

I. Introduction
So You Want to Be a Programmer

The Eight Levels of Programmers

How to Write Without Writing

II. The Art of Getting Shit Done
The Vast and Endless Sea

Sharpening the Saw

Go That Way, Really Fast

The Multi-Tasking Myth

III. Principles of Good Programming
The First Rule of Programming: It’s Always Your Fault

The Best Code is No Code At All

Coding without Comments

Learn to Read the Source, Luke

Rubber Duck Problem Solving

Cultivate Teams, Not Ideas

Table of Contents

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Table of Contents

Table of Contents

Table of Contents

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 11

Can Your Team Pass the Elevator Test?

Performance is a Feature

IV. Hiring Programmers the Right
Way

Why Can’t Programmers.. Program?

How to Hire a Programmer

Getting the Interview Phone Screen Right

The Years of Experience Myth

On Interviewing Programmers

Hardest Interview Puzzle Question Ever

V. Getting Your Team to Work
Together

No Matter What They Tell You, It’s a People Problem

Leading By Example

Vampires Programmers versus Werewolves Sysadmins

Pair Programming versus Code Review

Meetings: Where Work Goes to Die

Dealing With Bad Apples

The Bad Apple: Group Poison

On Working Remotely

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Table of Contents

Table of Contents

Table of Contents

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 22

VI. Your Batcave: Effective
Workspaces for Programmers

The Programmer’s Bill of Rights

Computer Workstation Ergonomics

Does More Than One Monitor Improve Productivity?

Investing in a Quality Programming Chair

Bias Lighting

VII. Designing With the User in Mind
You’ll Never Have Enough Cheese

This is All Your App is: A Collection of Tiny Details

The User Interface is the Application

UI-First Software Development

The End of Pagination

Treating User Myopia

Revisiting The Fold

Fitts’ Law and Infinite Width

The Ultimate Unit Test Failure

Version 1 Sucks, But Ship it Anyway

VIII. Security Basics: Protecting Your
Users' Data

Should All Web Traffic Be Encrypted?

Dictionary Attacks 101

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Table of Contents

Table of Contents

Table of Contents

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 33

Speed Hashing

The Dirty Truth About Web Passwords

IX. Testing Your Code, So it Doesn't
Suck More Than it Has To

Sharing the Customer’s Pain

Working With the Chaos Monkey

Code Reviews: Just Do It

Testing With The Force

I Pity the Fool Who Doesn’t Write Unit Tests

Unit Testing versus Beta Testing

Low-Fi Usability Testing

What’s Worse Than Crashing?

X.Building, Managing and Benefiting
from a Community

Listen To Your Community, But Don’t Let Them Tell You What to Do

I Repeat: Do Not Listen to Your Users

The Gamification

Suspension, Ban or Hellban?

XI. Marketing Weasels and How Not

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Table of Contents

Table of Contents

Table of Contents

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 44

to Be One
9 Ways Marketing Weasels Will Try to Manipulate You

How Not to Advertise on the Internet

Groundhog Day, or, the Problem With A/B Testing

If it Looks Corporate, Change It

Software Pricing: Are We Doing it Wrong?

XII. Keeping Your Priorities Straight
Buying Happiness

Lived Fast, Died Young, Left a Tired Corpse

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Table of Contents

Table of Contents

Table of Contents

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 55

I.

Introduction

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Introduction

Introduction

Introduction

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 66

“Not every programmer aspires to the same things in their career. But it’s
illuminating to consider what a programmer could accomplish in ten years,

twenty years, or thirty years — perhaps even a lifetime.”

I’d argue that the people who need to learn to code will be spurred on most of
all by honesty, not religious faith in the truthiness of code as a universal
good. Go in knowing both sides of the story, because there are no silver bullets in code.
If, after hearing both the pros and cons, you still want to learn to code, then by all means
learn to code. If you’re so easily dissuaded by hearing a few downsides to coding, there
are plenty of other things you could spend your time learning that are more
unambiguously useful and practical. Per Michael Lopp, you could learn to be a better
communicator. Per Gina Trapani, you could learn how to propose better solutions.
Slinging code is just a tiny part of the overall solution in my experience. Why optimize for
that?

On the earliest computers, everyone had to be a programmer because there was no
software. If you wanted the computer to do anything, you wrote code. Computers in the
not so distant past booted directly to the friendly blinking cursor of a BASIC interpreter. I
view the entire arc of software development as a field where we programmers spend our
lives writing code so that our fellow human beings no longer need to write code (or even
worse, become programmers) to get things done with computers. So this idea that
“everyone must know how to code” is, to me, going backwards.

So You Want to Be a Programmer

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Introduction

Introduction

Introduction

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 77

http://www.cs.nott.ac.uk/%7Ecah/G51ISS/Documents/NoSilverBullet.html
http://www.randsinrepose.com/archives/2012/05/16/please_learn_to_write.html
http://smarterware.org/10050/please-do-learn-how-to-propose-better-solutions
http://www.codinghorror.com/blog/2009/07/code-its-trivial.html
http://www.codinghorror.com/blog/2009/01/a-scripter-at-heart.html

I fully support a push for basic Internet literacy. But in order to be a competent driver,
does everyone need to know, in detail, how their automobile works? Must we teach all
human beings the basics of being an auto mechanic, and elevate shop class to the same
level as English and Mathematics classes? Isn’t knowing how to change a tire, and when
to take your car in for an oil change, sufficient? If your toilet is clogged, you shouldn’t
need to take a two week in depth plumbing course on toiletcademy.com to understand
how to fix that. Reading a single web page, just in time, should be more than adequate.

What is code, in the most abstract sense?

code (kōd) …

1. A system of signals used to represent letters or numbers in transmitting messages.

2. A system of symbols, letters, or words given certain arbitrary meanings, used for
transmitting messages requiring secrecy or brevity.

3. A system of symbols and rules used to represent instructions to a computer…

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Introduction

Introduction

Introduction

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 88

http://toiletcademy.com/
http://www.codinghorror.com/blog/2006/04/keeping-up-and-just-in-time-learning.html

— The American Heritage Dictionary of the English Language

Is it punchcards? Remote terminals? Emacs? Textmate? Eclipse? Visual Studio? C? Ruby?
JavaScript? In the 1920s, it was considered important to learn how to use slide rules. In
the 1960s, it was considered important to learn mechanical drawing. None of that
matters today. I’m hesitant to recommend any particular approach to coding other than
the fundamentals as outlined in Code: The Hidden Language of Computer Hardware and
Software, because I’m not sure we’ll even recognize coding in the next 20 or 30 years. To
kids today, perhaps coding will eventually resemble Minecraft, or building levels in Portal
2.

But everyone should try writing a little code, because it somehow sharpens the mind,
right?

Maybe in the same abstract way that reading the entire Encyclopedia Brittanica from
beginning to end does. Honestly, I’d prefer that people spend their time discovering what
problems they love and find interesting, first, and researching the hell out of those
problems. The toughest thing in life is not learning a bunch of potentially hypothetically
useful stuff, but figuring out what the heck it is you want to do. If said research and
exploration leads to coding, then by all means learn to code with my blessing … which is
worth exactly what it sounds like, nothing.

So, no, I don’t advocate learning to code for the sake of learning to code. What I
advocate is shamelessly following your joy. For example, I received the following
email once:

I am a 45-year-old attorney/C.P.A. attempting to abandon my solo law practice as soon as
humanly possible and strike out in search of my next vocation. I am actually paying
someone to help me do this and, as a first step in the “find yourself” process, I was told to
look back over my long and winding career and identify those times in my professional
life when I was doing something I truly enjoyed.

Coming of age as an accountant during the PC revolution (when I started my first “real”
job at Arthur Andersen we were still billing clients to update depreciation schedules
manually), I spend a lot of time learning how to make computers, printers, and software
(VisiCalc anyone?) work. This quasi-technical aspect of my work reached its apex when I
was hired as a healthcare financial analyst for a large hospital system. When I arrived for
my first day of work in that job, I learned that my predecessor had bequeathed me only a
one page static Excel spreadsheet that purported to “analyze” a multi-million dollar
managed care contract for a seven hospital health system. I proceeded to build my own

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Introduction

Introduction

Introduction

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 99

http://www.codinghorror.com/blog/2007/01/if-loving-computers-is-wrong-i-dont-want-to-be-right.html
http://www.minecraft.net/
http://www.thinkwithportals.com/blog.php
http://www.ajjacobs.com/books/kia.asp
http://www.codinghorror.com/blog/2009/04/the-eight-levels-of-programmers.html

spreadsheet but quickly exceeded the database functional capacity of Excel and had to
teach myself Access and thereafter proceeded to stretch the envelope of Access’
spreadsheet capabilities to their utmost capacity – I had to retrieve hundreds of
thousands of patient records and then perform pro forma calculations on them to see if
the proposed contracts would result in more or less payment given identical utilization.

I will be the first to admit that I was not coding in any professional sense of the word. I did
manage to make Access do things that MS technical support told me it could not do but I
was still simply using very basic commands to bend an existing application to my will. The
one thing I do remember was being happy. I typed infinitely nested commands into
formula cells for twelve to fourteen hours a day and was still disappointed when I had to
stop.

My experience in building that monster and making it run was, to date, my most
satisfying professional accomplishment, despite going on to later become CFO of another
healthcare facility, a feat that should have fulfilled all of my professional ambitions at that
time. More than just the work, however, was the group of like-minded analysts and IT
folks with whom I became associated as I tried, failed, tried, debugged, and continued
building this behemoth of a database. I learned about Easter Eggs and coding lore and
found myself hacking into areas of the hospital mainframe which were completely off-
limits to someone of my paygrade. And yet, I kept pursuing my “professional goals” and
ended up in jobs/careers I hated doing work I loathed.

Here’s a person who a) found an interesting problem, b) attempted to create a solution to
the problem, which naturally c) led him to learning to code. And he loved it. This is how
it’s supposed to work. I didn’t become a programmer because someone told me learning
to code was important, I became a programmer because I wanted to change the rules of
the video games I was playing, and learning to code was the only way to do that. Along
the way, I too fell in love.

All that to say that as I stand at the crossroads once more, I still hear the siren song of
those halcyon days of quasi-coding during which I enjoyed my work. My question for you
is whether you think it is even possible for someone of my vintage to learn to code to a
level that I could be hired as a programmer. I am not trying to do this on the side while
running the city of New York as a day job. Rather, I sincerely and completely want to
become a bona fide programmer and spend my days creating (and/or debugging)
something of value.

Unfortunately, calling yourself a “programmer” can be a career-limiting move,
particularly for someone who was a CFO in a previous career. People who work with

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Introduction

Introduction

Introduction

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 1010

http://www.codinghorror.com/blog/2006/08/game-player-game-programmer.html
http://www.codinghorror.com/blog/2007/01/if-loving-computers-is-wrong-i-dont-want-to-be-right.html
http://www.kalzumeus.com/2011/10/28/dont-call-yourself-a-programmer/

money tend to make a lot of money; see Wall Street.

But this isn’t about money, is it? It’s about love. So, if you want to be a programmer,
all you need to do is follow your joy and fall in love with code. Any programmer
worth their salt immediately recognizes a fellow true believer, a person as madly in love
with code as they are, warts and all. Welcome to the tribe.

And if you’re reading this and thinking, “screw this Jeff Atwood guy, who is he to tell me
whether I should learn to code or not”, all I can say is: good! That’s the spirit!

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Introduction

Introduction

Introduction

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 1111

http://www.youtube.com/watch?v=PF_iorX_MAw
http://www.codinghorror.com/blog/2007/12/on-the-meaning-of-coding-horror.html
http://www.codinghorror.com/blog/2005/05/welcome-to-the-tribe.html
http://www.imdb.com/title/tt0083658/quotes?qt=qt0378279

Have you ever gotten that classic job interview question, “where do you see yourself
in five years?” When asked, I’m always mentally transported back to a certain Twisted
Sister video from 1984.

I want you to tell me — no, better yet, stand up and tell the class —

what do you wanna do with your life?

You want to rock, naturally! Or at least be a rockstar programmer. It’s not a question that
typically gets a serious answer — sort of like that other old groan-inducing interview
chestnut, “what’s your greatest weakness?” It’s that you sometimes rock too hard, right?
Innocent bystanders could get hurt.

But I think this is a different and more serious class of question, one that deserves real
consideration. Not for the interviewer’s benefit, but for your own benefit.

The “where do you see yourself in five years” question is sort of glib, and most people
have a pat answer they give to interviewers. But it does raise some deeper concerns:
what is the potential career path for a software developer? Sure, we do this stuff because

The Eight Levels of Programmers

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Introduction

Introduction

Introduction

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 1212

http://www.youtube.com/watch?v=SRwrg0db_zY#t=1m13
http://www.codinghorror.com/blog/archives/000552.html
http://www.codinghorror.com/blog/archives/001202.html

we love it, and we’re very fortunate in that regard. But will you be sitting in front of your
computer programming when you’re 50? When you’re 60? What is the best possible
career outcome for a programmer who aspires to be.. well, a programmer?

What if I told you, with tongue firmly planted in cheek, that there were Eight Levels of
Programmers?

1. Dead Programmer

This is the highest level. Your code has survived and transcended your death. You are a
part of the permanent historical record of computing. Other programmers study your
work and writing. You may have won a Turing Award, or written influential papers, or
invented one or more pieces of fundamental technology that have affected the course of
programming as we know it. You don’t just have a wikipedia entry — there are entire
websites dedicated to studying your life and work.

Very few programmers ever achieve this level in their own lifetimes.

Examples: Dijkstra, Knuth, Kay

2. Successful Programmer

Programmers who are both well known and have created entire businesses — perhaps
even whole industries — around their code. These programmers have given
themselves the real freedom zero: the freedom to decide for themselves what they want
to work on. And to share that freedom with their fellow programmers.

This is the level to which most programmers should aspire. Getting to this level often
depends more on business skills than programming.

Examples: Gates, Carmack, DHH

3. Famous Programmer

This is also a good place to be, but not unless you also have a day job.

You’re famous in programming circles. But being famous doesn’t necessarily mean you
can turn a profit and support yourself. Famous is good, but successful is better. You
probably work for a large, well-known technology company, an influential small company,
or you’re a part of a modest startup team. Either way, other programmers have heard of
you, and you’re having a positive impact on the field.

4. Working Programmer

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Introduction

Introduction

Introduction

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 1313

http://www.codinghorror.com/blog/archives/000979.html
http://www.kenrockwell.com/tech/7art.htm
http://en.wikipedia.org/wiki/Edsger_W._Dijkstra
http://en.wikipedia.org/wiki/Donald_Knuth
http://en.wikipedia.org/wiki/Alan_Kay
http://e-texteditor.com/blog/2009/opencompany
http://en.wikipedia.org/wiki/Bill_Gates
http://en.wikipedia.org/wiki/John_D._Carmack
http://en.wikipedia.org/wiki/David_Heinemeier_Hansson

You have a successful career as a software developer. Your skills are always in demand
and you never have to look very long or hard to find a great job. Your peers respect you.
Every company you work with is improved and enriched in some way by your presence.

But where do you go from there?

5. Average Programmer

At this level you are a good enough programmer to realize that you’re not a
great programmer. And you might never be.

Talent often has little to do with success. You can be very successful if you have business
and people skills. If you are an average programmer but manage to make a living at it
then you are talented, just not necessarily at coding.

Don’t knock the value of self-awareness. It’s more rare than you realize. There’s nothing
wrong with lacking talent. Be bold. Figure out what you’re good at, and pursue it.
Aggressively.

6. Amateur Programmer

An amateur programmer loves to code, and it shows: they might be a promising student
or intern, or perhaps they’re contributing to open source projects, or building interesting
“just for fun” applications or websites in their spare time. Their code and ideas show
promise and enthusiasm.

Being an amateur is a good thing; from this level one can rapidly rise to become a
working programmer.

7. Unknown Programmer

The proverbial typical programmer. Joe Coder. Competent (usually) but unremarkable.
Probably works for a large, anonymous MegaCorp. It’s just a job, not their entire life.
Nothing wrong with that, either.

8. Bad Programmer

People who somehow fell into the programmer role without an iota of skill or ability.
Everything they touch turns into pain and suffering for their fellow programmers — with
the possible exception of other Bad Programmers, who lack even the rudimentary skill
required to tell that they’re working with another Bad Programmer.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Introduction

Introduction

Introduction

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 1414

http://www.codinghorror.com/blog/archives/000824.html

Which is, perhaps, the hallmark of all Bad Programmers. These people have no business
writing code of any kind — but they do, anyway.

These levels aren’t entirely serious. Not every programmer aspires to the same things in
their career. But it’s illuminating to consider what a programmer could accomplish in ten
years, twenty years, or thirty years — perhaps even a lifetime. Which notable
programmers do you admire the most? What did they accomplish to earn your
admiration?

In short, what do you wanna do with your life?

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Introduction

Introduction

Introduction

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 1515

http://en.wikipedia.org/wiki/List_of_programmers

I have a confession to make: in a way, I founded Stack Overflow to trick my fellow
programmers.

Before you trot out the pitchforks and torches, let me explain.

Over the last six years, I’ve come to believe deeply in the idea that that becoming a great
programmer has very little to do with programming. Yes, it takes a modicum of technical
skill and dogged persistence, absolutely. But even more than that, it takes serious
communication skills:

The difference between a tolerable programmer and a great programmer is not how
many programming languages they know, and it’s not whether they prefer Python or
Java. It’s whether they can communicate their ideas. By persuading other people, they
get leverage. By writing clear comments and technical specs, they let other
programmers understand their code, which means other programmers can use and work
with their code instead of rewriting it. Absent this, their code is worthless.

That is of course a quote from my co-founder Joel Spolsky, and it’s one of my favorites.

In defense of my fellow programmers, communication with other human beings is not
exactly what we signed up for. We didn’t launch our careers in software development
because we loved chatting with folks. Communication is just plain hard, particularly
written communication. How exactly do you get better at something you self-selected out
of? Blogging is one way:

People spend their entire lives learning how to write effectively. It isn’t something you can
fake. It isn’t something you can buy. You have to work at it.

That’s exactly why people who are afraid they can’t write should be blogging.

It’s exercise. No matter how out of shape you are, if you exercise a few times a week,
you’re bound to get fitter. Write a small blog entry a few times every week and you’re
bound to become a better writer. If you’re not writing because you’re intimidated by
writing, well, you’re likely to stay that way forever.

How to Write Without Writing

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Introduction

Introduction

Introduction

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 1616

http://stackoverflow.com/
http://www.joelonsoftware.com/articles/CollegeAdvice.html
http://www.codinghorror.com/blog/2006/02/fear-of-writing.html

Even with the best of intentions, telling someone “you should blog!” never works. I know
this from painful first hand experience. Blogging isn’t for everyone. Even a small blog
entry can seem like an insurmountable, impenetrable, arbitrary chunk of writing to the
average programmer. How do I get my fellow programmers to blog without blogging, to
write without writing?

By cheating like hell, that’s how.

Consider this letter I received:

I’m not sure if you have thought about this side effect or not, but Stack Overflow has
taught me more about writing effectively than any class I’ve taken, book I’ve read, or any
other experience I have had before.

I can think of no other medium where I can test my writing chops (by writing an answer),
get immediate feedback on its quality (particularly when writing quality trumps technical
correctness, such as subjective questions) and see other peoples’ attempts as well and
how they compare with mine. Votes don’t lie and it gives me a good indicator of how well
an email I might send out to future co-workers would be received or a business proposal I
might write.

Over the course of the past 5 months all the answers I’ve been writing have been more
and more refined in terms of the quality. If I don’t end up as the top answer I look at the
answer that did and study what they did differently and where I faltered. Was I too
verbose or was I too terse? Was I missing the crux of the question or did I hit it dead on?

I know that you said that writing your Coding Horror blog helped you greatly in refining
your writing over the years. Stack Overflow has been doing the same for me and I just
wanted to thank you for the opportunity. I’ve decided to setup a coding blog in your
footsteps and I just registered a domain today. Hopefully that will go as well as writing on
SO has. There are no tougher critics than fellow programmers who scrutinize every
detail, every technical remark and grammar structure looking for mistakes. If you can
effectively write for and be accepted by a group of programmers you can write for
anyone.

Joel and I have always positioned Stack Overflow, and all the other Stack Exchange Q&A
sites, as lightweight, focused, “fun size” units of writing.

Yes, by God, we will trick you into becoming a better writer if that’s what it
takes – and it always does. Stack Overflow has many overtly game-like elements, but
it is a game in service of the greater good – to make the Internet better, and more

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Introduction

Introduction

Introduction

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 1717

http://blog.stackoverflow.com/2009/04/what-stack-overflow-can-teach-you/
http://stackexchange.com/sites

importantly, to make you better. Seeing my fellow programmers naturally improve their
written communication skills while participating in a focused, expert Q&A community with
their peers? Nothing makes me prouder.

Beyond programming, there’s a whole other community of peers out there who grok how
important writing is, and will support you in sharpening your saw, er, pen. We have our
own, too.

If you’re an author, editor, reviewer, blogger, copywriter or aspiring writer of
any kind, professional or otherwise — check out writers.stackexchange.com.
Becoming a more effective writer is the one bedrock skill that will further your
professional career, no matter what you choose to do.

But mostly, you should write. I thought Jon Skeet summed it up particularly well here:

Everyone should write a lot — whether it’s a blog, a book, Stack Overflow answers, emails
or whatever. Write, and take some care over it. Clarifying your communication helps you
to clarify your own internal thought processes, in my experience. It’s amazing how much
you find you don’t know when you try to explain something in detail to someone else. It
can start a whole new process of discovery.

The process of writing is indeed a journey of discovery, one that will last the rest of your
life. It doesn’t ultimately matter whether you’re writing a novel, a printer review, a Stack
Overflow answer, fan fiction, a blog entry, a comment, a technical whitepaper, some emo
LiveJournal entry, or even meta-talk about writing itself. Just get out there and write!

Gift this book to your friends...for free.

Become a Hyperink reader. Get a special surprise.

Like the book? Support our author and leave a comment!

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Introduction

Introduction

Introduction

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 1818

http://www.codinghorror.com/blog/2009/03/sharpening-the-saw.html
http://writers.stackexchange.com/
http://blog.stackoverflow.com/2009/10/podcast-71/#comment-40649
http://www.hyperink.com/share/1559?utm_source=1559&utm_medium=inside_book&utm_campaign=chapter_end_share_pdf
http://www.hyperink.com/register?utm_source=1559&utm_medium=inside_book&utm_campaign=chapter_end_user_pdf
http://www.hyperink.com/Blog-To-Book-Effective-Programming-More-Than-Writing-Code-b1559?utm_source=1559&utm_medium=inside_book&utm_campaign=chapter_end_like_pdf

II.

The Art of Getting
Shit Done

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... The Art of Getting Shit Done

The Art of Getting Shit Done

The Art of Getting Shit Done

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 1919

3:51 PM – 1 May 12

 Jeff Atwood@codinghorror
“Each day, you must rise with a restless enthusiasm. If you don’t, you
are working.”

After we created Stack Overflow, some people were convinced we had built a marginally
better mousetrap for asking and answering questions. The inevitable speculation began:
can we use your engine to build a Q&A site about {topic}? Our answer was Stack
Exchange. Pay us $129 a month (and up), and you too can create a hosted Q&A
community on our engine — for whatever topic you like!

Well, I have a confession to make: my heart was never in Stack Exchange. It was a
parallel effort in a parallel universe only tangentially related to my own. There’s a whole
host of reasons why, but if I had to summarize it in a sentence, I’d say that money is
poisonous to communities. That $129/month doesn’t sound like much — and it isn’t —
but the commercial nature of the enterprise permeated and distorted everything from
the get-go.

Yes, Stack Overflow Internet Services Incorporated©®™ is technically a business, even a
venture-capital backed business now — but I didn’t co-found it because I wanted to make
money. I co-founded it because I wanted to build something cool that made the
internet better. Yes, selfishly for myself, of course, but also in conjunction with all of my
fellow programmers, because I know none of us is as dumb as all of us.

Nobody is participating in Stack Overflow to make money. We’re participating in Stack
Overflow because …

We love programming.

We want to leave breadcrumb trails for other programmers to follow so they can
avoid making the same dumb mistakes we did.

Teaching peers is one of the best ways to develop mastery.

The Vast and Endless Sea

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... The Art of Getting Shit Done

The Art of Getting Shit Done

The Art of Getting Shit Done

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 2020

http://blog.stackoverflow.com/2010/05/announcing-our-series-a/
http://www.codinghorror.com/blog/2008/09/stack-overflow-none-of-us-is-as-dumb-as-all-of-us.html

We can follow our own interests wherever they lead.

We want to collectively build something great for the community with our tiny slices of
effort.

I don’t care how much you pay me, you’ll never be able to recreate the incredibly
satisfying feeling I get when demonstrating mastery within my community of
peers. That’s what we do on Stack Overflow: have fun, while making the internet one
infinitesimally tiny bit better every day.

So is it any wonder that some claim Stack Overflow is more satisfying than their real
jobs? Not to me.

If this all seems like a bunch of communist hippie bullcrap to you, I understand. It’s
hard to explain. But there is quite a bit of science documenting these strange
motivations. Let’s start with Dan Pink’s 2009 TED talk.

WATCH: Daniel Pink|TED Talk| 2009

Dan’s talk centers on the candle problem. Given the following three items …

1. A candle

2. A box of thumbtacks

3. A book of matches

… how can you attach the candle to the wall?

It’s not a very interesting problem on its own — that is, until you try to incentivize teams
to solve it:

Now I want to tell you about an experiment using the candle problem by a scientist from

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... The Art of Getting Shit Done

The Art of Getting Shit Done

The Art of Getting Shit Done

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 2121

http://meta.stackoverflow.com/questions/28642/why-do-i-get-more-satisfaction-out-of-participating-in-so-than-out-of-my-job
http://bit.ly/Md5Ntb
http://bit.ly/Md5Ntb
http://en.wikipedia.org/wiki/The_Candle_Problem

Princeton named Sam Glucksberg. Here’s what he did.

To the first group, he said, “I’m going to time you to establish norms, averages for how
long it typically takes someone to solve this sort of problem.”

To the second group, he said, “If you’re in the top 25 percent of the fastest times you get
five dollars. If you’re the fastest of everyone we’re testing here today you get 20 dollars.”
(This was many years ago. Adjusted for inflation, it’s a decent sum of money for a few
minutes of work.)

Question: How much faster did this group solve the problem?

Answer: It took them, on average, three and a half minutes longer. Three and a half
minutes longer. Now this makes no sense, right? I mean, I’m an American. I believe in
free markets. That’s not how it’s supposed to work. If you want people to perform better,
you reward them. Give them bonuses, commissions, their own reality show. Incentivize
them. That’s how business works. But that’s not happening here. You’ve got a monetary
incentive designed to sharpen thinking and accelerate creativity – and it does just the
opposite. It dulls thinking and blocks creativity.

It turns out that traditional carrot-and-stick incentives are only useful for repetitive,
mechanical tasks. The minute you have to do anything even slightly complex that
requires even a little problem solving without a clear solution or rules — those incentives
not only don’t work, they make things worse!

Pink eventually wrote a book about this, Drive: The Surprising Truth About What Motivates
Us.

There’s no need to read the book; this clever ten-minute whiteboard animation will walk
you through the main points. If you view only one video today, view this one.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... The Art of Getting Shit Done

The Art of Getting Shit Done

The Art of Getting Shit Done

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 2222

http://www.amazon.com/dp/1594488843/?tag=codihorr-20

WATCH: RSA Daniel Pink Drive|RSA Animate

The concept of intrinsic motivation may not be a new one, but I find that very few
companies are brave enough to actually implement them.

I’ve tried mightily to live up to the ideals that Stack Overflow was founded on
when building out my team. I don’t care when you come to work or what your
schedule is. I don’t care where in the world you live (provided you have a great internet
connection). I don’t care how you do the work. I’m not going to micromanage you and
assign you a queue of task items. There’s no need.

If you want to build a ship, don’t drum up the men to gather wood, divide the work and
give orders. Instead, teach them to yearn for the vast and endless sea.

– Antoine de Saint-Exupéry

Because I know you yearn for the vast and endless sea, just like we do.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... The Art of Getting Shit Done

The Art of Getting Shit Done

The Art of Getting Shit Done

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 2323

http://bit.ly/MVUDI5
http://bit.ly/MVUDI5
http://www.codinghorror.com/blog/2007/04/is-amazons-mechanical-turk-a-failure.html
http://www.codinghorror.com/blog/2010/05/on-working-remotely.html
http://en.wikiquote.org/wiki/Antoine_de_Saint-Exupery#Unsourced
http://en.wikiquote.org/wiki/Antoine_de_Saint-Exupery#Unsourced

As a software developer, how do you sharpen your saw?

Sharpening the saw is shorthand for anything you do that isn’t programming, necessarily,
but (theoretically) makes you a better programmer. It’s derived from the Covey book The
7 Habits of Highly Effective People.

There’s a guy who stumbled into a lumberjack in the mountains. The man stops to
observe the lumberjack, watching him feverishly sawing at this very large tree. He
noticed that the lumberjack was working up a sweat, sawing and sawing, yet going
nowhere. The bystander noticed that the saw the lumberjack was using was about as
sharp as a butter knife. So, he says to the lumberjack, “Excuse me Mr. Lumberjack, but I
couldn’t help noticing how hard you are working on that tree, but going nowhere.” The
lumberjack replies with sweat dripping off of his brow, “Yes… I know. This tree seems to
be giving me some trouble.” The bystander replies and says, “But Mr. Lumberjack, your
saw is so dull that it couldn’t possibly cut through anything.” “I know”, says the
lumberjack, “but I am too busy sawing to take time to sharpen my saw.”

Of course, the best way to improve at something is to do it as often as possible. But if

Sharpening the Saw

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... The Art of Getting Shit Done

The Art of Getting Shit Done

The Art of Getting Shit Done

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 2424

http://www.amazon.com/dp/0743269519/?tag=codihorr-20
http://www.codinghorror.com/blog/archives/001138.html

you’re so heads down in coding that you have no time for discussion, introspection or
study, you aren’t really moving forward. You have to strike a mindful balance between
practicing your craft and thinking about how you practice your craft.

Scott Hanselman has some solid ideas on ways to encourage members of your
development team to sharpen their saws. And then there’s the obvious way, the thing
you’re doing right now: reading programming blogs. If you keep an open mind, you
can sharpen your saw that way, as Reginald Braithwaite notes:

What we do is this: we read a blog post, reading thing after thing we agree with, and if
just one thing in there doesn’t fit our personal world view, we demand a correction. If the
thesis of the post clashes with our prejudices, we accuse the author of being an idiot.
Honestly, we would suck as salespeople. We would quit the first time someone disagreed
with us.

What I suggest we do is mimic these salespeople. When we read a post, or a book, or
look at a new language, let’s assume that some or even most of it will not be new. Let’s
assume that we’ll positively detest some of it. But let’s also look at it in terms of our own
profit: we win if we can find just one thing in there that makes us better programmers.

That’s all we need from a blog post, you know. It’s a huge win if there’s one thing in a
post. Heck, it’s a huge win if we read one hundred posts and learn one new valuable
thing.

If you’re looking for good programming blogs to sharpen your saw (or at least pique your
intellectual curiosity), I know of two excellent programming specific link
aggregation sites that can help you find them.

The first is Hacker News, which I recommend highly.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... The Art of Getting Shit Done

The Art of Getting Shit Done

The Art of Getting Shit Done

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 2525

http://www.hanselman.com/blog/SharpenTheSawForDevelopers.aspx
http://weblog.raganwald.com/2007/10/how-to-use-blunt-instrument-to-sharpen.html
http://news.ycombinator.com/news

Hacker News is the brainchild of Paul Graham, so it partially reflects his interests in Y
Combinator and entrepreneurial stuff like startups. Paul is serious about moderation on
the site, so in addition to the typical Digg-style voting, there’s a secret cabal (I like to think
of it as The Octagon, “no one will admit they still exist!”) of hand-picked editors who
remove flagged posts. More importantly, the conversation on the site about the articles is
quite rational, with very little noise and trolling.

The other site is programming reddit. The conversation there is more chaotic, with a wild-
west, anything-goes sensibility, gated only by the up and down votes of the community.
But it is quite reliable for digging up a great variety of links that are of particular interest
to programmers.

Of course, too much saw sharpening, or random, aimless saw sharpening, can
become another form of procrastination. But a developer who seems completely
disinterested in it at all is a huge red flag. As Peter Bregman explains, obsession can be a
good thing:

People are often successful not despite their dysfunctions but because of them.
Obsessions are one of the greatest telltale signs of success. Understand a person’s
obsessions and you will understand her natural motivation. The thing for which she would
walk to the end of the earth.

It’s OK to be a little obsessed with sharpening your saw, if it means actively submitting
and discussing programming articles on, say, Hacker News.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... The Art of Getting Shit Done

The Art of Getting Shit Done

The Art of Getting Shit Done

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 2626

http://news.ycombinator.com/news
http://www.paulgraham.com/
http://ycombinator.com/
http://www.youtube.com/watch?v=yfY1wa8oVN0
http://www.reddit.com/r/programming/
http://www.codinghorror.com/blog/archives/000922.html
http://blogs.harvardbusiness.org/cs/2009/01/the_interview_question_you_sho.html
http://news.ycombinator.com/

What do you recommend for sharpening your saw as a programmer?

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... The Art of Getting Shit Done

The Art of Getting Shit Done

The Art of Getting Shit Done

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 2727

When it comes to running Stack Overflow, the company, I take all my business advice
from one person, and one person alone: Curtis Armstrong.

More specifically, Curtis Armstrong as Charles De Mar from the 1985 absurdist teen
comedy classic, Better Off Dead. When asked for advice on how to ski down a particularly
treacherous mountain, he replied:

Go That Way, Really Fast

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... The Art of Getting Shit Done

The Art of Getting Shit Done

The Art of Getting Shit Done

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 2828

http://stackoverflow.com/about/management
http://www.imdb.com/title/tt0088794/

Go that way, really fast. If something gets in your way … turn.

In the five months since we announced our funding, we have …

Built an international team

Created an entirely new open, democratic process for creating Q&A sites at Area 51

Launched ~24 new community-driven Stack Exchange network sites

Implemented per-site meta discussion and per-site real time chat

Rolled out new versions of Careers and Jobs

Built and open-sourced a tool for exploring and sharing all our creative commons data
in the Stack Exchange Data Explorer

Finalized V1 of the Stack Exchange API, for building your own apps against our Q&A
platform

… and honestly, I’m a little worried we’re still not going fast enough.

There are any number of Stack Overflow engine clones out there already, and I say more
power to ‘em. I’m proud to have something worth copying. If we do nothing else except
help lead the world away from the ancient, creaky, horribly broken bulletin board model
of phpBB and vBulletin — attempting to get information out of those things is like
panning for gold in a neverending river of sewage — then that is more than I could
have ever hoped for.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... The Art of Getting Shit Done

The Art of Getting Shit Done

The Art of Getting Shit Done

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 2929

http://blog.stackoverflow.com/2010/05/announcing-our-series-a/
http://www.codinghorror.com/blog/2010/05/on-working-remotely.html
http://area51.stackexchange.com/faq
http://area51.stackexchange.com/faq
http://stackexchange.com/sites
http://blog.stackoverflow.com/2010/07/new-per-site-metas/
http://blog.stackoverflow.com/2010/08/chat-now-in-public-beta/
http://careers.stackoverflow.com/
http://careers.stackoverflow.com/Jobs
http://careers.stackoverflow.com/Jobs
http://odata.stackexchange.com/
http://stackapps.com/

It is our stated goal as a company to live in harmony with the web, by only doing things
that we believe make the internet better, at least in some small way. No, seriously. It’s in
writing and everything, I swear! We’re not here to subvert or own anyone or anything.
We just love community, and we love getting great answers to our questions. So if
something gets in our way while doing that, well, we’re not gonna fight you. We’ll just
turn. And keep going forward, really fast. Which is why those clones better move quick if
they want to keep up with us.

While I like to think that having Charles De Mar as a business advisor is unique to our
company, the idea that speed is important is hardly original to us. For example, certain
Google projects also appear to understand Boyd’s Law of Iteration.

Boyd decided that the primary determinant to winning dogfights was not observing,
orienting, planning or acting better. The primary determinant to winning dogfights was
observing, orienting, planning and acting faster. In other words, how quickly one could
iterate. Speed of iteration, Boyd suggested, beats quality of iteration.

Speed of iteration — the Google Chrome project has it.

1.0 December 11, 2008
2.0 May 24, 2009
3.0 October 12, 2009
4.0 January 25, 2010
5.0 May 25, 2010
6.0 September 2, 2010

Chrome was a completely respectable browser in V1 and V2. The entire project has
moved forward so fast that it now is, at least in my humble opinion, the best browser on
the planet. Google went from nothing, no web browser at all, to best-of-breed in under
two years. Meanwhile, Internet Explorer took longer than the entire development period
of Chrome to go from version 7 to version 8. And by the time Internet Explorer 9 ships —
even though it’s actually looking like Microsoft’s best, most competent technical upgrade
of the browser yet — it will be completely outclassed at launch by both Firefox and
Chrome.

The Google Android project is another example. Android doesn’t have to be better than
the iPhone (and it most definitely isn’t; it’s been mediocre at best until recent versions).
They just need to be faster at improving. Google is pushing out Froyos and Gingerbreads
and Honeycombs with incredible, breakneck speed. Yes, Apple has indisputably better

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... The Art of Getting Shit Done

The Art of Getting Shit Done

The Art of Getting Shit Done

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 3030

http://www.codinghorror.com/blog/2007/02/boyds-law-of-iteration.html
http://en.wikipedia.org/wiki/Google_Chrome
http://en.wikipedia.org/wiki/Android_%28operating_system%29
http://en.wikipedia.org/wiki/Android_%28operating_system%29#Update_history

3:40 PM – 27 Sep 11

taste — and an impeccably controlled experience. But at their current rate of progress,
they’ll be playing second or third fiddle to Google in the mobile space inside a few years.
It’s inevitable.

So, until further notice, we’ll be following the same strategy as the Android and Chrome
teams. We’re going to go that way, really fast. And if something gets in our
way, we’ll turn.

 Tim O’Reilly@timoreilly

“Larry Page responds”high correlation between speed and good
decisions…There are good fast decisions but no good slow decisions”"

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... The Art of Getting Shit Done

The Art of Getting Shit Done

The Art of Getting Shit Done

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 3131

In Quality Software Management: Systems Thinking, Gerald Weinberg proposed a rule of
thumb to calculate the waste caused by project switching:

Even adding a single project to your workload is profoundly debilitating by Weinberg’s
calculation. You lose 20 percent of your time. By the time you add a third project to the
mix, nearly half your time is wasted in task switching.

This can be a problem even if you’re only working on a single project at any time. The
impact of simply letting your email, phone and instant messaging interrupt what you’re
doing can be profound, as documented in this BBC study:

The study, carried out at the Institute of Psychiatry, found excessive use of technology
reduced workers’ intelligence. Those distracted by incoming email and phone calls saw a
10-point fall in their IQ — more than twice that found in studies of the impact of smoking
marijuana, said researchers.

Kathy Sierra wrote a great post comparing multi-tasking and serial tasks and followed it
up a year later with a typically insightful post proposing that multi-tasking makes us
stupid:

The Multi-Tasking Myth

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... The Art of Getting Shit Done

The Art of Getting Shit Done

The Art of Getting Shit Done

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 3232

http://www.amazon.com/exec/obidos/ASIN/0932633226/codihorr-20
http://news.bbc.co.uk/1/hi/uk/4471607.stm
http://headrush.typepad.com/creating_passionate_users/2005/03/your_brain_on_m.html
http://headrush.typepad.com/creating_passionate_users/2006/03/multitasking_ma.html

Perhaps the biggest problem of all, though, is that the majority of people doing the most
media multitasking have a big-ass blind spot on just how much they suck at it.

We believe we can e-mail and talk on the phone at the same time, with little or no
degradation of either communication.

We believe we can do homework while watching a movie.

We believe we can surf the web while talking to our kids/spouse/lover/co-worker.

But we can’t! Not without a hit on every level — time, quality and the ability to think
deeply.

Joel Spolsky compares the task switching penalty for computers and computer
programmers:

The trick here is that when you manage programmers, specifically, task switches take a
really, really, really long time. That’s because programming is the kind of task where you
have to keep a lot of things in your head at once. The more things you remember at
once, the more productive you are at programming. A programmer coding at full throttle
is keeping zillions of things in their head at once: everything from names of variables,
data structures, important APIs, the names of utility functions that they wrote and call a
lot, even the name of the subdirectory where they store their source code. If you send
that programmer to Crete for a three week vacation, they will forget it all. The human
brain seems to move it out of short-term RAM and swaps it out onto a backup tape where
it takes forever to retrieve.

I’ve often pushed back on demands to work on multiple projects at the same time. It can
be difficult to say no, because software developers are notoriously prone to
the occupational hazard of optimism.

We typically overestimate how much we’ll actually get done, and multi-tasking
exaggerates our own internal biases even more. Whenever possible, avoid interruptions
and avoid working on more than one project at the same time. If it’s unavoidable, be
brutally honest with yourself — and your stakeholders — about how much you
can actually get done under multi-tasking conditions. It’s probably less than you
think.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... The Art of Getting Shit Done

The Art of Getting Shit Done

The Art of Getting Shit Done

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 3333

http://www.joelonsoftware.com/articles/fog0000000022.html
http://www.codinghorror.com/blog/archives/000109.html
http://www.codinghorror.com/blog/archives/000284.html
http://www.codinghorror.com/blog/archives/000626.html

12:43 PM – 1 Feb 12

 Merlin Mann@hotdogsladies

“Good thing you’re tagging all those “Low Priority” tasks. God forbid
you’d ever lose track of shit that’s not worth doing.”

Gift this book to your friends...for free.

Become a Hyperink reader. Get a special surprise.

Like the book? Support our author and leave a comment!

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... The Art of Getting Shit Done

The Art of Getting Shit Done

The Art of Getting Shit Done

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 3434

http://www.hyperink.com/share/1559?utm_source=1559&utm_medium=inside_book&utm_campaign=chapter_end_share_pdf
http://www.hyperink.com/register?utm_source=1559&utm_medium=inside_book&utm_campaign=chapter_end_user_pdf
http://www.hyperink.com/Blog-To-Book-Effective-Programming-More-Than-Writing-Code-b1559?utm_source=1559&utm_medium=inside_book&utm_campaign=chapter_end_like_pdf

III.

Principles of Good
Programming

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Principles of Good Programming

Principles of Good Programming

Principles of Good Programming

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 3535

12:22 PM – 30 May 12

 Jeff Atwood@codinghorror

“We should endeavor to fix ourselves before accusing the world of
being broken.”

You know the feeling. It’s happened to all of us at some point: you’ve pored over the code
a dozen times and still can’t find a problem with it. But there’s some bug or error you
can’t seem to get rid of. There just has to be something wrong with the machine you’re
coding on, with the operating system you’re running under, with the tools and libraries
you’re using. There just has to be!

No matter how desperate you get, don’t choose that path. Down that path lies voodoo
computing and programming by coincidence. In short, madness.

It’s frustrating to repeatedly bang your head against difficult, obscure bugs, but don’t let
desperation lead you astray. An essential part of being a humble programmer is realizing
that whenever there’s a problem with the code you’ve written, it’s always your fault.
This is aptly summarized in The Pragmatic Programmer as “Select Isn’t Broken”:

In most projects, the code you are debugging may be a mixture of application code
written by you and others on your project team, third-party products (database,
connectivity, graphical libraries, specialized communications or algorithms, and so on)
and the platform environment (operating system, system libraries, and compilers).

It is possible that a bug exists in the OS, the compiler, or a third-party product– but this
should not be your first thought. It is much more likely that the bug exists in the
application code under development. It is generally more profitable to assume that the
application code is incorrectly calling into a library than to assume that the library itself is
broken. Even if the problem does lie with a third party, you’ll still have to eliminate your
code before submitting the bug report.

The First Rule of Programming: It’s
Always Your Fault

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Principles of Good Programming

Principles of Good Programming

Principles of Good Programming

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 3636

http://pragmaticprogrammer.com/the-pragmatic-programmer/extracts/coincidence
http://www.codinghorror.com/blog/archives/000051.html
http://www.amazon.com/exec/obidos/ASIN/020161622X/codihorr-20

We worked on a project where a senior engineer was convinced that the select system
call was broken on Solaris. No amount of persuasion or logic could change his mind (the
fact that every other networking application on the box worked fine was irrelevant). He
spent weeks writing workarounds, which, for some odd reason, didn’t seem to fix the
problem. When finally forced to sit down and read the documentation on select, he
discovered the problem and corrected it in a matter of minutes. We now use the phrase
“select is broken” as a gentle reminder whenever one of us starts blaming the system for
a fault that is likely to be our own.

The flip side of code ownership is code responsibility. No matter what the problem is with
your software — maybe it’s not even your code in the first place — always assume the
problem is in your code and act accordingly. If you’re going to subject the world to
your software, take full responsibility for its failures. Even if, technically speaking, you
don’t have to. That’s how you earn respect and credibility. You certainly don’t earn
respect or credibility by endlessly pawning off errors and problems on other people, other
companies, other sources.

Statistically, you understand, it is incredibly rare for any bugs or errors in your software
not to be your fault. In Code Complete, Steve McConnell cited two studies that proved it:

A pair of studies performed [in 1973 and 1984] found that, of total errors reported,
roughly 95% are caused by programmers, 2% by systems software (the compiler and the
operating system), 2% by some other software, and 1% by the hardware. Systems
software and development tools are used by many more people today than they were in
the 1970s and 1980s, and so my best guess is that, today, an even higher percentage of
errors are the programmers’ fault.

Whatever the problem with your software is, take ownership. Start with your code, and
investigate further and further outward until you have definitive evidence of where the
problem lies. If the problem lies in some other bit of code that you don’t control, you’ll not
only have learned essential troubleshooting and diagnostic skills, you’ll also have an audit
trail of evidence to back up your claims, too. This is certainly a lot more work than
shrugging your shoulders and pointing your finger at the OS, the tools, or the framework
— but it also engenders a sense of trust and respect you’re unlikely to achieve through
fingerpointing and evasion.

If you truly aspire to being a humble programmer, you should have no qualms about
saying “hey, this is my fault — and I’ll get to the bottom of it.”

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Principles of Good Programming

Principles of Good Programming

Principles of Good Programming

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 3737

http://www.codinghorror.com/blog/archives/000219.html
http://www.amazon.com/exec/obidos/ASIN/0735619670/codihorr-20

11:29 AM – 21 May 12

 Jeff Atwood@codinghorror

“you can never have too little minimalism”

Rich Skrenta writes that code is our enemy:

Code is bad. It rots. It requires periodic maintenance. It has bugs that need to be found.
New features mean old code has to be adapted. The more code you have, the more
places there are for bugs to hide. The longer checkouts or compiles take. The longer it
takes a new employee to make sense of your system. If you have to refactor there’s
more stuff to move around.

Code is produced by engineers. To make more code requires more engineers. Engineers
have n^2 communication costs, and all that code they add to the system, while
expanding its capability, also increases a whole basket of costs. You should do whatever
possible to increase the productivity of individual programmers in terms of the expressive
power of the code they write. Less code to do the same thing (and possibly better). Less
programmers to hire. Less organizational communication costs.

Rich hints at it here, but the real problem isn’t the code. The code, like a newborn babe,
is blameless and innocent the minute it is written into the world. Code isn’t our enemy.
You want to see the real enemy? Go look in the mirror. There’s your problem, right there.

The Best Code is No Code At All

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Principles of Good Programming

Principles of Good Programming

Principles of Good Programming

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 3838

http://www.skrenta.com/2007/05/code_is_our_enemy.html

As a software developer, you are your own worst enemy. The sooner you
realize that, the better off you’ll be.

