

1.	 Introduction
2.	 Special	syntactic	rules
3.	 Supported	Core	forms
4.	 Supported	macro	forms
5.	 Common	Lisp	inspired	macros
6.	 Older	Scheme	inspired	macros
7.	 Patterns
8.	 Guards
9.	 Comments	in	Function	Definitions
10.	 Bindings	and	Scoping
11.	 Function	shadowing
12.	 Module	definition
13.	 Parameterized	modules
14.	 Macros
15.	 Comments	in	Macro	Definitions
16.	 Extended	cond
17.	 Records
18.	 Binaries/bitstrings
19.	 Maps
20.	 List/binary	comprehensions
21.	 ETS	and	Mnesia
22.	 Query	List	Comprehensions
23.	 Predefined	LFE	functions

Table	of	Contents

2

This	Gitbook	(available	here)	is	a	conversion	of	Robert	Virding's	LFE	User	Guide.

You	will	see	code	blocks	in	this	book	surrounded	by	double	curly	braces,
	{{	...	}}	.	This	typographic	convention	is	used	to	denote	optional	syntax.

LFE	Reference	Guide

Introduction

Formatting	Note

3

http://lfe.gitbooks.io/reference-guide/
https://github.com/rvirding/lfe/blob/develop/doc/user_guide.txt

Syntax Definition

	#b	,		#o	,		#d	,		#x	,	and		#23r	 Based	integers

	#(e	e	...)	 Tuple	constants

	#b(e	e	...)	 Binary	constants,		e		...	are	valid	literals	segments

	#m(k	v	...)	 Map	constants,		k			v		are	keys	and	values

	[...]	 Allowed	as	alternative	to		(...)	

Special	syntactic	rules

4

	(quote	e)	

	(cons	head	tail)	

	(car	e)	

	(cdr	e)	

	(list	e	...)	

	(tuple	e	...)	

	(binary	seg	...)	

	(map	key	val	...)	,		(map-get	m	k)	,		(map-set	m	k	v	...)	,		(map-update	m	k	v	...)	

(lambda	(arg	...)	...)

		(match-lambda

				((arg	...)	{{(when	e	...)}}	...)	;	Matches	clauses

				...)

(let	((pat	{{(when	e	...)}}	e)

						...)

		...)

(let-function	((name	lambda|match-lambda)	;	Only	define	local

															...)																						;	functions

		...)

(letrec-function	((name	lambda|match-lambda)	;	Only	define	local

																		...)																						;	functions

		...)

(let-macro	((name	lambda-match-lambda)	;	Only	define	local

												...)																							;	macros

		...)

	(progn	...)	

	(if	test	true-expr	{{false-expr}})	

(case	e

		(pat	{{(when	e	...)}}	...)

			...))

(receive

		(pat	{{(when	e	...)}}	...)

		...

		(after	timeout	...))

	(catch	...)	

(try

		e

		{{(case	((pat	{{(when	e	...)}}	...)

										...))}}

		{{(catch

					;	Next	must	be	tuple	of	length	3!

Supported	Core	forms

5

					(((tuple	type	value	ignore)	{{(when	e	...)}}

						...)

					...)}}

		{{(after	...)}})

	(funcall	func	arg	...)	

	(call	mod	func	arg	...)		-	Call	to	Erlang		Mod:Func(Arg,	...)	
	(define-module	name	declaration	...)	

	(extend-module	declaration	...)		-	Define/extend	module	and	declarations.
	(define-function	name	lambda|match-lambda)	

	(define-macro	name	lambda|match-lambda)		-	Define	functions/macros	at	top-level.

6

Form Notes

	(:	mod	func	arg	...)	 Expands	to		(call	'mod	'func	arg	...)	

	(mod:func	arg	...)	 Expands	to		(call	'mod	'func	arg	...)	

	(?	{{timeout	{{default}}	}})	 Receive	next	message,	optional	timeout	and	default	value

	(++	...)	 List	concatenation	(as	in	Erlang		++)

	(list*	...)	

	(let*	(...)	...)	 Sequential	let's

	(flet	((name	(arg	...)	...)

...)	...)	

	(flet*	(...)	...)	 Sequential		flet	's

	(fletrec	((name	(arg	...)	...)

...)	...)	

Define	local	functions,	this	will	expand	to	lambda	or	match-lambda	depending	on
structure	as	with	defun.

	(cond	...)	 The	normal	cond,	with		(?=	pat	expr)	

	(andalso	...)	

	(orelse	...)	

	(fun	func	arity)	 Erlang		fun	func/arity	

	(fun	mod	func	arity)	 Erlang		fun	mod:func/arity	

	(lc	(qual	...)	...)	 Erlang		[expr	||	qual	...]	

