
Issue 56  January 2015

2  ﻿

Curator
Lim Cheng Soon

Contributors
Doug Bierend
Zach Holman
Lawrence Kesteloot
Jeffrey Ventrella
Damien Katz
Carlos Bueno
Correl Roush
Yunong Xiao

Proofreader
Emily Griffin

Printer
Blurb

Hacker Monthly is the print magazine version
of Hacker News — news.ycombinator.com, a social news
website wildly popular among programmers and startup
founders. The submission guidelines state that content
can be “anything that gratifies one’s intellectual curiosity.”
Every month, we select from the top voted articles on
Hacker News and print them in magazine format.
For more, visit hackermonthly.com

Advertising
ads@hackermonthly.com

Contact
contact@hackermonthly.com

Published by
Netizens Media
46, Taylor Road,
11600 Penang,
Malaysia.

Hacker Monthly is published by Netizens Media and not affiliated with Y Combinator in any way.

http://news.ycombinator.com
http://hackermonthly.com
mailto:ads@hackermonthly.com
mailto:contact@hackermonthly.com

  3

For links to Hacker News dicussions, visit hackermonthly.com/issue-56

Contents
FEATURES

04  SimCity That I Used to Know
By Doug Bierend

08  Move Fast And Break Nothing
By Zach Holman

PROGRAMMING

16  Java for Everything
By Lawrence Kesteloot

20  The Case for Slow Programming
By Jeffrey Ventrella

23  The Unreasonable Effectiveness of C
By Damien Katz

26  Cache is the New RAM
By Carlos Bueno

30  Getting Organized with Org Mode
By Correl Roush

32  Node.js in Flames
By Yunong Xiao

http://hackermonthly.com/issue-55

4  FEATURES

FEATURES

By Doug Bierend

SimCity That
I Used to Know
On the game’s 25th
birthday, a devotee
talks with creator
Will Wright

  5

SimCity, the classic PC
game that makes mayors
out of middle schoolers,

turned 25 last week. Well, actually
that’s a common misconception 
—  the IBM version of SimCity was
released in October of ‘89, but the
original (for Mac and Amiga), came
out in February. I found this out
from Will Wright, the game design
guru behind SimCity and the genre
of games it spawned, whose mental
history of the legendary game is far
more accurate than the Internet’s. “I
think everybody just puts too much
trust in Wikipedia,” he said.

Regardless of its precise birthday,
SimCity was a hugely influential
game, popularizing a genre of “soft-
ware toys” that presented players
with an interactive, complex world.
Little gamers growing up in the
‘90s may remember a time when
any new PC title from Maxis (the
company Wright founded with
partner Jeff Braun) bearing the
prominent “SIM” prefix promised
endless hours of play time that
wasn’t about winning or losing, but
experimentation and discovery. The
Sim series also represents a philoso-
phy about design, and the role of
play in our learning process.

“I think that play, in a more
general sense, is fundamentally one
of the ways that we understand the
world, the real world,” says Wright,
“as is storytelling. I think the two
are both kind of educational tech-
nologies, and that’s the part that
interests me; basically, how we take
these things  —  whether it’s story-
telling, or play, or games  —  and use
those to increase our understanding
and our engagement with the real
world, not pull us away from it.”

SimCity gives the player macro-
and micro-managerial control of a
voxelated urban terrarium. Along
with its subsequent titles  —  Sim-
Copter, SimTower, SimAnt, Sim
et cetera ad nauseam  —  SimCity
kicked off a series of digital sand-
boxes that put complex systems
within the grasp of anyone with a
computer mouse.

Every decision has a consequence
in the balance of dozens of vari-
ables. The RCI (residential, com-
mercial, industrial) balance that
guides the city’s economy, the lay-
ering of transportation options and
power lines, the funding of schools
or location of prisons — each reacts
in subtle or overt ways based on a
simplified system of logic devised
by Wright and his team. “How do
we take these big complex things
we’re embedded in, and bring them
into such a focus that we can now
apply our natural instincts and
intuitions to it?” Wright asks. Seeing
cars begin to drive down the roads
you’ve built, watching as neighbor-
hoods flux and gentrify when a
new commercial zone is established
nearby, all while getting familiar
with each little wrinkle of the city

and its geography  —  you can start
to imagine what it’s like to live
there.

Keeping track of a budget may
sound more like a simulation of
accounting than urban planning,
but the beauty of the game is that
it manages to turn things like fiscal
policy into a feature of play. That’s
largely because their effects are vis-
ible. Unlike a “replicative” simula-
tion (say, a baking simulator), which
recreates an experience you might
actually have in life, the scales of
size and time are variable. With the
added power to call up natural (and
unnatural) disasters, this essentially
transforms the player from mayor
to god, and allows them to watch as
the long term consequences of their
choices unfold. “All of a sudden you
get this totally different view of it.
It feels like this organic picture in
front of you.…That’s kind of what I
would call turning something into a
toy that we can now play with.”

These toys were especially effec-
tive for kids, who were at an age
when the real and the imaginary
seem less distinct. Watching as
the little cities exhibited behavior
in reaction to the player’s actions

A screenshot from the original SimCity game for the Macintosh.

6  FEATURES

created a link between us the game.
That link was also an intentional
part of the game’s design.

 “They’re starting to understand
its behavior and you’re getting
kind of an instinct or an intuition
for how it operates,” he says, “in a
totally different way than if you’re
reading a book about classical
economic theory, which is entirely
abstract.” Wright is fond of the
notion of seeing a player’s brain as
the second processor  —  its pro-
clivities and responses feeding and
responding to the invisible gears
and pulleys behind the simulation.

For the link to work, the inter-
face has to be intuitive enough that
anyone from a preschooler to a
PhD in urban systems can get their
hands and heads around what it
takes to grow their city. The array of
variables they control must be dra-
matically simplified from reality of
course, but complex enough that the
models they create exhibit dynamic
“behavior.” A critical feature of the
design of these games is, in fact,
that they allow for unpredictable
phenomena to arise. Unexpected
harmonic convergences of circum-
stances occur in the city that lead to
explosions of growth, or collapses of
neighborhoods, say, from causes that
aren’t as easy to trace back as point-
ing out that, say, lowering police
funding meant an increase in crime.

“Most of the simulation is really
built up of rather simple rules, if
you look under the hood, and it’s
really interesting how these simple
rules, when they interact with each
other, give rise to great complex-
ity,” Wright says. “You can’t even
really sit back and engineer it or
blueprint it. It’s more like you have
to discover it, because the emergent
systems are inherently, by defini-
tion, unpredictable.”

 The way Wright sees games,
players occupy and explore what
he calls “possibility spaces.” Simply
put, possibility spaces are all the
potential arrangements a system
(or game) might find itself in. The
whole tree of possible movements
of pieces on a chessboard, or the
countless ways you might reach a
destination in Grand Theft Auto,
each are a kind of possibility space.

These spaces often intersect
along numerous dimensions  —  in
the Sims, for example, the interplay
between social success and profes-
sional success created a jointed set
of possibility spaces that a player
could work to maximize (the game
was designed around an ideal, not
unlike in real life, that lay in achiev-
ing a balance between the two).

The possible choices faced by a
player of SimCity include the aes-
thetic priorities, economic models,
level of environmental concern, and
other more subjective dimensions.
Depending on the player, a city
might be a green oasis or a Koy-
aanisqatsi-esque nightmare; some
might try to make the most visually
pleasing city they can, or simply
have fun wreaking havoc. Their
decisions in these spaces — which
can be measured, by the way —
are often a reflection of their own
values and sensibilities.

“Players right off the bat were
forced to sit down and in fact pick
their goals,” Wright says. “They
had to first of all decide what their
values were, what kind of city
would they like to live in. That was
part of it, and the other part of it
was that at some point, invariably,
the people who played it enough
would start arguing with the
assumptions of the simulation. They
would start saying, “I don’t think
mass transit’s that effective, I don’t
think pollution really would drive
away that many residents.” At that
point, they’re also having to clarify
their internal model of the way a
city operates…all of a sudden your
assumptions become clear to you.”

Will Wright

A screenshot from the
first Windows version of
SimCity.

  7

 Wright’s games — if you can
call them that — were uniquely
influential for a generation of kids
with access to computers in the
‘90s. One could guide the complex
course of events within a conti-
nent, a neighborhood, or beneath a
picnic table, and leave with a more
systemic understanding of each.
An imaginative player could also
weave their own stories between
these layers  —  many hours were
spent imagining stories taking place
within and between these worlds.

“Whenever you see a kid that’s
really motivated and into some-
thing, it’s entertaining to them,
they love it,” says Wright. “But at
the same time that’s also prob-
ably the most effective process of
education.”

“Fun and educational” is an aspi-
rational combination of words, one
that many products claim but few
live up to. I certainly emerged from
my hunched sessions with my pet
cities carrying a new appreciation
for the world around me. With all
the talk of gamifying education, and
with a new generation of teachers 
—  the first in history  —  raised on
video games, the value in approach-
ing learning with games may get the
real-world traction it deserves.

“I really think our brain is wired
to consume entertainment and
enjoy entertainment, precisely
because of the fact that it’s inher-
ently educational,” says Wright.
“And we’ve made this artificial
distinction between the two, we’ve
almost kind of put a chasm there
that didn’t exist….I think SimCity
was just a simple example that for a
lot of people started to remove the
wall between the two.” n

Doug Bierend is a writer. He writes about
futurism and technology at VICE’s Moth-
erboard. Doug also write about design for
Medium’s ReForm, as well as photography
and visual culture for Vantage. Previously,
he wrote for WIRED and their Raw File blog.

Reprinted with permission of the original author.
First appeared in hn.my/simcity (medium.com)

A screenshot of the 2013 version of SimCity, its fifth major installment.

http://hn.my/simcity

8  FEATURES

By Zach Holman

MOVE
FAST AND

BREAK
NOTHING

A Talk About Code, Teams and Process

  9

Moving Fast and Breaking
Things
Let’s start with the classic Facebook
quote, Move fast and break things.
Facebook’s used that for years: it’s
a philosophy of trying out new
ideas quickly so you can see if they
survive in the marketplace. If they
do, refine them; if they don’t, throw
them away without blowing a lot of
time on development.

Breaking existing functionality
is acceptable. It’s a sign that you’re
pushing the boundaries. Product
comes first.

Facebook was known for this
motto, but in early 2014 they
changed it to Move fast with stabil-
ity, among other variations on the
theme. They caught a lot of flak
from the tech industry for this:
something something “they’re run-
ning away from their true hacker
roots” something something. I think
that’s horseshit. Companies need
to change and evolve. The chal-
lenges Facebook faces today aren’t
the same challenges they faced ten
years ago. A company that’s not
changing is probably as innovative
as tepid bathwater.

Around the time I started think-
ing about this talk, my friend sent
me an IM:

Do you know why kittens and pup-
pies are so cute?

It’s so we don’t fucking eat them.

Maybe it was the wine I was
drinking or the mass quantity of
Cheetos® Puffs™ I was consuming,
but what she said both amused me
and made me think about designing
unintended effects inside of a com-
pany. A bit of an oxymoron, per-
haps, but I think the best way to get
things done in a company isn’t to
bash it over your employees’ heads

every few hours, but to instead
build an environment that helps
foster those effects. Kittens don’t
wear signs on them that explicitly
exclaim “DON’T EAT ME PLS,”
but perhaps their cuteness helps
lead us toward being kitten-carniv-
orous-averse. Likewise, telling your
employees “DON’T BREAK SHIT”
might not be the only approach to
take.

