

Early Praise for Seven Obscure Languages in Seven Weeks

One of the challenges that programmers face is that in the struggle to get today’s
work done while keeping up with what’s coming next, we tend to neglect our his-
tory. In a real sense we are an industry with a present and a future but no past.
By diving into seven lesser-known programming languages, Dmitry’s book goes
a long way to showing us how programming got this way, all in a witty and fun
package.

➤ Russ Olsen
President, ROIV

Seven Obscure Languages in Seven Weeks takes readers on an intellectual journey
through the early days of computer languages, when simplicity and efficiency
were paramount. This book deserves a place on every shelf, offering a delightful
exploration that brings a curious smile to one’s face. It stands as a fascinating
artifact of computer science history, documenting a past that risks fading into
the fog of time.

➤ Andrian Gorohovschi
Software Engineering Senior Manager, Dassault Systèmes, SolidWorks
Corporation

The books in the Seven in Seven series are among my very favorite computer sci-
ence books of all–—I return to them regularly for inspiration on how to approach
a programming idea I’m mulling over with a fresh perspective. This new volume
is a worthy addition to this series and will broaden your mind as you delve into
some deeply interesting languages; you’re probably aware of their existence but
likely never programmed in them. Until now. Pick a chapter, install a compiler,
and after following along with the examples, really dig in and write a whole new
program of your own. While you may not keep the compiler in your toolkit, the
Big Ideas in these languages will certainly elevate the way you approach program-
ming after you’ve tried them!

➤ Gary V. Vaughan
Senior Software Engineer

Seven Obscure Languages
in Seven Weeks

Rediscovering the Tools That Built the Future

Dmitry Zinoviev

The Pragmatic Bookshelf
Dallas, Texas

For our complete catalog of hands-on, practical, and Pragmatic
content for software developers, please visit https://pragprog.com.

Contact support@pragprog.com for sales, volume licensing, and support.

For international rights, please contact rights@pragprog.com.

The team that produced this book includes:

Dave ThomasPublisher:

Janet FurlowCOO:

Susannah DavidsonExecutive Editor:

Adaobi Obi TultonDevelopment Editor:

L. Sakhi MacMillanCopy Editor:

Potomac Indexing, LLCIndexing:

Gilson GraphicsLayout:

Copyright © 2024 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior consent of the publisher.

When we are aware that a term used in this book is claimed as a trademark, the designation is
printed with an initial capital letter or in all capitals.

The Pragmatic Starter Kit, The Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf,
PragProg and the linking g device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes no
responsibility for errors or omissions, or for damages that may result from the use of information
(including program listings) contained herein.

ISBN-13: 979-8-88865-063-9
Encoded using recycled binary digits.
Book version: P1.0—October 2024

https://pragprog.com
support@pragprog.com
rights@pragprog.com

To my wife, Anna, and my children, Eugenia
and Roman, whose love and care made this

book possible.

Contents

Acknowledgments xi
Preface xiii
Introduction xv

1. Mastering Stack-Based Computing with Forth 1
Understanding Stack Essentials 1
Writing Comments and “Hello, World!” 2
Learning Predefined Forth Words 4
Dissecting Flow Control 12
Discovering Recursion 20
Arriving to Memory Operations 21
Demystifying Vectored Execution 26
Handling Errors and Exceptions 28
Exploring Character and String Operations 31
Performing Input/Output Operations 35
Writing Something Big 38
Further Reading 41

2. Appreciating Concurrent Computing with Occam 43
Paying Tribute to Transputer 43
Greeting in Occam and KRoC 44
Studying Variables and Data Types 45
Navigating Channels 47
Exploring Processes 48
Taming Construction Processes 50
Revisiting Deadlocks 57
Introducing Arrays 57
Crafting Channel Protocols 59
Arranging Code in Compilation Units 61
Replicating Processes 64

Terminating a Distributed Application 68
Configuring Occam Programs 69
Writing Something Big 71
Further Reading 75

3. Embracing Array-Centric Programming with APL 77
Deciphering APL Character Set 77
Activating the APL Keyboard Layout 79
Looking at Data Types 80
Executing Scalar Operations 82
Mastering Array Operations 85
Performing Input and Output 93
Creating User-Defined Functions 94
Branching 97
Adding More Array Operations 101
Working with Workspaces 108
Writing Something Big 109
Further Reading 111

4. Unveiling Object-Oriented Programming with Simula . . 113
“It’s ALGOL!” 114
Glancing at Variables, Data Types, and Operators 114
Investigating Control Structures 118
Introducing Procedures 120
Managing File I/O 123
“It’s Simula!” 124
Switching to Object-Oriented Programming 125
Designing Coroutines 133
Introducing Computer Simulation 136
Writing Something Big 141
Further Reading 146

5. Streamlining Text Processing with SNOBOL 147
Processing Lines 148
Exploring Statements 149
Constructing Patterns 153
Using Indirect References 156
Understanding Functions and Predicates 157
Comprehending Data Structures 162
Evaluating Unevaluated Expressions 166
Managing Input and Output 168

Contents • viii

Writing Something Big 169
Further Reading 172

6. Harnessing Set Data with Starset 173
“Hello, Sets!” 173
Getting to Know Starset Data Types 174
Exploring Loops 186
Designing Subroutines 190
Writing Something Big 192
Further Reading 195

7. Automating Text Generation with m4 197
Understanding Preprocessors 197
Defining and Using Macros 199
Controlling Execution Flow 205
Handling Text 210
Diverting Output and Including Files 212
Interacting with the System 213
Writing Something Big 215
Further Reading 219
The End of Week Seven 219

Bibliography 221
Index 225

Contents • ix

Acknowledgments
“This book is my fourth Pragmatic book produced in enjoyable cooperation with
the outstanding editor Adaobi Obi Tulton. I can’t stop admiring her helpfulness,
mastery of the language, knowledge of the procedures, and willingness to
understand the subject.” I used the same phrase in my third book, but I do
not mind repeating myself: Adaobi remains as helpful, knowledgeable,
understanding, and outstanding as ever.

The book was inspired by Margaret Eldridge, Pragmatic’s managing editor of
online content and senior acquisitions editor. She heard the barely audible
tune that I whistled on LinkedIn and swiftly transformed it into a book pro-
posal before I knew it. This book would not exist without her.

The official technical reviewers did an incredible job improving the quality of
the manuscript. My sincere thanks go to them, listed in alphabetical order
by last name: Uberto Barbini, Paul Butcher, Fred Daoud, Daniel Duffy,
Andrian Gorohovschi, Simon Hawkin, René Vincent Jansen, Russ Olsen,
Nikolay Shulga, Karl Stolley, Adam Tornhill, and Gary V. Vaughan. My special
thanks go to Nigel Karunaratne for help with debugging the Starset interpreter.

My beloved family—my wife, Anna; my daughter, Eugenia; my son, Roman;
and my cats, Cesar and Susan—provided immense encouragement and
emotional support, as always.

Thank you!

report erratum • discuss

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

Preface
I was born in the USSR—a country that was at least twenty years technolog-
ically behind the West. It was a curse.

I got my first calculator when I was fifteen, and it was just a calculator, not
a graphing one. I saw a computer for the first time as a college freshman, and
it was not a PC but a mainframe console. I punched my FORTRAN (in all
capital letters) programming labs on paper tapes—and I was lucky because
my classmates couldn’t negotiate tape punch access rights with the system
administrator and had to finish their lab assignments on time without an
option of saving them. Last but not least, we used a pirated version of IBM
OS/360 with some missing bits and pieces.

However, looking back, it was a blessing. Locked out behind the Iron Curtain,
the Soviet Union was a giant, continental-scale treasure trove of outdated
hardware and software and, simultaneously, exciting testing grounds for
groundbreaking and insane ideas and concepts deemed too impractical in
the “capitalist West.” On the one hand, I learned programming languages and
used hardware not used anywhere else anymore. On the other hand, I wit-
nessed the birth of Rapira (Rapier), a language designed to teach computer
programming in schools, and Agat and Corvette personal computers. The
Corvette was even developed by my teachers and classmates in my department
at Moscow State University. The USSR was also the birthplace of the world’s
most modern ternary computer, the Setun, that used trits instead of bits,
and a 48-bit supercomputer Elbrus-1 with ALGOL-68 as the system program-
ming language. Not too bad for a country that was considered technologically
backward.

So I was not a stranger to the world of “retro” languages (which didn’t feel
retro to me, since I didn’t know any better). I rigorously collected translated
books about APL, Algol, Forth, and PL/I, believing that in the late 1980s,
those languages were popular abroad.

report erratum • discuss

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

The last addition to my collection was a book about Starset. My relationship
with Starset is very intimate. The language was developed by the branch of
the Soviet Academy of Sciences located in my hometown, and I bought the
book in Almaty while dating my future wife, Anna. Soon after we married, we
emigrated to the United States, and that’s when I learned that my precious
knowledge of the “advanced” languages was obsolete. Alas.

Today, thirty years later, from the standpoint of a computer science professor
interested in the history of computing, among other things, I realize that my
experience with the “obscure” languages wasn’t in vain. Many concepts found
in modern programming languages are not so modern at all. They date back
to the Golden Age of computer science, to the 1960s and 1970s, when they
were either theoretically too advanced for their time or technologically infea-
sible. Some such concepts—objects, vectorized operations, message passing,
pattern matching, and even indentation as an element of syntax—were
rediscovered and successfully reimplemented in the 1980s and on. Other
concepts were less fortunate; they are indeed forgotten. I consider it my duty
to unearth the lore of the “obscure” programming languages and make it
available to you—whether for use in your professional life or simply to satisfy
your curiosity for arcane knowledge.

Dmitry Zinoviev
Professor of Computer Science and Data Science

dzinoviev@gmail.com
Boston, MA, Summer 2024

Preface • xiv

report erratum • discuss

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

Whan that Aprill, with his shoures soote The droghte of March hath perced to
the roote And bathed every veyne in swich licour, Of which vertu engendred is
the flour.

 ➤ Geoffrey Chaucer, English poet, author, and civil servant

Introduction
The epigraph to this Introduction is taken from The Canterbury Tales, written
by Geoffrey Chaucer around 1387. At first glance, it’s written in English. At
a second glance, it’s not, for the number of misspelled words is enormous,
and the grammar looks weird too. Indeed, the Tales are composed in Middle
English, a language spoken and written in England in the fourteenth century
but that gradually transitioned into Modern English from the late fifteenth
century onward, joining the ranks of largely forgotten, and obscure for any
practical purpose, natural languages, such as Akkadian, Ancient Egyptian,
Old Norse, Latin, Aramaic, Manx, and Etruscan.

Natural languages originate (yes, even nowadays—Afrikaans in Dutch South
Africa, Modern Hebrew in Israel, Tok Pisin in Papua New Guinea), evolve, and
die. Programming languages are similar to them: they go through the same
cycle but at a much faster rate. This book is about forgotten, obscure program-
ming languages.

Why would one care about obscure languages? Well, for more than one reason!

• Learning from history. Studying older programming languages can provide
insight into why modern languages are designed the way they are and
why certain features exist.

• Different paradigms. Some obscure languages introduced programming
paradigms that are still relevant today, even if the languages are not
widely used anymore.

• Problem-solving skills. Programming languages are designed to solve par-
ticular problems efficiently. You can broaden your problem-solving skills
and get new perspectives on tackling problems.

• Improved code understanding. Studying different programming languages
improves your ability to understand code, making you more versatile.

• Employability. Knowledge in a obscure language can lead to unique and
well-paying job opportunities in niche markets.

report erratum • discuss

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

• Maintaining legacy systems. Much of today’s code was written in older
languages. Knowing these languages helps maintain and update these
systems.

The rest of the Introduction explains the choice of languages, outlines the
intended audience, and specifies the required software.

About the Languages
The Online Historical Encyclopaedia of Programming Languages lists approxi-
mately nine thousand languages arranged into two regnums (endogenous and
exogenous), four phyla (algorithmic, functional, structural, and reflexive), twelve
classes (conversational, imperative, spatially algorithmic, operation-oriented,
expression-oriented, state/flow, lambda calculus, structural generic, structural
specific, phenomenological, simulating, and close mapping), and forty orders
(too many to list).1 Regardless of whether we take this classification as ground
truth, the variety of coding paradigms is astonishing.

Most of the languages mentioned by hopl.info are dead languages. Some of them
were popular at creation but went out of favor later. Some were “stillborn”—
created but never having caught the momentum. The others lived a long,
respectable life and retired, superseded by more advanced tools.

The surviving languages could be grouped by their popularity among program-
mers. The position of a language on the TIOBE Index is an acceptable proxy
for popularity.2 The languages like Python, C, Java, and C++ are broadly used
in industry and academia and cover the full development stack: front end,
back end, and databases. They are loved and remembered—even Fortran,
the oldest coding language.

