about. We need just three properties: x, y, and
direction.

function Player(x, y, direction) {
 this.x = x;
 this.y = y;
 this.direction = direction;
}

The Map
We’ll store our map as a simple two-dimensional array.
In this array, 0 represents no wall and 1 represents wall.
You can get a lot more complex than this. For example,
you could render walls of arbitrary heights, or you
could pack several “stories” of wall data into the array,
but for our first attempt 0-vs-1 works great.

function Map(size) {
 this.size = size;
 this.wallGrid = new Uint8Array(size * size);
}

Casting a ray
Here’s the trick: a raycasting engine doesn’t draw the
whole scene at once. Instead, it divides the scene into
independent columns and renders them one-by-one.
Each column represents a single ray cast out from
the player at a particular angle. If the ray hits a wall,
it measures the distance to that wall and draws a
rectangle in its column. The height of the rectangle

A First-Person Engine in
265 Lines

Demo [demos.playfuljs.com/raycaster]

  27

is determined by the distance the ray traveled. More
distant walls are drawn shorter.

The more rays you draw, the smoother the result.

➊ Find each ray’s angle
First, we find the angle at which to cast each ray. The
angle depends on three things: the direction the player
is facing, the focal length of the camera, and which
column we’re currently drawing.

var x = column / this.resolution - 0.5;
var angle = Math.atan2(x, this.focalLength);
var ray = map.cast(player, player.direction +
angle, this.range);

➋ Follow each ray through the grid
Next, we need to check for walls in each ray’s path.
Our goal is to end up with an array that lists each
wall the ray passes through as it moves away from the
player.

Starting from the player, we find the nearest hori-
zontal (stepX) and vertical (stepY) gridlines. We move
to whichever is closer and check for a wall (inspect).
Then we repeat until we’ve traced the entire length of
each ray.

function ray(origin) {
 var stepX = step(sin, cos, origin.x, origin.y);
 var stepY = step(cos, sin, origin.y, origin.x,
true);
 var nextStep = stepX.length2 < stepY.length2
 ? inspect(stepX, 1, 0, origin.distance,
stepX.y)
 : inspect(stepY, 0, 1, origin.distance,
stepY.x);

 if (nextStep.distance > range) return [origin];
 return [origin].concat(ray(nextStep));
}

Finding grid intersections is straightforward: just
look for whole numbers of x (1, 2, 3, etc.). Then, find
a matching y by multiplying by the line’s slope (rise /
run).

var dx = run > 0 ? Math.floor(x + 1) - x : Math.
ceil(x - 1) - x;
var dy = dx * (rise / run);

Did you notice what’s awesome about this part
of the algorithm? We don’t care how big the map is!
We’re only looking at specific points on the grid —
approximately the same number of points each frame.
Our example map is 32 x 32, but a map that’s 32,000
x 32,000 would run just as quickly!

➌ Draw a column
Once we’ve traced a ray, we need to draw any walls
that it found in its path.

 var z = distance * Math.cos(angle);
 var wallHeight = this.height * height / z;

We determine the height of each wall by dividing its
maximum height by z. The further away a wall is, the
shorter we draw it.

Oh damn, where did this cosine come in? If we just
use the raw distance from the player, we’ll end up with
a fisheye effect. Why? Imagine that you’re facing a wall.
The edges of the wall to your left and right are further
away from you than the center of the wall. But you
don’t want straight walls to bulge out in the middle!
To render flat walls as we really see them, we build
a triangle out of each ray and find the perpendicular
distance to the wall with cosine. Like this:

 And I promise, that’s the hardest math in this whole
thing.

28  PROGRAMMING

Render the damn thing!
Let’s use a Camera object to draw the map each frame
from the player’s perspective. It will be responsible for
rendering each strip as we sweep from the left to the
right of the screen.

Before it draws the walls, we’ll render a skybox, just
a big picture in the background with stars and a hori-
zon. After the walls are done we’ll drop a weapon into
the foreground.

