
Issue 60  May 2015

Replacing Photoshop With NSString
Charles Parnot

2  ﻿

Curator
Lim Cheng Soon

Contributors
Charles Parnot
Caleb McDaniel
Mary Rose Cook
Oliver Hardt
Michael Fogleman
John Fuex
Larry Gadea
Chet Bolingbroke
Paul Graham

Proofreader
Emily Griffin

Printer
Blurb

Hacker Monthly is the print magazine version
of Hacker News — news.ycombinator.com, a social news
website wildly popular among programmers and startup
founders. The submission guidelines state that content
can be “anything that gratifies one’s intellectual curiosity.”
Every month, we select from the top voted articles on
Hacker News and print them in magazine format.
For more, visit hackermonthly.com

Advertising
ads@hackermonthly.com

Contact
contact@hackermonthly.com

Published by
Netizens Media
46, Taylor Road,
11600 Penang,
Malaysia.

Hacker Monthly is published by Netizens Media and not affiliated with Y Combinator in any way.

http://news.ycombinator.com
http://hackermonthly.com
mailto:ads@hackermonthly.com
mailto:contact@hackermonthly.com

  3

For links to Hacker News dicussions, visit hackermonthly.com/issue-60

Contents
FEATURES

04  Replacing Photoshop With NSString
By Charles Parnot

10  Why (and How) I Wrote My Academic Book in Plain Text
By Caleb McDaniel

PROGRAMMING

14  A Practical Introduction to Functional Programming
By Mary Rose Cook

22  Index Your Gmail Inbox with Elasticsearch
By Oliver HARDT

26  I Made an NES Emulator
By Michael Fogleman

28  Programmers: Before You Turn 40, Get a Plan B
By John Fuex

30  Run Your Own High-End Cloud Gaming Service on EC2
By Larry GADEA

SPECIAL

32  Shadowforge
By Chet Bolingbroke

35  What Doesn’t Seem Like Work?
By Paul Graham

http://hackermonthly.com/issue-60

4  FEATURES

FEATURES

By Charles Parnot

An app is not just made
of code. It also contains
static assets like images

and sounds. Images are typically
created and edited with dedi-
cated tools like Acorn (my favor-
ite), Pixelmator, or the 800-pound
gorilla, Photoshop. Ideally, the
graphics are handled by an actual
designer, which really is one of the
best things we did for our app Find-
ings [findingsapp.com]. But as a
developer, it can be tedious to have
to use a separate tool or involve
another person, when all you need
is a simple little icon with just a few
straight lines, a square or a circle.
Because of “retina,” you also have
to create separate files for 1x, 2x,
and now 3x-scale versions of the
same drawing. Any small change or
the addition of small variants can
quickly become a cumbersome and
error-prone endeavor.

 What’s a developer to do? Write
code! I don’t remember the first
time I decided to draw an image
directly in code, but that seemed
like a good idea at the moment.
From a developer’s perspective, it is
very tempting. Why use Photoshop
when you have the most flexible
tool ever: code? Photoshop was

written in code, so whatever Pho-
toshop is doing, code can do! Alas,
in practice, this is only a reasonable
approach for very simple graphics.
And even then, it is not a straight-
forward task, and it is not quite the
amount of fun I had naively hoped
for. I will first show you an example
of what it entails, but fear not, I
also have an alternative fun solution
right after that.

Way too much code
As promised, here is an example of
one of those first times I actually
drew an image using Objective C.
Brace yourself:

// chevron is defined by 3
// points, the angle is always
// 90 degrees
//
// A
// #
// #
// B
// #
// #
// C

CGFloat rightMargin = 12.0;
CGFloat chevronHeight = 9.0; //
then chevronWidth = chevron-
Height/2

CGFloat lineWidth = 2.0;
NSRect bounds = [self bounds];
NSPoint middle =
NSMakePoint(NSMaxX(bounds)-
rightMargin-lineWidth/2.0,

(NSMinY(bounds)+NSMaxY(bou
nds))/2.0);
NSPoint top = middle;
top.x -= chevronHeight/2.0;
top.y += chevronHeight/2.0;
NSPoint bottom = top;
bottom.y -= chevronHeight;

// draw the chevron in grey
NSBezierPath *chevronPath =
[NSBezierPath bezierPath];
[chevronPath
setLineWidth:lineWidth];
[chevronPath setLineJoinStyle:N
SMiterLineJoinStyle];
[chevronPath setLineCapStyle:NS
ButtLineCapStyle];
[chevronPath moveToPoint:top];
[chevronPath
lineToPoint:middle];
[chevronPath
lineToPoint:bottom];
NSColor *chevronColor =
[NSColor colorWithCalibrated-
White:0.4 alpha:1.0];
[chevronColor set];
[chevronPath stroke];

Replacing Photoshop
With NSString

http://findingsapp.com

  5

Wow, that is a lot of code for just drawing two lines
at a 90-degree angle! And that is not even including the
actual NSImage code. It is nice that I can easily change
the color and the size, and that I get 1x, 2x and 3x in
one go. But was all this code really worth the trouble?
After this first experience, I was not sold, but still used
that approach in a few more occasions, where very
simple graphics were needed. It got a little easier as I
gained experience, and the invested time paid off, but
I remained frustrated by the situation. After a while,
though, I realized that the most interesting part of the
code was actually the ASCII art I was using as a guide
to my drawing code:

// A
// #
// #
// B <-- I WANT TO WRITE JUST THAT,
// # NOT THE REST OF THE CODE!
// #
// C

This “drawing” described very nicely what I wanted
to do, better than any comment I could ever write for
any kind of code, in fact. That ASCII art was a great
way to show directly in my code what image would be
used in that part of the UI, without having to dig into
the resources folder. The actual drawing code sud-
denly seemed superfluous. What if I could just pass the
ASCII art into NSImage directly?

ASCIImage: combining ASCII art and Kindergarten
skills
Xcode does not compile ASCII art, so I decided I
would write the necessary “ASCII art compiler” myself.
OK, I did not write a compiler, but a small fun proj-
ect called “ASCIImage”! It works on iOS and Mac as
a simple UIImage/NSImage category with a couple of
factory methods. It is open-source and released under
the MIT license on GitHub. [hn.my/asciimage] I also
set up a landing page with a link to an editor hacked
together by @mz2 in just a few hours during NSCon-
ference: asciimage.org.

It is very easy to use and has limited capabili-
ties. It is not just a toy project, though. I have been
using it in a real app for the past year: Findings.
But whatever you do, here is a good rule of thumb:
as soon as you feel limited by it, you should fire
off Acorn [flyingmeat.com/acorn] instead, or better
yet, contact a designer. [twitter.com/wrinklypea]

Here is how you would use ASCIImage, to draw a
2-point-thick chevron:

+ (UIImage *)chevronImageWithColor:(UIColor *)
color
{
NSArray *asciiRep =
@[
@"· · · · · · · · · · · ·",
@"· · · 1 2 · · · · · · ·",
@"· · · A # # · · · · · ·",
@"· · · · # # # · · · · ·",
@"· · · · · # # # · · · ·",
@"· · · · · · 9 # 3 · · ·",
@"· · · · · · 8 # 4 · · ·",
@"· · · · · # # # · · · ·",
@"· · · · # # # · · · · ·",
@"· · · 7 # # · · · · · ·",
@"· · · 6 5 · · · · · · ·",
@"· · · · · · · · · · · ·",
];
return [self imageWithASCIIRepresentation:ascii
Rep
 color:[UIColor blackColor]
 shouldAntialias:NO];
}

And below are the images that will be generated
depending on the drawing environment:

 On iOS, the 1x/2x/3x versions will be generated
based on the screen resolution of the device on which
the app is running. On the Mac, the ASCIImage imple-
mentation uses the NSImage block API, which means
the drawing will happen at the right resolution the
moment the image is rendered on screen. Note that I
disabled anti-aliasing in the example code (so only the
images on the top row will be generated as needed).
For this kind of shape, the rendering is actually sharper
and looks better without anti-aliasing.

http://hn.my/asciimage
http://asciimage.org
http://flyingmeat.com/acorn
http://twitter.com/wrinklypea

6  FEATURES

Behind the scenes, ASCIImage is doing simple,
boring stuff. There are probably ways to make the pars-
ing smarter and more user-friendly, but I just wanted
things to work quickly without too much fuss and too
much coding and debugging:

■■ It strips all whitespace; this is why all pixels need to
be marked somehow (I chose the character “·” as the
background in the example above);

■■ It checks consistency: all rows should have the same
length;

■■ It parses the string to find digits and letters; every-
thing else is ignored, namely the “·” and “#” characters
in the example;

■■ Each digit/letter is assigned a corresponding NSPoint;

■■ It creates shapes based on the good old “Connect the
Dots” technique you learnt in Kindergarten;

■■ Each shape is turned into NSBezierPath;

■■ Each Bezier path is rendered with the correct color
and anti-aliasing flag

In the chevron example, there is just one shape,
which is created and rendered as follows:

Basics
Here is a quick overview of ASCIImage usage. The
valid characters for connecting the dots are, in this
order:

1 2 3 4 5 6 7 8 9 A B C D E F G H I J K L M N O
P Q R S T U V W X Y Z a b c d e f g h i j k l m
n p q r s t u v w x y z

Each shape is defined by a series of sequential char-
acters, and a new shape is started as soon as you skip
a character in the above list. So the first shape could
be defined by the series “123456”, then the next shape
with “89ABCDEF”, the next with “HIJKLMNOP”, etc.
The simplest method +imageWithASCIIRepresentati
on:color:shouldAntialias: will draw and fill each
shape with the passed color (there is also a block-based
method for more options). Here is an example with 3
shapes:

 You can also draw straight lines by using the same
character twice. In this case, you don’t need to skip
a character before the next shape or line. Here is an
example with a bunch of lines (remember, the “#” are
only here as a visual guide for when you look at your
code, but are ignored by ASCIImage’s parser):

 And you can combine shapes and lines, of course:

 There are just 2 more special cases. You can create
a single (square) pixel if you use an isolated character.
And you can draw an ellipse by using the same charac-
ter 3 or more times. The ellipse will be defined by the

  7

largest enclosing rectangle for the points. If the rect-
angle is a square, the ellipse is a circle:

 And finally, a more elaborate composition showing
how far you can get with it. This particular ASCII art is
entering obfuscation territory, which clearly defeats the
purpose. The fun is still there, though!

That’s it for the basics!

Bells and whistles
There is a second factory method defined in
ASCIImage:

// This method offers more advanced options that
// can be set on each "shape", using the
// `contextHandler` block. The mutable
// dictionary passed by the block can be modified
// using the keys listed in the constants below.
// The dictionary initially contains the
// `ASCIIContextShapeIndex` key to
// signal which shape the context will be
// applied to.
+ (PARImage *)imageWithASCIIRepresentation:(NSAr
ray *)rep
 contextHandler:(void(^)(NSMutable-
Dictionary *ctx))handler;

/// keys for the dictionary context
extern NSString * const ASCIIContextShapeIndex;

extern NSString * const ASCIIContextFillColor;
extern NSString * const ASCIIContextStrokeColor;
extern NSString * const ASCIIContextLineWidth;
extern NSString * const ASCIIContextShouldClose;
extern NSString * const
ASCIIContextShouldAntialias;

This method allows you to apply different settings
to the drawing of each element of the graphic. This is
done via a mutable dictionary used as an argument in
a block. Information goes both ways: from ASCIIm-
age to you, and then from you to ASCIImage. You get
the shape index (ordered based on the characters used
in the ASCII art), and you set a stroke color, fill color,
antialias flag, etc. Note that this context has not much
in common with an actual NSGraphicsContext. It is
very limited, and unfortunately, it is not possible to
directly manipulate NSGraphicsContext for the kind of
drawing ASCIImage needs to do (or at least, there were
enough gotchas that I decided against it).