TIOBE individually rates the next thirty languages, including COBOL, Perl,
Objective-C, Ada, Lua, Lisp, Haskel, Kotlin, Scala, and Prolog. They’re not
forgotten either. However, TIOBE lumps the next fifty languages together:
their popularity is low and barely above the statistical margins of error
(ActionScript, BCPL, Erlang/Elixir, Forth, J, Occam, PL/I, Scheme, Smalltalk,
Tcl, and VHDL are in this group). And this is where things become intriguing.

A vast amount of literature exists on Erlang and Elixir (including Pragmatic’s
own Programming Erlang [Arm13] and Modern Erlang for Beginners [Ost18]).
Scheme is popular in higher education for teaching organization of program-
ming languages and similar topics. COBOL is a niche language: the entire

1. https://hopl.info
2. https://www.tiobe.com/tiobe-index

Introduction • xvi

report erratum • discuss

https://hopl.info
https://www.tiobe.com/tiobe-index
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

financial and insurance industries run on it, but outside coders couldn’t care
less. Haskel and Lua are confined to their niches too. Kotlin (2011) is relatively
new in the field; let’s give it a couple of years to shine in its full glory (or not).
Every language in this and the following groups has a story of success and
eventual failure—the story that almost nobody remembers. These are the
languages that I call “obscure.”

The format of this book allows me to tell you only seven obscure language
stories. Painful as it was, I had to choose those seven. I wanted the selection
to be diverse and include feature-rich, bizarre, and promising languages, even
if their promises would fail to be fulfilled.

As a result, I picked Forth, Occam, APL, Simula, SNOBOL, Starset, and m4.
They feature, among other things, pattern matching, computer simulation,
array and stack processing, macroprogramming, message passing, and set
programming. Only m4 needs an explanation. It’s not obscure because it was
once known—it’s “obscure” because it was never exposed to most software
developers. Heavily used today by various system configuration tools, it
deserves much more credit as a practical, Turing-complete language.

You can see the rise and fall of the “obscure” languages in the table below.
The introduction years are taken from Wikipedia. The peak and decline years
have been inferred from the Google Books Ngram Viewer, which is imperfect
yet gives some ballpark estimates of what was hot and what was not.

DeclinedPeakedIntroduced

199519811962–1966APL

19901972, 19821962–1967SNOBOL

200719851962–1967Simula

201319881968Forth

activen/a1977m4

199519891983Occam

n/an/a1991Starset

From this point on, I will not put the word obscure in quotation marks. I hope
we agree on its meaning: the obscure languages are not truly forgotten. They
are in the dark. Together, we can bring them back to daylight.

About the Tips
This book is peppered with tips highlighting critical conceptual connections
between the obscure languages and those currently in active use. Such subtle

report erratum • discuss

About the Tips • xvii

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

connections are not only a tribute to the groundbreaking ideas from the glo-
rious past but the pulling ropes that could take the obscure languages out
of obscurity, and those connections could reveal the rainbows pointing to
pots of software development gold waiting to be rediscovered.

A Helpful Tip

The function foobar() in an obscure language loosely resembles the
function barfoo() in a popular existing language.

Think of these tips as a way to build and reinforce associations between
obscure languages and popular existing languages. The generative power of
a network of associations is in its density. The denser the network, the more
associations and creative ideas it generates in the reader, which is one of the
reasons for reading this book.

About You
This book is intended for software developers seeking new, unorthodox,
inspirational ideas to better their coding skills and theoretical understanding
of computer language organization. However, it’s also a crucial resource for
IT managers and team leads. Understanding the older languages enables
them to make informed decisions about legacy system maintenance, staff
training, and system integration. Additionally, tech enthusiasts and software
historians will find this book captivating, offering a deep dive into the evolu-
tionary layers of coding languages. Whether you’re hands-on with code or
overseeing teams and projects, this book provides invaluable insights into
obscure programming.

I hope that you, the reader, will see the connections between the concepts in
the past and their implementations today (for example, the first OOP language
was designed for computer simulation; digital humanities date back to the
early 1970s; indentation as a syntax feature is forty years old). Finally, you
will know how living in a world of specialized programming languages rather
than the general-purpose C, C++, Java, and Python could feel.

About the Software
In my youthful days, amid the stark realities of the former Soviet Union—
known today as Russia—my only way of learning a new programming language
was to imagine myself being that language interpreter and interpreting the
code written on paper. In the twenty-first century, you have better options.
Any programming language, with few exceptions, has been eventually brought

Introduction • xviii

report erratum • discuss

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

to life, one way or another—even Starset, the most obscure of the seven. The
question is not whether an interpreter or a compiler of a language exists but
where to find one. Being a devoted Linux user, I’ll advise you on how to get
a grip on Linux versions of the interpreters if they exist.

The luckiest of the obscure languages, m4, is not truly forgotten. Rather, it’s
obscured by more specialized tools that are unfamiliar to the users and even
programmers. I know a good programmer who believes that m4 is no more.
However, m4 is alive and kicking and at the heart of the GNU Autoconf system,
sendmail (a popular mail transfer agent), and Ratfor (a structured version of
Fortran 66). As such, it’s a part of any good Linux distribution; even if it’s
not, you’d have no trouble installing it.

For unknown reasons, but most likely not because of their exceptional prac-
tical significance, three more languages made it into the GNU ecosystem: APL,
Forth, and Simula. Their implementations became known as GNU APL, GNU
Forth (gforth), and GNU Simula (cim), and they are reasonably well maintained.

Phil Budne’s free CSNOBOL4 (snobol4), a port of Macro SNOBOL4, supports
full SNOBOL4 language plus SPITBOL and other extensions. You’ll have to
compile it yourself.

KRoC is the Kent Retargetable occam Compiler developed at the University
of Kent. It is open source but works only with 32-bit architectures. KRoC
implements Occam-pi—a modern flavor of Occam 2.5 with some elements of
π-calculus.

Finally, a Starset interpreter, christened “Suffolk Starset” or s3, is developed
and maintained by the team at my own Suffolk University. Its GitHub repos-
itory will be made public as soon as we release the first fully functional version.

The following list shows links to the obscure development tools’ repositories
at the time of writing this book.

• Forth. GNU Forth (gforth; for best results, install gforth-0.7.9; many examples
fail to compile with earlier versions)3

• Occam. Kent Retargetable occam Compiler (KRoC in Docker)4

• APL. GNU APL (apl),5 Dyalog APL/S (dyalog, proprietary, but free for non-
commercial use)6

3. https://www.gnu.org/software/gforth/
4. https://github.com/omegahm/kroc
5. https://www.gnu.org/software/apl/
6. https://www.dyalog.com/products.htm

report erratum • discuss

About the Software • xix

https://www.gnu.org/software/gforth/
https://github.com/omegahm/kroc
https://www.gnu.org/software/apl/
https://www.dyalog.com/products.htm
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

• Simula. GNU Simula (cim)7

• SNOBOL. CSNOBOL4 (snobol4)8 for any operating system with a C89 com-
piler

• Starset. Suffolk Starset (s3)9

• m4. GNU m4 (m4)10

An obligatory note—while every effort has been made to ensure that a func-
tional compiler or interpreter of each obscure language exists for at least one
popular platform (macOS, Linux, or Windows), this idyllic situation is hard
to preserve due to the very definition of “being forgotten.” If you want to enjoy
this book thoroughly, get the software previously mentioned while you can!

Writing Something Big
Forgotten or not, any programming language claiming a right to exist must
be good at least for something beyond printing “Hello, world!” The second-to-
last section of each chapter is called “Writing Something Big.” It presents a
moderately sized (a page or two), relatively practical, and self-contained
example of the chapter’s language use. If the example feels offensively
incomprehensible, you can safely skip it and proceed to the next chapter.

Further Reading
Each chapter concludes with a section titled “Further Reading” (just like this
one). That section contains a curated list of further suggested reading on the
subject.

One cannot expect to achieve a complete mastery of seven such diverse
languages in seven weeks, and not only are they diverse, but each is a mind-
breaker. Fortunately, many reference books and textbooks on most of these
languages have been published during their peak popularity. To save you the
effort of searching for these materials, I’ve compiled a comprehensive list of
books for each chapter. Please note, some of these resources may be hard to
find, some only exist in scanned format, and a few are only available in Rus-
sian due to the absence of English translations.

However, if a particular language captivates you, say, like Starset on page
173, you will hopefully appreciate my cataloging effort made to support your

7. https://www.gnu.org/software/cim/
8. https://www.regressive.org/snobol4/csnobol4/curr/
9. https://github.com/dzinoviev/starset
10. https://www.gnu.org/software/m4/

Introduction • xx

report erratum • discuss

https://www.gnu.org/software/cim/
https://www.regressive.org/snobol4/csnobol4/curr/
https://github.com/dzinoviev/starset
https://www.gnu.org/software/m4/
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

learning journey. The books are listed chronologically to illuminate the flows
and ebbs of the language popularity.

Online Resources
This book has a dedicated web page,11 where you can access all the accompa-
nying code. On the site, you’ll also find a community forum where you can
ask questions, share comments, and submit errata (registration on DevTalk
is required).12 If you’ve purchased the ebook, clicking the gray box above the
code extracts will allow you to download them directly.

What to Do Next?
Choose the first obscure language to explore. Download and install its inter-
preter or compiler, or grab a pencil and sheet of paper. Start reading and
coding in awe.

11. https://pragprog.com/book/dzseven
12. https://devtalk.com/books/seven-obscure-languages-in-seven-weeks/

report erratum • discuss

Online Resources • xxi

https://pragprog.com/book/dzseven
https://devtalk.com/books/seven-obscure-languages-in-seven-weeks/
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

CHAPTER 1

Simplicity is the ultimate sophistication.

 ➤ Leonardo da Vinci, Italian polymath

Mastering Stack-Based
Computing with Forth

In this chapter, you’ll learn to build efficient programs using stacks in the Forth
programming language instead of variables, ideal for resource-constrained set-
tings. Mastering Forth gives you a specialized understanding of stack-based
computing, making you more effective in low-resource and hardware-specific
environments, and broadens your problem-solving techniques.

Forth was designed as a hardware-friendly language. It’s so adaptable that
it can be used without an operating system or even replace it. For example,
a Forth system at Sun Microsystems was used to diagnose and develop
hardware, eventually evolving and being standardized into Open Firmware
(1994–2005).

In Forth, the basic unit of computation is a word on a stack. The stack is the
core computational unit. So, what is a stack?

Understanding Stack Essentials
A stack is a LIFO (last in, first out) linear data structure. In my head, a
“classical” stack is an array-like collection of cells that supports only three
operations:

• push(item). Push the item onto the stack, making it the top item of the stack
(“last in”).

• pop(). Remove the top item from the stack (“first out”).

• empty(). Check if the stack is empty (whether it has the top item).

report erratum • discuss

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

Stacks as data structures have been known before their software implemen-
tations. Stack automata and stack-based pushdown automata play an
essential role in the theory of computation. The pushdown automaton was
introduced by Allen Newell in 1959 and mentioned in the context of theoretical
computer science by Edsger Dijkstra in 1960. However, the stack itself can
be traced to 1947 (Alan Turing), and some elements can be found in the U.S.
tax laws in 1939! (See A Brief History of the Stack [Hen09].)

In addition to being elementary abstract data structures, stacks are, at the
same time, some of the simplest hardware components. A hardware imple-
mentation of a stack was supposed to be used in the PERM II computer in
1955 (unfortunately, it was never built). Most modern computer architectures
provide a hardware stack, which is one of the reasons for Forth’s existence.

When Forth appeared in 1968, designed by Charlie “Chuck” Moore, the new
language was expected to use hardware stacks wherever available. Eventually,
software stacks became mainstream, but of all the languages illuminated in
this book, Forth still has the most intimate connection to computer hardware.
And that’s why we start our journey through the land of obscure languages
with Forth.

Writing Comments and “Hello, World!”
Many programming languages use a stack (as a matter of fact, any language
that supports recursive function calls, such as C or Java, probably uses a
stack). The extraordinary feature of Forth is that it uses not one stack but
two: one for data (the data stack) and one for control (the return stack). And,
unlike the stacks in C or Java, which are invisible to the programmer, the
Forth stacks can and should be manipulated explicitly.

Before you see the stacks in action, I must say a word or two about the typing
convention, comments, and the "Hello, world!" program in Forth.

Forth supports several commenting styles:

• \ text (backslash followed by at least one space) comments the remainder
of the current line.

• (text) (an opening parenthesis, followed by at least one space) comments
the following text up to the first closing parenthesis; this type of comment
is also used to define command parameters and return values—see Word
Documentation, on page 7.

Chapter 1. Mastering Stack-Based Computing with Forth • 2

report erratum • discuss

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

• .(text) (a period, followed by an opening parenthesis, followed by at least one
space) comments the following text up to the first closing parenthesis but
also displays the commented text on the command line—say, for debugging.

• In some versions, { text} (an opening brace followed by at least one space)
comments the following text up to the first closing brace; this notation
allows one to comment parentheses.