	(bc	(qual	...)	...)	 Erlang		<<	expr	||	qual	...	>>	

	(match-spec	...)	 Erlang		ets:fun2ms(fun	()	->	end)	

Supported	macro	forms

7

Define	a	top-level	function:

(defun	name	(arg	...)	...)

Define	a	toplevel	function	with	pattern-matching	arguments;	this	will	expand	to	lambda	or	match-lambda	depending	on
structure:

(defun	name

		((argpat	...)	...)

		...)

Define	a	top-level	macro:

(defmacro	name	(arg	...)	...)

(defmacro	name	arg	...)

Define	a	top-level	macro	with	pattern-matching	arguments;	this	will	expand	to	lambda	or	match-lambda	depending	on
structure:

(defmacro	name

		((argpat	...)	...)

		...)

Define	a	top-level	macro	using	Scheme	inspired	syntax-rules	format.

(defsyntax	name

		(pat	exp)

		...)

Define	local	macros	in	macro	or	syntax-rule	format:

(macrolet	((name	(arg	...)	...)

											...)

		...)

(syntaxlet	((name	(pat	exp)	...)

												...)

		...)

Like	their	CL	counterparts:

(prog1	...)

(prog2	...)

Common	Lisp-inspired	macros

8

Define	an	Erlang	LFE	module:

(defmodule	name	...)

Define	an	Erlang	LFE	record:

(defrecord	name	...)

9

(define	(name	arg	...)	...)

(define	name	lambda|match-lambda)

(define-syntax	name

		(syntax-rules	(pat	exp)	...)|(macro	(pat	body)	...))

(let-syntax	((name	...)

													...)

		...)

(begin	...)

(define-record	name	...)

Older	Scheme-inspired	macros

10

Written	as	normal	data	expressions	where	symbols	are	variables	and	use	quote	to	match	explicit	values.	Binaries	and
tuples	have	special	syntax.

Erlang LFE

	{ok,X}	 	(tuple	'ok	x)	

	error	 	'error	

	{yes,[X|Xs]}	 	(tuple	'yes	(cons	x	xs))	

	<<34,F/float>>	 	(binary	34	(f	float))	

	[P|Ps]=All	 	(=	(cons	p	ps)	all)	

Repeated	variables	are	NOT	supported	in	patterns,	there	is	no	automatic	comparison	of	values.	It	must	explicitly	be	done	in
a	guard.

	_		as	the	"don't	care"	variable	is	supported.	This	means	that	the	symbol		_	,	which	is	a	perfectly	valid	symbol,	can	never	be
bound	through	pattern	matching.

Aliases	are	defined	with	the		(=	pattern1	pattern2)		pattern.	As	in	Erlang	patterns	they	can	be	used	anywhere	in	a	pattern.

CAVEAT:	The	lint	pass	of	the	compiler	checks	for	aliases	and	if	they	are	possible	to	match.	If	not	an	error	is	flagged.	This	is
not	the	best	way.	Instead	there	should	be	a	warning	and	the	offending	clause	removed,	but	later	passes	of	the	compiler
can't	handle	this	yet.

Patterns

11

Wherever	a	pattern	occurs	(let	,		case	,		receive	,		lc	,	etc.)	it	can	be	followed	by	an	optional	guard	which	has	the	form
	(when	test	...)	.	Guard	tests	are	the	same	as	in	vanilla	Erlang	and	can	contain	the	following	guard	expressions:

	(quote	e)	

	(cons	gexpr	gexpr)	

	(car	gexpr)	

	(cdr	gexpr)	

	(list	gexpr	...)	

	(tuple	gexpr	...)	

	(binary	...)	

	(progn	gtest	...)		-	Sequence	of	guard	tests
	(if	gexpr	gexpr	gexpr)	

	(type-test	e)	

	(guard-bif	...)		-	Guard	BIFs,	arithmetic,	boolean	and	comparison	operators

An	empty	guard,		(when)	,	always	succeeds	as	there	is	no	test	which	fails.	This	simplifies	writing	macros	which	handle
guards.

Guards

12

Inside	functions	defined	with		defun		LFE	permits	optional	comment	strings	in	the	Common	Lisp	style	after	the	argument	list.
So	we	can	have:

(defun	max	(x	y)

		"The	max	function."

		(if	(>=	x	y)	x	y))

Optional	comments	are	also	allowed	in	match	style	functions	after	the	function	name	and	before	the	clauses:

(defun	max

		"The	max	function."

		((x	y)	(when	(>=	x	y))	x)

		((x	y)	y))

This	is	also	possible	in	a	similar	style	in	local	functions	defined	by		flet		and		fletrec	:

(defun	foo	(x	y)

		"The	max	function."

		(flet	((m	(a	b)	"Local	comment."