Here is an example of how you could use the block-
based method to layer multiple shapes on top of each
other:

(NSImage *)deletionImage
{
 NSArray *asciiRep =
 @[
 @"· · · · 1 1 1 · · · ·",
 @"· · 1 · · · · · 1 · ·",
 @"· 1 · · · · · · · 1 ·",
 @"1 · · 2 · · · 3 · · 1",
 @"1 · · · # · # · · · 1",
 @"1 · · · · # · · · · 1",
 @"1 · · · # · # · · · 1",
 @"1 · · 3 · · · 2 · · 1",
 @"· 1 · · · · · · · 1 ·",
 @"· · 1 · · · · · 1 · ·",
 @"· · · 1 1 1 1 1 · · ·",
];
 return [NSImage imageWithASCIIRepresentation
:asciiRep
 contextHandler:^(NSMutableDictionary
*context)
 {
 NSInteger index = [context[ASCIIContextS
hapeIndex] integerValue];
 if (index == 0)
 {
 context[ASCIIContextFillColor] =

8  FEATURES

[NSColor grayColor];
 }
 else
 {
 context[ASCIIContextLineWidth] = @(1.0);
 context[ASCIIContextStrokeColor] =
[NSColor whiteColor];
 }
 context[ASCIIContextShouldAntialias] = @
(YES);
 }];
}

And here is the result:

Now here is one that is pushing ASCIImage to its
limits, but further shows how you can take advantage
of layering basic shapes to create a more complex icon:

- (PARImage *)lockImage
{
 NSArray *asciiRep =
 @[
 @" · · · · · · · · · · · · · · · ",
 @" · · · · 1 · · · · · · 1 · · · ",
 @" · · · · · · · · · · · · · · · ",
 @" · · · · · · · · · · · · · · · ",
 @" · · · · · · · · · · · · · · · ",
 @" · · 3 · 1 · · · · · · 1 · 4 · ",
 @" · · · · · · · · · · · · · · · ",
 @" · · · · · · A · · A · · · · · ",
 @" · · · · 1 · · · · · · 1 · · · ",
 @" · · · · · · · C D · · · · · · ",
 @" · · · · · · A · · A · · · · · ",
 @" · · · · · · · · · · · · · · · ",
 @" · · · · · · · B E · · · · · · ",
 @" · · · · · · · · · · · · · · · ",
 @" · · 6 · · · · · · · · · · 5 · ",
];
 return [PARImage imageWithASCIIRepresentatio
n:asciiRep
 contextHandler:^(NSMutableDictionary
*context)

 {
 NSInteger index = [context[ASCIIContex
tShapeIndex] integerValue];
 if (index == 0)
 {
 context[ASCIIContextFillColor] =
[PARColor blackColor];
 }
 else
 {
 context[ASCIIContextFillColor] =
[PARColor whiteColor];
 }
 context[ASCIIContextShouldClose] =
@(YES);
 context[ASCIIContextShouldAntialias] =
@(YES);
 }];
}

ASCII art obfuscation! The method name gives it
away. Sort of. Here is how the string is parsed, shape
after shape, layer after layer:

  9

 Again, not sure you’d want to go that far, but now
you know you can!

Tricky Bits
Implementing ASCIImage was very straightforward,
but there were still a few tricky bits:

■■ “Filling” out a shape actually involves both a fill and
a stroke on NSBezierPath. To properly fill pixels and
have proper pixel alignment, the vertices defining
each Bezier path are in fact set to the middle of the
1x1-pt “pixel” represented in the ASCII art (1 x 1 pt
ends up being 3 x 3 pixels in 3x scale for instance).
When filling the path, the edges of the Bezier paths
are thus drawn half-a-point away from the actual
border. We then need to also apply a stroke of width
1-point, with the same color, to fill the full intended
shape.

■■ Without anti-aliasing, it is tricky to get the correct
pixels to turn black. For this, I found that one should
use a thicker line width for 45-degree lines, equal
to the diagonal of a 1-pt square: the square root of
2. This width works fine for other angles, including
horizontal and vertical lines, thus drawing of the
lines is done using this width for aliased rendering,
instead of the 1-pt width for anti-aliased rendering.

■■ For tests, one needs to trick the system into believing
that the scale is 1x, 2x or 3x. On iOS, ASCIImage
has a special method with a scale argument, which
is also used by the actual implementation (which
simply passes the current device scale), ensuring that
the same code path is in fact used. On OS X, it is
trickier, in that the NSImage has to be rendered in a
context where we control the “scale.” For this, the
test actually renders the image returned by ASCIIIm-
age into…another NSImage, with the correctly-scaled
dimensions, so we get an artificial 1x context at a
scaled-up size.

■■ The scaling on iOS and OS X is handled differently.
On iOS, the Bezier paths need to be drawn directly
at the right pixel size, and the Y axis is upside-down.
On OS X, scaling is implicit, and drawing is done
using points, not pixels. n

After working as a biology scientist for 15 years, Charles Parnot
switched to the life of a software developer. He is currently the
developer and co-creator of the Findings app [findingsapp.com],
an electronic lab notebook aimed at scientists and researchers.
He is @cparnot on Twitter.

To really fill, you need to fill… and stroke.

Reprinted with permission of the original author.
First appeared in hn.my/nsstring (cocoamine.net)

http://findingsapp.com
http://twitter.com/cparnot
http://hn.my/nsstring

10  FEATURES

These days, it seems
like the ancient past of
personal computing is

becoming the wave of the future.
Do a simple search for writing in
plain text and you’ll find thousands
of people making the case for using
a file format (*.txt) that worked
long before Microsoft Word was a
sparkle in Bill Gates’s eye. In fact,
I don’t even have to make the gen-
eral case for using plain text here;
people like David Sparks, Michael
Schechter, and Lincoln Mullen have
already done the work for me.

Nonetheless, academic writ-
ers — and particularly historians
— may well be skeptical about
whether working in plain text can
really work for them. Most of us
still intend for our writing to end
up on a printed page. We need the
kinds of formatting — like bold-
face and italics — that do not exist
in a plain text file. Most of all, we
need footnotes and all the biblio-
graphic trappings that, “like the
high whine of the dentist’s drill,”
assure the reader that we are seri-
ous professionals and have done our

homework. Journals and academic
presses generally want our work to
be submitted as Word documents,
not as text files.

I’m writing this article partly
to tell you that none of these
are insuperable obstacles for the
academic historian who wants
to use plain text. In fact, I wrote
the entirety of my academic book
[hn.my/abook], forthcoming in
early 2013, in plain text files.
Before submitting the manu-
script to my press, I converted all
of my plain text files, complete
with notes about what to italicize
and where to place footnotes, to
Microsoft Word documents using
a simple program called Pandoc
[pandoc.org], and the press never
knew the difference. I’ve done the
same thing now with a conference
paper and journal article, too. It is
possible to write academic publi-
cations in plain text, and in fact,
Lincoln Mullen and I are working
on a paper that will spell out how
to do so in detail.

Of course, what is possible is not
always desirable, and in this article

I want to focus on the specific, idio-
syncratic reasons why I wanted (and
still want) to write this way, using
nothing more than a text editor
and Pandoc. I’ll briefly conclude
with a rough primer on how I used
Pandoc for my book, but the main
point of this post is about why I did
it, with no apologies for the fact
that many of these reasons may not
be compelling to everyone. They
were, and remain, compelling to
me.

Why Not Just Use Word?
Unless your name is Ken Thompson
and you’ve been happily typing
away in Ed, the standard text editor,
since 1971, you’re not coming to
plain text in a vacuum. I wasn’t. I
wrote my dissertation in Microsoft
Word, and started writing my book
in the same. So for me, the question
of why I would want to use plain
text occurred in a much different
form: Why don’t I want to keep
using Word? And over time, that
question became easier and easier
to answer:

By Caleb McDaniel

Why (and How) I Wrote My
Academic Book in Plain Text

http://hn.my/abook
http://pandoc.org

  11

➊ Microsoft Word eats my
work.

Have you ever worked on a com-
plicated section of a chapter or a
footnote, only to have Word crash
for some unspecified reason and
erase your work? I have. This only
has to happen once to get you
thinking about alternatives. But let’s
just put it this way (and here I’m
being charitable): in all my years of
using Word, this happened more
than once. In all the time I’ve used
text editors, it’s never happened,
even once.

➋ Microsoft Word distracts
me.

Everyone has their own writ-
ing tics and pathologies. One of
mine is adjusting the “look” of
a word processing document. A
full-featured processor like Word
practically invites this — you can
double-space, you can single-space
— heck, you can 1.75 space. You
can write in Palatino, or how about
Courier — or what about Bookman
Old Style? Is your page breaking at
a funny spot? Why not adjust the
margins, or the point size, or force a
break at another point?

All valid questions, in their own
way. But none of these questions
have to do with the most important
one of all: What do you want to
say? On a rough writing day when
I didn’t want to confront that ques-
tion, I often found myself wasting
time on formatting, thinking that
getting the right look would juice
my thoughts. But my preferences
about these things are fickle, so
changing fonts or font sizes one day
would usually lead me to change
it all again on another. This is the
vicious cycle that makes word pro-
cessors stupid and inefficient: they
confuse the process of typesetting

with the process of composition.
And this has only gotten worse over
time.

Another of my personal writing
distractions is the constant tempta-
tion to read what I wrote at my last
session before starting to write new
material. Therein lies great danger.
Yet Microsoft Word opens every
document at the top “by product
design.” There are workarounds, but
none of them takes into account
the extent of the temptation I face
whenever I open a chapter. Yes, I
could press SHIFT+F5, but why
don’t I just glance over the introduc-
tion again …In moments of weak-
ness, that’s all it would take for me
to waste a writing session tweaking
instead of producing new material.

One solution to this kind of
distraction is to break up a long
chapter into chunks or sections, so
that when I open the working file,
I’m right where I need to be. The
trouble is that combining Docu-
ments back together, and splitting
them up again when needed, is not
very easy. Text files, on the other
hand, are different; almost any text
editor has the ability to quickly
combine large numbers of files into
a new, complete file while leaving
the chunks alone. The same task can
be accomplished at the UNIX com-
mand line with commands like this:

cat chap1a chap1b chap1c >
chap1
cat chap1 chap2 chap3 chap4 >
dissertation
cat chap* > book

I find it less distracting to open
only that section of a chapter or
an article I need to be working on,
and plain text makes that easy to
do. And many editors allow me,
by design, to open a file at pre-
cisely the point where I last left off

writing. When I’m ready to re-read
my work, I now do so when the
spirit is willing, instead of when the
flesh is weak.