Camera.prototype.render = function(player, map)
{
 this.drawSky(player.direction, map.skybox,
map.light);
 this.drawColumns(player, map);
 this.drawWeapon(player.weapon, player.paces);
};

The camera’s most important properties are resolu-
tion, focal length, and range.

■■ Resolution determines how many strips we draw each
frame: how many rays we cast.

■■ Focal length determines how wide of a lens we’re
looking through: the angles of the rays.

■■ Range determines how far away we can see: the
maximum length of each ray.

Putting it all together
We’ll use a Controls object to listen for arrow keys
(and touch events) and a GameLoop object to call
requestAnimationFrame. Our simple gameloop is just
three lines:

loop.start(function frame(seconds) {
 map.update(seconds);
 player.update(controls.states, map, seconds);
 camera.render(player, map);
});

The details
Rain
Rain is simulated with a bunch of very short walls in
random places.

var rainDrops = Math.pow(Math.random(), 3) * s;
var rain = (rainDrops > 0) && this.project(0.1,
angle, step.distance);

ctx.fillStyle = '#ffffff';
ctx.globalAlpha = 0.15;
while (--rainDrops > 0) ctx.fillRect(left, Math.
random() * rain.top, 1, rain.height);

Instead of drawing the walls at their full width, we
draw them one pixel wide.

Lighting and lightning
The lighting is actually shading. All walls are drawn at
full brightness, and then covered with a black rectangle
of some opacity. The opacity is determined by distance
as well as by the wall’s orientation (N/S/E/W).

ctx.fillStyle = '#000000';
ctx.globalAlpha = Math.max((step.distance +
step.shading) / this.lightRange - map.light, 0);
ctx.fillRect(left, wall.top, width, wall.height);

To simulate lightning, map.light randomly spikes to
2 and then quickly fades down again.

Collision detection
To prevent the player from walking through walls,
we just check his future position against our map. We
check x and y independently so the player can slide
along a wall:

Player.prototype.walk = function(distance, map)
{
 var dx = Math.cos(this.direction) * distance;
 var dy = Math.sin(this.direction) * distance;
 if (map.get(this.x + dx, this.y) <= 0) this.x
+= dx;
 if (map.get(this.x, this.y + dy) <= 0) this.y
+= dy;
};

  29

Wall textures
The walls would be pretty boring without a texture.
How do we know which part of the wall texture
to apply to a particular column? It’s actually pretty
simple: we take the remainder of our intersection
point.

step.offset = offset - Math.floor(offset);
var textureX = Math.floor(texture.width * step.
offset);

For example, an intersection with a wall at (10, 8.2)
has a remainder of 0.2. That means that it’s 20% from
the left edge of the wall (8) and 80% from the right
edge (9). So we multiply 0.2 * texture.width to find
the x-coordinate for the texture image.

What’s next?
Because raycasters are so fast and simple, you can
try lots of ideas quickly. You could make a dungeon
crawler, first-person shooter, or a grand-theft-auto style
sandbox. Hell, the constant-time makes me want to
build an oldschool MMORPG with a massive, proce-
durally generated world.

Fork the code! [hn.my/playfuljs]
Here are a few challenges to get you started:

■■ Immersion. This example is begging for full-screen
mouse-lock with a rainy background and thunder-
claps synchronized to the lightning.

■■ Optimization. Lots of speedups possible here, start-
ing with caching the identical Math.atan2 and Math.
cos calls we make hundreds of times each frame.

■■ An indoors level. Replace the skybox with a sym-
metric gradient or, if you’re feeling plucky, try
rendering floor and ceiling tiles (think of it this way:
they’re just the spaces between the walls you’re
already drawing!)

■■ Lighting objects. We already have a fairly robust
lighting model. Why not place lights in the world
and compute wall lighting based on them? Lights are
80% of atmosphere.