 I work at GitHub, so I’m not
privy to what the culture is like at
Facebook, but I can take a pretty
obvious guess as to the external
manifestations of their new motto:
it means they break fewer APIs
on their platform. But the motto
is certainly more inward-facing
than external-facing. What type of
culture does that make for? Can we
still move quickly? Are there parts
of the product we can still break?
Are there things we absolutely can’t
break? Can we build product in a
safer manner?

This talk explores those ques-
tions. Specifically I break my talk
into three parts: code, internal
process in your development team
and company, and the talk, discus-
sion, and communication surround-
ing your process.

Code
I think move fast and break things is
fine for many features. But the first
step is identifying what you cannot
break. These are things like billing
code (as much as I’d like to, I prob-
ably shouldn’t accidentally charge
you a million dollars and then email
you later with an “oops, sorry!”),
upgrades (hardware or software
upgrades can always be really dicey
to perform), and data migrations
(it’s usually much harder to roll-
back data changes).

The last two years we’ve been
upgrading GitHub’s permissions
code to be faster, safer, cleaner, and
generally better. It’s a scary pro-
cess, though. This is an absolute,
100% can’t-ever-break use case.
The private repository you pay us
for can’t suddenly be flipped open
to the entire internet because of a
bug in our deployed code. 0.02%
failure isn’t an option; 0% failure is
mandatory.

But we like to move fast. We
love to deploy new code incremen-
tally hundreds of times a day. And
there’s good reason for that: it’s
safer overall. Incremental deploys
are easier to understand and fix
than one gigantic deploy once a
year. But it lends itself to those
small bugs, which, in this permis-
sions case, are unacceptable.

 So tests are good to have. This is
unsurprising to say in this day and
age; everyone generally understands
now that testing and continuous
integration are absolutely critical to
software development. But that’s
not what’s at stake here. You can
have the best, most comprehensive
test suite in the world, but tests are
still different from production.

There are a lot of reasons for this.
One is data: you may have flipped
some bit (accidentally or intention-
ally) for some tables for two weeks
back in December of 2010, and
you’ve all but forgotten about that
today. Or your cognitive model
of the system may be idealized.
We noticed that while doing our
permissions overhaul. We’d have a
nice, neat table of all the permis-
sions of users, organizations, teams,
public and private repositories,
and forks, but we’d notice that the
neat table would fall down on very
arcane edge cases once we looked
at production data.

10  FEATURES

 And that’s the rub: you need your tests to pass,
of course, but you also need to verify that you don’t
change production behavior. Think of it as another test
suite: for better or worse, the behavior deployed now
is the state of the system from your users’ perspec-
tive. You can then either fix the behavior or update
your tests; just make sure you don’t break the user
experience.

Parallel Code Paths
One of the approaches we’ve taken is through the use
of parallel code paths.

What happens is this: a request will come in as usual
and run the existing (old) code. At the same time (or
just right after it executes), we’ll also run the new code
that we think will be better/faster/harder/stronger
(pick one). Once all that’s done, return whatever the
existing (old) code returns. So, from the user’s perspec-
tive, nothing has changed. They don’t see the effects of
the new code at all.

There are some caveats, of course. In this case, we’re
typically performing read-only operations. If we’re
doing writes, it takes a bit more smarts to either write
your code to make sure it can run both branches of
code safely, or you can rollback the effects of the new
code, or the new code is a no-op or otherwise goes to a
different place entirely. Twitter, for example, has a very
service-oriented architecture, so if they’re spinning up
a new service they redirect traffic and dual-write to the
new service so they can measure performance, accu-
racy, catch bugs, and then throw away the redundant
data until they’re ready to switch over all traffic for
real.

We wrote a Ruby library named Science to help us
out with this. You can check it out and run it yourself
in the github/dat-science repository. The general idea
would be to run it like this:

 science "my-cool-new-change" do |e|
 e.control { user.existing_slow_method }
 e.candidate { user.new_code_we_think_is_
great }
 end

It’s just like when you Did Science™ in the lab back
in school growing up: you have a control, which is your
existing code, and a candidate, which is the new code
you want to introduce. The science block makes sure
both are run appropriately. The real power happens
with what you can do after the code runs, though.

We use Graphite literally all over the company. If
you haven’t seen Coda Hale’s Metrics, Metrics Every-
where talk [hn.my/metrics], do yourself a favor and
give it a watch. Graphing behavior of your application
gives you a ton of insight into your entire system.

 Attempts vs. mismatches

Science (and its sister library, github/dat-analysis)
can generate a graph of the number of times the code
was run (the top blue bar to the left) and compare it to
the number of mismatches between the control and
the candidate (in red, on the bottom). In this case you
see a downward trend: the developer saw that their
initial deploy might have missed a couple use cases, and
over subsequent deploys and fixes the mismatches
decreased to near-zero, meaning that the new code is
matching production’s behavior in almost all cases.

75th and 99th percentile performance

  11

What’s more, we can analyze
performance, too. We can look at
the average duration of the two
code blocks and confirm if the new
code we’re running is faster, but
we can also break down requests
by percentile. In the slide to the
right, we’re looking at the 75th
and 99th percentile, i.e. the slow-
est of requests. In this particular
case, our candidate code is actually
quite a bit slower than the control:
perhaps this is acceptable given the
base case, or maybe this should be
huge red sirens that the code’s not
ready to deploy to everyone yet...it
depends on the code.

All of this gives you evidence
to prove the safety of your code
before you deploy it to your entire
userbase. Sometimes we’ll run these
experiments for weeks or months as
we widdle down all the (sometimes
tricky) edge cases. All the while, we
can deploy quickly and iteratively
with a pace we’ve grown accus-
tomed to, even on dicey code. It’s
a really nice balance of speed and
safety.

Build Into Your Existing Process
Something else I’ve been think-
ing about a lot lately is how your
approach to building product is
structured.

Typically process is added to a
company vertically. For example:
say your team’s been having some
problems with code quality. Too
many bugs have been slipping into
production. What a bummer. One
way to address that is to add more
process to your process. Maybe
you want your lead developers to
review every line of code before it
gets merged. Maybe you want to
add a layer of human testing before
deploying to production. Maybe
you want a code style audit to give

you some assurance of new code
maintainability.

These are all fine approaches, in
some sense. It’s not problematic to
want to achieve the goal of clean
code; far from it, in fact. But I think
this vertical layering of process is
really what can get aggravating or
just straight-up confusing if you
have to deal with it day in, day out.

I think there’s something to
be said for scaling the breadth of
your process. It’s an important
distinction. By limiting the number
of layers of process, it becomes
simpler to explain and conceptually
understand (particularly for new
employees). “Just check continuous
integration” is easier to remember
than “push your code, ping the lead
developers, ping the human testing
team, and kick off a code standards
audit.”

We’ve been doing more of this
lateral process scaling at GitHub
informally, but I think there’s
more to it than even we initially
noticed. Since continuous integra-
tion is so critical for us, people have
been adding more tests that aren’t
necessarily tests in the classic sense
of the word. Instead of “will this
code break the application?”, our
tests are more and more measuring
“will this code be maintainable and
more resilient towards errors in the
future?”

 For example, here are a few tests
we’ve added that don’t necessar-
ily have user-facing impact but are
considered breaking the build if
they go red:

■■ Removing a CSS declaration
without removing the associated
class attribute in the HTML

■■ ...and vice versa: removing a
class attribute without cleaning
up the CSS

■■ Adding an tag that’s not
on our CDN, for performance,
security, and scaling reasons

■■ Invalid SCSS or CoffeeScript (we
use SCSS-Lint and CoffeeLint)

None of these are world-ending
problems: an unspecified HTML
class doesn’t really hurt you or your
users. But from a code quality and
maintainability perspective, yeah,
it’s a big deal in the long term.
Instead of having everyone focus on
spotting these during code review,
why not just shove it in CI and let
computers handle the hard stuff? It
frees our coworkers up from grunt-
work and lets them focus on what
really matters.

Incidentally, some of these are
super helpful during refactoring.
Yesterday I shipped some new
dashboards on github.com, so today
I removed the thousands of lines of
code from the old dashboard code. I
could remove the code in bulk, see
which tests fail, and then go in and
pretty carelessly remove the now-
unused CSS. Made it much, much
quicker to do because I didn’t have
to worry about the gruntwork.

And that’s what you want. You
want your coworkers to think less
about bullshit that doesn’t matter and
spend more consideration on things
that do. Think about consolidating
your process. Instead of layers, ask if
you can merge them into one meet-
ing. Or one code review. Or auto-
mate the need away entirely. The
layers of process are what get you.

12  FEATURES

Process
In bigger organizations, the number
of people that need to be involved
in a product launch grows dramati-
cally. From the designers and devel-
opers who actually build it, to the
marketing team that tells people
about it, to the ops team who
scales it, to the lawyers that legalize
it™... there are a lot of chefs in the
kitchen. If you’re releasing anything
that a lot of people will see, there’s
a lot you need to do.

Coordinating that can be tricky.
Apple’s an interesting company

to take a look at. Over time, a few
interesting tidbits have spilled out
of Cupertino. The Apple New Prod-
uct Process (ANPP) is, at its core, a
simple checklist. It goes into great
detail about the process of releas-
ing a product, from beginning to
end, from who’s responsible to who
needs to be looped into the process
before it goes live.

The ANPP tends to be at the very
high-level of the company (think
Tim Cook-level of things), but
this type of approach sinks deeper
down into individual small teams.
Even before a team starts working
on something, they might make
a checklist to prep for it: do they
have appropriate access to develop-
ment and staging servers, do they
have the correct people on the
team, and so on. And even though
they manage these processes in
custom-built software, what it is at
its core is simple: it’s a checklist.
When you’re done with something,
you check it off the list. It’s easy
to collaborate on, and it’s easy to
understand.

Think back to every single sci-fi
movie you’ve ever watched. When
they’re about to launch the rocket
into space, there’s a lot of "Flip MAIN
SERIAL BUS A to on.“ And then

the dutiful response: ”Roger, MAIN
SERIAL BUS A is on.“ You don’t see
many responses of, ”uh, Houston,
I think I’m more happier when
MAIN SERIAL BUS A is at like, 43%
because SECONDARY SERIAL BUS B is
kind of a jerk sometimes and I don’t
trust goddamn serial busses what
the hell is a serial bus anyway yo
Houston hook a brother up with a
serial limo instead."

And there’s a reason for that:
checklists remove ambiguity. All the
debate happens before something
gets added to the checklist... not at
the end. That means when you’re
about to launch your product —
or go into space — you should be
worrying less about the implemen-
tation and rely upon the process
more instead. Launches are stressful
enough as-is.

Ownership
Something else that becomes
increasingly important as your
organization grows is that of code
ownership. If the goal is to have
clean, relatively bug-free code, then
your process should help foster an
environment of responsibility and
ownership of your piece of the
codebase.