												(if	(>=	a	b)	a	b)))

				(m	x	y)))

Comments	in	Function	Definitions

13

LFE	is	a	Lisp-2	and	has	separate	namespaces	for	variables	and	functions/macros.	Both	variables	and	functions/macros	are
lexically	scoped.	Variables	are	bound	by		lambda	,		match-lambda		and		let	.	Functions	are	bound	by	top-level		defun	,		flet	
and		fletrec	.	Macros	are	bound	by	top-level		defmacro	/	defsyntax		and	by		macrolet	/	syntaxlet	.

When	searching	for	functions,	both	name	and	arity	are	used.	A	macro	is	considered	to	have	any	arity	and	will	match	all
functions	with	that	name.	While	this	is	not	consistent	with	either	Scheme	(or	CL)	it	is	simple,	usually	easy	to	understand,
and	fits	Erlang	quite	well.	It	does,	however,	require	using		(funcall	func	arg	...)		like	CL	to	call		lambdas	/	match-lambdas	
	(funs)		bound	to	variables.

Core	solves	this	by	having	separate	bindings	and	special	to	have	only	one	apply:

	apply	_F	(...)	,	and
	apply	_F/3	(a1,	a2,	a3)	

Bindings	and	Scoping

14

Unqualified	functions	shadow	as	stated	previously.	This	results	in	the	following	order	within	a	module,	outermost	to
innermost:

Predefined	BIFs	(same	as	in	vanilla	Erlang)
Predefined	LFE	BIFs
Imports
Top-level	defines
Flet/fletrec

This	means	that	it	is	perfectly	legal	to	shadow	BIFs	by	imports,	BIFs/imports	by	top-level	functions	and	BIFs/imports/top-
level	by		fletrecs	.	In	this	respect	there	is	nothing	special	about	BIfs,	they	just	behave	as	prefined	imported	functions,	a
whopping	big		(import	(from	erlang	...))	.	EXCEPT	that	we	know	about	guard	BIFs	and	expression	BIFs.	If	you	want	a
private	version	of		spawn		then	define	it,	there	will	be	no	warnings.

CAVEAT:	This	does	not	hold	for	the	supported	core	forms.	These	can	be	shadowed	by	imports	or	redefined	but	the
compiler	will	always	use	the	core	meaning	and	never	an	alternative.	Silently!

Function	shadowing

15

(defmodule	name

		(export	(f	2)	(g	1)	...)

		(export	all)

		(import	(from	mod	(f1	2)	(f2	1)	...)

										(rename	mod	((f1	2)	sune)	((f2	1)	kurt)	...))

		(import	(prefix	mod	mod-prefix))														-	NYI

		(attr-1	value-1	value-2)

		...)

There	can	be	multiple		export		and		import		declarations	within	module	declaration.	The		(export	all)		declaration	is
allowed	together	with	other		export		declarations	and	overrides	them.	Other	attributes	which	are	not	recognised	by	the
compiler	are	allowed	and	are	simply	passed	on	to	the	module	and	can	be	accessed	through		module_info/0	/	module_info/1	.

Module	definition

16

(defmodule	(name	par1	par2	...)

		...)

Define	a	parameterized	module	which	behaves	the	same	way	as	in	vanilla	Erlang.	For	now,	avoid	defining	functions		new	
and		instance	.

Parameterized	modules

17

Macro	calls	are	expanded	in	both	body	and	patterns.	This	can	be	very	useful	to	have	both	make	and	match	macros,	but	be
careful	with	names.

A	macro	is	function	of	two	argument	which	is	a	called	with	a	list	of	the	arguments	to	the	macro	call	and	the	current	macro
environment.	It	can	be	either	a		lambda		or	a		match-lambda	.	The	basic	forms	for	defining	macros	are:

(define-macro	name	lambda|match-lambda)

(let-macro	((name	lambda|match-lambda)

		...)

Macros	are	definitely	NOT	hygienic	in	any	form.

To	simplify	writing	macros	there	are	a	number	of	predefined	macros:

(defmacro	name	(arg	...)	...)

(defmacro	name	arg	...)

(defmacro	name	((argpat	...)	body)	...)

Defmacro	can	be	used	for	defining	simple	macros	or	sequences	of	matches	depending	on	whether	the	arguments	are	a
simple	list	of	symbols	or	can	be	interpreted	as	a	list	of	pattern/body	pairs.	In	the	second	case	when	the	argument	is	just	a
symbol	it	will	be	bound	to	the	whole	argument	list.	For	example:

(defmacro	double	(a)	`(+	,a	,a))

(defmacro	my-list	args	`(list	,@args))

(defmacro	andalso

		((list	e)	`,e)

		((cons	e	es)	`(if	,e	(andalso	,@es)	'false))

		(()	`'true))

The	macro	definitions	in	a		macrolet		obey	the	same	rules	as		defmacro	.