➌ Microsoft Word is not very
mobile.

Getting an iPod touch was one of
the straws that broke Word’s back
for me. Having the Touch opened
the possibility of writing anywhere,
whenever the mood struck. But try
to find an app that makes this easy
to do with Word documents on an
iPhone or iPad, and you’ll find it’s
not as easy or as cheap as it sounds.
More importantly, your choices
of apps to work with are, at this
moment, highly limited.

Plain text, on the other
hand, travels well. Want an app
that makes editing text on the
iPhone or iPad easy and cheap?
Want more than two or three
feasible options? Here you go
[hn.my/textapp]. Since switching
to plain text, I’ve been able to work
on my book by the pool, in the
car, on the bus, and wherever else
my elusive Muse showed up. And
unlike many of the apps for work-
ing with Word documents, synchro-
nization with my desktop computer
through Dropbox has been easy
and automatic.

➍ Microsoft Word is not
cheap.

The price tag for a Microsoft prod-
uct is steep — and even steeper
when you factor in the need to
upgrade regularly so that your
work will remain backwards- and
forwards-compatible. Plain text,
whether you’re using Windows
or Mac, is free, and free (or very
cheap) text editors are abundant.
Switching to other software is trivi-
ally easy.

12  FEATURES

But the price of the software
isn’t the only “cost” associated
with Word. There are also associ-
ated storage costs, especially if you
use something like Dropbox for
backup and synchronization across
multiple computers. The final copy
of my dissertation is a 1.2MB file;
the folder that contains all of my
draft files for the project is over 20
times that size. The folder contain-
ing the plain text files for my final
book manuscript, and all previous
working drafts, is 4MB. That’s not
a huge difference, but if I multiply
the difference across the multiple
projects I have going at any one
time — lecture notes, articles,
conference papers, short essays, and
so on — it can add up. By keeping
file sizes lean, I’ve managed to stay
well under my free 2GB limit on
Dropbox and don’t foresee having
to upgrade anytime soon. (Yes, I’m
that cheap.)

Kicking the Word Habit
Those were some of my reasons
for wanting a viable alternative to
doing my academic writing pri-
marily in Word. Perhaps others
have other, still better reasons for
wanting to kick the habit. But all of
those reasons beg the question of
whether it can be done. The short
answer is yes.

For many years I clung to Word
because I thought I needed it
to do my work; when unhappy
with it, I would try out simpler
but still complex alternatives
like Mellel [mellel.com] or Bean
[bean-osx.com]. But one day I real-
ized that my needs as an academic
writer are often very minimal. To
do most of my writing I basically
need only three kinds of special for-
matting: emphasis, blockquotes, and
footnotes. (There are exceptions,

of course, and cases where for-
eign character sets or symbols are
needed; but I’m talking about 99%
of my own work.) Adding each of
those things is simple using Pandoc-
flavored markdown.

In plain English, that means that
when I want to italicize a word in
plain text, I *emphasize* it with
asterisks. If I want a blockquote, I
simply begin the paragraph with an
arrow character (>). With footnotes,
I have more options, but usually
when I’m writing, I simply use at a
caret and brackets at the end of the
paragraph, and put the footnote in
the brackets.

This is easier to understand by
looking at an example. The first
two paragraphs of my book intro-
duction looked like this in my text
editor:

On April 14, 1865, hours before
Abraham Lincoln sat down for
the last time at Ford's Theater
in Washington, D.C., the Boston
abolitionist William Lloyd
Garrison sat on a platform in
Charleston, South Carolina.
More than three decades before,
Garrison had founded the *Lib-
erator*, a newspaper dedicated
to agitating for universal,
immediate slave emancipation.
In 1833, he also helped found
the American Anti-Slavery Soci-
ety (AASS), a group devoted
to the same goal. And by the
time he went to Charleston,
Garrison had served as the
Society's president for over
twenty years. Only in the last
few, however, had emancipa-
tion changed from a despised,
minority opinion to the official
policy of federal armies in a
cataclysmic civil war.

Now, with the war ending and
a Constitutional amendment
to abolish slavery await-
ing ratification, Garrison had
come to Fort Sumter to attend
a flag-raising ceremony at the
invitation of the govern-
ment. Undoubtedly his emotions
about the trip were difficult to
express, and not only because
he met recently emancipated
slaves, one of whom pressed a
ten dollar bill into his hand.
Garrison's emotions were also
stirred because he could now
celebrate a country he had long
regarded with deep disillu-
sionment--even disgust.^[Henry
Mayer, *All on Fire: William
Lloyd Garrison and the Aboli-
tion of Slavery* (New York:
St. Martin's Griffin, 1998),
577-580. Garrison and Thompson
told the story about the ten-
dollar bill to Frederick W.
Chesson. See the entry for June
10, 1867, in Frederick Ches-
son Diary, May 1867-April 1868,
REAS, 11/15.]

I like writing this way, with
footnotes tied directly to the text,
but it’s also possible to name long
footnotes with descriptive titles and
separate them from the paragraph,
as in another paragraph of the
introduction:

As historian C. A. Bayly and
others have shown, the nine-
teenth century witnessed the
birth of a nascent "interna-
tional civil society" and the
rise of transnational "networks
of information and politi-
cal advocacy which, though
less obvious than the rising
national and imperial state,
[were] no less important."
Abolitionists experienced these

http://mellel.com
http://bean-osx.com

  13

realities in their everyday
lives thanks to revolutions in
transportation and communica-
tions technology that knit
the Atlantic World together
and astonished their contem-
poraries. By the end of Gar-
rison's life, one American
abolitionist marveled to the
Irish abolitionist Richard
Davis Webb about the incred-
ible "wilderness of waters"
over which their letters always
crossed. Yet "our regular,
constant, almost daily inter-
course by steam mail-vessels"
had led these distant friends
to "accept it as a matter of
course!"[^atlantic]

[^atlantic]: C. A. Bayly, *The
Birth of the Modern World,
1780–1914* (Oxford, U.K.:
Blackwell, 2004), 118; SMJr
to RDW, March 26, 1871, BPL,
Ms.B.1.6.11.9. On the trans-
portation revolution in the
United States during this same
period, see Howe, *What Hath
God Wrought.* For overarch-
ing surveys of the persistence
of the Atlantic World into the
nineteenth century, especially
as a zone of cultural and
economic exchange, see Donna
Gabaccia, "A Long Atlantic in a
Wider World," *Atlantic Stud-
ies* 1, no. 1 (2004): 1–27;
Aaron Spencer Fogleman, "The
Transformation of the Atlan-
tic World, 1776–1867," *Atlan-
tic Studies* 6, no. 1 (2009):
5–28; Jürgen Osterhammel and
Niels P. Petersson, *Globaliza-
tion: A Short History* (Princ-
eton, N.J.: Princeton Uni-
versity Press, 2005), 57–80;
José C. Moya, "Modernization,
Modernity, and the Trans/

formation of the Atlantic World
in the Nineteenth Century," in
*The Atlantic in Global His-
tory, 1500–2000,* ed. Jorge
Cañizares-Esguerra and Erik R.
Seeman (Upper Saddle River,
N.J.: Pearson, 2007), 179–98;
and Thistlethwaite's still
useful *The Anglo-American
Connection.* [actual footnote
continues ...]

After installing Pandoc and writ-
ing the entire book manuscript
in this way, converting all of my
chapters into a docx was as easy
as issuing a single command in my
Mac’s Terminal program:

pandoc -s -o book.docx *.txt

Having done that, it was pos-
sible to open the manuscript, now
complete with numbered footnotes,
and adjust the formatting to the
specifications given to me by my
press (i.e., double-spaced, endnotes
instead of footnotes, and so on). But
it’s also important that I only had to
do that adjusting once. By modify-
ing the default “styles” within this
Word document and then saving
that docx, I could also instruct
Pandoc to use my correctly format-
ted file as a template for future
document generation, like this:

pandoc -s --reference-docx=/
Users/wcm1/lsu.docx -o book.
docx *.txt

Learning to use Pandoc does
take some time, to be sure. You can
copy the plain text file I provided
in the last paragraph and try it out
yourself to see the kind of default
output Pandoc produces. But my
point here is that even its minimal
functionality enables me to turn
plain text files into *.docx files with
relative ease. And only a little bit

of reading and experimenting also
enables me to distribute my aca-
demic work in a variety of formats.
When sending my book manu-
script to colleagues for review, for
example, I was able to provide PDF,
EPUB, or DOCX copies without
changing the underlying plain text
files at all. In short, I’m living proof
that writing an academic book for
history in plain text is possible. And
having done it once, I’m not look-
ing back. n

 Dr. W. Caleb McDaniel is assistant professor
of history at Rice University. He is author
of the award-winning book *The Problem
of Democracy in the Age of Slavery: Gar-
risonian Abolitionists and Transatlantic
Reform*, creator of the @Every3Minutes
Twitter bot, and a general editor for The
Programming Historian [programminghis-
torian.org]. You can follow him on Twitter
@wcaleb

Reprinted with permission of the original author.
First appeared in hn.my/ptext (wcm1.web.rice.edu)

http://programminghistorian.org
http://programminghistorian.org
http://hn.my/ptext

14  PROGRAMMING

PROGRAMMING

By Mary Rose Cook

Many functional programming articles
teach abstract functional techniques. That
is, composition, pipelining, and higher

order functions.
This one is different. It shows examples of impera-

tive, dysfunctional code that people write every day
and translates these examples to a functional style.

The first section of the article takes short, data-
transforming loops and translates them into functional
maps and reduces. The second section takes longer
loops, breaks them up into units, and makes each unit
functional. The third section takes a loop that is a long
series of successive data transformations and decom-
poses it into a functional pipeline.

The examples are in Python, because many people
find Python easy to read. A number of the examples
eschew pythonicity in order to demonstrate functional
techniques common to many languages: map, reduce,
pipeline.

A guide rope
When people talk about functional programming, they
mention a dizzying number of “functional” character-
istics. They mention immutable data, first class func-
tions and tail call optimization. These are language fea-
tures that aid functional programming. They mention
mapping, reducing, pipelining, recursing, currying, and
the use of higher order functions. These are program-
ming techniques used to write functional code. They
mention parallelization, lazy evaluation, and determin-
ism. These are advantageous properties of functional
programs.

Ignore all that. Functional code is characterized by
one thing: the absence of side effects. It doesn’t rely
on data outside the current function, and it doesn’t
change data that exists outside the current function.
Every other “functional” thing can be derived from this
property. Use it as a guide rope as you learn.

This is a non-functional function:

a = 0
def increment1():
 global a
 a += 1

This is a functional function:

def increment2(a):
 return a + 1

Don’t iterate over lists. Use map and reduce.
Map
Map takes a function and a collection of items. It
makes a new, empty collection, runs the function on
each item in the original collection, and inserts each
return value into the new collection. It returns the new
collection.

This is a simple map that takes a list of names and
returns a list of the lengths of those names:

name_lengths = map(len, ["Mary", "Isla", "Sam"])

print name_lengths
=> [4, 4, 3]

A Practical Introduction to
Functional Programming

  15

This is a map that squares every number in the
passed collection:

squares = map(lambda x: x * x, [0, 1, 2, 3, 4])

print squares
=> [0, 1, 4, 9, 16]

This map doesn’t take a named function. It takes
an anonymous, inlined function defined with lambda.
The parameters of the lambda are defined to the left of
the colon. The function body is defined to the right of
the colon. The result of running the function body is
(implicitly) returned.