The reason for having a space after the commenting symbol is that, unlike
other languages, Forth treats comments as commands (words) and requires
a separator between them and the commented content. The following code
fragment illustrates all three commenting styles.

forth/helloworld.fs
\ Hello World in Forth
(Hello World in Forth)
.(Hello World in Forth)
CR
s" Hello World" TYPE CR
BYE

You’ll see two output lines if you execute this code fragment in gforth as a
script:

/home/dzseven> gforth code/forth/helloworld.fs
Hello World in Forth
Hello World

The first line is the output of the dot-parenthesis comment followed by a CR
(“carriage return,” also known as line break). CR is a Forth word whose purpose
is just to break the current line. All Forth words, including CR, are case-
insensitive.

Carriage Return

The word CR loosely corresponds to the functions print() in Python
and puts("") in C or expression std::cout<<std::endl in C++.

The second line is the combined output of the words TYPE and another CR.
Note that the word parameter "Hello World" is placed in front of the word. The
section Reverse Polish Notation, on page 5, explains why.

In the interactive mode, Forth prints the output of the most recently exe-
cuted word on the same line. If the execution is successful, the output is
followed by the word ok and by the current depth of the data stack unless
the stack is empty. In the rest of the chapter, the character ↩ represents the

report erratum • discuss

Writing Comments and “Hello, World!” • 3

http://media.pragprog.com/titles/dzseven/code/forth/helloworld.fs
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

keystroke Enter . The character itself isn’t a Forth character, and everything
after the character is the output of Gforth. Let’s look at a small example. Note
how the data stack grows with each entered word.

1↩ ok 1
2↩ ok 2
"Hello"↩ ok 4
'W'↩ ok 5
BYE↩

The word BYE terminates the Forth session.

You may wonder why the stack grows by two words when you enter a string.
These two words represent the string’s length and the address of the character
array, as will be explained later on page 7.

Learning Predefined Forth Words
The Forth programming language makes every attempt to pretend that it’s a
human language. It has words; the words are stored in a dictionary; to “speak”
Forth fluently, you must learn the dictionary words and understand their
meaning. As a Forth programmer, you are only as good as your combined
knowledge of the dictionary.

All Forth words fall into several groups based on their level of standardization
and purpose.

Word Types
The most popular Forth standards are FORTH-79 (superseded by FORTH-83)
and fig-Forth (1978, replaced by ANS Forth in 1994). Gforth, used in this
book, is a free implementation of the latter. Depending on adherence to a
standard (for example, FORTH-79), words belong to required, extension, ref-
erence, and user-defined sets:

• The required word set is expected to be implemented by all Forth systems.
It includes words for the following:

– Arithmetic operations
– Stack manipulation
– Flow control
– Memory operation.
– Device control
– Other operations

• The extension word set supports semi-standardized extensions, such as
double numbers and assembler.

Chapter 1. Mastering Stack-Based Computing with Forth • 4

report erratum • discuss

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

• The reference word set contains words that have not been standardized
but are informally widely used and expected to become a part of the
standard in the future.

• Finally, you are free to (and usually have to) define specific words to solve
your specific problems.

Reverse Polish Notation
Stacks go side by side with Reverse Polish Notation (RPN)—a postfix notation
in which operators (words) follow their operands. For example, the sum of
two numbers in Forth is written as 1 2 +. Compare RPN to Normal Polish
Notation (NPN)—a prefix notation in which operators precede their operands.
NPN is used in Lisp, where the same expression is written as (+ 1 2). RPN is
the soul of Forth, as NPN is of Lisp. The other soulless programming languages
use the infix notation with a binary operator between the operands—1+2.
Could we care less about them in this chapter?

One exciting property of RPN is that it naturally obviates operator precedence.
No need to remember what goes first—addition or multiplication. Simply push
the operators and operands onto the stack in the [reverse] order in which you
want them executed.

RPN and HP

You might know Reverse Polish Notation (RPN) if you’ve used
Hewlett-Packard (HP) calculators. Several HP models, such as the
HP-19C, HP-20b, HP-28C, HP-29C, HP-30b, HP-35s, and HP
Prime, effectively let you program in a style similar to Forth, though
Forth was not explicitly mentioned.

To get a better sense of RPM, imagine the numeric operands in the expression
1 2 3 4 + + + . being stacked on the floor in the natural order. 1 is put right on the
floor, 2 goes on top of 1, 3 goes on top of 2, and 4 goes on top of 3. When the oper-
ator + “arrives,” it takes the two top operands (4 and 3), adds them up, and puts
the result (7) back on the top. The second + extracts 7 and 2 and leaves their sum,
9, on the stack. (“Leave on the stack” is Forth programmers’ shorthand for
“put at the top of the stack.”) The third + extracts 9 and 1 and leaves their
sum, 10. Now, 10 is on the floor alone. The word . (“dot”) extracts and displays
the final result. The stack is empty again (see the figure on page 6).

In another example, the expression 1 2 * 3 * 4 * .s calculates and displays the
product of the first four natural numbers (the factorial of 4). The word .s shows
the value on the top of the stack without removing it.

report erratum • discuss

Learning Predefined Forth Words • 5

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

Data Types
All cells in both data and return stacks are the same size (usually the size of
the machine word). Initially, each cell was meant to hold one value—a signed
or unsigned integer number, further denoted as n or u. Later, Forth extensions
added support for double precision numbers (DPNs) occupying two consecutive
words each (d and ud, respectively). Don’t confuse Forth DPNs with double
floating-point numbers in C, C++, and Java. DPNs are still integer numbers
consisting of the most significant word (MSW, closer to the top of the stack)
and the least significant word (LSW) in the following position.

As an example, consider the top two words of the stack in the middle of the
image on page 6—4 and 3. You can treat them as two single-precision words
at face value or as the LSW and MSW parts of a DPN, whose value is
(4*0x10000000000000000)+(3), which is MSW*264+LSW.

Underscores In Numbers

Forth numbers, like Python numbers, can contain underscores.
1_234_567 is 1234567 in both languages.

To enter a DPN in a program or on the command line, either type the LSW
followed by the MSW or insert a period anywhere in the number, as in the
following code fragment. Note how the stack depth increased by two after
entering the “pseudo-π.”

3.14159↩ ok 2
.↩ 0 ok 1 \ The MSW
.↩ 314159 ok \ The LSW

The code fragment on page 34 and the follow-up explanation have more DPN
examples.

Chapter 1. Mastering Stack-Based Computing with Forth • 6

report erratum • discuss

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

Remember, the period does not make that number a floating-point number!
But what about floating-point numbers? The “classical” Forth doesn’t have
them (but Gforth does). Use rational numbers if you should.

Forth treats characters in single quotation marks as integer numbers. The
words TRUE and FALSE represent Boolean values (flag data type); they’re
numerically equal to -1 and 0.

'A' .↩ 65 ok
TRUE .↩ -1 ok
FALSE .↩ 0 ok

A character string in double quotation marks is converted to a pointer to the
character array of type addr. The array is not NULL-terminated (as in C) and
does not store its length (as in Java/Python/Pascal). It’s your responsibility
to remember the length, but Forth is trying to be helpful: when you enter a
string on the command line, its address and length are both left on the stack.

"Hello, world"↩ ok 2
.↩ 12 ok 1 \ length
.↩ 93900026360080 ok \ character array address

You’ll see one more data type in Demystifying Vectored Execution, on page
26, but that’s all. Forth doesn’t have too many data types—not as few as the
B language but not even remotely as many as Python or Java.

Word Documentation
Forth words depend much on the stacks, especially the data stack (they take
operands from it and store the results in it). Forth designers provided a mecha-
nism for documenting the effect of words on the stacks—a comment that describes
the expected state of the stack before and after the execution of the word. The
comment is placed in parentheses. It uses the type notation developed in the
previous section, with an addition of the symbol x that denotes a cell of any type.

For example, the word / (“divide”) expects the dividend n1 and divisor n2 in the
stack and leaves the quotient n on the stack:

10 2 / .↩ 5 ok

You can describe its behavior as (n1 n2 -- n), which means pop n1 from the stack, pop
n2 from the stack, execute the operation, and push the result n back to the stack. The
string literal in the code fragment on page 7 behaves as (-- len addr): pop nothing,
execute the operation, and push the length len and the address addr to the stack.

report erratum • discuss

Learning Predefined Forth Words • 7

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

Word Documentation

Forth word documentation loosely corresponds to function proto-
types in C.

Just like any other documentation, word documentation in Forth isn’t required
but is strongly encouraged.

Arithmetic Operations
Forth arithmetic operations behave as expected, as long as your expectations
are based on understanding data types: signed vs. unsigned and single vs.
double precision. The words +, D+, M+, -, D-, *, / or MOD add (single, DPN, or
mixed), subtract (single and DPN), multiply, divide, and calculate the
remainder, respectively. The result has the same type as the operands unless
the operands have different types.

The words UM* (u1 u2 -- ud), M* (n1 n2 -- d), UM/MOD (ud u -- urem uquot) multiply and
divide with an appropriate upgrade (from single to DPN) and downgrade (from
DPN to single).

10000000000000 -10000000000000 * .↩ -2537764290115403776 ok
10000000000000 -10000000000000 M* . .↩ -5421011 2537764290115403776 ok
10000000000000 -10000000000000 UM* . .↩ 9999994578989 2537764290115403776 ok

The first and the last expressions in the preceding example produce incorrect
results because Forth does not check for signedness and overflows.

The middle result is correct: (10000000000000 × -10000000000000) mod 264 (which
equals 2537764290115403776) fits into the least significant 64-bit word, and
(10000000000000 × -10000000000000) ÷ 264 (which equals -5421011) fits into the next,
most significant one.

The lack of “classical” floating-point numbers necessitates extensive use of
rational numbers. As a result, multiplication by a rational number (that is,
multiplication by its numerator followed by division by the denominator)
becomes an operation on its own: */ (n num den -- quot) for single precision
numbers and M*/ (d num uden -- dquot) for DPNs. The operation uses extra-wide
storage for the intermediate product to avoid overflow. Here’s how Forth pro-
grammers calculate the circumference of a circle with a diameter of 10,000:

10000↩ ok 1 \ Push the diameter
355 113↩ ok 3 \ Push the π as a rational number
*/ .↩ 31415 ok

The sidebar on page 9 explains why 355/113 is the best π your money can buy.

Chapter 1. Mastering Stack-Based Computing with Forth • 8

report erratum • discuss

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

Know Your π’s!

π, one of the best-known numbers in mathematics, is transcendental: it’s not a root
of any polynomial with rational coefficients. π has infinitely many digits and must be
approximated for practical use. (Another such value is e, the base of natural loga-
rithms.) The two most popular approximations are 3.14159 and 22/7, which are
2.65e-06 and 0.0013 off, respectively. 355/113 is an even better approximation. As
a ratio of two whole numbers, it’s particularly suited for Forth and differs from π by
no more than 2.67e-07.

The words 1+, 1-, 2*, and 2/ simplify indexing operations involving increments,
decrements, doubling, and halving. These words are boring but handy.

The last group of arithmetic words of interest is NEGATE, DNEGATE, MAX, DMAX,
MIN, DMIN, and ABS and DABS. They do what they say they do.

Stack Manipulation
You may have noticed that the comments in the code fragment on page 8
mention pushing values onto the [data] stack, but nothing in the code looks
like a push() word. So who actually pushes the values? It’s you—or whoever
types the program.

Any word representing a value—such as a numeric or character literal, a
variable, or a constant—gets pushed onto the stack. The value stays on the
stack until extracted by a word representing an operation, like an arithmetic
function. As for popping values from the stack, you’re already familiar with
the words . (“dot”) and .s introduced on page 5.

The stacks have a dedicated word set you should master to understand the
language. The set includes words for juggling single numbers and DPNs in
both stacks.

The most straightforward words are DUP (x -- x x), DROP (x --), and their two-
word counterparts 2DUP and 2DROP. They duplicate or remove the top item.
DROP and . are different: the former doesn’t display the removed item but
simply discards it. For example, consider calculating the square of the number
of characters in the sacred phrase “Hello, world!” (Because why not?)

"Hello, world!"↩ ok 2 \ Stack: the length and the pointer
DUP↩ ok 3 \ Stack: two copies of the length and the pointer
*↩ ok 2 \ Stack: squared length and the pointer
.↩ 169 ok 1 \ Print the squared length
DROP↩ ok \ Clean the stack: drop the pointer

report erratum • discuss

Learning Predefined Forth Words • 9

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

The stacks are your workspace. You must keep them clean. If you leave
unused items on a stack, they’ll pile up and eventually cause a memory
shortage.

Let’s rewrite the code fragment on the same line, except for the string:

"Hello, world!"↩ ok 2
DUP * . DROP↩ 169 ok

The code fragment expects that the user or another operation will pro-
vide the string (essentially, the parameter) at the top of the stack. That’s
the Forth way!

The next group of words shuffles the data stack:

• SWAP (x1 x2 -- x2 x1) and 2SWAP swap the top two items. For example, you
can use it to access the pointer to a literal string in the most recent code
fragment.

• ROT (x1 x2 x3 -- x2 x3 x1) and 2ROT rotate the top three items so that the
second item moves to the top, the third becomes the second, and the former
top item submerges into the third position. ROT is a three-item version of SWAP.
-ROT (x1 x2 x3 -- x3 x1 x2) rotates the stack in the opposite direction. There
is no -2ROT!