■■ Good touch events. I’ve hacked in a couple of
basic touch controls so folks on phones and tablets
can try out the demo, but there’s huge room for
improvement.

■■ Camera effects. For example, zooming, blurring,
drunk mode, etc. With a raycaster this are surpris-
ingly simple. Start by modifying camera.fov in the
console.

As always, if you build something cool, or have
related work to share, link me to it via email
[hunter@hunterloftis.com] or twitter [@hunterloftis]
and I’ll shout it from the rooftops. n

Hunter Loftis is a full-stack JavaScript junkie based in San Fran-
cisco. He’s worked for a decade as an illustrator, web designer,
Flash animator, and app developer. Hunter shares fun pro-
gramming techniques in the world’s most popular language
at playfuljs.com

Reprinted with permission of the original author.
First appeared in hn.my/raycast (playfuljs.com)

http://hn.my/playfuljs
http://playfuljs.com
http://hn.my/raycast

30  PROGRAMMING

I have studied the number of errors caused by using
the Copy-Paste method and can assure you that
programmers most often tend to make mistakes in

the last fragment of a homogeneous code block. I have
never seen this phenomenon described in books on
programming, so I decided to write about it myself. I
called it the “last line effect.”

 Introduction
My name is Andrey Karpov, and I do an unusual job:
I analyze program code of various applications with
the help of static analyzers and write descriptions of
errors and defects I find. I do this for pragmatic and
mercenary reasons because what I do is the way our
company advertises its tools PVS-Studio and CppCat.
The scheme is very simple. I find bugs. Then I describe
them in an article. The article attracts our potential
customers’ attention. Profit. But today’s article is not
about the analyzers.

When carrying out analysis of various projects, I save
bugs I find and the corresponding code fragments in a
special database. By the way, anyone interested can take
a look at this database. We convert it into a collection
of html-pages and upload them to our website in the
“Detected errors” section. [viva64.com/en/examples]

This database is unique indeed! It currently contains
1500 code fragments with errors and is waiting for
programmers to study it and reveal certain regularity
patterns among these errors. That may serve as a useful
basis for many future research studies, manuals, and
articles.

I have never carried out any special investigation
of the material gathered. One pattern, however, is

showing up so clearly that I decided to investigate it a
bit deeper. You see, in my articles I have to write the
phrase “note the last line” pretty often. It occurred to
me that there had to be some reason behind it.

Last line effect
When writing program code, programmers often have
to write a series of similar constructs. Typing the same
code several times is boring and inefficient. That’s why
they use the Copy-Paste method: a code fragment is
copied and pasted several times with further editing.
Everyone knows what is bad about this method: you
risk easily forgetting to change something in the pasted
lines and thus giving birth to errors. Unfortunately,
there is often no better alternative to be found.

Now let’s speak of the pattern I discovered. I fig-
ured out that mistakes are most often made in the last
pasted block of code.

Here is a simple and short example:

inline Vector3int32& operator+=(const Vecto-
r3int32& other) {
 x += other.x;
 y += other.y;
 z += other.y;
 return *this;
}

Note the line “z += other.y;”. The programmer forgot
to replace “y” with “z” in it.

You may think this is an artificial sample, but it is
actually taken from a real application. Further in this
article, I am going to convince you that this is a very
common issue. This is what the “last line effect” looks

By Andrey Karpov

The Last Line Effect

http://viva64.com/en/examples

  31

like. Programmers most often make mistakes at the
very end of a sequence of similar edits.

I heard somewhere that mountain-climbers often
fall off at the last few dozens of meters of ascent. Not
because they are tired; they are simply too joyful about
almost reaching the top — they anticipate the sweet
taste of victory, get less attentive, and make some
fatal mistake. I guess something similar happens to
programmers.