I know you have the best of intentions. We all do. We’re software developers; we love
writing code. It’s what we do. We never met a problem we couldn’t solve with some duct
tape, a jury-rigged coat hanger and a pinch of code. But Wil Shipley argues that we
should rein in our natural tendencies to write lots of code:

The fundamental nature of coding is that our task, as programmers, is to recognize that
every decision we make is a trade-off. To be a master programmer is to understand the
nature of these trade-offs, and be conscious of them in everything we write.

In coding, you have many dimensions in which you can rate code:

Brevity of code

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Principles of Good Programming

Principles of Good Programming

Principles of Good Programming

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 3939

http://wilshipley.com/blog/2007/05/pimp-my-code-part-14-be-inflexible.html

Featurefulness

Speed of execution

Time spent coding

Robustness

Flexibility

Now, remember, these dimensions are all in opposition to one another. You can spend
three days writing a routine which is really beautiful and fast, so you’ve gotten two of
your dimensions up, but you’ve spent three days, so the “time spent coding” dimension is
way down.

So, when is this worth it? How do we make these decisions? The answer turns out to be
very sane, very simple, and also the one nobody, ever, listens to: Start with brevity.
Increase the other dimensions as required by testing.

I couldn’t agree more. I’ve given similar advice when I exhorted developers to Code
Smaller. And I’m not talking about a reductio ad absurdum contest where we use up all
the clever tricks in our books to make the code fit into less physical space. I’m talking
about practical, sensible strategies to reduce the volume of code an individual
programmer has to read to understand how a program works. Here’s a trivial
little example of what I’m talking about:

if (s == String.Empty)if (s == “”)

It seems obvious to me that the latter case is better because it’s just plain smaller. And
yet I’m virtually guaranteed to encounter developers who will fight me, almost literally to
the death, because they’re absolutely convinced that the verbosity of String.Empty is
somehow friendlier to the compiler. As if I care about that. As if anyone cared about that!

It’s painful for most software developers to acknowledge this, because they love code so
much, but the best code is no code at all. Every new line of code you willingly bring
into the world is code that has to be debugged, code that has to be read and understood,
code that has to be supported. Every time you write new code, you should do so
reluctantly, under duress, because you completely exhausted all your other options. Code
is only our enemy because there are so many of us programmers writing so damn much
of it. If you can’t get away with no code, the next best thing is to start with brevity.

If you love writing code — really, truly love to write code — you’ll love it enough to write

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Principles of Good Programming

Principles of Good Programming

Principles of Good Programming

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 4040

http://www.codinghorror.com/blog/archives/000791.html
http://en.wikipedia.org/wiki/Reductio_ad_absurdum
http://www.codinghorror.com/blog/archives/000247.html

as little of it as possible.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Principles of Good Programming

Principles of Good Programming

Principles of Good Programming

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 4141

If peppering your code with lots of comments is good, then having zillions of
comments in your code must be great, right? Not quite. Excess is one way good
comments go bad:

I’m constantly running across comments from developers who don’t seem to understand
that the code already tells us how it works; we need the comments to tell us why it
works. Code comments are so widely misunderstood and abused that you might find
yourself wondering if they’re worth using at all. Be careful what you wish for. Here’s
some code with no comments whatsoever:

Any idea what that bit of code does? It’s perfectly readable, but what the heck does it do?

Let’s add a comment.

That must be what I was getting at, right? Some sort of pleasant, middle-of-the-road
compromise between the two polar extremes of no comments whatsoever and carefully
formatted epic poems every second line of code?

Coding without Comments

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Principles of Good Programming

Principles of Good Programming

Principles of Good Programming

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 4242

http://www.codinghorror.com/blog/archives/000130.html
http://www.codinghorror.com/blog/archives/000749.html

Not exactly. Rather than add a comment, I’d refactor to this:

I haven’t added a single comment, and yet this mysterious bit of code is now perfectly
understandable.

While comments are neither inherently good or bad, they are frequently used as a
crutch. You should always write your code as if comments didn’t
exist. This forces you to write your code in the simplest, plainest, most self-documenting
way you can humanly come up with.

When you’ve rewritten, refactored, and rearchitected your code a dozen times to make it
easy for your fellow developers to read and understand — when you can’t possibly
imagine any conceivable way your code could be changed to become more
straightforward and obvious — then, and only then, should you feel compelled to add a
comment explaining what your code does.

As Steve points out, this is one key difference between junior and senior developers:

In the old days, seeing too much code at once quite frankly exceeded my complexity
threshold, and when I had to work with it I’d typically try to rewrite it or at least comment
it heavily. Today, however, I just slog through it without complaining (much). When I have
a specific goal in mind and a complicated piece of code to write, I spend my time making
it happen rather than telling myself stories about it [in comments].

Junior developers rely on comments to tell the story when they should be relying on
the code to tell the story. Comments are narrative asides; important in their own way, but
in no way meant to replace plot, characterization, and setting.

Perhaps that’s the dirty little secret of code comments: to write good comments you
have to be a good writer. Comments aren’t code meant for the compiler, they’re
words meant to communicate ideas to other human beings. While I do (mostly) love my
fellow programmers, I can’t say that effective communication with other human beings is
exactly our strong suit. I’ve seen three-paragraph emails from developers on my teams
that practically melted my brain. These are the people we’re trusting to write clear,
understandable comments in our code? I think maybe some of us might be better off
sticking to our strengths — that is, writing for the compiler, in as clear a way as we

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Principles of Good Programming

Principles of Good Programming

Principles of Good Programming

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 4343

http://steve-yegge.blogspot.com/2008/02/portrait-of-n00b.html

possibly can, and reaching for the comments only as a method of last resort.

Writing good, meaningful comments is hard. It’s as much an art as writing the code itself;
maybe even more so. As Sammy Larbi said in Common Excuses Used To Comment Code,
if your feel your code is too complex to understand without comments, your code is
probably just bad. Rewrite it until it doesn’t need comments any more. If, at the end of
that effort, you still feel comments are necessary, then by all means, add comments.
Carefully.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Principles of Good Programming

Principles of Good Programming

Principles of Good Programming

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 4444

http://www.codeodor.com/index.cfm/2008/6/18/Common-Excuses-Used-To-Comment-Code-and-What-To-Do-About-Them/2293

In the calculus of communication, writing coherent paragraphs that your fellow human
beings can comprehend and understand is far more difficult than tapping out a few lines
of software code that the interpreter or compiler won’t barf on.

That’s why, when it comes to code, all the documentation probably sucks. And because
writing for people is way harder than writing for machines, the documentation will
continue to suck for the forseeable future. There’s very little you can do about it.

Except for one thing.

You can learn to read the source, Luke.

The transformative power of “source always included” in JavaScript is a major reason
why I coined — and continue to believe in — Atwood’s Law. Even if “view source” isn’t
built in (but it totally should be), you should demand access to the underlying source code
for your stack. No matter what the documentation says, the source code is the
ultimate truth, the best and most definitive and up-to-date documentation
you’re likely to find. This will be true forever, so the sooner you come to terms with
this, the better off you’ll be as a software developer.

Learn to Read the Source, Luke

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Principles of Good Programming

Principles of Good Programming

Principles of Good Programming

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 4545

http://www.codinghorror.com/blog/2006/06/is-writing-more-important-than-programming.html
http://www.codinghorror.com/blog/2006/06/is-writing-more-important-than-programming.html
http://www.codinghorror.com/blog/2006/06/is-writing-more-important-than-programming.html
http://www.codinghorror.com/blog/2007/01/if-it-isnt-documented-it-doesnt-exist.html
http://www.codinghorror.com/blog/2006/08/the-power-of-view-source.html
http://www.codinghorror.com/blog/2007/07/the-principle-of-least-power.html

I had a whole entry I was going to write about this, and then I discovered Brandon
Bloom’s brilliant post on the topic at Hacker News. Read closely, because he explains the
virtue of reading source, and in what context you need to read the source, far better than
I could:

I started working with Microsoft platforms professionally at age 15 or so. I worked for
Microsoft as a software developer doing integration work on Visual Studio. More than ten
years after I first wrote a line of Visual Basic, I wish I could never link against a closed
library ever again.

Using software is different than building software. When you’re using most software for
its primary function, it’s a well worn path. Others have encountered the problems and
enough people have spoken up to prompt the core contributors to correct the issue. But
when you’re building software, you’re doing something new. And there are so many ways
to do it, you’ll encounter unused bits, rusty corners, and unfinished experimental code
paths. You’ll encounter edge cases that have been known to be broken, but were worked
around.

Sometimes, the documentation isn’t complete. Sometimes, it’s wrong. The source code
never lies. For an experienced developer, reading the source can often be faster…
especially if you’re already familiar with the package’s architecture. I’m in a medium-
sized co-working space with several startups. A lot of the other CTOs and engineers come
to our team for guidance and advice on occasion. When people report a problem with
their stack, the first question I ask them is: “Well, did you read the source code?”

I encourage developers to git clone anything and everything they depend on. Initially,
they are all afraid. “That project is too big, I’ll never find it!” or “I’m not smart enough to
understand it” or “That code is so ugly! I can’t stand to look at it”. But you don’t have to
search the whole thing, you just need to follow the trail. And if you can’t understand the
platform below you, how can you understand your own software? And most of the time,
what inexperienced developers consider beautiful is superficial, and what they consider
ugly, is battle-hardened production-ready code from master hackers. Now, a year or two
later, I’ve had a couple of developers come up to me and thank me for forcing them to
sink or swim in other people’s code bases. They are better at their craft and they wonder
how they ever got anything done without the source code in the past.

When you run a business, if your software has a bug, your customers don’t care if it is
your fault or Linus’ or some random Rails developer’s. They care that your software is
bugged. Everyone’s software becomes my software because all of their bugs are my
bugs. When something goes wrong, you need to seek out what is broken, and you need

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Principles of Good Programming

Principles of Good Programming

Principles of Good Programming

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 4646

http://blog.brandonbloom.name/
http://news.ycombinator.com/item?id=3769446

to fix it. You fix it at the right spot in the stack to minimize risks, maintenance costs, and
turnaround time. Sometimes, a quick workaround is best. Other times, you’ll need to
recompile your compiler. Often, you can ask someone else to fix it upstream, but just as
often, you’ll need to fix it yourself.

Closed-software shops have two choices: beg for generosity, or work around it.

Open source shops with weaker developers tend to act the same as closed-software
shops.

Older shops tend to slowly build the muscles required to maintain their own forks and
patches and whatnot.

True hackers have come to terms with a simple fact: If it runs on my machine, it’s my
software. I’m responsible for it. I must understand it. Building from source is the rule and
not an exception. I must control my environment and I must control my dependencies.

Nobody reads other people’s code for fun. Hell, I don’t even like reading my own code.
The idea that you’d settle down in a deep leather chair with your smoking jacket and a
snifter of brandy for a fine evening of reading through someone else’s code is absurd.

But we need access to the source code. We must read other people’s code because we
have to understand it to get things done. So don’t be afraid to read the source, Luke —
and follow it wherever it takes you, no matter how scary looking that code is.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Principles of Good Programming

Principles of Good Programming

Principles of Good Programming

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 4747

http://www.codinghorror.com/blog/2009/07/nobody-hates-software-more-than-software-developers.html
http://www.codinghorror.com/blog/2006/09/when-understanding-means-rewriting.html

At Stack Exchange, we insist that people who ask questions put some effort into
their question, and we’re kind of jerks about it. That is, when you set out to ask a
question, you should …

Describe what’s happening in sufficient detail that we can follow along. Provide the
necessary background for us to understand what’s going on, even if we aren’t experts
in your particular area.

Tell us why you need to know the answer. What led you here? Is it idle curiosity or
somehow blocking you on a project? We don’t require your whole life story, just give
us some basic context for the problem.

Share any research you did toward solving your problem, and what you found, if
anything. And if you didn’t do any research — should you even be asking?

Ultimately, this is about fairness: if you’re going to ask us to spend our valuable time
helping you, it’s only fair that you put in a reasonable amount of your valuable time
into crafting a decent question. Help us help you!

We have a great How to Ask page that explains all of this, which is linked generously
throughout the network. (And on Stack Overflow, due to massive question volume, we
actually force new users to click through that page before asking their first question. You
can see this yourself by clicking on Ask Question in incognito or anonymous browser
mode.)

What we’re trying to prevent, most of all, is the unanswerable drive-by question. Those
help nobody, and left unchecked they can ruin a Q&A site, turning it into a virtual ghost
town. On Stack Exchange, questions that are so devoid of information and context that
they can’t reasonably be answered will be actively closed, and if they aren’t improved,
eventually deleted.

As I said, we’re kinda jerks about this rule. But for good reason: we’re not-so-subtly trying
to help you help yourself, by teaching you Rubber Duck problem solving. And boy does
it ever work.

Rubber Duck Problem Solving

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Principles of Good Programming

Principles of Good Programming

Principles of Good Programming

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 4848

http://stackexchange.com/
http://superuser.com/questions/how-to-ask
http://en.wikipedia.org/wiki/Rubber_duck_debugging

It’s quite common. See for yourself:

How can I thank the community when I solve my own problems?

I’ve only posted one question so far, and almost posted another. In both cases, I
answered my own questions at least partially while writing it out. I credit the community
and the process itself for making me think about the answer. There’s nothing explicit in
what I’m writing that states quite obviously the answer I needed, but something about
writing it down makes me think along extra lines of thought.

Why is it that properly formulating your question often yields you your answer?

I don’t know how many times this has happened:

I have a problem

I decide to bring it to stack overflow

I awkwardly write down my question

I realize that the question doesn’t make any sense

I take 15 minutes to rethink how to ask my question

I realize that I’m attacking the problem from a wrong direction entirely

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Principles of Good Programming

Principles of Good Programming

Principles of Good Programming

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 4949

http://meta.stackoverflow.com/questions/74891/how-can-i-thank-the-community-when-i-solve-my-own-problems-rubber-duck
http://meta.stackoverflow.com/questions/20016/why-is-it-that-properly-formulating-your-question-for-stackoverflow-often-yiel

I start from scratch and find my solution quickly

Does this happen to you? Sometimes asking the right question seems like half the
problem.

Beginning to ask a question actually helps me debug my problem myself.

Beginning to ask a question actually helps me debug my problem myself, especially while
trying to formulate a coherent and detailed enough question body in order to get decent
answers. Has this happened to anybody else before?

It’s not a new concept, and every community seems to figure it out on their own given
enough time, but “Ask the Duck” is a very powerful problem-solving technique.

Bob pointed into a corner of the office. “Over there,” he said, “is a duck. I want you to ask
that duck your question.”

I looked at the duck. It was, in fact, stuffed, and very dead. Even if it had not been dead,
it probably would not have been a good source of design information. I looked at Bob.
Bob was dead serious. He was also my superior, and I wanted to keep my job.

I awkwardly went to stand next to the duck and bent my head, as if in prayer, to
commune with this duck. “What,” Bob demanded, “are you doing?”

“I’m asking my question of the duck,” I said.

One of Bob’s superintendants was in his office. He was grinning like a bastard around his
toothpick. “Andy,” he said, “I don’t want you to pray to the duck. I want you to ask the
duck your question.”

I licked my lips. “Out loud?” I said.

“Out loud,” Bob said firmly.

I cleared my throat. “Duck,” I began.

“It’s name is Bob Junior,” Bob’s superintendent supplied. I shot him a dirty look.

“Duck,” I continued, “I want to know, when you use a clevis hanger, what keeps the
sprinkler pipe from jumping out of the clevis when the head discharges, causing the pipe
to…”

In the middle of asking the duck my question, the answer hit me. The clevis hanger is

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Principles of Good Programming

Principles of Good Programming

Principles of Good Programming

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 5050

http://meta.stackoverflow.com/questions/68719/beginning-to-ask-a-question-on-stackoverflow-acually-helps-me-debug-my-problem-m
http://hwrnmnbsol.livejournal.com/148664.html

suspended from the structure above by a length of all-thread rod. If the pipe-fitter cuts
the all-thread rod such that it butts up against the top of the pipe, it essentially will hold
the pipe in the hanger and keep it from bucking.

I turned to look at Bob. Bob was nodding. “You know, don’t you,” he said.

“You run the all-thread rod to the top of the pipe,” I said.

“That’s right,” said Bob. “Next time you have a question, I want you to come in here and
ask the duck, not me. Ask it out loud. If you still don’t know the answer, then you can ask
me.”

“Okay,” I said, and got back to work.

I love this particular story because it makes it crystal clear how the critical part of
rubber duck problem solving is to totally commit to asking a thorough, detailed
question of this imaginary person or inanimate object. Yes, even if you end up
throwing the question away because you eventually realize that you made some dumb
mistake. The effort of walking an imaginary someone through your problem, step by step
and in some detail, is what will often lead you to your answer. But if you aren’t willing to
put the effort into fully explaining the problem and how you’ve attacked it, you can’t reap
the benefits of thinking deeply about your own problem before you ask others to.

If you don’t have a coding buddy (but you totally should), you can leverage the Rubber
Duck problem solving technique to figure out problems all by yourself, or with the benefit
of the greater Internet community. Even if you don’t get the answer you wanted, forcing
yourself to fully explain your problem — ideally in writing — will frequently lead to new
insights and discoveries.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Principles of Good Programming

Principles of Good Programming

Principles of Good Programming

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 5151

http://www.codinghorror.com/blog/2009/02/whos-your-coding-buddy.html
http://www.codinghorror.com/blog/2011/07/nobodys-going-to-help-you-and-thats-awesome.html

How much is a good idea worth? According to Derek Sivers, not much:

It’s so funny when I hear people being so protective of ideas. (People who want me to
sign an NDA to tell me the simplest idea.) To me, ideas are worth nothing unless
executed. They are just a multiplier. Execution is worth millions.

To make a business, you need to multiply the two. The most brilliant idea, with no
execution, is worth $20. The most brilliant idea takes great execution to be worth
$20,000,000. That’s why I don’t want to hear people’s ideas. I’m not interested until I see
their execution.

I was reminded of Mr. Sivers article when this email made the rounds earlier this month:

I feel that this story is important to tell you because Kickstarter.com copied us. I tried for
4 years to get people to take Fundable seriously, traveling across the country, even giving
a presentation to FBFund, Facebook’s fund to stimulate development of new apps. It was
a series of rejections for 4 years. I really felt that I presented myself professionally in
every business situation and I dressed appropriately and practiced my presentations.
That was not enough. The idiots wanted us to show them charts with massive profits and
widespread public acceptance so that they didn’t have to take any risks.

All it took was 5 super-connected people at Kickstarter (especially Andy Baio) to take a
concept we worked hard to refine, tweak it with Amazon Payments, and then take credit.
You could say that that’s capitalism, but I still think you should acknowledge people that
you take inspiration from. I do. I owe the concept of Fundable to many things, including
living in cooperative student housing and studying Political Science at Michigan. Rational
choice theory, tragedy of the commons, and collective action are a few political science
concepts that are relevant to Fundable.

Yes, Fundable had some technical and customer service problems. That’s because we
had no money to revise it. I had plans to scrap the entire CMS and start from scratch with
a new design. We were just so burned out that motivation was hard to come by. What
was the point if we weren’t making enough money to live on after 4 years?

Cultivate Teams, Not Ideas

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Principles of Good Programming

Principles of Good Programming

Principles of Good Programming

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 5252

http://sivers.org/multiply
http://groups.google.com/group/barcampla/browse_thread/thread/4b4091eaf6fb6743?pli=1

The disconnect between idea and execution here is so vast it’s hard to understand why
the author himself can’t see it.

I wouldn’t call ideas worthless, per se, but it’s clear that ideas alone are a hollow sort of
currency. Success is rarely determined by the quality of your ideas. But it is frequently
determined by the quality of your execution. So instead of worrying about whether the
Next Big Idea you’re all working on is sufficiently brilliant, worry about how well you’re
executing.

The criticism that all you need is “super-connected people” to be successful was also
leveled at Stack Overflow. In an email to me last year, Andy Baio — ironically, the very
person being cited in the email — said:

I very much enjoyed the Hacker News conversation about cloning the site in a weekend.
My favorite comments were from the people that believe Stack Overflow is only
successful because of the Cult of Atwood & Spolsky. Amazing.

I don’t care how internet famous you are; nobody gets a pass on execution. Sure, you
may have a few more eyeballs at the beginning, but if you don’t build something useful,
the world will eventually just shrug its collective shoulders and move along to more useful
things.

In software development, execution is staying on top of all the tiny details
that make up your app. If you’re not constantly obsessing over every aspect of your
application, relentlessly polishing and improving every little part of it — no matter how
trivial — you’re not executing. At least, not well.

And unless you work alone, which is a rarity these days, your ability to stay on top of the
collection of tiny details that makes up your app will hinge entirely on whether or not you
can build a great team. They are the building block of any successful endeavor. This talk
by Ed Catmull is almost exclusively focused on how Pixar learned, through trial and error,
to build teams that can execute.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Principles of Good Programming

Principles of Good Programming

Principles of Good Programming

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 5353

http://www.codinghorror.com/blog/archives/001284.html
http://en.wikipedia.org/wiki/Edwin_Catmull

WATCH: Ed Catmull, Pixar|Keep Your Crises Small

It’s a fascinating talk, full of some great insights, and you should watch the whole thing. In
it, Mr. Catmull amplifies Mr. Sivers’ sentiment:

If you give a good idea to a mediocre group, they’ll screw it up. If you give a mediocre
idea to a good group, they’ll fix it. Or they’ll throw it away and come up with something
else.

Execution isn’t merely a multiplier. It’s far more powerful. How your team executes has
the power to transform your idea from gold into lead, or from lead into gold. That’s why,
when building Stack Overflow, I was so fortunate to not only work with Joel Spolsky, but
also to cherry-pick two of the best developers I had ever worked with in my previous jobs
and drag them along with me — kicking and screaming if necessary.

If I had to point to the one thing that made our project successful, it was not the
idea behind it, our internet fame, the tools we chose, or the funding we had (precious
little, for the record).

It was our team.

The value of my advice is debatable. But you would do well to heed the advice of Mr.
Sivers and Mr. Catmull. If you want to be successful, stop worrying about the great ideas,
and concentrate on cultivating great teams.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Principles of Good Programming

Principles of Good Programming

Principles of Good Programming

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 5454

http://bit.ly/NKiBe1
http://bit.ly/NKiBe1
http://www.codinghorror.com/blog/archives/001101.html

Software developers do love to code. But very few of them, in my experience, can
explain why they’re coding. Try this exercise on one of your teammates if you don’t
believe me. Ask them what they’re doing. Then ask them why they’re doing it, and
keep asking until you get to a reason your customers would understand.

What are you working on?

I’m fixing the sort order on this datagrid.

Why are you working on that?

Because it’s on the bug list.

Why is it on the bug list?

Because one of the testers reported it as a bug.

Why was it reported as a bug?

The tester thinks this field should sort in numeric order instead of alphanumeric order.

Why does the tester think that?

Evidently the users are having trouble finding things when item 2 is sorted under item 19.

If this conversation seems strange to you, you probably haven’t worked with many
software developers. Like the number of licks it takes to get to the center of a tootsie
pop, it might surprise you just how many times you have to ask “why” until you get to
something — anything — your customers would actually care about.

It’s a big disconnect.

Software developers think their job is writing code. But it’s not.* Their job is to
solve the customer’s problem. Sure, our preferred medium for solving problems is
software, and that does involve writing code. But let’s keep this squarely in context:

Can Your Team Pass the Elevator
Test?

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Principles of Good Programming

Principles of Good Programming

Principles of Good Programming

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 5555

http://www.codinghorror.com/blog/archives/000878.html
http://www.youtube.com/results?search_query=tootsie+pop+owl

writing code is something you have to do to deliver a solution. It is not an end in and of
itself.

As software developers, we spend so much time mired in endless, fractal levels of detail
that it’s all too easy for us to fall into the trap of coding for the sake of coding. Without a
clear focus and something to rally around, we lose the context around our code. That’s
why it’s so important to have a clear project vision statement that everyone can use as a
touchstone on the project. If you’ve got the vision statement down, every person on
your team should be able to pass the “elevator test” with a stranger — to
clearly explain what they’re working on, and why anyone would care, within 60
seconds.

If your team can’t explain their work to a layperson in a meaningful way, you’re in
trouble, whether you realize it or not. But you are in good company. Jim Highsmith is here
to help. He explains a quick formula for building a project vision model:

A product vision model helps team members pass the elevator test — the ability to
explain the project to someone within two minutes. It comes from Geoffrey Moore’s
book Crossing the Chasm. It follows the form:

for (target customer)

who (statement of need or opportunity)

the (product name) is a (product category)

that (key benefit, compelling reason to buy)

unlike (primary competitive alternative)

our product (statement of primary differentiation)

Creating a product vision statement helps teams remain focused on the critical aspects of
the product, even when details are changing rapidly. It is very easy to get focused on the
short-term issues associated with a 2-4 week development iteration and lose track of the
overall product vision.

I’m not a big fan of formulas, because they’re so, well, formulaic. But it’s a reasonable
starting point. Play Mad Libs and see what you come up with. It’s worlds better than no
vision statement, or an uninspiring, rambling, ad-hoc mess masquerading as a vision
statement. However, I think Jim’s second suggestion for developing a vision statement
holds much more promise.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Principles of Good Programming

Principles of Good Programming

Principles of Good Programming

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 5656

http://www.codinghorror.com/blog/archives/000351.html
http://www.joelonsoftware.com/articles/JimHighsmithonProductVisi.html
http://www.amazon.com/exec/obidos/ASIN/0066620023/codihorr-20
http://en.wikipedia.org/wiki/Mad_Libs

Even within an IT organization, I think every project should be considered to produce a
“product.” Whether the project results involve enhancements to an internal accounting
system or a new e-commerce site, product-oriented thinking pays back benefits.

One practice that I’ve found effective in getting teams to think about a product vision is
the Design-the-Box exercise. This exercise is great to open up a session to initiate a
project. The team makes the assumption that the product will be sold in a
shrink-wrapped box, and their task is to design the product box front and
back. This involves coming up with a product name, a graphic, three to four key bullet
points on the front to “sell” the product, a detailed feature description on the back, and
operating requirements.

Coming up with 15 or 20 product features proves to be easy. It’s figuring out which 3 or 4
would cause someone to buy the product that is difficult. One thing that usually happens
is an intense discussion about who the customers really are.

Design-the-Box is a fantastic way to formulate a vision statement. It’s based on a
concrete, real world concept that most people can easily wrap their heads around. Forget
those pie-in-the-sky vision quests: what would our (hypothetical) product box look
like?

We’re all consumers; the design goals for a product box are obvious and universal. What
is a product box if not the ultimate elevator pitch? It should…

Explain what our product is in the simplest possible way.

Make it crystal clear why a potential customer would want to buy this product.

Be uniquely identifiable amongst all the other boxes on the shelf.

Consider the box for the ill-fated Microsoft Bob product as an example. How do you
explain why customers should want Microsoft Bob? How would you even explain what the
heck Microsoft Bob is?

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Principles of Good Programming

Principles of Good Programming

Principles of Good Programming

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 5757

http://www.microsoft-watch.com/content/operating_systems/bill_gates_legacy_microsofts_top_10_flops.html
http://en.wikipedia.org/wiki/Microsoft_Bob
http://en.wikipedia.org/wiki/Microsoft_Bob

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Principles of Good Programming

Principles of Good Programming

Principles of Good Programming

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 5858

http://img241.imageshack.us/img241/9260/bobbacklargehs7.jpg

3:26 AM – 15 May 12

It’s instructive to look at existing product boxes you find effective, and those you find
ineffective. We definitely know what our product box shouldn’t look like.

Have a rock solid vision statement for your project from day one. If you don’t, use one of
Jim’s excellent suggestions to build one up immediately. Without a coherent vision
statement, it’s appalling how many teams can’t pass the elevator test — they
can’t explain what it is they’re working on, or why it matters. Don’t make that
same mistake. Get a kick-ass vision statement that your teammates can relate their work
to. Make sure your team can pass the elevator test.

* Completely stolen from Billy Hollis’ great 15-minute software addicts talk.

 Jeff Atwood@codinghorror

“When a code addict needs a fix, they just do a few extra lines.”

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Principles of Good Programming

Principles of Good Programming

Principles of Good Programming

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 5959

http://www.youtube.com/results?search_query=microsoft+ipod
http://www.youtube.com/results?search_query=microsoft+ipod
http://www.youtube.com/results?search_query=microsoft+ipod
http://www.codinghorror.com/blog/archives/000351.html

We’ve always put a heavy emphasis on performance at Stack Overflow and Stack
Exchange. Not just because we’re performance wonks (guilty!), but because we think
speed is a competitive advantage. There’s plenty of experimental data proving that the
slower your website loads and displays, the less people will use it.

[Google found that] the page with 10 results took 0.4 seconds to generate. The page with
30 results took 0.9 seconds. Half a second delay caused a 20 percent drop in traffic. Half
a second delay killed user satisfaction.

In A/B tests, [Amazon] tried delaying the page in increments of 100 milliseconds and
found that even very small delays would result in substantial and costly drops in revenue.

I believe the converse of this is also true. That is, the faster your website is, the
more people will use it. This follows logically if you think like an information omnivore: the
faster you can load the page, the faster you can tell whether that page contains what you
want. Therefore, you should always favor fast websites. The opportunity cost for
switching on the public internet is effectively nil, and whatever it is that you’re looking for,
there are multiple websites that offer a similar experience. So how do you distinguish
yourself? You start by being, above all else, fast.

Do you, too, feel the need – the need for speed? If so, I have three pieces of advice that
I’d like to share with you.

1. Follow the Yahoo Guidelines. Religiously.

The golden reference standard for building a fast website remains Yahoo’s 13 Simple
Rules for Speeding Up Your Web Site from 2007. There is one caveat, however:

There’s some good advice here, but there’s also a lot of advice that only makes sense if
you run a website that gets millions of unique users per day. Do you run a website like
that? If so, what are you doing reading this instead of flying your private jet to a Bermuda
vacation with your trophy wife?

So … a funny thing happened to me since I wrote that four years ago. I now run a
network of public, community driven Q&A web sites that do get millions of daily unique

Performance is a Feature

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Principles of Good Programming

Principles of Good Programming

Principles of Good Programming

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 6060

http://stackexchange.com/
http://www.codinghorror.com/blog/2006/11/speed-still-matters.html
http://www.codinghorror.com/blog/2007/06/designing-for-informavores-or-why-users-behave-like-animals-online.html
http://www.youtube.com/watch?v=OlkInNZ7xis
http://www.codinghorror.com/blog/2007/08/yslow-yahoos-problems-are-not-your-problems.html
http://stackexchange.com/sites

users. (I’m still waiting on the jet and trophy wife.) It does depend a little on the size of
your site, but if you run a public website, you really should pore over Yahoo’s
checklist and take every line of it to heart. Or use the tools that do this for you:

Yahoo YSlow

Google Page Speed

Pingdom Tools

We’ve long since implemented most of the 13 items on Yahoo’s list, except for one. But
it’s a big one: Using a Content Delivery Network.

The user’s proximity to your web server has an impact on response times. Deploying your
content across multiple, geographically dispersed servers will make your pages load
faster from the user’s perspective. But where should you start?

As a first step to implementing geographically dispersed content, don’t attempt to
redesign your web application to work in a distributed architecture. Depending on the
application, changing the architecture could include daunting tasks such as synchronizing
session state and replicating database transactions across server locations. Attempts to
reduce the distance between users and your content could be delayed by, or never pass,
this application architecture step.

Remember that 80 to 90 percent of the end-user response time is spent downloading all
the components in the page: images, stylesheets, scripts, Flash, etc. This is the
Performance Golden Rule. Rather than starting with the difficult task of redesigning your
application architecture, it’s better to first disperse your static content. This not only
achieves a bigger reduction in response times, but it’s easier thanks to content delivery
networks.

As a final optimization step, we just rolled out a CDN for all our static content. The results
are promising; the baseline here is our datacenter in NYC, so the below should be read as
“how much faster did our website get for users in this area of the world?”

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Principles of Good Programming

Principles of Good Programming

Principles of Good Programming

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 6161

http://developer.yahoo.com/performance/rules.html
http://developer.yahoo.com/yslow/
http://code.google.com/speed/page-speed/
http://tools.pingdom.com/
http://developer.yahoo.com/performance/rules.html#cdn
http://blog.stackoverflow.com/2011/05/the-speed-of-light-sucks/

In the interests of technical accuracy, static content isn’t the complete performance
picture; you still have to talk to our servers in NYC to get the dynamic content which is the
meat of the page. But 90 percent of our visitors are anonymous, only 36 percent of our
traffic is from the USA, and Yahoo’s research shows that 40 to 60 percent of daily vistors
come in with an empty browser cache. Optimizing this cold cache performance
worldwide is a huge win.

Now, I would not recommend going directly for a CDN. I’d leave that until later, as there
are a bunch of performance tweaks on Yahoo’s list which are free and trivial to
implement. But using a CDN has gotten a heck of a lot less expensive and much simpler
since 2007, with lots more competition in the space from companies
like Amazon, NetDNA and CacheFly. So when the time comes, and you’ve worked through
the Yahoo list as religiously as I recommend, you’ll be ready.

2. Love (and Optimize for) Your Anonymous and Registered Users

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Principles of Good Programming

Principles of Good Programming

Principles of Good Programming

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 6262

http://yuiblog.com/blog/2007/01/04/performance-research-part-2/
http://aws.amazon.com/cloudfront/
http://www.netdna.com/
http://www.cachefly.com/

Our Q&A sites are all about making the internet better. That’s why all the contributed
content is licensed back to the community under Creative Commons and always visible
regardless of whether you are logged in or not. I despise walled gardens. In fact, you
don’t actually have to log in at all to participate in Q&A with us. Not even a little!

The primary source of our traffic is anonymous users arriving from search engines and
elsewhere. It’s classic “write once, read — and hopefully edit — millions of times.” But we
are also making the site richer and more dynamic for our avid community members, who
definitely are logged in. We add features all the time, which means we’re serving up
more JavaScript and HTML. There’s an unavoidable tension here between the download
footprint for users who are on the site every day, and users who may visit once a month
or once a year.

Both classes are important, but have fundamentally different needs. Anonymous users
are voracious consumers optimizing for rapid browsing, while our avid community
members are the source of all the great content that drives the network. These guys (and
gals) need each other, and they both deserve special treatment. We design and
optimize for two classes of users: anonymous, and logged in. Consider the
following Google Chrome network panel trace on a random Super User question I picked:

requests data transferred DOMContentLoaded onload
Logged in (as me) 29 233.31 KB 1.17 s 1.31 s
Anonymous 22 111.40 KB 768 ms 1.28 s

We minimize the footprint of HTML, CSS and Javascript for anonymous users so they get
their pages even faster. We load a stub of very basic functionality and dynamically “rez
in” things like editing when the user focuses the answer input area. For logged in users,
the footprint is necessarily larger, but we can also add features for our most avid
community members at will without fear of harming the experience of the vast, silent
majority of anonymous users.

3. Make Performance a Point of (Public) Pride

Now that we’ve exhausted the Yahoo performance guidance, and made sure we’re
serving the absolute minimum necessary to our anonymous users — where else can we
go for performance? Back to our code, of course.

When it comes to website performance, there is no getting around one fundamental law
of the universe: you can never serve a webpage faster than it you can render it
on the server. I know, duh. But I’m telling you, it’s very easy to fall into the trap of not

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Principles of Good Programming

Principles of Good Programming

Principles of Good Programming

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 6363

http://blog.stackoverflow.com/category/cc-wiki-dump/
http://www.codinghorror.com/blog/2007/06/avoiding-walled-gardens-on-the-internet.html
http://www.codinghorror.com/blog/2011/01/trouble-in-the-house-of-google.html
http://blog.stackoverflow.com/2011/02/suggested-edits-and-edit-review/

noticing a few hundred milliseconds here and there over the course of a year or so of
development, and then one day you turn around and your pages are taking almost a full
freaking second to render on the server. It’s a heck of a liability to start 1 full second in
the hole before you’ve even transmitted your first byte over the wire!

That’s why, as a developer, you need to put performance right in front of your face on
every single page, all the time. That’s exactly what we did with our MVC Mini Profiler,
which we are contributing back to the world as open source. The simple act of putting a
render time in the upper right hand corner of every page we serve forced us to
fix all our performance regressions and omissions.

(Note that you can click on the SQL linked above to see what’s actually being run and how
long it took in each step. And you can use the share link to share the profiler data for this
run with your fellow developers to shame them diagnose a particular problem. And it
works for multiple AJAX requests. Have I mentioned that our open source MVC Mini
Profiler is totally freaking awesome? If you’re on a .NET stack, you should really check it
out.)

In fact, with the render time appearing on every page for everyone on the dev team,
performance became a point of pride. We had so many places where we had just
gotten a little sloppy or missed some tiny thing that slowed a page down inordinately.
Most of the performance fixes were trivial, and even the ones that were not turned into
fantastic opportunities to rearchitect and make things simpler and faster for all of our
users.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Principles of Good Programming

Principles of Good Programming

Principles of Good Programming

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 6464

http://code.google.com/p/mvc-mini-profiler/
http://code.google.com/p/mvc-mini-profiler/

Did it work? You bet your sweet ILAsm it worked:

That’s the Google crawler page download time; the experimental Google Site
Performance page, which ostensibly reflects complete full-page browser load time,
confirms the improvements:

While server page render time is only part of the performance story, it is the baseline
from which you start. I cannot emphasize enough how much the simple act of putting the
page render time on the page helped us, as a development team, build a dramatically
faster site. Our site was always relatively fast, but even for a historically “fast” site like
ours, we realized huge gains in performance from this one simple change.

I won’t lie to you. Performance isn’t easy. It’s been a long, hard road getting to where we
are now – and we’ve thrown a lot of unicorn dollars toward really nice hardware to run
everything on, though I wouldn’t call any of our hardware choices particularly
extravagant. And I did follow my own advice, for the record.

I distinctly remember switching from AltaVista to Google back in 2000 in no small part
because it was blazing fast. To me, performance is a feature, and I simply like using
fast websites more than slow websites, so naturally I’m going to build a site that I would
want to use. But I think there’s also a lesson to be learned here about the competitive
landscape of the public internet, where there are two kinds of websites: the quick and
the dead.

Which one will you be?

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Principles of Good Programming

Principles of Good Programming

Principles of Good Programming

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 6565

http://msdn.microsoft.com/en-us/library/496e4ekx.aspx
http://www.google.com/support/webmasters/bin/answer.py?answer=158541
http://blog.serverfault.com/post/1432571770/
http://www.codinghorror.com/blog/2008/12/hardware-is-cheap-programmers-are-expensive.html

Gift this book to your friends...for free.

Become a Hyperink reader. Get a special surprise.

Like the book? Support our author and leave a comment!

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Principles of Good Programming

Principles of Good Programming

Principles of Good Programming

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 6666

http://www.hyperink.com/share/1559?utm_source=1559&utm_medium=inside_book&utm_campaign=chapter_end_share_pdf
http://www.hyperink.com/register?utm_source=1559&utm_medium=inside_book&utm_campaign=chapter_end_user_pdf
http://www.hyperink.com/Blog-To-Book-Effective-Programming-More-Than-Writing-Code-b1559?utm_source=1559&utm_medium=inside_book&utm_campaign=chapter_end_like_pdf

IV.

Hiring Programmers
the Right Way

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Hiring Programmers the Right Way

Hiring Programmers the Right Way

Hiring Programmers the Right Way

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 6767

9:18 AM – 3 Aug 11

 Nolan K. Bushnell @NolanBushnell

“At Atari we hired based on hobbies and not grades in school. We
ended up with he best engineering group in the world.”

I was incredulous when I read this observation from Reginald Braithwaite:

Like me, the author is having trouble with the fact that 199 out of 200 applicants for
every programming job can’t write code at all. I repeat: they can’t write any code
whatsoever.

The author he’s referring to is Imran, who is evidently turning away lots of programmers
who can’t write a simple program:

After a fair bit of trial and error I’ve discovered that people who struggle to code don’t
just struggle on big problems, or even smallish problems (i.e. write a implementation of a
linked list). They struggle with tiny problems.

So I set out to develop questions that can identify this kind of developer and came up with
a class of questions I call “FizzBuzz Questions,” named after a game children often play
(or are made to play) in schools in the UK. An example of a Fizz-Buzz question is the
following:

Write a program that prints the numbers from 1 to 100. But for multiples of three print
“Fizz” instead of the number and for the multiples of five print “Buzz”. For numbers which
are multiples of both three and five print “FizzBuzz.”

Most good programmers should be able to write out on paper a program which does this
in a under a couple of minutes. Want to know something scary? The majority of comp sci
graduates can’t. I’ve also seen self-proclaimed senior programmers take more than 10-
15 minutes to write a solution.

Why Can’t Programmers..
Program?

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Hiring Programmers the Right Way

Hiring Programmers the Right Way

Hiring Programmers the Right Way

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 6868

http://weblog.raganwald.com/2007/01/dont-overthink-fizzbuzz.html
http://www.joelonsoftware.com/items/2005/01/27.html
http://tickletux.wordpress.com/2007/01/24/using-fizzbuzz-to-find-developers-who-grok-coding/

Dan Kegel had a similar experience hiring entry-level programmers:

A surprisingly large fraction of applicants, even those with master’s degrees and PhDs in
computer science, fail during interviews when asked to carry out basic programming
tasks. For example, I’ve personally interviewed graduates who can’t answer “Write a loop
that counts from 1 to 10″ or “What’s the number after F in hexadecimal?” Less trivially,
I’ve interviewed many candidates who can’t use recursion to solve a real problem. These
are basic skills; anyone who lacks them probably hasn’t done much programming.

Speaking on behalf of software engineers who have to interview prospective new hires, I
can safely say that we’re tired of talking to candidates who can’t program their way out
of a paper bag. If you can successfully write a loop that goes from 1 to 10 in every
language on your resume, can do simple arithmetic without a calculator, and can use
recursion to solve a real problem, you’re already ahead of the pack!

Between Reginald, Dan and Imran, I’m starting to get a little worried. I’m more than
willing to cut freshly minted software developers slack at the beginning of their career.
Everybody has to start somewhere. But I am disturbed and appalled that any so-
called programmer would apply for a job without being able to write the
simplest of programs. That’s a slap in the face to anyone who writes software for a
living.

The vast divide between those who can program and those who cannot program is well
known. I assumed anyone applying for a job as a programmer had already crossed this
chasm. Apparently this is not a reasonable assumption to make. Apparently, FizzBuzz-
style screening is required to keep interviewers from wasting their time interviewing
programmers who can’t program.

Lest you think the FizzBuzz test is too easy — and it is blindingly, intentionally easy — a
commenter to Imran’s post notes its efficacy:

I’d hate interviewers to dismiss [the FizzBuzz] test as being too easy – in my experience it
is genuinely astonishing how many candidates are incapable of the simplest
programming tasks.

Maybe it’s foolish to begin interviewing a programmer without looking at their
code first. At Vertigo, we require a code sample before we even proceed to the phone
interview stage. And our on-site interview includes a small coding exercise. Nothing
difficult, mind you, just a basic exercise to go through the motions of building a small
application in an hour or so. Although there have been one or two notable flame-outs, for
the most part, this strategy has worked well for us. It lets us focus on actual software

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Hiring Programmers the Right Way

Hiring Programmers the Right Way

Hiring Programmers the Right Way

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 6969

http://www.kegel.com/academy/getting-hired.html
http://www.codinghorror.com/blog/archives/000635.html

engineering in the interview without resorting to tedious puzzle questions.

It’s a shame you have to do so much pre-screening to have the luxury of interviewing
programmers who can actually program. It’d be funny if it wasn’t so damn
depressing. I’m no fan of certification, but it does make me wonder if Steve McConnell
was onto something with all his talk of creating a true profession of software engineering.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Hiring Programmers the Right Way

Hiring Programmers the Right Way

Hiring Programmers the Right Way

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 7070

http://www.codeslate.com/2007/01/you-dont-bury-survivors.html
http://www.codinghorror.com/blog/archives/000771.html
http://www.amazon.com/exec/obidos/ASIN/0321193679/codihorr-20

There’s no magic bullet for hiring programmers. But I can share advice on a few
techniques that I’ve seen work, that I’ve written about here and personally tried out over
the years.

1. First, pass a few simple “Hello World” online tests.

I know it sounds crazy, but some people who call themselves programmers can barely
program. To this day, I still get regular pings from people who tell me they had
candidates fail the most basic programming test imaginable.

That’s why extremely simple programming tests are step one of any sane interview
process. These tests should happen online, and the goal is not to prove that the candidate
is some kind of coding genius, but that they know what the heck programming is. Yes, it’s
sad and kind of depressing that this is even necessary, but if you don’t perform this sanity
check, trust me — you’ll be sorry.

Some services that do online code screening (I am sure there are more, but these are
the ones I know about) are Interview Zen and codility.

2. Ask to see their portfolio.

Any programmer worth their salt should have a portfolio of the things they’ve worked on.
It doesn’t have to be fancy. I’m just looking for a basic breadcrumb trail of your
awesomeness that you’ve left on the Internet to help others. Show me a Stack Overflow
profile where I can see what kind of communicator and problem solver you are. Link me
to an open-source code repository of your stuff. Got a professional blog? A tumblr? A
twitter? Some other word I’ve never heard of? Excellent, let’s have a look. Share
applications you’ve designed, or websites you worked on, and describe what parts were
yours.

Just seeing what kind of work people have done, and what sort of online artifacts they’ve
created, is tremendously helpful in getting a sense of what people do and what they’re
good (or bad) at.

3. Hire for cultural fit.

How to Hire a Programmer

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Hiring Programmers the Right Way

Hiring Programmers the Right Way

Hiring Programmers the Right Way

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 7171

http://www.codinghorror.com/blog/2007/02/why-cant-programmers-program.html
http://www.codinghorror.com/blog/2010/02/the-nonprogramming-programmer.html
http://www.codinghorror.com/blog/2010/02/the-nonprogramming-programmer.html
http://www.interviewzen.com/
http://codility.com/
http://www.codinghorror.com/blog/2004/10/a-programmers-portfolio.html

Like GitHub, I find that cultural fit is often a stronger predictor of success than mad
programming chops.

We talk about [philosophy] during the hiring process, which we take very seriously. We
want any potential GitHubber to know what they’re getting into and ensure it’s a good fit.
Part of that is having dinner and talking about stuff like the culture, philosophy, mistakes
we’ve made, plans, whatever.

Early on we made a few hires for their skills with little regard to how they’d fit into the
culture of the company or if they understood the philosophy. Naturally, those hires didn’t
work out. So while we care about the skills of a potential employees, whether or not they
“get” us is a major part too.

I realize that not every business has a community around what they do, but if you do
have a community, you should try like hell to hire from your community
whenever possible. These are the folks who were naturally drawn to what you do, that
were pulled into the gravitational well of your company completely of their own accord.
The odds of these candidates being a good cultural fit are abnormally high. That’s what
you want!

Did a few of your users build an amazing mod for your game? Did they find an obscure
security vulnerability and try to tell you about it? Hire these people immediately!

4. Do a detailed, structured phone screen.

Once you’ve worked through the above, it’s time to give the candidate a call. Bear in
mind that the phone screen is not for chatting, it’s for screening. The call should be
technical and structured, so both of you can get out immediately if it clearly isn’t a
fit. Getting the Interview Phone Screen Right covers the basics, but in summary:

1. A bit of on-the-fly coding. “Find the largest int value in an int array.”

2. Some basic design. “Design a representation to model HTML.”

3. Scripting and regular expressions. “Give me a list of the text files in this directory that
contain phone numbers in a specific format.”