• OVER (x1 x2 -- x1 x2 x1) and 2OVER leave a copy of the second item on the
stack. You can define this word in terms of the other more elementary
words. Compare these two fragments:

1 2↩ ok 2
OVER↩ ok 3
. . .↩ 1 2 1 ok

and

1 2↩ ok 2
SWAP DUP -ROT↩ ok 3
. . .↩ 1 2 1 ok

The two code fragments accomplish the same goal, but the first one is
more concise and efficient. Forth is a “Lego-like” language. It gives you a
set of “blocks” and encourages you to assemble them into bigger blocks
that make programming easy and fun.

• The word PICK (upos -- x) (available only in FORTH-79) leaves the nposth item
on the stack. This operation is against the spirit of an abstract stack, as
explained on page 1. However, Forth is a pragmatic language—it cares
more about goals than the means.

Chapter 1. Mastering Stack-Based Computing with Forth • 10

report erratum • discuss

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

Finally, three more words and their DPN cousins let you move items between
the two stacks. In some versions of Forth, they’re available only in word defi-
nitions, but Gforth is more permissive and allows one to use them anywhere.

• The words >R (x -- R:x) and 2>R move the top item from the data stack to
the return stack denoted as R: in the word description.

• The words R> (R:x -- x) and 2R> move the top item from the return stack
to the data stack.

• The words R@ (-- x ; R: x -- x) 2R@ copy the top item from the return stack to the
data stack. The documentation shows the states of both stacks separated by
a semicolon.

You would use the return stack as auxiliary storage for the items (“two heads
are better than one”) and, rarely, to implement customized control structures.
No matter what, ensure that the state of the stack before and after any oper-
ation doesn’t change, because that’s what a Forth system expects.

Defining New Words
The code fragment on page 10 and the paragraph that followed had a barely
hidden message: as a Forth programmer, you can and should create new
words, and Forth provides the wordsmithing mechanisms and tools.

A word consists of a name and a definition. For now, you can think of a word as
a macro that, when used, expands into a set of adequately arranged words. Some
would prefer to see that expansion as a function call.

Forth stores words in a dictionary—an opaque data structure resembling
Python dicts and C++ maps. Word names are the dictionary keys; their defini-
tions are dictionary values.

You can define new words, redefine existing words (please don’t!), and remove
unnecessary words. A new word definition and an existing word redefinition
begin with the word : (“colon”). When you type this word, Forth switches from
the default interpret mode (interactive mode) to the compile mode; it doesn’t
execute the code immediately but stores it in the dictionary for future use.

The new word name follows the colon. Forth allows any characters in a name
except spaces, backspace, CR (carriage return), and DEL (delete). So ^,
h*********!, and even %#?*& would be legal word names. I strongly advise you
to use this feature responsibly.

The body of the word follows its name. The body is the code fragment executed
when the word is expanded; it can be empty. A semicolon ; concludes the

report erratum • discuss

Learning Predefined Forth Words • 11

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

definition. The following examples illustrate a silly DO-NOTHING word, a word that
displays “Hello World”, another word that squares a number, and another
word that raises a number to the fourth degree by reusing the previously
defined word.

: DO-NOTHING (--) ;↩ ok
DO-NOTHING↩ ok

: HELLO! (--) "Hello World" TYPE CR ;↩ ok
HELLO!↩ Hello World
̨ok

: SQ (n -- n) DUP * ;↩ ok
32 SQ .↩ 1024 ok

: FOURTH-DEGREE (n -- n) SQ SQ ;↩ ok
16 FOURTH-DEGREE .↩ 65536 ok

With the mastery of arithmetic operations, and stack and dictionary control,
you can use Forth as a calculator. Now let’s make it a computer.

Dissecting Flow Control
Flow control is about controlling the execution of the individual program
statements (in our case, words). The “natural” flow control is sequential: the
next statement in the program text is the next to be executed. Any other
execution pattern requires some combination of unconditional jumps, condi-
tional branches, and loops.

Theoretically, loops are not needed. Some languages don’t support loops
directly. Assembly languages survive with jumps and branches. Erlang and
Prolog implement looping behavior with tail recursion. Python list comprehen-
sions and NumPy vectorized operations are also loops in disguise.

Forth has a set of predefined words to jump, branch, loop, go recursive, and
handle exceptions (two more ways to control program execution). It also allows
you to define your control structures. But first, let’s find out how to calculate
flags that control the control structures.

Relational and Logical Operations
A flag is a Boolean result (TRUE or FALSE) of a relational or logical operation.
Relational operators compare numbers for equality and non-equality and all
other objects for equality. Forth has a bunch of them.

• The words 0<, 0<=, 0>, 0>=, 0=, and 0<>, and their DPN counterparts like
D0= compare a number to zero.

Chapter 1. Mastering Stack-Based Computing with Forth • 12

report erratum • discuss

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

• The words <, <=, =, <>, >, >=, and their DPN and unsigned cousins like
D< and U> compare two numbers.

• The word WITHIN (n1 n2 n3 -- flag) checks if n2≤n1<n3.

Logical operators traditionally combine Boolean results based on their truth
tables. In Forth, however, they’re implemented as bitwise operators and
operate on individual bits. Nothing’s wrong with this arrangement; the result
of a pure Boolean logical operation is a special case of a bitwise operation on
the same operands. Simply remember that 100 99 AND numerically is 96, which
is still true because only 0 is false.

Forth logical/bitwise operators are AND, OR, XOR, and INVERT. Some versions
also have a pure Boolean NOT.

Let’s pretend that XOR is unavailable and implement it as a new word using
the mathematical definition X⊕Y ≡ X∙(∼Y)+(∼X)∙Y. The following code fragment
shows the original built-in XOR, the “mathematical” XOR step by step, and
the “mathematical” XOR defined as a new word MY-XOR.

77 15 XOR .↩ 66 ok

77 15↩ ok 2
2DUP↩ ok 4 \ Stack: 77 15 77 15
INVERT AND↩ ok 3 \ Stack: 77 15 64
-ROT SWAP↩ ok 3 \ Stack: 64 15 77
INVERT AND↩ ok 2 \ Stack: 64 2
OR .↩ 66 ok

: MY-XOR (n n -- n) 2DUP INVERT AND -ROT SWAP INVERT AND OR ;↩ ok
77 15 MY-XOR .↩ 66 ok

Aren’t stacks cool?

Conditionals
The simplest conditional word is ?DUP: it duplicates the top item if it’s true. The
reason for its existence is not trivial. Why not just compare the top item as a flag
and duplicate it if it’s true? The problem is that any comparison operator (for
example, 0=) irreversibly consumes the item from the stack. If the item hap-
pens to be true, it cannot be duplicated. A way around this is to duplicate
the top item unconditionally, then check the condition and duplicate the item
again if it’s not zero. Sure. Or just use ?DUP. By the way, you can print the
whole stack with the word .S.

99 ?DUP↩ ok 2
.S↩ <2> 99 99 ok 2
0 ?DUP↩ ok 3
.S↩ <3> 99 99 0 ok 3

report erratum • discuss

Dissecting Flow Control • 13

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

Now let’s look at the more familiar operation—the if-then-else statement. In
Forth, it has two flavors:

• The IFTRUE-OTHERWISE-IFEND form exists only in some rare language versions
and cannot be nested (it cannot have another IFTRUE-OTHERWISE-IFEND inside).

• The IF-ELSE-THEN form in FORTH-79 is probably more familiar, except it’s
written in Reverse Polish Notation.

The word IF checks the Boolean condition (the flag) on the stack, removes it,
and selects the action. If the flag is logically true, Forth executes the words
between IF and ELSE; otherwise, it executes the words between ELSE and THEN.

: SAY (flag --) IF ." Hello" ELSE ." Goodbye" THEN ;↩ ok
TRUE SAY↩ Hello ok
FALSE SAY↩ Goodbye ok

If the statement doesn’t have the “else” branch, it doesn’t use the word ELSE.
You can use this statement only in the compile mode. Your friendly Forth
software will remind you if you forget.

You can nest IF-ELSE-THEN statements. The following example implements a toy
traffic light sensor for Toysla—a fictitious self-driving car. The sensor “trans-
forms” numeric traffic line signals into car “actions” by checking sequentially
if the value on the stack equals one of the predefined constants.

forth/traffic.fs
\ Traffic light "sensor" via IF
\ Valid signals: 0 - red, 1 - yellow, 2 - green
0 CONSTANT RED-TL
1 CONSTANT YELLOW-TL
2 CONSTANT GREEN-TL
: TL (n --)

DUP \ Duplication needed to enable further comparisons
RED-TL = IF

." STOP"
ELSE

DUP \ Same here
YELLOW-TL = IF
." WAIT"

ELSE
GREEN-TL = IF

." GO"
ELSE

." ERROR"
THEN

THEN
THEN ;

Chapter 1. Mastering Stack-Based Computing with Forth • 14

report erratum • discuss

http://media.pragprog.com/titles/dzseven/code/forth/traffic.fs
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

Note the new word CONSTANT that, together with its DPN cousin 2CONSTANT,
defines a constant value. You can also use the words VALUE to define a
“changeable” constant (a pseudo-constant) and TO to redefine it:

314 CONSTANT MY-PI-CONST↩ ok
314 VALUE MY-PI-VAL↩ ok
3 TO MY-PI-VAL↩ ok \ MY-PI-VAL=3
MY-PI-VAL .↩ 3 ok
3 TO MY-PI-CONST↩
̨*the terminal*:5:6: error: Argument type mismatch

Do Not Redefine Colors!

Do not redefine Gforth words RED, YELLOW, GREEN, and the like as
variables or constants! They’re already defined to denote ASCII
terminal colors. Some Forth implementations also define PI. Stay
away from redefining it too.

Testing the code does’t reveal any suprises. The sensor works as expected:

INCLUDE code/forth/traffic.fs↩ ok
0 TL↩ STOP ok 1
1 TL↩ WAIT ok 2
2 TL↩ GO ok 2
32 TL↩ ERROR ok 2

The testing fragment introduces another new word, INCLUDE. It includes
verbatim and interprets an external Forth source file, mainly to reuse code
fragments between projects.

Constants

Forth CONSTANTs loosely correspond to C/C++ preprocessor macros
without parameters, introduced via #define. In the same spirit,
Forth INCLUDE loosely corresponds to C/C++ preprocessor directive
#include.

The example on page 14 works well for a few choices, but it quickly becomes
hard to read and maintain as the number of options increases.

Help comes from the CASE statement. The CASE statement in Forth corresponds
to the switch statement in C/C++/Java. It collects the top stack item and
compares it repeatedly without duplication to each of the case markers. When
a marker matches the item, Forth executes the corresponding code. If a match
is not found, Forth executes the default code. The CASE-based traffic sensor
implementation is elegant and easily extendable:

report erratum • discuss

Dissecting Flow Control • 15

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

forth/traffic.fs
\ Traffic light "sensor" via CASE
: TL-1 (n --)

CASE RED-TL OF ." STOP" ENDOF
YELLOW-TL OF ." WAIT" ENDOF
GREEN-TL OF ." GO" ENDOF
." ERROR" ENDCASE ; \ default code

You’ll find it enlightening to test the second version of the sensor yourself.

Loops
You’re now ready to do what differentiates a computer from a non-programmable
calculator—automatically repeat an operation several times or indefinitely. Just
like many other languages, Forth has a concept of a loop and implements it in
four ways: loops that don’t stop (infinite loops), loops that terminate after no more
than a fixed number of iterations, and loops that terminate before or after a spe-
cific condition is met.

Infinite Loops

You may have been advised by your programming teacher, mentor, or
book to avoid infinite loops. After all, the purpose of any program is to
deliver results, and if a loop never ends, it will never produce a result,
will it? This logic is correct at first glance but flawed in general. First,
there are ways to terminate a loop even if it pretends to be infinite (see
Exiting Loops, on page 19). It’s often easier to write an infinite loop with
an explicit exit statement than an equivalent finite loop, and that can be
later converted to a proper finite loop. Second, some loops are meant to
be infinite. Their goal is not to provide the final result but to process data
and signals as they arrive—for example, a database server or our sensor
developed in the code fragment on page 14.

So, infinite loops have a niche, and Forth lets you organize them with the
words BEGIN and AGAIN (both can be used only in compile mode). This example
is toyish:

: AND-NEVER-COME-BACK BEGIN ." Leave now" CR AGAIN ; \ Do not execute!

But the following example of a server is realistic, assuming that the words
RECEIVE, PROCESS, and SEND are adequately defined:

: RECEIVE (-- n) ;↩ ok
: PROCESS (n -- n) ;↩ ok
: SEND (n --) ;↩ ok
: SERVER (--)

BEGIN

Chapter 1. Mastering Stack-Based Computing with Forth • 16

report erratum • discuss

http://media.pragprog.com/titles/dzseven/code/forth/traffic.fs
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

RECEIVE PROCESS SEND
AGAIN ;↩ ok

SERVER \ And never comes back...