If you break it, you should fix it.
At GitHub, we try to make that

connection pretty explicit. If you’re
deploying your code and your code
generates a lot of errors, our open
source chatroom robot, Hubot,
[hubot.github.com] will notice and
message you in chat with a friendly
“hey, you were the last person to
deploy and something is breaking.
Can you take a look at it?” This reit-
erates the idea that you’re respon-
sible for the code that you put out.
That’s good because, as it turns out,
the people who wrote the code are
typically the people who can most

easily fix it. Beyond that, forcing
your coworkers to always clean up
your mess is going to really suck
over time (for them).

There are plenty of ways to
keep people responsible. Google,
for example, uses OWNERS files in
Chrome. This is a way of making
explicit the ownership of a file or
entire directories of the project.
The format of an actual OWNERS file
can be really simple — shout out
to simple systems like flat files and
checklists — but they serve two
really great purposes:

■■ They enforce quality. If you’re
an owner of an area of code, any
new contribution to your code
requires your signoff. Since you
are in a somewhat elevated posi-
tion of responsibility, it’s on you
to fight to not allow potentially
buggy code into your area.

■■ It encourages mentorship. Partic-
ularly in open source projects like
Chromium, it can be intimidat-
ing to get started with your first
contribution. OWNERS files make
it explicit about who you might
want to ask about your code or
even about the high-level discus-
sion before you get started.

You can tie your own systems
together closer, too. In Haystack,
our internal error tracking service at
GitHub, we have pretty deep hooks
into our code itself. In a controller,
for example, we might have code
that looks like this:

class BranchesController
 areas_of_reponsibility :git
end

This marks this particular file
as being the responsibility of
the @github/git team, the team
that handles Git-related data and

http://hubot.github.com

  13

infrastructure. So, when we see a
graph in Haystack like the one to
the right, we can see that there’s
something breaking in a particular
page. We can quickly see which
teams are responsible for the code
that’s breaking, since Haystack
knows to look into the file with the
error and bubble up these areas
of responsibility. From here, it’s a
one-click operation to open an issue
on our bug tracker about it, men-
tioning the responsible team in it so
they can fix it.

Look: bugs do happen. Even if
you move fast and break nothing,
well, you’re still bound to break
something at some point. Having
a culture of responsibility around
your code helps you address those
bugs quickly in an organized
manner.

Talking & Communicating
I’ve given a lot of talks and written
a lot of blog posts about software
development and teams and orga-
nizations. Probably one way to sum
them all up is: more communication.
I think companies function better
by being more transparent, and if
you build your environment cor-
rectly, you can end up with better
code, a good remote work culture,
and happier employees.

But god, more communication
means a ton of shit. Emails. Notifi-
cations. Text messages. IMs. Videos.
Meetings.

If everyone is involved with
everything...does anyone really
have enough time to actually do
anything?

Having more communication is
good. Improving your communica-
tion is even better.

Be Mindful Of Your Coworker’s
Time
It’s easy to feel like you deserve
the time of your coworkers. In
some sense, you do: you’re trying
to improve some aspect of the
company, and if your coworker can
help out with that, then the whole
company is better off. But every
interaction comes with a cost: your
coworker’s time. This is dramati-
cally more important in creative
and problem solving fields like
computer science, where being in
the zone can mean the difference
between a really productive day and
a day where every line of code is a
struggle to write. Getting pulled out
of the zone can be jarring, and get-
ting back into that mental mindset
can take a frustratingly long time.

This goes doubly so for compa-
nies with remote workers. It’s easy
to notify a coworker through chat
or text message or IM that you
need their help with something.
Maybe a server went down, or
you’re having a tough problem with
a bug in code you’re unfamiliar
with. If you’re a global company,
time zones can become a factor, too.
I was talking to a coworker about
this, and after enough days of being
on-call, she came up with a hilari-
ous idea that I love:

■■ You find you need help with
something.

■■ You page someone on your team
for help.

■■ They’re sleeping. Or out with
their kids. Or any level of “enjoy-
ing their life.”

■■ They check their message and,
in doing so, their phone takes a
selfie of them and pastes it into
the chat room.

■■ You suddenly feel worse.

We haven’t implemented this yet
(and who knows if we will), but
it’s a pretty rad thought experi-
ment. If you could see the impact
your actions on your coworker’s
life, would it change your behavior?
Can you build something into your
process or your tools that might
help with this? It’s interesting to
think about.

I think this is part of a greater
discussion on empathy. And empa-
thy comes in part from seeing real
pain. This is why many suggest that
developers handle some support
threads. A dedicated support team
is great, but until you’re actually
faced with problems up-close, it’s
easy to avoid these pain points.

Institutional Teaching

We have a responsibility to be
teachers — that this should be a
central part of [our] jobs...it’s just
logic that someday we won’t be
here.
— Ed Catmull, co-founder of Pixar

I really like this quote for a couple
reasons. For one, this can be taken
literally: we’re all going to fucking
die. Bummer, right? Them’s the
breaks, kid.

But it also means that people
move around. Sometimes people
will quit or get fired from the com-
pany, and sometimes it just means
people moving around the company.
The common denominator is that
our presence is merely temporary,
which means we’re obligated, in
part, to spread the knowledge we
have across the company. This is
great for your bottom line, of course,
but it’s also just a good thing to do.
Teaching people around you how to
progress in their careers and being
a resource for their own growth is a
very privileged position to be in, and
one we shouldn’t take lightly.

14  FEATURES

So how do we share knowledge
without being lame? I’m not going
to lie: part of the reason I’m work-
ing now is because I don’t have to
go to school anymore. Classes are so
dulllllllllll. So the last thing I want
to have to deal with is some formal,
stuffy process that ultimately
doesn’t even serve as a good foun-
dation to teach anyone anything.

Something that’s grown out
of how we work is a concept we
call “ChatOps”. @jnewland has a
really great talk [hn.my/chatops]
about the nitty-gritty of ChatOps
at GitHub, but in short: it’s a way
of handling devops and systems-
level work at your company in
front of others so that problems
can be solved and improved upon
collaboratively.

If something breaks at a tech
company, a traditional process
might look something like this:

1.	 Something breaks.

2.	 Whoever’s on-call gets paged.

3.	 They SSH into... something.

4.	 They fix it... somehow.

There’s not a lot of transparency.
Even if you discuss it after the fact,
the process that gets relayed to
you might not be comprehensive
enough for you to really understand
what’s going on. Instead, GitHub
and other companies have a flow
more like this:

1.	 Something breaks.

2.	 Whoever’s on-call gets paged.

3.	 They gather information in a
chat room.

4.	 They fix it through shared tool-
ing, in that chat room, in front
of (or leveraging the help of)
other employees.

This brings us a number of ben-
efits. For one, you can learn by osmo-
sis. I’m not on the Ops team, but
occasionally I’ll stick my head into
their chat room and see how they
tackle a problem, even if it’s a prob-
lem I won’t face in my normal day-
to-day work. I gain context around
how they approach problems.

What’s more, if others are study-
ing how they tackle a problem in
real-time, the process lends itself
to improvement. How many times
have you sat down to pair program
with someone and were blown
away by the one or two keystrokes
they use to solve a process that
takes you three minutes? If you
code in a vacuum, you don’t have
the opportunity to make quick
improvements. If I’m watching you
run the same three commands in
order to run diagnostics on a server,
it’s easier as a bystander to think,
hey, why don’t we wrap those com-
mands up in one command that
does it all for us? Those insights can
be incredibly valuable and, in time,
lead to massive, massive productiv-
ity and quality improvements.

This requires some work on
tooling, of course. We use Hubot
to act as a sort of shared collec-
tion of shell scripts that allow us
to quickly address problems in
our infrastructure. Some of those
scripts include hooks into Pager-
Duty [pagerduty.com] to trigger
pages, code that leverages APIs into
AWS or our own datacenter, and, of
course, scripts that let us file issues
and work with our repositories
and teams on GitHub. We have
hundreds or thousands of com-
mands now, all gradually built up
and hardened over time. The result
is an incredible amount of tooling
around automating our response to
potential downtime.

This isn’t limited to just working
in chatrooms, though. Recently the
Wi-Fi broke at our office on a
particular floor. We took the same
approach to fix it, except it was in a
GitHub issue instead of real-time
chat. Our engineers working on the
problem pasted in screenshots of
the status of our routers, the
heatmaps of dead zones stemming
from the downtime, and eventually
traced cables through switches until
we found a faulty one, taking
photos each step of the way and
adding them to the issue so we had
a paper trail of which cabinets and
components were affected. It’s
amazing how much you can learn
from such a non-invasive process. If
I’m not interested in learning the
nitty-gritty details, I can skip the
thread. But if I do want to learn
about it... it’s all right there, waiting
for me.

Feedback
The Blue Angels are a United
States Navy demonstration flight
squadron. They fly in air shows
around the world, maneuvering in
their tight six-fighter formations 18
inches apart from one another. The
talent they exhibit is mind-boggling.

http://hn.my/chatops
http://pagerduty.com

  15

Earlier this year I stumbled on
a documentary on their squadron
from years back. There’s a spe-
cific 45-second section in it that
really made me think. It describes
the process the Blue Angels go
through in order to give each other
feedback.

So first of all, they’re obviously,
patently, completely nuts. The idea
that you can give brutally honest
feedback without worrying about
interpersonal relationships is, well,
not really relevant to the real world.
They’re superhuman. It’s not every
day you can tell your boss that
she fucked up and skip out of the
meeting humming your favorite
tune without fear of repercussions.
So they’re nuts. But it does make
sense: a mistake at their speeds and
altitude is almost certainly fatal.
A mistake for us, while writing
software that helps identify which
of your friends liked that status
update about squirrels, is decidedly
less fatal.

But it’s still a really interesting
ideal to look up to. They do feed-
back and retrospectives that take
twice as long as the actual event
itself. And they take their job of
giving and receiving feedback seri-
ously. How can we translate this
idealized version of feedback in our
admittedly-less-stressful gigs?

Part of this is just getting better
at receiving feedback. I’m fucking
horrible at this. You do have to have
a bit of a thicker skin. And it sucks!
No one wants to spend a few hours
— or days, or months — working on
something, only to inevitably get
the drive-by commenter who finds
a flaw in it (either real or imag-
ined). It’s sometimes difficult to not
take that feedback personally. That
you failed. That you’re not good
enough to get it perfect on the

first or second tries. It’s funny how
quickly we forget how iterative
software development is, and that
computers are basically stacking the
deck against us to never get any-
thing correct on the first try.

Taking that into account, though,
it becomes clear how important
giving good feedback is. And
sometimes this is just as hard to
do. I mean, someone just pushed
bad code! To your project! To your
code! I mean, you’re even in the
damn OWNERS file! The only option
is to rain fire and brimstone and
hate and loathing on this poor sod,
the depths of which will cause him
to surely think twice about com-
mitting such horrible code and, if
you’re lucky, he’ll quit program-
ming altogether and become a dairy
farmer instead. Fuck him!

Of course, this isn’t a good
approach to take. Almost without
fail, if someone’s changing code,
they have a reason for it. It may
not be a good reason, or the imple-
mentation might be suspect, but
it’s reason nonetheless. And being
cognizant of that can go a long
way towards pointing them in the
right direction. How you piece
your words together is terribly
important.

And this is something you should
at least think about, if not explicitly
codify across your whole develop-
ment team entirely. What do you
consider good feedback? How
can you promote understanding
and positive approaches in your
criticism of the code? How can you
help the submitter learn and grow
from this scenario? Unfortunately
these questions don’t get asked
enough, which creates a self-
perpetuating cycle of cynics and
aggressive discussion.