4. Data structures. “When would you use a hashtable versus an array?”

5. Bits and bytes. “Why do programmers think asking if Oct 31 and Dec 25 are the same
day is funny?”

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Hiring Programmers the Right Way

Hiring Programmers the Right Way

Hiring Programmers the Right Way

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 7272

http://37signals.com/svn/posts/2486-bootstrapped-profitable-proud-github
http://www.mojang.com/2012/02/minecraft-team-strengthened/
http://arstechnica.com/business/news/2012/03/hacker-commandeers-github-to-prove-vuln-in-ruby.ars?clicked=related_right
http://www.codinghorror.com/blog/2008/01/getting-the-interview-phone-screen-right.html

What you’re looking for is not magical perfect answers, necessarily, but some context
into how this person solves problems, and whether they know their stuff (plus or minus 10
percent). The goal is to make sure that the candidates that do make it to the next step
are not wasting their time or yours. So don’t be shy about sticking to your guns and
ending the call early if there are too many warning flags.

(Note: See the next section for a more thorough analysis of the phone screen.)

5. Give them an audition project.

So the candidate breezed through the hello world programming tests, has an amazing
portfolio, is an excellent cultural fit, and also passed the phone screen with flying colors.
Time to get them in for a face-to-face interview, right? Not so fast there, cowboy!

I’ve seen candidates nail all of the above, join the company, and utterly fail to Get Things
Done. Have I mentioned that hiring programmers is hard?

If you want to determine beyond the shadow of a doubt if someone’s going to be a great
hire, give them an audition project. I’m not talking about a generic, abstract
programming problem, I’m talking about a real world, honest-to-God unit of work
that you need done right now today on your actual product. Something you would
give to a current employee, if they weren’t all busy, y’know, doing other stuff.

This should be a regular consulting gig with an hourly rate, and a clearly defined project
mission statement. Select a small project that can ideally be done in a few days, maybe
at most a week or two. Either the candidate can come in to the office, or they can work
remotely. I know not every business has these bite-sized units of work that they can slice
off for someone outside the company — but trying desperately to make it inside the
company — to take on. I’d argue that if you can’t think of any way to make an audition
mini-project work for a strong hiring candidate, perhaps you’re not structuring the work
properly for your existing employees, either.

If the audition project is a success, fantastic — you now have a highly qualified candidate
that can probably Get Things Done, and you’ve accomplished something that needed
doing. To date, I have never seen a candidate who passes the audition project fail to work
out. I weigh performance on the audition project heavily; it’s as close as you can get to
actually working the job without being hired. And if the audition project doesn’t work out,
well, consider the cost of this little consulting gig a cheap exit fee compared to an
extensive interview process with 4 or 5 other people at your company. Worst case, you
can pass off the audition project to the next strong candidate.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Hiring Programmers the Right Way

Hiring Programmers the Right Way

Hiring Programmers the Right Way

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 7373

(A probationary period of conditional employment can also work, and is conceptually
quite similar. You could hire with a 6-8 week review “go or no go” decision everyone
agrees to in advance.)

6. Get in a room with us and pitch.

Finally, you should meet candidates face-to-face at some point. It’s inevitable, but the
point of the earlier steps is that you should be 95 percent certain that a candidate
would be a great hire before they ever set foot in an interview room.

I’m far from an expert on in person interviews, but I don’t like interview puzzle questions,
to put it mildly.

Instead, I have my own theory about how we should interview programmers: have the
candidate give a 15-minute presentation on their area of expertise. I think this is a far
better indicator of success than a traditional interview, because you’ll quickly ascertain …

Is this person passionate about what they are doing?

Can they communicate effectively to a small group?

Do they have a good handle on their area of expertise?

Would your team enjoy working with this person?

The one thing every programmer should know, per Steve Yegge, is how to market
yourself, your code, and your project. I wholeheartedly agree. Now pitch me!

7. None of this is guaranteed.

Please take this list at face value. I’ve seen these techniques work, and I’ve occasionally
seen them not work. Adapt this advice to your particular situation, keep what you think
makes sense, and ignore the rest (although I’d strongly advise you to never, ever skip
step #1). Even in the best of circumstances, hiring human beings is hard. A job
opportunity may not work out for reasons far beyond anyone’s control. People are, as
they say, complicated.

If you think of work as a relationship, one you’ll spend 40 hours a week (or more) in the
rest of your life, it behooves everyone involved to “date smart.” Both the company and
the candidate should make a good faith best effort to determine if there’s a match. Your
goal shouldn’t be merely to get a job, or hire someone for a job, but to have
fun and create a love connection. Don’t rush into anything unless it feels right on both
sides.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Hiring Programmers the Right Way

Hiring Programmers the Right Way

Hiring Programmers the Right Way

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 7474

http://www.codinghorror.com/blog/2009/03/the-hardest-interview-puzzle-question-ever.html
http://www.codinghorror.com/blog/2006/05/snappy-answers-to-stupid-programming-questions.html
http://www.codinghorror.com/blog/2008/10/the-one-thing-every-software-engineer-should-know.html
http://www.codinghorror.com/blog/2007/10/remember-this-stuff-is-supposed-to-be-fun.html
http://www.codinghorror.com/blog/2008/12/programming-love-it-or-leave-it.html

(As an aside, if you’re looking for ways to attract programmers, you can’t go wrong
with this excellent advice from Samuel Mullen.)

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Hiring Programmers the Right Way

Hiring Programmers the Right Way

Hiring Programmers the Right Way

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 7575

http://samuelmullen.com/2012/02/advice-on-attracting-good-developers/

It is very expensive to get the phone screen wrong — a giant waste of time for
everyone involved.

The best phone screen article you’ll ever find is Steve Yegge’s Five Essential Phone-
Screen Questions, another gift to us from Steve’s stint at Amazon.

Steve starts by noting two critical mistakes that phone screeners should do their best to
avoid:

1. Don’t let the candidate drive the interview. The interviewer should do most of
the talking, guiding the conversation along until they’re satisfied the candidate knows
the answers to the questions (or has given up).

2. Watch out for one-trick ponies. Candidates who only know one particular
language or programming environment, and protest complete ignorance of
everything else, are a giant red-warning flag.

The point of the phone screen is not for the candidate to drone on about what they’ve

Getting the Interview Phone
Screen Right

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Hiring Programmers the Right Way

Hiring Programmers the Right Way

Hiring Programmers the Right Way

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 7676

http://steve.yegge.googlepages.com/five-essential-phone-screen-questions

done. The interviewer should push them out of their comfort zone a bit and ask them
related questions about things they haven’t seen or done before. Ideally, you want to
know how this person will react when they face something new, such as your codebase.

In an effort to make life simpler for phone screeners, I’ve put together this list of Five
Essential Questions that you need to ask during an SDE screen. They won’t guarantee
that your candidate will be great, but they will help eliminate a huge number of
candidates who are slipping through our process today.

1) Coding. The candidate has to write some simple code, with correct syntax, in C, C++,
or Java.

2) OO design. The candidate has to define basic OO concepts, and come up with classes
to model a simple problem.

3) Scripting and regexes. The candidate has to describe how to find the phone
numbers in 50,000 HTML pages.

4) Data structures. The candidate has to demonstrate basic knowledge of the most
common data structures.

5) Bits and bytes. The candidate has to answer simple questions about bits, bytes, and
binary numbers.

Please understand: what I’m looking for here is a total vacuum in one of these
areas. It’s OK if they struggle a little and then figure it out. It’s OK if they need some
minor hints or prompting. I don’t mind if they’re rusty or slow. What you’re looking for is
candidates who are utterly clueless, or horribly confused, about the area in question.

Of course, you’ll want to modify this process to reflect the realities at your shop — so I
encourage you to read the entire article. But Steve does provide some examples to get
you started:

Coding

Write a function to reverse a string.

Write function to compute Nth fibonacci number.

Print out the grade-school multiplication table up to 12×12.

Write a function that sums up integers from a text file, one int per line.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Hiring Programmers the Right Way

Hiring Programmers the Right Way

Hiring Programmers the Right Way

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 7777

http://steve.yegge.googlepages.com/five-essential-phone-screen-questions

Write function to print the odd numbers from 1 to 99.

Find the largest int value in an int array.

Format an RGB value (three 1-byte numbers) as a 6-digit hexadecimal string.

Good candidates for the coding problem are verifiably simple, with basic loops or
recursion and perhaps a little formatted output or file I/O. All we want to know is whether
they really do know how to program or not. Steve’s article predates it, but I’d be remiss if
I didn’t mention Why Can’t Programmers.. Program? here. The FizzBuzz problem is quite
similar, and it’s shocking how often interviewees can’t do it. It’s a bit hard to
comprehend, like a potential truck driver somehow not being able to find the gas pedal or
shift gears.

Object-Oriented Programming

Design a deck of cards that can be used for different card game applications.

Model the Animal kingdom as a class system, for use in a Virtual Zoo program.

Create a class design to represent a filesystem.

Design an OO representation to model HTML.

We’re not saying anything about the pros and cons of OO design here, nor are we asking
for a comprehensive, low-level OO design. These questions are here to determine
whether candidates are familiar with the basic principles of OO, and more importantly,
whether the candidate can produce a reasonable-sounding OO solution. We’re looking for
understanding of the basic principles, as described in the Monopoly Interview.

Scripting and Regular Expressions

Last year my team had to remove all the phone numbers from 50,000 Amazon web page
templates, since many of the numbers were no longer in service, and we also wanted to
route all customer contacts through a single page.

Let’s say you’re on my team, and we have to identify the pages having probable U.S.
phone numbers in them. To simplify the problem slightly, assume we have 50,000 HTML
files in a Unix directory tree, under a directory called “/website”. We have 2 days to get a
list of file paths to the editorial staff. You need to give me a list of the .html files in this
directory tree that appear to contain phone numbers in the following two formats: (xxx)
xxx-xxxx and xxx-xxx-xxxx.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Hiring Programmers the Right Way

Hiring Programmers the Right Way

Hiring Programmers the Right Way

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 7878

http://www.codinghorror.com/blog/archives/000781.html
http://www.codinghorror.com/blog/archives/000628.html

How would you solve this problem? Keep in mind our team is on a short (2-day) timeline.

This is an interesting one. Steve says 25 to 35 percent of all software development
engineer candidates cannot solve this problem at all — even with lots of hints and given
the entire interview hour. What we’re looking for is a general reluctance to reinvent the
wheel, and some familiarity with scripting languages and regular expressions. To me, this
question indicates whether a developer will spend days doing programming work that he
or she could have neatly avoided with, perhaps, a quick web search and some existing
code that’s already out there.

Data Structures

What are some really common data structures, e.g. in java.util?

When would you use a linked list vs. a vector?

Can you implement a Map with a tree? What about with a list?

How do you print out the nodes of a tree in level-order (i.e. first level, then 2nd level, then
3rd level, etc.)

What’s the worst-case insertion performance of a hashtable? Of a binary tree?

What are some options for implementing a priority queue?

A candidate should be able to demonstrate a basic understanding of the most common
data structures. More specifically, the big ones like arrays, vectors, linked lists,
hashtables, trees and graphs. They should also know the fundamentals of “big-O”
algorithmic complexity: constant, logarithmic, linear, polynomial, exponential and
factorial. If they can’t, that’s a huge warning flag.

Bits and Bytes

Tell me how to test whether the high-order bit is set in a byte.

Write a function to count all the bits in an int value; e.g. the function with the signature int
countBits(int x)

Describe a function that takes an int value, and returns true if the bit pattern of that int
value is the same if you reverse it (i.e. it’s a palindrome); i.e. boolean isPalindrome(int x)

As Steve says, “Computers don’t have ten fingers, they have one. So people need to
know this stuff.” You shouldn’t be treated to an uncomfortable silence after asking a
candidate what 2^16 is; it’s a special number. They should know it. Similarly, they should

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Hiring Programmers the Right Way

Hiring Programmers the Right Way

Hiring Programmers the Right Way

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 7979

know the fundamentals of AND, OR, NOT and XOR — and how a bitwise AND differs from
a logical AND. You might even ask about signed vs. unsigned, and why bit-shifting
operations might be important. They should be able to explain why the old programmer’s
joke, “why do programmers think Oct 31 and Dec 25 are the same day?” is funny.

Performing a thorough, detailed phone screen is a lot of work. But it’s worth it. Every
candidate eliminated through the phone screen saves at least 8 man-hours of time that
would have been wasted by everyone in a hands-on test. Each time an unqualified
candidate makes it to the hands-on test, you should be asking yourself — how could we
have eliminated this candidate in the phone screen?

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Hiring Programmers the Right Way

Hiring Programmers the Right Way

Hiring Programmers the Right Way

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 8080

There’s one aspect of the recruiting process that often goes awry, even with a great
phone screen in place. Andrew Stuart of the Australian firm Flat Rate
Recruitment presented an excellent anecdote in an email to me that explains it better
than I can:

I had a client building an advanced security application. I sent them person after person
and they kept knocking them back. The reason was almost always because the person
“didn’t have enough low level coding experience.” The people I sent had done things like
design and develop operating systems, advanced memory managers and other highly
sophisticated applications. But my client wasn’t interested. They required previous hands-
on, low-level coding experience in a particular discipline. Eventually I got an application
from a very bright software engineer who almost single-handedly wrote a classic
computer emulator, but had little or no low level coding experience in the particular
discipline they required.

I told the client, “I have a great guy here who has no experience doing low level coding
and I think you should hire him.” They were extremely skeptical. I pushed hard to get an
interview. “Look, this guy is a superb software engineer who doesn’t have low level
coding experience in the particular discipline you require now, but if you employ him,
within 3-6 months you will have a superb software engineer who does have the low level
coding experience you’re looking for.”

They interviewed him and gave him the job. Within a matter of weeks, it was clear he was
the smartest programmer in the company. He quickly mastered their low-level coding
and his learning went well beyond that of the other coders in the company. Every time I
talk to that client he raves on about this employee, who is now the technical backbone of
the company. That company no longer focuses its recruitment on candidates that exactly
match previous experience with the required technologies. Instead they focus on finding
and employing the smartest and most passionate engineers.

This toxic, counterproductive years of experience myth has permeated the software
industry for as long as I can remember. Imagine how many brilliant software engineers
companies are missing out on because they are completely obsessed with finding people

The Years of Experience Myth

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Hiring Programmers the Right Way

Hiring Programmers the Right Way

Hiring Programmers the Right Way

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 8181

http://flatraterecruitment.com.au/

who match — exactly and to the letter — some highly specific laundry list of skills.

Somehow, they’ve forgotten that what software developers do best is
learn. Employers should be looking for passionate, driven, flexible self-educators who
have a proven ability to code in whatever language — and serving them up interesting
projects they can engage with.

It’s been shown time and time again that there is no correlation between years of
experience and skill in programming. After about six to twelve months working in any
particular technology stack, you either get it or you don’t. No matter how many years of
“experience” another programmer has under their belt, there’s about even odds that
they have no idea what they’re doing. This is why working programmers quickly learn to
view their peers with a degree of world-weary skepticism. Perhaps it’s the only rational
response when the disconnect between experience and skill is so pervasive in the field of
software engineering.

With that in mind, do you really want to work for a company that still doggedly pursues
the years of experience myth in their hiring practices? Unlikely.

Which leads me to my point: Requiring X years of experience on platform Y in your job
posting is, well, ignorant. As long as applicants have 6 months to a year of experience,
consider it a moot point for comparison. Focus on other things instead that’ll make much
more of a difference. Platform experience is merely a baseline, not a differentiator of
real importance.

In turn that means you as an applicant can use requirements like “3-5 years doing this
technology” as a gauge of how clued-in the company hiring is. The higher their
requirements for years of service in a given technology, the more likely that they’re
looking for all the wrong things in their applicants, and thus likely that the rest of the
team will be stooges picked for the wrong reasons.

I’m not saying experience doesn’t matter in software development. It does. But consider
the entire range of a developer’s experience, and realize that time invested does not
automatically equal skill. Otherwise, you may be rejecting superb software engineers
simply because they lack “(n) years of experience” in your narrow little technological
niche — and that’s a damn shame.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Hiring Programmers the Right Way

Hiring Programmers the Right Way

Hiring Programmers the Right Way

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 8282

http://www.codinghorror.com/blog/archives/000072.html
http://www.codinghorror.com/blog/archives/000354.html
http://www.codinghorror.com/blog/archives/000543.html
http://www.codinghorror.com/blog/archives/000824.html
http://www.37signals.com/svn/posts/833-years-of-irrelevance
http://www.codinghorror.com/blog/archives/000524.html

How do you recognize talented software developers in a 30-minute interview? There’s
a roundtable article on this topic at Artima Developer with some good ideas from a group
of well-known developers:

Explore an area of expertise

Have them critique something

Ask them to solve a problem (but not a puzzle)

Look at their code

Find out what books they read

Ask about a people problem

Bring them on for a trial basis

Joel Spolsky has an opinion or two on interviewing developers, which he summarizes as
Smart/Gets Things Done:

1. Introduction

2. Question about recent project

3. An Impossible Question

4. Write some C Functions

5. Are you satisfied with that code?

6. Design Question

7. The Challenge

8. Do you have any questions?

On Interviewing Programmers

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Hiring Programmers the Right Way

Hiring Programmers the Right Way

Hiring Programmers the Right Way

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 8383

http://www.artima.com/wbc/interprog.html
http://www.joelonsoftware.com/articles/fog0000000073.html

I definitely don’t agree with a few of the things Joel asks here — particularly the low-level
C functions. That may have been appropriate for the Excel developers Joel was hiring in
1997, but not these days. I’m also not a huge fan of those abstract impossible questions,
eg, “how many optometrists are there in Seattle?” but I suppose that’s a matter of taste.
If you absolutely must, at least ask an impossible question that has some relevance to a
problem your very real customers might encounter. I just can’t muster any enthusiasm
for completely random arbitrary problems in the face of so many actual problems.

Joel recently posted an update questioning the commonly held belief that “we’re only
hiring the top 0.5%”:

It’s pretty clear to me that just because you’re hiring the top 0.5% of all applicants for a
job, doesn’t mean you’re hiring the top 0.5% of all software developers. You could be
hiring from the top 10% or the top 50% or the top 99% and it would still look, to you, like
you’re rejecting 199 for every 1 that you hire.

By the way, it’s because of this phenomenon — the fact that many of the great people
are never on the job market – that we are so aggressive about hiring summer interns.
This may be the last time these kids ever show up on the open market. In fact we hunt
down the smart CS students and individually beg them to apply for an internship with us,
because if you wait around to see who sends you a resume, you’re already missing out.

I concur. I’ve worked with a few interns who were amazing developers. It’s a bit like
playing the slots, but when you hit the jackpot, you win big. If your company isn’t taking
advantage of intern programs, start immediately.

Chris Sells also has a mini-blog of sorts entirely dedicated to interview questions and
interview articles; I highly recommend it. I’m glad to hear that Microsoft doesn’t ask those
stupid puzzle questions any more. Who are they trying to hire, Will Shortz?

I have my own theory about the ideal way to interview developers: have the candidate
give a 20-minute presentation to your team on their area of expertise. I think
this is a far better indicator of success than a traditional interview, because you’ll quickly
ascertain.

Is this person passionate about what they are doing?

Can they communicate effectively to a small group?

Do they have a good handle on their area of expertise?

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Hiring Programmers the Right Way

Hiring Programmers the Right Way

Hiring Programmers the Right Way

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 8484

http://www.joelonsoftware.com/items/2005/01/27.html
http://www.sellsbrothers.com/fun/msiview/
http://www.crosswordtournament.com/articles/ct0398.htm

Would your team enjoy working with this person?

Jobs may come and go, but it’s the people I’ve worked with that I always remember.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Hiring Programmers the Right Way

Hiring Programmers the Right Way

Hiring Programmers the Right Way

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 8585

Have you ever been to an interview for a programming job where they asked you one
of those interview puzzle questions? I have. The one I got was:

How much of your favorite brand of soda is consumed in this state?

And no, the correct answer is not who cares, unless the thing you don’t care about is
getting the job you’re interviewing for. I didn’t know it at the time, but this is a Fermi
Question.

Puzzle questions were all the rage in programming interviews in the ‘90s and early
aughts. This is documented in the book How Would You Move Mount Fuji? with a specific
emphasis on Microsoft’s hiring practices.

Hardest Interview Puzzle Question
Ever

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Hiring Programmers the Right Way

Hiring Programmers the Right Way

Hiring Programmers the Right Way

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 8686

http://www.amazon.com/dp/0316919160/?tag=codihorr-20

It is prudent to study common interview puzzle questions if you know you’ll be
interviewing at a company that asks these sorts of questions. And if you think you’re ace
at programming puzzle questions, then I challenge you to point your massive brain at
this, the hardest interview puzzle question ever:

A hundred prisoners are each locked in a room with three pirates, one of whom will walk
the plank in the morning. Each prisoner has 10 bottles of wine, one of which has been
poisoned; and each pirate has 12 coins, one of which is counterfeit and weighs either
more or less than a genuine coin. In the room is a single switch, which the prisoner may
either leave as it is, or flip. Before being led into the rooms, the prisoners are all made to
wear either a red hat or a blue hat; they can see all the other prisoners’ hats, but not
their own. Meanwhile, a six-digit prime number of monkeys multiply until their digits
reverse, then all have to get across a river using a canoe that can hold at most two
monkeys at a time. But half the monkeys always lie and the other half always tell the
truth. Given that the Nth prisoner knows that one of the monkeys doesn’t know that a
pirate doesn’t know the product of two numbers between 1 and 100 without knowing that
the N+1th prisoner has flipped the switch in his room or not after having determined
which bottle of wine was poisoned and what color his hat is, what is the solution to this

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Hiring Programmers the Right Way

Hiring Programmers the Right Way

Hiring Programmers the Right Way

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 8787

http://www.techinterview.org/
http://www.cartalk.com/content/read-on/2008/08.23.2.html

puzzle?

In other words, I hate puzzle questions.* And yes, I totally failed that interview. Which was
disappointing, because it was kind of a cool job.

Not that my proposal for interviewing programmers was any more popular, though I do
think it’s much better.

In the previous section, I presented my own theory about the ideal way to interview
developers: have the candidate give a 10-minute watercooler presentation to
your team on something they’ve worked on. You’d certainly want to complement
this type of interview with some actual hands on programming, to make sure the
applicant isn’t full of crap — although I’m pretty sure that you can’t B.S. your way through
a technical presentation to a handful of your peers if you truly have no idea what you’re
talking about. (And if you can, you should be CEO of a startup by now.)

What I’m optimizing for here is the ability to communicate. Most programmers,
once they pass the FizzBuzz level of competency, are decent enough. But coding chops
aren’t enough. To go from good to great, you must be able to communicate effectively:
with your teammates, your manager, the users and ultimately the world.

My wife and I just finished a five-day hospital stay for the birth of our first child. During
our stay, we were assisted by a parade of different nurses, at least two different nurses
every day, sometimes more as we progressed to different areas of the hospital and
through daily shift changes. The quality of care at this particular hospital is generally quite
high, but we were flummoxed by the disparity in care between the worst nurses and the
best nurses. After a few days, I finally figured out the common characteristic — the
worst nurses were invariably the worst communicators! The fact that these
nurses couldn’t effectively communicate with us:

why they needed to do something

what the options were

offer advice

troubleshoot our problems

Meant they ended up feeling like rigid, inflexible proceduralists who didn’t care or
constantly had to appeal to authority. Of course, this wasn’t true. I’m sure they were
perfectly competent registered nurses. But in the absence of reasonable communication,

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Hiring Programmers the Right Way

Hiring Programmers the Right Way

Hiring Programmers the Right Way

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 8888

http://www.codinghorror.com/blog/archives/000226.html
http://www.codinghorror.com/blog/archives/000226.html
http://www.codinghorror.com/blog/archives/000781.html
http://www.codinghorror.com/blog/archives/001242.html

it sure seemed that way. To be fair, these nurses were frequently (but not always!) non-
native English speakers.

Hiring is difficult under the best of conditions. But an interview process that relies too
heavily on puzzle questions is risky. Sure, you may end up with programmers who can
solve (or memorize, I guess) the absolute gnarliest puzzle questions you throw at them.
But isn’t effectively communicating those solutions to the rest of the
team important, too? For many programmers, that’s the hardest part of the puzzle.

* Although I expect aficionados of the style should be able to identify all the classic
interview puzzle questions represented here.

Gift this book to your friends...for free.

Become a Hyperink reader. Get a special surprise.

Like the book? Support our author and leave a comment!

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Hiring Programmers the Right Way

Hiring Programmers the Right Way

Hiring Programmers the Right Way

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 8989

http://www.hyperink.com/share/1559?utm_source=1559&utm_medium=inside_book&utm_campaign=chapter_end_share_pdf
http://www.hyperink.com/register?utm_source=1559&utm_medium=inside_book&utm_campaign=chapter_end_user_pdf
http://www.hyperink.com/Blog-To-Book-Effective-Programming-More-Than-Writing-Code-b1559?utm_source=1559&utm_medium=inside_book&utm_campaign=chapter_end_like_pdf

V.

Getting Your Team to
Work Together

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Getting Your Team to Work...

Getting Your Team to Work...

Getting Your Team to Work...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 9090

11:16 AM – 18 May 12

 Jeff Atwood@codinghorror

“don’t hate the programmer, hate the code”

Bruce Eckel deftly identifies the root cause of all software development problems:

We are in a young business. Primitive, really — we don’t know much about what works,
and we keep thinking we’ve found the silver bullet that solves all problems. As a result,
we go through these multi-year boom and bust cycles as new ideas come in, take off,
exceed their grasp, then run out of steam. But some ideas seem to have staying power.
For example, a lot of the ideas in agile methodologies seem to be making some real
impacts in productivity and quality. This is because they focus more on the issues of
people working together and less on technologies.

A man I’ve learned much from, Gerald Weinberg, wrote his first couple of books on the
technology of programming. Then he switched, and wrote or coauthored 50 more on the
process of programming, and he is most famous for saying “no matter what they tell you,
it’s always a people problem.”

Usually the things that make or break a project are process and people issues. The way
that you work on a day-to-day basis. Who your architects are, who your managers are,
and who you are working with on the programming team. How you communicate, and
most importantly how you solve process and people problems when they come up. The
fastest way to get stuck is to think that it’s all about the technology and to believe that
you can ram your way through the other things. Those other things are the most likely
ones to stop you cold.

Bruce misremembers the actual quote; it’s “no matter what the problem is, it’s always a
people problem.” But Bruce’s reformulation has a certain ineffable truthiness to it that is
certainly in the spirit of Gerald Weinberg’s writing.

No Matter What They Tell You, It’s
a People Problem

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Getting Your Team to Work...

Getting Your Team to Work...

Getting Your Team to Work...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 9191

http://www.artima.com/weblogs/viewpost.jsp?thread=221622
http://www.codinghorror.com/blog/archives/000686.html
http://www.softwarequotes.com/ShowQuotes.asp?ID=605&Name=Weinberg,_Gerald_M.&Type=Q
http://www.amazon.com/gp/search/ref=sr_adv_b/?search-alias=stripbooks&unfiltered=1&field-author=gerald+weinberg&sort=relevancerank

Let’s say I was tasked with determining whether your software project will fail. With the
responses to these three questions in hand, I can tell you with almost utter certainty
whether your project will fail:

1. How many lines of code will your team write?

2. What kind of software are you building?

3. Do you like your coworkers?

That last question isn’t a joke. I’m not kidding. Do you like the company of your
teammates on a personal level? Do you respect your teammates professionally? If you
were starting at another company, would you invite your coworkers along? Do you have
spirited team discussions or knock-down, drag-out, last man standing filibuster team
arguments? Are there any people on your team you’d “vote off the island” if you could?

It may sound trivial to focus on the people you work with over more tangible things like,
say, the actual work, or the particular technology you’re using to do that work. But it isn’t.
The people you choose to work with are the most accurate predictor of job
satisfaction I’ve ever found. And job satisfaction, based on my work experience to
date, correlates perfectly with success. I have never seen a happy, healthy, gelled,
socially functional software development team fail. It’s a shame such teams are so rare.

As Weinberg said, it’s always a people problem. If you aren’t working with people you like,
people you respect, people that challenge and inspire you — then why not? What’s
stopping you?

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Getting Your Team to Work...

Getting Your Team to Work...

Getting Your Team to Work...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 9292

http://www.codinghorror.com/blog/archives/000917.html
http://www.codinghorror.com/blog/archives/000637.html
http://www.joelonsoftware.com/articles/FiveWorlds.html

It takes discipline for development teams to benefit from modern software engineering
conventions. If your team doesn’t have the right kind of engineering discipline, the tools
and processes you use are almost irrelevant. I advocated as much in Discipline Makes
Strong Developers.

But some commenters were understandably apprehensive about the idea of having
a Senior Drill Instructor Gunnery Sergeant Hartman on their team, enforcing engineering
discipline.

You little scumbag! I’ve got your name! I’ve got your ass! You will not laugh. You will not
cry. You will learn by the numbers. I will teach you.

Cajoling and berating your coworkers into compliance isn’t an effective motivational
technique for software developers, at least not in my experience. If you want to pull
your team up to a higher level of engineering, you need a leader, not an
enforcer. The goal isn’t to brainwash everyone you work with, but to negotiate

Leading By Example

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Getting Your Team to Work...

Getting Your Team to Work...

Getting Your Team to Work...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 9393

http://www.codinghorror.com/blog/archives/000643.html
http://www.codinghorror.com/blog/archives/000931.html
http://www.youtube.com/results?search_query=gunnery sergeant hartman&search=Search

commonly acceptable standards with your peers.

I thought Dennis Forbes did an outstanding job of summarizing effective leadership
strategies in his post effectively integrating into software development teams. He opens
with a hypothetical (and if I know Dennis, probably autobiographical) email that describes
the pitfalls of being perceived as an enforcer:

I was recently brought in to help a software team get a product out the door, with a
mandate of helping with some web app code. I’ve been trying my best to integrate with
the team, trying to earn some credibility and respect by making myself useful.

I’ve been forwarding various Joel On Software essays to all, recommending that the office
stock up on Code Complete, Peopleware and The Mythical Man Month, and I make an
effort to point out everything I believe could be done better. I regularly browse through
the source repository to find ways that other members could be working better.

When other developers ask for my help, I try to maximize my input by broadening my
assistance to cover the way they’re developing, how they could improve their typing
form, what naming standard they use, to advocate a better code editing tool, and to give
my educated final word regarding the whole stored procedure/dynamic SQL debate.

Despite all of this, I keep facing resistance, and I don’t think the team likes me very
much. Many of my suggestions aren’t adopted, and several people have replied with what
I suspect is thinly veiled sarcasm.

What’s going wrong?

I’m sure we’ve all worked with someone like this. Maybe we were even that person
ourselves. Even with the best of intentions, and armed with the top books on the reading
list, you’ll end up like Gunnery Sergeant Hartman ultimately did: gunned down by your
own team.

At the end of his post, Dennis provides a thoughtful summary of how to avoid being shot
by your own team:

Be humble. Always first presume that you’re wrong. While developers do make mistakes,
and as a new hire you should certainly assist others in catching and correcting mistakes,
you should try to ensure that you’re certain of your observation before proudly declaring
your find. It is enormously damaging to your credibility when you cry wolf.

Be discreet with constructive criticism. A developer is much more likely to be accept
casual suggestions and quiet leading questions than they are if the same is emailed to the

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Getting Your Team to Work...

Getting Your Team to Work...

Getting Your Team to Work...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 9494

http://www.yafla.com/dennisforbes/Effectively-Integrating-Into-Software-Development-Teams/Effectively-Integrating-Into-Software-Development-Teams.html
http://www.joelonsoftware.com/
http://www.amazon.com/exec/obidos/ASIN/0735619670/codihorr-20
http://www.amazon.com/exec/obidos/ASIN/0932633439/codihorr-20
http://www.amazon.com/exec/obidos/ASIN/0201835959/codihorr-20
http://www.codinghorror.com/blog/archives/000020.html
http://www.yafla.com/dennisforbes/Effectively-Integrating-Into-Software-Development-Teams/Effectively-Integrating-Into-Software-Development-Teams.html

entire group. Widening the audience is more likely to yield defensiveness and retribution.
The team is always considering what your motives are, and you will be called on it and
exiled if you degrade the work of others for self-promotion.

The best way to earn credibility and respect is through hard work and real results. Cheap,
superficial substitutes — like best practice emails sent to all, or passing comments about
how great it would be to implement some silver bullet — won’t yield the same effect, and
are more easily neutralized.

Actions speak louder than words. Simply talking about implementing a team blog, or a
wiki, or a new source control mechanism, or a new technology, is cheap. Everyone knows
that you’re just trying to claim ownership of the idea when someone eventually actually
does the hard work of doing it, and they’ll detest you for it. If you want to propose
something, put some elbow grease behind it. For instance, demonstrate the foundations
of a team blog, including preliminary usage guidelines, and a demonstration of all of the
supporting technologies. This doesn’t guarantee that the initiative will fly, and the effort
might be for naught, but the team will identify that it’s actual motivation and effort
behind it, rather than an attempt at some easy points.

There is no one-size-fits-all advice. Not every application is a high-volume e-commerce
site. Just because that’s the most common best-practices subject doesn’t mean that it’s
even remotely the best design philosophies for the group you’re joining.

What I like about Dennis’ advice is that it focuses squarely on action and results. It
correlates very highly with what I’ve personally observed to work: the most effective
kind of technical leadership is leading by example. All too often there are no
development leads with the time and authority to enforce, even if they wanted to,
so actions become the only currency.

But actions alone may not be enough. You can spend a lifetime learning how to lead and
still not get it right. Gerald Weinberg’s book Becoming a Technical Leader: an Organic
Problem-Solving Approach provides a much deeper analysis of leadership that’s specific
to the profession of software engineering.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Getting Your Team to Work...

Getting Your Team to Work...

Getting Your Team to Work...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 9595

http://www.codinghorror.com/blog/archives/000689.html
http://www.amazon.com/exec/obidos/ASIN/0932633021/codihorr-20

Within the first few chapters, Weinberg cuts to the very heart of the problem with both
Gunnery Sergeant Hartman’s and Dennis Forbes’ hypothetical motivational techniques:

How do we want to be helped? I don’t want to be helped out of pity. I don’t want to be
helped out of selfishness. These are situations in which the helper really cares nothing
about me as a human being. What I would have others do unto me is to love me — not
romantic love, of course, but true human caring.

So, if you want to motivate people, either directly or by creating a helping environment,
you must first convince them that you care about them, and the only sure way to
convince them is by actually caring. People may be fooled about caring, but not for long.
That’s why the second version of the Golden Rule says, “Love thy neighbor”, not “Pretend
you love thy neighbor.” Don’t fool yourself. If you don’t really care about the people
whom you lead, you’ll never succeed as their leader.

Weinberg’s Becoming a Technical Leader is truly a classic. It is, quite simply, the thinking
geek’s How to Win Friends and Influence People. So much of leadership is learning to give
a damn about other people, something that we programmers are notoriously bad at. We
may love our machines and our code, but our teammates prove much more complicated.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Getting Your Team to Work...

Getting Your Team to Work...

Getting Your Team to Work...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 9696

http://www.amazon.com/exec/obidos/ASIN/0932633021/codihorr-20
http://www.amazon.com/exec/obidos/ASIN/0671723650/codihorr-20
http://www.codinghorror.com/blog/archives/000761.html

12:17 PM – 23 May 12

 Jeff Atwood@codinghorror:

“The lesson of Yahoo is that a company with poor leadership is
inevitably doomed. “bunch of engineers in a room” is not leadership.”

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Getting Your Team to Work...

Getting Your Team to Work...

Getting Your Team to Work...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 9797

Kyle Brandt, a system administrator, asks Should Developers have Access to Production?

A question that comes up again and again in web development companies is:

“Should the developers have access to the production environment, and if they do, to
what extent?”

My view on this is that as a whole they should have limited access to production. A little
disclaimer before I attempt to justify this view is that this standpoint is in no way based on
the perceived quality or attitude of the developers — so please don’t take it this way.

This is a tricky one for me to answer, because, well, I’m a developer. More specifically,
I’m one of the developers Kyle is referring to. How do I know that? Because Kyle
works for our company, Stack Overflow. And Kyle is a great system administrator. How
do I know that? Two reasons:

1. He’s one of the top Server Fault users.

2. He had the audacity to write about this issue on the Server Fault blog.

From my perspective, the whole point of the company is to talk about what we’re
doing. Getting things done is important, of course, but we have to stop occasionally to
write up what we’re doing, how we’re doing it, and why we’re even doing it in the first
place — including all our doubts and misgivings and concerns. If we don’t, we’re cheating
ourselves, and you guys, out of something much deeper. Yes, writing about what we’re
doing and explaining it to the community helps us focus. It lets our peers give us
feedback. But most importantly of all, it lets anyone have the opportunity to learn from
our many, many mistakes … and who knows, perhaps even the occasional success.

That’s basically the entire philosophy behind our Stack Exchange Q&A network, too. Let’s
all talk about this stuff in public, so that we can teach each other how to get better
at whatever the heck it is we love to do.

Vampires Programmers versus
Werewolves Sysadmins

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Getting Your Team to Work...

Getting Your Team to Work...

Getting Your Team to Work...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 9898

http://blog.serverfault.com/post/893001713/should-developers-have-access-to-production
http://serverfault.com/questions/62885/sysadmin-developer-responsibilities
http://serverfault.com/questions/7907/access-to-the-production-systems-for-non-sys-admins
http://serverfault.com/
http://www.codinghorror.com/blog/2007/07/yes-but-what-have-you-done.html
http://stackexchange.com/

The saga of System Administrators versus Programmers is not a new one; I don’t think
I’ve ever worked at any company where these two factions weren’t continually battling
with each other in some form. It’s truly an epic struggle, but to understand it, you have to
appreciate that both System Administrators and Programmers have different,
and perhaps complementary, supernatural powers.

Programmers are like vampires. They’re frequently up all night, paler than death itself,
and are generally afraid of being exposed to daylight. Oh yes, and they tend think of
themselves (or at least their code) as immortal.

System Administrators, however, are like werewolves. They may look outwardly
ordinary, but are incredibly strong, mostly invulnerable to stuff that would kill regular
people — and prone to strange transformations during a moon “outage.”

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Getting Your Team to Work...

Getting Your Team to Work...

Getting Your Team to Work...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 9999

http://www.codinghorror.com/blog/2007/10/geek-diet-and-exercise-programs.html

Let me be very clear that just as Kyle respects programmers, I have a deep respect for
system administrators:

Although there is certainly some crossover, we believe that the programming community
and the IT/sysadmin community are different beasts. Just because you’re a hotshot
programmer doesn’t mean you have mastered networking and server configuration. And
I’ve met a few sysadmins who could script circles around my code. That’s why Server
Fault gets its own domain, user profiles, and reputation system.

Different “beasts” indeed.

Anyway, if you’re looking for a one size fits all answer to the question of how much
access programmers should have to production environments, I’m sorry, I can’t give you
one. Every company is different, every team is different. I know, it’s a sucky answer, but
it depends.

However, as anyone who has watched True Blood (or, God help us all, the Twilight
Eclipse movie) can attest, there are ways for vampires and werewolves to work together.
In a healthy team, everyone feels their abilities are being used and not squandered.

On our team, we’re all fair-to-middling sysadmins. But there are a million things to do,
and having a professional sysadmin means we can focus on the programming while the
networking, hardware and operational stuff gets a whole lot more TLC and far better
(read: non-hacky) processes put in place. We’re happy to refocus our efforts on what
we’re expert at, and let Kyle put his skills to work in areas that he’s expert at. Now, that

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Getting Your Team to Work...

Getting Your Team to Work...

Getting Your Team to Work...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 100100

http://www.codinghorror.com/blog/2009/05/server-fault-calling-all-lusers.html
http://en.wikipedia.org/wiki/True_Blood
http://www.imdb.com/title/tt1325004/

said, we don’t want to cede full access to the production servers — but there’s a happy
middle ground where our access becomes infrequent and minor over time, except in the
hopefully rare event of an all-hands-on-deck emergency.

The art of managing vampires and werewolves, I think, is to ensure that they spend their
time not fighting amongst themselves, but instead, using those supernatural powers
together to achieve a common goal they could not otherwise. In my experience,
when programmers and system administrators fight, it’s because they’re bored. You
haven’t given them a sufficiently daunting task, one that requires the full combined use of
their unique skills to achieve.

Remember, it’s not vampires versus werewolves. It’s vampires and werewolves.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Getting Your Team to Work...

Getting Your Team to Work...

Getting Your Team to Work...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 101101

Tom Dommett wrote in to share his positive experience with pair programming:

The idea is two developers work on the same machine. Both have keyboard and mouse.
At any given time one is driver and the other navigator. The roles switch either every
hour, or whenever really. The driver codes, the navigator is reading, checking, spell-
checking and sanity testing the code, whilst thinking through problems and where to go
next. If the driver hits a problem, there are two people to find a solution, and one of the
two usually has a good idea.

Other advantages include the fact that where two people have differing specialities, these
skills are transferred. Ad-hoc training occurs as one person shows the other some tricks,
nice workarounds, etcetera.

The end result is that both developers are fully aware of the code, how it works, and why
it was done that way. Chances are the code is better than one developer working alone,
as there was somebody watching. It’s less likely to contain bugs and hacks and things that
cause maintenance problems later.

In a bigger team, the pairing can change each week so each team member is partnered
with somebody different. This is a huge advantage, as it gets developers talking and
communicating ideas in the common language of code.

We found this to be as fast as working separately. The code got written quicker and didn’t
require revisiting. And when it did need to change, more than one person was familiar
with the code.

It’s an encouraging result. I applaud anything that gets teams to communicate better.

I’m intrigued by the idea of pair programming, but I’ve never personally lived the
pair programming lifestyle. I do, however, enjoy working closely with other
developers. Whenever I sit down to work side by side with a fellow developer, I always
absorb a few of their tricks and techniques. It’s a fast track learning experience for both

Pair Programming versus Code
Review

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Getting Your Team to Work...

Getting Your Team to Work...

Getting Your Team to Work...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 102102

http://en.wikipedia.org/wiki/Pair_programming

participants. But I’ve only done this in small doses. I’m a little wary of spending a full eight
hours working this way. I suspect this might be fatiguing in larger doses, unless you’re
very fortunate in your choice of pairing partner.

I’ve written about the efficacy of code reviews before. That is something I have personal
experience with; I can vouch for the value of code reviews without reservation. I can’t
help wondering if pair programming is nothing more than code review on
steroids. Not that one is a substitute for the other — you could certainly do both — but I
suspect that many of the benefits of pair programming could be realized through solid
peer review practices.

But code reviews aren’t a panacea, either, as Marty Fried pointed out:

My experience with code reviews has been a mixed bag. One of the problems seems to
be that nobody wants to spend the time to really understand new code that does
anything non-trivial, so the feedback is usually very general. But later, when someone is
working on the code to either add functionality or fix bugs, they usually have lots of
feedback (sometimes involving large hammers), but then it may be too late to be
effective; the programmer may not even be around. I think it might be useful to have one
anyway, but it’s hard to get a fellow progammer to tell his boss that another programmer
did a bad job.

The advantage of pair programming is its gripping immediacy: it is impossible
to ignore the reviewer when he or she is sitting right next to you. Most people
will passively opt out if given the choice. With pair programming, that’s not possible. Each
half of the pair has to understand the code, right then and there, as it’s being written.
Pairing may be invasive, but it can also force a level of communication that you’d
otherwise never achieve.

On the other hand, peer review scales a heck of a lot better than stacking physical bodies
in the same area. Consider the experiences of Macadamian with code review while
working on the WINE project:

There were two processes in the WINE project that we weren’t used to: public peer
reviews, where new code and patches were distributed in a mailing list to everyone
involved in the project; and single committer, where the project leader had the final say
over which patches were accepted into the source tree.

We soon found out that Alexandre Julliard, who has been the maintainer of WINE and one
of the key developers since 1994, was very particular about code going into the source
tree. Our team’s patches were scrutinized, and when some were rejected, there was a lot

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Getting Your Team to Work...

Getting Your Team to Work...

Getting Your Team to Work...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 103103

http://geekswithblogs.net/dlussier/archive/2007/08/10/114551.aspx
http://www.codinghorror.com/blog/archives/000495.html
http://www.processimpact.com/pubs.shtml#pr
http://jcooney.net/archive/2004/01/31/355.aspx
http://www.macadamian.com/index.php?option=com_techarticle&task=view&id=1
http://en.wikipedia.org/wiki/Wine_%28software%29

of grumbling. “My code works, who does this guy think he is? We’re on a deadline here!”
But as the project progressed, we realized we were producing our best code ever.
Producing clean, well-designed code that was admitted into the source tree at first pass
soon became a matter of pride. We also found that, despite the fact that the project was
huge and spread worldwide, we knew exactly how the whole project was progressing
since we saw every patch on the mailing list. We now conduct code reviews on every
project, and on larger projects, we set up an internal mailing list and designate a single
committer. It may be painful to set up code review at your company, and there may be
some grumbling, but you will see big improvements in the quality and maintainability of
your code.

I think both techniques are clearly a net good, although they each have their particular
pros and cons. Is one more effective than the other? Should we do both?

In the end, I don’t think it’s a matter of picking one over the other so much as ensuring
you have more than one pair of eyes looking at the code you’ve written,
however you choose to do it. When your code is reviewed by another human being —
whether that person is sitting right next to you, or thousands of miles away — you

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Getting Your Team to Work...

Getting Your Team to Work...

Getting Your Team to Work...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 104104

will produce better software. That I can guarantee.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Getting Your Team to Work...

Getting Your Team to Work...

Getting Your Team to Work...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 105105

How many meetings did you have today? This week? This month?

Now ask yourself how many of those meetings were worthwhile, versus the work that you
could have accomplished in that same time.

This might lead one to wonder why we even have meetings at all.

At GitHub we don’t have meetings. We don’t have set work hours or even work days. We
don’t keep track of vacation or sick days. We don’t have managers or an org chart. We
don’t have a dress code. We don’t have expense account audits or an HR department.

Now, I’m sure Tom was being facetious when he said that GitHub doesn’t have meetings,
because I sure as heck saw meeting rooms when I recently visited their offices to give a
talk. Who knows, maybe they use them to store all the extra forks.

Although some meetings are inevitable, even necessary, the principle he’s advocating
here is an important one. Meetings should be viewed skeptically from the outset,
as risks to productivity. We have meetings because we think we need them, but all
too often, meetings are where work ends up going to die. I have a handful of principles

Meetings: Where Work Goes to Die

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Getting Your Team to Work...

Getting Your Team to Work...

Getting Your Team to Work...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 106106

http://tom.preston-werner.com/2010/10/18/optimize-for-happiness.html
http://www.codinghorror.com/blog/2011/12/building-social-software-for-the-anti-social.html

that I employ to keep my meetings useful:

1. No meeting should ever be more than an hour, under penalty of death.

2. The first and most important constraint on any meeting is the most precious
imaginable resource at any company: time. If you can’t fit your meeting in about an
hour, there is something deeply wrong with it, and you should fix that first. Either it
involves too many people, the scope of the meeting is too broad, or there’s a general
lack of focus necessary to keep the meeting on track. I challenge anyone to
remember anything that happens in a multi-hour meeting. When all else fails, please
keep it short!

3. Every meeting should have a clearly defined mission statement.

4. What’s the mission statement of your meeting? Can you define the purpose of your
meeting in a single succinct sentence? I hesitate to recommend having an “agenda”
and “agenda items” because the word agenda implies a giant, tedious bulleted list of
things to cover. Just make sure the purpose of the meeting is clear to everyone; the
rest will take care of itself.