Now a few figures.
Having studied the bug database, I singled out 84

code fragments that I found to have been written
through the Copy-Paste method. Out of them, 41 frag-
ments contain mistakes somewhere in the middle of
copied-and-pasted blocks. For example:

strncmp(argv[argidx], "CAT=", 4) &&
strncmp(argv[argidx], "DECOY=", 6) &&
strncmp(argv[argidx], "THREADS=", 6) &&
strncmp(argv[argidx], "MINPROB=", 8)) {

The length of the “THREADS=” string is 8 charac-
ters, not 6.

In other 43 cases, mistakes were found in the last
copied code block.

Well, the number 43 looks just slightly bigger than
41. But keep in mind that there may be quite a lot of
homogeneous blocks, so mistakes can be found in the
first, second, fifth, or even tenth block. So we get a
relatively smooth distribution of mistakes throughout
blocks and a sharp peak at the end.

I accepted the number of homogeneous blocks to be
5 on the average.

So it appears that the first 4 blocks contain 41 mis-
takes distributed throughout them; that makes about
10 mistakes per block.

And 43 mistakes are left for the fifth block!
To make it clearer, here is a rough diagram:

So what we get is the following pattern:

The probability of making a mistake in the last pasted
block of code is 4 times higher than in any other block.

I don’t draw any grand conclusions from that. It’s
just an interesting observation that may be useful to
know about for practical reasons so that you stay alert
when writing the last fragments of code.

Examples
Source Engine SDK
inline void Init(float ix=0, float iy=0,
 float iz=0, float iw = 0)
{
 SetX(ix);
 SetY(iy);
 SetZ(iz);
 SetZ(iw);
}

The SetW() function should be called at the end.

Chromium
if (access & FILE_WRITE_ATTRIBUTES)
 output.append(ASCIIToUTF16("\tFILE_WRITE_
ATTRIBUTES\n"));
if (access & FILE_WRITE_DATA)
 output.append(ASCIIToUTF16("\tFILE_WRITE_
DATA\n"));
if (access & FILE_WRITE_EA)
 output.append(ASCIIToUTF16("\tFILE_WRITE_
EA\n"));
if (access & FILE_WRITE_EA)
 output.append(ASCIIToUTF16("\tFILE_WRITE_
EA\n"));
break;

The last block and the one before it are identical.

ReactOS
if (*ScanString == L'\"' ||
 *ScanString == L'^' ||
 *ScanString == L'\"')

A rough diagram of mistake distribution in five homogeneous
code blocks.

32  PROGRAMMING

Multi Theft Auto
class CWaterPolySAInterface
{
public:
 WORD m_wVertexIDs[3];
};
CWaterPoly* CWaterManagerSA::CreateQuad (....)
{

 pInterface->m_wVertexIDs [0] = pV1->GetID
();
 pInterface->m_wVertexIDs [1] = pV2->GetID
();
 pInterface->m_wVertexIDs [2] = pV3->GetID
();
 pInterface->m_wVertexIDs [3] = pV4->GetID
();

}

The last line was pasted mechanically and is redun-
dant. There are only 3 items in the array.

Source Engine SDK
intens.x=OrSIMD(AndSIMD(BackgroundColor.x,no_
hit_mask),
 AndNotSIMD(no_hit_mask,intens.x));
intens.y=OrSIMD(AndSIMD(BackgroundColor.y,no_
hit_mask),
 AndNotSIMD(no_hit_mask,intens.y));
intens.z=OrSIMD(AndSIMD(BackgroundColor.y,no_
hit_mask),
 AndNotSIMD(no_hit_mask,intens.z));

The programmer forgot to replace “BackgroundColor.y”
with “BackgroundColor.z” in the last block.