That sucks. Do better.

Move Fast With A Degree Of
Caution
Building software is hard. Because
yeah, moving quickly means you
can do more for people. It means
you can see what works and what
doesn’t work. It means your com-
pany sees real progress quicker.

But sometimes it’s just as impor-
tant to know what not to break.
And when you work on those
things, you change how you operate
so that you can try to get the best
of both worlds.

Also, try flying fighter jets some-
times. It can’t be that hard. n

Zach joined GitHub in 2010 as one of their
first engineering hires. Initially working on
what would become GitHub Enterprise, he
now hacks on new features and frequently
gives talks about building products and
growing startups. He also writes about
public speaking on speaking.io

Reprinted with permission of the original author.
First appeared in hn.my/mfbn (zachholman.com)

http://speaking.io
http://hn.my/mfbn

16  PROGRAMMING

PROGRAMMING

I used to ask interviewees, “What’s your
favorite programming language?” The
answer was nearly always, “I just choose the

right language for the job.” Duh. Does anyone
ever deliberately pick the wrong language? This
was clearly a way to avoid actually naming a
language for fear of picking one I didn’t like.

If the interviewee gave an answer at all, it
was, “I’m most familiar with language X,” which
didn’t answer my question either.

At the time I would myself have replied

something like, “I like Python best because it
makes me happy to program in it, but I only use
it in such-and-such a situation. The rest of the
time I use XYZ…”

About a year ago, though, I started to form a
strange idea: That Java is the right language for
all jobs. (I pause here while you vomit in your
mouth.) This rests on the argument that what
you perceive to be true does not match reality,
and that’s never a popular approach, but let me
explain anyway.

By Lawrence Kesteloot

Java for Everything

Photo: Cock the Hammer by Kyle May [flickr.com/photos/kylemay/1430449350]

http://flickr.com/photos/kylemay/1430449350

  17

Python really is my favorite lan-
guage, and it truly makes me happy
when I code in it. It pushes the
happy spot in my head. It matches
pseudo-code so well that it’s a
genuine pleasure to work in it.

Years ago I read Bruce Eckel’s
influential Strong Type vs. Strong
Testing. [hn.my/strong] In it he
argued that static typing (what he
calls strong typing) is one of the
many facets of program correct-
ness, and that if you’re going to
check the other facets (such as the
algorithm and the logic) with unit
tests, then the types will also get
checked, so you may as well go for
dynamic typing and benefit from its
advantages.

Bruce used Python to illustrate
his code, and that clinched it: I
decided that I would from then on
write everything in Python. Unfor-
tunately I was half-way through
a large Java program at work, but
my co-worker and I agreed that
it should have been written in
Python, and perhaps one day we’d
get a good excuse to rewrite it all
that way.

Several things changed my mind
180° in less than a year:

■■ At one company I wrote a
simulator that allowed me to
run my Java services without
a fully-functional site. In this
simulator I ran scripts that tested
various scenarios including fail-
ures. For these scripts I decided
to use JavaScript, primarily
because it’s included in Java 6
and secondarily because many
people know it. I reasoned that
a scripting language would allow
us and Q/A to write tests easily.
An intern, Justin Lebar, argued
that we should simply use Java.
The simulator is in Java, so why

not write the scripts in it, too?
It’s sitting right there and we
all know it. I went ahead with
JavaScript, which forced me to
write various code to bridge the
two. It also meant that stack
traces were much harder to read,
since they didn’t point to the
line in the script that was being
executed. Q/A never wrote any
tests. Overall we gained nothing
from JavaScript and Justin had
been right.

■■ At the same company we stored
our logs in JSON format (which
is a great idea, by the way), and
a co-worker wrote a Python pro-
gram called logcat to parse the
logs and generate the standard
columnar output, with many
nice features and flag (including
a binary search for timestamp).
On OurGroceries, my personal
project, we needed something
similar and I suggested again to
use Python. My partner Dan
Collens suggested Java, since it’s
right there and we know it and
it’s fast. He wrote it and he was
right: it’s blazing fast. I’ve since
compared the Python logcat
to a Java one and the latter is
about ten times faster. Whatever
time was saved by the developer
when writing the Python code (if
any) were lost many times over
as dozens of users had to wait
ten times longer each time they
fished through the logs.

■■ And finally, I went to write a
simple program that put up a
web interface. I considered using
Python, but this would have
required me to figure out how to
serve pages from its library. I had
already done this in Java (with
Jetty), so I could be up and run-
ning in Java in less time. I realized

that as I accumulate knowledge
about 3rd party Java libraries and
grow my own utility library, it
becomes increasingly expensive
to use any other language. I have
to figure those things out again
and write them again, instead
of copying and pasting the code
from the previous project. Note
that this doesn’t argue for Java,
but it does argue for using a
single language.

The big argument against Java
is that it’s verbose. Perhaps, but so
what? I suppose the real argument
is that it takes longer to write the
code. I doubt this is very much true
after the first 10 minutes. Sure you
have to write public static void
main, but how much time does that
take? Sure you have to write:

Map<String,User> userIdMap =
new HashMap<String,User>();

instead of:

userIdMap = {}

but in the bigger scheme of things,
is that so long? How many total
minutes out of a day is that, two?
And in Python the code more real-
istically looks like this anyway:

Map from user ID to User
object.
userIdMap = {}

(If it doesn’t, then you have bigger
problems. Undocumented Python
programs are horrendously difficult
to maintain.) The problem is that
programmers perceive mindless
work as painful and time-consum-
ing, but the reality is never so bad.
Here’s a quote from a forum about
language design:

http://hn.my/strong

18  PROGRAMMING

It really sucks when you have to
add type declarations for blindingly
obvious things, e.g. Foo x = new
Foo(). — @pazsxn

No, actually, typing Foo one extra
time does not “really suck.” It’s
three letters. The burden is mas-
sively overstated because the work
is mindless, but it’s really pretty
trivial. Programmers will cringe
at writing some kind of command
dispatch list:

if command = "up":
 up()
elif command = "status":
 status()
elif command = "revert":
 revert()
...

so they’ll go off and write some
introspecting auto-dispatch clever-
ness, but that takes longer to write
and will surely confuse future read-
ers who’ll wonder how the heck
revert() ever gets called. Yet the
programmer will incorrectly feel as
though he saved himself time. This
is the trap of the dynamic language.
It feels like you’re being more pro-
ductive, but aside from the first 10
minutes of a new program, you’re
not. Just write the stupid dispatch
manually and get on with the real
work.

 So why are dynamic languages
ever chosen? If you and I have a
contest to write a simple blog-
ging system and you’re using (say)
Python, you’ll have something
interesting in 30 minutes using
pickling and whatnot, and it’ll take
me two days to build something
with MySQL. Many language
choices are based on trivial contests
like these. But after two weeks of
development, when we both have
to add a feature, mine will take at

most as long as yours, and I won’t
be spending any time figuring out
how to get my system to handle
so many users, or tracking down
why some obscure if clause breaks
because you misspelled the name
of a function, or figuring out what
the heck this request parameter
contains.

The classic hacker disdain for
“bondage and discipline languages”
is short sighted; the needs of large,
long-lived, multi-programmer
projects are just different than the
quick work you do for yourself.

And you don’t think you’ll strug-
gle with scalability sooner than I?
Every year the NaNoWriMo web-
site goes down on October 31st.
It’s unresponsive for days. About
60,000 people hit it over a period
of several hours, so maybe four
requests per second. It’s written in
PHP. The OurGroceries backend
is written in Java. It handles (cur-
rently) about 50 complex requests
per second and the CPU rarely goes
above 1% for the Java process.

Twitter tripled their search speed
by switching their search engine
from Ruby to Java.

A few years earlier, Joel Spolsky
tweeted:

Digg: 200MM page views, 500
servers. Stack Overflow: 60MM
page views, 5 servers. What am I
missing?

The reply from @GregB was:

That’s the PHP factor.

StackOverflow uses ASP.NET.
So you can complain all day about
public static void main, but
have fun setting up 500 servers. The
downsides of dynamic languages are
real, expensive, and permanent.

And what about the unit test-
ing argument? If you have to unit
test your code anyway, what does
static typing buy you? Well for one
thing it buys you speed, and lots of
it. But also writing and maintaining
unit tests takes time. Most impor-
tantly, the kinds of bugs that people
introduce most often aren’t the
kind of bugs that unit tests catch.
With few exceptions (such as pars-
ers), unit tests are a waste of time.
To quote a friend of mine, “They’re
a tedious, error-prone way of trying
to recapture the lost value of static
type annotations, but in a bumbling
way in a separate place from the
code itself.”

So here’s my new approach:
Do everything in Java. Don’t be
tempted to write some quick hack
in Python because:

■■ You can’t copy and paste code
from other projects in your pri-
mary programming language.

■■ It may feel faster to develop, but
that’s an illusion. The actual time
saved is small, though admittedly
annoying.

■■ It’s one more language, platform,
and set of libraries that I and my
co-workers have to learn and
master.

■■ And here’s the important one:
Chances are good that this quick
hack will grow and become an
important tool, and I won’t have
the bandwidth to rewrite it, yet
I’ll suffer the performance and
maintenance penalty every time
I use it.

  19

I agree it’s fun to develop in
Python. I love it. When I’m writ-
ing a Sudoku solver, I reach for
Python. But it’s the wrong tool for
anything larger, and it’s the wrong
tool for code of any size written
for pay, because you’re doing your
employer a disservice.

I’m even taking this to an
extreme and using Java for shell
scripts. I’ve found that anything
other than a simple wrapper shell
script eventually grows to the point
where I’m looking up the arcane
syntax for removing some middle
element from an array in bash.
What a crappy language! Wrong
tool for the job! Write it in Java
to start with. If shelling out to run
commands is clumsy, write a utility
function to make it easy.

I’ve also written a java_launcher
shell script that allows me to write
this at the top of Java programs:

#!/usr/bin/env java_launcher
vim:ft=java
lib:/home/lk/lib/teamten.jar

I can make the Java programs
executable and drop the .java
extension. The script strips the
header, compiles and caches the
class file, and runs the result with
the specified jars. It provides one of
the big advantages of Python: the
lack of build scripts for simple one-
off programs.

This focus on a single language
has had an interesting effect: It
has encouraged me to improve my
personal library of utility functions
[github.com/lkesteloot/teamten]
(teamten.jar above), since my
efforts are no longer split across
several languages. For example, I
wrote a library that contains image
processing routines. They’re both
faster and higher quality than
anything you can find in Java and

Python. This took a while, but I
know it’s worth it because I won’t
find myself writing some Python
script and wishing I could resize an
image nicely. I can now confidently
invest in Java as an important part
of my professional and personal
technical future.

There remains the question of
why choosing Java specifically, out
of the set of compiled statically-
typed languages. The advantages
of C and C++ (slight performance
gains, embeddability, graphics
libraries) don’t apply to my work.
C# is nice but not cross-platform
enough. Scala is too complex. And
other languages like D and Go are
too new to bet my work on.

When I tell people that I now
write everything in Java, they look
horrified. One friend had a vis-
ible look of disgust. But you know,
Java’s a pretty nice language, and
when my code compiles, which
is often the first time, it’ll usually
also run correctly. I don’t have that
peace of mind with any other lan-
guage. Java just works like a horse
and is useful across a very broad
range of applications. n

Lawrence Kesteloot writes software in San
Francisco. He has worked for DreamWorks
and various start-ups and is now making
and selling mobile apps for himself.