The unfunctional code below takes a list of real
names and replaces them with randomly assigned code
names.

import random

names = ['Mary', 'Isla', 'Sam']
code_names = ['Mr. Pink', 'Mr. Orange', 'Mr.
Blonde']

for i in range(len(names)):
 names[i] = random.choice(code_names)

print names
=> ['Mr. Blonde', 'Mr. Blonde', 'Mr. Blonde']

(As you can see, this algorithm can potentially assign
the same secret code name to multiple secret agents.
Hopefully, this won’t be a source of confusion during
the secret mission.)

This can be rewritten as a map:

import random

names = ['Mary', 'Isla', 'Sam']

secret_names = map(lambda x: random.choice(
			 ['Mr. Pink',
 'Mr. Orange',
 'Mr. Blonde']),
 names)

Exercise 1. Try rewriting the code below as a map. It
takes a list of real names and replaces them with code
names produced using a more robust strategy.

names = ['Mary', 'Isla', 'Sam']

for i in range(len(names)):
 names[i] = hash(names[i])

print names
=> [6306819796133686941, 8135353348168144921,
-1228887169324443034]

(Hopefully, the secret agents will have good memo-
ries and won’t forget each other’s secret code names
during the secret mission.)

My solution:

names = ['Mary', 'Isla', 'Sam']

secret_names = map(hash, names)

Reduce
Reduce takes a function and a collection of items. It
returns a value that is created by combining the items.

This is a simple reduce. It returns the sum of all the
items in the collection.

sum = reduce(lambda a, x: a + x, [0, 1, 2, 3,
4])

print sum
=> 10

x is the current item being iterated over. a is the
accumulator. It is the value returned by the execution
of the lambda on the previous item. reduce() walks
through the items. For each one, it runs the lambda on
the current a and x and returns the result as the a of
the next iteration.

What is a in the first iteration? There is no previous
iteration result for it to pass along. reduce() uses the
first item in the collection for a in the first iteration and
starts iterating at the second item. That is, the first x is
the second item.

16  PROGRAMMING

This code counts how often the word 'Sam' appears
in a list of strings:

sentences = ['Mary read a story to Sam and
Isla.',
 'Isla cuddled Sam.',
 'Sam chortled.']

sam_count = 0
for sentence in sentences:
 sam_count += sentence.count('Sam')

print sam_count
=> 3

This is the same code written as a reduce:

sentences = ['Mary read a story to Sam and
Isla.',
 'Isla cuddled Sam.',
 'Sam chortled.']

sam_count = reduce(lambda a, x: a +
x.count('Sam'),
 sentences,
 0)

How does this code come up with its initial a?
The starting point for the number of incidences
of 'Sam' cannot be 'Mary read a story to Sam
and Isla.' The initial accumulator is specified with
the third argument to reduce(). This allows the use
of a value of a different type from the items in the
collection.

Why are map and reduce better?
First, they are often one-liners.
Second, the important parts of the iteration — the

collection, the operation and the return value — are
always in the same places in every map and reduce.

Third, the code in a loop may affect variables defined
before it or code that runs after it. By convention, maps
and reduces are functional.

Fourth, map and reduce are elemental operations.
Every time a person reads a for loop, they have to
work through the logic line by line. There are few
structural regularities they can use to create a scaf-
folding on which to hang their understanding of the
code. In contrast, map and reduce are at once build-
ing blocks that can be combined into complex algo-
rithms, and elements that the code reader can instantly
understand and abstract in their mind. “Ah, this code is

transforming each item in this collection. It’s throwing
some of the transformations away. It’s combining the
remainder into a single output.”

Fifth, map and reduce have many friends that pro-
vide useful, tweaked versions of their basic behavior.
For example: filter, all, any and find.

Exercise 2. Try rewriting the code below using map,
reduce, and filter. Filter takes a function and a collec-
tion. It returns a collection of every item for which the
function returned True.

people = [{'name': 'Mary', 'height': 160},
 {'name': 'Isla', 'height': 80},
 {'name': 'Sam'}]

height_total = 0
height_count = 0
for person in people:
 if 'height' in person:
 height_total += person['height']
 height_count += 1

if height_count > 0:
 average_height = height_total / height_count

 print average_height
 # => 120

If this seems tricky, try not thinking about the opera-
tions on the data. Think of the states the data will go
through, from the list of people dictionaries to the
average height. Don’t try and bundle multiple transfor-
mations together. Put each on a separate line and assign
the result to a descriptively-named variable. Once the
code works, condense it.

My solution:

people = [{'name': 'Mary', 'height': 160},
 {'name': 'Isla', 'height': 80},
 {'name': 'Sam'}]

heights = map(lambda x: x['height'],
 filter(lambda x: 'height' in x,
people))

if len(heights) > 0:
 from operator import add
 average_height = reduce(add, heights) /
len(heights)

  17

Write declaratively, not imperatively
The program below runs a race between three cars. At
each time step, each car may move forwards or it may
stall. At each time step, the program prints out the
paths of the cars so far. After five time steps, the race is
over.

This is some sample output:

-
--
--

--
--

--

This is the program:

from random import random

time = 5
car_positions = [1, 1, 1]

while time:
 # decrease time
 time -= 1

 print ''
 for i in range(len(car_positions)):
 # move car
 if random() > 0.3:
 car_positions[i] += 1

 # draw car
 print '-' * car_positions[i]

The code is written imperatively. A functional ver-
sion would be declarative. It would describe what to
do, rather than how to do it.

Use functions
A program can be made more declarative by bundling
pieces of the code into functions.

from random import random

def move_cars():
 for i, _ in enumerate(car_positions):
 if random() > 0.3:
 car_positions[i] += 1

def draw_car(car_position):
 print '-' * car_position

def run_step_of_race():
 global time
 time -= 1
 move_cars()

def draw():
 print ''
 for car_position in car_positions:
 draw_car(car_position)

time = 5
car_positions = [1, 1, 1]

while time:
 run_step_of_race()
 draw()

To understand this program, the reader just reads the
main loop. “If there is time left, run a step of the race
and draw. Check the time again.” If the reader wants
to understand more about what it means to run a step
of the race, or draw, they can read the code in those
functions.

There are no comments anymore. The code describes
itself.

Splitting code into functions is a great, low brain-
power way to make code more readable.

This technique uses functions, but it uses them as sub-
routines. They parcel up code. The code is not functional
in the sense of the guide rope. The functions in the code
use state that was not passed as arguments. They affect
the code around them by changing external variables,
rather than by returning values. To check what a func-
tion really does, the reader must read each line carefully.
If they find an external variable, they must find its origin.
They must see what other functions change that variable.

18  PROGRAMMING

Remove state
This is a functional version of the car race code:

from random import random

def move_cars(car_positions):
 return map(lambda x: x + 1 if random() > 0.3
else x,
 car_positions)

def output_car(car_position):
 return '-' * car_position

def run_step_of_race(state):
 return {'time': state['time'] - 1,
 'car_positions': move_
cars(state['car_positions'])}

def draw(state):
 print ''
 print '\n'.join(map(output_car, state['car_
positions']))

def race(state):
 draw(state)
 if state['time']:
 race(run_step_of_race(state))

race({'time': 5,
 'car_positions': [1, 1, 1]})

The code is still split into functions, but the func-
tions are functional. There are three signs of this. First,
there are no longer any shared variables. time and car_
positions get passed straight into race(). Second,
functions take parameters. Third, no variables are
instantiated inside functions. All data changes are done
with return values. race() recurses3 with the result of
run_step_of_race(). Each time a step generates a new
state, it is passed immediately into the next step.

Now, here are two functions, zero() and one():

def zero(s):
 if s[0] == "0":
 return s[1:]

def one(s):
 if s[0] == "1":
 return s[1:]

zero() takes a string, s. If the first character
is '0', it returns the rest of the string. If it is not, it
returns None, the default return value of Python func-
tions. one() does the same, but for a first character
of '1'.

Imagine a function called rule_sequence(). It
takes a string and a list of rule functions of the form
of zero() and one(). It calls the first rule on the
string. Unless None is returned, it takes the return
value and calls the second rule on it. Unless None is
returned, it takes the return value and calls the third
rule on it. And so forth. If any rule returns None, rule_
sequence() stops and returns None. Otherwise, it
returns the return value of the final rule.

This is some sample input and output:

print rule_sequence('0101', [zero, one, zero])
=> 1

print rule_sequence('0101', [zero, zero])
=> None

This is the imperative version of rule_sequence():

def rule_sequence(s, rules):
 for rule in rules:
 s = rule(s)
 if s == None:
 break

 return s

Exercise 3. The code above uses a loop to do its work.
Make it more declarative by rewriting it as a recursion.

My solution:
def rule_sequence(s, rules):
 if s == None or not rules:
 return s
 else:
 return rule_sequence(rules[0](s),
rules[1:])

  19

Use pipelines
In the previous section, some imperative loops were
rewritten as recursions that called out to auxiliary
functions. In this section, a different type of impera-
tive loop will be rewritten using a technique called a
pipeline.

The loop below performs transformations on
dictionaries that hold the name, incorrect country of
origin, and active status of some bands.

bands = [{'name': 'sunset rubdown', 'country':
'UK', 'active': False},
 {'name': 'women', 'country': 'Germany',
'active': False},
 {'name': 'a silver mt. zion', 'coun-
try': 'Spain', 'active': True}]

def format_bands(bands):
 for band in bands:
 band['country'] = 'Canada'
 band['name'] = band['name'].replace('.',
'')
 band['name'] = band['name'].title()

format_bands(bands)

print bands
=> [{'name': 'Sunset Rubdown', 'active':
False, 'country': 'Canada'},
{'name': 'Women', 'active': False, 'coun-
try': 'Canada' },
{'name': 'A Silver Mt Zion', 'active':
True, 'country': 'Canada'}]

Worries are stirred by the name of the function.
“format” is very vague. Upon closer inspection of
the code, these worries begin to claw. Three things
happen in the same loop. The 'country' key gets set
to 'Canada'. Punctuation is removed from the band
name. The band name gets capitalized. It is hard to tell
what the code is intended to do and whether it does
what it appears to do. The code is hard to reuse, hard
to test, and hard to parallelize.

Compare it with this:

print pipeline_each(bands,
	 [set_canada_as_country,
 strip_punctuation_from_name,
 capitalize_names])

This code is easy to understand. It gives the impres-
sion that the auxiliary functions are functional because
they seem to be chained together. The output from the
previous one comprises the input to the next. If they
are functional, they are easy to verify. They are also
easy to reuse, easy to test, and easy to parallelize.

The job of pipeline_each() is to pass the bands,
one at a time, to a transformation function, like set_
canada_as_country(). After the function has been
applied to all the bands, pipeline_each() bundles up
the transformed bands. Then it passes each one to the
next function.