5. Do your homework before the meeting.

6. Since your meeting has a clearly defined mission statement, everyone attending the
meeting knows in advance what they need to talk about and share, and has it ready to
go before they walk into the room. Right? That’s how we can keep the meeting down
to an hour. If you haven’t done your homework, you shouldn’t be in the meeting. If
nobody has done their homework, the meeting should be cancelled.

7. Make it optional.

8. “Mandatory” meetings are a cop-out. Everyone in the meeting should be there
because they want to be there, or they need to be there. One sure way to keep
yourself accountable for a meeting is to make everyone optional. Imagine holding a
meeting that people actually wanted to attend, because it was … useful. Or
interesting. Or entertaining. Now make it happen!

9. Summarize to-dos at the end of the meeting.

10. If your meeting never happened, what would the consequences be? If the honest
answer to that is almost nothing, then perhaps your meeting has no reason to exist.
Any truly productive meeting causes stuff to happen as a direct result of the decisions

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Getting Your Team to Work...

Getting Your Team to Work...

Getting Your Team to Work...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 107107

made in that meeting. You, as a responsible meeting participant, are responsible for
keeping track of what you need to do — and everyone in the room can prove it by
summarizing their to-do list for everyone’s benefit before they leave the meeting.

It’s not that we shouldn’t have meetings, but rather, we need to recognize the inherent
risks of meetings and strive to make the (hopefully) few meetings we do have productive
ones. Let’s work fast, minimize BS, and get to the point.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Getting Your Team to Work...

Getting Your Team to Work...

Getting Your Team to Work...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 108108

Robert Miesen sent in this story of a project pathology:

I was part of a team writing an web-based job application and screening system (a job
kiosk the customer called it) and my team and our customer signed on to implement this
job kiosk using Windows, Apache, PHP5, and the ZendFramework — everyone except one
of our team members, who I will refer to as “Joe.” Joe kept advocating the use of
JavaScript throughout the technology deliberation phase, even though the customer
made it quite clear that he expected the vast majority of the job kiosk to be implemented
using a server-side technology and all the validation should be done using server-side
technology.

The fact that the customer signed off on this, however, did nothing to deter Joe from
advocating JavaScript — abrasively. Every time our project hit a bump in the road, Joe
would go off on some tirade on how much easier our lives would be if we were only
writing this job kiosk in JavaScript. Joe would constantly bicker about how we were all
doing this all wrong because we weren’t doing it in JavaScript, not even bother to learn
the technologies we were actually using, and, whenever fellow teammates would try and
gently bring him back into the fold (usually via email), Joe would just flame the poor guy.
At the height of Joe’s pro-JavaScript bigotry, he would regularly belt off comments like,
“Well, if we had only done it in JavaScript,” to such an extent that the team would have
been better off if he had just quit (or was reassigned or fired.)

After reading this story, I had to resist the urge to lean forward, hand placed thoughtfully
under my chin, brow furrowed, and ask — have you tried JavaScript?

Robert thought this story was a cautionary tale about technology dependence, but I see
something else: a problem team member, a classic bad apple.

Dealing With Bad Apples

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Getting Your Team to Work...

Getting Your Team to Work...

Getting Your Team to Work...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 109109

http://thedailywtf.com/Articles/Straight_Shooter_for_Upper_Management.aspx

I’m sure “Joe” had the best of intentions, but at the point where you’re actively
campaigning against the project, and working against your teammates — you’re a
liability to the project.

The cost of problem personnel on a project is severe, as noted in Chapter 12 of
McConnell’s Rapid Development: Taming Wild Software Schedules.

If you tolerate even one developer whom the other developers think is a problem, you’ll
hurt the morale of the good developers. You are implying that not only do you expect
your team members to give their all; you expect them to do it when their co-workers are
working against them.

In a review of 32 management teams, Larson and LaFasto found that the most consistent
and intense complaint from team members was that their team leaders were unwilling to
confront and resolve problems associated with poor performance by individual team
members. (Larson and LaFasto 1989). They report that, “more than any other single
aspect of team leadership, members are disturbed by leaders who are unwilling to deal
directly and effectively with self-serving or noncontributing team members.” They go on
to to say that this is a significant management blind spot because managers nearly
always think their teams are running more smoothly than their team members do.

How do we identify problem personnel? It’s not difficult as you might think. I had a friend
of mine once describe someone on his team as — and this is a direct quote — “a cancer.”
At the point which you, or anyone else on your team, are using words like cancer to
describe a teammate, you have a serious project pathology. You don’t have to be friends
with everyone on your team, although it certainly helps, but a level of basic personal and
professional respect is mandatory for any team to function normally.

Steve outlines a few warning signs that you’re dealing with a bad apple on your team:

1. They cover up their ignorance rather than trying to learn from their teammates. “I

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Getting Your Team to Work...

Getting Your Team to Work...

Getting Your Team to Work...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 110110

http://www.amazon.com/dp/1556159005/?tag=codihorr-20
http://www.codinghorror.com/blog/archives/001033.html

don’t know how to explain my design; I just know that it works.” or “My code is too
complicated to test.” (These are both actual quotes.)

2. They have an excessive desire for privacy. “I don’t need anyone to review my code.”

3. They are territorial. “No one else can fix the bugs in my code. I’m too busy to fix them
right now, but I’ll get to them next week.”

4. They grumble about team decisions and continue to revisit old discussions long after
the team has moved on. “I still think we ought to go back and change the design we
were talking about last month. The one we picked isn’t going to work.”

5. Other team members all make wisecracks or complain about the same person
regularly. Software developers often won’t complain directly, so you have to ask if
there’s a problem when you hear many wisecracks.

6. They don’t pitch in on team activities. On one project I worked on, two days before our
first major deadline, a developer asked for the day off. The reason? He wanted to
spend the day at a men’s clothing sale in a nearby city — a clear sign he hadn’t
integrated with the team.

Let me be quite clear on this point: if your team leader or manager isn’t dealing with the
bad apples on your project, he isn’t doing her job.

You should never be afraid to remove — or even fire — people who do not have the best
interests of the team at heart. You can develop skill, but you can’t develop a positive
attitude. The longer these disruptive personalities stick around on a project, the worse
their effects get. They’ll slowly spread poison throughout your project, in the form of
code, relationships and contacts.

Removing someone from a team is painful; it’s not fun for anyone. But realizing you
should have removed someone six months ago is far more painful.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Getting Your Team to Work...

Getting Your Team to Work...

Getting Your Team to Work...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 111111

A recent episode of This American Life interviewed Will Felps, a professor who conducted
a sociological experiment demonstrating the surprisingly powerful effect of bad apples.

Groups of four college students were organized into teams and given a task to complete
some basic management decisions in 45 minutes. To motivate the teams, they’re told
that whichever team performs best will be awarded $100 per person. What they don’t
know, however, is that in some of the groups, the fourth member of their team isn’t a
student. He’s an actor hired to play a bad apple, one of these personality types:

1. The Depressive Pessimist will complain that the task that they’re doing isn’t
enjoyable, and make statements doubting the group’s ability to succeed.

2. The Jerk will say that other people’s ideas are not adequate, but will offer no
alternatives himself. He’ll say, “you guys need to listen to the expert: me.”

3. The Slacker will say “whatever,” and “I really don’t care.”

The conventional wisdom in the research on this sort of thing is that none of this should
have had much effect on the group at all. Groups are powerful. Group dynamics are
powerful. And so groups dominate individuals, not the other way around. There’s tons of
research, going back decades, demonstrating that people conform to group values and
norms.

But Will found the opposite.

Invariably, groups that had the bad apple would perform worse. And this despite
the fact that people were in some groups that were very talented, very smart, very
likeable. Felps found that the bad apple’s behavior had a profound effect — groups with
bad apples performed 30 to 40 percent worse than other groups. On teams with the bad
apple, people would argue and fight, they didn’t share relevant information, they
communicated less.

Even worse, other team members began to take on the bad apple’s
characteristics. When the bad apple was a jerk, other team members would begin
acting like jerks. When he was a slacker, they began to slack, too. And they wouldn’t act

The Bad Apple: Group Poison

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Getting Your Team to Work...

Getting Your Team to Work...

Getting Your Team to Work...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 112112

http://www.thisamericanlife.org/Radio_Episode.aspx?sched=1275
http://www.codinghorror.com/blog/archives/001154.html

acting like jerks. When he was a slacker, they began to slack, too. And they wouldn’t act
this way just in response to the bad apple. They’d act this way to each other, in sort of a
spillover effect.

What they found, in short, is that the worst team member is the best predictor of
how any team performs. It doesn’t seem to matter how great the best member is, or
what the average member of the group is like. It all comes down to what your worst team
member is like. The teams with the worst person performed the poorest.

The actual text of the study is available if you’re interested. However, I highly
recommend listening to the first 11 minutes of the This American Life show. It’s a
fascinating, highly compelling recap of the study results. I’ve summarized, but I can’t
really do it justice without transcribing it all here.

Ira Glass, the host of This American Life, found Felps’ results so striking that he began to
question his own teamwork:

I’ve really been struck at how common bad apples are. Truthfully, I’ve been kind of
haunted by my conversation with Will Felps. Hearing about his research, you realize just
how easy it is to poison any group [...] each of us have had moments this week where we
wonder if we, unwittingly, have become the bad apples in our group.

As always, self-awareness is the first step. If you can’t tell who the bad apple is in your
group, it might be you. Consider your own behavior on your own team — are you slipping
into any of these negative bad apple behavior patterns, even in a small way?

But there was a solitary glimmer of hope in the study, one particular group that bucked
the trend:

There was one group that performed really well, despite the bad apple. There was just
one guy, who was a particularly good leader. And what he would do is ask questions, he
would engage all the team members, and diffuse conflicts. I found out later that he’s
actually the son of a diplomat. His father is a diplomat from some South American
country. He had this amazing diplomatic ability to diffuse the conflict that normally would
emerge when our actor, Nick, would display all this jerk behavior.

This apparently led Will to his next research project: can a group leader change the
dynamics and performance of a group by going around and asking questions, soliciting
everyone’s opinions, and making sure everyone is heard?

While it’s depressing to learn that a group can be so powerfully affected by the worst
tendencies of a single member, it’s heartening to know that a skilled leader, if you’re

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Getting Your Team to Work...

Getting Your Team to Work...

Getting Your Team to Work...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 113113

http://liberalorder.typepad.com/the_liberal_order/files/bad_apples_rob.pdf
http://audio.thisamericanlife.org/player/CPRadio_player.php?podcast=http://www.thisamericanlife.org/xmlfeeds/370.xml&proxyloc=http://audio.thisamericanlife.org/player/customproxy.php
http://www.codinghorror.com/blog/archives/001226.html

lucky enough to have one, can intervene and potentially control the situation.

Still, the obvious solution is to address the problem at its source: get rid of the bad
apple.

Even if it’s you.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Getting Your Team to Work...

Getting Your Team to Work...

Getting Your Team to Work...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 114114

When I first chose my own adventure, I didn’t know what working remotely from home
was going to be like. I had never done it before. As programmers go, I’m fairly social.
Which still means I’m a borderline sociopath by normal standards. All the same, I was
worried that I’d go stir-crazy with no division between my work life and my home life.

Well, I haven’t gone stir-crazy yet. I think. But in building Stack Overflow, I have learned a
few things about what it means to work remotely — at least when it comes to
programming. Our current team encompasses 5 people, distributed all over the USA,
along with the team in NYC.

My first mistake was attempting to program alone. I had weekly calls with my business
partner, Joel Spolsky, which were quite productive in terms of figuring out what it was we
were trying to do together — but he wasn’t writing code. I was coding alone. Really alone.
One guy working all by yourself alone. This didn’t work at all for me. I was unmoored,

On Working Remotely

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Getting Your Team to Work...

Getting Your Team to Work...

Getting Your Team to Work...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 115115

http://www.codinghorror.com/blog/2008/03/choosing-your-own-adventure.html
http://www.codinghorror.com/blog/2007/06/in-programming-one-is-the-loneliest-number.html
http://www.joelonsoftware.com/

directionless, suffering from analysis paralysis, and barely able to get motivated enough
to write even a few lines of code. I rapidly realized that I’d made a huge mistake in
not having a coding buddy to work with.

That situation rectified itself soon enough, as I was fortunate enough to find one of my
favorite old coding buddies was available. Even though Jarrod was in North Carolina and I
was in California, the shared source code was the mutual glue that stuck us together,
motivated us, and kept us moving forward. To be fair, we also had the considerable
advantage of prior history, because we had worked together at a previous job. But the
minimum bar to work remotely is to find someone who loves code as much as you
do. It’s … enough. Anything else on top of that — old friendships, new friendships, a good
working relationship — is icing that makes working together all the sweeter. I eventually
expanded the team in the same way by adding another old coding buddy, Geoff, who
lives in Oregon. And again by adding Kevin, who I didn’t know, but had built amazing stuff
for us without even being asked to, from Texas. And again by adding Robert, in Florida,
who I also didn’t know, but spent so much time on every single part of our sites that I felt
he had been running alongside our team the whole way.

The reason remote development worked for us, in retrospect, wasn’t just shared love of
code. I picked developers who I knew — I had incontrovertible proof — were amazing
programmers. I’m not saying they’re perfect, far from it, merely that they were top
programmers by any metric you’d care to measure. That’s why they were able to work
remotely. Newbie programmers, or competent programmers who are phoning it in, are
absolutely not going to have the moxie necessary to get things done remotely — at least,
not without a pointy haired manager, or grumpy old team lead, breathing down their
neck. Don’t even think about working remotely with anyone who doesn’t freakin’
bleed ones and zeros, and has a proven track record of getting things done.

While Joel certainly had a lot of high level input into what Stack Overflow eventually
became, I only talked to him once a week, at best (these calls were the genesis of our
weekly podcast series). I had a strong, clear vision of what I wanted Stack
Overflow to be, and how I wanted it to work. Whenever there was a question about
functionality or implementation, my team was able to rally around me and collectively
make decisions we liked, and that I personally felt were in tune with this vision. And if you
know me at all, you know I’m not shy about saying no, either. We were able to build
exactly what we wanted, exactly how we wanted.

Bottom line, we were on a mission from God. And we still are.

So, there are a few basic ground rules for remote development, at least as I’ve seen it

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Getting Your Team to Work...

Getting Your Team to Work...

Getting Your Team to Work...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 116116

http://www.codinghorror.com/blog/2009/02/whos-your-coding-buddy.html
http://www.codinghorror.com/blog/2010/01/cultivate-teams-not-ideas.html
http://itc.conversationsnetwork.org/series/stackoverflow.html
http://www.codinghorror.com/blog/2004/10/just-say-no.html
http://www.youtube.com/results?search_query=we%27re+on+a+mission+from+god

work:

The minimum remote team size is two. Always have a buddy, even if your buddy is on
another continent halfway across the world.

Only grizzled veterans who absolutely love to code need apply for remote
development positions. Mentoring of newbies or casual programmers simply doesn’t
work at all remotely.

To be effective, remote teams need full autonomy and a leader (PM, if you will) who
has a strong vision and the power to fully execute on that vision.

This is all well and good when you have a remote team size of three, as we did for the
bulk of Stack Overflow development. And all in the same country. Now we need to grow
the company, and I’d like to grow it in distributed fashion, by hiring other amazing
developers from around the world, many of whom I have met through Stack Overflow
itself.

But how do you scale remote development? Joel had some deep seated concerns
about this, so I tapped one of my heroes, Miguel de Icaza — who I’m proud to note is
on our all-star board of advisors — and he was generous enough to give us some
personal advice based on his experience running the Mono project, which has dozens of
developers distributed all over the world.

At the risk of summarizing mercilessly (and perhaps too much), I’ll boil down Miguel’s
advice the best I can. There are three tools you’ll need in place if you plan to grow a
large-ish and still functional remote team:

1. Real time chat

When your team member lives in Brazil, you can’t exactly walk by his desk to ask him a
quick question, or bug him about something in his recent checkin. Nope. You need a way

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Getting Your Team to Work...

Getting Your Team to Work...

Getting Your Team to Work...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 117117

http://blog.stackoverflow.com/2010/05/announcing-our-series-a/
http://stackoverflow.com/about/management#advisors
http://www.mono-project.com/

to casually ping your fellow remote team members and get a response back quickly. This
should be low friction and available to all remote developers at all times. IM, IRC, some
web based tool, laser beams, smoke signals, carrier pigeon, two tin cans and a string:
whatever. As long as everyone really uses it.

We’re currently experimenting with Campfire, but whatever floats your boat and you can
get your team to consistently use, will work. Chat is the most essential and omnipresent
form of communication you have when working remotely, so you need to make
absolutely sure it’s functioning before going any further.

2. Persistent mailing list

Sure, your remote team may know the details of their project, but what about all the
other work going on? How do they find out about that stuff or even know it exists in the
first place? You need a virtual bulletin board: a place for announcements, weekly team
reports, and meeting summaries. This is where a classic old-school mailing list comes in
handy.

We’re using Google Groups and although it’s old school in spades, it works plenty well for
this. You can get the emails as they arrive, or view the archived list via the web interface.
One word of caution, however. Every time you see something arrive in your inbox from
the mailing list you better believe, in your heart of hearts, that it contains useful
information. The minute the mailing list becomes just another “whenever I have time to
read that stuff”, noise engine, or distraction from work … you’ve let someone cry wolf too
much, and ruined it. So be very careful. Noisy, argumentative, or useless things posted to
the mailing list should be punishable by death. Or noogies.

3. Voice and video chat

As much as I love ASCII, sometimes faceless ASCII characters just aren’t enough to
capture the full intentions and feelings of the human being behind them. When you find
yourself sending kilobytes of ASCII back and forth, and still are unsatisfied that you’re
communicating, you should instill a reflexive habit of “going voice” on your team.

Never underestimate the power of actually talking to another human being. I know, I
know, the whole reason we got into this programming thing was to avoid talking to other
people, but bear with me here. You can’t be face to face on a remote team without flying
6-plus hours, and who the heck has that kind of time? I’ve got work I need to get done!
Well, the next best thing to hopping on a plane is to fire up Skype and have a little voice
chat. Easy peasy. All that human nuance which is totally lost in faceless ASCII characters
(yes, even with our old pal *<:-)) will come roaring back if you regularly schedule voice

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Getting Your Team to Work...

Getting Your Team to Work...

Getting Your Team to Work...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 118118

http://campfirenow.com/
http://groups.google.com/
http://www.skype.com/
http://en.wikipedia.org/wiki/Emoticon
http://en.wikipedia.org/wiki/Emoticon

chats. I recommend at least once a week at an absolute minimum; they don’t have to be
long meetings, but it sure helps in understanding the human being behind all those
awesome check-ins.

Nobody hates meetings and process claptrap more than I do, but there is a certain
amount of process you’ll need to keep a bunch of loosely connected remote teams and
developers in sync.

1. Monday team status reports

Every Monday, as in somebody’s-got-a-case-of-the, each team should produce a brief,
summarized rundown of:

What we did last week

What we’re planning to do this week

Anything that is blocking us or we are concerned about

This doesn’t have to be (and in fact shouldn’t be) a long report. The briefer the better, but
do try to capture all the useful highlights. Mail this to the mailing list every Monday like
clockwork. Now, how many “teams” you have is up to you; I don’t think this needs to be
done at the individual developer level, but you could.

2. Meeting minutes

Any time you conduct what you would consider to be a “meeting” with someone else,
take minutes! That is, write down what happened in bullet point form, so those remote
team members who couldn’t be there can benefit from — or at least hear about —
whatever happened.

Again, this doesn’t have to be long, and if you find taking meeting minutes onerous then
you’re probably doing it wrong. A simple bulleted list of sentences should suffice. We
don’t need to know every little detail, just the big picture stuff: who was there? What
topics were discussed? What decisions were made? What are the next steps?

Both of the above should, of course, be mailed out to the mailing list as they are
completed so everyone can be notified. You do have a mailing list, right? Of course you
do!

If this seems like a lot of jibba-jabba, well, that’s because remote development is
hard. It takes discipline to make it all work, certainly more discipline than piling a bunch

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Getting Your Team to Work...

Getting Your Team to Work...

Getting Your Team to Work...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 119119

http://www.youtube.com/results?search_query=somebody%27s+got+a+case+of+the+mondays

of programmers into the same cubicle farm. But when you imagine what this kind of
intellectual work — not just programming, but anything where you’re working in mostly
thought-stuff — will be like in ten, twenty, even thirty years … don’t you think it will look a
lot like what happens every day right now on Stack Overflow? That is, a programmer in
Brazil helping a programmer in New Jersey solve a problem?

If I have learned anything from Stack Overflow it is that the world of programming is truly
global. I am honored to meet these brilliant programmers from every corner of the
world, even if only in a small way through a website. Nothing is more exciting for me than
the prospect of adding international members to the Stack Overflow team. The
development of Stack Overflow should be reflective of what Stack Overflow is: an
international effort of like-minded — and dare I say totally awesome — programmers. I
wish I could hire each and every one of you. OK, maybe I’m a little biased. But to me,
that’s how awesome the Stack Overflow community is.

I believe remote development represents the future of work. If we have to spend
a little time figuring out how this stuff works, and maybe even make some mistakes along
the way, it’s worth it. As far as I’m concerned, the future is now. Why wait?

Gift this book to your friends...for free.

Become a Hyperink reader. Get a special surprise.

Like the book? Support our author and leave a comment!

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Getting Your Team to Work...

Getting Your Team to Work...

Getting Your Team to Work...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 120120

http://www.codinghorror.com/blog/2009/03/the-ugly-american-programmer.html
http://www.hyperink.com/share/1559?utm_source=1559&utm_medium=inside_book&utm_campaign=chapter_end_share_pdf
http://www.hyperink.com/register?utm_source=1559&utm_medium=inside_book&utm_campaign=chapter_end_user_pdf
http://www.hyperink.com/Blog-To-Book-Effective-Programming-More-Than-Writing-Code-b1559?utm_source=1559&utm_medium=inside_book&utm_campaign=chapter_end_like_pdf

VI.

Your Batcave:
Effective Workspaces

for Programmers

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Your Batcave: Effective...

Your Batcave: Effective...

Your Batcave: Effective...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 121121

“Demand your rights as a programmer! And remember: you can either change your
company, or you can change your company.”

It’s unbelievable to me that a company would pay a developer $60-$100k in salary, yet
cripple him or her with terrible working conditions and crusty hand-me-down hardware.
This makes no business sense whatsoever. And yet I see it all the time. It’s shocking how
many companies still don’t provide software developers with the essential things they
need to succeed.

I propose we adopt a Programmer’s Bill of Rights, protecting the rights of
programmers by preventing companies from denying them the fundamentals they need
to be successful.

1. Every programmer shall have two monitors

With the crashing prices of LCDs and the ubiquity of dual-output video cards, you’d be

The Programmer’s Bill of Rights

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Your Batcave: Effective...

Your Batcave: Effective...

Your Batcave: Effective...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 122122

http://www.codinghorror.com/blog/archives/000012.html

crazy to limit your developers to a single screen. The productivity benefits of doubling
your desktop are well documented by now. If you want to maximize developer
productivity, make sure each developer has two monitors.

2. Every programmer shall have a fast PC

Developers are required to run a lot of software to get their jobs done: development
environments, database engines, web servers, virtual machines, and so forth. Running all
this software requires a fast PC with lots of memory. The faster a developer’s PC is, the
faster they can cycle through debug and compile cycles. You’d be foolish to pay the
extortionist prices for the extreme top of the current performance heap — but always
make sure you’re buying near the top end. Outfit your developers with fast PCs that have
lots of memory. Time spent staring at a progress bar is wasted time.

3. Every programmer shall have their choice of mouse and keyboard

In college, I ran a painting business. Every painter I hired had to buy their own brushes.
This was one of the first things I learned. Throwing a standard brush at new painters
didn’t work. The “company” brushes were quickly neglected and degenerated into a state
of disrepair. But painters who bought their own brushes took care of them. Painters who
bought their own brushes learned to appreciate the difference between the professional
$20 brush they owned and cheap disposable dollar store brushes. Having their own brush
engendered a sense of enduring responsibility and craftsmanship. Programmers should
have the same relationship with their mouse and keyboard — they are the essential,
workaday tools we use to practice our craft and should be treated as such.

4. Every programmer shall have a comfortable chair

Let’s face it. We make our livings largely by sitting on our butts for 8 hours a day. Why
not spend that 8 hours in a comfortable, well-designed chair? Give developers chairs that
make sitting for 8 hours not just tolerable, but enjoyable. Sure, you hire developers
primarily for their giant brains, but don’t forget your developers’ other assets.

5. Every programmer shall have a fast internet connection

Good programmers never write what they can steal. And the internet is the best conduit
for stolen material ever invented. I’m all for books, but it’s hard to imagine getting any
work done without fast, responsive internet searches at my fingertips.

6. Every programmer shall have quiet working conditions

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Your Batcave: Effective...

Your Batcave: Effective...

Your Batcave: Effective...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 123123

http://developers.slashdot.org/article.pl?sid=03/10/09/137232&mode=thread&tid=137&tid=196
http://www.codinghorror.com/blog/archives/000029.html
http://www.codinghorror.com/blog/archives/000286.html
http://www.codinghorror.com/blog/archives/000209.html
http://www.codinghorror.com/blog/archives/000240.html
http://www.codinghorror.com/blog/archives/000152.html
http://www.codinghorror.com/blog/archives/000020.html
http://www.codinghorror.com/blog/archives/000154.html

Programming requires focused mental concentration. Programmers cannot work
effectively in an interrupt-driven environment. Make sure your working environment
protects your programmers’ flow state, otherwise they’ll waste most of their time
bouncing back and forth between distractions.

The few basic rights we’re asking for are easy. They aren’t extravagant demands.
They’re fundamental to the quality of work life for a software developer. If the company
you work for isn’t getting it right, making it right is neither expensive nor difficult.
Demand your rights as a programmer! And remember: you can either change your
company, or you can change your company.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Your Batcave: Effective...

Your Batcave: Effective...

Your Batcave: Effective...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 124124

http://en.wikipedia.org/wiki/Flow_%28psychology%29

I spend almost every waking moment in front of a computer. I’m what you might call an
indoor enthusiast. I’ve been lucky not to experience any kind of computer-related
injury due to my prolonged use of computers, but it is a very real professional risk. I
get some occasional soreness in my hands or wrists, mostly after marathon binges where
I’ve clearly overdone it — but that’s about the extent of it. All too many of my friends
have struggled with long-term back pain or hand pain. While you can (and
should) exercise your body and exercise your hands to strengthen them, there’s one part
of this equation I’ve been ignoring.

I’ve been on a quest for the ultimate computer desk for a few years now, and I’ve talked
at length about the value of investing in a great chair. But I hadn’t considered whether
my current desk and chair is configured properly to fit my body. What about the
ergonomics of my computer workstation?

The OSHA has an official page on computer workstation ergonomics, which is a good
starting point. But like all government documents, there’s a lot more detail here than
most people will ever need. The summary picture does give you an idea of what an
ergonomic seating position looks like, though. How close is this to the way you’re
sitting right now?

Computer Workstation
Ergonomics

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Your Batcave: Effective...

Your Batcave: Effective...

Your Batcave: Effective...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 125125

http://www.hanselman.com/blog/CommentView.aspx?guid=f54ee04c-7732-454c-be36-c9f764cbe2ab
http://haacked.com/archive/2004/06/10/The-Real-Pain-Of-Software-Development-1.aspx
http://www.hanselman.com/blog/TheProgrammersHands.aspx
http://www.hanselman.com/blog/TheProgrammersHands.aspx
http://www.codinghorror.com/blog/2007/10/geek-diet-and-exercise-programs.html
http://www.codinghorror.com/blog/2006/06/programming-your-hands.html
http://www.codinghorror.com/blog/2006/03/the-ideal-computer-desk.html
http://www.codinghorror.com/blog/2008/07/investing-in-a-quality-programming-chair.html
http://www.osha.gov/SLTC/etools/computerworkstations/

Microsoft doesn’t get enough credit for their often innovative hardware division,
which first popularized ergonomic computer input devices, starting with the Microsoft
Mouse 2.0 in 1993 and following with the Microsoft Natural Keyboard in 1994. With
Microsoft’s long-standing interest in hardware ergonomics, perhaps it’s not too surprising
to find that their healthy computing guide is one of the best and most succinct references
for ergonomic computing I’ve found. But you don’t have to read it. I’ll summarize the key
guidelines for computer workstation ergonomics here, distilling the best advice from
all the sources I found.

I know I’ve harped on this, but it bears repeating: a quality desk and quality chair will be
some of the best investments you’ll ever make as a software developer. They
will last you for 10 years or more, and contribute directly to your work happiness every
single day.

If you value your physical health, this is not an area you want to economize on. Hopefully
you’ve invested in a decent computer desk and chair that provide the required
adjustability to achieve an ergonomically correct computer workstation. Beyond the
chair, you’ll need to potentially adjust the height of your desk and your monitor, too.

1. The top of your monitor should be at eye level, and directly centered in front of
you. It should be about an arm’s length in front of you.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Your Batcave: Effective...

Your Batcave: Effective...

Your Batcave: Effective...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 126126

http://www.e-radiography.net/computing/mouse.htm
http://www.microsoft.com/hardware/hcg/hcg_view.mspx
http://www.microsoft.com/hardware/hcg/default.html
http://www.codinghorror.com/blog/2006/03/the-ideal-computer-desk.html
http://www.codinghorror.com/blog/2008/07/investing-in-a-quality-programming-chair.html

2. Your desk surface should be at roughly belly-button level. When your arms are
placed on the desk, your elbows should be at a 90-degree angle, just below the desk
surface. The armrests of your chair should be at nearly the same level as the desk
surface to support your elbows.

3. Your feet should be flat on the floor with your knees at a 90-degree angle.
Your seat should not be pressing into the back of your knees; if necessary, tilt it slightly
forward to alleviate any knee pressure. Sit fully back in your chair, with your back and
shoulders straight and supported by the back of the chair.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Your Batcave: Effective...

Your Batcave: Effective...

Your Batcave: Effective...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 127127

4. When typing, your wrists should be in line with your forearms and not bent
up, down, or to the side. Your keyboard should be directly centered in front of you.
Other frequently used items should be nearby, within arm’s reach.

When it comes to computer workstation ergonomics, these are the most basic, most
commonly repeated guidelines I’ve seen. Ergonomics is a holistic discipline, not a science,
so your results may vary. Still, I’m surprised how many of these very basic guidelines I’ve
been breaking for so many years, without even thinking about it. I’ll be adjusting my
home desk tomorrow in hopes of more comfortable computing.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Your Batcave: Effective...

Your Batcave: Effective...

Your Batcave: Effective...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 128128

I’ve been a multiple monitor enthusiast since the dark days of Windows Millennium
Edition. I’ve written about the manifold joys of many-monitor computing a number of
times over the last four years:

Multiple Monitors and Productivity

Multiple LCDs

Joining the Prestigious Three Monitor Club

The Large Display Paradox

LCD Monitor Arms

I have three monitors at home and at work. I’m what you might call a true believer. I’m
always looking for ammunition for fellow developers to claim those second (and
maybe even third) monitors that are rightfully theirs under the Programmer’s Bill
of Rights.

Does More Than One Monitor
Improve Productivity?

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Your Batcave: Effective...

Your Batcave: Effective...

Your Batcave: Effective...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 129129

http://en.wikipedia.org/wiki/Windows_Me
http://www.codinghorror.com/blog/archives/000012.html
http://www.codinghorror.com/blog/archives/000217.html
http://www.codinghorror.com/blog/archives/000740.html
http://www.codinghorror.com/blog/archives/000928.html
http://www.codinghorror.com/blog/archives/000959.html
http://www.codinghorror.com/blog/archives/000666.html

So I was naturally intrigued when I read about a new multiple monitor study from the
University of Utah:

Researchers at the University of Utah tested how quickly people performed tasks like
editing a document and copying numbers between spreadsheets while using three
different computer configurations:

1. single 18-inch monitor

2. single 24-inch monitor

3. two 20-inch monitors

Here’s what they found:

People using the 24-inch screen completed the tasks 52 percent faster than people
who used the 18-inch monitor

People who used the two 20-inch monitors were 44 percent faster than those with the
18-inch ones.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Your Batcave: Effective...

Your Batcave: Effective...

Your Batcave: Effective...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 130130

http://www.techreport.com/discussions.x/14343

Productivity dropped off again when people used a 26-inch screen.

I dug around a bit and found the actual study results or something very close to it, if
you’re looking for more detail than the summary I’ve presented above. This isn’t the first
time the University of Utah has conducted a multiple-monitor study. It’s very similar to
the multiple monitor survey they conducted in 2003, also under the auspices of NEC. I
agree it’s a little sketchy to cite a study from a display vendor that advocates — surprise
— buying more and bigger displays. But bear in mind they did find diminishing
productivity returns with 26-inch displays. This is something I personally experienced, and
I dubbed it the The Large Display Paradox. That finding isn’t exactly going to endear them
to display vendors.

Patrick Dubroy took a skeptical look at the multiple monitor productivity claims and found
several credible sources of data. I’ll combine his finds with mine to provide a one-stop-
shop for research data supporting the idea that, yes, having more display
space would in fact make you more productive:

The Virtues of a Second Screen

A Comparison of Single and Dual Traditional Aspect Displays with a Widescreen Display
over Productivity

Toward Characterizing the Productivity Benefits of Very Large Displays

The 30-inch Apple Cinema HD Display Productivity Benchmark

Patrick, despite his skepticism — and remember, this is a guy who didn’t see a
productivity difference between a 14-inch laptop display and a “big ass LCD” — came
away convinced:

After looking at the studies, I think it’s fair to say that some tasks can be made
significantly faster if you have more screen real estate. On the other hand, I think it’s
clear that most programmers are not going to be 50 percent more productive over the
course of a day just by getting a second monitor. The tasks that can be improved are not
the bottleneck to programmer productivity.

I’m not sure what Patrick was expecting here. Let me be perfectly clear on this matter:
more is more. More usable desktop space reduces the amount of time you spend on
window management. Instead of incessantly dragging, sizing, minimizing and maximizing
windows, you can do actual productive work. With a larger desktop, you can spend less
time mindlessly arranging information, and more time interacting with and acting on that

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Your Batcave: Effective...

Your Batcave: Effective...

Your Batcave: Effective...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 131131

http://www.necdisplay.com/gowide/NEC_Productivity_Study_0208.pdf
http://www.necus.com/necus/media/press_releases/template.cfm?DID=1947
http://www.codinghorror.com/blog/archives/000928.html
http://dubroy.com/blog/2008/01/25/multiple-monitor-productivity-fact-or-fiction/
http://www.nytimes.com/2006/04/20/technology/20basics.html?ex=1303185600&en=6fc17b9bf54c62ef&ei=5088&partner=rssnyt&emc=rss
http://www.necdisplay.com/gowide/NEC_Productivity_Study_0208.pdf
http://research.microsoft.com/apps/pubs/default.aspx?id=64317
http://images.apple.com/pro/pdf/Cin_Disp30_report.pdf

information. How much that matters to you will depend on your job and working style.
Personally, I’d be ecstatic if I never had to size, position, or arrange another damn
window for the rest of my life.

Choose own your path to happiness, whether it’s upgrading to a single 30″ display, dual
24″ widescreen displays, or three standard 20″ displays. As long as it results in more
usable desktop space, it’s a clear win. I support all of the above scenarios, and
more importantly, the existing research does too. The price of a few monitors is
negligible when measured against the labor cost of a programmer or information worker
salary. Even if you achieve a meager two or three percent performance increase, it will
have more than paid for itself.

What does get a little frustrating is when people claim that one large monitor should be
“enough for anyone.” This isn’t a zero-sum game. Where there is one large monitor,
there could be two large monitors, or three.

Sometimes, more is more.

Coding Horror commenter lomaxx

The biggest advantage I find from having multiple monitors is when I’m
referencing data from the second monitor for use on my main
monitor. You’d be surprised how often you do this sort of interaction
between two windows and having the second monitor is invaluable.

August 13 ’08 at 3:42

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Your Batcave: Effective...

Your Batcave: Effective...

Your Batcave: Effective...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 132132

In A Developer’s Second Most Important Asset, I described how buying a quality chair
may be one of the smartest investments you can make as a software developer.

In fact, after browsing chairs for the last few years of my career, I’ve come to one
conclusion: you can’t expect to get a decent chair for less than $500. If you are spending
less than that on seating — unless you are getting the deal of the century on dot-bomb
bankruptcy auctions — you’re probably making a mistake.

I still believe this to be true, and I urge any programmers reading this to seriously
consider the value of what you’re sitting in while you’re on the job. In our profession,
seating matters:

Chairs are a primary part of the programming experience. Eight hours a day,
every day, for the rest of your working life — you’re sitting in one. Like it or not,
whatever you’re sitting in has a measurable impact on your work experience.

Cheap chairs suck. Maybe I’ve become spoiled, but I have yet to sit in a single good,
cheap chair. In my experience, the difference between the really great chairs and the
cheap stuff is enormous. A quality chair is so comfortable and accommodating it
effortlessly melts into the background, so you can focus on your work. A cheesy,
cheap chair constantly reminds you how many hours of work you have left.

Chairs last. As I write this, I’m still sitting my original Aeron chair, which I purchased
in 1998. I can’t think of any other piece of equipment I use in my job that has lasted
me ten full years and beyond. While the initial sticker shock of a quality chair may turn
you off, try to mentally amortize that cost across the next ten years or more.

Choice of seating is as fundamental and constant as it gets in a programming career
otherwise marked by relentless change. They are long-term investments. Why not take
the same care and consideration in selecting a chair as you would with the other strategic
directions that you’ll carry with you for the rest of your career? Skimping yourself on a
chair just doesn’t make sense.

Investing in a Quality
Programming Chair

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Your Batcave: Effective...

Your Batcave: Effective...

Your Batcave: Effective...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 133133

http://www.codinghorror.com/blog/archives/000240.html

Although I’ve been quite happy with my Herman Miller Aeron chair over the last 10 years,
I’ve always been a little disenchanted with the way it became associated with dot-com
excess:

In the ’90s, the Aeron became an emblem of the dot-com boom; it symbolized mobility,
speed, efficiency, and 24/seven work weeks. The Aeron was a must-have for hot startups
precisely because it looked the least like office furniture: It was more like a piece of
machinery or unadorned engineering. The black Pellide webbing was durable, and hid
whatever Jolt or Red Bull stains you might get on it. Held taut by an aluminum frame, the
mesh allowed air to circulate and kept your body cool. What’s more, the chair came in
three sizes, like a personalized tool. Assorted knobs and levers allowed you to adjust the
seat height, tilt tension, tilt range, forward tilt, arm height, arm width, arm angle, lumbar
depth, and lumbar height. The Aeron was high-tech but sexy — which was how the dot-
commers saw themselves.

But baby-faced CEOs weren’t drawn to the Aeron only for the way it looked. The Aeron
was a visual expression of the anti-corporate zeitgeist, a non-hierarchical philosophy
about the workplace. An office full of Aerons implicitly rejected the Fortune 500, coat-
and-tie, brick-and-mortar model in which the boss sinks back in an overpriced, oversized,
leather dinosaur while his secretary perches on an Office Max toadstool taking notes.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Your Batcave: Effective...

Your Batcave: Effective...

Your Batcave: Effective...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 134134

http://www.amazon.com/dp/B0006NUB5U/?tag=codihorr-20
http://www.slate.com/id/2085064/

I recently had the opportunity to sit in a newer Herman Miller Mirra chair on a trip, and I
was surprised how much more comfortable it felt than my classic Aeron.

The Mirra chair was an excellent recliner, too. I’ve been disappointed by how poorly the
Aeron reclines. I actually broke my Aeron’s recline pin once and had to replace it myself.
So I’ve retrained myself not to recline, which is awkward, as I’m a natural recliner.

All this made me wonder if I should retire my Aeron and upgrade to something better. I
liked the Mirra, but the comments to my original chair post have a lot of other good
seating suggestions, too. Here are pictures and links to the chairs that were most
frequently mentioned as contenders, in addition to the Mirra and Aeron pictured
above:

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Your Batcave: Effective...

Your Batcave: Effective...

Your Batcave: Effective...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 135135

http://www.amazon.com/dp/B0002K11BK/?tag=codihorr-20
http://www.codinghorror.com/blog/archives/000240.html

Steelcase Think Chair

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Your Batcave: Effective...

Your Batcave: Effective...

Your Batcave: Effective...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 136136

http://www.amazon.com/dp/B000REGDRS/?tag=codihorr-20

Steelcase Leap Chair

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Your Batcave: Effective...

Your Batcave: Effective...

Your Batcave: Effective...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 137137

http://www.amazon.com/dp/B000RE7MGE/?tag=codihorr-20

Ergohuman Mesh Chair

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Your Batcave: Effective...

Your Batcave: Effective...

Your Batcave: Effective...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 138138

http://www.amazon.com/dp/B0014DPL9C/?tag=codihorr-20

HumanScale Freedom Chair

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Your Batcave: Effective...

Your Batcave: Effective...

Your Batcave: Effective...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 139139

http://www.amazon.com/dp/B001BPX1E0/?tag=codihorr-20

HumanScale Liberty Chair

There were also some lesser known recommendations, such as the Haworth Zody
chair, Nightingale CXO chair, BodyBilt ergo chairs, Hag kneeling chair, NeutralPosture
ergo, the Chadwick Chair from the original designer of the Aeron, and something
called the swopper.

Chair fit is, of course, a subjective thing. If you’re investing $500+ in a chair, you’d
understandably want to be sure it’s “the one.” The thing to do is find a local store that
sells all these chairs and try them all out. Well, good luck with that. Don’t even bother
with your local big-box office supply chain. Your best bet seems to be back stores, as
they tend to stock many of the more exotic chairs. Apparently they have a clientele of
people who are willing to spend for comfort.

Reviews of individual chairs are relatively easy to find, but aren’t particularly helpful in
isolation. What we need is a multi-chair review roundup. The only notable roundup I know

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Your Batcave: Effective...

Your Batcave: Effective...

Your Batcave: Effective...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 140140

http://www.amazon.com/dp/B000NTF7OW/?tag=codihorr-20
http://www.haworth.com/zody
http://www.nightingalechairs.com/html/cxo/cxo_home.html
http://www.nightingalechairs.com/html/cxo/cxo_home.html
http://www.ergo4me.com/
http://www.ergo4me.com/
http://www.hag.no/
http://www.hag.no/
http://www.igoergo.com/_site/products.php?cat=02
http://www.igoergo.com/_site/products.php?cat=02
http://www.dwr.com/product/designers/a-c/don+chadwick/chadwick-chair-w--tilt.do
http://www.dwr.com/product/designers/a-c/don+chadwick/chadwick-chair-w--tilt.do
http://www.relaxtheback.com/the-swopper-product-6370282-1894

of is Slate’s late 2005 Sit Happens: The Search for the Best Desk Chair. It’s not as
comprehensive as I would like, but it does have most of the main contenders. Notably,
Slate’s winner was the HumanScale Liberty.

Some other helpful resources I’ve found, both in the comments to this post, and
elsewhere:

a multiple chair roundup at CrunchGear

a fantastic research page on chairs someone compiled

a multiple-chair roundup at UNC

another chair roundup at Consumer Search, as well as a meta-collection of roundups.

video demos of Leap, and the HumanScale Freedom / Liberty

If this is all a bit too much furniture porn for your tastes, I understand. As for me, I’m
headed off to my local friendly neighborhood back store to figure out which of these
chairs will best replace my aging Aeron. By my calculations, the Aeron cost me about $7
per month over its ten year lifetime; I figure my continued health and comfort while
programming are worth at least that much.

Update: Since people have been asking, I ultimately decided the best fit and feel for me,
personally, was the Herman Miller Mirra chair. It’s a huge upgrade from my ten-year-old
Aeron. It feels like three or four revisions better. For example, the front lip of the seat is
adjustable, which addresses one of the major concerns I had with my Aeron — as well as
the vastly improved reclining I mentioned above. The only unexpected downside is that
the plastic back is a little rough on the skin if you sit, er… shirtless. Although I am very
pleased with my new shadow Mirra with citron back (pic), I urge you to do the research
and try the chairs yourself before deciding.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Your Batcave: Effective...

Your Batcave: Effective...

Your Batcave: Effective...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 141141

http://www.slate.com/id/2131646/
http://www.amazon.com/dp/B000NTF7OW/?tag=codihorr-20
http://www.crunchgear.com/2006/12/28/workspace-roundup-ergonomic-chairs/
http://www.google.com/notebook/public/02097020037672550236/BDTBmQgoQg8epiZgi
http://ehs.unc.edu/workplace_safety/ergonomics/chairs/
http://www.consumersearch.com/www/office/office-chairs/
http://www.consumersearch.com/www/office/office-chairs/reviews.html
http://www.youtube.com/watch?v=0T7e7UjWv3o
http://www.office-seats.co.uk/tv.htm
http://furnitureporn.com/
http://www.amazon.com/dp/B0002K11BK/?tag=codihorr-20
http://www.codinghorror.com/blog/images/mirra-chair-shadow-citron.jpg

We computer geeks like it dark. Really dark. Ideally, we’d be in a cave. A cave … with an
internet connection.

The one thing that we can’t abide is direct overhead lighting. Every time the overhead
light gets turned on in this room, I feel like a Gremlin shrieking Bright light! Bright
light! Oh, how it burns!

But there is a rational basis for preferring a darkened room. The light setup in a
lot of common computing environments causes glare on the screen:

If your room’s lit, as most are, by fittings hanging from the ceiling, you’ll be wanting to set
up your monitor so that you don’t see reflections of the lights in it. The flat screens on
many modern monitors (like the excellent Samsung I review here) help, because they
reflect less of the room behind you. And anti-reflective screen coatings are getting better
and better too. But lots of office workers still just can’t avoid seeing one or more ceiling
fluoros reflected in their screen.

Bias Lighting

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Your Batcave: Effective...

Your Batcave: Effective...

Your Batcave: Effective...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 142142

http://www.imdb.com/title/tt0087363/
http://www.dansdata.com/eclipse.htm

fluoros reflected in their screen.

A good anti-reflective coating can reduce most such reflections to annoyance level only.
But if you can see lights reflected in your screen, you can probably also directly see lights
over the top of your monitor. Direct line of sight, or minimally darkened reflected line of
sight, to light sources is going to give you glare problems.

Glare happens when there are small things in your field of vision that are much brighter
than the general scene. Such small light sources can’t be handled well by your irises; your
eyes’ pupil size is matched to the overall scene illumination, and so small light sources will
appear really bright and draw lines on your retinas. The more of them there are, and the
brighter they are, the more work your eyes end up doing and the sooner they’ll get tired.

While a darkened room is better for viewing most types of computer displays, it has risks
of its own. It turns out that sitting in a dark room staring at a super bright white rectangle
is … kind of bad for your eyes, too. It doesn’t help that most LCDs come from the
factory with retina-scorching default brightness levels. To give you an idea of how crazy
the defaults truly are, the three monitors I’m using right now have brightness set to
25/100. Ideally, your monitors shouldn’t be any brighter than a well-lit book. Be
sure to crank that brightness level down to something reasonable.

You don’t want total darkness, what you want is some indirect lighting — specifically bias
lighting. It helps your eyes compensate and adapt to bright displays.

“[Bias lighting] works because it provides enough ambient light in the viewing area that
your pupils don’t have to dilate as far. This makes for less eyestrain when a flashbang
gets thrown your way or a bolt of lightning streams across the screen,” he told Ars.
“Because the display is no longer the only object emitting light in the room, colors and
black levels appear richer than they would in a totally black environment. Bias lighting is
key in maintaining a reference quality picture and reducing eye-strain.”

Bias lighting is the happy intersection of indirect lighting and light compensation. It
reduces eye strain and produces a better, more comfortable overall computing
display experience.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Your Batcave: Effective...

Your Batcave: Effective...