Reprinted with permission of the original author.
First appeared in hn.my/java (teamten.com)

http://github.com/lkesteloot/teamten
http://hn.my/java

20  PROGRAMMING

My dad used to say,
“Slow down, son.
You’ll get the job done

faster.”
I’ve worked in many high-tech

startup companies in the San
Francisco Bay area. I am now 52,
and I program slowly and thought-
fully. I’m kind of like a designer
who writes code; this may become
apparent as you read on.

Programming slowly was a prob-
lem for me when I recently worked
on a project with some young
coders who believe in making really
fast, small iterative changes to the
code. At the job, we were encour-
aged to work in the same codebase,
as if it were a big cauldron of soup,
and if we all just kept stirring it
continuously and vigorously, a fully-
formed thing of wonder would
emerge.

It didn’t.

By Jeffrey Ventrella

The Case for Slow
Programming

  21

Many of these coders believed
in the fallacy that all engineers are
fungible, and that no one should be
responsible for any particular aspect
of the code; any coder should be
able to change any part of the
code at any time. After all, we have
awesome services like GitHub to
manage and merge any number of
asynchronous contributions from
any number of coders. As long as
everyone makes frequent commits,
and doesn’t break anything, every-
thing will come out just fine.

Bullshit.
You can’t wish away Design Pro-

cess. It has been in existence since
the dawn of civilization. And the
latest clever development tools, no
matter how clever, cannot replace
the best practices and real-life
collaboration that built cathedrals,
railroads, and feature-length films.

Nor can any amount of pro-
gramming ever result in a tool
that reduces the time of software
development to the speed at which
a team of code monkeys can type.

Dysrhythmia
The casualty of my being a slow
programmer among fast program-
mers was a form of dysrhythmia
— whereby my coding rhythm
got aliased out of existence by
the pummeling of other coders’
machine gun iterations. My pro-
gramming style is defined by
organic arcs of different sizes and
timescales, Each arc starts with
exploration, trial and error, hacks,
and temporary variables. Basi-
cally, a good deal of scaffolding. A
picture begins to take shape. Later
on, I come back and dot my i’s and
cross my t’s. The end of each arc
is something like implementation-
ready code. (“Cleaning my studio”
is a necessary part of finishing the

cycle). The development arc of my
code contribution is synonymous
with the emergence of a strategy, a
design scheme, an architecture.

And sometimes, after a mature
organism has emerged, I go back
and start over, because I think I
have a better idea of how to do it.
Sometimes I’m wrong. Sometimes
I’m right. There is no way to really
know until the organism is fully
formed and staring me in the face.

Anyway, back to the cauldron-
soup-programmers. The problem is
this: with no stasis in the overall
software ecosystem — no pools of
stillness within which to gain
traction and apply design process,
how can anyone, even a fast coder,
do good design?

Any coder who claims that fast
programming is the same as slow
programming (except that it’s fast),
doesn’t understand Design Process.
For the same reason that many
neuroscientists now believe that the
fluid-like flow of neuronal firing
throughout the brain has a tempo-
ral reverberation which has every-
thing to do with thought and
consciousness, good design takes
time.

The Slow Programming
Movement
According to Wikipedia: “The slow
programming movement is part of
the slow movement. It is a soft-
ware development philosophy that
emphasizes careful design, quality
code, software testing and thinking.
It strives to avoid kludges, buggy
code, and overly quick release
cycles.

Wikipedia also says this about
“Slow Software Development”: “As
part of the agile software develop-
ment movement, groups of soft-
ware developers around the world
look for more predictive projects,
and aiming at a more sustainable
career and work-life balance. They
propose some practices such as
pair programming, code reviews,
and code refactorings that result in
more reliable and robust software
applications.”

Venture-backed software devel-
opment here in the San Fran-
cisco Bay area is on a fever-pitch
fast-track. Money dynamics puts
unnatural demands on a process
that would be best left to the
natural circadian rhythms of design
evolution. Fast is not always better.
In fact, slower sometimes actually
means faster — when all is said and
done. The subject of how digital
technology is usurping our natural
temporal rhythm is addressed in
Rushkoff’s Present Shock.

There’s another problem: the
almost religious obsession with
technology — and a fetish-like
love for tools. People wonder why
software sucks (and yes, it sucks).
Software sucks because of navel-
gazing. Fast programmers build
hacky tools to get around the hacky
tools that they built to get around
the hacky tools that they built to
help them code.

22  PROGRAMMING

This is why I believe that we
need older people, women, and
educators INSIDE the software
development cycle. More people-
people, fewer thing-people. And I
don’t mean on the outside, sitting
at help desks or doing UI flower
arranging. I mean on the INSIDE —
making sure that software resonates
with humanity at large.

I’m Glad I’m Not a Touch-Typist.
A friend of mine who is a mature,
female software engineer made an
interesting quip: “software pro-
gramming is not typing.” Everyone
knows this, but it doesn’t hurt to
remind ourselves every so often.
Brendan Enrick discusses this. The
fact that we programmers spend
our time jabbing our fingers at
keyboards makes it appear that this
physical activity is synonymous
with programming. But program-
ming is actually the act of bringing
thought, design, language, logic, and
mental construction into a form
that can be stored in computer
memory.

My wife often comes out into the
yard and asks me: “are you coding?”
Often my answer is “yes.” Usually I
am cutting twigs with a garden clip-
per or moving compost around.

Plants, dirt, and clippers have just
as much to do with programming as
keyboards and glowing screens.

We are transitioning from an
industrial age and an economic
era defined by growth to an age of
sustainability. Yes, new software and
new businesses need to grow. But
to be sustainable, they need to grow
slowly and with loving care. Like
good wine. Like a baby. n

Jeffrey Ventrella is an artist/programmer
who lives in the San Francisco Bay area.
A graduate of the MIT Media Lab, Jeffrey
founded Wiggle Planet, LLC to develop
autonomous characters with augmented
reality. Jeffrey has presented and pub-
lished works on artificial life, virtual worlds
and computer art internationally.

Reprinted with permission of the original author.
First appeared in hn.my/slowp (ventrellathing.wordpress.com)

http://hn.my/slowp

  23

By Damien Katz

For years I’ve tried my
damnedest to get away
from C. Too simple, too

many details to manage, too old
and crufty, too low level. I’ve had
intense and torrid love affairs with
Java, C++, and Erlang. I’ve built
things I’m proud of with all of
them, and yet each has broken my
heart. They’ve made promises they
couldn’t keep, created cultures
that focus on the wrong things, and
made devastating tradeoffs that
eventually make you suffer pain-
fully. And I keep crawling back to
C.

C is the total package. It is the
only language that’s highly produc-
tive, extremely fast, has great tool-
ing everywhere, a large community,
a highly professional culture, and is
truly honest about its tradeoffs.

Other languages can get you to a
working state faster, but in the long
run, when performance and reliabil-
ity are important, C will save you
time and headaches. I’m painfully
learning that lesson once again.

Simple and Expressive
C is a fantastic high level language.
I’ll repeat that. C is a fantastic high
level language. It’s not as high
level as Java or C#, and certainly
nowhere near as high level as
Erlang, Python, or JavaScript. But
it’s as high level as C++, and far,
far simpler. Sure, C++ offers more
abstraction, but it doesn’t present a
high level of abstraction away from
C. With C++ you still have to know
everything you knew in C, plus a
bunch of other ridiculous shit.

“When someone says: ‘I want a
programming language in which I
need only say what I wish done,’
give him a lollipop.”
— Alan J. Perlis

That we have a hard time think-
ing of lower level languages we’d
use instead of C isn’t because C is
low level. It’s because C is so damn
successful as an abstraction over the
underlying machine and making
that high level, it’s made most low
level languages irrelevant. C is that
good at what it does.

The syntax and semantics of C
is amazingly powerful and expres-
sive. It makes it easy to reason
about high level algorithms and low
level hardware at the same time.
Its semantics are so simple and the
syntax so powerful it lowers the
cognitive load substantially, letting
the programmer focus on what’s
important.

It’s blown everything else away
to the point it’s moved the bar
and redefined what we think of as
a low level language. That’s damn
impressive.

Simpler Code, Simpler Types
C is a weak, statically typed lan-
guage and its type system is quite
simple. Unlike C++ or Java, you
don’t have classes where you define
all sorts of new runtime behav-
iors of types. You are pretty much
limited to structs and unions and all
callers must be very explicit about
how they use the types, callers get
very little for free.

“You wanted a banana but what
you got was a gorilla holding the
banana and the entire jungle.”
— Joe Armstrong

The Unreasonable
Effectiveness of C

24  PROGRAMMING

What sounds like a weakness
ends up being a virtue: the “surface
area” of C APIs tend to be simple
and small. Instead of massive frame-
works, there is a strong tendency
and culture to create small libraries
that are lightweight abstractions
over simple types.

Contrast this to OO languages
where codebases tend to evolve
massive interdependent interfaces
of complex types, where the argu-
ments and return types are more
complex types and the complex-
ity is fractal, each type is a class
defined in terms of methods with
arguments and return types or more
complex return types.

It’s not that OO type systems
force fractal complexity to happen,
but they encourage it, they make
it easier to do the wrong thing. C
doesn’t make it impossible, but it
makes it harder. C tends to breed
simpler, shallower types with fewer
dependencies that are easier to
understand and debug.

Speed King
C is the fastest language out there,
both in micro and in full stack
benchmarks. And it isn’t just the
fastest in runtime, it’s also con-
sistently the most efficient for
memory consumption and startup
time. And when you need to make
a tradeoff between space and time,
C doesn’t hide the details from you,
it’s easy to reason about both.

“Trying to outsmart a compiler
defeats much of the purpose of
using one.”
— Kernighan & Plauger, The Ele-
ments of Programming Style

Every time there is a claim of
“near C” performance from a higher
level language like Java or Haskell,
it becomes a sick joke when you see
the details. They have to do awk-
ward backflips of syntax, use special
knowledge of “smart” compilers and
VM internals to get that perfor-
mance, to the point that the simple
expressive nature of the language
is lost to strange optimizations that
are version specific, and usually only
stand up in micro-benchmarks.

When you write something to be
fast in C, you know why it’s fast,
and it doesn’t degrade significantly
with different compilers or environ-
ments the way different VMs will,
the way GC settings can radically
affect performance and pauses, or
the way interaction of one piece of
code in an application will totally
change the garbage collection pro-
file for the rest.

The route to optimization in
C is direct and simple, and when
it’s not, there are a host of profiler
tools to help you understand why
without having to understand the
guts of a VM or the “sufficiently
smart compiler.” When using profil-
ers for CPU, memory and IO, C is
best at not obscuring what is really
happening. The benchmarks, both
micro and full stack, consistently
prove C is still the king.

Faster Build-Run-Debug Cycles
Critically important to developer
efficiency and productivity is the
“build, run, debug” cycle. The faster
the cycle is, the more interactive
development is, and the more you
stay in the state of flow and on
task. C has the fastest development
interactivity of any mainstream
statically typed language.