You can nest loops the same way you nest conditionals. You can also have
conditionals in loops and loops in conditionals. The coding best practice is
to have up to three levels of nesting.

Post-testing Loops

A post-testing loop terminates after some condition represented by the item
at the top of the stack becomes logically true. The condition is tested after
executing at least one loop iteration (hence the name); the loop runs at least
once. The assumption is that the condition results from the execution of the
words in the loop’s body.

The loop is defined with BEGIN for starting the loop and UNTIL (or END in some
dialects) for checking the flag. Incidentally, AGAIN equals 0 UNTIL (compare while(0)
in C/C++/Java).

Let’s code the famous Heron’s method for calculating the square root of a
number N. The method assumes that √N=S≈1 (odd!) and then rectifies the
result iteratively as S=(N/S+S)/2 until the difference between the two consec-
utive iterations becomes zero (for integer numbers) or arbitrarily small.

forth/sqrt.fs
\ Calculate Result=sqrt(Num) as Result[0]=1;Line 1

\ Result[i+1]=(Num/Result[i]+Result[i])/2-

: SQRT (u -- u)-

1 \ Result[0] = 1-

BEGIN5

OVER 0 2 PICK \ Make Result a DPN-

UM/MOD \ Num/Result-

SWAP DROP \ Drop the remainder-

OVER + 0 \ (Num/Result)+Result-

2 UM/MOD \ ((Num/Result)+Result)/210

SWAP DROP \ Drop the remainder-

SWAP OVER = \ The new flag-

UNTIL-

SWAP DROP ; \ Drop the Num-

Note how the new flag is calculated on line 12.

Pre-testing Loops

As opposed to a post-testing loop, a pre-testing loop checks the flag before
executing the body. It has the form BEGIN code1 WHILE code 2 REPEAT. code1 is exe-
cuted first and leaves the flag on the stack. code2 is executed as long as the
flag is true. A loop will be skipped if the flag is initially false.

report erratum • discuss

Dissecting Flow Control • 17

http://media.pragprog.com/titles/dzseven/code/forth/sqrt.fs
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

The following code imitates driving a Toysla car (from the subsection Condi-
tionals, on page 13):

: DRIVE-TOYSLA (u -- u)
CR
BEGIN

?DUP \ Make a copy of the distance
WHILE

." Going... " 1- \ Update the flag: decrement the distance
REPEAT
." Gone!" ;↩ ok

5 CONSTANT DISTANCE-2-CLIFF↩ ok
DISTANCE-2-CLIFF DRIVE-TOYSLA↩
̨Going... Going... Going... Going... Going... Gone! ok

While an excellent toy example, this code would look conceptually better as
a finite loop because the number of iterations is known beforehand—and
Forth has that too.

Finite Loops

The number of finite loop iterations is limited by the item in the second
position on the stack. (You can still break the loop earlier.) The top of the
stack is initially occupied by the loop index—an integer number that’s incre-
mented automatically after each iteration. The loop has the form DO (n1 n2 --)
code LOOP. A copy of the index is provided by executing the word I, which is a
tribute to the for loops in Fortran—their loop variables were usually called I,
J, or K. Forth has J and K too—they’re the indices of the first and second outer
loops, if any. It’s not considered good practice to nest more than three levels
of loops.

A trivial first example of a finite loop is a numeric range printer (compare
Python print(range(n))):

: PRINT-RANGE (n --) 0 DO I . LOOP ;↩ ok
5 PRINT-RANGE↩ 0 1 2 3 4 ok

Forth checks the termination condition after the execution of the first iteration.
If the limit is already equal to the limit, the loop becomes infinite and crashes
the program. You can use another word, ?DO, that skips the loop if there’s
nothing to do.

Would you rather iterate with a non-unit step? The word +LOOP (n --) adds a
specified number to the loop index. The number can be different from one
but could be one too. The following code shows a subset of the multiplication
table for the odd numbers. It also illustrates nested loops.

Chapter 1. Mastering Stack-Based Computing with Forth • 18

report erratum • discuss

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

: M2-TABLE (--)
10 1 DO

10 1 DO
I J * .

LOOP
CR \ End of a row

2 +LOOP ;↩ ok

CR M2-TABLE↩
̨1 2 3 4 5 6 7 8 9
̨3 6 9 12 15 18 21 24 27
̨5 10 15 20 25 30 35 40 45
̨7 14 21 28 35 42 49 56 63
̨9 18 27 36 45 54 63 72 81
̨ok

The table doesn’t look particularly neat. You can use pictured output,
explained on page 35, to tidy it.

Loops

Infinite loops in Forth correspond to infinite loops (LOOP) in Lisp.
Finite loops resemble for loops in Fortran and BASIC and loosely
correspond to the namesake loops in C/C++/Java. Pre-testing
loops correspond to while loops in C, Java, Python, and many other
languages. Post-testing loops correspond to do-while loops in
C/C++/Java.

Exiting Loops

A nontrivial program may need to exit a loop and proceed to the succeeding
words before the loop condition is met or the loop index reaches the limit. No
matter how you terminate a loop, ensure that any changes to the return stack
you made in the loop are undone. Forth keeps loop-related information (such
as the current value of the loop index) in the return stack and expects it to
be in order. Messing up the return stack guarantees a problem.

Forth is a language of choices. Often there’s more than one way to do things
right. Terminating loops isn’t an exception.

The word LEAVE instantly terminates the loop—however, the loop must be finite
(DO-LOOP). The reason for this restriction is that LEAVE also discards the limit
and index from the return stack. The other three types of loops do not use
them, which causes LEAVE to fail.

: DO-TEST 10 0 DO LEAVE LOOP ; \ Do this
: AGAIN-TEST BEGIN LEAVE AGAIN ; \ Do NOT do this!
: REPEAT-TEST BEGIN 1 WHILE LEAVE REPEAT ; \ Do NOT do this!
: UNTIL-TEST BEGIN LEAVE 1 UNTIL ; \ Do NOT do this!

report erratum • discuss

Dissecting Flow Control • 19

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

The word EXIT has no such restriction and is even more potent than LEAVE. It
terminates the current loop and the execution of the current word. This
behavior poses a dilemma: how do you end, say, only an infinite loop if it’s
part of another word? One option is to create a new word that encloses the
infinite loop.

Leave vs. Exit

The words LEAVE and EXIT loosely correspond to break in C/C++,
Java, and Python.

When breaking the loop, EXIT doesn’t clean up the data stack. If the loop body
changed the state of the stack (for example, by executing DUP), those changes
would not be undone.

Lastly, EXIT can exit finite loops but does not discard the limit and index from
the return stack. Rather than trying to locate and extract them, use the word
UNLOOP which does precisely that. The word was designed to be used with EXIT
and doesn’t seem to serve any other purpose.

: DO-TEST 10 0 DO UNLOOP EXIT LOOP ; \ Do this
: AGAIN-TEST BEGIN EXIT AGAIN ; \ Do this
: REPEAT-TEST BEGIN 1 WHILE EXIT REPEAT ; \ Do this
: UNTIL-TEST BEGIN EXIT 1 UNTIL ; \ Do this

Discovering Recursion
Forth has a return stack and four types of loops. But does Forth have recur-
sion? It depends on whom you ask. “Clean” FORTH-79 doesn’t directly support
recursion. However, you can implement recursion yourself with the help of
R>, >R, and similar words. It sounds like a cool do-it-yourself project. If you’re
not much into DIY, consider using fig-Forth with the word RECUR (in some
dialects, MYSELF)—or, better, revert to Gforth with RECURSIVE.

The word RECURSIVE immediately follows the name in a new word definition. It
creates a temporary entry in the dictionary, to which the rest of the definition
can refer. If you provide no such entry, attempting to use a word within its
definition will cause an Undefined word error.

An obligatory recursive factorial example illustrates the concept. Also, for
your reference, 25! is the largest factorial that a 64-bit CPU can calculate.

: FACTORIAL (n -- n) RECURSIVE
?DUP 0= IF

1 \ 0! = 1; The base case
ELSE

Chapter 1. Mastering Stack-Based Computing with Forth • 20

report erratum • discuss

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

DUP 1- FACTORIAL * \ n! = n*(n-1)!; The recursive case
THEN ;↩ ok

25 FACTORIAL .↩ 7034535277573963776 ok

As a rule, avoid recursion when possible, whether you code in Forth, C,
Python, or Java. Recursion is theoretically elegant but practically hard to
debug and often leads to poor performance unless it’s tail recursion. A
recursive solution may cause devastating damage to the execution time
(consider, for example, calculating Fibonacci numbers via fib[i+1]=fib[i]+fib[i-1]).

Arriving to Memory Operations
Isn’t it amazing that you read twenty pages of the Forth story without seeing
a word about variables or arrays? Forth works great without variables and
arrays. But it’s even better with them.

Variables
Forth variables are named memory locations. You must create them explicitly
and initialize them after or at the time of creation (the latter option works
only in fig-Forth). The location consists of one or two cells (a 2-variable). In
some dialects of Forth, single-byte variables exist. A 2-variable can be accessed
piecewise, one cell at a time.

The name of a variable resolves into its address in memory. To create a vari-
able, use the words VARIABLE or 2VARIABLE, followed by the variable name.
(Compare constant creation on page 15.) All variables, constants, and words
in Forth are, by default, global. You can restrict their visibility by placing
them on word lists, but word lists are beyond the scope of this chapter.

You can use and modify the value of an existing variable with the words “fetch”
@ (addr -- x), “store” ! (x addr --), and “add” +! (x addr --). Fetching and storing
are also available for 2-variables as 2@ and 2!.

VARIABLE AGE↩ ok \ Create
50 AGE !↩ ok \ Initialize/Store
1 AGE +!↩ ok \ Increment
AGE @ .↩ 51 ok \ Fetch

Variables in Forth don’t enjoy the same level of appreciation as in other pro-
cedural languages. They’re great for “long-term” storage, but you should try
to put transient, especially single-use values, on the stack.

As you already know, a variable name is interpreted as the address of the
memory cell(s). Thus, you can treat a 2-variable as a rudimentary two-cell
array. (Don’t worry—Forth has real arrays! You’ll meet them in the next

report erratum • discuss

Arriving to Memory Operations • 21

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

subsection.) This code fragment stores two ages in the two consecutive cells
of a 2-variable.

2VARIABLE AGES↩ ok \ Create
50 AGES !↩ ok \ Store into one cell
45 AGES CELL+ !↩ ok \ Store into the other cell
AGES 2@ . .↩ 50 45 ok \ Fetch both cells

The word CELL+ (addr1 -- addr2) is a member of the address arithmetic subset.
It takes the address at the top of the stack (the address of the variable AGES
in the example) and adds the size of one cell to it. The latter is usually 8 bytes
for a 64-bit CPU (one machine word), but don’t make this assumption, or
your program won’t be portable. The word CELL- (addr1 -- addr2), naturally,
subtracts a cell size.

Since Forth prefers the stack to variables, it undeservedly neglects them. One
operation that’s notably missing from Forth is copying variables. You cannot
simply write a=b in Forth; Python’s famous simultaneous assignment statement
a,b=b,a is totally out of the question. That’s not to say that you cannot copy
variables—you just have to write a new word for it:

: COPY (src dest --) SWAP @ SWAP ! ;↩ ok
VARIABLE AGE1↩ ok
VARIABLE AGE2↩ ok
45 AGE1 !↩ ok
AGE1 AGE2 COPY↩ ok
AGE1 @ .↩ 45 ok
AGE2 @ .↩ 45 ok

You can even copy one cell of a 2-variable into the other:

AGES 2@ . .↩ 50 55 ok
AGES AGES CELL+ COPY↩ ok
AGES 2@ . .↩ 50 50 ok

Can you write a word that swaps two variables (executes simultaneous
assignment)?

Since CELL+ and CELL- were already mentioned, it would be unfair not to mention
the words CHAR+ (addr1 -- addrs2), CELLS (u1 -- u2), CELL (-- u), and CHARS (u1 -- u2). The
first adds the size of one character to the address on the stack. For any practical
purpose and according to C/C++ standards, the size of one character is 1 byte.
However, C/C++ standards are not directly applicable to Forth. One can imagine
an implementation where a character requires more than 1 byte (did I say “Uni-
code”?) or less than 1 byte. Better to be safe than sorry and use CHAR+ and CHAR-.

To add another level of portability, the words CELLS, CELL, and CHARS leave on
the stack the size of n cells, one cell, and n characters, respectively.

Chapter 1. Mastering Stack-Based Computing with Forth • 22

report erratum • discuss

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

How Many Bits Are in a Byte?

If the answer were “eight,” I would not ask this question. The correct answer is “a
byte typically consists of eight bits.” The word “typically” makes the difference. The
term traditionally described a group of bits used to encode a single character, and
the size could vary depending on the system and context. In some computer systems,
a byte could be 4 bits (Intel 4004), 6 bits (UNIVAC 1100/2200), 7 bits (IBM 1401,
Minsk-32), 9 bits (PDP-10), 10 bits (CDC 160A, PDP-5), or some other size.