Your Batcave: Effective...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 143143

http://www.codinghorror.com/blog/2007/09/computer-display-calibration-101.html
http://arstechnica.com/gadgets/news/2011/08/bias-lighting.ars?comments=1#comments-bar

The good news is that it’s trivially easy to set up a bias lighting configuration these days
due to the proliferation of inexpensive and bright LEDs. You can build yourself a bias light
with a clamp and a fluorescent bulb, or with some nifty IKEA LED strips and double-sided
foam tape.

It really is that simple: just strap some lights to the back of your monitors.

I’m partial to the IKEA Dioder and Ledberg technique myself; I currently have an array of
Ledbergs behind my monitors. But if you don’t fancy any minor DIY work, you can try
the Antec Halo 6 LED Bias Lighting Kit. It also has the benefit of being completely USB
powered.

Of course, lighting conditions are a personal preference, and I’d never pitch bias lighting
as a magic bullet. But there is science behind it, it’s cheap and easy to try, and I wish
more people who regularly work in front of a computer knew about bias
lighting. If nothing else, I hope this post gets people to turn their LCD monitors down
from factory brightness level infinity to something a tad more gentle on the old Mark I
Eyeball.

Gift this book to your friends...for free.

Become a Hyperink reader. Get a special surprise.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Your Batcave: Effective...

Your Batcave: Effective...

Your Batcave: Effective...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 144144

http://www.instructables.com/id/Bias-lighting-on-the-cheap/
http://www.instructables.com/id/Bias-lighting-using-the-IKEA-Ledberg-light/
http://www.ikea.com/us/en/catalog/products/20119418/
http://www.ikea.com/us/en/catalog/products/50192073/
http://www.amazon.com/dp/B0053B347M?tag=codihorr-20
http://www.hyperink.com/share/1559?utm_source=1559&utm_medium=inside_book&utm_campaign=chapter_end_share_pdf
http://www.hyperink.com/register?utm_source=1559&utm_medium=inside_book&utm_campaign=chapter_end_user_pdf

Like the book? Support our author and leave a comment!

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Your Batcave: Effective...

Your Batcave: Effective...

Your Batcave: Effective...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 145145

http://www.hyperink.com/Blog-To-Book-Effective-Programming-More-Than-Writing-Code-b1559?utm_source=1559&utm_medium=inside_book&utm_campaign=chapter_end_like_pdf

VII.

Designing With the
User in Mind

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Designing With the User in Mind

Designing With the User in Mind

Designing With the User in Mind

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 146146

“Getting the details right is the difference between something that delights, and
something customers tolerate.”

This Human Factors International presentation references something called a Columbia
Obstruction Device:

I couldn’t find any actual references to the Columbia University science experiment
they’re referring to, but it certainly seems plausible enough. The parallel with users and
usability is natural. Either maximize the cheese (make your application compelling), or
minimize the shock (make your application easy to use):

We may think our applications are compelling, but I seriously doubt they look that
compelling to users. Unless you are providing users free mp3s, or access to pornography,
it’s highly unlikely you will ever have enough cheese to overcome even the

You’ll Never Have Enough Cheese

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Designing With the User in Mind

Designing With the User in Mind

Designing With the User in Mind

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 147147

http://www.nih.gov/od/ocpl/wag/calendar/062999/testing.ppt

mildest of electric shocks. The only variable you can really control is your application’s
usability. The barrier to entry has to be absurdly low to even get people to look at your
software — much less use it.

This is something that Joel talks about, too:

But there’s a scary element of truth to it — scary to UI professionals, at least: an
application that does something really great that people really want to do can be
pathetically unusable, and it will still be a hit. And an application can be the easiest thing
in the world to use, but if it doesn’t do anything anybody wants, it will flop. UI consultants
are constantly on the defensive, working up improbable ROI formulas about the return on
investment clients will get from their $75,000 usability project, precisely because usability
is perceived as “optional,” and the scary thing is, in a lot of cases, it is. In a lot of cases.
The CNN website has nothing to be gained from a usability consultant.

Napster and ICQ were absolute trainwrecks in terms of user interface. But it simply
didn’t matter. What they delivered was so compelling, and the competition was (at the
time) so ineffective, that these developers could get away with terrible UIs.

Delicious cheese is a rare luxury that most developers working on typical business
applications will never have. What kind of crazy user looks forward to using a document
management system? If you want to have any hope at all of users actually using your
application, forget about the cheese: just make sure you aren’t shocking your users.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Designing With the User in Mind

Designing With the User in Mind

Designing With the User in Mind

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 148148

http://www.joelonsoftware.com/articles/NotJustUsability.html

Fair warning: this is a section about automated cat feeders. Sort of. But bear with me,
because I’m also trying to make a point about software. If you have a sudden urge to skip
on ahead, I don’t blame you. I don’t often talk about cats, but when I do, I make it count.

We’ve used automated cat feeders since 2007 with great success. (My apologies for the
picture quality, but it was 2007, and camera phones were awful.)

Feeding your pets using robots might sound impersonal and uncaring. Perhaps it is. But I
can’t emphasize enough how much of a daily lifestyle improvement it really is to
have your pets stop associating you with ritualized, timed feedings. As my wife so

This is All Your App is: A
Collection of Tiny Details

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Designing With the User in Mind

Designing With the User in Mind

Designing With the User in Mind

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 149149

http://www.codinghorror.com/blog/2007/04/all-about-my-cats.html
http://blogs.vertigo.com/personal/jatwood/Blog/Lists/Posts/Post.aspx?ID=25
http://www.youtube.com/watch?v=w0ffwDYo00Q

aptly explained:

I do not miss the days when the cats would come and sit on our heads at 5 AM, wanting
their breakfast.

Me neither. I haven’t stopped loving our fuzzy buddies, but this was also before we had
onetwothree children. We don’t have a lot of time for random cat hijinks these days.
Anyway, once we set up the automated feeders in 2007, it was a huge relief to outsource
pet food obsessions to machines. They reliably delivered a timed feeding at 8am and
8pm like clockwork for the last five years. No issues whatsoever, other than changing the
three D batteries about once a year, filling the hopper with kibble about once a month,
and an occasional cleaning.

Although they worked, there were still many details of the automated feeders’ design
that were downright terrible. I put up with these problems because I was so happy to
have automatic feeders that worked at all. So when I noticed that the 2012 version of
these feeders appeared to be considerably updated, I went ahead and upgraded
immediately on faith alone. After all, it had been nearly five years! Surely the company
had improved their product a bit since then … right? Well, a man can dream, can’t he?

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Designing With the User in Mind

Designing With the User in Mind

Designing With the User in Mind

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 150150

https://twitter.com/#%21/betsyphd/status/198571918692069376
http://www.amazon.com/dp/B0016BVY2U/?tag=codihorr-20

When I ordered the new feeders, I assumed they would be a little better than what I had
before.

The two feeders don’t look so radically different, do they? But pay attention to the details.

The food bowl is removable. It drove me crazy that the food bowl in the old version
was permanently attached, and tough to clean as a result.

The food bowl has rounded interior edges. As if cleaning the non-removable bowl
of our old version wasn’t annoying enough, it also had sharp interior edges, which
tended to accrete a bunch of powdered food gunk in there over time. Very difficult to
clean properly.

The programming buttons are large and easy to press. In the old version, the
buttons were small watch-style soft rubber buttons that protruded from the surface.
The tactile feedback was terrible, and they were easy to mis-press because of their
size and mushiness.

The programming buttons are directly accessible on the face of the
device. For no discernible reason whatsoever, the programming buttons in the old

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Designing With the User in Mind

Designing With the User in Mind

Designing With the User in Mind

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 151151

version were under a little plastic clear protective “sneeze guard” flap, which you had
to pinch up and unlock with your thumb before you could do any programming at all. I
guess the theory was that a pet could somehow accidentally brush against the buttons
and do … something … but that seems incredibly unlikely. But most of all,
unnecessary.

The programming is easier. We never changed the actual feed schedule, but just
changing the time for daylight savings was so incredibly awkward and contorted we
had to summarize the steps from the manual on a separate piece of paper as a
“cheat sheet.” The new version, in contrast, makes changing the time almost as
simple as it should be. Almost.

There is an outflow cover flap. By far the number one physical flaw of the old
feeder: the feed slot invites curious paws, and makes it all too easy to fish out kibble
on demand. You can see in my original photo that we had to mod the feed slot to tape
(and eventually bolt) a wire soap dish cover over it so the cats wouldn’t be able to
manual feed. The new feeder has a perfectly aligned outflow flap that I couldn’t even
dislodge with my finger. And it works; even our curious-est cat wasn’t able to get past
it.

The top cover rotates to lock. On the old feeder, the top cover to the clear kibble
storage was a simple friction fit; dislodging it wasn’t difficult, and the cats did manage
to do this early on with some experimentation. On the new feeder, the cover is slotted,
and rotates to lock against the kibble storage securely. This is the same way the kibble
feeder body locks on the base (on both old and new feeders), so it’s logical to use this
same “rotate to lock into or out of position” design in both places.

The feed hopper is funnel shaped. The old feed hopper was a simple cylinder, and
holds less in the same space as a result. When I transferred the feed over from the old
full models (we had literally just filled them the day before) to the updated ones, I was
able to add about 15-20 percent more kibble despite the device being roughly the
same size in terms of floor space.

The base is flared. Stability is critical; depending how adventurous your cats are,
they may physically attack the feeders and try to push them over, or hit them hard
enough to trigger a trickle of food dispensing. A flared base isn’t the final solution, but
it’s a big step in the right direction. It’s a heck of a lot tougher to knock over a feeder
with a bigger “foot” on the ground.

It’s off-white. The old feeder, like the Ford Model T, was available in any color

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Designing With the User in Mind

Designing With the User in Mind

Designing With the User in Mind

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 152152

http://www.youtube.com/watch?v=9DEfXtd0yPg
http://www.amazon.com/gp/customer-media/product-gallery/B0016BVY2U/ref=cm_ciu_pdp_images_dav
http://www.youtube.com/watch?v=_nIyVtgrCJE

customers wanted, so long as it was black. Which meant it did a great job of
not blending in with almost any decor, and also showed off its dust collection like a
champ. Thank goodness the new model comes in “linen.”

These are, to be sure, a bunch of dumb, nitpicky details. Did the old version feed our
cats reliably? Yes, it did. But it was also a pain to clean and maintain, a sort of pain that I
endured weekly, for reasons that made no sense to me other than arbitrarily poor design
choices. But when I bought the new version of the automated feeder, I was shocked to
discover that nearly every single problem I had with the previous generation was
addressed. I felt as if the Petmate Corporation™ was actually listening to all the feedback
from the people who used their product, and actively refined the product to address
our complaints and suggestions.

My point, and I do have one, is that details matter. Details matter, in fact, a hell of a
lot. Whether in automatic cat feeders, or software. As my friend Wil Shipley once said:

This is all your app is: a collection of tiny details.

This is still one of my favorite quotes about software. It’s something we internalized
heavily when building Stack Overflow. Getting the details right is the difference
between something that delights, and something customers tolerate.

Your software, your product, is nothing more than a collection of tiny details. If you don’t
obsess over all those details, if you think it’s OK to concentrate on the “important” parts
and continue to ignore the other umpteen dozen tiny little ways your product annoys the
people who use it on a daily basis — you’re not creating great software. Someone else is.
I hope for your sake they aren’t your competitor.

The details are hard. Everyone screws up the details at first, just like Petmate did with the
first version of this automatic feeder. And it’s OK to screw up the details initially, provided
…

you’re getting the primary function more or less right.

you’re listening to feedback from the people who use your product, and actively
refining the details of your product based on their feedback every day.

We were maniacal about listening to feedback from avid Stack Overflow users from the
earliest days of Stack Overflow in August 2008. Did you know that we didn’t even have
comments in the first version of Stack Overflow? But it was obvious, based on user
feedback and observed usage, that we desperately needed them. There are now, at the

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Designing With the User in Mind

Designing With the User in Mind

Designing With the User in Mind

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 153153

http://www.amazon.com/dp/B0016BVY2U/?tag=codihorr-20
http://daringfireball.net/2007/08/c4_1_in_a_nut

time I am writing this, 1,569 completed feature requests; that’s more than one per day
on average.

Imagine that. Someone who cares about the details just as much as you do.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Designing With the User in Mind

Designing With the User in Mind

Designing With the User in Mind

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 154154

http://meta.stackoverflow.com/questions/tagged/feature-request+status-completed

Shawn Burke’s post Shippin’ Ain’t Easy (but somebody gotta do it) explains why you have
to resist change at the end of a project, no matter how justifiable and rational the
reasons may be. Even the smallest change has a real risk of introducing additional bugs.
The first commenter quipped:

TeX doesn’t have bugs… Perhaps that’s the exception that proves the rule :-)

Ian Ringrose immediately replied:

But does it have any users? Is the fact that it’s very hard to use not a bug in and of itself?

Touche.

Yukihiro Matsumoto, the creator of Ruby, has strong feelings on this subject:

If you have a good interface on your system, and a budget of money and time, you can
work on your system. If your system has bugs or is too slow, you can improve it. But if
your system has a bad interface, you basically have nothing. It won’t matter if it is a work
of the highest craftsmanship on the inside. If your system has a bad interface, no one will
use it. So the interface or surface of the system, whether to users or other machines, is
very important.

It’s also something Joel calls the iceberg secret:

I learned this lesson as a consultant, when I did a demo of a major web-based project for
a client’s executive team. The project was almost 100% code complete. We were still
waiting for the graphic designer to choose fonts and colors and draw the cool 3-D tabs. In
the meantime, we just used plain fonts and black and white, there was a bunch of ugly
wasted space on the screen, basically it didn’t look very good at all. But 100% of the
functionality was there and was doing some pretty amazing stuff.

What happened during the demo? The clients spent the entire meeting griping about the
graphical appearance of the screen. They weren’t even talking about the UI. Just the

The User Interface is the
Application

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Designing With the User in Mind

Designing With the User in Mind

Designing With the User in Mind

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 155155

http://www.shawnburke.net/default.aspx?document=264&userinterface=9
http://www.shawnburke.net/default.aspx?document=264&userinterface=9
http://www.azlyrics.com/lyrics/icet/somebodygottadoitpimpinainteasy.html
http://www.azlyrics.com/lyrics/icet/somebodygottadoitpimpinainteasy.html
http://www.ringrose.name/
http://www.artima.com/intv/craft.html
http://www.artima.com/intv/craft.html
http://www.joelonsoftware.com/articles/fog0000000356.html

graphical appearance. “It just doesn’t look slick,” complained their project manager.
That’s all they could think about. We couldn’t get them to think about the actual
functionality. Obviously fixing the graphic design took about one day. It was almost as if
they thought they had hired painters.

I had this exact experience on a project recently. We’re building all this cool back-end
stuff, natch, and we needed a quickie front-end demo app to show it off. So we built a
relatively simple demo app. It’s decent, but barely competitive with other companies
websites.

Guess what the client thought of our project?

I don’t care how many kick-ass Visio architecture diagrams you have; as far as the user is
concerned, the UI is the application. I know UI is Hard, but you have to build an
impressive UI if you want to be taken seriously. Give your UI the high priority it deserves.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Designing With the User in Mind

Designing With the User in Mind

Designing With the User in Mind

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 156156

http://www.codinghorror.com/blog/archives/000325.html

Before I write a single line of code, I want to have a pretty clear idea of what the
user interface will look like first. I’m in complete agreement with Rick Schaut here:

When you’re working on end-user software, and it doesn’t matter if you’re working on a
web app, adding a feature to an existing application, or working on a plug-in for some
other application, you need to design the UI first.

This is hard for a couple of reasons. The first is that most programmers, particularly
those who’ve been trained through University-level computer science courses, learned
how to program by first writing code that was intended to be run via the command line.
As a consequence, we learned how to implement efficient algorithms for common
computer science problems, but we never learned how to design a good UI.

Of course, UI is hard, far harder than coding for developers. It’s tempting to skip the
tough part and do what comes naturally — start banging away in a code window with no
real thought given to how the user will interact with the features you’re building.

Remember, to the end user, the interface is the application. Doesn’t it make sense to
think about that before firing up the compiler?

It’s certainly true that there are limitations on how the UI can be built based on the
technology you’re using. Just because some pixels can be arranged a certain way in
Photoshop doesn’t mean that can magically be turned into a compiling, shippable product
in any sane timeframe. To ameliorate that problem, take advantage of visual design
patterns. If you’re building a GUI application, use a palette of widgets common to your
GUI. If you’re building a web application, use a palette of HTML, CSS and DOM elements
from all over the web. Let the palette enforce your technology constraints.

It shouldn’t be difficult to sit down with a few basic tools and slap together a rough
mockup of how the user interface will look. However, it is extremely important at this
point to stay out of technical development environments when mocking your
user interface, or the temptation to turn the model into the product may be too strong
for your team to resist. Try to avoid the prototype pitfall.

UI-First Software Development

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Designing With the User in Mind

Designing With the User in Mind

Designing With the User in Mind

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 157157

http://blogs.msdn.com/rick_schaut/archive/2004/04/02/106929.aspx
http://www.codinghorror.com/blog/archives/000325.html
http://www.codinghorror.com/blog/archives/000371.html
http://www.codinghorror.com/blog/archives/000371.html
http://www.codinghorror.com/blog/archives/000371.html
http://www.codinghorror.com/blog/archives/000499.html
http://www.codinghorror.com/blog/archives/000256.html

So how do we prototype the UI without relying on our development tools? One way
is simple paper prototyping.

The book Paper Prototyping: The Fast and Easy way to Design and Refine User
Interfaces is an excellent introduction to paper prototyping. You can interactively browse
sections of this book at Amazon, through Google Books, and the book’s own dedicated
web site.

There’s a certain timelessness to paper prototyping that holds a deep appeal, as Jacob
Nielsen points out:

Paper prototyping has a second benefit, besides its impact on your current design
project’s quality. It will also benefit your career. Consider all the other books you’ve read
about computers, Web design, and similar topics. How much of what you learned will still

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Designing With the User in Mind

Designing With the User in Mind

Designing With the User in Mind

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 158158

http://www.alistapart.com/articles/paperprototyping
http://www.amazon.com/exec/obidos/ASIN/1558608702/codihorr-20
http://www.amazon.com/exec/obidos/ASIN/1558608702/codihorr-20
http://books.google.com/books?hl=en&id=5OhE7dyGtmgC&printsec=frontcover&source=web
http://www.paperprototyping.com/what.html
http://www.useit.com/alertbox/20030414.html

be useful in ten years? In twenty years? In the immortal words of my old boss, Scott
McNealy, technology has the shelf life of a banana.

In contrast, the paper prototyping technique has a shelf life closer to that of, say, paper.
Once you’ve learned paper prototyping, you can use it in every project you do for the rest
of your career. I have no idea what user interface technologies will be popular in twenty
years, but I do know that I’ll have to subject those designs to usability evaluation, and that
paper prototyping will be a valuable technique for running early studies.

Paper prototypes are usually pitched in terms of doing low-fi usability studies, and rightly
so. But I find a paper prototype tremendously helpful even if I’m the only one that ever
sees it. I need to create an image in my mind of what I’m building, as it will be seen by
the world, before I start pouring the concrete to make it real.

If you need any more convincing that paper prototyping is an incredibly valuable tool —
even for mere developers — consider the advice of Jared Spool’s company, User
Interface Engineering:

Paper Prototypes: Still Our Favorite (1998)

Five Paper Prototyping Tips (2000)

Looking Back on 16 Years of Paper Prototyping (2005)

I also recommend reading through Common Concerns about Paper Prototyping if you’re
still on the fence.

But what happens when you outgrow paper prototying? Jensen Harris, one of the
principal UI designers on the Office 2007 team, first introduced me to PowerPoint
prototyping:

We use PowerPoint as kind of a better version of [Office 2007] paper prototypes. This
technique has several advantages: prototypes can be made to feel somewhat interactive,
because the content is electronic it can be modified more easily than paper, and (best of
all) the usability participant uses the mouse and is on the computer, so it feels natural to
them.

Of course, it doesn’t have to be PowerPoint. Use whatever tool you like, as long as it’s
not a development tool. You don’t want something too powerful. What you want is mild
interactivity while remaining simple and straightforward for quick iterative changes.
That’s the logical next step up from paper prototyping.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Designing With the User in Mind

Designing With the User in Mind

Designing With the User in Mind

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 159159

http://www.codinghorror.com/blog/archives/000779.html
http://www.uie.com/articles/paper_prototyping/
http://www.uie.com/articles/prototyping_tips/
http://www.uie.com/articles/looking_back_on_paper_prototyping/
http://www.snyderconsulting.net/article_paperprototyping.htm#commonConcerns
http://blogs.msdn.com/jensenh/archive/2006/01/06/510069.aspx
http://blogs.msdn.com/jensenh/archive/2006/01/06/510069.aspx

It’s a lot easier to share this digital artifact on a distributed team than it is to share a
bunch of physical paper. If you’re curious about the nuts and bolts of PowerPoint
prototyping, dig in:

Wireframe prototyping using PowerPoint 2007 (Manuel Clement, 26 minute video)

Step-by-Step Guide to PowerPoint Prototyping (Jan Verhoeven)

PowerPoint Prototyping Toolkit (Long Zheng)

The pursuit of UI-First software development is more important than any particular tool.
Use paper, use PowerPoint, use Keynote, use whatever makes sense to you. As long as
you avoid, in the words of Manuel Clement, pouring concrete too early.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Designing With the User in Mind

Designing With the User in Mind

Designing With the User in Mind

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 160160

http://www.microsoft.com/expression/events-training/globalevent/player/Default.html?South-Korea_Manuel-Clement_Keynote_Wireframe-Prototyping-Using-PowerPoint-2007=Manuel_Clement=Wireframe-Prototyping_Using_PowerPoint_2007
http://www.jansfreeware.com/articles/misc-prototyping.html
http://www.istartedsomething.com/20071018/powerpoint-prototype-toolkit-01/
http://www.adaptivepath.com/blog/2006/08/28/keynote-as-a-prototyping-tool/

What do you do when you have a lot of things to display to the user, far more than can
possibly fit on the screen? Paginate, naturally.

There are plenty of other real-world examples in this 2007 article, but I wouldn’t bother. If
you’ve seen one pagination scheme, you’ve seen them all. The state of art in pagination
hasn’t exactly changed much — or at all, really — in the last 5 years.

I can understand paginating when you have 10, 50, 100, maybe even a few hundred
items. But once you have thousands of items to paginate, who the heck is visiting
page 964 of 3810? What’s the point of paginating so much information when there’s a
hard practical limit on how many items a human being can view and process in any
reasonable amount of time?

Once you have thousands of items, you don’t have a pagination problem. You have a
search and filtering problem. Why are we presenting hundreds or thousands of items to
the user? What does that achieve? In a perfect world, every search would result in
a page with a single item: exactly the thing you were looking for.

The End of Pagination

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Designing With the User in Mind

Designing With the User in Mind

Designing With the User in Mind

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 161161

http://ui-patterns.com/patterns/Pagination
http://www.smashingmagazine.com/2007/11/16/pagination-gallery-examples-and-good-practices/

But perhaps you don’t know exactly what you’re looking for: maybe you want a variety of
viewpoints and resources, or to compare a number of similar items. Fair enough. I have a
difficult time imagining any scenario where presenting a hundred or so items wouldn’t
meet that goal. Even so, the items would naturally be presented in some logical order so
the most suitable items are near the top.

Once we’ve chosen a suitable order and a subset of relevant items … do we really
need pagination at all? What if we did some kind of endless pagination scheme, where
we loaded more items into the view dynamically as the user reaches the bottom? Like so:

It isn’t just oddball disemvowelled companies, either. Twitter’s timeline and Google’s
image search use a similar endless pagination approach. Either the page loads more
items automatically when you scroll down to the bottom, or there’s an explicit “show
more results” button.

Pagination is also friction. Ever been on a forum where you wished like hell the other
people responding to the thread had read all four pages of it before typing their
response? Well, maybe some of them would have if the next page buttons weren’t so
impossibly small, or better yet, not there at all because pagination was automatic and
seamless. We should be actively removing friction where we want users to do more of
something.

I’m not necessarily proposing that all traditional pagination be replaced with endless
pagination. But we, as software developers, should avoid mindlessly generating a list
of thousands upon thousands of possible items and paginating it as a lazy one-
size-fits-all solution. This puts all the burden on the user to make sense of the items.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Designing With the User in Mind

Designing With the User in Mind

Designing With the User in Mind

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 162162

http://en.wikipedia.org/wiki/Disemvoweling
http://www.codinghorror.com/blog/2012/03/twitter.com/codinghorror
https://www.google.com/search?q=alice+in+wonderland+illustrations+public+domain&hl=en&prmd=imvns&source=lnms&tbm=isch&ei=mDpyT8KnOeHg2AWVwOjJDg&sa=X&oi=mode_link&ct=mode&cd=2&ved=0CBcQ_AUoAQ&biw=811&bih=1037
http://www.codinghorror.com/blog/2009/04/training-your-users.html
http://www.codinghorror.com/blog/2009/04/training-your-users.html
http://www.codinghorror.com/blog/2009/04/training-your-users.html

Remember, we invented computers to make the user’s life easier, not more difficult.

Once you’ve done that, there’s a balance to be struck, as Google’s research tells us:

User testing has taught us that searchers much prefer the view-all, single-page version of
content over a component page containing only a portion of the same information with
arbitrary page breaks.

Interestingly, the cases when users didn’t prefer the view-all page were correlated with
high latency (e.g., when the view-all page took a while to load, say, because it contained
many images). This makes sense because we know users are less satisfied with slow
results. So while a view-all page is commonly desired, as a webmaster it’s important to
balance this preference with the page’s load time and overall user experience.

Traditional pagination is not particularly user friendly, but endless pagination isn’t without
its own faults and pitfalls, either:

The scroll bar, the user’s moral compass of “how much more is there?” doesn’t work
in endless pagination because it is effectively infinite. You’ll need an alternate method
of providing that crucial feedback, perhaps as a simple percent loaded text docked at
the bottom of the page.

Endless pagination should not break deep linking. Even without the concept of a
“page,” users should be able to clearly and obviously link to any specific item in the
list.

Clicking the browser forward or back button should preserve the user’s position in the
endless scrolling stream, perhaps using pushState.

Pagination may be a bad user experience, but it’s essential for web spiders. Don’t
neglect to accommodate web search engines with a traditional paging scheme, too, or
perhaps a Sitemap.

Provide visible feedback when you’re dynamically loading new items in the list, so the
user can tell that new items are coming, and their browser isn’t hung — and that they
haven’t reached the bottom yet.

Remember that the user won’t be able to reach the footer (or the header) any more,
because items keep appearing as they scroll down in the river of endless content. So
either move to static headers and footers, or perhaps use the explicit “load more”
button instead of loading new content automatically.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Designing With the User in Mind

Designing With the User in Mind

Designing With the User in Mind

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 163163

http://googlewebmastercentral.blogspot.com/2011/09/view-all-in-search-results.html
http://diveintohtml5.info/history.html
http://webmasters.stackexchange.com/questions/4803/the-sitemap-paradox

For further reading, there’s some excellent Q&A on the topic of pagination at
ux.stackexchange.

Above all else, you should strive to make pagination irrelevant because the
user never has to look at more than a few items to find what they need. That’s
why I suspect Google hasn’t done much with this technique in their core search result
pages; if they aren’t providing great results on page 1, it doesn’t really matter what kind
of pagination they use because they’re not going to be in business much longer. Take
that lesson to heart: you should be worried most of all about presenting a relevant list of
items to the user in a sensible order. Once you’ve got that licked, then and only then
should you think about your pagination scheme.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Designing With the User in Mind

Designing With the User in Mind

Designing With the User in Mind

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 164164

http://ux.stackexchange.com/questions/tagged/pagination

One entry in particular that I keep touching on is Teaching Users to Read. That was
specific to dialog boxes, which not only stop the proceedings with idiocy, but are their
own delightful brand of user interface poison. Fortunately, you don’t see dialogs in web
apps much, but this sort of modal dialog lunacy is, sadly, becoming more popular in
today’s AJAX-y world of web 2.5. Those who can’t learn from history are doomed to
repeat it, I guess.

Having five more years of development experience under my belt, I no longer believe
that classic Larson strip is specific to dialog boxes.

Treating User Myopia

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Designing With the User in Mind

Designing With the User in Mind

Designing With the User in Mind

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 165165

http://www.codinghorror.com/blog/archives/000114.html
http://www.codinghorror.com/blog/archives/000676.html
http://en.wikiquote.org/wiki/George_Santayana

The plain fact is users will not read anything you put on the screen.

What we’re doing with the trilogy is not exactly rocket surgery. At its core, we run Q&A
websites. And the most basic operation of any Q&A website is asking a question.
Something any two-year-old child knows how to do.

When we launched superuser.com, that was our fourth Q&A website. This one is for
power users, and it’s the broadest to date, topic-wise: anything dealing with computer
software or hardware (that isn’t gaming) is allowed.

We’ve been at this for over a year now, doing nothing but relentlessly polishing and
improving our Q&A engine based on community feedback. We’re not particularly good,
but we do try very, very hard not to suck. I thought surely, surely we must have
something as simple as the ask question form down by now.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Designing With the User in Mind

Designing With the User in Mind

Designing With the User in Mind

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 166166

http://superuser.com

How foolish I was.

Let’s take a look at one recent superuser question. I’m presenting it here as it would have
been seen by the user who asked the question, while they were entering it on the ask
question form.

Immediately, there’s a problem. The question formatting is completely wrong! It’s
one big jumble of text.

Our formatting rules aren’t complicated. You can get a lot done with a bunch of simple
paragraphs. We use Markdown, which offers basic formatting conventions that ape ASCII
conventions. On top of that, we offer a real-time preview of how your question will look
once submitted, directly under the question entry area. But none of that seemed to work
for this particular asker, who, apparently, was totally satisfied with obviously broken
formatting — even though a few choice carriage returns would have worked wonders,
and been immediately visible in the live preview.

Yes, yes, it inevitably gets whipped into shape through the collective efforts of our legions
of community editors — but that’s not the point. It’s best if the original asker gets the

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Designing With the User in Mind

Designing With the User in Mind

Designing With the User in Mind

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 167167

http://www.codinghorror.com/blog/archives/001116.html

question formatted right to start with, and it is our job as UI designers to make that
outcome as statistically likely as we can.

To that end, we’ve put a bunch of helpful tools on the ask question page to help users get
the formatting right. As UI designers, here’s how we see the ask question page:

We’ve provided a toolbar with a neon pink help button above the question body, and to
the right of the question body, we’ve provided a handy formatting quick reference with a
link to the full formatting reference (which opens in a tab / new window by default).

But none of that matters, because here’s how the user sees the ask question
page:

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Designing With the User in Mind

Designing With the User in Mind

Designing With the User in Mind

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 168168

Or rather, here’s everything the user doesn’t see.

When I said users don’t read anything you put on the screen, I was lying. Users do read.
But users will only read the absolute minimum amount of text on the screen
necessary to complete their task. I can’t quite explain it, but this kind of user myopia
is epidemic. It’s the same problem, everywhere I turn.

How do we treat user myopia? How do we reach these users? The ask question page is
already dangerously close to cluttered with helpful tips, but apparently these helpful
buttons, links and text are all but invisible to a large segment of the user population. Sure,
you could argue that Super User tends to attract less sophisticated users, but I see the
exact same problem with programmers on Stack Overflow. As new users, a significant
percentage of them can’t figure out how to format code, even though there’s not only a
toolbar button that does it for you, but help text on the right explicitly describing how to
do it manually. (Just indent 4 spaces. Spoiler alert!)

More and more, I’m thinking we need to put the formatting help — for new users only —
directly in their line of sight. That is, pre-populate the question entry area with some
example formatting that is typical of the average question. Nothing complicated. But at

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Designing With the User in Mind

Designing With the User in Mind

Designing With the User in Mind

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 169169

http://superuser.com/
http://stackoverflow.com

least then it’d be in the one — and apparently the only one — place myopic users are
willing to look. Right in front of their freakin’ faces.

The next time you’re designing a UI, consider user myopia. You might be surprised just
how myopic your users can be. Think long and hard about placing things directly in front
of them, where they are not just visible, but unavoidable. Otherwise they might not be
seen at all.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Designing With the User in Mind

Designing With the User in Mind

Designing With the User in Mind

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 170170

After I posted my blog entry on Treating User Myopia I got a lot of advice. Some useful,
some not so useful. But the one bit of advice I hadn’t anticipated was that we were not
making good use of the area “above the fold.” This surprised me. Does the fold still
matter?

The fold refers to the border at the bottom of the browser window at the user’s default
screen resolution. Like so:

Way back in the dark ages of 1996, it was commonly thought that users didn’t know how
to scroll a web page.

On the Web, the inverted pyramid becomes even more important since we know from
several user studies that users don’t scroll, so they will very frequently be left to read only

Revisiting The Fold

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Designing With the User in Mind

Designing With the User in Mind

Designing With the User in Mind

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 171171

http://www.codinghorror.com/blog/archives/001306.html
http://www.codinghorror.com/blog/archives/000376.html

the top part of an article.

Thus, it was critically important to cram in as much content in as possible above
that fold, as anything below it was invisible to a huge number of users. They didn’t know
how to scroll, so they would never find it. Jacob Neilsen, renowned usability expert, is the
author of the above quote. But he recanted his position in 2003:

In 1996, I said that “users don’t scroll.” This was true at the time: many, if not most, users
only looked at the visible part of the page and rarely scrolled below the fold. The
evolution of the Web has changed this conclusion. As users got more experience with
scrolling pages, many of them started scrolling.

Scrolling is an example of usability versus learnability. It was always my belief that users
quickly learned to scroll, otherwise they were permanently crippled as web citizens. If you
can’t learn to scroll within an hour or so of using the web, you’re going to have an awfully
stunted experience — so much so that you’re probably better off not using it at all. In
short, if you use the web, you know how to scroll, almost by definition. It is a fundamental
skill.

Even today, people will cite the ancient, irrelevant rule of The Fold as if it’s still law.
In fact, I was just talking to a friend of mine who expressed his frustration at dealing with
a middle manager who was using the “content must be above the fold” rule as a weapon,
and demanding that all page content appear above the fold. It’s terribly misguided.

Although thoroughly debunked, there are still some hidden dangers from the fold,
and subtlety to how users react to it. As documented by a recent usability study on the
fold, there are three specific pitfalls to watch out for:

1. Don’t cram everything in above the fold. Users will explore and find your content
— as long as the page “looks” scrollable.

2. Watch out for stark, horizontal lines that happen to line up with the
fold. This is the only factor that causes users to stop scrolling, because the page looks
done and complete. Instead, have a small amount of content just visible, poking up
above the fold. This encourages scrolling.

3. Avoid in-page scroll bars. The standard browser scrollbar is an indicator of the
amount of content on the page that users learn to rely on. Placing <iframe> and
other elements with scroll bars on the page can break this convention — and may lead
to users not scrolling.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Designing With the User in Mind

Designing With the User in Mind

Designing With the User in Mind

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 172172

http://www.codinghorror.com/blog/archives/000376.html
http://www.codinghorror.com/blog/archives/000376.html
http://www.cxpartners.co.uk/thoughts/the_myth_of_the_page_fold_evidence_from_user_testing.htm

These are excellent guidelines, backed by actual eye tracking and experimental results.
You know, science! But how do they apply to me? First, I established where the fold
actually was. Per Google Analytics, about 25 percent of our users are using screen
resolutions where the page fold is at about 700 or 800 pixels of height. And
remember, browsers have a lot of horizontal chrome that tends to squander that height
— toolbars, status bars, tabs, etc. The fold is probably much closer than you think it is.

Next, I looked at the advice I had been given regarding the top of the page. Sure enough,
we had a bunch of irrelevant UI at the top that didn’t really matter: things like redundant
page titles, and two line title entry. We were wasting critical real estate at the top
of the page! For the 25 percent of users who have a 700 or 800 pixel fold, items were
pushed down far enough that they might not actually be visible. Worse still, the strong
bottom border of the text entry area with the drag slider could possibly align with the
page fold itself — leading the user to believe that nothing is below there and failing to
scroll.

It’s not only a basic rule of writing, it’s also a basic rule of the web: put the most
important content at as close to the top of the page as you can. This isn’t new advice, but
it’s so important that it never hurts to revisit it periodically in your own designs.

In treating user myopia, it’s not enough to place important stuff directly in the user’s
eyepoint. You also need to ensure that you’ve placed the absolute most important stuff at
the top of the page — and haven’t created any accidental barriers to scrolling, so they
can find the rest of it. The fold is far less important than it used to be, but it isn’t quite as
mythical as Bigfoot and the Loch Ness Monster quite yet.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Designing With the User in Mind

Designing With the User in Mind

Designing With the User in Mind

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 173173

http://www.cxpartners.co.uk/thoughts/the_myth_of_the_page_fold_evidence_from_user_testing.htm

Fitts’ Law is arguably the most important formula in the field of human-computer
interaction.

It’s..

Time = a + b log2 (D / S + 1)

.. where D is the distance from the starting point of the cursor, and S is the width of the
target. This is all considered on a 2D plane relative to the axis of movement.

Years of experimental results have proven Fitts’ law time and time again:

Fitts’ law has been shown to apply under a variety of conditions, with many different
limbs (hands, feet, head-mounted sights, eye gaze), manipulanda (input devices), physical
environments (including underwater!), and user populations (young, old, mentally
retarded, and drugged participants). Note that the constants a and b have different
values under each of these conditions.

It’s not exactly rocket science, as Bruce Tognazzini points out:

The time to acquire a target is a function of the distance to and size of the target.

While at first glance, this law might seem patently obvious, it is one of the most ignored
principles in design. Fitts’ law (properly, but rarely, spelled “Fitts’ Law”) dictates the
Macintosh pull-down menu acquisition should be approximately five times faster than
Windows menu acquisition, and this is proven out.

So, to make navigation easier, you either put clickable items closer together, or you

Fitts’ Law and Infinite Width

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Designing With the User in Mind

Designing With the User in Mind

Designing With the User in Mind

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 174174

http://en.wikipedia.org/wiki/Fitts%27_law
http://en.wikipedia.org/wiki/Fitts%27_law#Success_and_implications_of_Fitts.27_law
http://www.asktog.com/basics/firstPrinciples.html#fittsLaw

make the clickable area bigger. Or both. I know what you’re thinking: no duh. But bear
with me.

Here’s one thing that puzzled me. I hate Windows as much as the next
disestablishmentarianist, but how can the menu argument be valid? Are Macintosh pull-
down menus really that much larger than Windows pull-down menus?

They aren’t significantly larger. But Macintosh menus aren’t attached to the
application window — they’re always at the top of the screen.

Since the cursor stops at the edge of the screen, for the purposes of Fitts’ law
calculation, Macintosh menus are infinitely tall! Thus, Macintosh menus are faster
to navigate.

Although placing the menus at the top of the display does leverage Fitts’ law nicely, it also
presents its own set of problems.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Designing With the User in Mind

Designing With the User in Mind

Designing With the User in Mind

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 175175

presents its own set of problems.

Where does the menu go in a multiple monitor scenario? I use three monitors on both
my home and work PCs. If I move an application to the rightmost monitor, do the
application menus still appear on the center or left monitor?

Detaching applications from their UI in this manner seems to violate the rule of
proximity — related things should be together. On a single monitor system, the
distance between the application and its menu could be quite large unless the
application window is maximized.

In a broader sense, I think the days of the main menu are numbered as a keystone
GUI metaphor. As far back as I can remember, the Macintosh has always used this
“menu at the top of the display” metaphor, so it’s written in stone for users at this
point. Change could be painful. But then again, Apple has a habit of reinventing
themselves periodically, so who knows.

Fitts’ law isn’t just about making things larger and easier to click on. It’s about maximizing
the utility of the natural borders on the edges of your screen:

Fitts’ law indicates that the most quickly accessed targets on any computer display are
the four corners of the screen, because of their pinning action, and yet, for years, they
seemed to be avoided at all costs by designers.

Use the pinning actions of the sides, bottom, top, and corners of your display: A single-
row toolbar with tool icons that “bleed” into the edges of the display will be many times
faster than a double row of icons with a carefully-applied one-pixel non-clickable edge
between the tools and the side of the display.

I’ve definitely felt the pain of Fitts’ law violations.

I love multiple monitors. In my opinion, life begins with two displays, the largest you can
afford. And you should really upsize to three if you want maximum benefit. But one
unfortunate side-effect of multiple monitors is the removal of some natural
edges between adjoining monitors. The cursor now flows freely between monitors;
it’s painful to stop the cursor on the left and right edges of the app on the center monitor.

And Fitts’ law violations can also extend to hardware. Consider touchpad designs that
have dedicated scrolling areas on the left or bottom.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Designing With the User in Mind

Designing With the User in Mind

Designing With the User in Mind

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 176176

http://www.codinghorror.com/blog/archives/000217.html
http://www.codinghorror.com/blog/archives/000397.html
http://www.asktog.com/basics/firstPrinciples.html#fittsLaw

This seems like a good idea on paper, but in practice, it destroys the usability of the
touchpad. On a touchpad with dedicated scrolling areas, you have no way to
know when you’ve passed from touchpad area into the no-man’s-land of
scrolling area. The natural edges of the touchpad are ruined; we’ve given them an
arbitrarily different, hard-coded set of functionality. Dedicated hardware isn’t even
necessary to achieve scrolling effects on a touchpad. We can easily leverage Fitts’ Law in
the touchpad driver software instead. Just slide your finger until you hit an edge, then
slide it along the edge.

The edges could be your most valuable real estate. Use them responsibly. Fitts’
law is powerful stuff.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Designing With the User in Mind

Designing With the User in Mind

Designing With the User in Mind

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 177177

We programmers are obsessive by nature. But I often get frustrated with the depth of
our obsession over things like code coverage. Unit testing and code coverage
are good things. But perfectly executed code coverage doesn’t mean users will use your
program. Or that it’s even worth using in the first place. When users can’t figure out
how to use your app, when users pass over your app in favor of something
easier or simpler to use, that’s the ultimate unit test failure. That’s the problem
you should be trying to solve.

I want to run up to my fellow programmers and physically shake them: think bigger!

A perfect example of thinking bigger is Alan Cooper’s Interaction 08 keynote, An
Insurgency of Quality.

There’s a transcript of his keynote available, or you can view a video of his keynote
video with the slides in place.

Alan is a well-known interaction designer, and the author of several classic books in the
field, such as About Face, and a few others that are on my recommended reading list. In
the Q&A after the talk, he had this to say:

The Ultimate Unit Test Failure

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Designing With the User in Mind

Designing With the User in Mind

Designing With the User in Mind

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 178178

http://www.codinghorror.com/blog/archives/000490.html
http://www.codinghorror.com/blog/archives/000640.html
http://www.codinghorror.com/blog/archives/000265.html
http://www.codinghorror.com/blog/archives/000265.html
http://www.codinghorror.com/blog/archives/000882.html
http://interaction08.ixda.org/
http://ajaxian.com/archives/interaction08-ixds-in-savannah-alan-cooper
http://www.brightcove.tv/title.jsp?title=1416866797&channel=1274129191
http://www.cooper.com/
http://www.codinghorror.com/blog/archives/000897.html
http://www.codinghorror.com/blog/archives/000020.html

“We are not very important because we don’t cut code.” (A boo and hiss from the
audience.) In the world of high-technology, if you cut code, you control things. It’s the
power to destroy the spice, it’s the power to control the spice. It’s not a fine kind of
control: it’s bruce-force kind of things. [Interaction designers are] largely marginalized.
We’re constantly asking for permission from the folks who shouldn’t be in a position to
grant permission. We should be working with business folks and marshalling the
technology to meet the solutions to business problems.

But when it comes time to marshal the solution to the problems, we find ourselves
slamming into this kind of Stay-Puft Marshmallow Man of software development.

We don’t need to change interaction design; we need to re-orient organizations to build
things right. When we come to programmers and say, “Look at the people I’ve talked to;
look at the personas I’ve created” and present them with research, programmers
understand that, and that’s how we will influence.

It pains me to hear that Cooper considers most programmers twenty-story
marshmallow barriers to good interaction design. Please don’t be one of those
programmers. Learn about the science of interaction design. Pick up a copy of Don’t
Make Me Think as an introduction if you haven’t already. There’s a reason this book is at
the top of my recommended reading list. Keep your unit testing and code coverage in

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Designing With the User in Mind

Designing With the User in Mind

Designing With the User in Mind

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 179179

http://www.codinghorror.com/blog/archives/000377.html

perspective — the ultimate unit test is whether or not users want to use your application.
All the other tests you write are totally irrelevant until you can get that one to pass.

Coding Horror commentor Joeri Sebrechts:

Since it is often the user who notices a defect, it also doesn’t matter
whether something is a bug or a feature according to the developer. If
the user perceives something to be a defect, it is a defect, whether in
user training, user documentation, user interface or actual
functionality.

Oct 13 ’08 at 9:13

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Designing With the User in Mind

Designing With the User in Mind

Designing With the User in Mind

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 180180

I’ve been unhappy with every single piece of software I’ve ever released. Partly because,
like many software developers, I’m a perfectionist. And then, there are inevitably
problems:

The schedule was too aggressive and too short. We need more time!

We ran into unforeseen technical problems that forced us to make compromises we
are uncomfortable with.

We had the wrong design, and needed to change it in the middle of development.

Our team experienced internal friction between team members that we didn’t
anticipate.

The customers weren’t who we thought they were.

Communication between the designers, developers and project team wasn’t as
efficient as we thought it would be.

We overestimated how quickly we could learn a new technology.

The list goes on and on. Reasons for failure on a software project are legion.

At the end of the development cycle, you end up with software that is a pale shadow
of the shining, glorious monument to software engineering that you envisioned
when you started.

It’s tempting, at this point, to throw in the towel — to add more time to the schedule so
you can get it right before shipping your software. Because, after all, real developers
ship.

I’m here to tell you that this is a mistake.

Yes, you did a ton of things wrong on this project. But you also did a ton of things wrong

Version 1 Sucks, But Ship it
Anyway

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Designing With the User in Mind

Designing With the User in Mind

Designing With the User in Mind

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 181181

http://www.codinghorror.com/blog/archives/000889.html
http://www.codinghorror.com/blog/archives/000773.html

that you don’t know about yet. And there’s no other way to find out what those things are
until you ship this version and get it in front of users and customers. I think Donald
Rumsfeld put it best:

As we know,

There are known knowns.

There are things we know we know.

We also know

There are known unknowns.

That is to say

We know there are some things

We do not know.

But there are also unknown unknowns,

The ones we don’t know

We don’t know.

In the face of the inevitable end-of-project blues — rife with compromises and totally
unsatisfying quick fixes and partial soutions — you could hunker down and lick your
wounds. You could regroup and spend a few extra months fixing up this version before
releasing it. You might even feel good about yourself for making the hard call to get the
engineering right before unleashing yet another buggy, incomplete chunk of software on
the world.

Unfortunately, this is an even bigger mistake than shipping a flawed version.

Instead of spending three months fixing up this version in a sterile, isolated lab, you
could be spending that same three month period listening to feedback from real live,
honest-to-god, annoyingly dedicated users of your software. Not the software as
you imagined it, and the users as you imagined them, but as they exist in the real world.
You can turn around and use that directed, real-world feedback to not only fix all the
sucky parts of version 1, but spend your whole development budget more efficiently,
predicated on hard usage data from your users.

Now, I’m not saying you should release crap. Believe me, we’re all perfectionists here.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Designing With the User in Mind

Designing With the User in Mind

Designing With the User in Mind

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 182182

http://www.slate.com/id/2081042/

But the real world can be a cruel, unforgiving place for us perfectionists. It’s saner to let
go and realize that when your software crashes on the rocky shore of the real world,
disappointment is inevitable, but fixable! What’s important isn’t so much the initial state
of the software — in fact, some say if you aren’t embarrassed by v1.0 you didn’t release
it early enough — but what you do after releasing the software.