“Optimism is an occupational
hazard of programming; feedback
is the treatment.”
— Kent Beck

Because the build, run, debug
cycle is not a core feature of a lan-
guage, it’s more about the tooling
around it, this cycle is something
that tends to be overlooked. It’s
hard to overstate the importance of
the cycle for productivity. Sadly it’s
something that gets left out of most
programming language discussions,
where the focus tends to be only on
lines of code and source writability/
readability. The reality is the tooling
and interactivity cycle of C is the
fastest of any comparable language.

Ubiquitous Debuggers and
Useful Crash Dumps
For pretty much any system you’d
ever want to port to, there are
readily available C debuggers and
crash dump tools. These are invalu-
able to quickly finding the source
of problems. And yes, there will be
problems.

“Error, no keyboard — press F1 to
continue.”

With any other language there
might not be a usable debugger
available and less likely a useful
crash dump tool, and there is a
really good chance for any heavy
lifting you are interfacing with C
code anyway. Now you have to
debug the interface between the
other language and the C code, and
you often lose a ton of context,
making it a cumbersome, error-
prone process, and often completely
useless in practice.

  25

With pure C code, you can see
call stacks, variables, arguments,
thread locals, globals, basically
everything in memory. This is ridic-
ulously helpful especially when you
have something that went wrong
days into a long-running server
process and isn’t otherwise repro-
ducible. If you lose this context in
a higher level language, prepare for
much pain.

Callable from Anywhere
C has a standardized applica-
tion binary interface (ABI) that is
supported by every OS, language,
and platform in existence. And it
requires no runtime or other inher-
ent overhead. This means the code
you write in C isn’t just valuable to
callers from C code, but to every
conceivable library, language, and
environment in existence.

“Portability is a result of few con-
cepts and complete definition.”
— J. Palme

You can use C code in standalone
executables, scripting languages,
kernel code, embedded code, as a
DLL, even callable from SQL. It’s
the Lingua Franca of systems pro-
gramming and pluggable libraries. If
you want to write something once
and have it usable from the most
environments and use cases pos-
sible, C is the only sane choice.

Yes. It has Flaws
There are many “flaws” in C. It has
no bounds checking, it’s easy to
corrupt anything in memory, there
are dangling pointers and memory/
resource leaks, bolted-on support
for concurrency, no modules, no
namespaces. Error handling can
be painfully cumbersome and
verbose. It’s easy to make a whole
class of errors where the call stack
is smashed and hostile inputs take
over your process. Closures? HA!

“When all else fails, read the
instructions.”
— L. Lasellio

Its flaws are very, very well
known, and this is a virtue. All lan-
guages and implementations have
gotchas and hang-ups. C is just far
more upfront about it. And there
are a ton of static and runtime tools
to help you deal with the most
common and dangerous mistakes.
That some of the most heavily used
and reliable software in the world
is built on C is proof that the flaws
are overblown, and easy to detect
and fix.

At Couchbase we recently spent
easily 2+ man/months dealing
with a crash in the Erlang VM. We
wasted a ton of time tracking down
something that was in the core
Erlang implementation, never sure
what was happening or why, think-
ing perhaps the flaw was something
in our own plug-in C code, hoping
it was something we could find and
fix. It wasn’t, it was a race condition
bug in core Erlang. We only found
the problem via code inspection of
Erlang. This is a fundamental prob-
lem in any language that abstracts
away too much of the computer.

Initially for performance reasons,
we started increasingly rewriting
more of the Couchbase code in C,
and choosing it as the first option
for more new features. But amaz-
ingly it’s proven much more pre-
dictable when we’ll hit issues and
how to debug and fix them. In the
long run, it’s more productive.

I always have it in the back of my
head that I want to make a slightly
better C. Just to clean up some of
the rough edges and fix some of
the more egregious problems. But
getting everything to fit, top to
bottom, syntax, semantics, tooling,
etc., might not be possible or even
worth the effort. As it stands today,
C is unreasonably effective, and I
don’t see that changing any time
soon. n

Damien Katz is a recovering C++ fanatic,
a founder and the former CTO and Chief
Architect at Couchbase Inc, the creator of
Apache CouchDB, a senior engineer on
MySQL and Lotus Notes, and was once
the “Erlanger of the Year". He is taking
time off to spend with his 3 children, but
is available for short term consulting and
speaking engagements. [damienkatz.net]

Reprinted with permission of the original author.
First appeared in hn.my/c (damienkatz.net)

http://damienkatz.net
http://hn.my/c

26  PROGRAMMING

This is a talk given at Defrag 2014.

One of the (few) advan-
tages of being in
technology for a long

time is that you get to see multiple
tech cycles from beginning to end.
You get to see how breakthroughs
actually propagate. If all you have
seen is a part of the curve, it’s hard
to extrapolate correctly. You either
overshoot the short-term progress
or undershoot the long. What’s
surprising is not how quickly the
facts on the ground change, but
how slowly engineering practice
changes in response. This is a
Strowger switch, an automated way
to connect phone circuits. It was
invented in 1891.

In 1951, right on the cusp of
digital switching, the typical central
switching office was basically a
super-sized version of the Victorian
technology. There was a strowger
switch for every digit of every
phone call in progress.

From the perspective of the
time, this was the highest of high
technology. Of course from our per-
spective, it was the world’s largest
Steampunk art installation.

It’s probably a mistake to feel
superior about that. It’s been 65
years since the invention of the
integrated circuit, but we still have
billions of these guys around, whir-
ring and clicking and breaking. It’s
only now that we are on the cusp
of the switch to fully solid-state
computing.

The most exciting kinds of
technological shifts are when a new
model finally becomes feasible, or
when an old restriction falls away.
Both kinds are happening right now
in our industry.

Distributed computing is becom-
ing the dominant programming
model throughout the entire
software stack. The so-called “Cen-
tral Processing Unit” is no longer
central, or even a unit. It’s only
one of many bugs crawling over a
mountain of data. The database is
the last holdout.

At the same time, the latency
gap between RAM and hard drive
storage is becoming irrelevant. For
30 years the central fact of database
performance was the gigantic dif-
ference in the time it takes to access

a random piece of data in RAM
versus on a hard drive. It’s now
feasible to skip all that heartache by
placing your data entirely in RAM.
It’s not as simple as that, of course.
You can’t just take a btree, mmap
it, and call it a day. There are a lot
of implications to a truly memory-
native design that have yet to be
unwound.

These two trends are producing
an entirely new way to think about,
design, and build applications. So
let’s talk about how we got here,
how we’re doing, and hints about
where the future will take us.

Back in the day, every compo-
nent in the architecture diagram
had a definite article attached to it.
Each thing was a separate function:
“the” database and “the” web server,
characters in a one-room drama.
Incidentally, this is where the term
“the cloud” came from. A fluffy
cloud was the standard symbol for
an external WAN whose details you
didn’t have to worry about.

Distributed computing hit
the mainstream with the lowest-
hanging fruit. Multiple identical
application servers were hidden
behind a “load balancer” which
spread the work more or less
evenly. Load-balancing only the
stateless bits of the architecture

By Carlos Bueno

Cache is the New RAM

  27

sidestepped a lot of philosophical
problems. As the system scaled up,
those components outflanked and
eventually surrounded “the” data-
base. We told ourselves that it was
normal to spend more on special
database hardware with fast disks
and a faster CPU, and it was only
one machine anyway. The hardware
vendors were happy to take our
money.

Eventually, database replica-
tion became reasonable and we
salved our consciences by adding
a hot spare database. We then told
ourselves there were no longer any
single points of failure. It was even
true — for a few minutes.

That hot spare was too tempting
to leave sitting idle, of course. Once
the business analysts realized they
could run gigantic queries on live
production data without touch-
ing production, the so-called “hot
spare” became nearly as busy and
mission-critical as the production
copy. We told ourselves it would
be fine because if the spare is ever
needed we can just take it from
them for the duration of the emer-
gency. But that’s like saying you
don’t really need to carry a spare
tire because you can always steal
one from another car.

Then Brad Fitzpatrick released
memcached, a daemon that caches
data in memory. (Hence the name.)
It was amazingly pragmatic soft-
ware, a simplified version of the dis-
tributed hash tables then in vogue
in academia. It had lots of features:
a form of replication, sharding, load
balancing, simple math operators.
We told ourselves that most of our
load was reads, so why make the
database thrash the disk running
the same queries over and over
again? All you needed was a bunch
of small-caliber servers with tons of

RAM, and of course the hardware
vendors were happy to take our
money.

And…maybe you have to write
some cache invalidation code. That
doesn’t sound too hard. Right?

To its credit, the memcached
design took things a pretty long
way. It replaced the random IO
performance of a hard drive with
the random IO performance of
multiple banks of RAM. Even so,
the database machine kept getting
bigger and busier. We realized that
caching cost at least as much RAM
as the working set (otherwise it was
ineffective), plus the nearly unbear-
able headache of cache consistency.
But we told ourselves that was the
cost of “web scale.”

More worrisome was that appli-
cations were getting more sophisti-
cated and chattier. Multiple data-
base writes were being performed
on almost every hit. Writes, not
reads, became the bottleneck. This
is when we finally got serious about
sharding the database. Facebook
initially sharded its user data by
university and got away with con-
cepts like “The Harvard Database”
for a surprisingly long time. Flickr is
another good example. They hand-
built a sharding system in PHP that
split the database up by a hash of
the user ID, in much the same way
that memcached shards on the key.
In their tech talks there are jolly
hints about having to denormal-
ize their tables and double-write
objects such as comments, mes-
sages, and favorites.

But that’s a small price to pay for
infinite scaling that solves every-
thing ever. Right?

The problem with sharding a
relational database by hand is that
you no longer have a relational
database. The API that orchestrates

the sharding has in effect become
your query language. Your opera-
tional headaches didn’t get better
either; the pain of altering schemas
across the fleet was actually worse.

This was the point at which a
lot of people took a deep breath,
catalogued all the limitations and
warts of their chosen implementa-
tion of SQL…and for some reason
decided to blame SQL. A flood of
hipster NoSQL and refugee XML
databases appeared, all promising
the moon. They offered automatic
sharding, flexible schemas, some
replication…and not much else at
first. But it was less painful than
writing it yourself.

You know things are really
desperate when “less painful than
writing it yourself” is the main sell-
ing point.

Moving to NoSQL wasn’t worse
than hand-sharding because we’d
already given up any hope of using
the usual client tools to manipulate
and analyze our data. But it wasn’t
much better either. What used to
be a SQL query written by the
business folks turned into hand-
written reporting code maintained
by the developers.

Remember that “hot spare” data-
base we used to use for backups
and analytics? It came back with a
vengeance in the form of Hadoop
filestores and Hive querying on top.
Now this worked, and largely got
the business folks off our backs. The
biggest problem is the operational
complexity of these systems. Like
the Space Shuttle, they were sold
as reliable and nearly maintenance-
free but turn out to need a ton of
hands-on attention. The second
biggest problem is getting the data
in and out; a lag time of one day (!)
was considered pretty good. The
third problem is that it manages to

28  PROGRAMMING

be I/O-bound on both network and
disk at the same time. We told our-
selves that was the price of graduat-
ing to BIG DATA.

Anyway, that’s how Google does
it. Right?

As various NoSQL databases
matured, a curious thing happened
to their APIs: they started look-
ing more like SQL. This is because
SQL is a pretty direct implementa-
tion of relational set theory, and
math is hard to fool.