Let’s look at the transformation functions.

def assoc(_d, key, value):
 from copy import deepcopy
 d = deepcopy(_d)
 d[key] = value
 return d

def set_canada_as_country(band):
 return assoc(band, 'country', "Canada")

def strip_punctuation_from_name(band):
 return assoc(band, 'name', band['name'].
replace('.', ''))

def capitalize_names(band):
 return assoc(band, 'name', band['name'].
title())

Each one associates a key on a band with a new
value. There is no easy way to do this without mutat-
ing the original band. assoc() solves this problem
by using deepcopy() to produce a copy of the passed
dictionary. Each transformation function makes its
modification to the copy and returns that copy.

Everything seems fine. Band dictionary originals
are protected from mutation when a key is associated
with a new value. But there are two other potential
mutations in the code above. In strip_punctuation_
from_name(), the unpunctuated name is generated by
calling replace() on the original name. In capital-
ize_names(), the capitalized name is generated by
calling title() on the original name. If replace() and
title() are not functional, strip_punctuation_from_
name() and capitalize_names() are not functional.

Fortunately, replace() and title() do not
mutate the strings they operate on. This is because
strings are immutable in Python. When, for

20  PROGRAMMING

example, replace() operates on a band name string,
the original band name is copied and replace() is
called on the copy. Phew.

This contrast between the mutability of strings and
dictionaries in Python illustrates the appeal of lan-
guages like Clojure. The programmer need never think
about whether they are mutating data. They aren’t.

Exercise 4. Try to write the pipeline_each function.
Think about the order of operations. The bands in the
array are passed, one band at a time, to the first trans-
formation function. The bands in the resulting array are
passed, one band at a time, to the second transforma-
tion function. And so forth.

My solution:
def pipeline_each(data, fns):
 return reduce(lambda a, x: map(x, a),
 fns,
 data)

All three transformation functions boil down to
making a change to a particular field on the passed
band. call() can be used to abstract that. It takes a
function to apply and the key of the value to apply it
to.

set_canada_as_country = call(lambda x: 'Canada',
'country')
strip_punctuation_from_name = call(lambda x:
x.replace('.', ''), 'name')
capitalize_names = call(str.title, 'name')

print pipeline_each(bands,
		 [set_canada_as_country,
 strip_punctuation_from_name,
 capitalize_names])

Or, if we are willing to sacrifice readability for con-
ciseness, just:

print pipeline_each(bands, [call(lambda x:
'Canada', 'country'),
 call(lambda x:
x.replace('.', ''), 'name'),
 call(str.title,
'name')])

The code for call():

def assoc(_d, key, value):
 from copy import deepcopy
 d = deepcopy(_d)
 d[key] = value
 return d

def call(fn, key):
 def apply_fn(record):
 return assoc(record, key, fn(record.
get(key)))
 return apply_fn

There is a lot going on here. Let’s take it piece by
piece.

One. call() is a higher order function. A higher
order function takes a function as an argument, or
returns a function. Or, like call(), it does both.

Two. apply_fn() looks very similar to the three
transformation functions. It takes a record (a band). It
looks up the value at record[key]. It calls fn on that
value. It assigns the result back to a copy of the record.
It returns the copy.

Three. call() does not do any actual work. apply_
fn(), when called, will do the work. In the example of
using pipeline_each() above, one instance of apply_
fn() will set 'country' to 'Canada' on a passed band.
Another instance will capitalize the name of a passed
band.

Four. When an apply_fn() instance is
run, fn and key will not be in scope. They are neither
arguments to apply_fn(), nor locals inside it. But they
will still be accessible. When a function is defined, it
saves references to the variables it closes over: those
that were defined in a scope outside the function and
that are used inside the function. When the function
is run and its code references a variable, Python looks
up the variable in the locals and in the arguments.
If it doesn’t find it there, it looks in the saved refer-
ences to close over variables. This is where it will find
fn and key.

Five. There is no mention of bands in
the call() code. That is because call() could be used
to generate pipeline functions for any program, regard-
less of topic. Functional programming is partly about
building up a library of generic, reusable, composable
functions.

  21

Good job. Closures, higher order functions and vari-
able scope all covered in the space of a few paragraphs.
Have a nice glass of lemonade.

There is one more piece of band processing to do.
That is to remove everything but the name and coun-
try. extract_name_and_country() can pull that infor-
mation out:

def extract_name_and_country(band):
 plucked_band = {}
 plucked_band['name'] = band['name']
 plucked_band['country'] = band['country']
 return plucked_band

print pipeline_each(bands, [call(lambda x:
'Canada', 'country'),
 call(lambda x:
x.replace('.', ''), 'name'),
 call(str.title,
'name'),
 extract_name_and_
country])

=> [{'name': 'Sunset Rubdown', 'country':
'Canada'},
{'name': 'Women', 'country': 'Canada'},
{'name': 'A Silver Mt Zion', 'country':
'Canada'}]

extract_name_and_country() could have been writ-
ten as a generic function called pluck(). pluck() would
be used like this:

print pipeline_each(bands, [call(lambda x:
'Canada', 'country'),
 call(lambda x:
x.replace('.', ''), 'name'),
 call(str.title,
'name'),
 pluck(['name',
'country'])])

Exercise 5. pluck() takes a list of keys to extract from
each record. Try to write it. It will need to be a higher
order function.

My solution:

def pluck(keys):
 def pluck_fn(record):
 return reduce(lambda a, x: assoc(a, x,
record[x]),
 keys,
 {})
 return pluck_fn

What now?
Functional code coexists very well with code written in
other styles. The transformations in this article can be
applied to any code base in any language. Try applying
them to your own code.

Think of Mary, Isla, and Sam. Turn iterations of lists
into maps and reduces.

Think of the race. Break code into functions. Make
those functions functional. Turn a loop that repeats a
process into a recursion.

Think of the bands. Turn a sequence of operations
into a pipeline. n

Mary Rose Cook writes code, makes music, works at Hacker School
and lives in New York City.

Reprinted with permission of the original author.
First appeared in hn.my/functional (maryrosecook.com)

http://hn.my/functional

22  PROGRAMMING

I recently looked at my Gmail inbox and noticed
that I have well over 50k emails taking up about
12GB of space, but there is no good way to tell

what emails take up space, who I sent them to, who
emails me, etc.

The goal of this tutorial is to load an entire Gmail
inbox into Elasticsearch using bulk indexing and then
start querying the cluster to get a better picture of
what’s going on.

Prerequisites
Set up Elasticsearch [hn.my/esinst] and make sure it’s
running at http://localhost:9200

I use Python and Tornado [tornadoweb.org] for the
scripts to import and query the data. Run pip install
tornado chardet to install Tornado and chardet.

Alright, where do we start?
First, go here [hn.my/dlgmail] and download your
Gmail mailbox. Depending on the amount of emails
you have accumulated, this might take a while.

The downloaded archive is in the mbox format, and
Python provides libraries to work with the mbox
format, so that’s easy.

The overall program will look something like this:

mbox = mailbox.UnixMailbox(open('emails.mbox',
'rb'), email.message_from_file)

for msg in mbox:
 item = convert_msg_to_json(msg)
 upload_item_to_es(item)

print "Done!"

Ok, tell me more about the details
The full Python code is here: hn.my/updatepy

Turn mbox into JSON
First, we’ve got to turn the mbox format messages into
JSON so we can insert it into Elasticsearch. Here is
some sample code [hn.my/mboxjson] that was very
useful when it came to normalizing and cleaning up
the data.

A good first step:

def convert_msg_to_json(msg):
 result = {'parts': []}
 for (k, v) in msg.items():
 result[k.lower()] = v.decode('utf-8',
'ignore')

Additionally, you also want to parse and normalize
the From and To email addresses:

for k in ['to', 'cc', 'bcc']:
 if not result.get(k):
 continue
 emails_split = result[k].replace('\n', '').
replace('\t', '').replace('\r', '').replace(' ',
'').encode('utf8').decode('utf-8', 'ignore').
split(',')
 result[k] = [normalize_email(e) for e in
emails_split]

if "from" in result:
 result['from'] =
normalize_email(result['from'])

By Oliver HARDT

Index Your Gmail Inbox
with Elasticsearch

http://hn.my/esinst
http://tornadoweb.org
http://hn.my/dlgmail
http://hn.my/updatepy
http://hn.my/mboxjson

  23

Elasticsearch expects timestamps to be in microsec-
onds, so let’s convert the date accordingly.

if "date" in result:
 tt = email.utils.parsedate_
tz(result['date'])
 result['date_ts'] = int(calendar.timegm(tt)
- tt[9]) * 1000

We also need to split up and normalize the labels.

labels = []
if "x-gmail-labels" in result:
 labels = [l.strip().lower() for l in
result["x-gmail-labels"].split(',')]
 del result["x-gmail-labels"]
result['labels'] = labels

Email size is also interesting, so let’s break that out.

parts = json_msg.get("parts", [])
json_msg['content_size_total'] = 0
for part in parts:
 json_msg['content_size_total'] += len(part.
get('content', ""))

Index the data with Elasticsearch
The simplest approach is a PUT request per item:

def upload_item_to_es(item):
 es_url = "http://localhost:9200/gmail/
email/%s" % (item['message-id'])
 request = HTTPRequest(es_url, method="PUT",
body=json.dumps(item), request_timeout=10)
 response = yield http_client.fetch(request)
 if not response.code in [200, 201]:
 print "\nfailed to add item %s" %
item['message-id']

However, Elasticsearch provides a better method for
importing large chunks of data: bulk indexing. Instead
of making one HTTP request per document and index-
ing individually, we batch them in chunks of 1000 or
so documents and then index them.

Bulk messages are of the format:

cmd\n
doc\n
cmd\n
doc\n
...

where cmd is the control message for each doc we want
to index. For our example, cmd would look like this:

cmd = {'index': {'_index': 'gmail', '_type':
'email', '_id': item['message-id']}}`

The final code looks something like this:

upload_data = list()
for msg in mbox:
 item = convert_msg_to_json(msg)
 upload_data.append(item)
 if len(upload_data) == 100:
 upload_batch(upload_data)
 upload_data = list()

if upload_data:
 upload_batch(upload_data)

and

def upload_batch(upload_data):

 upload_data_txt = ""
 for item in upload_data:
 cmd = {'index': {'_index': 'gmail', '_
type': 'email', '_id': item['message-id']}}
 upload_data_txt += json.dumps(cmd) +
"\n"
 upload_data_txt += json.dumps(item) +
"\n"

 request = HTTPRequest("http://local-
host:9200/_bulk", method="POST", body=upload_
data_txt, request_timeout=240)
 response = http_client.fetch(request)
 result = json.loads(response.body)
 if 'errors' in result:
 print result['errors']

24  PROGRAMMING

Ok, show me some data!
After indexing all your emails, we can start running
queries.