With the knowledge of variables and address arithmetic you can proceed to
explore real arrays.

Arrays
If you are, for instance, a C/C++ or Fortran programmer, you know that an
array is a homogeneous collection of contiguous memory cells. Other languages
have arrays, too, and some (notably, APL on page 77) have virtually nothing
but arrays. Forth isn’t an exception—it supports arrays, which are indispens-
able for any realistic project.

Arrays in Forth are not variables. They are declared, allocated, and accessed
differently. They’re essentially pointers to the storage space (after the space is
allocated), and they don’t “remember” their size; you have to store the size in a
separate variable. The latter may be an unpleasant surprise for Java and Python
programmers accustomed to the fact that someone keeps track of their arrays.

Arrays

Forth arrays loosely correspond to one-dimensional arrays in C
created dynamically with malloc().

You can create an array two ways: standard (declare with CREATE, allocate with
ALLOT) and nonstandard but convenient (declare and allocate with BUFFER:—
yes, with a colon at the end of the word).

• CREATE ("name" --) creates an object called name but does not allocate
memory.

• ALLOT (u --) allocates u bytes (not cells!) if u is positive. Otherwise, it deallo-
cates -u bytes. Forth treats memory as one continuous block. Your program
is responsible for memorizing the beginning addresses and lengths. From
Forth’s point of view, it’s permissible to allocate 100 bytes and then
deallocate (free) 95 bytes. But is it what you want?

report erratum • discuss

Arriving to Memory Operations • 23

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

• BUFFER: (u "name" --) creates an object called name and allocates u bytes. The
following two constructs behave almost identically:

CREATE GRADES 100 CELLS ALLOT
100 CELLS BUFFER: GRADES

Now, the value of GRADES is the address of the new array—a pointer to it,
using the C/C++ terminology.

• HERE (-- addr) and UNUSED (-- u) report the address of the next available byte
of memory and the amount of available, nonallocated memory.

• ERASE (addr u --), BLANK (addr u --), and FILL (addr u char --) fill the first u
bytes of the array with zeros, white spaces (“blanks”), and any other
characters, respectively. They do not check array boundaries (nobody
does except you).

• DUMP (addr u --) displays the array or a portion of it (for debugging).

Note that the last four words expect to find two array attributes on the top of
the stack: a pointer to the first element and length. The section Exploring
Character and String Operations, on page 31, shows that strings follow the
same calling convention.

In Forth and other languages with similarly organized arrays and finite
loops (Fortran, C), the two go hand in hand. It’s time to practice them by
defining a set of words that calculate the mean of all array elements. The
first word, SUM, adds all elements. The second word, MEAN, executes SUM and
divides the result by the array size. The mean is scaled up by 100 to compen-
sate for the lack of floating-point numbers. Alternatively, you could return it
as a rational number.

forth/mean.fs
\ Calculate the sum of array elements
: SUM (addr n -- n1)

0 SWAP \ Initialize the accumulator
0 DO

OVER I CELLS + @ + \ Calculate the index, fetch, add
LOOP
SWAP DROP ; \ Drop the array pointer to clean the stack

\ Calculate the mean of array elements
: MEAN (addr n -- n1)

DUP -ROT \ Make a copy of "n"
SUM SWAP
100 SWAP */ ; \ Multiply by 100 to get better accuracy

Chapter 1. Mastering Stack-Based Computing with Forth • 24

report erratum • discuss

http://media.pragprog.com/titles/dzseven/code/forth/mean.fs
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

You need an initialized array to test the new words. In real life, the array is
produced by another word or comes from a file, but you can also create it by
hand using the “comma” word ,. Such an array of constants is called a table.
Once constructed, a table doesn’t differ from an “ordinary” array. By the way,
the calculated mean is correct!

CREATE GRADES 4 , 2 , 3 , 2 , 4 , 1 , 3 , 2 ,↩ ok
GRADES 8 MEAN . 262↩ ok

Tables

Forth tables loosely correspond to one-dimensional arrays with
an initializer list in C/C++/Java: int grades[] = {4, 2, 3, 2, 4, 1, 3, 2}. In
the latter case, the last comma and spaces before the commas are
optional.

You can use a similar notation to create initialized character arrays, except
the comma becomes a “C-comma” C,. A character array is actually a character
string. The dump shows its address, the hexadecimal codes of all characters,
and printable representation. Each character consumes a byte of memory,
not a cell.

CREATE HELLO 'H' C, 'e' C, 'l' C, 'l' C, 'o' C,↩ ok
HELLO 5 DUMP↩
̨7FCEC96E2140: 48 65 6C 6C 6F - Hello
̨ ok

Let’s go over one more example to grasp loops and arrays even better. Suppose
the array VALID is parallel to GRADES; for each element in GRADES, the matching
element of VALID (true or false) defines whether the grade is valid. You want
to replace invalid grades with a -1.

The auxiliary word FIX checks the flag and leaves on the stack either the old
grade or -1. The word FILTER applies FIX in a loop to each Ith pair of elements.

: FIX (n flag -- n1) INVERT IF DROP -1 THEN ;
: FILTER (addr1 addr2 u --)

0 DO
DUP I CELLS + @ ROT \ Access the original grade
DUP I CELLS + @ ROT \ Access the validity flag
SWAP FIX

ROT DUP -ROT \ Bring the new grade
I CELLS + ! \ Update the grade

LOOP
DROP DROP ; \ Clean the stack

CREATE VALID TRUE , FALSE , FALSE , TRUE , TRUE , FALSE , TRUE , TRUE ,↩ ok
VALID GRADES 8 FILTER↩ ok

report erratum • discuss

Arriving to Memory Operations • 25

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

Demystifying Vectored Execution
From the modern-day terminology perspective, vectored execution in Forth
is neither vectored nor execution, yet it exists, and it’s a unique feature in
Forth. In the core of vectored execution lies an execution token (previously
promised on page 7).

An execution token (xt) is a fragment of compiled Forth code—a compiled
word. Forth enters compile mode when you type a colon : and leaves when
you type a semicolon ;. Everything between : and ;, except the word name, is
converted into a token. Then the token is combined with the name and stored
in the dictionary. In this previously presented example, INVERT IF DROP -1 THEN
becomes an execution token, and FIX becomes its dictionary name:

: FIX (n flag -- n1) INVERT IF DROP -1 THEN ;

When you activate a word by typing it on the console or invoking it indirectly
in another activated word, Forth locates and extracts the execution token
associated with the word and executes it. It works straightforwardly and
seamlessly if you know which word to activate. But what if you don’t? What
if the action depends on a condition?

A non-Forth programmer would have to use conditionals on page 13. But a
C programmer could build an array of pointers to functions for each occasion
and call a function by address, and a Python programmer could resort to a list
of lambdas. Incidentally, both techniques resemble vectored execution.

Vectored Execution

Vectored execution loosely corresponds to calling functions by
address in C and lambdas in Python.

To enjoy vectored execution, you must first separate a word and its execution
token and store the token in a variable (named) or on the stack (nameless).
The words “quote” ' (-- xt) and “quote in brackets” ['] (-- xt) separate the execu-
tion token from a word in interpret and compile modes.

Second, there must be a way to execute the token. The word EXECUTE (xt --) is
doing just that. Since the execution token is often fetched from a variable
with @, the two words can be lumped into @EXECUTE (addr --). We can summarize
as follows:

Chapter 1. Mastering Stack-Based Computing with Forth • 26

report erratum • discuss

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

1. Convert a word to an execution token.
2. Assign the token to a variable or push it onto the stack.
3. Execute the token any time later. This type of execution is also known as

deferred execution.

You can assign different tokens to the same variable and execute the most
recently assigned token later. Consider our Toysla car from the subsection
Conditionals, on page 13. In the following example, it responds to three
commands: DRIVE, HALT, and SLOW DOWN. The execution token of the next com-
mand is stored in the namesake variable NEXT-COMMAND by the car controller
and executed as needed.

\ Three options:
: DRIVE ." Driving" CR ;↩ ok
: HALT ." Halting" CR ;↩ ok
: SLOWDOWN ." Slowing down" CR ;↩ ok

VARIABLE NEXT-COMMAND↩ ok
' DRIVE NEXT-COMMAND !↩ ok \ Prepare to act: store the command
NEXT-COMMAND @EXECUTE↩ Driving
̨ok 1 \ Act!

Storing one execution token in a variable doesn’t look like a life changer. Let’s
put all possible tokens in an array! The array must be of a particular kind—
an execution vector created with the word DEFER ("name" --) and populated with
the word IS (xt "name" --). DEFER creates a new execution vector named “name”.
The vector is dynamic and grows as needed. Once the vector is ready, add
elements to it with IS. This word inserts an execution token into a vector like
a word definition inserts a word into the dictionary.

DEFER NEXT-COMMAND
: DRIVE ' CR ." Driving" IS NEXT-COMMAND ;
: HALT ' CR ." Halting" IS NEXT-COMMAND ;
: SLOWDOWN ' CR ." Slowing down" IS NEXT-COMMAND ;

: COMPLEX-ACTION (stuff) ; \ Two-step example
: FOOBAR ['] COMPLEX-ACTION IS NEXT-COMMAND ;

To execute a token, leave it on the stack and activate the vector by name. The
vector acts as if it were @EXECUTE.

HALT NEXT-COMMAND↩
̨Halting ok
SLOWDOWN NEXT-COMMAND↩
̨Slowing down ok
DRIVE NEXT-COMMAND↩
̨Driving ok

report erratum • discuss

Demystifying Vectored Execution • 27

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

Handling Errors and Exceptions
Runtime errors are inevitable in real-world programs. The signals from the
real world (keystrokes, mouse events, network packets, sounds of speech,
and videos, to name a few) are often unpredictable, untimely, noisy, and
inconsistent. To build dependable software, you should anticipate their
imperfect nature and write code that can handle errors. Forth assists this
noble goal by providing two levels of error handling.

he “higher-level” commands aim to bring the unruly program under
control by returning to the command line interpreter. The higher-level
commands are ABORT, ABORT" (yes, with a quotation mark as a part of the
word), and QUIT.

• The word ABORT stops the execution of the enclosing word, empties both
stacks, and silently returns to the console. If you’re interested in the
reason for the termination, you must display an error message before
aborting.

• The word ABORT" <text>" (flag --) is more intelligent. It starts by checking
the flag. If the flag is false, the word is silently ignored. Otherwise, the
word displays the text embedded into a standard Forth error message,
empties both stacks, and returns to the console like its quote-less friend.
This word is compile-only.

• Finally, QUIT empties the return stack and silently returns to the console.
This word does not clear the data stack, allowing you to inspect it for
debugging.

None of the higher-level error handling commands terminates the interpreter.
For that, you should use BYE.

The following example illustrates the behavior of all four higher-level error
handlers. The first code block defines four almost identical testing words.

: ERROR-1 1 2 3 4 ABORT 5 6 ;
: ERROR-2 1 2 3 4 QUIT 5 6 ;
: ERROR-3 1 2 3 4 ABORT" Ignore me" 5 6 ;
: ERROR-4 1 2 3 0 ABORT" Ignore me" 5 6 ;

The second block executes them. Note the state of the data stack after each
attempt.

ERROR-1↩
.S↩ <0> ok \ Empty stack
ERROR-2↩
.S↩ <4> 1 2 3 4 ok 4 \ Stack not empty

Chapter 1. Mastering Stack-Based Computing with Forth • 28

report erratum • discuss

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

ERROR-3 ↩
̨*the terminal*:49:1: error: Ignore me
̨>>>ERROR-3<<<
«...more gforth output...» \ Empty stack
ERROR-4↩ ok 5
.S↩ <5> 1 2 3 5 6 ok 5 \ Stack not empty

The “lower-level” commands deal with exceptions; they throw and catch them.
Forth exception handling mechanism is different from C++, Java, and Python
but uses similar words: THROW and CATCH.

The section Writing Comments and “Hello, World!”, on page 2, suggests that
Forth “uses not one stack but two.” My apologies; that was a lie. Forth uses not
two stacks but three. The third one is for exception frames—data structures that
memorize the last known safe state of the program. As a programmer, you don’t
control this stack; it squarely belongs to the Forth runtime.

When you’re about to execute a word that may cause a problem, you should
use CATCH (xt -- n). CATCH saves the program’s current state (the stacks, in the
first place) as an exception frame and then executes the execution token of
the “scary” word with EXECUTE, as explained on page 26. If the word was exe-
cuted successfully, CATCH leaves 0 on the stack. Otherwise, it leaves on the
stack the error code produced by THROW.

The word THROW (n -- | n) generates an exception. As a reminder, the vertical
bar in the word documentation means that the format of the result depends
on the input. If n is zero, THROW takes it as an indication of success and does
nothing. If n is nonzero, THROW pops the most recent exception frame from
the exception stack, restores the program’s state, and transfers control
to the following word after CATCH (“throws an exception”). Exceptions can
be nested; THROW always takes you back to the most recent CATCH (that’s
why the exception stack is needed).