To paraphrase Paul Graham’s
unbearably smug comment about
Lisp: once you add group by, filter,
& join, you can no longer claim
to have invented a new query
language, only a new dialect of
SQL. With worse syntax and no
optimizer.

Because we had taken this
strange detour away from SQL,
crucial bits missing from most of
the systems are a storage engine and
query optimizer designed around
relational set theory. Bolting that on
later led to severe performance hits.
For the ones that got it right (or
papered it over by being resident in
RAM) there were other bits missing
like proper replication.

I know of one extremely success-
ful web startup you’ve definitely
heard of that uses four, count ‘em,
FOUR separate NoSQL systems to
cover the gaps.

It’s pretty clear that there’s no
going back to “the” database and
10-million-nanosecond random
seek times. Underneath the endless
hype cycles in search of the One
True Thing To Solve Everything
Ever is an interesting pattern: a pain
point relieved by a clever approach
that comes with a new pain point.

So what’s the next complex
gadget to add to this dog’s break-
fast? Maybe the real trick is to
make things simpler.

For instance, RAM: You have
lots of RAM in the “database”
machines, for caching and calcula-
tion. You also have lots of RAM in
the Memcached machines. The sum
of RAM in those systems should be
at least equal to
the size of your
working data
set. If it isn’t
then you’ve
under-bought.
Also, I very
much doubt
that your cach-
ing layers are 100% efficient. I’ll bet
money you have plenty of data that
are cached and never read again
before eviction. I’ll bet more money
you don’t even track that. That
doesn’t mean you’re a bad person.
It means that caching is often more
trouble than it’s worth.

A lot of the features each of
these components provides seem to
be composable and complementary
to one other. If only they could be
arranged better.

Once you take it as axioms that
the system will be distributed and
the data will always be solid-state,
a curious thing happens: it all gets
much simpler. The “temporary”
memory data structures you’d nor-
mally only use during query invoca-
tion becomes the only structure
there is. Random access is no longer
a cardinal sin; it’s the normal course
of business. You don’t have to worry
about splitting pages, or rebalanc-
ing, or data locality.

This is a nice, simple architecture.
Just as load balancers abstract away
the application servers, SQL “aggre-
gators” abstract away the greasy

details of orchestrating the reading
and writing of data. This keeps the
guts of the data placement strate-
gies behind a stable API, which
allows both sides to make changes
with less disruption.

So it’s all good now, right? We’re
finally arrived at the happy place at
the end of history. Right?

It’s a mistake to feel complacent
about the state of the art of com-
puting, no matter when you live.
There’s always another bottleneck.

This is the AMD “Barcelona”
chip, a relatively modern design. It
has four cores but the majority of
the surface is taken by the cache
and I/O areas surrounding cores,
like a giant parking lot around a
Walmart. In the Pentium era cache
was only about 15% of the di. The
third, quieter, revolution in com-
puting is how much faster the CPU
has gotten relative to memory.
There’s a reason all this expen-
sive real estate is now reserved for
cache.

“Those who ignore
computer history are
condemned to GOTO 1”

  29

The central fact of database
performance used to be the latency
gap between RAM and disk. At the
moment we’re kidding ourselves
that the latency gap between CPU
cache and RAM isn’t exactly the
same kind of problem. But it is.

And as much as we like to pre-
tend that shared memory actually
exists, it doesn’t. With lots of cores
and lots of RAM, inevitably some
cores will be closer to some parts of
RAM.

When you get right down to it,
a computer really does only two
things: read symbols and write
symbols. Performance is a function
of how much data the computer
must move around, and where it
goes. The happiest possible case
is an endless sequential stream of
data that’s read once and dealt with
quickly, never to be needed again.
GPUs are a good example of this.
But most interesting workloads
aren’t like that.

Every random pointer that’s
chased almost guarantees a cache
miss. Every contention for the
same area of memory (e.g. a write
lock) causes huge coordination
delay. Even if your CPU cache-hit
rate was 99%, which it isn’t, time
spent waiting on RAM would still
dominate.

Or put it this way: if disk is the
new tape, and RAM is the new disk,
then the CPU cache is the new
RAM. Locality still matters.

So what will solve this problem?
It seems that there’s the same old
fundamental conflicts: do we opti-
mize for random or serial access?
Do we take the performance pen-
alty on writes or reads? Can we just
sit tight and let the hardware catch
up? Maybe memristors or other
technology will make all of this
irrelevant. Well, I want a pony, too.

The good news is that the gross
physical architecture of distrib-
uted databases seems to be settling
down. Data clients no longer need
to deal with the guts and entrails of
4 or 5 separate subsystems. It’s not
perfect yet; it’s not even main-
stream yet. Breakthroughs take a
while to propagate.

But if the next bottleneck really
is memory locality, that means the
rest of it has become mature. New
innovations will tend to be in data
structures and algorithms. There
will be fewer sweeping architec-
tural convulsions that promise to fix
everything ever. If we’re lucky, the
next 15 years will be about SQL
databases quietly getting faster and
more efficient while exposing the
same API.

But then again, our industry has
never been quiet. n

Carlos Bueno is an engineer at the data-
base company MemSQL. Most recently he
was a performance engineer at Facebook,
where he helped save the company bags
of cash through careful measurement and
mature optimization.

Reprinted with permission of the original author.
First appeared in hn.my/cache (memsql.com)

“Throughput and latency
always have the last laugh.”

http://hn.my/cache

30  PROGRAMMING

By Correl Roush

I’ve been using Emacs Org
mode [orgmode.org] for nearly
a year now. For a while I mostly

just used it to take and organize
notes, but over time I’ve discovered
it’s an incredibly useful tool for
managing projects and tasks, writing
and publishing documents, keeping
track of time and to-do lists, and
maintaining a journal.

Project Management
Most of what I’ve been using Org
mode for has been breaking down
large projects at work into tasks and
subtasks. It’s really easy to enter
projects in as a hierarchy of tasks
and task groupings. Using Column
View, I was able to dive right into
scoping them individually and
reporting total estimates for each
major segment of work.

Because Org Mode makes
building and modifying an outline
structure like this so quick and
easy, I usually build and modify
the project org document while

planning it out with my team. Once
done, I then manually load that
information into our issue tracker
and get underway. Occasionally I’ll
also update tags and progress status
in the org document as well as the
project progresses, so I can use the
same document to plan subsequent
development iterations.

Organizing Notes and Code
Exercises
More recently, I’ve been looking
into various ways to get more things
organized with Org mode. I’ve
been stepping through Structure
and Interpretation of Computer
Programs with some other folks
from work, and discovered that Org
mode was an ideal fit for keep-
ing my notes and exercise work
together. The latter is neatly man-
aged by Babel, which let me embed
and edit source examples and my
exercise solutions right in the org
document itself, and even export
them to one or more scheme files
to load into my interpreter.

Exporting and Publishing
Documents
Publishing my notes with Org is
also a breeze. I’ve published project
plans and proposals to PDF to share
with colleagues, and exported my
SICP notes to html and dropped

them into a site built with Jekyll.
Embedding graphs and diagrams
into exported documents using
Graphviz, Mscgen, and PlantUML
has also really helped with putting
together some great project plans
and documentation. A lot of great
examples using those tools can be
found here. [hn.my/orgex]

Emacs Configuration
While learning all the cool things I
could do with Org mode and Babel,
it was only natural I’d end up using
it to reorganize my Emacs configu-
ration. Up until that point, I’d been
managing my configuration in a
single init.el file, plus a directory full
of mode or purpose-specific elisp
files that I’d loop through and load.
Inspired primarily by the blog post,
“Making Emacs Work For Me”, and
later by others such as Sacha Chua’s
Emacs configuration, I got all my
configs neatly organized into a single
org file that gets loaded on startup.
I’ve found it makes it far easier to
keep track of what I’ve got config-
ured, and gives me a reason to docu-
ment and organize things neatly
now that it’s living a double life as
a published document on GitHub.
I’ve still got a directory lying around
with autoloaded scripts, but now it’s
simply reserved for tinkering and
sensitive configuration.

Getting Organized
with Org Mode

http://hn.my/orgex

  31

Tracking Habits
Another great feature of Org mode
that I’ve been taking advantage
of a lot more lately is the Agenda.
By defining some org files as being
agenda files, Org mode can exam-
ine these files for TODO entries,
scheduled tasks, deadlines and more
to build out useful agenda views to
get a quick handle on what needs to
be done and when. While at first I
started by simply syncing down my
google calendars as Org-files (using
ical2org.awk), I’ve started managing
TODO lists in a dedicated org file.
By adding tasks to this file, schedul-
ing them, and setting deadlines, I’ve
been doing a much better job of
keeping track of things I need to get
done and (even more importantly)
when I need to get them done.

This works not only for one-shot
tasks, but also habits and other
repetitive tasks. It’s possible to
schedule a task that should be done
every day, every few days, or maybe
every first Sunday of a month. For
example, I’ve set up repeating tasks
to write a blog post at least once a
month, practice guitar every two
to three days, and to do the dishes
every one or two days. The agenda
view can even show a small, color-
ized graph next to each repeating
task that paints a picture of how
well (or not!) I’ve been getting
those tasks done on time.

Keeping a Journal and Tracking
Work
The last thing I’ve been using
(which I’m still getting a handle on)
is using Capture to take and store
notes, keep a journal, and even
track time on tasks at work.

For my journal, I’ve configured a
capture template that I can use to
write down a new entry that will be
stored with a time stamp appended
into its own Org file, organized

under head-
lines by year,
month, and
date.

For work tasks, I have another
capture template configured that
will log and tag a task into another
Org file, also organized by date,
which will automatically start
tracking time for that task. Once
done, I can simply clock out and
check the time I’ve spent, and can
easily find it later to clock in again,
add notes, or update its status. This
helps me keep track of what I’ve
gotten done during the day, keep
notes on what I was doing at any
point in time, and get a better idea
of how long it takes me to do dif-
ferent types of tasks.

Conclusion
There’s a lot that can be done
with Org mode, and I’ve only just
scratched the surface. The simple
outline format provided by Org
mode lends itself to doing all sorts
of things, be it organizing notes,

keeping a private or
work journal, or writ-
ing a book or technical
document. I’ve even
written this blog post
in Org mode! There’s
tons of functional-
ity that can be built
on top of it, yet the
underlying format
itself remains simple
and easy to work with.
I’ve never been great at
keeping myself orga-
nized, but Org mode
is such a delight to use

that I can’t help trying anyway. If it
can work for me, maybe it can work
for you, too!

There’s tons of resources for
finding new ways for using Org
mode, and I’m still discovering
cool things I can track and inte-
grate with it. I definitely recom-
mend reading through Sacha
Chua’s Blog [sachachua.com], as
well as posts from John Wiegley
[hn.my/wiegley]. I’m always look-
ing for more stuff to try out. Feel
free to drop me a line if you find
or are using something you think is
cool or useful!

Correl is a 32 year old software developer
residing in the Philadelphia area with his
wife, dog, and cat. Predominantly self-
taught, he has been coding professionally
for the past 8 year and is always finding
new things to learn. His other interests
include watching anime, playing video
games, and learning the bass guitar.