Filters
If you want to search for emails from the last 6 months,
you can use the range filter and search for gte the cur-
rent time (now) minus 6 months:

curl -XGET 'http://localhost:9200/gmail/email/_
search?pretty' -d '{
"filter": { "range" : { "date_ts" : { "gte":
"now-6M" } } } }
'

or you can filter for all emails from 2014 by
using gte and lt

curl -XGET 'http://localhost:9200/gmail/email/_
search?pretty' -d '{
"filter": { "range" : { "date_ts" : {
"gte": "2013-01-01T00:00:00.000Z", "lt":
"2014-01-01T00:00:00.000Z" } } } }
'

You can also quickly query for certain fields via
the q parameter. This example shows you all your
Amazon shipping info emails:

curl "localhost:9200/gmail/email/_
search?pretty&q=from:ship-confirm@amazon.com"

Aggregation queries
Aggregation queries let us bucket data by a given key
and count the number of messages per bucket. For
example, number of messages grouped by recipient:

curl -XGET 'http://localhost:9200/gmail/email/_
search?pretty&search_type=count' -d '{
"aggs": { "emails": { "terms" : { "field" : "to",
"size": 10 }
} } }
'

Result:

"aggregations" : {
"emails" : {
 "buckets" : [{
 "key" : "noreply@github.com",
 "doc_count" : 1920
 }, { "key" : "oliver@gmail.com",
 "doc_count" : 1326
 }, { "key" : "michael@gmail.com",
 "doc_count" : 263
 }, { "key" : "david@gmail.com",
 "doc_count" : 232
 }
 ...
]
}

This one gives us the number of emails per label:

curl -XGET 'http://localhost:9200/gmail/email/_
search?pretty&search_type=count' -d '{
"aggs": { "labels": { "terms" : { "field" :
"labels", "size": 10 }
} } }
'

Result:

"hits" : {
 "total" : 51794,
},
"aggregations" : {
"labels" : {
 "buckets" : [{
 "key" : "important",
 "doc_count" : 15430
 }, { "key" : "github",
 "doc_count" : 4928
 }, { "key" : "sent",
 "doc_count" : 4285
 }, { "key" : "unread",
 "doc_count" : 510
 },
 ...
]
}

  25

Use a date histogram you can also count how many
emails you sent and received per year:

curl -s "localhost:9200/gmail/email/_
search?pretty&search_type=count" -d '
{ "aggs": {
 "years": {
 "date_histogram": {
 "field": "date_ts", "interval": "year"
}}}}
'

Result:

"aggregations" : {
"years" : {
 "buckets" : [{
 "key_as_string" :
"2004-01-01T00:00:00.000Z",
 "key" : 1072915200000,
 "doc_count" : 585
 }, {
...
 }, {
 "key_as_string" :
"2013-01-01T00:00:00.000Z",
 "key" : 1356998400000,
 "doc_count" : 12832
 }, {
 "key_as_string" :
"2014-01-01T00:00:00.000Z",
 "key" : 1388534400000,
 "doc_count" : 7283
 }]
}

Write aggregation queries to work out how much
you spent on Amazon/Steam:

GET _search
{
 "query": {
 "match_all": {}
 },
 "size": 0,
 "aggs": {
 "group_by_company": {
 "terms": {
 "field": "order_details.merchant"
 },
 "aggs": {
 "total_spent": {
 "sum": {
 "field": "order_details.order_
total"
 }
 },
 "postage": {
 "sum": {
 "field": "order_details.post-
age"
 }
 }
 }
 }
 }
 } n

Oliver Hardt is a software engineer for Bitly where he scales distrib-
uted systems and makes the internet shorter, one link at a time.

Reprinted with permission of the original author.
First appeared in hn.my/els

http://hn.my/els

26  PROGRAMMING

I recently created my own NES
emulator [hn.my/foglenes].
I did it mostly for fun and to

learn about how the NES worked. I
learned some interesting things, so I
wrote this article to share. There is
a lot of documentation already out
there, so this is just meant to high-
light some interesting tidbits.

The CPU
The NES used the MOS 6502 (at
1.79 MHz) as its CPU. The 6502
is an 8-bit microprocessor that was
designed in 1975. (Forty years ago!)
This chip was very popular  —  it
was also used in the Atari 2600
& 800, Apple I & II, Commodore
64, VIC-20, BBC Micro and more.
In fact, a revision of the 6502
(the 65C02) is still in production
today.

The 6502 had relatively few
registers (A, X & Y) and they were
special-purpose registers. However,
its instructions had several address-
ing modes including a “zero page”
mode that could reference the first
256 words ($0000  —  $00FF) in
memory. These opcodes required
fewer bytes in program memory
and fewer CPU cycles during
execution. One way of looking at
this is that a developer can treat

these 256 slots like “registers.”
The 6502 had no multiply or

divide instructions. And, of course,
no floating point. There was a BCD
(Binary Coded Decimal) mode but
this was disabled in the NES ver-
sion of the chip  —  possibly due to
patent concerns.

The 6502 had a 256-byte stack
with no overflow detection.

The 6502 had 151 opcodes (of a
possible 256). The remaining 105
values are illegal/undocumented
opcodes. Many of them crash
the processor. But some of them
perform possibly useful results by
coincidence. As such, many of these
have been given names based on
what they do.

The 6502 had at least one hard-
ware bug, with indirect jumps. JMP
(<addr>) would not work correctly
if <addr> was of the form $xxFF.
When reading two bytes from the
specified address, it would not carry
the FF->00 overflow into the xx.
For example, it would read $10FF
and $1000 instead of $10FF and
$1100.

Memory Map
The 6502 had a 16-bit address
space, so it could reference up to
64KB of memory. But the NES

had just 2KB of RAM at addresses
$0000 to $0800. The rest of the
address space was for accessing the
PPU, the APU, the game cartridge,
input devices, etc.

Some address lines were unwired,
so large blocks of the address space
actually mirror other addresses. For
example, $1000 to $1800 mir-
rors the RAM at $0000 to $0800.
Writing to $1000 is equivalent to
writing to $0000.

The PPU (Picture Processing
Unit)
The PPU generated the video
output for the NES. Unlike the
CPU, the PPU chip was specially-
built for the NES. The PPU ran at
3x the frequency of the CPU. Each
cycle of the PPU output one pixel
while rendering.

The PPU could render a back-
ground layer and up to 64 sprites.
Sprites could be 8x8 or 8x16 pixels.
The background could be scrolled
in both the X and Y axis. It sup-
ported “fine” scrolling (one pixel at
a time). This was kind of a big deal
back then.

Both the background and sprites
were made from 8x8 tiles. Pat-
tern tables in the cartridge ROM
defined these tiles. The patterns

By Michael Fogleman

I Made an NES Emulator
Here’s What I Learned About the Original Nintendo

http://hn.my/foglenes

  27

only specified two bits of the color.
The other two bits came from
an attribute table. A nametable
specified which tiles go where in
the background. All in all, it seems
convoluted compared to today’s
standards. I had to explain to my
coworker that it wasn’t “just a
bitmap.”

The background was made up
of 32 x 30 = 960 of these 8x8 tiles.
Scrolling was implemented by ren-
dering more than one of these 32 x
30 backgrounds, each with an offset.
If scrolling in both the X and Y axis,
up to four of these backgrounds
could become visible. However, the
NES only supported two, so differ-
ent mirroring modes were used for
horizontal or vertical mirroring.

The PPU contained 256 bytes
of OAM  —  Object Attribute
Memory  —  that stored the sprite
attributes for all 64 sprites. The
attributes include the X and Y
coordinate of the sprite, the tile
number for the sprite and a set of
flags that specified two bits of the
sprite’s color, specified whether the
sprite appears in front of or behind
the background layer, and allowed
flipping the sprite vertically and/
or horizontally. The NES supported
a DMA copy from the CPU to
quickly copy a chunk of 256 bytes
to the entire OAM. This direct
access was about four times faster
than manually copying the bytes.

Although the PPU supported 64
sprites, only 8 could be shown on
a single scan line. An overflow flag
would be set so that the program
could handle a situation with too
many sprites on one line. This is
why the sprites flicker when there
is a lot of stuff going on in the
game. Also, there was a hardware
bug that caused the overflow flag to
sometimes not work properly.

Many games would make
changes mid-frame so that the PPU
would do one thing for one part of
the screen and something else for
the other  —  often used for split
scrolling or rendering a score bar.
This required precise timing and
knowing exactly how many CPU
cycles each instruction used. Things
like this make emulation hard.

The PPU had a primitive form
of collision detection  —  if the first
(zeroth) sprite intersected the back-
ground, a flag would be set indicat-
ing a “sprite zero hit.” Only one
such hit could occur per frame.

The NES had a built-in palette of
54 distinct colors  —  these were the
only colors available. It wasn’t RGB;
the colors in the palette basically
spit out a particular chroma and
luminance signal to the TV.

The APU (Audio Processing Unit)
The APU supported two square
wave channels, a triangle wave
channel, a noise channel, and a
delta modulation channel.

To play sounds, the game pro-
gram would write to specific regis-
ters to configure these channels.

The square wave channels sup-
ported frequency and duration con-
trol, frequency sweeps, and volume
envelopes.

The noise channel used a linear
feedback shift register to generate
pseudo-random noise.

The delta modulation channel
could play samples from memory.
The SMB3 music has a metal drum
sound that used the DMC. TMNT3
had voices like “cowabunga” that
used the DMC.

Mappers
The address space reserved for the
cartridge restricted games to 32KB
of program memory and 8KB of

character memory (pattern tables).
This was pretty limiting, so people
got creative and implemented
mappers.

A mapper is hardware on the car-
tridge itself that can perform bank
switching to swap new program or
character memory into the address-
able memory space. The program
could control this bank switching
by writing to specific addresses that
pointed to the mapper hardware.

Different game cartridges imple-
mented this bank switching in
different ways, so there are dozens
of different mappers. Just as an
emulator must emulate the NES
hardware, it must also emulate the
cartridge mappers. However, about
90% of all NES games use one of
the six most common mappers.

ROM Files
An .nes ROM file contains the pro-
gram memory banks and character
memory banks from the cartridge.
It has a small header that specifies
what mapper the game used and
what video mirroring mode it used.
It also specifies whether battery-
backed RAM was present on the
cartridge.

Conclusion
I wrote my emulator in Go using
OpenGL + GLFW for video and
PortAudio for audio. The code is
all on GitHub, so check it out:
hn.my/foglenes n

Michael is obsessed with programming. If
he's not doing it, he's probably thinking
about it. His GitHub portfolio is overflow-
ing with random side projects. Somehow,
he still has time for other hobbies and
interests, including gardening, running,
space exploration, listening to 80s music
and playing with his two little kids.

Reprinted with permission of the original author.
First appeared in hn.my/nes

http://hn.my/foglenes
http://hn.my/nes

28  PROGRAMMING

By John Fuex

Welcome to geezer town, junior.
While researching my recent article,
“Age discrimination and Program-
ming Jobs,” I discovered a 1998
Op-Ed piece from The New York
Times that cited some startling
statistics from the NSF and Census
bureau about the longevity of a
software engineering career.

[S]ix years after finishing college,
57 percent of computer science
graduates are working as program-
mers; at 15 years the figure drops
to 34 percent, and at 20 years —
when most are still only in their
early 40’s — it is down to 19
percent. In contrast, the figures for
civil engineering are 61 percent, 52
percent, and 52 percent.

 I find the defensive tone of
the article and the use of dubious
sampling of only computer science
graduates to support its conclu-
sion undermines its credibility. In
a lot of ways, the Government has
been very slow to grok the software
engineering trade. In this study it
completely ignores the significant
number of working programmers
who either earned their degree in
another discipline or never finished
college.

 Still, smart money seems to
concur that the software engineer
depreciates only slightly more
slowly than the machine he or she
toils behind as exemplified in this
1996 comment from Craig Barrett,

then President and Co-founder of
Intel.