Trans-Proteomic Pipeline
void setPepMaxProb(....)
{

 double max4 = 0.0;
 double max5 = 0.0;
 double max6 = 0.0;
 double max7 = 0.0;

 if (pep3) { ... if (use_joint_probs && prob
> max3) ... }

 if (pep4) { ... if (use_joint_probs && prob
> max4) ... }

 if (pep5) { ... if (use_joint_probs && prob
> max5) ... }

 if (pep6) { ... if (use_joint_probs && prob
> max6) ... }

 if (pep7) { ... if (use_joint_probs && prob
> max6) ... }

}

The programmer forgot to replace “prob > max6”
with “prob > max7” in the last condition.

SeqAn
inline typename Value<Pipe>::Type const & opera-
tor*() {
 tmp.i1 = *in.in1;
 tmp.i2 = *in.in2;
 tmp.i3 = *in.in2;
 return tmp;
}

SlimDX
for(int i = 0; i < 2; i++)
{
 sliders[i] = joystate.rglSlider[i];
 asliders[i] = joystate.rglASlider[i];
 vsliders[i] = joystate.rglVSlider[i];
 fsliders[i] = joystate.rglVSlider[i];
}

The rglFSlider array should have been used in the
last line.

  33

Qt
if (repetition == QStringLiteral("repeat") ||
 repetition.isEmpty()) {
 pattern->patternRepeatX = true;
 pattern->patternRepeatY = true;
} else if (repetition == QStringLiteral("repeat-
x")) {
 pattern->patternRepeatX = true;
} else if (repetition == QStringLiteral("repeat-
y")) {
 pattern->patternRepeatY = true;
} else if (repetition == QStringLiteral("no-
repeat")) {
 pattern->patternRepeatY = false;
 pattern->patternRepeatY = false;
} else {
 //TODO: exception: SYNTAX_ERR
}

“patternRepeatX” is missing in the very last block.
The correct code looks as follows:

pattern->patternRepeatX = false;
pattern->patternRepeatY = false;

ReactOS
const int istride = sizeof(tmp[0]) /
sizeof(tmp[0][0][0]);
const int jstride = sizeof(tmp[0][0]) /
sizeof(tmp[0][0][0]);
const int mistride = sizeof(mag[0]) /
sizeof(mag[0][0]);
const int mjstride = sizeof(mag[0][0]) /
sizeof(mag[0][0]);

The “mjstride” variable will always be equal to one.
The last line should have been written like this:

const int mjstride = sizeof(mag[0][0]) /
sizeof(mag[0][0][0]);

Mozilla Firefox
if (protocol.EqualsIgnoreCase("http") ||
 protocol.EqualsIgnoreCase("https") ||
 protocol.EqualsIgnoreCase("news") ||
 protocol.EqualsIgnoreCase("ftp") ||
<<<---
 protocol.EqualsIgnoreCase("file") ||
 protocol.EqualsIgnoreCase("javascript") ||
 protocol.EqualsIgnoreCase("ftp")) {
<<<---

A suspicious string “ftp” at the end. It has already
been compared to.

Quake-III-Arena
if (fabs(dir[0]) > test->radius ||
 fabs(dir[1]) > test->radius ||
 fabs(dir[1]) > test->radius)

The value from the dir[2] cell is left unchecked.

Clang
return (ContainerBegLine <= ContaineeBegLine &&
 ContainerEndLine >= ContaineeEndLine &&
 (ContainerBegLine != ContaineeBegLine ||
 SM.getExpansionColumnNumber(ContainerR
Beg) <=
 SM.getExpansionColumnNumber(ContaineeR
Beg)) &&
 (ContainerEndLine != ContaineeEndLine ||
 SM.getExpansionColumnNumber(ContainerR
End) >=
 SM.getExpansionColumnNumber(ContainerR
End)));

At the very end of the block, the “SM.getExpans
ionColumnNumber(ContainerREnd)” expression is
compared to itself.

MongoDB
bool operator==(const MemberCfg& r) const {

 return _id==r._id && votes == r.votes &&
 h == r.h && priority == r.priority &&
 arbiterOnly == r.arbiterOnly &&
 slaveDelay == r.slaveDelay &&
 hidden == r.hidden &&
 buildIndexes == buildIndexes;
}

The programmer forgot about “r.” in the last line.