The	macro	functions	created	by		defmacro		and		macrolet		automatically	add	the	second	argument	with	the	current	macro
environment	with	the	name		$ENV	.	This	allows	explicit	expansion	of	macros	inside	the	macro	and	also	manipulation	of	the
macro	environment.	No	changes	to	the	environment	are	exported	outside	the	macro.

User	defined	macros	shadow	the	predefined	macros	so	it	is	possible	to	redefine	the	built-in	macro	definitions.	However,	see
the	caveat	below!

Yes,	we	have	the		backquote	.	It	is	implemented	as	a	macro	so	it	is	expanded	at	macro	expansion	time.

Macros

18

Local	functions	that	are	only	available	at	compile	time	and	can	be	called	by	macros	are	defined	using		eval-when-compile	:

(defmacro	foo	(x)

		...

		(foo-helper	m	n)

		...)

(eval-when-compile

		(defun	foo-helper	(a	b)

				...)

)

There	can	be	many		eval-when-compile		forms.	Functions	defined	within	an		eval-when-compile		are	mutually	recursive	but
they	can	only	call	other	local	functions	defined	in	an	earlier		eval-when-compile		and	macros	defined	earlier	in	the	file.
Functions	defined	in		eval-when-compile		which	are	called	by	macros	can	be	defined	after	the	macro	but	must	be	defined
before	the	macro	is	used.

Scheme's	syntax	rules	are	an	easy	way	to	define	macros	where	the	body	is	just	a	simple	expansion.	These	are	supported
with		defsyntax		and		syntaxlet	.	Note	that	the	patterns	are	only	the	arguments	to	the	macro	call	and	do	not	contain	the
macro	name.	So	using	them	we	would	get:

(defsyntax	andalso

		(()	'true)

		((e)	e)

		((e	.	es)	(case	e	('true	(andalso	.	es))	('false	'false))))

NOTE:	These	are	definitely	NOT	hygienic.

CAVEAT:	While	it	is	perfectly	legal	to	define	a	Core	form	as	a	macro	these	will	silently	be	ignored	by	the	compiler.

19

Inside	macros	defined	with	defmacro	LFE	permits	optional	comment	strings	in	the	Common	Lisp	style	after	the	argument
list.	So	we	can	have:

(defmacro	double	(a)

		"Double	macro."

		`(+	,a	,a))

Optional	comments	are	also	allowed	in	match	style	macros	after	the	macro	name	and	before	the	clauses:

(defmacro	my-list	args

		"List	of	arguments."

		`(list	,@args))

(defmacro	andalso

		"The	andalso	form."

		((list	e)	`,e)

		((cons	e	es)	`(if	,e	(andalso	,@es)	'false))

		(()	`'true))

This	is	also	possible	in	a	similar	style	in	local	functions	defined	by	macrolet:

(defun	foo	(x	y)

		"The	max	function."

		(macrolet	((m	(a	b)	"Poor	macro	definition."

																`(if	(>=	,a	,b)	,a	,b)))

				(m	x	y)))

Comments	in	Macro	Definitions

20

	cond		has	been	extended	with	the	extra	test		(?=	pat	expr)		which	tests	if	the	result	of		expr		matches		pat	.	If	so,	it	binds
the	variables	in		pat		which	can	be	used	in	the		cond	.	An	optional	guard	is	allowed	here.

An	example:

(cond	((foo	x)	...)

						((?=	(cons	x	xs)	(when	(is_atom	x))	(bar	y))

							(fubar	xs	(baz	x)))

						((?=	(tuple	'ok	x)	(baz	y))

							(zipit	x))

						...)

Extended	cond

21

Records	are	tuples	with	the	record	name	as	first	element	and	the	rest	of	the	fields	in	order	exactly	like	"normal"	Erlang
records.	As	with	Erlang	records	the	default	default	value	is		'undefined	.

(defrecord	name

		field

		(field	default-value)

		...)

The	record	defined	above	will	create	access	functions/macros	for	creation	and	access	fields.	The		make	,		match		and		set	
forms	takes	optional	argument	pairs		field-name	value		to	get	non-default	values.	E.g.	for	the	record:

(defrecord	person

		(name	'"")

		(address	'"")

		age)

We	have:

	(make-person	{{field	value}}	...)	

	(match-person	{{field	value}}	...)	

	(is-person	r)	

	(fields-person)	

	(emp-person	{{field	value}}	...)	

	(set-person	r	{{field	value}}	...)	

	(person-name	r)	

	(person-name)	

	(set-person-name	r	name)	

	(person-age	r)	

	(person-age)	

	(set-person-age	r	age)	

	(person-address	r)	

	(set-person-address	r	address)	

(make-person	name	"Robert"	age	54)

Will	create	a	new	person	record	with	the		name		field	set	to		"Robert"	,	the		age		field	set	to		54		and	the	address	field	set	to
the	default		""	.