You can use exceptions two ways: as a means of controlled recovery from an
error and to return from a deeply nested word to the high level (such as the
command-line interpreter). As an illustration of the first scenario, let’s write
the word AREA that calculates the area of a rectangle, provided that both sides
are nonnegative.

: AREA (n1 n2 -- n3)
DUP 0< IF 314 THROW THEN SWAP \ Is n1 < 0?
DUP 0< IF 314 THROW THEN SWAP \ Is n2 < 0?
* ;

While testing, the word throws an exception number 314 when either side is
negative. However, wrapping the calculation with a CATCH prevents the crash.

report erratum • discuss

Handling Errors and Exceptions • 29

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

10 10 AREA .↩ 100 ok
10 -10 AREA .↩
̨*the terminal*:2:15: error: error #314
: TRY-IT ['] AREA CATCH IF CR ." The area was not calculated" THEN ;↩ ok
-10 10 TRY-IT↩
̨The area was not calculated ok 2
.S↩ <2> -10 10 ok 2

The offensive cells are still on the stack, ready to be interrogated.

In the other scenario, suppose you have a word that executes another word
that executes another word, and so on. Eventually, the most recent word may
conclude that the operation should be canceled. It may return the cancellation
status to the previous word, then to the previous word, and all the way to the
top—or throw an exception and let the top-level word catch it. In the following
example, the word COMMAND imitates random cancellations. The word TAKE-
COMMAND emulates a high-level controller that initiates the commands.

REQUIRE random.fs
999 CONSTANT CANCEL
: COMMAND (--)

10 RANDOM 2 MOD IF \ Flip a coin!
CANCEL THROW

THEN ;
: TAKE-COMMAND (--)

['] COMMAND CATCH CR
CASE 0 OF ." Done!" ENDOF

CANCEL OF ." Command canceled" ENDOF
(default) ." Command failed" ENDCASE ;

Note the word REQUIRE at the top of the code block: it includes and interprets
another source Forth file if it hasn’t been included yet. The file random.fs pro-
vides the word RANDOM (n1 -- n2), which generates a random number from 0 to
n1-1. The commands are now safe to execute.

TAKE-COMMAND↩
̨Command canceled ok
TAKE-COMMAND↩
̨Command canceled ok
TAKE-COMMAND↩
̨Done! ok
TAKE-COMMAND↩
̨Done! ok

The coding best practice is to have a highest-level, catch-all CATCH word that
handles all exceptions not addressed explicitly.

Chapter 1. Mastering Stack-Based Computing with Forth • 30

report erratum • discuss

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

Exploring Character and String Operations
Following the tradition of the C language, a Forth character is simply an
integer number optionally represented as a single-quoted literal. Charac-
ters can be subtracted, incremented, and compared, which is helpful, but
they can also be added, divided, and multiplied, which is not. Forth giveth
you a lot of power over characters—use it wisely. For instance, you can define
a word to check if a character represents a decimal digit:

: ?DIGIT (c -- flag) [CHAR] 0 [CHAR] 9 1+ WITHIN ;
'a' ?DIGIT .↩ 0 ok
'7' ?DIGIT .↩ -1 ok \ True
BL ?DIGIT .↩ 0 ok

In this example, the word [CHAR] ("name" -- n) converts a literal into an integer
number, according to the current character encoding. The same word in
interpret mode doesn’t need the square brackets (CHAR). The built-in word BL
represents a blank—a white space, a character with code 32. You can create
other constants for other characters if you wish (for example, 27 CONSTANT ESC
for Escape); see also the definition of CR on page 3.

A string is simply an array of characters. Earlier dialects of Forth supported
counted strings. The first byte of a counted string stores the number of
characters in the string, and that’s why a string could be no longer than
255 characters. “Modern” strings don’t “remember” their length, but they’re
not NULL-terminated either (as in C). Your program must remember their
lengths.

Counted Strings

Counted strings in Forth correspond to strings in Pascal (procedu-
ral programming language inspired by ALGOL 60 and designed
by Niklaus Wirth mainly for teaching purposes in 1970); both are
character arrays that store the length in the first byte.

A string can be entered as a literal in the program or read from an input
device (keyboard or file). String literals begin with the words S" ("name" -- addr
u), C" ("name" -- addr) (compile-only), or ." ("name" --). There must be a space
between any of these words and the rest of the literal. You can also enter a
string in double quotation marks, which is equivalent to using S". Forth
transforms a literal string into two cells, one of which contains the address
of the string and the other holds its length. The combination (addr u --) is what
all other string-related functions expect.

report erratum • discuss

Exploring Character and String Operations • 31

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

• S" ("name" -- addr u) reads a string from the input stream (the console or the
script) and compiles it.

• C" ("name" -- addr) acts like S" but does not leave the length on the stack.

• ." reads, compiles, and outputs the string when the enclosing word is
executed.

To get ready for experimenting with strings, you need two more words:

• TYPE (addr u --) displays the string identified by the address and string on
the output device (screen).

• ACCEPT (addr u1 -- u2) pauses the program and waits until the user enters
up to u1 characters into the buffer designated by the addr. The word fills
in the buffer until the user presses Enter or exceeds the character
allowance, and then leaves the actual character count on the stack. The
exceeding characters are discarded.

The word ACCEPT does not allocate the buffer—you should create a character
array, as explained in the section Arrays, on page 23, or use the scratchpad.

The Accept Word

The word ACCEPT loosely corresponds to the fgets() function in the
C standard library. It’s more secure than gets() because it monitors
the number of typed characters.

Putting it all together, the word GREET asks you to enter your name into a
preallocated buffer and then displays a three-piece greeting.

: GREET (addr u --)
SWAP DUP ROT \ Duplicate the address
CR ." Enter your name: " ACCEPT \ Leaves new length on the stack
CR ." Welcome, " TYPE ." !" ;

To test the word, create a temporary buffer and pass its address and size to
GREET.

50 CONSTANT BUFF-SIZE↩
BUFF-SIZE BUFFER: TEMP↩ ok
TEMP BUFF-SIZE GREET↩
̨Enter your name: Dmitry ↩
̨Welcome, Dmitry! ok

What makes this word awkward is its reliance on external temporary storage.
This dependence would be justified if the word were used elsewhere and
needed to be kept for the future, but it seems transient and not worthy of a

Chapter 1. Mastering Stack-Based Computing with Forth • 32

report erratum • discuss

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

dedicated buffer. Instead, you should use a recyclable built-in buffer called
the scratchpad.

The scratchpad is an elastic buffer—a working area of indefinite size for tempo-
rary string manipulations. Its location is given by the word PAD (-- addr). With the
scratchpad, the new version of the GREET word doesn’t need to worry about
storage—but it still needs to know the maximum input size.

: GREET (u --)
PAD SWAP
CR ." Enter your name: " ACCEPT
PAD SWAP \ Leaves new length on the stack
CR ." Welcome, " TYPE ." !" ;

The scratchpad is yours to use, but don’t forget that there’s only one
scratchpad. If you start using it and then execute a word that also uses it,
you’ll inherit a mess.

It’s common for users to add, intentionally or not, a couple of blanks at the
end of input, especially if the input comes from a file. These white spaces
ruin formatting and make exact comparisons impossible. Forth has a word
for trimming the trailing whitespaces: -TRAILING (addr u1 -- addr u2). The trimmed
string stays at the same address, but its size may change. You may want to
insert this word in the definition of the greeting word.

The word /STRING (addr1 u1 n -- addr2 u2) is another string-trimming word. It trims
the first n characters at the beginning of a string (this operation is called
adjustment).

Here are some more string-specific words for your toolset:

• The word MOVE (addr1 addr2 u --) copies u characters from the address addr1
to addr2. The word knows how to handle the source and destination overlap
correctly.

• The words CMOVE and CMOVE> do the same thing but copy the characters
from left to right or from right to left. They’re somewhat more efficient
than MOVE.

• The word COMPARE (addr1 u1 addr2 u2 -- n) compares two strings lexicographi-
cally. If the strings are identical, the word leaves 0 on the stack. Otherwise,
it leaves 1 or -1.

• The word SEARCH (addr1 u1 addr2 u2 -- addr3 u3 flag) searches the first string
(“the haystack”) for the first occurrence of the second string (“the needle”).
The Boolean flag indicates if the needle is found. If it is, it begins at addr3
and has length u3.

report erratum • discuss

Exploring Character and String Operations • 33

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

Compare vs. Search

The words COMPARE and SEARCH loosely correspond to the functions
strncmp() and strstr() from the standard C library.

The preceding list of string-processing words is far from complete, but even with
it, you can develop something exciting and nontrivial, such as COLLECT-WORDS. This
word prompts the user to enter any text (“end” to exit), concatenates the fragments,
and stores the result in the scratchpad.

forth/collect.fs
"end" 2CONSTANT SENTINEL \ The stopword: address and size
CREATE TEMP 100 ALLOT \ Temporary space for input words

: COLLECT-WORDS (-- u)
0 \ The offset in the scratchpad
BEGIN

CR ." > " TEMP 100 ACCEPT \ Prompt and read, leave the length
DUP TEMP SWAP SENTINEL COMPARE \ Is it the stopword?
0= IF QUIT THEN \ If so, break the loop
DUP TEMP
PAD 4 PICK CHARS + \ Concatenate
ROT MOVE
+ \ Adjust the offset

AGAIN ;

COLLECT-WORDS leaves on the stack the result size that can be used to display
the concatenated fragments.

COLLECT-WORDS ↩
> hello↩
> ↩
> world↩
> . ↩
> end↩
+ PAD SWAP TYPE↩ hello world. ok

Forth has some good words for turning numbers into strings and back, without
which the string story will be incomplete. The word >NUMBER (d1 addr1 u1 -- d2 addr2
u2) attempts to convert a string to a double number. You must drop a DPN zero
into the stack before passing the string. >NUMBER uses that zero as an accumulator.
After the termination of the word, that cell holds the result. In addition, >NUMBER
leaves on the stack the part of the string that it failed to convert. >NUMBER is very
straightforward and cannot convert negative numbers.

0 0 "3.14" >NUMBER↩ ok 4 \ 4 cells hold the result
TYPE↩ .14 ok 2 \ Failed to convert, two more cells left
D.↩ 3 ok

Chapter 1. Mastering Stack-Based Computing with Forth • 34

report erratum • discuss

http://media.pragprog.com/titles/dzseven/code/forth/collect.fs
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

The last line of the code fragment is an example of a numeric output word. The
word D. (d --) displays a signed DPN. The following example illustrates how
other words from the same set display unsigned numbers (U.), right-justified
numbers (.R), and various combinations of them.

-45 .↩ -45 ok
-45 U.↩ 18446744073709551571 ok
-45 0 D.↩ 18446744073709551571 ok
-45 0 UD.↩ 18446744073709551571 ok
45 7 .R↩ 45 ok \ 7 positions
45 7 U.R↩ 45 ok
45 0 7 D.R↩ 45 ok
45 0 7 UD.R↩ 45 ok

For the number-to-string conversion (the opposite of >NUMBER), you should use
pictured output, nowadays known as formatted output. It begins and ends with
the words <# and #>. The word #S (d --) represents all digits (or, rather, all
remaining digits) of an unsigned number. The word # inserts one decimal digit
at a time. The word SIGN (d --) inserts a negative sign into the pictured numeric
output string if d is negative (must be executed after all digits are converted).

Converting numbers to strings is not much fun in Forth. See for yourself!

-45↩ ok 1
DUP ABS 0↩ ok 3 \ Prepare the number and its absolute value
<# #S ROT SIGN #>↩ ok 2
\ The result is a string!
TYPE↩ -45 ok

This section started as a conversation about characters and strings but got
unintentionally, though briefly, pivoted into the area of general input/output.
In the next section, let’s look at the more advanced I/O words.

Performing Input/Output Operations
As an interface to the rest of the world, with all its diversity and uncertainty,
an input/output subsystem is often one of the most challenging parts of a pro-
gramming language. Historically, Forth has several different I/O layers, two
explained in this section and one more in Forth Meets BASIC, on page 38.

Low-Level I/O
You’re already familiar with the word TYPE (addr u --) that displays a string. You
should use the word EMIT (char --) to display just a single character. You could
reimplement TYPE with EMIT, but please don’t, for the sake of performance.

: MYTYPE (addr u --) 0 DO DUP I CHARS + @ EMIT LOOP ;↩ ok
"Hello" MYTYPE↩ Hello ok 1

report erratum • discuss

Performing Input/Output Operations • 35

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

The following four words enable interactive character-based input. They’re the
workhorses enabling ACCEPT and EXPECT. KEY (-- char) and EKEY (-- u) read a
character and a keyboard event (the latter includes characters, function keys,
arrows, and so forth). These words are blocking; they don’t finish the execution
until a key is pressed. If you only want to know if a key has been pressed,
use the Boolean words KEY? (-- flag) and EKEY? (-- flag). They’re nonblocking and
execute instantly. You can use them for programming video games or other
interactive environments.