The half-life of an engineer, soft-
ware or hardware, is only a few
years.

Sure, the guy’s a suit, but more
importantly he was (at the time) a
57 year old former engineer pub-
licly reinforcing the discriminatory
notion of expiration dates on other
engineers. It’s scary as hell to think
that such an influential industry
insider thinks that a programming
career is roughly the same as a pro-
fessional basketball player’s.

 My take on the issue
Considerable accusatory ink has
been dedicated to the age discrimi-
nation problem in technology, but
I suspect it may be an inevitable
consequence of the rapid pace of
change that defines this field.

Consider the following:

■■ The market value of an employee
is primarily determined by expe-
rience in technologies relevant to
the employer.

■■ Software engineering reliably
undergoes a major technology
shift at least every 10 years.

■■ While a technology shift doesn’t
completely negate the skills of
veterans, it certainly levels the
playing field for recent grads.

Now put yourself in the shoes
of a prospective hiring manager
using a newer technology like Ruby
on Rails for which nobody other
than David Heinemeier has more
than about 5 years of experience.
Sure, that extra 10 years of C++
experience is a positive differentia-
tor for the veteran over the upstart
with the same 3 years of Rails
experience. All things equal you’d
naturally hire the guy with more
total experience.

However, all things are NOT
equal. Those 10 years of C++ expe-
rience made the veteran candidate
progressively more expensive as
they leveraged the value of that
experience in jobs requiring C++.
The problem is that the marginal
utility of that extra experience
must exceed the marginal cost of
hiring the veteran to justify paying
the premium.

Herein is the source of the prob-
lem. The more irrelevant experi-
ence a candidate has, the more
lopsided the utility/value equation
becomes, and this presumes that
the manager even has the luxury of
paying extra to get that experience.

Even if the veteran prices himself
competitively with a younger can-
didate, the hiring manager has to
consider the implications of bring-
ing in someone taking a big pay cut.
Will they have morale issues from
day one? Are they going to change
their mind after a month that they

Programmers:
Before You Turn 40, Get a Plan B

  29

really do need that extra cash and
leave? It’s a sticky situation.

The unfortunate truth is that
unlike other forms of discrimina-
tion that are more arbitrary and
capricious, age discrimination
can often be a result of objective
and sound business justifications.
I’m not trying to justify it as an
acceptable practice, but just trying
to describe the pickle it puts the
manager in trying to make a sound
business decision without compro-
mising the ethical and legal obliga-
tions of the company.

So what’s your plan B?
Assuming you aren’t fabulously
wealthy, accepted to clown college,
or the fatal victim of a Red-bull
induced heart attack by 40, a miti-
gation strategy is in order. Here are
some viable options.

Work for the one person who
would never discriminate against
you.
No. Not your mother. You! If you
aren’t the entrepreneurial type,
consider a consultancy. For some
reason that I don’t completely get,
a little gray hair and a smattering
of experience in different technolo-
gies can create a beneficial bias for
companies when they are renting
brains instead of buying them out-
right. It may have something to do
with the tendency for consultants
to be vetted from higher up in the
management chain where the silver
foxes live.

Give in to the dark side and go into
management.
I’d argue that a career in program-
ming does precious little to prepare
someone for management, but
clearly management thinks that
everyone including technologists
harbors a deep longing to “graduate”

into their ranks. I think it a fal-
lacy that no one would continue
to design and build software for
20 years unless they had no ambi-
tion or growth potential. However,
people like me that respect such
dedication to the craft are in the
minority. Maybe it is best to just
stop fighting it, but consider the
following before taking the plunge:

■■ Mid-level managers often make
very little more, if not the same
as high level engineers.

■■ It gets progressively harder to
keep up with new technology
because you don’t work directly
with it.

■■ Meetings, politics, and dealing
with unrealistic requests will
pretty much become your life.

■■ You may try to avoid it, but
management-speak will creep
into your vocabulary (did you
notice my “paradigm” comment
earlier?)

■■ Even when it isn’t your fault, it’s
your fault.

■■ Even when you make it succeed,
your team should get the credit.

■■ Being the wunderkind as a tech-
nologist is much easier to do in
technology than management,
you’ll have to check your ego at
the door.

■■ You will be forced to make
decisions that affect people’s
personal life (pay, bonus, firing,
etc.), and this is hard to stomach
sometimes.

■■ It is very empowering, enjoy-
able to be able to set the agenda
and sometimes say, “No. We ain’t
doing that shit.”

■■ Computers are predictable,
people are complicated. You will
eventually fantasize about robot
employees.

■■ Mentoring can be very rewarding,
but also very challenging.

The most difficult thing in the
world is to know how to do a thing
and to watch someone else do it
wrong without comment.
– Theodore H. White.

You’ve got a cash cow, milk that
sucker!
I know you love programming
because you like technology, so this
may go against your very nature,
but no one says you’ve got to jump
every time some snot-nosed kid
invents a new way to run byte-code.
You have invested a lot of time
and energy mastering the technol-
ogy you use, and your experience
differentiates you. Money fol-
lows scarcity, and snow-birding
on an older technology, if you can
stomach it, may just be the way
to protect your earning potential.
The industry turns on a dime, but
is slow to retire proven technology.
It is highly likely that you will still
be able to earn some decent coin in
the technology you know and love
even after a few decades. n

John Fuex is a software development
manager and product manager with 25
years of experience spanning all phases of
software development. He currently works
in Austin Texas specializing in eDiscovery
technology and process automation to
enable federal agencies to more efficiently
handle large data collections for litigation
or administrative document reviews.

Reprinted with permission of the original author.
First appeared in hn.my/planb (improvingsoftware.com)

30  PROGRAMMING

By Larry GADEA

You might have tried a
service like the now
defunct OnLive. Though

personally I’ve played and beat
many AAA games on the service, it
unfortunately a) had a very lim-
ited selection and b) is now gone.
I also have a bunch of games on
Steam that I’ve played using my
eGPU. With the new Macbook
though, I won’t be able to continue
my low-end-laptop but high-end
gaming extravaganza since there’s
no Thunderbolt. So why am I not
concerned? Steam recently intro-
duced In-Home Streaming, which
basically creates a mini-OnLive in
your own home with all the same
Steam games I played with my
eGPU. But… let’s do it over the
Internet!

Cost
Playing games this way is actu-
ally quite economical — especially
when comparing to purchasing a
full-on gaming rig. Here are the
costs you’ll need to consider:

■■ GPU Instance runs about $0.11/
hr (on a Spot instance, regularly
around $0.70/hr)

■■ Data transfer will be around
$0.09/GB, and at a sustained
~10mbit, it’ll cost you $0.41/hr
(4.5GB/hr)

■■ Hard drive (EBS General Purpose
SSD) storage of 100GB is $12.00/
mo, or a bit under $0.02/hr

This comes out to around $0.54/
hr. Not bad: for the cost of a $1000
gaming PC, you get ~1900 hours on
much higher-end hardware!

The catch?
This is all fun and games, but you
need to make sure of two things:

1.	 You are within 40ms to the
closest AWS datacenter and has
GPU instances

2.	 You have at least a 10mbit con-
nection and it’s unmetered

Setting it up
1.	 On AWS, create a new EC2

instance. Use these settings:

Base image should be Micro-
soft Windows Server 2012 R2
Base (since Windows still has
all the best games)

Use a g2.2xlarge instance (to
get an NVIDIA GRID K520
graphics card). There is no
point using any larger instances
since all they do is just give you
more GPUs you can’t use.

Use a Spot instance — it’s
significantly cheaper (1/7th
the regular cost) than regular
instances

For storage, I recommend at
least 100GB (so you can install
lots of fancy games)

Also for storage if you’re using
spot instances, make sure
your primary disk doesn’t get
deleted on termination

Run Your Own High-End
Cloud Gaming Service on EC2

How to use EC2 GPU machines + Steam In-Home
Streaming + a VPN to play AAA titles on a shitty laptop

  31

For the Security Group, I’d rec-
ommend just adding type All
traffic

Finally, for the key pair, create a
new one since you’ll need one
for Windows (to retrieve the
password)

2.	 Once your spot instance is
assigned, use Microsoft Remote
Desktop to connect to it. The
username is Administrator and
the password you’ll need
to retrieve from the EC2 Con-
sole. Once inside, make sure to
install TightVNC server and
use Screen Sharing (or alterna-
tively Screens which has better
clipboard handling) to connect
to the server. VNC is neces-
sary so that the server uses the
proper video card for rendering.

3.	 Install the NVIDIA K520 driv-
ers from the Nvidia website

4.	 In order to make it actually use
the video card, you’ll need to
completely remove the default
driver. Open up Device Man-
ager, and a) disable the Micro-
soft Basic Display Adapter,
b) uninstall it and c) delete
the driver file C:\Windows\
System32\Drivers\BasicDis-
play.sys. Reboot and VNC
back in.

5.	 Start the Windows Audio Ser-
vice as per the instructions here
[hn.my/winaud]. Also, since
you’re on EC2, those machines
do not virtualize a sound card.
Install VB-Cable so you can
get sound. Alternatively, you
can install the more commer-
cial Razer Surround to simulate
5.1 — it’s pretty cool.

6.	 Install OpenVPN via the instruc-
tions here [hn.my/openvpnwin].
Make sure to use the TAP
interface so Steam’s multicast
discovery gets forwarded. I
personally use TunnelBlick [hn.
my/tunnelblick] on my Mac as
the client. You can alternatively
use Hamachi [hn.my/hamachi]
for both the server and client
which is easier to set up, but I
prefer to use non-commercial
products. I was unable to get the
built-in Windows VPN to work
with multicast.

7.	 Install Steam and get yourself
on the Beta channel (available
in the preferences). Also, start
downloading whatever games
you’ll want to stream. On your
own Steam installation, make
sure to turn on Hardware
Decoding in the Steam set-
tings. I also recommend turn-
ing on Display Performance
Information.

8.	 Start gamin!

Performance
While playing, make sure to hit F6
to see the latency graph. Anything
above 50ms will make the delay
somewhat noticeable, though I’ve
played with delays up to 100ms. It
just takes some getting used to and
before you know it you won’t even
know you’re streaming your games
from a computer far, far away.

One other thing you should do
is hit F8 while playing (note that
sometimes this will cause the client
to crash, but the file will still get
written). F6 will do a dump of stats
in the C:\Program Files (x86)\
Steam\logs\streaming_log.txt file
on the server. Open it up to see
detailed latency timings. Here’s an
example of the interesting lines:

"AvgPingMS"
"11.066625595092773"

"AvgCaptureMS"
"4.555628776550293"
"AvgConvertMS"
"0.023172963410615921"
"AvgEncodeMS"
"5.5545558929443359"
"AvgNetworkMS"
"7.0888233184814453"
"AvgDecodeMS"
"3.7478375434875488"
"AvgDisplayMS"
"6.3670969009399414"

"AvgFrameMS"
"27.798770904541016"
"AvgFPS"
"57.622333526611328"

Unfortunately Steam doesn’t
support pulling the video from
the H264 encoder on the GRID’s
NvFBC (which would reduce
AvgEncodeMS a bunch). If you
were running a GTX video card
locally, this is one thing that’d make
it faster than using EC2 (in addition
to largely decreasing NetworkMS).