(match-person	name	name	age	55)

Will	match	a		person		with		age			55		and	bind	the	variable		name		to	the		name		field	of	the	record.	Can	use	any	variable	name
here.

(is-person	john)

Test	if	john	is	a		person		record.

Records

Examples

22

(emp-person	age	'$1)

Create	an	Ets	Match	Pattern	for	record		person		where	the		age		field	is	set	to		$1		and	all	other	fields	are	set	to		_	.

(person-address	john)

Return	the		address		field	of	the		person		record		john	.

(person-address)

Return	the	index	of	the		address		field	of	a		person		record.

(set-person-address	john	'"back	street")

Sets	the		address		field	of	the		person		record		john		to		"back	street"	.

(set-person	john	age	35	address	'"front	street")

In	the		person		record	john	set	the		age		field	to		35		and	the		address		field	to		"front	street"	.

(fields-person)

Returns	a	list	of	fields	for	the	record.	This	is	useful	for	when	using	LFE	with	Mnesia,	as	the	record	field	names	don't	have	to
be	provided	manually	in	the		create_table		call.

23

A	binary	is

(binary	seg	...)

where		seg		is:

				byte

				string

				(val	integer|float|binary|bitstring|bytes|bits

									(size	n)	(unit	n)

									big-endian|little-endian|native-endian|little|native|big

									signed|unsigned)

	val		can	also	be	a	string	in	which	case	the	specifiers	will	be	applied	to	every	character	in	the	string.	As	strings	are	just	lists
of	integers	these	are	also	valid	here.	In	a	binary	constant	all	literal	forms	are	allowed	on	input	but	they	will	always	be	written
as	bytes.

Binaries/bitstrings

24

A	map	is:

(map	key	value	...)

To	access	maps	there	are	the	following	forms:

Return	the	value	associated	with	key	in	map:

(map-get	map	key)

Set	keys	in	map	to	values:

(map-set	map	key	val	...)

Update	keys	in	map	to	values.	Note	that	this	form	requires	all	the	keys	to	exist:

(map-update	map	key	val	...)

NOTE:	This	syntax	for	processing	maps	has	stablized,	but	may	change	in	the	future!

There	is	also	an	alternate	short	form	map	functions:

	mref	

	mset	

	mupd	

These	are	based	on	the	MACLISP	array	reference	forms.	They	take	the	same	arguments	as	their	longer	alternatives.

Maps

25

List/binary	comprehensions	are	supported	as	macros.	The	syntax	for	list	comprehensions	is:

(lc	(qual		...)	expr	...)

where	the	final		expr		is	used	to	generate	the	elements	of	the	list.

An	alias	is	provided	such	that	the	following	is	also	valid:

(list-comp	(qual		...)	expr	...)

The	syntax	for	binary	comprehensions	is:

(bc	(qual		...)	expr	...)

where	the	final	expr	is	a	bitseg	expr	and	is	used	to	generate	the	elements	of	the	binary.

An	alias	is	provided	such	that	the	following	is	also	valid:

(binary-comp	(qual		...)	expr	...)

The	supported	qualifiers,	in	both	list/binary	comprehensions	are:

Form Notes

	(<-	pat	{{guard}}	list-expr)	 Extract	elements	from	a	list	expression

	(<=	bin-pat	{{guard}}	binary-expr)	 Extract	elements	from	a	binary/bits	expression

	(?=	pat	{{guard}}	expr)	 Match	test	and	bind	variables	in		pat	

	expr	 Normal	boolean	test

Some	examples:

(lc	((<-	v	(when	(>	v	5))	l1)

					(==	(rem	v	2)	0))

		v)

That	returns	a	list	of	all	the	even	elements	of	the	list		l1		which	are	greater	than		5	.

(bc	((<=	(f	float	(size	32))	b1)		;	No	wrapping,	only	bitseg	needed

					(>	f	10.0))

		(io:fwrite	"~p\n"	(list	f))

		(f	float	(size	64)))												;	No	wrapping,	only	bitseg	needed

That	returns	a	binary	of	floats	of	size	64	of	floats	which	are	larger	than		10.0		from	the	binary		b1		and	of	size		32	.	The
returned	numbers	are	first	printed.

NOTE:	A	word	of	warning	when	using	guards	when	extracting	elements	from	a	binary.	When	a	match/guard	fails	for	a
binary	no	more	attempts	will	be	made	to	extract	data	from	the	binary.	This	means	that	even	if	a	value	could	be	extracted

List/binary	comprehensions

26

from	the	binary,	if	the	guard	fails,	this	value	will	be	lost	and	extraction	will	cease.	This	is	NOT	the	same	as	having	following
boolean	test	which	may	remove	an	element	but	will	not	stop	extraction.	Using	a	guard	is	probably	not	what	you	want!

Normal	vanilla	Erlang	does	the	same	thing	but	does	not	allow	guards.