The velocity and responsiveness of your team to user feedback will set the tone for your
software, far more than any single release ever could. That’s what you need to get good
at. Not the platonic ideal of shipping mythical, perfect software, but being responsive to
your users, to your customers, and demonstrating that through the act of continually
improving and refining your software based on their feedback. So to the extent that
you’re optimizing for near-perfect software releases, you’re optimizing for the wrong
thing.

There’s no question that, for whatever time budget you have, you will end up with better
software by releasing as early as practically possible, and then spending the rest of your
time iterating rapidly based on real-world feedback.

So trust me on this one: even if version 1 sucks, ship it anyway.

Gift this book to your friends...for free.

Become a Hyperink reader. Get a special surprise.

Like the book? Support our author and leave a comment!

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Designing With the User in Mind

Designing With the User in Mind

Designing With the User in Mind

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 183183

http://successfulsoftware.net/2007/08/07/if-you-arent-embarrassed-by-v10-you-didnt-release-it-early-enough/
http://www.codinghorror.com/blog/archives/000788.html
http://www.hyperink.com/share/1559?utm_source=1559&utm_medium=inside_book&utm_campaign=chapter_end_share_pdf
http://www.hyperink.com/register?utm_source=1559&utm_medium=inside_book&utm_campaign=chapter_end_user_pdf
http://www.hyperink.com/Blog-To-Book-Effective-Programming-More-Than-Writing-Code-b1559?utm_source=1559&utm_medium=inside_book&utm_campaign=chapter_end_like_pdf

VIII.

Security Basics:
Protecting Your Users'

Data

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Security Basics: Protecting Your...

Security Basics: Protecting Your...

Security Basics: Protecting Your...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 184184

“…the more web sites you visit, the more networks you touch and trust with a username
and password combination — the greater the odds that at least one of those networks will
be compromised…”

The prevalence of free, open WiFi has made it rather easy for a WiFi eavesdropper
to steal your identity cookie for the websites you visit while you’re connected
to that WiFi access point. This is something I talked about in Breaking the Web’s
Cookie Jar. It’s difficult to fix without making major changes to the web’s infrastructure.

In the year since I wrote that, a number of major websites have “solved” the WiFi
eavesdropping problem by either making encrypted HTTPS web traffic an account
option or mandatory for all logged in users.

For example, I just noticed that Twitter, transparently to me and presumably all other
Twitter users, switched to an encrypted web connection by default. You can tell
because most modern browsers show the address bar in green when the connection is
encrypted.

I initially resisted this as overkill, except for obvious targets like email (the skeleton key to

Should All Web Traffic Be
Encrypted?

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Security Basics: Protecting Your...

Security Basics: Protecting Your...

Security Basics: Protecting Your...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 185185

http://www.codinghorror.com/blog/2010/11/breaking-the-webs-cookie-jar.html
http://www.codinghorror.com/blog/2008/06/please-give-us-your-email-password.html

all your online logins) and banking.

Yes, you can naively argue that every website should encrypt all their traffic all
the time, but to me that’s a “boil the sea” solution. I’d rather see a better, more secure
identity protocol than ye olde HTTP cookies. I don’t actually care if anyone sees the rest
of my public activity on Stack Overflow; it’s hardly a secret. But gee, I sure do care if
they somehow sniff out my cookie and start running around doing stuff as me! Encrypting
everything just to protect that one lousy cookie header seems like a whole lot of overkill
to me.

Of course, there’s no reason to encrypt traffic for anonymous, not-logged-in users, and
Twitter doesn’t. You get a plain old HTTP connection until you log in, at which point they
automatically switch to HTTPS encryption. Makes sense.

It was totally painless for me, as a user, and it makes stealing my Twitter identity,
or eavesdropping on my Twitter activity (as fascinating as I know that must sound),
dramatically more difficult. I can’t really construct a credible argument against doing this,
even for something as relatively trivial as my Twitter account, and it has some definite
benefits. So perhaps Twitter has the right idea here; maybe encrypted connections
should be the default for all web sites. As tinfoil hat as this seemed to me a year ago,
now I’m wondering if that might actually be the right thing to do for the long-term health
of the overall web, too.

Why not boil the sea, then? Let us encrypt all the things!

HTTPS isn’t (that) expensive any more

Yes, in the hoary old days of the 1999 web, HTTPS was quite computationally expensive.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Security Basics: Protecting Your...

Security Basics: Protecting Your...

Security Basics: Protecting Your...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 186186

http://www.codinghorror.com/blog/2008/08/protecting-your-cookies-httponly.html
http://twitter.com/codinghorror

But thanks to 13 years of Moore’s Law, that’s no longer the case. It’s still more work to
set up, yes, but consider the real world case of GMail:

In January this year (2010), Gmail switched to using HTTPS for everything by default.
Previously it had been introduced as an option, but now all of our users use HTTPS to
secure their email between their browsers and Google, all the time. In order to do this we
had to deploy no additional machines and no special hardware. On our production
frontend machines, SSL/TLS accounts for less than 1 percent of the CPU load, less than
10KB of memory per connection and less than 2 percent of network overhead. Many
people believe that SSL takes a lot of CPU time and we hope the above numbers (public
for the first time) will help to dispel that.

HTTPS means The Man can’t spy on your Internet

Since all the traffic between you and the websites you log in to would now be encrypted,
the ability of nefarious evildoers to either …

steal your identity cookie

peek at what you’re doing

see what you’ve typed

interfere with the content you send and receive

… is, if not completely eliminated, drastically limited. Regardless of whether you’re on
open public WiFi or not.

Personally, I don’t care too much if people see what I’m doing online since the whole
point of a lot of what I do is to … let people see what I’m doing online. But I certainly
don’t subscribe to the dangerous idea that “only criminals have things to hide.” Everyone
deserves the right to personal privacy. And there are lots of repressive governments out
there who wouldn’t hesitate at the chance to spy on what their citizens do online, or
worse. Much, much worse. Why not improve the Internet for all of them at once?

HTTPS goes faster now

Security always comes at a cost, and encrypting a web connection is no different. HTTPS
is going to be inevitably slower than a regular HTTP connection. But how much slower? It
used to be that encrypted content wouldn’t be cached in some browsers, but that’s no
longer true. And Google’s SPDY protocol, intended as a drop-in replacement for HTTP,
even goes so far as to bake encryption in by default, and not just for better performance:

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Security Basics: Protecting Your...

Security Basics: Protecting Your...

Security Basics: Protecting Your...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 187187

http://www.imperialviolet.org/2010/06/25/overclocking-ssl.html
http://security.stackexchange.com/questions/6290/how-is-it-possible-that-people-observing-an-https-connection-being-established-w
http://www.codinghorror.com/blog/2007/04/when-in-doubt-make-it-public.html
http://gent.ilcore.com/2011/02/chromes-10-caches.html?showComment=1297102528799#c5411401837359385517
http://dev.chromium.org/spdy/spdy-whitepaper

It is a specific technical goal of SPDY to] make SSL the underlying transport protocol, for
better security and compatibility with existing network infrastructure. Although SSL does
introduce a latency penalty, we believe that the long-term future of the web depends on
a secure network connection. In addition, the use of SSL is necessary to ensure that
communication across existing proxies is not broken.

There’s also SSL False Start which requires a modern browser, but reduces the painful
latency inherent in the expensive, but necessary, handshaking required to get encryption
going. SSL encryption of HTTP will never be free, exactly, but it’s certainly a lot faster
than it used to be, and getting faster every year.

Bolting on encryption for logged-in users is by no means an easy thing to accomplish,
particularly on large, established websites. You won’t see me out there berating every
public website for not offering encrypted connections yesterday because I know how
much work it takes, and how much additional complexity it can add to an already busy
team. Even though HTTPS is way easier now than it was even a few years ago, there are
still plenty of tough gotchas: proxy caching, for example, becomes vastly harder when
the proxies can no longer “see” what the encrypted traffic they are proxying is doing.
Most sites these days are a broad mashup of content from different sources, and
technically all of them need to be on HTTPS for a properly encrypted connection.
Relatively underpowered and weakly connected mobile devices will pay a much steeper
penalty, too.

Maybe not tomorrow, maybe not next year, but over the medium to long term, adopting
encrypted web connections as a standard for logged-in users is the healthiest
direction for the future of the web. We need to work toward making HTTPS easier, faster
and most of all, the default for logged in users.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Security Basics: Protecting Your...

Security Basics: Protecting Your...

Security Basics: Protecting Your...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 188188

http://blog.chromium.org/2011/05/ssl-falsestart-performance-results.html
http://www.semicomplete.com/blog/geekery/ssl-latency.html

Several high profile Twitter accounts were hijacked in 2009:

An 18-year-old hacker with a history of celebrity pranks has admitted to Monday’s
hijacking of multiple high-profile Twitter accounts, including President-Elect Barack
Obama’s, and the official feed for Fox News.

The hacker, who goes by the handle GMZ, told Threat Level on Tuesday he gained entry
to Twitter’s administrative control panel by pointing an automated password-guesser at a
popular user’s account. The user turned out to be a member of Twitter’s support staff,
who’d chosen the weak password “happiness.”

Cracking the site was easy, because Twitter allowed an unlimited number of rapid-fire
log-in attempts.

“I feel it’s another case of administrators not putting forth effort toward one of the most
obvious and overused security flaws,” he wrote in an IM interview. “I’m sure they find it
difficult to admit it.”

If you’re a moderator or administrator it is especially negligent to have such an easily
guessed password. But the real issue here is the way Twitter allowed unlimited, as-fast-
as-possible login attempts.

Given the average user’s password choices — as documented by Bruce
Schneier’s analysis of 34,000 actual MySpace passwords captured from a phishing
attack in late 2006 — this is a pretty scary scenario.

Dictionary Attacks 101

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Security Basics: Protecting Your...

Security Basics: Protecting Your...

Security Basics: Protecting Your...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 189189

http://blog.wired.com/27bstroke6/2009/01/professed-twitt.html
http://www.schneier.com/blog/archives/2006/12/realworld_passw.html
http://www.codinghorror.com/blog/archives/000852.html

Based on this data, the average MySpace user has an 8-character alphanumeric
password. Which isn’t great, but doesn’t sound too bad. That is, until you find out that 28
percent of those alphanumerics were all lowercase with a single final digit — and two-
thirds of the time that final digit was 1!

Yes, brute force attacks are still for dummies. Even the typically terrible MySpace
password — eight character all lowercase, ending in 1, would require around 8 billion
login attempts:

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Security Basics: Protecting Your...

Security Basics: Protecting Your...

Security Basics: Protecting Your...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 190190

http://www.codinghorror.com/blog/archives/000631.html

26 x 26 x 26 x 26 x 26 x 26 x 26 x 1 = 8,031,810,176

At one attempt per second, that would take more than 250 years. Per user!

But a dictionary attack, like the one used in the Twitter hack? Well, that’s another story.
The entire Oxford English Dictionary contains around 171,000 words. As you might
imagine, the average person only uses a tiny fraction of those words, by some
estimates somewhere between 10 and 40 thousand. At one attempt per second, we
could try every word in the Oxford English Dictionary in slightly less than two
days.

Clearly, the last thing you want to do is give attackers carte blanche to run unlimited login
attempts. All it takes is one user with a weak password to provide attackers a toehold in
your system. In Twitter’s case, the attackers really hit the jackpot: the user with the
weakest password happened to be a member of the Twitter administrative staff.

Limiting the number of login attempts per user is security 101. If you don’t do
this, you’re practically setting out a welcome mat for anyone to launch a dictionary attack
on your site, an attack that gets statistically more effective every day the more users you
attract. In some systems, your account can get locked out if you try and fail to log in a
certain number of times in a row. This can lead to denial of service attacks, however, and
is generally discouraged. It’s more typical for each failed login attempt to take longer and
longer, like so:

1st failed login no delay
2nd failed login 2 sec delay
3rd failed login 4 sec delay
4th failed login 8 sec delay
5th failed login 16 sec delay

And so on. Alternately, you could display a CAPTCHA after the fourth attempt.

There are endless variations of this technique, but the net effect is the same: attackers
can only try a handful of passwords each day. A brute force attack is out of the question,
and a broad dictionary attack becomes impractical, at least in any kind of human time.

It’s tempting to blame Twitter here, but honestly, I’m not sure they’re alone. I forget my
passwords a lot. I’ve made at least five or six attempts to guess my password on multiple
websites and I can’t recall ever experiencing any sort of calculated delay or account

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Security Basics: Protecting Your...

Security Basics: Protecting Your...

Security Basics: Protecting Your...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 191191

http://en.wikipedia.org/wiki/Dictionary_attack
http://www.askoxford.com/asktheexperts/faq/aboutenglish/numberwords
http://www.worldwidewords.org/articles/howmany.htm
http://en.wikipedia.org/wiki/Captcha
http://www.codinghorror.com/blog/archives/000546.html

lockouts.

I’m reasonably sure the big commercial sites have this mostly figured out. But
since every rinky-dink website on the planet demands that I create unique credentials
especially for them, any of them could be vulnerable. You better hope they’re
all smart enough to throttle failed logins — and that you’re careful to use unique
credentials on every single website you visit.

Maybe this was less of a problem in the bad old days of modems, as there were severe
physical limits on how fast data could be transmitted to a website, and how quickly that
website could respond. But today, we have the one-two punch of naive websites running
on blazing fast hardware, and users with speedy broadband connections. Under these
conditions, I could see attackers regularly achieving up to two password attempts per
second.

If you thought of dictionary attacks as mostly a desktop phenomenon, perhaps it’s time to
revisit that assumption. As Twitter illustrates, the web now offers ripe conditions for
dictionary attacks. I urge you to test your website, or any websites you use — and make
sure they all have some form of failed login throttling in place.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Security Basics: Protecting Your...

Security Basics: Protecting Your...

Security Basics: Protecting Your...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 192192

http://www.codinghorror.com/blog/archives/001121.html
http://www.codinghorror.com/blog/archives/000599.html

Hashes are a bit like fingerprints for data.

A given hash uniquely represents a file or any arbitrary collection of data. At least in
theory. This is a 128-bit MD5 hash you’re looking at above, so it can represent at most
2,128 unique items, or 340 trillion trillion trillion. In reality the usable space is substantially
less; you can start seeing significant collisions once you’ve filled half the square root of
the space, but the square root of an impossibly large number is still impossibly large.

Back in 2005, I wondered about the difference between a checksum and a hash. You can
think of a checksum as a person’s full name: Eubediah Q. Horsefeathers. It’s a
shortcut to uniqueness that’s fast and simple, but easy to forge, because security isn’t
really the point of naming. You don’t walk up to someone and demand their fingerprints
to prove they are who they say they are. Names are just convenient disambiguators, a
way of quickly determining who you’re talking to for social reasons, not absolute proof of
identity. There can certainly be multiple people in the world with the same name, and it
wouldn’t be too much trouble to legally change your name to match someone else’s. But
changing your fingerprint to match Eubediah’s is another matter entirely; that should be

Speed Hashing

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Security Basics: Protecting Your...

Security Basics: Protecting Your...

Security Basics: Protecting Your...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 193193

http://www.codinghorror.com/blog/2007/12/hashtables-pigeonholes-and-birthdays.html
http://www.skrenta.com/2007/08/md5_tutorial.html
http://www.codinghorror.com/blog/2005/04/checksums-and-hashes.html

impossible except in the movies.

Secure hashes are designed to be tamper-proof.

A properly designed secure hash function changes its output radically with tiny
single bit changes to the input data, even if those changes are malicious and
intended to cheat the hash. Unfortunately, not all hashes were designed properly, and
some, like MD5, are outright broken and should probably be reverted to checksums.

As we will explain below, the algorithm of Wang and Yu can be used to create files of
arbitrary length that have identical MD5 hashes, and that differ only in 128 bytes
somewhere in the middle of the file. Several people have used this technique to create
pairs of interesting files with identical MD5 hashes:

Magnus Daum and Stefan Lucks have created two PostScript files with identical MD5
hash, of which one is a letter of recommendation, and the other is a security
clearance.

Eduardo Diaz has described a scheme by which two programs could be packed into
two archives with identical MD5 hash. A special “extractor” program turn one archive
into a “good” program and the other into an “evil” one.

In 2007, Marc Stevens, Arjen K. Lenstra, and Benne de Weger used an improved
version of Wang and Yu’s attack known as the chosen prefix collision method to
produce two executable files with the same MD5 hash, but different behaviors. Unlike
the old method, where the two files could only differ in a few carefully chosen bits, the
chosen prefix method allows two completely arbitrary files to have the same MD5
hash, by appending a few thousand bytes at the end of each file.

Didier Stevens used the evilize program (below) to create two different programs with
the same Authenticode digital signature. Authenticode is Microsoft’s code signing
mechanism, and although it uses SHA1 by default, it still supports MD5.

If you could mimic another person’s fingerprint or DNA at will, you could do some
seriously evil stuff. MD5 is clearly compromised, and SHA-1 is not looking too great these
days.

The good news is that hashing algorithms (assuming you didn’t roll your own, God forbid)
were designed by professional mathematicians and cryptographers who knew what they
were doing. Just pick a hash of a newer vintage than MD5 (1991) and SHA-1 (1995), and
you’ll be fine — at least as far as collisions and uniqueness are concerned. But keep

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Security Basics: Protecting Your...

Security Basics: Protecting Your...

Security Basics: Protecting Your...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 194194

http://www.imdb.com/title/tt0119094/
http://www.mscs.dal.ca/%7Eselinger/md5collision/
http://web.archive.org/web/20071226014140/http://www.cits.rub.de/MD5Collisions/
http://www.codeproject.com/dotnet/HackingMd5.asp
http://www.win.tue.nl/hashclash/SoftIntCodeSign/
http://blog.didierstevens.com/2009/01/17/playing-with-authenticode-and-md5-collisions/
http://tinsology.net/2010/12/is-sha1-still-viable/

reading.

Secure hashes are designed to be slow

Speed of a checksum calculation is important, as checksums are generally working on
data as it is being transmitted. If the checksum takes too long, it can affect your transfer
speeds. If the checksum incurs significant CPU overhead, that means transferring data
will also slow down or overload your PC. For example, imagine the sort of checksums that
are used on video standards like DisplayPort, which can peak at 17.28 Gbit/sec.

But hashes aren’t designed for speed. In fact, quite the opposite: hashes, when used
for security, need to be slow. The faster you can calculate the hash, the more viable
it is to use brute force to mount attacks. Unfortunately, “slow” in 1990 and 2000 terms
may not be enough. The hashing algorithm designers may have anticipated predicted
increases in CPU power via Moore’s Law, but they almost certainly did not see the radical
increases in GPU computing power coming.

How radical? Well, compare the results of CPU powered hashcat with the GPU
powered oclHashcat when calculating MD5 hashes:

Radeon 7970 8213.6 M c/s
6-core AMD CPU 52.9 M c/s

The GPU on a single modern video card produces over 150 times the number of
hash calculations per second compared to a modern CPU. If Moore’s Law anticipates
a doubling of computing power every 18 months, that’s like peeking 10 years into the
future. Pretty amazing stuff, isn’t it?

Hashes and passwords

Let’s talk about passwords, since hashing and passwords are intimately related.
Unless you’re storing passwords incorrectly, you always store a user’s password as a
salted hash, never as plain text. Right? Right? This means if your database containing all
those hashes is compromised or leaked, the users are still protected — nobody can figure
out what their password actually is based on the hash stored in the database. Yes, there
are of course dictionary attacks that can be surprisingly effective, but we can’t protect
users dead-set on using “monkey1″ for their password from themselves. And anyway, the
real solution to users choosing crappy passwords is not to make users remember ever
more complicated and longer passwords, but to do away with passwords altogether.

This has one unfortunate ramification for password hashes: very few of them were

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Security Basics: Protecting Your...

Security Basics: Protecting Your...

Security Basics: Protecting Your...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 195195

http://en.wikipedia.org/wiki/DisplayPort
http://hashcat.net/hashcat/
http://hashcat.net/oclhashcat-lite/
http://www.codinghorror.com/blog/2006/12/moores-law-in-practical-terms.html
http://www.codinghorror.com/blog/2007/09/youre-probably-storing-passwords-incorrectly.html
http://plaintextoffenders.com/
http://plaintextoffenders.com/
http://www.codinghorror.com/blog/2010/12/the-dirty-truth-about-web-passwords.html
http://www.codinghorror.com/blog/2009/01/dictionary-attacks-101.html
http://www.codinghorror.com/blog/2011/09/cutting-the-gordian-knot-of-web-identity.html

designed with such massive and commonly available GPU horsepower in mind. Here are
my results on my current PC, which has two ATI Radeon 7970 cards generating nearly
16000 M c/s with MD5. I used oclHashcat-lite with the full range of a common US
keyboard — that is, including uppercase, lowercase, numbers, and all possible symbols:

all 6 character password MD5s 47 seconds
all 7 character password MD5s 1 hour, 14 minutes
all 8 character password MD5s ~465 days
all 9 character password MD5s fuggedaboudit

The process scales nearly perfectly as you add GPUs, so you can cut the time in half by
putting four video cards in one machine. It may sound crazy, but enthusiasts have been
doing it since 2008. And you could cut it in half again by building another PC with four
more video cards, splitting the attack space. (Keep going if you’re either crazy, or
working for the NSA.)

Now we’re down to a semi-reasonable 117 days to generate all 8 character MD5s. But
perhaps this is a worst-case scenario, as a lot of passwords have no special characters.
How about if we try the same thing using just uppercase, lowercase, and numbers?

all 6 character password MD5s 3 seconds
all 7 character password MD5s 4 minutes
all 8 character password MD5s 4 hours
all 9 character password MD5s 10 days
all 10 character password MD5s ~625 days
all 11 character password MD5s fuggedaboudit

If you’re curious about the worst case scenario, a 12-character, all lowercase password is
attainable in about 75 days on this PC. Try it yourself; here’s the script I used:

set BIN=oclHashcat-lite64

set OPTS=–gpu-accel 200 –gpu-watchdog 0 –outfile-watch 0 –restore-timer 0 –pw-min 6 –
pw-max 6 –custom-charset1 ?l?d?s?u

%BIN% %OPTS% –hash-type 0 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa ?1?1?1?1?1?1?1?
1?1?1?1?1?1

Just modify the pw-min, pw-max and the custom-charset as appropriate. Or, if you’re too
lazy to try it yourself, browse through the existing oclHashcat benchmarks others have

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Security Basics: Protecting Your...

Security Basics: Protecting Your...

Security Basics: Protecting Your...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 196196

http://hashcat.net/oclhashcat-lite/
http://thepasswordproject.com/oclhashcat_benchmarking

run. This will also give you some idea how computationally expensive various known
hashes are on GPUs relative to each other, such as:

MD5 23070.7 M/s
SHA-1 7973.8 M/s
SHA-256 3110.2 M/s
SHA-512 267.1 M/s
NTLM 44035.3 M/s
DES 185.1 M/s
WPA/WPA2 348.0 k/s

What about rainbow tables?

Rainbow tables are huge pre-computed lists of hashes, trading off table lookups to
massive amounts of disk space (and potentially memory) for raw calculation speed. They
are now utterly and completely obsolete. Nobody who knows what they’re doing would
bother. They’d be wasting their time. I’ll let Coda Hale explain:

Rainbow tables, despite their recent popularity as a subject of blog posts, have not aged
gracefully. Implementations of password crackers can leverage the massive amount of
parallelism available in GPUs, peaking at billions of candidate passwords a second. You
can literally test all lowercase, alphabetic passwords which are ≤7 characters in less than
2 seconds. And you can now rent the hardware which makes this possible to the tune of
less than $3/hour. For about $300/hour, you could crack around 500,000,000,000
candidate passwords a second.

Given this massive shift in the economics of cryptographic attacks, it simply doesn’t make
sense for anyone to waste terabytes of disk space in the hope that their victim didn’t use
a salt. It’s a lot easier to just crack the passwords. Even a “good” hashing scheme of
SHA256(salt + password) is still completely vulnerable to these cheap and effective
attacks.

But when I store passwords I use salts so none of this applies to me!

Hey, awesome, you’re smart enough to not just use a hash, but also to salt the hash.
Congratulations.

$saltedpassword = sha1(SALT . $password);

I know what you’re thinking. “I can hide the salt, so the attacker won’t know it!” You can

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Security Basics: Protecting Your...

Security Basics: Protecting Your...

Security Basics: Protecting Your...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 197197

http://www.codinghorror.com/blog/2007/09/rainbow-hash-cracking.html
http://codahale.com/how-to-safely-store-a-password/
http://www.adayinthelifeof.nl/2011/02/02/password-hashing-and-salting/

certainly try. You could put the salt somewhere else, like in a different database, or put it
in a configuration file, or in some hypothetically secure hardware that has additional
layers of protection. In the event that an attacker obtains your database with the
password hashes, but somehow has no access to or knowledge of the salt it’s
theoretically possible.

This will provide the illusion of security more than any actual security. Since you need
both the salt and the choice of hash algorithm to generate the hash, and to check the
hash, it’s unlikely an attacker would have one but not the other. If you’ve been
compromised to the point that an attacker has your password database, it’s reasonable
to assume they either have or can get your secret, hidden salt.

The first rule of security is to always assume and plan for the worst. Should you use a
salt, ideally a random salt for each user? Sure, it’s definitely a good practice, and at the
very least it lets you disambiguate two users who have the same password. But these
days, salts alone can no longer save you from a person willing to spend a few
thousand dollars on video card hardware, and if you think they can, you’re in trouble.

I’m too busy to read all this.

If you are a user:

Make sure all your passwords are 12 characters or more, ideally a lot more. I
recommend adopting pass phrases, which are not only a lot easier to remember than
passwords (if not type) but also ridiculously secure against brute forcing purely due to
their length.

If you are a developer:

Use bcrypt or PBKDF2 exclusively to hash anything you need to be secure. These
new hashes were specifically designed to be difficult to implement on GPUs. Do not use
any other form of hash. Almost every other popular hashing scheme is vulnerable to
brute forcing by arrays of commodity GPUs, which only get faster and more parallel and
easier to program for every year.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Security Basics: Protecting Your...

Security Basics: Protecting Your...

Security Basics: Protecting Your...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 198198

http://www.codinghorror.com/blog/2005/07/passwords-vs-pass-phrases.html
http://en.wikipedia.org/wiki/Bcrypt
http://en.wikipedia.org/wiki/Pbkdf2
http://security.stackexchange.com/a/6415

In December 2010, the Gawker network was compromised, resulting in a security
breach at Lifehacker, Gizmodo, Gawker, Jezebel, io9, Jalopnik, Kotaku, Deadspin and
Fleshbot. If you’re a commenter on any of our sites, you probably have several questions.

It’s no Black Sunday or iPod modem firmware hack, but it has release notes — and the
story it tells is as epic as Beowulf:

So, here we are again with a monster release of ownage and data droppage. Previous
attacks against the target were mocked, so we came along and raised the bar a little.
How’s this for “script kids”? Your empire has been compromised, your servers, your
databases, online accounts and source code have all been ripped to shreds!

You wanted attention, well guess what, You’ve got it now!

Read those release notes. It’ll explain how the compromise unfolded, blow by blow, from
the inside.

Gawker is operated by Nick Denton, notorious for the unapologetic and often unethical
“publish whatever it takes to get traffic” methods endorsed on his network. Do you
remember the iPhone 4 leak? That was Gawker. Do you remember the article
about bloggers being treated as virtual sweatshop workers? That was Gawker. Do you
remember hearing about a blog lawsuit? That was probably Gawker, too.

Some might say having every account on your network compromised is exactly the kind
of unwanted publicity attention that Gawker was founded on.

Personally, I’m more interested in how we can learn from this hack. Where did
Gawker go wrong, and how can we avoid making those mistakes on our projects?

1. Gawker saved passwords. You should never, ever store user passwords. If you
do, you’re storing passwords incorrectly. Always store the salted hash of the password
— never the password itself! It’s so easy, even members of Mensa er .. can’t .. figure it
out.

The Dirty Truth About Web
Passwords

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Security Basics: Protecting Your...

Security Basics: Protecting Your...

Security Basics: Protecting Your...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 199199

http://www.codinghorror.com/blog/2008/05/revisiting-the-black-sunday-hack.html
http://www.codinghorror.com/blog/2005/02/ipod-hacking-via-modem.html
http://www.codinghorror.com/blog/gawker-hack-release-notes.html
http://www.fastcompany.com/1621516/iphone-leak-iphone-4-apple-gizmodo
http://www.newyorker.com/reporting/2010/10/18/101018fa_fact_mcgrath
http://www.google.com/search?q=gawker+lawsuit
http://www.codinghorror.com/blog/2007/09/youre-probably-storing-passwords-incorrectly.html
http://www.codinghorror.com/blog/2007/09/rainbow-hash-cracking.html
http://www.codinghorror.com/blog/2008/06/smart-enough-not-to-build-this-website.html

2. Gawker used encryption incorrectly. The odd choice of archaic DES encryption
meant that the passwords they saved were all truncated to 8 characters. No matter
how long your password actually was, you only had to enter the first 8 characters for it
to work. So much for choosing a secure pass phrase. Encryption is only as effective as
the person using it. I’m not smart enough to use encryption, either, as you can see
in Why Isn’t My Encryption.. Encrypting?

3. Gawker asked users to create a username and password on their site. The
FAQ they posted about the breach has two interesting clarifications:

2) What if I logged in using Facebook Connect? Was my password compromised?

No. We never stored passwords of users who logged in using Facebook Connect.

3) What if I linked my Twitter account with my Gawker Media account? Was my Twitter
password compromised?

No. We never stored Twitter passwords from users who linked their Twitter accounts with
their Gawker Media account.

That’s right, people who used their internet driver’s license to authenticate on these sites
had no security problems at all! Does the need to post a comment on Gizmodo really
justify polluting the world with yet another username and password? It’s only the poor
users who decided to entrust Gawker with a unique username and ‘secure’ password who
got compromised.

(Beyond that, “don’t be a jerk” is good advice to follow in business as well as your
personal life. I find that you generally get back what you give. When your corporate
mission is to succeed by exploiting every quasi-legal trick in the book, surely you can’t be
surprised when you get the same treatment in return.)

But honestly, as much as we can point and laugh at Gawker and blame them for this
debacle, there is absolutely nothing unique or surprising about any of this.

Here’s the dirty truth about website passwords: the internet is full of websites
exactly like the Gawker network. Let’s say you have good old traditional username
and passwords on 50 different websites. That’s 50 different programmers who all have
different ideas of how your password should be stored. I hope for your sake you used a
different (and extremely secure) password on every single one of those websites.
Because statistically speaking, you’re screwed.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Security Basics: Protecting Your...

Security Basics: Protecting Your...

Security Basics: Protecting Your...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 200200

http://www.codinghorror.com/blog/2005/08/passphrase-evangelism.html
http://www.codinghorror.com/blog/2009/05/why-isnt-my-encryption-encrypting.html
http://lifehacker.com/5712785/#2
http://www.codinghorror.com/blog/2010/11/your-internet-drivers-license.html
http://www.codinghorror.com/blog/2008/05/openid-does-the-world-really-need-yet-another-username-and-password.html

In other words, the more web sites you visit, the more networks you touch and trust with
a username and password combination — the greater the odds that at least one of those
networks will be compromised exactly like Gawker was, and give up your credentials
for the world to see. At that point, unless you picked a strong, unique password on every
single site you’ve ever visited, the situation gets ugly.

The bad news is that most users don’t pick strong passwords. This has been proven time
and time again, and the Gawker data is no different. Even worse, most users re-use these
bad passwords across multiple websites. That’s how this ugly Twitter worm suddenly
appeared on the back of a bunch of compromised Gawker accounts.

Now do you understand why I’ve been so aggressive about promoting the concept of
the internet driver’s license? That is, logging on to a web site using a set of third party
credentials from a company you can actually trust to not be utterly incompetent at
security? Sure, we’re centralizing risk here to, say, Google, or Facebook — but I trust
Google a heck of a lot more than I trust J. Random Website, and this really is no different
in practice than having password recovery emails sent to your GMail account.

I’m not here to criticize Gawker. On the contrary, I’d like to thank them for illustrating in
broad, bold relief the dirty truth about website passwords: we’re all better off without
them. If you’d like to see a future web free of Gawker style password compromises —

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Security Basics: Protecting Your...

Security Basics: Protecting Your...

Security Basics: Protecting Your...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 201201

http://www.codinghorror.com/blog/2009/01/dictionary-attacks-101.html
http://blogs.wsj.com/digits/2010/12/13/the-top-50-gawker-media-passwords/
http://mashable.com/2010/12/13/acai-berry-twitter-worm-warning/
http://www.codinghorror.com/blog/2010/11/your-internet-drivers-license.html

stop trusting every random internet site with a unique username and
password! Demand that they allow you to use your internet driver’s license — that is,
your existing Twitter, Facebook, Google, or OpenID credentials — to log into their website.

Gift this book to your friends...for free.

Become a Hyperink reader. Get a special surprise.

Like the book? Support our author and leave a comment!

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Security Basics: Protecting Your...

Security Basics: Protecting Your...

Security Basics: Protecting Your...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 202202

http://www.hyperink.com/share/1559?utm_source=1559&utm_medium=inside_book&utm_campaign=chapter_end_share_pdf
http://www.hyperink.com/register?utm_source=1559&utm_medium=inside_book&utm_campaign=chapter_end_user_pdf
http://www.hyperink.com/Blog-To-Book-Effective-Programming-More-Than-Writing-Code-b1559?utm_source=1559&utm_medium=inside_book&utm_campaign=chapter_end_like_pdf

IX.

Testing Your Code, So
it Doesn't Suck More

Than it Has To

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Testing Your Code, So it Doesn't...

Testing Your Code, So it Doesn't...

Testing Your Code, So it Doesn't...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 203203

“It’s incredibly important for developers to be in the trenches with the
customers — the people who have to live with their code.”

In this interview with Werner Vogels, the CTO of Amazon, he outlines how Amazon’s
developers stay in touch with their users:

Remember that most of our developers are in the loop with customers, so they have a
rather good understanding about what our customers like, what they do not like, and
what is still missing.

We have a lot of feedback coming out of customer service. Many Amazonians have to
spend some time with customer service every two years, actually listening to customer
service calls, answering customer service e-mails, really understanding the impact of the
kinds of things they do as technologists. This is extremely useful, because they begin to
understand that our user base is not necessarily the techno-literate engineer. Rather, you
may get a call from a grandma in front of a computer in a library who says she wants to
buy something for her grandson who is at college and who has a Wishlist on Amazon.

Customer service statistics are also an early indicator if we are doing something wrong,
or what the real pain points are for our customers. Sometimes in meetings we use a
“voice of the customer,” which is a realistic story from a customer about some specific
part of the Amazon experience. This helps managers and engineers to connect with the
fact that we build many of these technologies for real people.

It’s easy to fall into a pattern of ivory tower software development. All too often, software
developers are merely tourists in their own codebase. Sure, they write the code, but they
don’t use it on a regular basis like their customers do. They will visit from time to time,
but they lack the perspective and understanding of users who — either by choice or by
corporate mandate — live in that software as a part of their daily routine. As a result,
problems and concerns are hard to communicate. They arrive as dimly heard messages
from a faraway land.

When was the last time you even met a customer, much less tried to talk to them
about a problem they’re having with your website or software?

Sharing the Customer’s Pain

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Testing Your Code, So it Doesn't...

Testing Your Code, So it Doesn't...

Testing Your Code, So it Doesn't...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 204204

http://www.acmqueue.com/modules.php?name=Content&pa=showpage&pid=388&page=1
http://www.codinghorror.com/blog/archives/000206.html

It’s incredibly important for developers to be in the trenches with the customers — the
people who have to live with their code. Without a basic understanding of your users and
customers, it’s impossible to build considerate software. And nothing builds perspective
like being on the front lines of support. I’m not proposing that all programmers pull
double duty as support. It’d be impossible to get any work done. But a brief rotation
through support would do wonders for the resulting quality and usability of your software,
exactly as described by Mr. Vogels.

Dogfooding can be difficult. But manning the support desk, if only for a short while, isn’t.
Software developers should share the customer’s pain. I know it’s not glamorous.
But until you’ve demonstrated a willingness to help the customers using the software
you’ve built — and more importantly, learn why they need help — you haven’t truly
finished building that software.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Testing Your Code, So it Doesn't...

Testing Your Code, So it Doesn't...

Testing Your Code, So it Doesn't...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 205205

http://www.codinghorror.com/blog/archives/000550.html
http://www.codinghorror.com/blog/archives/000287.html

Late last year, the Netflix Tech Blog wrote about five lessons they learned moving to
Amazon Web Services. AWS is, of course, the preeminent provider of so-called “cloud
computing,” so this can essentially be read as key advice for any website
considering a move to the cloud. And it’s great advice, too. Here’s the one bit that
struck me as most essential:

We’ve sometimes referred to the Netflix software architecture in AWS as our Rambo
Architecture. Each system has to be able to succeed, no matter what, even all on its own.
We’re designing each distributed system to expect and tolerate failure from other
systems on which it depends.

If our recommendations system is down, we degrade the quality of our responses to our
customers, but we still respond. We’ll show popular titles instead of personalized picks. If
our search system is intolerably slow, streaming should still work perfectly fine.

One of the first systems our engineers built in AWS is called the Chaos Monkey. The
Chaos Monkey’s job is to randomly kill instances and services within our architecture. If
we aren’t constantly testing our ability to succeed despite failure, then it isn’t likely to
work when it matters most — in the event of an unexpected outage.

Which, let’s face it, seems like insane advice at first glance. I’m not sure many companies
even understand why this would be a good idea, much less have the guts to attempt it.
Raise your hand if where you work, someone deployed a daemon or service that
randomly kills servers and processes in your server farm.

Now raise your other hand if that person is still employed by your company.

Who in their right mind would willingly choose to work with a Chaos Monkey?

Working With the Chaos Monkey

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Testing Your Code, So it Doesn't...

Testing Your Code, So it Doesn't...

Testing Your Code, So it Doesn't...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 206206

http://techblog.netflix.com/2010/12/5-lessons-weve-learned-using-aws.html

Sometimes you don’t get a choice; the Chaos Monkey chooses you. At Stack Exchange,
we struggled for months with a bizarre problem. Every few days, one of the servers
in the Oregon web farm would simply stop responding to all external network
requests. No reason, no rationale, and no recovery except for a slow, excruciating
shutdown sequence requiring the server to bluescreen before it would reboot.

We spent months — literally months — chasing this problem down. We walked the list of
everything we could think of to solve it, and then some:

swapping network ports

replacing network cables

a different switch

multiple versions of the network driver

tweaking OS and driver level network settings

simplifying our network configuration and removing TProxy for more traditional X-
FORWARDED-FOR

switching virtualization providers

changing our TCP/IP host model

getting Kernel hotfixes and applying them

involving high-level vendor support teams

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Testing Your Code, So it Doesn't...

Testing Your Code, So it Doesn't...

Testing Your Code, So it Doesn't...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 207207

http://stackexchange.com/
http://blog.stackoverflow.com/2010/01/stack-overflow-network-configuration/
http://serverfault.com/questions/104791/windows-server-2008-r2-network-adapter-stops-working-requires-hard-reboot
http://www.balabit.com/support/community/products/tproxy
http://en.wikipedia.org/wiki/Host_model

some other stuff that I’ve now forgotten because I blacked out from the pain

At one point in this saga our team almost came to blows because we were so frustrated.
(Well, as close to “blows” as a remote team can get over Skype, but you know what I
mean.) Can you blame us? Every few days, one of our servers — no telling which one —
would randomly wink off the network. The Chaos Monkey strikes again!

Even in our time of greatest frustration, I realized that there was a positive side to all this:

Where we had one server performing an essential function, we switched to two.

If we didn’t have a sensible fallback for something, we created one.

We removed dependencies all over the place, paring down to the absolute minimum
we required to run.

We implemented workarounds to stay running at all times, even when services we
previously considered essential were suddenly no longer available.

Every week that went by, we made our system a tiny bit more redundant, because we
had to. Despite the ongoing pain, it became clear that Chaos Monkey was actually doing
us a big favor by forcing us to become extremely resilient. Not tomorrow, not someday,
not at some indeterminate “we’ll get to it eventually” point in the future, but right now
when it hurts.

When you work with the Chaos Monkey, you quickly learn that everything happens for a
reason. Except for those things which happen completely randomly. And that’s why, even
though it sounds crazy, the best way to avoid failure is to fail constantly.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Testing Your Code, So it Doesn't...

Testing Your Code, So it Doesn't...

Testing Your Code, So it Doesn't...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 208208

http://www.codinghorror.com/blog/2010/05/on-working-remotely.html

In The Soft Side of Peer Reviews, Karl Wiegers starts with a powerful pronouncement:

Peer review — an activity in which people other than the author of a software deliverable
examine it for defects and improvement opportunities — is one of the most powerful
software quality tools available. Peer review methods include inspections, walkthroughs,
peer deskchecks, and other similar activities. After experiencing the benefits of peer
reviews for nearly fifteen years, I would never work in a team that did not perform them.

After participating in code reviews for a while here at Vertigo, I believe that peer code
reviews are the single biggest thing you can do to improve your code. If you’re
not doing code reviews right now with another developer, you’re missing a lot of bugs in
your code and cheating yourself out of some key professional development opportunities.
As far as I’m concerned, my code isn’t done until I’ve gone over it with a fellow
developer.

But don’t take my word for it. McConnell provides plenty of evidence for the efficacy of
code reviews in Code Complete:

.. software testing alone has limited effectiveness — the average defect detection rate is
only 25 percent for unit testing, 35 percent for function testing, and 45 percent for
integration testing. In contrast, the average effectiveness of design and code inspections
are 55 and 60 percent. Case studies of review results have been impressive:

In a software-maintenance organization, 55 percent of one-line maintenance changes
were in error before code reviews were introduced. After reviews were introduced,
only 2 percent of the changes were in error. When all changes were considered, 95
percent were correct the first time after reviews were introduced. Before reviews
were introduced, under 20 percent were correct the first time.

In a group of 11 programs developed by the same group of people, the first 5 were
developed without reviews. The remaining 6 were developed with reviews. After all the
programs were released to production, the first 5 had an average of 4.5 errors per
100 lines of code. The 6 that had been inspected had an average of only 0.82 errors
per 100. Reviews cut the errors by over 80 percent.

Code Reviews: Just Do It

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Testing Your Code, So it Doesn't...

Testing Your Code, So it Doesn't...

Testing Your Code, So it Doesn't...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 209209

http://bdn.borland.com/article/borcon/files/1240/paper/1240.html
http://www.amazon.com/exec/obidos/ASIN/0735619670/codihorr-20

The Aetna Insurance Company found 82 percent of the errors in a program by using
inspections and was able to decrease its development resources by 20 percent.

IBM’s 500,000 line Orbit project used 11 levels of inspections. It was delivered early
and had only about 1 percent of the errors that would normally be expected.

A study of an organization at AT&T with more than 200 people reported a 14 percent
increase in productivity and a 90 percent decrease in defects after the organization
introduced reviews.

Jet Propulsion Laboratories estimates that it saves about $25,000 per inspection by
finding and fixing defects at an early stage.

The only hurdle to a code review is finding a developer you respect to do it, and making
the time to perform the review. Once you get started, I think you’ll quickly find that every
minute you spend in a code review is paid back tenfold.

If your organization is new to code reviews, I highly recommend Karl’s book, Peer
Reviews in Software: A Practical Guide. The sample chapters Karl provides on his website
are a great primer, too.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Testing Your Code, So it Doesn't...

Testing Your Code, So it Doesn't...

Testing Your Code, So it Doesn't...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 210210

http://www.amazon.com/exec/obidos/ASIN/0201734850/codihorr-20
http://www.processimpact.com/reviews_book/reviews_book.shtml

Markdown was one of the humane markup languages that we evaluated and adopted for
Stack Overflow. I’ve been pretty happy with it, overall. So much so that I wanted to
implement a tiny, lightweight subset of Markdown for comments as well.

I settled on these three commonly used elements:

italic or _italic_

bold or __bold__

`code`

I loves me some regular expressions and this is exactly the stuff regex was born to do! It
doesn’t look very tough. So I dusted off my copy of RegexBuddy and began.

I typed some test data in the test window, and whipped up a little regex in no time at all.
This isn’t my first time at the disco.

Testing With The Force

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Testing Your Code, So it Doesn't...

Testing Your Code, So it Doesn't...

Testing Your Code, So it Doesn't...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 211211

http://www.codinghorror.com/blog/archives/001116.html
http://www.codinghorror.com/blog/archives/001016.html
http://www.regexbuddy.com/cgi-bin/affref.pl?aff=jatwood

Bam! Yes! Done and done! By gum, I must be a genius programmer!

Despite my obvious genius, I began to have some small, nagging doubts. Is the test
phrase…

I would like this to be *italic* please.

… really enough testing?

Sure it is! I can feel in my bones that this thing freakin’ works! It’s almost like I’m being
pulled toward shipping this code by some inexorable, dark, testing … force. It’s so
seductively easy!

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Testing Your Code, So it Doesn't...

Testing Your Code, So it Doesn't...

Testing Your Code, So it Doesn't...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 212212

http://code.google.com/events/io/sessions/MythGeniusProgrammer.html

But wait. I have this whole database of real world comments that people have
entered on Stack Overflow. Shouldn’t I perhaps try my awesome regular expression on
that corpus of data to see what happens? Oh, fine. If we must. Just to humor you, nagging
doubt. Let’s run a query and see.

select Text from PostComments

where dbo.RegexIsMatch(Text, ‘*(.*?)*’) = 1

Which produced this list of matches, among others:

Interesting fact about math: x * 7 == x + (x * 2) + (x * 4), or x + x >> 1 + x >> 2.
Integer addition is usually pretty cheap.

Thanks. What I needed was to turn on Singleline mode too, and use .*? instead of .*.

yeah, see my edit – change select * to select RESULT.* one row – are sure you have more
than one row item with the same InstanceGUID?

Not your main problem, but you are mix and matching wchar_t and TCHAR. mbstowcs()
converts from char * to wchar_t *.

aawwwww…. Brainf**k is not valid. :/

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Testing Your Code, So it Doesn't...

Testing Your Code, So it Doesn't...

Testing Your Code, So it Doesn't...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 213213

Thank goodness I listened to my midichlorians and let the light side of the testing
force prevail here!

So how do we fix this regex? We use the light side of the force — brute force, that is,
against a ton of test cases! My job here is relatively easy because I have over 20,000 test
cases sitting in a database. You may not have that luxury. Maybe you’ll need to go out
and find a bunch of test data on the internet somewhere. Or write a function that
generates random strings to feed to the routine, also known as fuzz testing.

I wanted to leave the rest of this regular expression as an exercise for the reader, as I’m
a sick guy who finds that sort of thing entertaining. If you don’t — well, what the heck is
wrong with you, man? But I digress. I’ve been criticized for not providing, you know, “the
answer” in my blog posts. Let’s walk through some improvements to our italic regex
pattern.

First, let’s make sure we have at least one non-whitespace character inside the
asterisks. And more than one character in total so we don’t match the ** case. We’ll
use positive lookahead and lookbehind to do that.

(?=\S)(.+?)(?<=\S)

That helps a lot, but we can test against our data to discover some other problems. We
get into trouble when there are unexpected characters in front of or behind the asterisks,

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Testing Your Code, So it Doesn't...

Testing Your Code, So it Doesn't...

Testing Your Code, So it Doesn't...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 214214

http://en.wikipedia.org/wiki/Fuzz_testing
http://www.regular-expressions.info/lookaround.html

like, say, p*q*r. So let’s specify that we only want certain characters outside the
asterisks.