Reprinted with permission of the original author.
First appeared in hn.my/org (phoenixinquis.net)

(setq org-capture-templates
 '(("j" "Journal Entry" plain
 (file+datetree "~/org/journal.org")
 "%U\n\n%?" :empty-lines-before 1)
 ("w" "Log Work Task" entry
 (file+datetree "~/org/worklog.org")
 "* TODO %^{Description} %^g\n%?\n\
nAdded: %U"
 :clock-in t
 :clock-keep t)))

(global-set-key (kbd "C-c c") 'org-capture)

(setq org-clock-persist 'history)
(org-clock-persistence-insinuate)

http://sachachua.com
http://hn.my/wiegley
http://hn.my/org

32  PROGRAMMING

By Yunong Xiao

We’ve been busy build-
ing our next-gener-
ation Netflix.com

web application using Node.js. You
can learn more about our approach
from the presentation we delivered
[hn.my/nodeflix] at NodeConf.eu
a few months ago. Today, I want to
share some recent learnings from
performance tuning this new appli-
cation stack.

We were first clued in to a pos-
sible issue when we noticed that
request latencies to our Node.js
application would increase progres-
sively with time. The app was also
burning CPU more than expected,
and closely correlated to the higher
latency. While using rolling reboots
as a temporary workaround, we
raced to find the root cause using
new performance analysis tools
and techniques in our Linux EC2
environment.

Flames Rising
We noticed that request latencies to
our Node.js application would
increase progressively with time.
Specifically, some of our endpoints’
latencies would start at 1ms and
increase by 10ms every hour. We
also saw a correlated increase in
CPU usage.

This graph plots request latency
in ms for each region against time.
Each color corresponds to a differ-
ent AWS AZ. You can see latencies
steadily increase by 10 ms an hour
and peak at around 60 ms before
the instances are rebooted.

Dousing the Fire
Initially we hypothesized that there
might be something faulty, such as
a memory leak in our own request
handlers that was causing the rising
latencies. We tested this assertion
by load-testing the app in isolation,
adding metrics that measured both
the latency of only our request
handlers and the total latency of a
request, as well as increasing the
Node.js heap size to 32 GB.

We saw that our request han-
dler’s latencies stayed constant
across the lifetime of the process at
1 ms. We also saw that the process’s
heap size stayed fairly constant at

around 1.2 GB. However, overall
request latencies and CPU usage
continued to rise. This absolved our
own handlers of blame, and pointed
to problems deeper in the stack.

Something was taking an addi-
tional 60 ms to service the request.
What we needed was a way to
profile the application’s CPU usage
and visualize where we’re spending
most of our time on CPU. Enter
CPU flame graphs and Linux Perf
Events to the rescue.

For those unfamiliar with flame
graphs, it’s best to read Brendan
Gregg’s excellent article explaining
what they are [hn.my/flamegraph]
— but here’s a quick summary
(straight from the article).

■■ Each box represents a function in
the stack (a “stack frame”).

■■ The y-axis shows stack depth
(number of frames on the stack).
The top box shows the function

Node.js in Flames

http://hn.my/nodeflix
http://hn.my/flamegraph

  33

that was on-CPU. Everything
beneath that is ancestry. The
function beneath a function is its
parent, just like the stack traces
shown earlier.

■■ The x-axis spans the sample
population. It does not show the
passing of time from left to right,
as most graphs do. The left to
right ordering has no meaning
(it’s sorted alphabetically).

■■ The width of the box shows the
total time it was on-CPU or part
of an ancestry that was on-CPU
(based on sample count). Wider
box functions may be slower
than narrow box functions, or,
they may simply be called more
often. The call count is not
shown (or known via sampling).

■■ The sample count can exceed
elapsed time if multiple threads
were running and sampled
concurrently.

■■ The colors aren’t significant, and
are picked at random to be warm
colors. It’s called “flame graph” as
it’s showing what is hot on-CPU.
And, it’s interactive: mouse over
the SVGs to reveal details.

Previously Node.js flame graphs
had only been used on systems
with DTrace, using Dave Pacheco’s
Node.js jstack() support. How-
ever, the Google v8 team has more
recently added perf_events support
to v8, which allows similar stack
profiling of JavaScript symbols
on Linux. Brendan has written
instructions for how to use this new
support, which arrived in Node.js
version 0.11.13, to create Node.js
flame graphs on Linux.

34  PROGRAMMING

Here’s the original SVG [hn.my/200mins] of the
flame graph. Immediately, we see incredibly high stacks
in the application (y-axis). We also see we’re spend-
ing quite a lot of time in those stacks (x-axis). On
closer inspection, it seems the stack frames are full of
references to Express.js’s router.handle and router.
handle.next functions. The Express.js source code
reveals a couple of interesting tidbits.

■■ Route handlers for all endpoints are stored in one
global array.

■■ Express.js recursively iterates through and invokes all
handlers until it finds the right route handler.

A global array is not the ideal data structure for this
use case. It’s unclear why Express.js chose not to use
a constant time data structure like a map to store its
handlers. Each request requires an expensive O(n) look
up in the route array in order to find its route handler.
Compounding matters, the array is traversed recur-
sively. This explains why we saw such tall stacks in the
flame graphs. Interestingly, Express.js even allows you
to set many identical route handlers for a route. You
can unwittingly set a request chain like so.

[a, b, c, c, c, c, d, e, f, g, h]

Requests for route c would terminate at the first
occurrence of the c handler (position 2 in the array).
However, requests for d would only terminate at posi-
tion 6 in the array, having needless spent time spinning
through a, b and multiple instances of c. We verified
this by running the following vanilla express app.

var express = require('express');
var app = express();
app.get('/foo', function (req, res) {
 res.send('hi');
});
// add a second foo route handler
app.get('/foo', function (req, res) {
 res.send('hi2');
});
console.log('stack', app._router.stack);
app.listen(3000);

Running this Express.js app returns these route
handlers.

stack [{ keys: [], regexp: /^\/?(?=/|$)/i,
handle: [Function: query] },
 { keys: [],
 regexp: /^\/?(?=/|$)/i,
 handle: [Function: expressInit] },
 { keys: [],
 regexp: /^\/foo\/?$/i,
 handle: [Function],
 route: { path: '/foo', stack: [Object], meth-
ods: [Object] } },
 { keys: [],
 regexp: /^\/foo\/?$/i,
 handle: [Function],
 route: { path: '/foo', stack: [Object], meth-
ods: [Object] } }]

Notice there are two identical route handlers for
/foo. It would have been nice for Express.js to throw
an error whenever there’s more than one route handler
chain for a route.

At this point the leading hypothesis was that the
handler array was increasing in size with time, thus
leading to the increase of latencies as each handler is
invoked. Most likely we were leaking handlers some-
where in our code, possibly due to the duplicate han-
dler issue. We added additional logging which periodi-
cally dumps out the route handler array, and noticed
the array was growing by 10 elements every hour.
These handlers happened to be identical to each other,
mirroring the example from above.

[...
{ handle: [Function: serveStatic],
 name: 'serveStatic',
 params: undefined,
 path: undefined,
 keys: [],
 regexp: { /^\/?(?=\/|$)/i fast_slash: true },
 route: undefined },
 { handle: [Function: serveStatic],
 name: 'serveStatic',
 params: undefined,
 path: undefined,
 keys: [],
 regexp: { /^\/?(?=\/|$)/i fast_slash: true },
 route: undefined },
 { handle: [Function: serveStatic],

http://hn.my/200mins

  35

 name: 'serveStatic',
 params: undefined,
 path: undefined,
 keys: [],
 regexp: { /^\/?(?=\/|$)/i
fast_slash: true },
 route: undefined },
...
]

Something was adding the same
Express.js provided static route
handler 10 times an hour. Further
benchmarking revealed merely iter-
ating through each of these handler
instances cost about 1 ms of CPU
time. This correlates to the latency
problems we’ve seen, where our
response latencies increase by 10
ms every hour.

This turned out be caused by a
periodic (10/hour) function in our
code. The main purpose of this was
to refresh our route handlers from
an external source. This was imple-
mented by deleting old handlers
and adding new ones to the array.
Unfortunately, it was also inadver-
tently adding a static route handler
with the same path each time it ran.
Since Express.js allows for multiple
route handlers given identical paths,
these duplicate handlers were all
added to the array. Making matter
worse, they were added before the
rest of the API handlers, which
meant they all had to be invoked
before we can service any requests
to our service.

This fully explains why our
request latencies were increasing
by 10ms every hour. Indeed, when
we fixed our code so that it stopped
adding duplicate route handlers, our
latency and CPU usage increases
went away.

Here we see our latencies drop
down to 1 ms and remain there
after we deployed our fix.

When the Smoke Cleared
What did we learn from this har-
rowing experience? First, we need
to fully understand our depen-
dencies before putting them into
production. We made incorrect
assumptions about the Express.js
API without digging further into its
code base. As a result, our misuse of
the Express.js API was the ultimate
root cause of our performance issue.

Second, given a performance
problem, observability is of the
utmost importance. Flame graphs
gave us tremendous insight into
where our app was spending most
of its time on CPU. I can’t imagine
how we would have solved this
problem without being able to
sample Node.js stacks and visualize
them with flame graphs. n

Yunong is currently a Senior Node.JS Soft-
ware Engineer at Netflix — where he’s
leading the transition to Node.js there. He
has spent his career scaling distributed
systems; first at AWS, and more recently at
Joyent — where he launched the Manta
object store and compute service.

Reprinted with permission of the original author.
First appeared in hn.my/flamenode (netflix.com)

http://hn.my/flamenode

36  PROGRAMMING

and help change the future of search

Metrics and monitoring for people
who know what they want
We know from experience that monitoring your servers and
applications can be painful, so we built the sort of service that
we would want to use. Simple to set up, responsive support
from people who know what they're talking about, and reliably
fast metric collection and dashboards.

Why Hosted Graphite?

• Hosted metrics and StatsD: Metric aggregation without the setup headaches

• High-resolution data: See everything like some glorious mantis shrimp / eagle hybrid*

• Flexible: Lots of sample code, available on Heroku

• Transparent pricing: Pay for metrics, not data or servers

• World-class support: We want you to be happy!

Now with Grafana!

Promo code: HACKER

*Hosted Graphite’s mantis shrimp / eagle breeding program has been unsuccessful thus far

Dashboards StatsD Happiness

Grab a free trial at http://www.hostedgraphite.com

http://duckduckhack.com
http://hostedgraphite.com

  37

and help change the future of search

Metrics and monitoring for people
who know what they want
We know from experience that monitoring your servers and
applications can be painful, so we built the sort of service that
we would want to use. Simple to set up, responsive support
from people who know what they're talking about, and reliably
fast metric collection and dashboards.

Why Hosted Graphite?

• Hosted metrics and StatsD: Metric aggregation without the setup headaches

• High-resolution data: See everything like some glorious mantis shrimp / eagle hybrid*

• Flexible: Lots of sample code, available on Heroku

• Transparent pricing: Pay for metrics, not data or servers

• World-class support: We want you to be happy!

Now with Grafana!

Promo code: HACKER

*Hosted Graphite’s mantis shrimp / eagle breeding program has been unsuccessful thus far

Dashboards StatsD Happiness

Grab a free trial at http://www.hostedgraphite.com

http://duckduckhack.com
http://hostedgraphite.com

	FEATURES
	SimCity That I Used to Know
	Move Fast And Break Nothing

	PROGRAMMING
	Java for Everything
	The Case for Slow Programming
	The Unreasonable Effectiveness of C
	Cache is the New RAM
	Getting Organized with Org Mode
	Node.js in Flames