27

Apart	from		(emp-record	...)		macros	for	ETS	Match	Patterns,	which	are	also	valid	in	Mnesia,	LFE	also	supports	match
specifications	and	Query	List	Comprehensions.	The	syntax	for	a	match	specification	is	the	same	as	for		match-lambdas	:

(match-spec

		((arg	...)	{{(when	e	...)}}	...)	;;	Matches	clauses

		...)

For	example:

(ets:select	db	(match-spec

																	(((tuple	_	a	b))	(when	(>	a	3))

																			(tuple	'ok	b))))

It	is	a	macro	which	creates	the	match	specification	structure	which	is	used	in		ets:select		and		mnesia:select	.	The	same
	match-spec		macro	can	also	be	used	with	the	dbg	module.	The	same	restrictions	as	to	what	can	be	done	apply	as	for
vanilla	match	specifications:

There	is	only	a	limited	number	of	BIFs	which	are	allowed
There	are	some	special	functions	only	for	use	with	dbg
For	ets/mnesia	it	takes	a	single	parameter	which	must	a	tuple	or	a	variable
For	dbg	it	takes	a	single	parameter	which	must	a	list	or	a	variable

NOTE:	The	current	macro	neither	knows	nor	cares	whether	it	is	being	used	in	ets/mnesia	or	in	dbg.	It	is	up	to	the	user	to
get	this	right.

Macros,	especially	record	macros,	can	freely	be	used	inside	match	specs.

CAVEAT:	Some	things	which	are	known	not	to	work	in	the	current	version	are		andalso	,		orelse		and	record	updates.

ETS	and	Mnesia

28

LFE	supports	QLCs	for	mnesia	through	the	qlc	macro.	It	has	the	same	structure	as	a	list	comprehension	and	generates	a
Query	Handle	in	the	same	way	as	with		qlc:q([...])	.	The	handle	can	be	used	together	with	all	the	combination	functions
in	the	module	qlc.

For	example:

(qlc

		(lc	((<-	(tuple	k	v)	(ets:table	e2))	(==	k	i))	v)	{{Option}})

Macros,	especially	record	macros,	can	freely	be	used	inside	query	list	comprehensions.

CAVEAT:	Some	things	which	are	known	not	to	work	in	the	current	version	are	nested	QLCs	and		let	/	case	/	recieve		which
shadow	variables.

Query	List	Comprehensions

29

The	following	more	or	less	standard	lisp	functions	are	predefined:

(<arith_op>	expr	...)

The	standard	arithmetic	operators,		+			-			*		and		/		can	take	multiple	arguments	the	same	as	their	standard	Lisp
counterparts.	This	is	still	experimental	and	implemented	using	macros.	They	do,	however,	behave	like	normal	functions	and
evaluate	ALL	their	arguments	before	doing	the	arithmetic	operations.

Examples:

>	(-	43	1)

42

>	(*	21	2)

42

(<comp_op>	expr	...)

The	standard	comparison	operators,		>	,		>=	,		<	,		=<	,		==	,		/=	,		=:=	,	and		=/=		can	take	multiple	arguments	the	same	as
their	standard	Lisp	counterparts.	This	is	still	experimental	and	implemented	using	macros.	They	do,	however,	behave	like
normal	functions	and	evaluate	ALL	their	arguments	before	doing	the	comparison	operations.

Examples:

>	(>	1	42)

false

>	(<	42	43)

true

These	are	the	same	as	found	in	Common	Lisp.

(acons	key	value	list)

	acons		constructs	a	new	association	list	by	adding	the	pair		(key	.	datum)		to	the	old		list	.

Example:

Predefined	LFE	functions

Operators

Arithmetic

Comparison

Association	list	functions

	acons	

30

>	(acons	'x	'y	'a)

((x	.	y)	.	a)

(pairlis	keys	values	{{list}})

	pairlis		takes	two	lists	and	makes	an	association	list	that	associates	elements	of	the	first	list	to	corresponding	elements	of
the	second	list.

Example:

>	(pairlis	'(one	two)	'(1	2)	'((three	.	3)	(four	.	19)))

((one	.	1)	(two	.	2)	(three	.	3)	(four	.	19))

(assoc	key	list)

Searches	the	association	list		list	.	The	value	returned	is	the	first	pair	in	the		list		such	that	the		car		of	the	pair	equals	the
	key		passed	to		assoc	.	or		()		If	there	is	no	such	pair	in	the		list	,	an	empty	list		()		is	returned.

Examples:

>	(assoc	'r	'((a	.	b)	(c	.	d)	(r	.	x)	(s	.	y)	(r	.	z)))

(r	.	x)

>	(assoc	'goo	'((foo	.	bar)	(zoo	.	goo)))

()

>	(assoc	'2	'((1	a	b	c)	(2	b	c	d)	(-7	x	y	z)))

(2	b	c	d)

>

(assoc-if	test	list)

Searches	the	association	list		list	.	The	value	is	the	first	pair	in	the		list		such	that	the		car		of	the	pair	satisfies	the	test,	or
	()		if	there	is	no	such	pair	in	the		list	.