(?<=[\s^,(])*(?=\S)(.+?)(?<=\S)*(?=[\s$,.?!])

Run this third version against the data corpus, and wow, that’s starting to look pretty darn
good! There are undoubtedly some edge conditions, particularly since we’re unlucky
enough to be talking about code in a lot of our comments, which has wacky asterisk use.

This regex doesn’t have to be (and probably cannot be, given the huge possible number
of human inputs) perfect, but running it against a large set of input test data gives me
reasonable confidence that I’m not totally screwing up.

So by all means, test your code with the force — brute force! It’s good stuff! Just be
careful not to get sloppy, and let the dark side of the testing force prevail. If
you think one or two simple test cases covers it, that’s taking the easy (and most likely,
buggy and incorrect) way out.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Testing Your Code, So it Doesn't...

Testing Your Code, So it Doesn't...

Testing Your Code, So it Doesn't...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 215215

J. Timothy King has a nice piece on the twelve benefits of writing unit tests first.
Unfortunately, he seriously undermines his message by ending with this:

However, if you are one of the [coders who won't give up code-first], one of those
curmudgeon coders who would rather be right than to design good software, well, you
truly have my pity.

Extending your pity to anyone who doesn’t agree with you isn’t exactly the most effective
way to get your message across.

Consider Mr. T. He’s been pitying fools since the early 80′s, and the world is still awash in

I Pity the Fool Who Doesn’t Write
Unit Tests

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Testing Your Code, So it Doesn't...

Testing Your Code, So it Doesn't...

Testing Your Code, So it Doesn't...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 216216

http://www.jtse.com/blog/2006/07/11/twelve-benefits-of-writing-unit-tests-first

foolishness.

It’s too bad, because the message is an important one. The general adoption of unit
testing is one of the most fundamental advances in software development in the last 5 to
7 years.

How do you solve a software problem? How do they teach you to handle it in school?
What’s the first thing you do? You think about how to solve it. You ask, “What code will I
write to generate a solution?” But that’s backward. The first thing you ask is not “What
code will I write?” The first thing you ask is “How will I know that I’ve solved the problem?”

We’re taught to assume we already know how to tell whether our solution works. It’s a
non-question. Like indecency, we’ll know it when we see it. We believe we don’t actually
need to think, before we write our code, about what it needs to do. This belief is so deeply
ingrained, it’s difficult for most of us to change.

King presents a list of 12 specific ways adopting a test-first mentality has helped him write
better code:

1. Unit tests prove that your code actually works

2. You get a low-level regression-test suite

3. You can improve the design without breaking it

4. It’s more fun to code with them than without

5. They demonstrate concrete progress

6. Unit tests are a form of sample code

7. It forces you to plan before you code

8. It reduces the cost of bugs

9. It’s even better than code inspections

10. It virtually eliminates coder’s block

11. Unit tests make better designs

12. It’s faster than writing code without tests

Even if you only agree with a quarter of the items on that list — and I’d say at least half of

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Testing Your Code, So it Doesn't...

Testing Your Code, So it Doesn't...

Testing Your Code, So it Doesn't...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 217217

http://www.jtse.com/blog/2006/07/11/twelve-benefits-of-writing-unit-tests-first

them are true in my experience — that is a huge step forward for software developers.
You’ll get no argument from me on the overall importance of unit tests. I’ve increasingly
come to believe that unit tests are so important that they should be a first-class
language construct.

However, I think the test-first dogmatists tend to be a little too religious for their own
good. Asking developers to fundamentally change the way they approach
writing software overnight is asking a lot. Particularly if those developers have yet
to write their first unit test. I don’t think any software development shop is ready for test-
first development until they’ve adopted unit testing as a standard methodology on every
software project they undertake.

Excessive religious fervor could sour them on the entire concept of unit testing.

And that’s a shame, because any tests are better than zero tests. And isn’t unit
testing just a barely more formal way of doing the ad-hoc testing we’ve been doing all
along? I think Fowler said it best:

Whenever you are tempted to type something into a print statement or a debugger
expression, write it as a test instead.

I encourage developers to see the value of unit testing; I urge them to get into the habit
of writing structured tests alongside their code. That small change in mindset could
eventually lead to bigger shifts like test-first development — but you have to crawl before
you can sprint.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Testing Your Code, So it Doesn't...

Testing Your Code, So it Doesn't...

Testing Your Code, So it Doesn't...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 218218

http://www.codinghorror.com/blog/archives/000265.html
http://codebetter.com/blogs/jeffrey.palermo/archive/2006/03/28/141920.aspx
http://codebetter.com/blogs/jeffrey.palermo/archive/2006/03/28/141920.aspx
http://emw.inf.tu-dresden.de/de/pdai/Forschung/refactoring/refactoring_html/node7.html

Why does Wil Shipley, the author of Delicious Library, hate unit testing so much?

I’ve certainly known companies that do “unit testing” and other crap they’ve read in
books. Now, you can argue this point if you’d like, because I don’t have hard data; all I
have is my general intuition built up over my paltry 21 years of being a professional
programmer.

[..] You should test. Test and test and test. But I’ve NEVER, EVER seen a structured test
program that (a) didn’t take like 100 man-hours of setup time, (b) didn’t suck down a ton
of engineering resources, and (c) actually found any particularly relevant bugs. Unit
testing is a great way to pay a bunch of engineers to be bored out of their minds and find
not much of anything. [I know -- one of my first jobs was writing unit test code for
Lighthouse Design, for the now-president of Sun Microsystems.] You’d be MUCH, MUCH
better offer hiring beta testers (or, better yet, offering bug bounties to the general
public).

Let me be blunt: YOU NEED TO TEST YOUR DAMN PROGRAM. Run it. Use it. Try odd
things. Whack keys. Add too many items. Paste in a 2MB text file. FIND OUT HOW IT
FAILS. I’M YELLING BECAUSE THIS IS IMPORTANT.

Most programmers don’t know how to test their own stuff, and so when they approach
testing they approach it using their programming minds: “Oh, if I just write a program to
do the testing for me, it’ll save me tons of time and effort.”

It’s hard to completely disregard the opinion of a veteran developer shipping an
application that gets excellent reviews. Although his opinion may seem heretical to
the Test Driven Development cognoscenti, I think he has some valid points:

Some bugs don’t matter. Extreme unit testing may reveal.. extremely rare bugs. If
a bug exists but no user ever encounters it, do you care? If a bug exists but only one in
ten thousand users ever encounters it, do you care? Even Joel Spolsky seems to
agree on this point. Shouldn’t we be fixing bugs based on data gathered from actual
usage rather than a stack of obscure, failed unit tests?

Unit Testing versus Beta Testing

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Testing Your Code, So it Doesn't...

Testing Your Code, So it Doesn't...

Testing Your Code, So it Doesn't...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 219219

http://www.codinghorror.com/blog/archives/000336.html
http://wilshipley.com/blog/2005/09/unit-testing-is-teh-suck-urr.html
http://www.macworld.com/2005/03/reviews/deliciouslibrary/
http://www.testdriven.com/
http://www.joelonsoftware.com/articles/SetYourPriorities.html

Real testers hate your code. A unit test simply verifies that something works. This
makes it far, far too easy on the code. Real testers hate your code and will do
whatever it takes to break it — feed it garbage, send absurdly large inputs, enter
unicode values, double-click every button in your app, etcetera.

Users are crazy. Automated test suites are a poor substitute for real-world beta
testing by actual beta testers. Users are erratic. Users have favorite code paths. Users
have weird software installed on their PCs. Users are crazy, period. Machines are far
too rational to test like users.

While I think basic unit testing can complement formal beta testing, I tend to agree with
Wil: the real and best testing occurs when you ship your software to beta
testers. If unit test coding is cutting into your beta testing schedule, you’re making a
very serious mistake.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Testing Your Code, So it Doesn't...

Testing Your Code, So it Doesn't...

Testing Your Code, So it Doesn't...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 220220

Pop quiz, hotshot. How do you know if your application works? Sure, maybe your app
compiles. Maybe it passes all the unit tests. Maybe it ran the QA gauntlet successfully.
Maybe it was successfully deployed to the production server, or packaged into an
installer. Maybe your beta testers even signed off on it.

But that doesn’t mean it works.

Can users actually understand your application? Can they get their work done in your
application? That’s what defines a working application. All the other stuff I listed is just
noise. You don’t know if your application truly works until you’ve performed
usability tests on it with actual users.

And you regularly do usability testing on your application, right?

That’s what I thought. One of the central concepts in Steve Krug’s book Don’t Make Me
Think is that usability testing is essential to any software project. Krug calls his simplified
approach to usability testing lost our lease, going-out-of-business-sale usability testing:

Usability testing has been around for a long time, and the basic idea is pretty simple: If
you want to know whether your software or your Web site or your VCR remote control is
easy enough to use, watch some people while they try to use it and note where they run
into trouble. Then fix it, and test it again.

In the beginning, though, usability testing was a very expensive proposition. You had to
have a usability lab with an observation room behind a one-way mirror, and at least two
video cameras so you could record the users’ reactions and the thing they were using.
You had to recruit a lot of people so you could get results that were statistically
significant. It was Science. It cost $20,000 to $50,000 a shot. It didn’t happen very often.

But in 1989 Jakob Nielsen wrote a paper titled “Usability Engineering at a Discount” and
pointed out that it didn’t have to be that way. You didn’t need a usability lab, and you
could achieve the same results with a lot fewer users. The idea of discount usability
testing was a huge step forward. The only problem is that a decade later most people still
perceive testing as a big deal, hiring someone to conduct a test still costs $5,000 to
$15,000, and as a result it doesn’t happen nearly often enough.

Low-Fi Usability Testing

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Testing Your Code, So it Doesn't...

Testing Your Code, So it Doesn't...

Testing Your Code, So it Doesn't...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 221221

http://www.amazon.com/exec/obidos/ASIN/0321344758/codihorr-20
http://www.useit.com/papers/guerrilla_hci.html

$15,000, and as a result it doesn’t happen nearly often enough.

What I’m going to commend to you in this chapter is something even more drastic: Lost
our lease, going-out-of-business-sale usability testing. I’m going to try to explain how to
do your own testing when you have no money and no time. If you can afford to hire a
professional to do your testing, by all means do it — but don’t do it if it means you’ll do
less testing.

Krug points out that usability testing is only as difficult as you make it. It’s possible
to get useful results from a usability test with a single user, even:

[Usability] testing always works, and even the worst test with the wrong user will show
you things you can do to improve your site. I make a point of always doing a live user test
at my workshops so that people can see it’s very easy to do and it always produces an
abundance of valuable insights. I ask for a volunteer and have him try to perform a task
on a site belonging to one of the other attendees. These tests last less than ten minutes,
but the person whose site is being tested usually scribbles several pages of notes. And
they always ask if they can have the recording of the test to show their team back home.
Once person told me that after his team saw the recording, they made one change to
their site which they later calculated had resulted in $100,000 in savings.

For more proof that you don’t need a lot of users to have an effective usability test, Jakob
Neilsen offers the following graph:

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Testing Your Code, So it Doesn't...

Testing Your Code, So it Doesn't...

Testing Your Code, So it Doesn't...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 222222

http://www.useit.com/alertbox/20000319.html

Obviously, not doing any usability testing at all is a disaster. But what’s not so obvious is
that usability testing with just a few users is remarkably effective. And it can be relatively
painless if you follow Krug’s broad guidelines for low-fidelity usability testing:

When should I test? Ideally, once per month. You should be running small usability
tests continuously throughout the development process. The tests should be short and
simple, so you can conduct them almost any time with little advance planning.

How many users do I need? Three or four, max.

What kind of users? Grab some people. Anyone who can use a computer will do.
The best-kept secret of usability testing is that it doesn’t much matter who you test.
It’s a good idea to get representative users, but it’s much more important to test early
and often. Don’t be embarrassed to ask friends and neighbors.

How much time will it take? 45 minutes to an hour per user. Keep it simple. Keep it
small. Although it does take extra time to conduct usability tests, even simple ones,
ultimately you will save time. The results of the usability tests will prevent you
from wasting time arguing endlessly, or redoing things at the end of a project.

Where do I conduct the test? Any office or conference room. All you need is a

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Testing Your Code, So it Doesn't...

Testing Your Code, So it Doesn't...

Testing Your Code, So it Doesn't...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 223223

http://www.codinghorror.com/images/dont_make_me_think_pg_131_smaller.png

room with a desk, a computer and two chairs where you won’t be interrupted.

Who should do the testing? Any reasonably patient human being. Choose someone
who tends to be patient, calm, empathetic and a good listener. With a little practice,
most people can get quite good at it.

What equipment do I need? All you need is some form of screen recording
software, such as Camtasia. If you want to get really fancy you can bring in a
camcorder to record the person and the screen.

How do I prepare for the tests? Decide what you want to show. Have a short
script ready to guide the participants through the test.

How much will it cost? Minus the moderator’s time, a $50-$100 stipend per user.

How do we interpret the results? Debrief the development team and any
interested stakeholders over lunch the same day. One of the nicest things about
usability testing is that the results tend to be obvious to everyone who’s watching. The
serious problems are hard to miss.

If you don’t already own a copy of Don’t Make Me Think, shame on you. In the meantime,
I highly recommend downloading Chapter 9 of Steve Krug’s Don’t Make Me Think, which
has much more detail than the summary I’ve presented.

Usability testing doesn’t have to be complicated. If you really want to know if what you’re
building works, ask someone to use it while you watch. If nothing else, grab Joe
from accounting, Sue from marketing, grab anyone nearby who isn’t directly involved
with the project, and have them try it. Don’t tell them what to do. Give them a task, and
remind them to think out loud while they do it. Then quietly sit back and watch what
happens. I can tell you from personal experience that the results are often eye-opening.

The benefits of usability testing are clear. You just have to do it to realize any of those
benefits.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Testing Your Code, So it Doesn't...

Testing Your Code, So it Doesn't...

Testing Your Code, So it Doesn't...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 224224

http://www.codinghorror.com/blog/archives/000721.html
http://www.techsmith.com/products/studio/default.asp
http://www.sensible.com/Downloads/script.doc
http://www.amazon.com/exec/obidos/ASIN/0321344758/codihorr-20
http://sensible.com/Downloads/DMMTchapter09_for_personal_use_only.pdf

Here’s an interesting thought question from Mike Stall: what’s worse than crashing? Mike
provides the following list of crash scenarios, in order from best to worst:

1. Application works as expected and never crashes.

2. Application crashes due to rare bugs that nobody notices or cares about.

3. Application crashes due to a commonly encountered bug.

4. Application deadlocks and stops responding due to a common bug.

5. Application crashes long after the original bug.

6. Application causes data loss and/or corruption.

Mike points out that there’s a natural tension between…

failing immediately when your program encounters a problem, eg “fail fast”

attempting to recover from the failure state and proceed normally

The philosophy behind “fail fast” is best explained in Jim Shore’s article.

Some people recommend making your software robust by working around problems
automatically. This results in the software “failing slowly.” The program continues working
right after an error but fails in strange ways later on. A system that fails fast does exactly
the opposite: when a problem occurs, it fails immediately and visibly. Failing fast is a
nonintuitive technique: “failing immediately and visibly” sounds like it would make your
software more fragile, but it actually makes it more robust. Bugs are easier to find and
fix, so fewer go into production.

Fail fast is reasonable advice — if you’re a developer. What could possibly be easier
than calling everything to a screeching halt the minute you get a byte of data you don’t
like? Computers are spectacularly unforgiving, so it’s only natural for developers to
reflect that masochism directly back on users.

What’s Worse Than Crashing?

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Testing Your Code, So it Doesn't...

Testing Your Code, So it Doesn't...

Testing Your Code, So it Doesn't...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 225225

http://blogs.msdn.com/jmstall/archive/2007/07/26/there-are-things-worse-than-crashing.aspx
http://www.martinfowler.com/ieeeSoftware/failFast.pdf
http://www.codinghorror.com/blog/archives/000676.html

But from the user’s perspective, failing fast isn’t helpful. To them, it’s just
another meaningless error dialog preventing them from getting their work done. The best
software never pesters users with meaningless, trivial errors — it’s more considerate
than that. Unfortunately, attempting to help the user by fixing the error could
make things worse by leading to subtle and catastrophic failures down the
road. As you work your way down Mike’s list, the pain grows exponentially. For both
developers and users. Troubleshooting #5 is a brutal death march, and by the time you
get to #6 — you’ve lost or corrupted user data — you’ll be lucky to have any users left to
fix bugs for.

What’s interesting to me is that despite causing more than my share of software crashes
and hardware bluescreens, I’ve never lost data, or had my data corrupted. You’d figure
Murphy’s Law would force the worst possible outcome at least once a year, but it’s
exceedingly rare in my experience. Maybe this is an encouraging sign for the current
state of software engineering. Or maybe I’ve just been lucky.

So what can we, as software developers, do about this? If we adopt a “fail as often and as
obnoxiously as possible” strategy, we’ve clearly failed our users. But if we corrupt or lose
our users’ data through misguided attempts to prevent error messages — if we fail to
treat our users’ data as sacrosanct — we’ve also failed our users. You have to do both at
once:

1. If you can safely fix the problem, you should. Take responsibility for your program.
Don’t slouch through the easy way out by placing the burden for dealing with every
problem squarely on your users.

2. If you can’t safely fix the problem, always err on the side of protecting the user’s data.
Protecting the user’s data is a sacred trust. If you harm that basic contract of trust
between the user and your program, you’re hurting not only your credibility — but the
credibility of the entire software industry as a whole. Once they’ve been burned by
data loss or corruption, users don’t soon forgive.

The guiding principle here, as always, should be to respect your users. Do the right
thing.

Gift this book to your friends...for free.

Become a Hyperink reader. Get a special surprise.

Like the book? Support our author and leave a comment!

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Testing Your Code, So it Doesn't...

Testing Your Code, So it Doesn't...

Testing Your Code, So it Doesn't...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 226226

http://www.codinghorror.com/blog/archives/000114.html
http://www.codinghorror.com/blog/archives/000550.html
http://www.hyperink.com/share/1559?utm_source=1559&utm_medium=inside_book&utm_campaign=chapter_end_share_pdf
http://www.hyperink.com/register?utm_source=1559&utm_medium=inside_book&utm_campaign=chapter_end_user_pdf
http://www.hyperink.com/Blog-To-Book-Effective-Programming-More-Than-Writing-Code-b1559?utm_source=1559&utm_medium=inside_book&utm_campaign=chapter_end_like_pdf

X.

Building, Managing
and Benefiting from a

Community

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Building, Managing and Benefiting...

Building, Managing and Benefiting...

Building, Managing and Benefiting...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 227227

11:28 PM – 30 May 12

 Jeff Atwood@codinghorror

“I wish more people in our industry were trying to build communities
first and products second, like photomatt with WordPress”

You know how interviewers love asking about your greatest weakness, or the biggest
mistake you’ve ever made? These questions may sound formulaic, maybe even
borderline cliche, but be careful when you answer: they are more important than they
seem.

So when people ask me what our biggest mistake was in building Stack
Overflow I’m glad I don’t have to fudge around with platitudes. I can honestly and openly
point to a huge, honking, ridiculously dumb mistake I made from the very first day of
development on Stack Overflow — and, worse, a mistake I stubbornly clung to for a solid
nine-month period after that over the continued protestations of the community. I even
went so far as to write a whole blog post decrying its very existence.

For the longest time, I had an awfully Fight Club-esque way of looking at this: the first
rule of Stack Overflow was that you didn’t discuss Stack Overflow! After all, we
were there to learn about programming with our peers, not learn about a stupid website.
Right?

Listen To Your Community, But
Don’t Let Them Tell You What to

Do

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Building, Managing and Benefiting...

Building, Managing and Benefiting...

Building, Managing and Benefiting...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 228228

http://www.codinghorror.com/blog/2005/05/success-through-failure.html
http://www.codinghorror.com/blog/2009/07/meta-is-murder.html

I didn’t see the need for a meta.

Meta is, of course, the place where you go to discuss the place. Take a moment
and think about what that means. Meta is for people who care so deeply about their
community that they’re willing to go one step further, to come together and spend even
more of their time deciding how to maintain and govern it. So, in a nutshell, I was telling
the people who loved Stack Overflow the most of all to basically … f**k off and go away.

As I said, not my finest hour.

In my defense, I did eventually figure this out, thanks to the continued prodding of the
community. Although we’d used an external meta site since beta, we eventually launched
our very own meta.stackoverflow in June 2009, ten months after public beta. And we
fixed this very definitively with Stack Exchange. Every Stack Exchange site we launch has
a meta from day one. We now know that meta participation is the source of all
meaningful leadership and governance in a community, so it is cultivated and monitored
closely.

I also paid penance for my sins by becoming the top user of our own meta. I’ve spent the
last 2 years and 7 months totally immersed in the morass of bugs, feature requests,
discussions and support that is our meta. As you can see in my profile, I’ve visited
meta 901 unique days in that time frame, which is disturbingly close to every day. I
consider my meta participation stats a badge of honor, but more than that, it’s my job to
help build this thing alongside you. We explicitly do everything in public on Stack
Exchange — it’s very intentionally the opposite of Ivory Tower Development.

Along the way I’ve learned a few lessons about building software with your community,

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Building, Managing and Benefiting...

Building, Managing and Benefiting...

Building, Managing and Benefiting...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 229229

http://meta.stackoverflow.com/
http://stackexchange.com/sites
http://meta.stackoverflow.com/users/1/jeff-atwood
http://www.codinghorror.com/blog/2005/02/ivory-tower-development.html

and handling community feedback.

1. 90 percent of all community feedback is crap.

Let’s get this out of the way immediately. Sturgeon’s Law can’t be denied by any man,
woman, child … or community, for that matter. Meta community, I love you to death, so
let’s be honest with each other: most of the feedback and feature requests you give us
are just not, uh, er … actionable, for a zillion different reasons.

But take heart: this means 10 percent of the community feedback you’ll get is
awesome! I guarantee you’ll find ten posts that are pure gold, that have the potential to
make the site clearly better for everyone … provided you have the intestinal fortitude to
look at a hundred posts to get there. Be prepared to spend a lot of time, and I mean a
whole freaking lot of time, mining through community feedback to extract those rare
gems. I believe every community has users savvy enough to produce them in some
quantity, and they’re often startlingly wonderful.

2. Don’t get sweet talked into building a truck.

You should immediately triage the feedback and feature requests you get into two broad
buckets:

We need power windows in this car!

or

We need a truck bed in this car!

The former is, of course, a reasonable thing to request adding to a car, while the latter is
a request to change the fundamental nature of the vehicle. The malleable form of
software makes it all too tempting to bolt that truck bed on to our car. Why not? Users
keep asking for it, and trucks sure are convenient, right?

Don’t fall into this trap. Stay on mission. That car-truck hybrid is awfully tempting to a lot
of folks, but then you end up with a Subaru Brat. Unless you really want to build a truck
after all, the users asking for truck features need to be gently directed to their nearest
truck dealership, because they’re in the wrong place.

3. Be honest about what you won’t do.

It always depressed me to see bug trackers and feedback forums with thousands of items
languishing there in no man’s land with no status at all. That’s a sign of a neglected
community, and worse, a dishonest relationship with the community. It is sadly all too

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Building, Managing and Benefiting...

Building, Managing and Benefiting...

Building, Managing and Benefiting...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 230230

http://en.wikipedia.org/wiki/Sturgeon%27s_Law
http://balpha.de/2011/06/a-shout-out-to-the-people-of-meta/
http://en.wikipedia.org/wiki/Subaru_BRAT

typical. Don’t do this!

I’m not saying you should tell your community that their feedback sucks, even when it
frequently does. That’d be mean. But don’t be shy about politely declining requests when
you feel they don’t make sense, or if you can’t see any way they could be reasonably
implemented. (You should always reserve the right to change your mind in the future, of
course.) Sure, it hurts to be rejected — but it hurts far more to be ignored. I believe very,
very strongly that if you’re honest with your community, they will ultimately respect you
more for that.

All relationships are predicated on honesty. If you’re not willing to be honest with your
community, how can you possibly expect them to respect you … or continue the
relationship?

4. Listen to your community, but don’t let them tell you what to do.

It’s tempting to take meta community requests as a wholesale template for development
of your software or website. The point of a meta is to listen to your community, and act
on that feedback, right? On the contrary, acting too directly on community feedback
is incredibly dangerous, and the reason many of these community initiatives fail when
taken too literally. I’ll let Tom Preston-Werner, the co-founder of GitHub, explain:

Consider a feature request such as “GitHub should let me FTP up a documentation site
for my project.” What this customer is really trying to say is “I want a simple way to
publish content related to my project,” but they’re used to what’s already out there, and
so they pose the request in terms that are familiar to them. We could have implemented
some horrible FTP based solution as requested, but we looked deeper into the underlying
question and now we allow you to publish content by simply pushing a Git repository to
your account. This meets requirements of both functionality and elegance.

Community feedback is great, but it should never be used as a crutch, a substitute for
thinking deeply about what you’re building and why. Always try to identify what the
underlying needs are, and come up with a sensible roadmap.

5. Be there for your community.

Half of community relationships isn’t doing what the community thinks they want at any
given time, but simply being there to listen and respond to the community. When
the co-founder of Stack Exchange responds to your meta post — even if it wasn’t exactly
what you may have wanted to hear — I hope it speaks volumes about how committed we
are to really, truly building this thing alongside our community.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Building, Managing and Benefiting...

Building, Managing and Benefiting...

Building, Managing and Benefiting...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 231231

http://tom.preston-werner.com/2011/03/29/ten-lessons-from-githubs-first-year.html

Regardless of whether money is changing hands or not, you should love discovering some
small gem of a community request or bugfix on meta that makes your site or product
better, and swooping in to make it so. That’s a virtuous public feedback loop: it says you
matter and we care and everything just keeps on getting better all in one delightful
gesture.

And isn’t that what it’s all about?

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Building, Managing and Benefiting...

Building, Managing and Benefiting...

Building, Managing and Benefiting...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 232232

Paul Buchheit on listening to users:

I wrote the first version of Gmail in one day. It was not very impressive. All I did was stuff
my own email into the Google Groups (Usenet) indexing engine. I sent it out to a few
people for feedback, and they said that it was somewhat useful, but it would be better if it
searched over their email instead of mine. That was version two. After I released that
people started wanting the ability to respond to email as well. That was version three.
That process went on for a couple of years inside of Google before we released to the
world.

Startups don’t have hundreds of internal users, so it’s important to release to the world
much sooner. When FriendFeed was semi-released (private beta) in October, the product
was only about two months old (and 99.9% written by two people, Bret and Jim). We’ve
made a lot of improvements since then, and the product that we have today is much
better than what we would have built had we not launched. The reason? We have users,
and we listen to them, and we see which things work and which don’t.

Listening to users is a tricky thing. Users often don’t know what they want, and even if
they did, the communication is likely to get garbled somewhere between them and you.
By no means should you ignore your users, though. Most people will silently and forever
walk away if your software or website doesn’t meet their needs. The users who care
enough to give you feedback deserve your attention and respect. They’re essentially
taking it upon themselves to design your product. If you don’t listen attentively and
politely respond to all customer feedback, you’re setting yourself up for eventual failure.

It’s rude not to listen to your users. So how do we reconcile this with the first rule of
usability — Don’t Listen to Users?

To discover which designs work best, watch users as they attempt to perform tasks with
the user interface. This method is so simple that many people overlook it, assuming that
there must be something more to usability testing. [It] boils down to the basic rules of

I Repeat: Do Not Listen to Your
Users

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Building, Managing and Benefiting...

Building, Managing and Benefiting...

Building, Managing and Benefiting...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 233233

http://paulbuchheit.blogspot.com/2008/02/most-import-thing-to-understand-about.html
http://friendfeed.com/
http://www.codinghorror.com/blog/archives/001048.html
http://www.useit.com/alertbox/20010805.html
http://www.useit.com/alertbox/20010805.html

usability:

Watch what people actually do.

Do not believe what people say they do.

Definitely don’t believe what people predict they may do in the future.

I think Paul had it right, but it’s easy to miss. The relevant phrase in Paul’s post is we see
which things work, which implies measurement and correlation. There’s no need to
directly watch users (although it never hurts) when you have detailed logs showing what
they actually did. Collect user feedback, then correlate it with data on what those users
are actually doing:

Don’t just implement feature requests from “user representatives” or “business
analysts.” The most common way to get usability wrong is to listen to what users say
rather than actually watching what they do. Requirement specifications are always
wrong. You must prototype the requirements quickly and show users something concrete
to find out what they really need.

Acting on user feedback alone is questionable. No matter how well intentioned you’re
guessing. Why guess when you can take actions based on cold, hard data? Acting on user
feedback and detailed usage metrics for your application or website — that’s the gold
standard.

Consider Valve software’s hardware survey. A particularly vocal set of gamers might
demand support for extremely high widescreen resolutions such as 1920 x 1200 or 2560
x 1600. Understandable, since they’ve spent a lot of money on high-end gaming rigs. But
what resolutions do most people actually play at?

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Building, Managing and Benefiting...

Building, Managing and Benefiting...

Building, Managing and Benefiting...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 234234

http://www.useit.com/alertbox/application-mistakes.html
http://www.steampowered.com/status/survey.html

Based on this survey of 1.3 million Steam users, about 10 percent of gamers have high
resolution, widescreen displays. There are other reasons you might want to satisfy this
request, of course. Those 10 percent tend to be the most dedicated, influential gamers.
But having actual data behind your user feedback lets you vet the actions you take, to
ensure that you’re spending your development budget wisely. The last thing you want to
do is fritter away valuable engineering time on features that almost nobody is using, and
having usage data is how you tell the difference.

Valve also collects an exhaustive set of gameplay statistics for their games, such as Team
Fortress 2.

We’ve traditionally relied on things like written feedback from players to help decide
which improvements to focus on. More recently, Steam has allowed us to collect more
information than was previously possible. TF2 includes a reporting mechanism which tells
us details about how people are playing the game. We’re sharing the data we
collect because we think people will find it interesting, and because we expect to spot
emergent problems earlier, and ultimately build better products and experiences as a
result.

The very first graph, of time played per class, illustrates one problem with Team
Fortress 2 in a way that I don’t think any amount of player feedback ever could.

Scout 17.5%
Engineer 17.3%
Soldier 15%
Demoman 10.5%
Sniper 10.1%
Heavy 8.5%
Spy 8%
Pyro 7%
Medic 5.5%

The medic class is severely underrepresented in actual gameplay. I suppose this is
because Medics don’t engage in much direct combat, so they’re not as exciting to play
as, say, a Demoman or Soldier. That’s unfortunate, because the healing abilities of the
medic class are frequently critical to winning a round. So what did Valve do? They
released a giant set of medic-specific achievements to encourage players to choose the
Medic class more often. That’s iterative game design based on actual, real-world

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Building, Managing and Benefiting...

Building, Managing and Benefiting...

Building, Managing and Benefiting...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 235235

http://en.wikipedia.org/wiki/Team_Fortress_2
http://steampowered.com/status/tf2/tf2_stats.php
http://www.ubercharged.net/2008/01/29/new-medic-achievements-already-hidden-on-your-pc/

gameplay data.

Using detailed gameplay metrics to refine game design isn’t new; Bungie ran both Halo 2
and 3 through comprehensive usability lab tests.

In April, Bungie found a nagging problem with Valhalla, one of Halo 3′s multiplayer levels:

Player deaths (represented in dark red on this “heat map” of the level) were skewing
toward the base on the left, indicating that forces invading from the right had a slight
advantage. After reviewing this image, designers tweaked the terrain to give both armies
an even chance.

Again — try to imagine how you’d figure out this fundamental map imbalance based on
player feedback. I’m not sure if it’s even possible.

Make sure your application or website is capturing user activity in a useful,
meaningful way. User feedback is important. Don’t get me wrong. But never take
action solely based on user feedback. Always have some kind of user activity data to
corroborate and support the valuable user feedback you’re getting. Ignoring your user
feedback may be setting yourself up for eventual failure, but blindly acting on every user
request is certain failure.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Building, Managing and Benefiting...

Building, Managing and Benefiting...

Building, Managing and Benefiting...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 236236

http://www.wired.com/gaming/virtualworlds/magazine/15-09/ff_halo?currentPage=all

When Joel Spolsky and I set out to design the Stack Exchange Q&A engine in 2008 — then
known as Stack Overflow — we borrowed liberally and unapologetically from any online
system that we felt worked. Some of our notable influences included:

Reddit and Digg voting

Xbox 360 achievements

Wikipedia editing

eBay karma

Blogs and blog comments

Classic web bulletin boards

All these elements were folded up into the Stack Exchange Q&A engine, so that we might
help people create useful artifacts on the internet while learning with and among their
peers. You know the old adage that good artists copy, great artists steal? That quote
is impossible to source, but it means we were repurposing these elements we liked.

So, what do Picasso and T.S. Eliot mean? They say, in the briefest of terms: take old
work to a new place. Steal the Google site, strip down what works (fast load,
nonexistent graphics, small quirky changes that delight) and use the parts on your own
site. Look at the curve of a Coke Bottle and create a beautiful landscape painting with it.
Take the hairline pinstriping on the side of somebody’s car, reimagine it on your print job.
Find inspiration in the world you live in, where nothing is truly new so that everything has
the potential to be innovative.

Unfortunately, the elements we liked were often buried in mounds of stuff that we … sort
of hated. So extracting just the good parts and removing the rest was part of the mission.
If you’re lucky enough to have a convenient villain to position yourself against, that might
be all you need.

Traditional web bulletin board systems have a design that was apparently permanently

The Gamification

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Building, Managing and Benefiting...

Building, Managing and Benefiting...

Building, Managing and Benefiting...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 237237

http://stackexchange.com/
http://www.businessofdesignonline.com/picasso-good-artists-copy/
http://www.codinghorror.com/blog/2009/03/whos-your-arch-enemy.html

frozen in place circa 2001 along with Windows XP. Consider this typical forum thread.

Here is the actual information from that forum thread.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Building, Managing and Benefiting...

Building, Managing and Benefiting...

Building, Managing and Benefiting...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 238238

Based on the original size of those screenshots, only 18 percent of that forum thread
page is content. The other 82 percent is lost to signatures, avatars, UI doohickeys and
other web forum frippery that has somehow become accepted as “the way things are
done.” I regularly participate in several expert niche bulletin boards of various types
today, and they’re all built the same way. Nobody complains.

But they should.

This is the status quo that we’re up against. Yes, we fixed it for programmers with Stack
Overflow, but why stop there? We want to liberate all the brilliant experts stuck in these
horrible Soviet-era concrete block housing forums all over the web. We’d like to
introduce them to the focused, no-nonsense Stack Exchange Way, a beautiful silo of pure
Q&A signal without all the associated web forum gunk.

There’s only one teeny-tiny obstacle in our way. As a great programmer I worked with
once said:

It’s the damn users. They’ve ruined every program I’ve ever created.

Every web forum is the way it is because users wanted it that way. Yes, the design of the
forum software certainly influences behavior, but the classic 2001-era web forum
paradigm assumed that what users wanted made sense for the rest of the larger
internet. As it turns out, groups are their own worst enemy. What groups want, and what
the rest of the world needs, are often two very different things. Random discussion is fine
for entertainment, but it’s not particularly useful, nor does it tend to generate the kind of
artifacts that will be relevant a few years from now like Wikipedia does. So then the
problem becomes how do you encourage groups to do what’s best for the
world rather than their own specific, selfish needs?

When I looked at this problem, I felt I knew the answer. But there wasn’t a word for it in
2008.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Building, Managing and Benefiting...

Building, Managing and Benefiting...

Building, Managing and Benefiting...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 239239

http://stackexchange.com/sites
http://www.codinghorror.com/blog/2005/05/a-group-is-its-own-worst-enemy.html

Now there is: Gamification.

Gamification is the use of game design techniques and mechanics to solve problems and
engage audiences. […] Gamification works by … taking advantage of humans’
psychological predisposition to engage in gaming. The technique can encourage people
to perform chores that they ordinarily consider boring, such as completing surveys,
shopping, or reading web sites.

I had no idea this Wikipedia article even existed until a few months ago, but we are
featured prominently in it. It is true that all our stolen ideas about reputation systems,
achievements, identity and vote scoring are in place specifically to encourage the
adoption of the brave new no-nonsense, all-signal Stack Exchange Q&A model. Without
those incentive systems, when left to their own devices, what you get is … well, every
forum ever created. Broken by design.

Yes, we have ulterior motives, but let me explain why I think gaming elements are not
tacked on to the Stack Exchange Q&A engine, but a natural and essential element of the
design from day one.

Learning is (supposed to be) fun

I’ve had this concept in my head way before the web emerged, long before anyone
coined the term “Gamification” in 2010. In fact, I’d trace my inspiration for this all the
way back to 1983.

For programmers, everything we know is pretty much guaranteed to be obsolete in 10
years if we’re lucky, and 5 years if we aren’t. It’s changing all the time. The field of

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Building, Managing and Benefiting...

Building, Managing and Benefiting...

Building, Managing and Benefiting...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 240240

http://en.wikipedia.org/wiki/Gamification
http://www.codinghorror.com/blog/2011/02/how-to-write-without-writing.html

programming is almost by definition one of constant learning. Programming is supposed
to be fun — and it is, if you’re doing it right. Nobody taught me that better than the
Beagle Bros on my Apple II. Why can’t learning in every other subject matter be just as
enjoyable?

Games are learning aids

There’s a long, rich history of programmers as gamers. Oftentimes, the whole reason we
became programmers in the first place is because we wanted to move beyond being a
mere player and change the game, control it, modify its parameters, maybe even create
our own games.

We used games to learn how to program. To a programmer, a game is a perfectly
natural introduction to real programming problems. I’d posit that any field can use games
as an introduction to the subject matter — and as a reinforcement to learning.

Games help people work toward a goal

It’s something of a revelation to me that solid game design can defeat the Greater
Internet F**kwad Theory. Two great examples of this are Counter-Strike and Team
Fortress. Both games are more than ten years old, but they’re still actively being played
right now, by tens of thousands of people, all anonymous … and playing as cohesive
teams!

The game’s objectives and rules are all cleverly constructed to make working

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Building, Managing and Benefiting...

Building, Managing and Benefiting...

Building, Managing and Benefiting...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 241241

http://www.codinghorror.com/blog/2008/02/the-years-of-experience-myth.html
http://www.codinghorror.com/blog/2007/10/remember-this-stuff-is-supposed-to-be-fun.html
http://www.codinghorror.com/blog/2006/08/game-player-game-programmer.html
http://www.amazon.com/Computer-gamesmanship-complete-structuring-intelligent/dp/0671495321
http://www.penny-arcade.com/comic/2004/3/19/

together the most effective way to win. None of these players know each other; the
design of the game forces players to work together, whether they want to or not. It is
quite literally impossible to win as a single lone wolf.

I haven’t ever quite come out and said it this way, but … I played a lot of Counter-Strike
from 1998 to 2001, and Stack Overflow is in many ways my personal Counter-
Strike. It is a programmer in Brazil learning alongside a programmer in New Jersey. Not
because they’re friends — but because they both love programming. The design of Stack
Overflow makes helping your fellow programmers the most effective way to “win” and
advance the craft of software development together.

And I say we all win when that happens, no matter which profession we’re talking about.

I feel a little responsible for “Gamification,” since we’re often cited as an example (even,
much to my chagrin, on Wikipedia). I wanted to clear up exactly why we made those
choices, and specifically that all the gaming elements are there in service of a
higher purpose. I play the Stack Exchange game happily alongside everyone else,
collecting reputation and badges and rank and upvotes, and I am proud to do so, because
I believe it ultimately helps me become more knowledgeable and a better communicator
while also improving the very fabric of the web for everyone. I hope you feel the same
way.

(If you’d like to learn more about the current state of Gamification, I highly
recommend Sebastian Deterding’s page, and specifically his Meaningful Play: Getting
Gamification Right presentation.)

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Building, Managing and Benefiting...

Building, Managing and Benefiting...

Building, Managing and Benefiting...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 242242

http://stackexchange.com/sites
http://codingconduct.cc/
http://www.slideshare.net/dings/meaningful-play-getting-gamification-right

For almost eight months after launching Stack Overflow to the public, we had no concept
of banning or blocking users. Like any new frontier town in the wilderness of the internet,
I suppose it was inevitable that we’d be obliged to build a jail at some point. But first we
had to come up with some form of government.

Stack Overflow was always intended to be a democracy. With the Stack Exchange Q&A
network, we’ve come a long way towards that goal:

We create new communities through the open, democratic process defined at Area
51.

Our communities are maintained and operated by the most avid citizens within that
community. The more reputation you have, the more privileges you earn.

We hold yearly moderator elections once each community is large enough to support
them.

We strive mightily to build self organizing, self-governing communities of people who are
passionate about a topic, whether it be motor vehicles or homebrewing or musical
instruments, or … whatever. Our general philosophy is power to the people.

But in the absence of some system of law, the tiny minority of users out to do harm —
intentionally or not — eventually drive out all the civil community members, leaving

Suspension, Ban or Hellban?

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Building, Managing and Benefiting...

Building, Managing and Benefiting...

Building, Managing and Benefiting...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 243243

http://stackexchange.com/sites
http://area51.stackexchange.com/
http://blog.stackoverflow.com/2010/10/membership-has-its-privileges/
http://blog.stackoverflow.com/2010/12/stack-exchange-moderator-elections-begin/
http://mechanics.stackexchange.com/
http://homebrew.stackexchange.com/
http://music.stackexchange.com/
http://area51.stackexchange.com/

behind a lawless, chaotic badland.

Our method of dealing with disruptive or destructive community members is simple:
their accounts are placed in timed suspension. Initial suspension periods range
from 1 to 7 days, and increase exponentially with each subsequent suspension. We prefer
the term “timed suspension” to “ban” to emphasize that we do want users to come back
to their accounts, if they can learn to refrain from engaging in those disruptive or
problematic behaviors. It’s not so much a punishment as a time for the user to cool down
and reflect on the nature of their participation in our community. (Well, at least in
theory.)

Timed suspension works, but much like democracy itself, it is a highly imperfect, noisy
system. The transparency provides ample evidence that moderators aren’t secretly
whisking people away in the middle of the night. But it can also be a bit too …
entertaining for some members of the community, leading to hours and hours of meta-
discussion about who is suspended, why they are suspended, whether it was fair, what
the evidence is, how we are censoring people, and on and on and on. While a certain
amount of introspection is important and necessary, it can also become a substitute for
getting stuff done. This might naturally lead one to wonder — what if we could
suspend problematic users without anyone knowing they had been suspended?

There are three primary forms of secretly suspending users that I know of:

1. A hellbanned user is invisible to all other users, but crucially, not himself. From their
perspective, they are participating normally in the community but nobody ever
responds to them. They can no longer disrupt the community because they are
effectively a ghost. It’s a clever way of enforcing the “don’t feed the troll” rule in the
community. When nothing they post ever gets a response, a hellbanned user is likely
to get bored or frustrated and leave. I believe it, too; if I learned anything from
reading The Great Brain as a child, it’s that the silent treatment is the cruelest
punishment of them all.

I’ve always associated hellbanning with the Something Awful Forums. Per this amazing
MetaFilter discussion, it turns out the roots of hellbanning go much deeper — all the way
back to an early Telnet BBS system called Citadel, where the “problem user bit” was
introduced around 1986. Like so many other things in social software, it keeps getting
reinvented over and over again by clueless software developers who believe they’re the
first programmer smart enough to figure out how people work. It’s supported in most
popular forum and blog software, as documented in the Drupal Cave module.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Building, Managing and Benefiting...

Building, Managing and Benefiting...

Building, Managing and Benefiting...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 244244

http://www.codinghorror.com/blog/2009/07/meta-is-murder.html
http://www.amazon.com/dp/0803725906/?tag=codihorr-20
http://ask.metafilter.com/117775/What-was-the-first-website-to-hide-trolls-activity-to-everyone-but-the-troll-himself
http://anticlimactic.retrovertigo.com/
http://www.wired.com/techbiz/people/magazine/17-04/st_thompson
http://drupal.org/project/cave

(There is one additional form of hellbanning that I feel compelled to mention because it is
particularly cruel – when hellbanned users can see only themselves and other hellbanned
users. Brrr. I’m pretty sure Dante wrote a chapter about that, somewhere.)

2. A slowbanned user has delays forcibly introduced into every page they visit. From
their perspective, your site has just gotten terribly, horribly slow. And stays that way.
They can hardly disrupt the community when they’re struggling to get web pages to
load. There’s also science behind this one, because per research from Google and
Amazon, every page load delay directly reduces participation. Get slow enough, for
long enough, and a slowbanned user is likely to seek out greener and speedier
pastures elsewhere on the internet.

3. An errorbanned user has errors inserted at random into pages they visit. You might
consider this a more severe extension of slowbanning — instead of pages loading
slowly, they might not load at all, return cryptic HTTP errors, return the wrong page
altogether, fail to load key dependencies like JavaScript and images and CSS, and so
forth. I’m sure your devious little brains can imagine dozens of ways things could go
“wrong” for an errorbanned user. This one is a bit more esoteric, but it isn’t
theoretical; an existing implementation exists in the form of the Drupal Misery module.

Because we try to hew so closely to the real-world model of democracy with Stack
Exchange, I’m not quite sure how I feel about these sorts of reality-altering tricks that are
impossible in the world of atoms. On some level, they feel disingenuous to me. And it’s a
bit like wishing users into the cornfield with superhuman powers far beyond the ken of
normal people. But I’ve also spent many painful hours trapped in public dialog about
users who were, at best, just wasting everyone’s time. Democracy is a wonderful thing,
but efficient, it ain’t.

That said, every community is different. I’ve personally talked to people in charge of
large online communities — ones you probably participate in every day — and part of the
reason those communities haven’t broken down into utter chaos by now is because they
secretly hellban and slowban their most problematic users. These solutions do neatly
solve the problem of getting troublesome users to “voluntarily” decide to leave a
community with a minimum of drama. It’s hard to argue with techniques that are proven
to work.

I think everyone has a right to know what sort of jail their community uses, even these
secret, invisible ones. But keep in mind that whether it’s timed suspensions, traditional
bans or exotic hellbans and beyond, the goal is the same: civil, sane, and safe online
communities for everyone.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Building, Managing and Benefiting...

Building, Managing and Benefiting...

Building, Managing and Benefiting...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 245245

http://en.wikipedia.org/wiki/Inferno_%28Dante%29
http://www.codinghorror.com/blog/2006/11/speed-still-matters.html
http://drupal.org/project/misery
http://en.wikipedia.org/wiki/It%27s_a_Good_Life_%28The_Twilight_Zone%29

12:54 AM – 24 Dec 11

 Jeff Atwood@codinghorror

“If someone isn’t pissed off at your moderators at least once a day,
your sites are inadequately moderated.”

Gift this book to your friends...for free.

Become a Hyperink reader. Get a special surprise.

Like the book? Support our author and leave a comment!

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Building, Managing and Benefiting...

Building, Managing and Benefiting...

Building, Managing and Benefiting...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 246246

http://www.hyperink.com/share/1559?utm_source=1559&utm_medium=inside_book&utm_campaign=chapter_end_share_pdf
http://www.hyperink.com/register?utm_source=1559&utm_medium=inside_book&utm_campaign=chapter_end_user_pdf
http://www.hyperink.com/Blog-To-Book-Effective-Programming-More-Than-Writing-Code-b1559?utm_source=1559&utm_medium=inside_book&utm_campaign=chapter_end_like_pdf

XI.

Marketing Weasels
and How Not to Be

One

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Marketing Weasels and How Not to...

Marketing Weasels and How Not to...

Marketing Weasels and How Not to...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 247247

11:17 AM – 20 Apr 12

 @codinghorror

“honestly all the Business of Software stuff absolutely bores me to
tears. I just want to build awesome things that matter.”