Summary
If you have a) a fast internet con-
nection and b) you’re near an AWS
datacenter with GPU instances, in
my opinion, this is actually quite
practical. Not only performance-
wise, but it’s also quite economical.

Happy gaming! n

Larry is the founder of Envoy, an iPad-
based visitor logbook for businesses. To
blow off steam, Larry also loves tinkering
with other bleeding-edge things like cloud
gaming. He gets 6ms to the closest AWS
datacenter.

Reprinted with permission of the original author.
First appeared in hn.my/cloudgaming (lg.io)

http://hn.my/winaud
http://hn.my/openvpnwin
http://hn.my/tunnelblick
http://hn.my/tunnelblick
http://hn.my/hamachi
http://hn.my/cloudgaming

32  SPECIAL

SPECIAL

By Chet Bolingbroke

Shadowforge
John D. Carmack
(developer); Nite Owl
Productions (publisher)
Released 1989 or 1990
for the Apple II.
Date Started: 4 April 2015
Date Ended: 4 April 2015
Total Hours: 2
Reload Count: 0
Difficulty: Easy (2/5)
Final Rating: 20
Ranking at Time of
Posting: 42/181 (23%)

In preparation for this posting,
I read the first few chapters
of David Kushner’s Masters

of Doom, and I was struck by the
similarities I found between me and
John Carmack. We’re both about
the same age, both nerdy and intro-
verted as youths, more at home in
front of computers than with other
people. Our parents were both
divorced at about the same age. We
both experimented with burglary as
teenagers (he was caught; I wasn’t).
We both got horrible grades in high
school despite having the intelli-
gence to do better. In our late teens,
we both tried to break out of our

“nerd” roles by investing more in
physical fitness (Carmack studied
judo; I joined the Army Reserves).
And we both dropped out of col-
lege, made some of the most iconic
video games of the 1990s, and
became multimillionaires. Okay,
that last part may have just been
him.

From Kushner’s account, Car-
mack got out of a year in juvenile
detention in 1986 or 1987, was
given an Apple II by his parents,
and got to work on Shadowforge,
his first game. Although admit-
tedly based on the look and feel of
the early Ultima titles, he pro-
grammed it from scratch and sold

the completed game
to Night Owl Produc-
tions, “a mom “n” pop
publisher that made
most of its income from
manufacturing camera
batteries,” for $1000.
He used the money to
purchase an Apple IIgs
and used it to write his
second game, Wraith:
The Devil’s Demise, after
he’d dropped out of the
University of Kansas. He

used his developing programming
skills to get a contract with Softdisk
of Shreveport, Louisiana, and the
result was the Dark Designs trilogy.

We, of course, have already had
a look at Dark Designs I and Dark
Designs II, both released in 1990.
But some production issues at
Night Owl also delayed the release
of his first two games until 1989
and 1990. I naturally should have
played them first. Rather than
compound the error now by look-
ing only at Wraith, I decided to
reach back to 1989 and call up
Shadowforge first.

Shadowforge
John Carmack’s First Game

  33

Shadowforge feels like exactly
what it is: a first game from a
teenaged developer who grew up
schooled on Ultima. It’s so small
that the only disk image I’ve been
able to find also has half a dozen
other games on it.

The game takes place in the
town of Jaterus, which is being
threatened by an evil mage named
Greymere Shadowsender. Grey-
mere’s newly-constructed Shadow-
forge has given him unprecedented
power, and the town needs a hero
to descend into Greymere’s three-
level dungeon and destroy the
device.

 There’s no character creation
except designating a name. Each
adventurer starts with 25 hit points,
0 experience, 100 gold, two potions,
and has only his hands and skin for
defense. Jaterus has an armorer, a
weaponsmith, a tavern, a bowyer,
an inn, a temple selling healing
potions, and a casino hidden behind
a secret door. You can bet 50 gold
pieces on craps there; odds seem
about 50/50.

There are miscellaneous NPCs
running all over town, and one
key difference between this game
and Ultima is that you can’t talk to
any of them. You can’t attack them,
either; they really serve no purpose
at all. The only “dialogue,” as such,
comes from tipping the bartender,

who provides a handful of hints for
the quest ahead.

 The armorer, weaponsmith, and
bowyer each offer 3 or 4 items
escalating in price and quality. As
you enter the dungeon (which is
right off the city; there’s no outdoor
area), you start to encounter gob-
lins, ogres, and such. Killing them
gives you experience and gold,
which you spend on better equip-
ment and a stock of healing potions.

 That’s about all there is to it. At
first, your expeditions to the dun-
geon are short, but once you get the
best equipment and can carry more
than a dozen potions at a time, they
last a lot longer. Cleared rooms
remain clear while you’re still in
the dungeon, but they respawn
when you leave and return.

None of the three levels is ter-
ribly large. Although there are no
special encounters or treasures to
find, Carmack does make use of
the walls and textures to create
“scenes,” often with large letters
giving some kind of room title like
LABORATORY or GOBLIN BAR-
RACKS. This shows a clear Ultima
II influence.

 You get a new level for every
100 experience points, and each
one comes with another 3 or 4
maximum hit points. Resting in the
hotel restores maximum hit points;
potions convey only 1-12 per gulp.

Combat consists of hitting (S)
hoot if you see enemies from a dis-
tance and (F)ight if they’re adjacent
to you. There aren’t many tactics
except to take care that you don’t
blunder into foes. You can make
some limited use of the terrain to
make sure you don’t get attacked
by more than one foe at once. Foes
that have missile weapons have
no melee capability, so the best
approach to them is to close the
distance and start whacking. There
is no magic in the game.

 There are a few secret doors in
the dungeon, signaled by subtle
breaks in the wall pattern. Behind
these, you can find special encoun-
ters with “merchants” who provide
special items. I got a suit of “water
walking” armor this way, along with
a “light blade.” I needed the former
to get to the stairs from Level 2 to

A dungeon scene from Shadowforge.
I’m about to fire a bow at one of two
enemies.

I fight an elder demon in melee combat
on the way to the Shadowforge.

34  SPECIAL

Level 3, and the latter to destroy
the Shadowforge. There was appar-
ently a magic bow somewhere, but
I didn’t find it.

The introductory text warns you
not to confront Greymere directly,
“since he can kill even an experi-
enced adventurer with only a few
spells,” but when I ran into him on
the third level, I was able to kill
him in a few hits.

 That kind of rendered the rest
of the quest moot, I thought, but
I kept exploring until I found the
Shadowforge and hacked it to
destruction.

In my version of the game, the
endgame text shilled Wraith,
meaning this is either a slightly
later version or Night Owl didn’t
publish the original until they
had Wraith in hand.

 Overall, it was pretty easy. I
didn’t die once, and it took less than
two hours to win. The game does
allow you to save, and it autosaves
every time you enter a new area.
Death has you resurrected in the
town’s temple with a slight loss in
experience, only 5 gold pieces, and
no potions.

It’s a promising game, certainly
impressive for someone who was
in his mid-teens when he wrote
it. It showed that he was capable
of whipping up a functional game
engine that could serve as a basis
for a more complicated experi-
ence, which he essentially offered
in Wraith. Compared to other
1989-1990 games, particularly com-
mercial titles, it doesn’t offer much.
It gets 1s, 2s, and 3s across the
board in the GIMLET — its best
categories are “Economy,” “Inter-
face,” and “Gameplay” — culminat-
ing in a total score of 20. n

Chet Bolingbroke is a blogger working
his way through 40 years of computer
role-playing games on his blog, “The
CRPG Addict.” He is 42 years old and lives
in Salem, Massachusetts with his patient
wife, Irene.

Reprinted with permission of the original author.
First appeared in hn.my/shadowforge (crpgaddict.blogspot.jp)

http://hn.my/shadowforge

  35

By Paul Graham

What Doesn’t Seem
Like Work?

My father is a math-
ematician. For most
of my childhood he

worked for Westinghouse, model-
ling nuclear reactors.

He was one of those lucky people
who know early on what they want
to do. When you talk to him about
his childhood, there’s a clear water-
shed at about age 12, when he “got
interested in maths.” He grew up in
the small Welsh seacoast town of
Pwllheli. As we retraced his walk to
school on Google Street View, he
said that it had been nice growing
up in the country.

“Didn’t it get boring when you
got to be about 15?” I asked.

“No,” he said, “by then I was
interested in maths.”

In another conversation he told
me that what he really liked was
solving problems. To me the exer-
cises at the end of each chapter in
a math textbook represent work,
or at best a way to reinforce what
you learned in that chapter. To him
the problems were the reward.
The text of each chapter was just
some advice about solving them.
He said that as soon as he got a new

textbook he’d immediately work
out all the problems — to the slight
annoyance of his teacher, since the
class was supposed to work through
the book gradually.

Few people know so early or
so certainly what they want to
work on. But talking to my father
reminded me of a heuristic the rest
of us can use. If something that
seems like work to other people
doesn’t seem like work to you,
that’s something you’re well suited
for. For example, a lot of program-
mers I know, including me, actually
like debugging. It’s not something
people tend to volunteer; one likes
it the way one likes popping zits.
But you may have to like debugging
to like programming, considering
the degree to which programming
consists of it.

The stranger your tastes seem to
other people, the stronger evidence
they probably are of what you
should do. When I was in college I
used to write papers for my friends.
It was quite interesting to write a
paper for a class I wasn’t taking.
Plus they were always so relieved.

It seemed curious that the same
task could be painful to one person
and pleasant to another, but I
didn’t realize at the time what this
imbalance implied, because I wasn’t
looking for it. I didn’t realize how
hard it can be to decide what you
should work on, and that you some-
times have to figure it out from
subtle clues, like a detective solving
a case in a mystery novel. So I bet
it would help a lot of people to ask
themselves about this explicitly.
What seems like work to other
people that doesn’t seem like work
to you? n

Paul Graham is a programmer, writer,
and investor. He co-founded Viaweb and
Y Combinator. He is the author of On Lisp
(1993), ANSI Common Lisp (1995), and
Hackers & Painters (2004).

Reprinted with permission of the original author.
First appeared in hn.my/work (paulgraham.com)

http://hn.my/work

36  SPECIAL

Join the
DuckDuckGo
Open Source
Community.

Create Instant Answers
or share ideas and help
change the future of search.

Featured IA: Regex Contributor: mintsoft
Get started at duckduckhack.com

http://duckduckhack.com

  37

Join the
DuckDuckGo
Open Source
Community.

Create Instant Answers
or share ideas and help
change the future of search.

Featured IA: Regex Contributor: mintsoft
Get started at duckduckhack.com

http://duckduckhack.com
http://www.hostedgraphite.com

http://pivotaltracker.com

	FEATURES
	Replacing Photoshop With NSString
	Why (and How) I Wrote My Academic Book in Plain Text

	PROGRAMMING
	A Practical Introduction to Functional Programming
	Index Your Gmail Inbox with Elasticsearch
	I Made an NES Emulator
	Programmers:
Before You Turn 40, Get a Plan B
	Run Your Own High-End Cloud Gaming Service on EC2

	SPECIAL
	Shadowforge
	What Doesn’t Seem Like Work?