Examples:

>	(assoc-if	#'is_atom/1	'(("a"	.	"b")	(3	.	4)	(r	.	x)	(s	.	y)	(r	.	z)))

(r	.	x)

>	(assoc-if	#'is_integer/1	'(("a"	.	"b")	(3	.	4)	(r	.	x)	(s	.	y)	(r	.	z)))

(3	.	4)

>	(assoc-if	#'is_list/1	'(("a"	.	"b")	(3	.	4)	(r	.	x)	(s	.	y)	(r	.	z)))

("a"	98)

>	(assoc-if	#'is_float/1	'(("a"	.	"b")	(3	.	4)	(r	.	x)	(s	.	y)	(r	.	z)))

()

	pairlis	

	assoc	

	assoc-if	

	assoc-if-not	

31

(assoc-if-not	test	list)

Searches	the	association	list		list	.	The	value	is	the	first	pair	in	the		list		such	that	the		car		of	the	pair	satisfies	the	test,	or
	()		if	there	is	no	such	pair	in	the		list	.

Examples:

>	(assoc-if-not	#'is_float/1	'(("a"	.	"b")	(3	.	4)	(r	.	x)	(s	.	y)	(r	.	z)))

("a"	98)

>	(assoc-if-not	#'is_list/1	'(("a"	.	"b")	(3	.	4)	(r	.	x)	(s	.	y)	(r	.	z)))

(3	.	4)

(rassoc	value	list)

	rassoc		is	the	reverse	form	of		assoc	;	it	searches	for	a	pair	whose		cdr		satisfies	the		test	,	rather	than	the		car	.

Examples:

>	(rassoc	'a	'(("a"	.	"b")	(r	.	4)	(3	.	x)	(s	.	y)	(r	.	z)))

()

>	(rassoc	'4	'(("a"	.	"b")	(r	.	4)	(3	.	x)	(s	.	y)	(r	.	z)))

(r	.	4)

>	(rassoc	'z	'(("a"	.	"b")	(r	.	4)	(3	.	x)	(s	.	y)	(r	.	z)))

(r	.	z)

(rassoc-if	test	list)

	rassoc		is	the	reverse	form	of		assoc	;	it	searches	for	a	pair	whose		cdr		satisfies	the		test	,	rather	than	the		car	.

Examples:

>	(rassoc-if	#'is_atom/1	'(("a"	.	"b")	(r	.	4)	(3	.	x)	(s	.	y)	(r	.	z)))

(3	.	x)

>	(rassoc-if

				(lambda	(x)

						(==	x	'y))

				'(("a"	.	"b")	(r	.	4)	(3	.	x)	(s	.	y)	(r	.	z)))

(s	.	y)

(rassoc-if-not	test	list)

	rassoc		is	the	reverse	form	of		assoc	;	it	searches	for	a	pair	whose		cdr		satisfies	the		test	,	rather	than	the		car	.

Example:

>	(rassoc-if-not

	rassoc	

	rassoc-if	

	rassoc-if-not	

32

				(lambda	(x)

						(or	(is_list	x)	(is_integer	x)))

				'(("a"	.	"b")	(r	.	4)	(3	.	x)	(s	.	y)	(r	.	z)))

(3	.	x)

These	are	the	same	as	found	in	Common	Lisp.

(subst	new	old	tree)

	(subst	new	old	tree)		makes	a	copy	of		tree	,	substituting		new		for	every	subtree	or	leaf	of		tree		(whether	the	subtree	or
leaf	is	a		car		or	a		cdr		of	its	parent)	such	that		old		and	the	subtree	or	leaf	are	equal	to		new	.	It	returns	the	modified	copy	of
	tree	.	The	original		tree		is	unchanged.

Examples:

>	(subst	'tempest	'hurricane

									'(shakespeare	wrote	(the	hurricane)))

(shakespeare	wrote	(the	tempest))

>	(subst	'tempest	'hurricane

									'(thoughts:

											(shakespeare	wrote	(the	hurricane))

											(hurricane	(on	(a	(teacozy))))))

(thoughts:	(shakespeare	wrote	(the	tempest))	(tempest	(on	(a	(teacozy)))))

>	(subst	'foo	'()	'(shakespeare	wrote	(twelfth	night)))

(shakespeare	wrote	(twelfth	night	.	foo)	.	foo)

(subst-if	new	test	tree)

	(subst	new	old	tree)		makes	a	copy	of		tree	,	substituting		new		for	every	subtree	or	leaf	of		tree		(whether	the	subtree	or
leaf	is	a		car		or	a		cdr		of	its	parent)	such	that		old		and	the	subtree	or	leaf	satisfy	the	test.	It	returns	the	modified	copy	of
	tree	.	The	original		tree		is	unchanged.