I recently read Predictably Irrational.

It’s a fascinating examination of why human beings are wired and conditioned to react
irrationally. We human beings are a selfish bunch, so it’s all the more surprising to see
how easily we can be manipulated to behave in ways that run counter to our own self-
interest.

This isn’t just a “gee-whiz” observation; understanding how and why we behave
irrationally is important. If you don’t understand how these irrational behaviors are
triggered, the marketing weasels will use them against you.

9 Ways Marketing Weasels Will
Try to Manipulate You

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Marketing Weasels and How Not to...

Marketing Weasels and How Not to...

Marketing Weasels and How Not to...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 248248

http://www.amazon.com/dp/0061854549/?tag=codihorr-20

In fact, it’s already happening. Witness 10 Irrational Human Behaviors and How to
Leverage Them to Improve Web Marketing. Don’t say I didn’t warn you.

Let’s take a look at the various excerpts presented in that article, and consider how we
can avoid falling into the rut of predictably irrational behavior — and defend
ourselves from those vicious marketing weasels.

1. Encourage false comparisons

When Williams-Sonoma introduced bread machines, sales were slow. When they added a
“deluxe” version that was 50 percent more expensive, they started flying off the shelves;
the first bread machine now appeared to be a bargain.

When contemplating the purchase of a $25 pen, the majority of subjects would drive to
another store 15 minutes away to save $7. When contemplating the purchase of a $455
suit, the majority of subjects would not drive to another store 15 minutes away to save
$7. The amount saved and time involved are the same, but people make very different
choices. Watch out for relative thinking; it comes naturally to all of us.

Realize that some premium options exist as decoys — that is, they are there only to
make the less expensive options look more appealing, because they’re easy to
compare. Don’t make binding decisions solely based on how easy it is to compare two
side-by-side options from the same vendor. Try comparing all the alternatives, even
those from other vendors.

Don’t be swayed by relative percentages for small dollar amounts. Yes, you saved 25
percent, but how much effort and time did you expend on that seven bucks?

2. Reinforce Anchoring

Savador Assael, the Pearl King, single-handedly created the market for black pearls,
which were unknown in the industry before 1973. His first attempt to market the pearls
was an utter failure; he didn’t sell a single pearl. So he went to his friend, Harry Winston,
and had Winston put them in the window of his 5th Avenue store with an outrageous
price tag attached. Then he ran full page ads in glossy magazines with black pearls next
to diamonds, rubies and emeralds. Soon, black pearls were considered precious.

Simonsohn and Loewenstein found that people who move to a new city remain anchored
to the prices they paid in their previous city. People who move from Lubbock to
Pittsburgh squeeze their families into smaller houses to pay the same amount. People
who move from LA to Pittsburgh don’t save money, they just move into mansions.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Marketing Weasels and How Not to...

Marketing Weasels and How Not to...

Marketing Weasels and How Not to...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 249249

http://www.seomoz.org/blog/10-irrational-human-behaviors-how-to-leverage-them-to-improve-web-marketing

Scale your purchases to your needs, not your circumstances or wallet size. What do
you actually use? How much do you use it, and how frequently?

Try to objectively measure the value of what you’re buying; don’t be tricked into
measuring relative to similar products or competitors. How much does buying this
save you or your company? How much benefit will you get out of it? Attempt to
measure that benefit by putting a concrete dollar amount on it.

3. It’s “Free”!

Ariely, Shampanier, and Mazar conducted an experiment using Lindt truffles and
Hershey’s Kisses. When a truffle was $0.15 and a kiss was $0.01, 73 percent of subjects
chose the truffle and 27 percent the Kiss. But when a truffle was $0.14 and a kiss was
free, 69 percent chose the kiss and 31 percent the truffle.

According to standard economic theory, the price reduction shouldn’t have led to any
behavior change, but it did.

Ariely’s theory is that for normal transactions, we consider both upside and downside. But
when something is free, we forget about the downside. “Free” makes us perceive what is
being offered as immensely more valuable than it really is. Humans are loss-averse;
when considering a normal purchase, loss-aversion comes into play. But when an item is
free, there is no visible possibility of loss.

You will tend to overestimate the value of items you get for free. Resist this by viewing
free stuff skeptically rather than welcoming it with open arms. If it was really that
great, why would it be free?

Free stuff often comes with well hidden and subtle strings attached. How will using a
free service or obtaining a free item influence your future choices? What paid
alternatives are you avoiding by choosing the free route, and why?

How much effort will the free option cost you? Are there non-free options which would
cost less in time or effort? How much is your time worth?

When you use a free service or product, you are implicitly endorsing and encouraging
the provider, effectively beating a path to their door. Is this something you are
comfortable with?

4. Exploit social norms

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Marketing Weasels and How Not to...

Marketing Weasels and How Not to...

Marketing Weasels and How Not to...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 250250

The AARP asked lawyers to participate in a program where they would offer their services
to needy employees for a discounted price of $30/hour. No dice. When the program
manager instead asked if they’d offer their services for free, the lawyers overwhelmingly
said they would participate.

Companies may appeal to your innate sense of community or public good to convince
you to do their work at zero pay. Consider carefully before choosing to participate;
what do you get out of contributing your time and effort? Is this truly a worthy cause?
Would this be worth doing if it was a paid gig?

When it comes to the web, make sure you aren’t being turned into a digital
sharecropper.

5. Design for Procrastination

Ariely conducted an experiment on his class. Students were required to write three
papers. Ariely asked the first group to commit to dates by which they would turn in each
paper. Late papers would be penalized 1 percent per day. There was no penalty for
turning papers in early. The logical response is to commit to turning all three papers in on
the last day of class. The second group was given no deadlines; all three papers were due
in the last day of class. The third group was directed to turn their papers in on the 4th,
8th and 12th weeks.

The results? Group 3 (imposed deadlines) got the best grades. Group 2 (no deadlines) got
the worst grades, and Group 1 (self-selected deadlines) finished in the middle. Allowing
students to pre-commit to deadlines improved performance. Students who spaced out
their commitments did well; students who did the logical thing and gave no commitments
did badly.

Steer clear of offers of low-rate trial periods which auto-convert into automatic
recurring monthly billing. They know that most people will procrastinate and forget to
cancel before the recurring billing kicks in.

Either favor fixed-rate, fixed-term plans — or become meticulous about cancelling
recurring services when you’re not using them.

6. Utilize the Endowment Effect

Ariely and Carmon conducted an experiment on Duke students, who sleep out for weeks
to get basketball tickets; even those who sleep out are still subjected to a lottery at the
end. Some students get tickets, some don’t. The students who didn’t get tickets told

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Marketing Weasels and How Not to...

Marketing Weasels and How Not to...

Marketing Weasels and How Not to...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 251251

http://www.codinghorror.com/blog/archives/001295.html

Ariely that they’d be willing to pay up to $170 for tickets. The students who did get the
tickets told Ariely that they wouldn’t accept less than $2,400 for their tickets.

There are three fundamental quirks of human nature. We fall in love with what we
already have. We focus on what we might lose, rather than what we might gain. We
assume that other people will see the transaction from the same perspective as we do.

The value of what you’ve spent so far on a service, product, or relationship — in effort
or money — is probably far less than you think. Be willing to walk away.

Once you’ve bought something, never rely on your internal judgment to assess its
value, because you’re too close to it now. Ask other people what they’d pay for this
service, product, or relationship. Objectively research what others pay online.

7. Capitalize on our Aversion to Loss

Ariely and Shin conducted an experiment on MIT students. They devised a computer
game which offered players three doors: Red, Blue and Green. You started with 100
clicks. You clicked to enter a room. Once in a room, each click netted you between 1-10
cents. You could also switch rooms (at the cost of a click). The rooms were programmed
to provide different levels of rewards (there was variation within each room’s payoffs, but
it was pretty easy to tell which one provided the best payout).

Players tended to try all three rooms, figure out which one had the highest payout, and
then spend all their time there. (These are MIT students we’re talking about). Then,
however, Ariely introduced a new wrinkle: Any door left unvisited for 12 clicks would
disappear forever. With each click, the unclicked doors shrank by 1/12th.

Now, players jumped from door to door, trying to keep their options open.They made 15
percent less money; in fact, by choosing any of the doors and sticking with it, they could
have made more money.

Ariely increased the cost of opening a door to 3 cents; no change — players still seemed
compelled to keeping their options open. Ariely told participants the exact monetary
payoff of each door; no change. Ariely allowed participants as many practice runs as they
wanted before the actual experiment; no change. Ariely changed the rules so that any
door could be “reincarnated” with a single click; no change.

Players just couldn’t tolerate the idea of the loss, and so they did whatever was necessary
to prevent their doors from closing, even though disappearance had no real
consequences and could be easily reversed. We feel compelled to preserve options, even

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Marketing Weasels and How Not to...

Marketing Weasels and How Not to...

Marketing Weasels and How Not to...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 252252

at great expense, even when it doesn’t make sense.

If your choices are artificially narrowed, don’t passively get funneled toward the goal
they’re herding you toward. Demand choice, even if it means switching vendors or
allegiances.

Don’t pay extra for options, unless you can point to hard evidence that you need those
options. Some options exist just to make you doubt yourself, so you’ll worry about not
having them.

8. Engender Unreasonable Expectations

Ariely, Lee, and Frederick conducted yet another experiment on MIT students. They let
students taste two different beers, and then choose to get a free pint of one of the brews.
Brew A was Budweiser. Brew B was Budweiser, plus 2 drops of balsamic vinegar per
ounce.

When students were not told about the nature of the beers, they overwhelmingly chose
the balsamic beer. When students were told about the true nature of the beers, they
overwhelmingly chose the Budweiser. If you tell people up front that something might be
distasteful, the odds are good they’ll end up agreeing with you — because of their
expectations.

Whatever you’ve heard about a brand, company, or product — there’s no substitute
for your own hands-on experience. Let your own opinions guide you, not the opinions
of others.

Just because something is labelled “premium” or “pro” or “award-winning” doesn’t
mean it is. Research these claims; don’t let marketing set your expectations. Rely on
evidence and facts.

9. Leverage Pricing Bias

Ariely, Waber, Shiv and Carmon made up a fake painkiller, Veladone-Rx. An attractive
woman in a business suit (with a faint Russian accent) told subjects that 92 percent of
patients receiving VR reported significant pain relief in 10 minutes, with relief lasting up to
8 hours.

When told that the drug cost $2.50 per dose, nearly all of the subjects reported pain
relief. When told that the drug cost $0.10 per dose, only half of the subjects reported pain
relief. The more pain a person experienced, the more pronounced the effect. A similar
study at U Iowa showed that students who paid list price for cold medications reported

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Marketing Weasels and How Not to...

Marketing Weasels and How Not to...

Marketing Weasels and How Not to...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 253253

better medical outcomes than those who bought discount (but clinically identical) drugs.

Price often has nothing to do with value. Expensive is not synonymous with quality.
Investigate whether the price is justified; never accept it at face value.

Don’t fall prey to the “moneymoon.” Just because you paid for something doesn’t
mean it’s automatically worthwhile. Not everything we pay money for works well, or
was even worth what we spent for it. We all make mistakes when buying things, but
we don’t want to admit it.

What I learned from Predictably Irrational is that everyone is irrational sometimes,
and that’s OK. We’re not perfectly logical Vulcans, after all. The trick is training yourself
to know when you’re most likely to make irrational choices, and to resist those impulses.

If you aren’t at least aware of our sad, irrational human condition, well … that’s exactly
where the marketing weasels want you.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Marketing Weasels and How Not to...

Marketing Weasels and How Not to...

Marketing Weasels and How Not to...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 254254

http://www.amazon.com/dp/0061854549/?tag=codihorr-20

Games that run in your web browser are all the rage, and understandably so. Why not
build your game for the largest audience in the world, using freely available technology,
and pay zero licensing fees? One such game is Evony, formerly known as Civony — a
browser-based clone of the game Civilization with a buy-in mechanism.

There are also plentiful opportunities to ‘pay money’ now. In the end, Civony is still a
business. And to be honest, it’s probably better to give the option for some elite folks to
finance the game for the masses than to make everyone pay a subscription or watch in-
game ads. In addition to the old $0.30 per line world chat, you can spend money to speed
up resource gathering, boost stats and buy in-game artifacts. I’m sure there are other
ways to pay money that I haven’t discovered yet. But whenever you see a green plus-sign
(+), you know the option exists to pay money for a perk.

The game is ostensibly free, but supported by a tiny fraction of players making cash
payments for optional items (sometimes referred to as “freemium”). Thus, the player
base needs to be quite large for the business of running the game to be sustainable, and
the game’s creators regularly purchase internet ad space to promote their game.
The most interesting thing about Evony isn’t the game, per se, but the game’s
advertising. Here’s one of the early ads.

How Not to Advertise on the
Internet

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Marketing Weasels and How Not to...

Marketing Weasels and How Not to...

Marketing Weasels and How Not to...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 255255

http://www.codinghorror.com/blog/archives/000872.html
http://en.wikipedia.org/wiki/Civilization_%28video_game%29
http://kevinsung.org/?p=2111
http://en.wikipedia.org/wiki/Freemium

Totally reasonable advertisement. Gets the idea across that this is some sort of game set
in medieval times, and emphasizes the free angle.

Apparently that ad didn’t perform up to expectations at Evony world HQ, because the ads
got progressively … well, take a look for yourself. These are presented in chronological
order of appearance on the internet.

(if this lady looks familiar, there’s a reason.)

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Marketing Weasels and How Not to...

Marketing Weasels and How Not to...

Marketing Weasels and How Not to...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 256256

http://www.youtube.com/watch?v=bc_4_IVURHE
http://blog.costumecraze.com/2009/05/dubious-civony-game-uses-costume-photo
http://blog.costumecraze.com/2009/05/dubious-civony-game-uses-costume-photo

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Marketing Weasels and How Not to...

Marketing Weasels and How Not to...

Marketing Weasels and How Not to...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 257257

To be clear, these are real ads that were served on the internet. This is not a
parody. Just to prove it, here’s a screenshot of the last ad in context at The Elder Scrolls
Nexus.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Marketing Weasels and How Not to...

Marketing Weasels and How Not to...

Marketing Weasels and How Not to...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 258258

http://www.tesnexus.com/

I’ve talked about advertising responsibly in the past. This is about as far in the opposite
direction as I could possibly imagine. It’s yet another way, sadly, the brilliant satire
Idiocracy turned out to be right on the nose.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Marketing Weasels and How Not to...

Marketing Weasels and How Not to...

Marketing Weasels and How Not to...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 259259

http://www.codinghorror.com/blog/archives/000893.html
http://www.imdb.com/title/tt0387808/

11:05 AM – 31 May 12

The dystopian future of Idiocracy predicted the reduction of advertising to the inevitable
lowest common denominator of all, with Starbucks Exotic Coffee for Men, H.R. Block
“Adult” Tax Return (home of the gentleman’s rebate), and El Pollo Loco chicken
advertising a Bucket of Wings with “full release.”

Evony, thanks for showing us what it means to take advertising on the internet to
the absolute rock bottom … then dig a sub-basement under that, and keep on digging
until you reach the white-hot molten core of the Earth. I’ve always wondered what that
would be like. I guess now I know.

 Jeff Atwood@codinghorror

“man, Twitter has really ramped up the advertising. BROUGHT TO
YOU BY CARL’S JR”

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Marketing Weasels and How Not to...

Marketing Weasels and How Not to...

Marketing Weasels and How Not to...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 260260

http://www.amazon.com/dp/B000K7VHOG/?tag=codihorr-20

On a recent airplane flight, I happened to catch the movie Groundhog Day. Again.

If you aren’t familiar with this classic film, the premise is simple: Bill Murray, somehow,
gets stuck reliving the same day over and over.

It’s been at least 5 years since I’ve seen Groundhog Day. I don’t know if it’s my advanced
age, or what, but it really struck me on this particular viewing: this is no comedy. There’s
a veneer of broad comedy, yes, but lurking just under that veneer is a deep, dark
existential conundrum.

It might be amusing to relive the same day a few times, maybe even a few dozen times.

Groundhog Day, or, the Problem
With A/B Testing

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Marketing Weasels and How Not to...

Marketing Weasels and How Not to...

Marketing Weasels and How Not to...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 261261

http://www.imdb.com/title/tt0107048/

But an entire year of the same day — an entire decade of the same day — everything
happening in precisely, exactly the same way? My back of the envelope calculation easily
ran to a decade. But I was wrong. The director, Harold Ramis thinks it was actually 30 or
40 years.

I think the 10-year estimate is too short. It takes at least 10 years to get good at anything,
and allotting for the down time and misguided years [Phil] spent, it had to be more like 30
or 40 years [spent reliving the same day].

We only see bits and pieces of the full experience in the movie, but this time my mind
began filling in the gaps. Repeating the same day for decades plays to our secret
collective fear that our lives are irrelevant and ultimately pointless. None of our actions —
even suicide, in endless grisly permutations — ever change anything. What’s the point?
Why bother? How many of us are trapped in here, and how can we escape?

This is some dark, scary stuff when you really think about it.

You want a prediction about the weather, you’re asking the wrong Phil.

I’ll give you a winter prediction.

It’s gonna be cold,

it’s gonna be gray,

and it’s gonna last you for the rest of your life.

Comedy, my ass. I wanted to cry.

But there is a way out: redemption through repetition. If you have to watch Groundhog
Day a few times to appreciate it, you’re not alone. Indeed, that seems to be the whole
point. Just ask Roger Ebert:

“Groundhog Day” is a film that finds its note and purpose so precisely that its genius may
not be immediately noticeable. It unfolds so inevitably, is so entertaining, so apparently
effortless, that you have to stand back and slap yourself before you see how good it
really is.

Certainly I underrated it in my original review; I enjoyed it so easily that I was seduced
into cheerful moderation. But there are a few films, and this is one of them, that burrow
into our memories and become reference points. When you find yourself needing the
phrase This is like “Groundhog Day” to explain how you feel, a movie has accomplished
something.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Marketing Weasels and How Not to...

Marketing Weasels and How Not to...

Marketing Weasels and How Not to...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 262262

http://www.wolfgnards.com/index.php/2009/08/18/harold-ramis-responds-to-the-wolf-gnards
http://rogerebert.suntimes.com/apps/pbcs.dll/article?AID=/20050130/REVIEWS08/501300301/1023

There’s something delightfully Ouroboros about the epiphanies and layered revelations in
repeated viewings of a movie that is itself about (nearly) endless repetition.

Which, naturally, brings me to A/B testing. That’s what Phil spends most of those thirty
years doing. He spends it pursuing a woman, technically, but it’s how he does it that is
interesting:

Rita: This whole day has just been one long setup.

Phil: It hasn’t.

Rita: And I hate fudge!

Phil: [making a mental list] No white chocolate. No fudge.

Rita: What are you doing? Are you making some kind of list? Did you call my friends and
ask what I like and what I don’t like? Is this what love is for you?

Phil: This is real. This is love.

Rita: Stop saying that! You must be crazy.

Phil doesn’t just go on one date with Rita, he goes on thousands of dates. During each
date, he makes note of what she likes and responds to, and drops everything she doesn’t.
At the end he arrives at — quite literally — the perfect date. Everything that happens is
the most ideal, most desirable version of all possible outcomes on that date on that
particular day. Such are the luxuries afforded to a man repeating the same day forever.

This is the purest form of A/B testing imaginable. Given two choices, pick the one
that “wins”, and keep repeating this ad infinitum until you arrive at the ultimate, most
scientifically desirable choice. Your marketing weasels would probably collapse in an

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Marketing Weasels and How Not to...

Marketing Weasels and How Not to...

Marketing Weasels and How Not to...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 263263

http://en.wikipedia.org/wiki/Ouroboros
http://en.wikipedia.org/wiki/A/B_testing
http://www.codinghorror.com/blog/2009/09/9-ways-marketing-weasels-will-try-to-manipulate-you.html

ecstatic, religious fervor if they could achieve anything even remotely close to the level of
perfect A/B testing depicted in Groundhog Day.

But at the end of this perfect date, something impossible happens: Rita rejects Phil.

Phil wasn’t making these choices because he honestly believed in them. He was making
these choices because he wanted a specific outcome — winning over Rita — and the
experimental data told him which path he should take. Although the date was technically
perfect, it didn’t ring true to Rita, and that made all the difference.

That’s the problem with A/B testing. It’s empty. It has no feeling, no empathy, and at
worst, it’s dishonest. As my friend Nathan Bowers said:

A/B testing is like sandpaper. You can use it to smooth out details, but you can’t actually
create anything with it.

The next time you reach for A/B testing tools, remember what happened to Phil. You can
achieve a shallow local maximum with A/B testing — but you’ll never win hearts and
minds. If you, or anyone on your team, is still having trouble figuring that out, well, the
solution is simple.

Just watch Groundhog Day again.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Marketing Weasels and How Not to...

Marketing Weasels and How Not to...

Marketing Weasels and How Not to...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 264264

http://learningischange.com/2010/01/22/question-22-of-365-farmville-practices-ghetto-testing-why-arent-we/
http://twitter.com/NathanBowers/status/16801715177

Are you familar with happy talk?

If you’re not sure whether something is happy talk, there’s one sure-fire test: if you listen
very closely while you’re reading it, you can actually hear a tiny voice in the back of your
head saying “Blah blah blah blah blah….”

A lot of happy talk is the kind of self-congratulatory promotional writing that you find in
badly written brochures. Unlike good promotional copy, it conveys no useful information,
and focuses on saying how great we are, as opposed to delineating what makes us great.

Happy talk is the kudzu of the internet; the place is lousy with the stuff.

And then there’s the visual equivalent of happy talk. Those cloying, meaningless stock
photos of happy users doing … something … with a computer.

If it Looks Corporate, Change It

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Marketing Weasels and How Not to...

Marketing Weasels and How Not to...

Marketing Weasels and How Not to...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 265265

http://www.codinghorror.com/blog/archives/000163.html

What is going on here? Given the beatific expressions, you’d think they were undergoing
some kind of nerd rapture. Maybe they’re getting a sneak preview of the singularity, I
don’t know.

It’s unclear to me why companies (and even some individuals) think they need happy talk,
stock photos of multicultural computer users, or the occasional headset hottie. Jason
Cohen provides an explanation:

Even before I had a single customer, I “knew” it was important to look professional. My
website would need to look and feel like a “real company.” I need culture-neutral
language complimenting culturally-diverse clip-art photos of frighteningly chipper co-
workers huddled around a laptop, awash with the thrill and delight of configuring a JDBC
connection to SQL Server 2008.

It also means adopting typical “marketing-speak,” so my “About Us” page started with:

Smart Bear is the leading provider of enterprise version control data-mining tools.
Companies world-wide use Smart Bear’s Code Historian software for risk-analysis, root-
cause discovery, and software development decision-support.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Marketing Weasels and How Not to...

Marketing Weasels and How Not to...

Marketing Weasels and How Not to...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 266266

http://en.wikipedia.org/wiki/Technological_singularity
http://www.headsethotties.com/
http://blog.asmartbear.com/blog/youre-a-little-company-now-act-like-one.html

“Leading provider?” “Data mining?” I’m not even sure what that means. But you have to
give me credit for an impressive quantity of hyphens.

That’s what you’re supposed to do, right? That’s what other companies do, so it must be
right. Who am I to break with tradition?

I’m not sure where we got our ideas about this stuff, but it is true that some large
companies promote a kind of doublespeak “professionalism.” Kathy Sierra describes her
experiences at Sun:

By the time I got to Sun, using the word “cool” in a customer training document was
enough to warrant an entry in your annual performance eval. And not in a good way.

I cannot count the times I heard the word “professionalism” used as justification for why
we couldn’t do something. But I can count the few times I heard the word “passion” used
in a meeting where the goal was to get developers to adopt our newest Java
technologies. What changed?

Some argue that by maintaining strict professionalism, we can get the more
conservative, professional clients and thus grow the business. Is this true? Do we really
need these clients? Isn’t it possible that we might even grow more if we became braver?

It’s a shame that this misguided sense of professionalism is sometimes used as an excuse
to put up weird, Orwellian communication barriers between yourself and the world. At
best it is a facade to hide behind; at worst it encourages us to emulate so much of what is
wrong with large companies. Allow me to paraphrase the simple advice of Elmore
Leonard:

If it looks corporate, change it.

The next time you find yourself using professional text, or professional stock images,
consider the value of this “professionalism.” Is it legitimately helping you communicate?
Or is it getting in the way?

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Marketing Weasels and How Not to...

Marketing Weasels and How Not to...

Marketing Weasels and How Not to...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 267267

http://headrush.typepad.com/creating_passionate_users/2005/09/dignity_is_dead.html
http://www.codinghorror.com/blog/archives/000516.html

One of the side effects of using the iPhone App store so much is that it’s started to
fundamentally alter my perception of software pricing. So many excellent iPhone
applications are either free, or no more than a few bucks at most. That’s below the
threshold of impulse purchase and squarely in no-brainer territory for anything decent
that I happen to be interested in.

But applications that cost $5 or more? Outrageous! Highway robbery!

This is all very strange, as a guy who is used to spending at least $30 for software of any
consequence whatsoever. I love supporting my fellow software developers with my
wallet, and the iPhone App Store has never made that easier.

While there’s an odd aspect of race to the bottom that I’m not sure is entirely healthy for
the iPhone app ecosystem, the idea that software should be priced low enough to
pass the average user’s “why not” threshold is a powerful one.

What I think isn’t well understood here is that low prices can be a force multiplier all out
of proportion to the absolute reduction in price. Valve software has been aggressively
experimenting in this area; consider the example of the game Left 4 Dead:

Valve co-founder Gabe Newell announced during a DICE keynote today that last
weekend’s half-price sale of Left 4 Dead resulted in a 3000 percent increase in sales of
the game, posting overall sales (in dollar amount) that beat the title’s original launch
performance.

It’s sobering to think that cutting the price in half, months later, made more money for
Valve in total than launching the game at its original $49.95 price point. (And, incidentally,
that’s the price I paid for it. No worries, I got my fifty bucks worth of gameplay out of this
excellent game months ago.)

The experiments didn’t end there. Observe the utterly non-linear scale at work as the
price of software is experimentally reduced even further on their Steam network:

Software Pricing: Are We Doing it
Wrong?

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Marketing Weasels and How Not to...

Marketing Weasels and How Not to...

Marketing Weasels and How Not to...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 268268

http://www.codinghorror.com/blog/archives/001280.html
http://www.codinghorror.com/blog/archives/000735.html
http://mashable.com/2009/07/21/iphone-app-race-bottom/
http://www.shacknews.com/onearticle.x/57308
http://store.steampowered.com/

The massive Steam holiday sale was also a big win for Valve and its partners. The
following holiday sales data was released, showing the sales breakdown organized by
price reduction:

10% sale = 35% increase in sales (real dollars, not units shipped)

25% sale = 245% increase in sales

50% sale = 320% increase in sales

75% sale = 1470% increase in sales

Note that these are total dollar sale amounts! Let’s use some fake numbers to illustrate
how dramatic the difference really is. Let’s say our hypothetical game costs $40, and we
sold 100 copies of it at that price.

Original price Discount Sale Price Total Sales
$40 none $40 $4,000
$40 10% $36 $5,400
$40 25% $30 $9,800
$40 50% $20 $12,800
$40 75% $10 $58,800

If this pattern Valve documented holds true, and if my experience on the iPhone App
store is any indication, we’ve been doing software pricing completely wrong. At
least for digitally distributed software, anyway.

In particular, I’ve always felt that Microsoft has priced their operating system upgrades
far, far too high — and would have sold a ton more licenses if they had sold them at the
“heck, why not?” level. For example, take a look at these upgrade options:

Mac OS X 10.6 Upgrade $29
Microsoft Windows 7 Home Premium Upgrade $119

Putting aside schoolyard OS rivalries for a moment, which one of these would you be
more likely to buy? I realize this isn’t entirely a fair comparison, so if $29 seems as
bonkers to you as an application for 99 cents — which I’d argue is much less crazy than it
sounds — then fine. Say the Windows 7 upgrade price was a more rational $49, or $69.
I’m sure the thought of that drives the Redmond consumer surplus capturing marketing
weasels apoplectic. But the Valve data — and my own gut intuition — leads me to believe

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Marketing Weasels and How Not to...

Marketing Weasels and How Not to...

Marketing Weasels and How Not to...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 269269

http://store.steampowered.com/
http://www.codinghorror.com/blog/archives/000995.html
http://www.amazon.com/dp/B001AMHWP8/?tag=codihorr-20
http://www.amazon.com/dp/B002DHLUWK/?tag=codihorr-20
http://www.codinghorror.com/blog/archives/000796.html
http://www.codinghorror.com/blog/archives/001283.html

that they’d actually make more money if they priced their software at the “why not?”
level.

I’m not saying these pricing rules should apply to every market and every type of
software in the world. But for software sold in high volumes to a large audience, I believe
they might. At the very bleast, if you sell software, you might consider experimenting with
pricing, as Valve has. You could e leasantly surprised.

I love buying software, and I know I buy a heck of a lot more of it when it’s priced right.
So why not?

Gift this book to your friends...for free.

Become a Hyperink reader. Get a special surprise.

Like the book? Support our author and leave a comment!

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Marketing Weasels and How Not to...

Marketing Weasels and How Not to...

Marketing Weasels and How Not to...

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 270270

http://www.codinghorror.com/blog/archives/000735.html
http://www.hyperink.com/share/1559?utm_source=1559&utm_medium=inside_book&utm_campaign=chapter_end_share_pdf
http://www.hyperink.com/register?utm_source=1559&utm_medium=inside_book&utm_campaign=chapter_end_user_pdf
http://www.hyperink.com/Blog-To-Book-Effective-Programming-More-Than-Writing-Code-b1559?utm_source=1559&utm_medium=inside_book&utm_campaign=chapter_end_like_pdf

XII.

Keeping Your
Priorities Straight

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Keeping Your Priorities Straight

Keeping Your Priorities Straight

Keeping Your Priorities Straight

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 271271

“…the hard part is figuring out why you are working all those long hours.”

Despite popular assertions to the contrary, science tells us that money can buy
happiness. To a point.

Recent research has begun to distinguish two aspects of subjective well-being. Emotional
well-being refers to the emotional quality of an individual’s everyday experience — the
frequency and intensity of experiences of joy, stress, sadness, anger and affection that
make one’s life pleasant or unpleasant. Life evaluation refers to the thoughts that people
have about their life when they think about it. We raise the question of whether money
buys happiness, separately for these two aspects of well-being. We report an analysis of
more than 450,000 responses to the Gallup-Healthways Well-Being Index, a daily survey
of 1,000 US residents conducted by the Gallup Organization. […] When plotted against log
income, life evaluation rises steadily. Emotional well-being also rises with log
income, but there is no further progress beyond an annual income of $75,000.

For reference, the federal poverty level for a family of four is currently $23,050. Once
you reach a little over 3 times the poverty level in income, you’ve achieved peak
happiness, as least far as money alone can reasonably get you.

This is something I’ve seen echoed in a number of studies. Once you have “enough”
money to satisfy the basic items at the foot of the Maslow’s Hierarchy of Needs pyramid
— that is, you no longer have to worry about food, shelter, security and perhaps having a
bit of extra discretionary money for the unknown — stacking even more money up
doesn’t do much, if anything, to help you scale the top of the pyramid.

Buying Happiness

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Keeping Your Priorities Straight

Keeping Your Priorities Straight

Keeping Your Priorities Straight

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 272272

http://www.pnas.org/content/107/38/16489
http://www.pnas.org/content/107/38/16489
http://www.pnas.org/content/107/38/16489
http://aspe.hhs.gov/poverty/12poverty.shtml
http://en.wikipedia.org/wiki/Maslow%27s_hierarchy_of_needs

But even if you’re fortunate enough to have a good income, how you spend your money
has a strong influence on how happy — or unhappy — it will make you. And, again,
there’s science behind this. The relevant research is summarized in If money doesn’t
make you happy, then you probably aren’t spending it right.

Most people don’t know the basic scientific facts about happiness — about
what brings it and what sustains it — and so they don’t know how to use their
money to acquire it. It is not surprising when wealthy people who know nothing about
wine end up with cellars that aren’t that much better stocked than their neighbors’, and it
should not be surprising when wealthy people who know nothing about happiness end up
with lives that aren’t that much happier than anyone else’s. Money is an opportunity for
happiness, but it is an opportunity that people routinely squander because the things they
think will make them happy often don’t.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Keeping Your Priorities Straight

Keeping Your Priorities Straight

Keeping Your Priorities Straight

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 273273

http://www.wjh.harvard.edu/%7Edtg/DUNN GILBERT & WILSON %282011%29.pdf

You may also recognize some of the authors on this paper, in particular Dan Gilbert, who
also wrote the excellent book Stumbling on Happiness that touched on many of the same
themes.

What is, then, the science of happiness? I’ll summarize the basic eight points as best I
can, but read the actual paper to obtain the citations and details on the underlying
studies underpinning each of these principles.

1. Buy experiences instead of things

Things get old. Things become ordinary. Things stay the same. Things wear out. Things
are difficult to share. But experiences are totally unique; they shine like diamonds in your
memory, often more brightly every year, and they can be shared forever. Whenever
possible, spend money on experiences such as taking your family to Disney World, rather
than things like a new television.

2. Help others instead of yourself

Human beings are intensely social animals. Anything we can do with money to create
deeper connections with other human beings tends to tighten our social connections and
reinforce positive feelings about ourselves and others. Imagine ways you can spend some
part of your money to help others – even in a very small way – and integrate that into
your regular spending habits.

3. Buy many small pleasures instead of few big ones

Because we adapt so readily to change, the most effective use of your money is to bring
frequent change, not just “big bang” changes that you will quickly grow acclimated to.
Break up large purchases, when possible, into smaller ones over time so that you can
savor the entire experience. When it comes to happiness, frequency is more important
than intensity. Embrace the idea that lots of small, pleasurable purchases are actually
more effective than a single giant one.

4. Buy less insurance

Humans adapt readily to both positive and negative change. Extended warranties and
insurance prey on your impulse for loss aversion, but because we are so adaptable,
people experience far less regret than they anticipate when their purchases don’t work
out.

Furthermore, having the easy “out” of insurance or a generous return policy can
paradoxically lead to even more angst and unhappiness because people deprived

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Keeping Your Priorities Straight

Keeping Your Priorities Straight

Keeping Your Priorities Straight

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 274274

http://www.amazon.com/dp/1400077427/?tag=codihorr-20
http://www.wjh.harvard.edu/%7Edtg/DUNN GILBERT & WILSON %282011%29.pdf

themselves of the emotional benefit of full commitment. Thus, avoid buying insurance,
and don’t seek out generous return policies.

5. Pay now and consume later

Immediate gratification can lead you to make purchases you can’t afford, or may not
even truly want. Impulse buying also deprives you of the distance necessary to make
reasoned decisions. It eliminates any sense of anticipation, which is a strong source of
happiness. For maximum happiness, savor (maybe even prolong!) the uncertainty of
deciding whether to buy, what to buy, and the time waiting for the object of your desire
to arrive.

6. Think about what you’re not thinking about

We tend to gloss over details when considering future purchases, but research shows that
our happiness (or unhappiness) largely lies in exactly those tiny details we aren’t thinking
about. Before making a major purchase, consider the mechanics and logistics of owning
this thing, and where your actual time will be spent once you own it. Try to imagine a
typical day in your life, in some detail, hour by hour: how will it be affected by this
purchase?

7. Beware of comparison shopping

Comparison shopping focuses us on attributes of products that arbitrarily distinguish one
product from another, but have nothing to do with how much we’ll enjoy the purchase.
They emphasize characteristics we care about while shopping, but not necessarily what
we’ll care about when actually using or consuming what we just bought. In other words,
getting a great deal on cheap chocolate for $2 may not matter if it’s not pleasurable to
eat. Don’t get tricked into comparing for the sake of comparison; try to weight only those
criteria that actually matter to your enjoyment or the experience.

8. Follow the herd instead of your head

Don’t overestimate your ability to independently predict how much you’ll enjoy
something. We are, scientifically speaking, very bad at this. But if something reliably
makes others happy, it’s likely to make you happy, too. Weight other people’s opinions
and user reviews heavily in your purchasing decisions.

Happiness is a lot harder to come by than money. So when you do spend money, keep
these eight lessons in mind to maximize whatever happiness it can buy for you. And
remember: it’s science!

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Keeping Your Priorities Straight

Keeping Your Priorities Straight

Keeping Your Priorities Straight

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 275275

It’s easy to forget just how crazy things got during the Web 1.0 bubble in 2000.
That was over ten years ago. For context, Mark Zuckerberg was all of sixteen when the
original web bubble popped.

There are two films which captured the hyperbole and excess of the original dot com
bubble especially well.

The first is the documentary Startup.com. It’s about the prototypical web 1.0 company:
one predicated on an idea that made absolutely no sense, which proceeded to flame out
in a spectacular and all too typical way for the era. This one just happened to occur on

Lived Fast, Died Young, Left a
Tired Corpse

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Keeping Your Priorities Straight

Keeping Your Priorities Straight

Keeping Your Priorities Straight

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 276276

http://en.wikipedia.org/wiki/Mark_Zuckerberg
http://www.amazon.com/dp/B00005N5QV/?tag=codihorr-20

digital film. The govworks.com website described in the documentary, the one that
burned through $60 million in 18 months, is now one of those ubiquitous domain squatter
pages. A sign of the times, perhaps.

The second film was one I had always wanted to see, but wasn’t able to until a few days
ago: Code Rush. For a very long time, Code Rush was almost impossible to find, but the
activism of Andy Baio nudged the director to make the film available under Creative
Commons. You can now watch it online — and you absolutely should.

Remember when people charged money for a web browser? That was Netscape.

Code Rush is a PBS documentary recorded at Netscape from 1998-1999, focusing on
the open sourcing of the Netscape code. As the documentary makes painfully clear, this
wasn’t an act of strategy so much as an act of desperation. That’s what happens when
the company behind the world’s most ubiquitous operating system decides a web
browser should be a standard part of the operating system.

Everyone in the documentary knows they’re doomed; in fact, the phrase “we’re doomed”
is a common refrain throughout the film. But despite the gallows humor and the dark
tone, parts of it are oddly inspiring. These are engineers who are working heroic,
impossible schedules for a goal they’re not sure they can achieve — or that they’ll even
survive as an organization long enough to even finish.

The most vivid difference between Startup.com and Code Rush is that Netscape, despite
all their other mistakes and missteps, didn’t just burn through millions of dollars for no
discernable reason. They produced a meaningful legacy:

Through Netscape Navigator, the original popularization of HTML and the internet
itself.

With the release of the Netscape source code on March 31st, 1998, the unlikely birth
of the commercial open source movement.

Eventually producing the first credible threat to Internet Explorer in the form of Mozilla
Firefox 1.0 in 2004.

Do you want money? Fame? Job security? Or do you want to change the world …
eventually? Consider how many legendary hackers went on to brilliant careers from
Netscape: Jamie Zawinski, Brendan Eich, Stuart Parmenter, Marc Andreessen. The
lessons of Netscape live on, even though the company doesn’t. Code Rush is ultimately a
meditation on the meaning of work as a programmer.

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Keeping Your Priorities Straight

Keeping Your Priorities Straight

Keeping Your Priorities Straight

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 277277

http://govworks.com/
http://clickmovement.org/coderush
http://waxy.org/2009/07/code_rush_in_the_creative_commons/
http://www.mozilla.org/about/history.html

8:45 PM – 5 Oct 11

As Startup.com and Code Rush illustrate, the hard part is figuring out why you are
working all those long hours. Consider carefully, lest the arc of your career mirror that of
so many failed tech bubble companies: lived fast, died young, left a tired corpse.

 Tom Foremski@tomforemski

“On his deathbed, did Steve Jobs regret all the time he spent at the
office?”

Gift this book to your friends...for free.

Become a Hyperink reader. Get a special surprise.

Like the book? Support our author and leave a comment!

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Keeping Your Priorities Straight

Keeping Your Priorities Straight

Keeping Your Priorities Straight

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 278278

http://www.hyperink.com/share/1559?utm_source=1559&utm_medium=inside_book&utm_campaign=chapter_end_share_pdf
http://www.hyperink.com/register?utm_source=1559&utm_medium=inside_book&utm_campaign=chapter_end_user_pdf
http://www.hyperink.com/Blog-To-Book-Effective-Programming-More-Than-Writing-Code-b1559?utm_source=1559&utm_medium=inside_book&utm_campaign=chapter_end_like_pdf

Like this book?

Click to share a free copy with your
Facebook friends!

(Don't worry, it won't auto share. And if you're reading on Kindle or Nook, this is an easy way to
get a free PDF copy for yourself!)

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Keeping Your Priorities Straight

Keeping Your Priorities Straight

Keeping Your Priorities Straight

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 279279

http://www.hyperink.com/share/1559
http://www.hyperink.com/share/1559

Jeff Atwood
I'm Jeff Atwood. I live in Berkeley, CA with my wife, two cats, one three
children, and a whole lot of computers. I was weaned as a software
developer on various implementations of Microsoft BASIC in the 80's,

starting with my first microcomputer, the Texas Instruments TI-99/4a. I continued on the
PC with Visual Basic 3.0 and Windows 3.1 in the early 90's, although I also spent
significant time writing Pascal code in the first versions of Delphi. I am now quite
comfortable in VB.NET or C#, despite the evils of case sensitivity. I'm currently learning
Ruby.

I consider myself a reasonably experienced Windowsweb software developer with a
particular interest in the human side of software development, as represented in my
recommended developer reading list. Computers are fascinating machines, but they're
mostly a reflection of the people using them. In the art of software development,
studying code isn't enough; you have to study the people behind the software, too.

In 2004 I began Coding Horror. I don't mean to be overly dramatic, but it changed my life.
Everything that comes after was made possible by this blog.

In 2005, I found my dream job at Vertigo Software and moved to California. You can take
a virtual tour of my old office if you'd like.

In 2008 I decided to choose my own adventure. I founded and built stackoverflow.com,
and what would ultimately become the Stack Exchange network of Q&A sites, in a joint
venture with Joel Spolsky. The Stack Exchange network is now one of the top 150 largest
sites on the Internet.

In early 2012 I decided to leave Stack Exchange and spend time with my growing family
while I think about what the next thing could be.

Content © 2012 Jeff Atwood. Logo image used with permission of the author. © 1993
Steven C. McConnell. All Rights Reserved.

About The Author

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... About The Author

About The Author

About The Author

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 280280

About the Publisher
Hyperink is the easiest way for anyone to publish a beautiful, high-quality
book.

We work closely with subject matter experts to create each book. We cover topics
ranging from higher education to job recruiting, from Android apps marketing to barefoot
running.

If you have interesting knowledge that people are willing to pay for, especially if you've
already produced content on the topic, please reach out to us! There's no writing
required and it's a unique opportunity to build your own brand and earn royalties.

Hyperink is based in SF and actively hiring people who want to shape publishing's future.
Email us if you'd like to meet our team!

Note: If you're reading this book in print or on a device that's not web-enabled, please
email books@hyperinkpress.com with the title of this book in the subject line. We'll send
you a PDF copy, so you can access all of the great content we've included as clickable
links.

Get in touch:

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... About The Author

About The Author

About The Author

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 281281

http://www.hyperink.com
mailto:kevin@hyperink.com
mailto:books@hyperinkpress.com
http://twitter.com/#!/hyperink
http://www.facebook.com/hyperink
mailto:authors@hyperinkpress.com

Other Awesome Books

Hacker's Guide To Understanding SOPA
and PIPA

Lulzsec
How To Get The Most From Your Kindle
Device

CityVille: Pro Gaming Tips How to Build a Huge Following on
Pinterest

The Space Elevator Project Pro Gaming Tips: Halo Reach
Pro Gaming Tips: Farmville The Best Book on Designing iPhone and

iPad Apps
The Best Book on Finding & Developing
Your Android App Idea

Hyperink Benefits
Interesting Insights The Best Commentary Shocking Trivia

Use code Use code

INKYBUCKS1INKYBUCKS1

 to save 25% off your next purchase. Click here! to save 25% off your next purchase. Click here!

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Other Awesome Books

Other Awesome Books

Other Awesome Books

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 282282

http://www.hyperink.com/Hackers-Guide-To-Understanding-Sopa-And-Pipa-b1018?utm_source=1559&utm_medium=inside_book&utm_campaign=promo_multi_pdf
http://www.hyperink.com/Lulzsec-b60?utm_source=1559&utm_medium=inside_book&utm_campaign=promo_multi_pdf
http://www.hyperink.com/Beginners-Guide-To-The-Most-Popular-And-Useful-Iphone-And-Ipad-Apps-b774?utm_source=1559&utm_medium=inside_book&utm_campaign=promo_multi_pdf
http://www.hyperink.com/The-Best-Book-On-Finding-Developing-Your-Android-App-Idea-b94?utm_source=1559&utm_medium=inside_book&utm_campaign=promo_multi_pdf
http://www.hyperink.com/Hackers-Guide-To-Understanding-Sopa-And-Pipa-b1018?utm_source=1559&utm_medium=inside_book&utm_campaign=promo_multi_pdf
http://www.hyperink.com/Lulzsec-b60?utm_source=1559&utm_medium=inside_book&utm_campaign=promo_multi_pdf
http://www.hyperink.com/How-To-Get-The-Most-From-Your-Kindle-Device-b201?utm_source=1559&utm_medium=inside_book&utm_campaign=promo_multi_pdf
http://www.hyperink.com/Cityville-Pro-Gaming-Tips-b1309?utm_source=1559&utm_medium=inside_book&utm_campaign=promo_multi_pdf
http://www.hyperink.com/How-To-Build-A-Huge-Following-On-Pinterest-b1005?utm_source=1559&utm_medium=inside_book&utm_campaign=promo_multi_pdf
http://www.hyperink.com/The-Space-Elevator-Project-b915?utm_source=1559&utm_medium=inside_book&utm_campaign=promo_multi_pdf
http://www.hyperink.com/Pro-Gaming-Tips-Halo-Reach-b582?utm_source=1559&utm_medium=inside_book&utm_campaign=promo_multi_pdf
http://www.hyperink.com/Pro-Gaming-Tips-Farmville-b755?utm_source=1559&utm_medium=inside_book&utm_campaign=promo_multi_pdf
http://www.hyperink.com/The-Best-Book-On-Designing-Iphone-And-Ipad-Apps-b250?utm_source=1559&utm_medium=inside_book&utm_campaign=promo_multi_pdf
http://www.hyperink.com/The-Best-Book-On-Finding-Developing-Your-Android-App-Idea-b94?utm_source=1559&utm_medium=inside_book&utm_campaign=promo_multi_pdf
http://www.hyperink.com?utm_source=1559&utm_medium=inside_book&utm_campaign=promo_multi_pdf

Copyright © 2012-Present. Hyperink Inc.

The standard legal stuff:

All rights reserved. No part of this book may be reproduced in any form or by any
electronic or mechanical means, including information storage and retrieval systems,
without permission in writing from Hyperink Inc., except for brief excerpts in reviews or
analysis.

Our note:

Please don't make copies of this book. We work hard to provide the highest quality
content possible - and we share a lot of it for free on our sites - but these books are how
we support our authors and the whole enterprise. You're welcome to borrow (reasonable)
pieces of it as needed, as long as you give us credit.

Thanks!

The Hyperink Team

Disclaimer

This ebook provides information that you read and use at your own risk. This book is not
affiliated with or sponsored by any other works, authors, or publishers mentioned in the
content.

Thanks for understanding. Good luck!

Blog To Book: Effective...

Blog To Book: Effective...

Blog To Book: Effective... Other Awesome Books

Other Awesome Books

Other Awesome Books

Hyperink Blog to Book Series

Hyperink Blog to Book Series

Hyperink Blog to Book Series 283283