34  PROGRAMMING

Unreal Engine 4
static bool PositionIsInside(....)
{
 return
 Position.X >= Control.Center.X - BoxSize.X *
0.5f &&
 Position.X <= Control.Center.X + BoxSize.X *
0.5f &&
 Position.Y >= Control.Center.Y - BoxSize.Y *
0.5f &&
 Position.Y >= Control.Center.Y - BoxSize.Y *
0.5f;
}

The programmer forgot to make 2 edits in the last
line. Firstly, “>=” should be replaced with "<=”; sec-
ondly, minus should be replaced with plus.

Qt
qreal x = ctx->callData->args[0].toNumber();
qreal y = ctx->callData->args[1].toNumber();
qreal w = ctx->callData->args[2].toNumber();
qreal h = ctx->callData->args[3].toNumber();
if (!qIsFinite(x) || !qIsFinite(y) ||
 !qIsFinite(w) || !qIsFinite(w))

In the very last call of the function qIsFinite, the “h”
variable should have been used as an argument.

OpenSSL
if (!strncmp(vstart, "ASCII", 5))
 arg->format = ASN1_GEN_FORMAT_ASCII;
else if (!strncmp(vstart, "UTF8", 4))
 arg->format = ASN1_GEN_FORMAT_UTF8;
else if (!strncmp(vstart, "HEX", 3))
 arg->format = ASN1_GEN_FORMAT_HEX;
else if (!strncmp(vstart, "BITLIST", 3))
 arg->format = ASN1_GEN_FORMAT_BITLIST;

The length of the “BITLIST” string is 7, not 3
characters.

Let’s stop here. I hope the examples I have demon-
strated are more than enough.

Conclusion
From this article you have learned that with the Copy-
Paste method making a mistake in the last pasted block
of code is 4 times more probable than in any other
fragment.

It has to do with the specifics of human psychology,
not professional skills. I have shown you in this article
that even highly-skilled developers of such projects as
Clang or Qt tend to make mistakes of this kind.

I hope my observation will be useful for program-
mers and perhaps urge them to investigate our bug
database. I believe it will help reveal many regularity
patterns among errors and work out new recommenda-
tions for programmers. n

Andrey Karpov is technical director of the OOO “Program Veri-
fication Systems” company where his task is to develop source
code static analyzers. He has worked for several years in the “CFD
Software Group” Scientific Center where he has acquired an excep-
tional experience of resource-intensive software development in
the sphere of computational modeling and visualization. It was
there that he noticed an insufficient set of tools for detecting
defects in 64-bit software handling large memory amounts. It
became the starting point in creation of the Viva64 static analyzer
and later the PVS-Studio package.

Reprinted with permission of the original author.
First appeared in hn.my/lastline (viva64.com)

http://hn.my/lastline

  35

http://mandrill.com

36  SPECIAL

SPECIAL

By Callum Jefferies

A few of us Many have been working on a side
project that we’ve aptly named Is the Toilet
Free? Its purpose: to provide an at-desk indi-

cation of whether a toilet is free in an effort to remedy
that laborious walk to the loo only to find that they’re
all engaged. Be gone queues and awkward pre-poo chit-
chat. (Some of many struggles at MxM.)

It was an idea communicated simply as a website
that could do this:

 Fiona and Raffi began fiddling with a Raspberry Pi
to see if they could come up with the bare essential
hardware and software. From there (with my near-
non-existent knowledge of
electronics) I was able to
extrapolate on what they
had created to add a few
more switches and LEDs.
We soon had a circuit that
resembled the end result.
We prototyped…

And we had some software that updated the website.
It worked brilliantly.

I designed a box to house the Pi and some strip
LEDs that would sit on the wall outside the loo.