Example:

>	(subst-if

				'(a	.	cons)

				(lambda	(x)

						(==	x	'(old	.	pair)))

				'((old	.	spice)	((old	.	shoes)	old	.	pair)	(old	.	pair)))

((old	.	spice)	((old	.	shoes)	a	.	cons)	(a	.	cons))

(subst-if-not	new	test	tree)

	(subst	new	old	tree)		makes	a	copy	of		tree	,	substituting		new		for	every	subtree	or	leaf	of		tree		(whether	the	subtree	or
leaf	is	a		car		or	a		cdr		of	its	parent)	such	that		old		and	the	subtree	or	leaf	satisfy	the	test.	It	returns	the	modified	copy	of
	tree	.	The	original		tree		is	unchanged.

Substitution	of	expressions

	subst	

	subst-if	

	subst-if-not	

33

Examples:

>	(subst-if-not

				'(a	.	cons)

				(lambda	(x)

						(==	x	'(old	.	pair)))

				'((old	.	spice)	((old	.	shoes)	old	.	pair)	(old	.	pair)))

(a	.	cons)

>	(subst-if-not

				'(a	.	cons)

				(lambda	(x)

						(/=	x	'(old	.	pair)))

				'((old	.	spice)	((old	.	shoes)	old	.	pair)	(old	.	pair)))

((old	.	spice)	((old	.	shoes)	a	.	cons)	(a	.	cons))

(sublis	list	tree)

	sublis		makes	substitutions	for	objects	in	a		tree		(a	structure	of		cons	es).	The	first	argument	to		sublis		is	an	association
	list	.	The	second	argument	is	the		tree		in	which	substitutions	are	to	be	made,	as	with		subst	.		sublis		looks	at	all
subtrees	and	leaves	of	the		tree	;	if	a	subtree	or	leaf	appears	as	a	key	in	the	association		list		(that	is,	the	key	and	the
subtree	or	leaf	satisfy	the	test),	it	is	replaced	by	the	object	with	which	it	is	associated.	This	operation	is	non-destructive.	In
effect,		sublis		can	perform	several		subst		operations	simultaneously.

Examples:

>	(sublis	'((x	.	100)	(z	.	zprime))

										'(plus	x	(minus	g	z	x	p)	4	.	x))

(plus	100	(minus	g	zprime	100	p)	4	.	100)

>	(sublis	'(((+	x	y)	.	(-	x	y))	((-	x	y)	.	(+	x	y)))

										'(*	(/	(+	x	y)	(+	x	p))	(-	x	y)))

(*	(/	(-	x	y)	(+	x	p))	(+	x	y))

(macroexpand-1	expr	{{environment}})

If		expr		is	a	macro	call,	does	one	round	of	expansion,	otherwise	returns		expr	.

(macroexpand	expr	{{environment}})

Returns	the	expansion	returned	by	calling	macroexpand-1	repeatedly,	starting	with		expr	,	until	the	result	is	no	longer	a
macro	call.

(macroexpand-all	expr	{{environment}})

Returns	the	expansion	from	the	expression	where	all	macro	calls	have	been	expanded	with		macroexpand	.

NOTE:	When	no	explicit	environment	is	given	to	the	macroexpand	functions,	then	only	the	default	built-in	macros	will	be
expanded.	Inside	macros	and	in	the	shell,	the	variable		$ENV		is	bound	to	the	current	macro	environment.

	subls	

Expansion	macros

Evaluation

34

(eval	expr	{{environment}})

Evaluate	the	expression		expr	.	Note	that	only	the	pre-defined	Lisp	functions,	erlang	BIFs,	and	exported	functions	can	be
called.	Also	no	local	variables	can	be	accessed.	To	access	local	variables,	the		expr		to	be	evaluated	can	be	wrapped	in	a
	let		defining	these.

For	example,	if	the	data	we	wish	to	evaluate	is	in	the	variable		expr		and	it	assumes	there	is	a	local	variable		foo		which	it
needs	to	access,	then	we	could	evaluate	it	by	calling:

(eval	`(let	((foo	,foo))	,expr))

35

	Introduction
	Special syntactic rules
	Supported Core forms
	Supported macro forms
	Common Lisp inspired macros
	Older Scheme inspired macros
	Patterns
	Guards
	Comments in Function Definitions
	Bindings and Scoping
	Function shadowing
	Module definition
	Parameterized modules
	Macros
	Comments in Macro Definitions
	Extended cond
	Records
	Binaries/bitstrings
	Maps
	List/binary comprehensions
	ETS and Mnesia
	Query List Comprehensions
	Predefined LFE functions