Thus far it had all been hacked-together prototypes,
so we needed to formalize what we’d done. I wrote
some new software that in principle was: show a green
light if there is at least one toilet free, otherwise show
red. Then when
a change is
seen, log it and
update the web-
site. Ben and I
ordered some
components
to create the
V2 circuit, and
tested it on a
breadboard:

Is the Toilet Free?

Source: hn.my/modelstl

http://hn.my/modelstl

  37

Then transferred and soldered it to some stripboard:

 The circuit diagram:

 We fit it all in the box, and the DIY man had come
to fit some reed switches on the toilet doors. He made
a pickle of it. (Sorry, DIY man, if you’re reading this.)

Along the way we’d thought about what we could
do with the data being logged. We knew in and out
times, why not make some charts out of it? To debunk
any upfront data uneasiness — because you might be
asking “Why am I being recorded going to the toilet?”
— privacy was our core concern; the light collectively
represents the toilets’ state to prevent distinguishing
one toilet from another. It doesn’t know who you are,
and it’s not measuring your deposits or anything simi-
larly absurd.

Moving on though, we’ve been collecting data
(rather inconsistently) for about 3 weeks, and com-
posed some (hopefully reliable) SQL queries. Thanks
to Dan and Raffi we can tell:

■■ If the toilets are free

■■ The total number of visits

■■ Minimum visit duration

■■ Maximum visit duration

■■ Average visit duration

■■ Total visits by hour

■■ Total visits by day

■■ From which we can infer:

■■ The favorite toilet

■■ Peak times

■■ Off-peak times

■■ An estimated wait time

I created a command-line inspired stats page for the
above:

38  SPECIAL

 Garold’s also made something that lives in a Mac
OS menu bar:

 It’s rather pointless but it’s all in the name of fun.

What’s next?
For now we’ll keep collecting data to see what other
worthless knowledge we can assimilate. The software
has gone as far as seems sensible, but it’d be brilliant
to develop the hardware. The sign looks a bit pathetic
(that bloody LED that won’t glue down!) and it’s all
far from ideal. I’m trying to document as much of
what’s been done so far however, because I’ve learnt
a great deal and it makes sense to capture that and
share it. The software is on GitHub [hn.my/toiletrepo]
should you want to look at it. There’s also a wiki that I
hope will grow into a guide for making your own.

Raspberry Pis are brilliant; we were able to create
Internet-connected hardware with very little. It’s
empowering to say the least, and the barrier to entry
seemed so small. For a project intended as a bit of fun,
it’s certainly delivered. I’ve thoroughly enjoyed all of
it. It’s been an excellent opportunity to explore new
things that I’ll without-a-doubt pursue further. Person-
ally I would love to see others’ attempts at something
like this — you’re sure to have as much fun. We have
a new project in the pipeline that you’ll be glad to
know doesn’t involve fecal matter. Think solenoids and
severed fingers. n

Callum Jefferies is an interaction designer and developer
in London. He is currently working with Made by Many.
[madebymany.com]

Metrics and monitoring for people
who know what they want
We know from experience that monitoring your servers and
applications can be painful, so we built the sort of service that
we would want to use. Simple to set up, responsive support
from people who know what they're talking about, and reliably
fast metric collection and dashboards.

Why Hosted Graphite?

• Hosted metrics and StatsD: Metric aggregation without the setup headaches

• High-resolution data: See everything like some glorious mantis shrimp / eagle hybrid*

• Flexible: Lots of sample code, available on Heroku

• Transparent pricing: Pay for metrics, not data or servers

• World-class support: We want you to be happy!

Now with Grafana!

Promo code: HACKER

*Hosted Graphite’s mantis shrimp / eagle breeding program has been unsuccessful thus far

Dashboards StatsD Happiness

Grab a free trial at http://www.hostedgraphite.com

Reprinted with permission of the original author.
First appeared in hn.my/toilet (madebymany.com)

http://hn.my/toiletrepo
http://madebymany.com
http://hostedgraphite.com

  39

Metrics and monitoring for people
who know what they want
We know from experience that monitoring your servers and
applications can be painful, so we built the sort of service that
we would want to use. Simple to set up, responsive support
from people who know what they're talking about, and reliably
fast metric collection and dashboards.

Why Hosted Graphite?

• Hosted metrics and StatsD: Metric aggregation without the setup headaches

• High-resolution data: See everything like some glorious mantis shrimp / eagle hybrid*

• Flexible: Lots of sample code, available on Heroku

• Transparent pricing: Pay for metrics, not data or servers

• World-class support: We want you to be happy!

Now with Grafana!

Promo code: HACKER

*Hosted Graphite’s mantis shrimp / eagle breeding program has been unsuccessful thus far

Dashboards StatsD Happiness

Grab a free trial at http://www.hostedgraphite.com

http://hostedgraphite.com

40  SPECIAL

The end of procrastination
is the art of letting go.

I’ve been a lifelong
procrastinator, at least until recent
years. I would put things off until
deadline, because I knew I could
come through. I came through on
tests after cramming last minute,
I turned articles in at the deadline
after waiting until the last hour, I
got things done.

Until I didn’t. It turns out
procrastinating caused me to miss
deadlines, over and over. It stressed
me out. My work was less-than-
desirable when I did it last minute.
Slowly, I started to realize that pro-
crastination wasn’t doing me any
favors. In fact, it was causing me a
lot of grief.

But I couldn’t quit. I tried a lot of
things. I tried time boxing and goal
setting and accountability and the
Pomodoro Technique and Getting
Things Done. All are great methods,
but they only last so long. Nothing
really worked over the long term.

That’s because I wasn’t getting to
the root problem.

I hadn’t figured out the skill
that would save me from the
procrastination.

Until I learned about letting go.
Letting go first came to me when

I was quitting smoking. I had to let
go of the “need” to smoke, the use
of my crutch of cigarettes to deal
with stress and problems.

Then I learned I needed to let go
of other false needs that were caus-
ing me problems: sugar, junk food,
meat, shopping, beer, possessions.
I’m not saying I can never do these
things again once I let go of these
needs, but I let go of the idea that
they’re really necessary. I let go of
an unhealthy attachment to them.

Then I learned that distractions

and the false need to check my
email and news and other things
online were causing me prob-
lems. They were causing my
procrastination.

So I learned to let go of those too.
Here’s the process I used to let go

of the distractions and false needs
that cause procrastination:

➊ I paid attention to the pain
they cause me, later, instead

of only the temporary comfort/
pleasure they gave me right away.

➋ I thought about the person
I want to be, the life I want

to live. I set my intentions to do the
good work I think I should do.

➌ I watched my urges to check
things, to go to the comfort

of distractions. I saw that I wanted
to escape discomfort of something
hard, and go to the comfort of
something familiar and easy.

➍ I realized I didn’t need
that comfort. I could be in

discomfort and nothing bad would
happen. In fact, the best things
happen when I’m in discomfort.

And then I smile, and breathe,
and let go.

And one step at a time, become
the person I want to be. n

“You can only lose what you cling
to.” ~Buddha

Leo Babauta is the creator and writer at
Zen Habits. He is a former journalist and
freelance writer of 18 years, a husband
and father of six children, and lives on
the island of Guam where he leads a very
simple life.

Get 50% off your first 6 months
circleci.com/?join=hm

http://circleci.com/?join=hm

	FEATURES
	How To Be An Open Source Gardener
	The Meaning of Life

	STARTUPS
	The Most Important Tech Job That Doesn't Actually Exist
	How To Get Business Ideas: Remove Steps

	PROGRAMMING
	Creating a Bare Bones Bootloader
	Erlang and Code Style
	A First-Person Engine in 265 Lines
	The Last Line Effect

	SPECIAL
	Is the Toilet Free?