File I/O
Older Forth systems relied on their own disk data organization and stored
information as numbered 1024-byte blocks (for data) and numbered 1024-
byte screens (for programs). The words for managing blocks, screens, and
memory buffers, such as SCR, EMPTY-BUFFERS, SAVE-BUFFERS, and LOAD, still exist,
but primarily for backward compatibility.

Your modern Forth assumes that the operating system manages files. In
particular, Forth isn’t concerned with file and directory names as long as
they’re character strings.

Forth has two sets of file-related words. In the following descriptions, ior is a
one-cell input/output result (zero for success, nonzero for failure), fam is a one-
cell file access method (R/O for read-only access, W/O for write-only access, and
W/R for reading and writing), and sts is OS-specific file status. The first set
works with files without opening them:

• FILE-STATUS (name len -- sts ior)
• CREATE-FILE (name len fam -- fid ior)
• OPEN-FILE (name len fam -- fid ior)
• RENAME-FILE (name1 len1 name2 len2 -- ior)
• DELETE-FILE (name len -- ior)

The words CREATE-FILE and OPEN-FILE also produce fid—an opaque file identifier
used by the second word set. This set contains the words that work with the
file contents.

• FILE-POSITION (fid -- ud ior). Report the current position within a file.

• FILE-SIZE (fid -- ud ior). Report the open file size.

• RESIZE-FILE (len fid -- ior). Change the length of an open file.

Chapter 1. Mastering Stack-Based Computing with Forth • 36

report erratum • discuss

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

• FLUSH-FILE (fid -- ior). Flush an open file (synchronize the file buffers with
the secondary storage).

• CLOSE-FILE (fid -- ior) . Close an open file.

• READ-FILE (addr u1 fid -- u2 ior). Read at most u1 bytes from an open file, and
report the actual count.

• READ-LINE (addr u1 fid -- u2 flag ior). Read a line of at most u1 bytes from an
open file, and report the actual count and the end-of-file flag.

• WRITE-FILE (addr u fid -- ior). Write u bytes to an open file.

• WRITE-LINE (addr u fid -- ior). Write a line of u bytes to an open file.

File Access Words

The words READ-FILE, READ-LINE, WRITE-FILE, and WRITE-LINE loosely cor-
respond to the functions read(), readline(), write(), and writeline() in
Python.

To practice the newly learned skills, you can write a word for copying a “small”
(with the size fitting into a single precision number) file. Note how it uses the
return stack to store the address of the temporary data buffer to minimize
the data stack joggling.

forth/copyfile.fs
\ Testing example:
\ "foobar" "foobar.bak" COPY-FILE

: COPY-FILE (src-name1 u1 dest-name2 u2 --)
2SWAP R/O OPEN-FILE THROW \ src-name1 u1 src
-ROT W/O CREATE-FILE THROW \ src dest
DUP ROT DUP DUP FILE-SIZE THROW \ dest dest src src size0 size1
THROW \ File too large!

HERE >R DUP ALLOT \ Allocate the buffer and save its address

R> DUP >R SWAP ROT READ-FILE THROW
SWAP CLOSE-FILE THROW
SWAP R> -ROT OVER >R WRITE-FILE THROW
CLOSE-FILE THROW

R> NEGATE ALLOT \ Deallocate the buffer
;

The word checks for all possible I/O mistakes and correctly deallocates the
data buffer.

report erratum • discuss

Performing Input/Output Operations • 37

http://media.pragprog.com/titles/dzseven/code/forth/copyfile.fs
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

Forth Meets BASIC

It’s not typical for programming languages to crossbreed. Languages often share
concepts and features (as illustrated by the numerous tips in this book), but sharing
complete subsystems is rare. Only three migration examples readily come to mind:

• Turtle graphics—from the Logo language through NetLogo to Python.
• Tk graphical user interface—from Tcl/Tk to Python and Erlang.
• BASIC plotting and I/O extensions in Forth.

BASIC was the de facto standard built-in programming language in the early days of
personal computers. In 1982, Jupiter Cantaba challenged the status quo and designed
a Forth-driven Jupiter ACE (Automatic Computing Engine) [Vic17]. The computer had
3kB of RAM, 8kB of ROM, 2kB of video memory, and a Z80A CPU with a peak perfor-
mance of fewer than 1,000 ops.

A unique feature of Jupiter ACE Forth was its interface to the output device (a TV
set) and the secondary storage device (a tape recorder). Both interfaces were borrowed
from the traditional BASIC and included such words as these:

• BEEP (pitch length --) for beeping
• LOAD, SAVE, and VERIFY for tape operations
• PLOT, CLS (“clear screen”), DRAW, INVIS, and VIS for drawing pseudographics. The

output was black-and-white.

Unlike Turtle graphics and Tk, BASIC words didn’t help Jupiter ACE. With fewer than
five thousand sets sold, it was discontinued in 1984. Apparently, integrating Forth
and BASIC was an error.

a. https://jupiter-ace.com/jupiterace/

Writing Something Big
Everybody loves toys and games. Most people love “toy” games too. To conclude
this chapter, you’ll develop a toy game called Hangman.1 Honestly, it’s not a
game (though it will be playable and even enjoyable) but a prototype—nothing
fancy, just the core functionality. And you need to go over one more word set.

Terminal Control
Forth provides a tiny collection of words that control the terminal. You can
use them to create rudimentary text-based user interfaces, including text-
based games.

1. https://en.wikipedia.org/wiki/Hangman_(game)

Chapter 1. Mastering Stack-Based Computing with Forth • 38

report erratum • discuss

https://jupiter-ace.com/jupiterace/
https://en.wikipedia.org/wiki/Hangman_(game)
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

The first word in the set, PAGE (--), clears the page and places the cursor in the
upper-left corner.

The word FORM (-- u1 u2) reports the height and width of the terminal (the
number of rows and columns). Knowing these two numbers ensures your
game stays within bounds.

The sister words AT-XY (u1 u2 --) and GET-XY (-- u1 u2) position the cursor at the spe-
cific row in the specific column and report the cursor’s position. Once the cursor
is positioned, you can use EMIT and TYPE to show characters and strings.

Let the game begin!

The Hangman
The game prototype will display a hidden “secret” string of characters (limited
to letters and spaces) called SECRET and let the player enter up to N letters to
reveal the secret. The value of N is your choice—for now, it’s equal to the secret
string’s length.

The secret string is currently hardcoded but should come from a file or be
autogenerated. You have all the necessary tools to make this happen.

Oh, and there are no actual gallows or the hangman. Forth is a language of
creation, not destruction!

First, let’s define some constants (such as the game layout parameters) and
buffers (for the hidden secret string and its visible representation) and copy
the secret into the hidden buffer.

report erratum • discuss

Writing Something Big • 39

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

forth/hangman.fs
"FORTH RULEZZ" 2CONSTANT SECRET \ Comes from elsewhere

10 CONSTANT X-MARG
10 CONSTANT WORD-LINE
15 CONSTANT LETTER-LINE
SECRET CONSTANT LENGTH DROP
LENGTH CONSTANT ROUNDS
LENGTH BUFFER: HIDDEN
LENGTH BUFFER: VISIBLE

SECRET HIDDEN SWAP MOVE

The following three words—GET-LETTER, UPDATE-VISIBLE, and PLAY-ONCE—make it
possible to play one round of the game. GET-LETTER waits for a keystroke, con-
verts the key code to uppercase, and checks if the code corresponds to a letter.
UPDATE-VISIBLE loops in parallel through the hidden and visible buffers and
replaces the characters in the latter (initially set to asterisks) with actual letters
if there’s a match. PLAY-ONCE gets a single letter and updates the visible buffer
(but doesn’t redraw it).

forth/hangman.fs
: GET-LETTER (-- u flag) KEY TOUPPER DUP [CHAR] A [CHAR] Z 1+ WITHIN ;

: UPDATE-VISIBLE (u --)
LENGTH 0 DO

DUP HIDDEN I + C@ DUP ROT =
IF
VISIBLE I + C!

ELSE
DROP

THEN
LOOP
DROP

;

: PLAY-ONCE (--) GET-LETTER SWAP DUP ROT 0<> IF UPDATE-VISIBLE THEN ;

The word PLAY-ROUNDS allows the player to play multiple rounds (as many as
it takes to win or fail). It starts by leaving a Boolean FALSE flag on the stack,
assuming the player will fail—not a nice assumption, but easy to implement.
The word loops through the available attempts, letting the player play one
round at a time. After each round, it updates the visible representation on
the screen and checks if any more secret letters are left (by searching for “*”).
If not, the game is over, the player is a winner, and the flag changes to TRUE.
Otherwise, the game continues until all attempts are used.

Chapter 1. Mastering Stack-Based Computing with Forth • 40

report erratum • discuss

http://media.pragprog.com/titles/dzseven/code/forth/hangman.fs
http://media.pragprog.com/titles/dzseven/code/forth/hangman.fs
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

forth/hangman.fs
: PLAY-ROUNDS (-- flag)

FALSE \ Assume failure
ROUNDS 0 DO

PLAY-ONCE
X-MARG WORD-LINE AT-XY VISIBLE LENGTH TYPE
X-MARG I + LETTER-LINE AT-XY EMIT
VISIBLE LENGTH "*" SEARCH ROT DROP SWAP DROP 0= IF
DROP TRUE \ Change our mind
LEAVE

THEN
LOOP

;

The culmination of the code is the word PLAY. It (re)initializes the visible buffer,
clears the screen (the “page”), updates the controls, and executes PLAY-ROUNDS.
Finally, it displays the results of the game and concludes.

forth/hangman.fs
: PLAY (--)

VISIBLE LENGTH '*' FILL
PAD ROUNDS '_' FILL

BL UPDATE-VISIBLE \ "Blanks" are not to be guessed
PAGE
X-MARG WORD-LINE AT-XY VISIBLE LENGTH TYPE
X-MARG LETTER-LINE AT-XY PAD ROUNDS TYPE
X-MARG LETTER-LINE AT-XY

PLAY-ROUNDS

FORM DROP 0 SWAP 4 - AT-XY
IF "Success!" ELSE "You failed..." THEN TYPE CR
"Press any key to exit" TYPE CR
KEY DROP

;

This concludes the chapter too. Enjoy the game! If you want to learn more
about the role of Forth the Obscure Language, read about Postscript [Hol92].
Otherwise, your journey takes you to another hardware-oriented language—
Occam.

Further Reading
• BREAKFORTH Into FORTH! [MM80]

• The Jupiter ACE Manual—35th Anniversary Edition: Forth Programming
[Vic17] (This is a reprint of a book originally published in 1982.)

• FORTH programming [Sca82]

report erratum • discuss

Further Reading • 41

http://media.pragprog.com/titles/dzseven/code/forth/hangman.fs
http://media.pragprog.com/titles/dzseven/code/forth/hangman.fs
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

• Starting Forth: An Introduction to the Forth Language and Operating System
for Beginners and Professionals [Bro87]

• The Evolution of Forth [RCM93]

• Thinking Forth [Bro04]

• Forth Programmer’s Handbook [RC07]

• Forth Application Techniques [Rat08]

• Programming Forth [Pel11]

Chapter 1. Mastering Stack-Based Computing with Forth • 42

report erratum • discuss

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

CHAPTER 2

Entia non sunt multiplicanda praeter necessitatem.

 ➤ Attributed to William of Ockham, fourteenth-century
English philosopher and theologian

Appreciating Concurrent
Computing with Occam

The Earth boasts two renowned entities famous for their canali: the Italian city
of Venice (canals) and the programming language Occam (channels). For travel
tips to Venice, your local travel agent is your best bet. But for a deep dive into
the universe of Occam (also spelled “occam” or “OCCAM”), I’m here to guide you.
You’ll learn to build applications using communicating sequential processes,
which are crucial for crafting efficient and responsive software.

Paying Tribute to Transputer
Many programming languages have been designed for specific purposes:

• Fortran for number crunching
• Lisp for artificial intelligence
• Ada for military applications
• SNOBOL on page 147 for what is now termed digital humanities

In contrast, until very recently, there are a mere handful of languages designed
for specific hardware platforms:

• Numerous assembly languages, usually one for every architecture
• The B language, a Bell Labs systems programming language for DEC PDP-7
• Occam, the language of and for transputers1

Transputers, such as T212, T414, and T800, are the brainchildren of Inmos,
a now-defunct British company. Devised between 1983 and 1984, they were
intended to serve as building blocks for future massively parallel computing

1. www.transputer.net/

report erratum • discuss

http://www.transputer.net/
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

systems. Each transputer comprised a CPU with a minimal local microcode
memory and external hardware links (channels). The channels allowed a trans-
puter chip to connect with up to four other transputers or I/O devices, thereby
enabling the creation of a systolic array or any other distributed system.

Transputers had a minimalistic instruction set architecture, though not
reduced instruction set computer (RISC) architecture: most instructions were
translated to microcode, a common complex instruction set computer (CISC)
characteristic. The programming language Occam added a proverbial cherry
on top. It was optimized for concurrency, parallelism, and transputer hard-
ware. Some argue that Occam was intended to serve as the assembly language
for transputers (see Introduction to occam 2 on the Transputer [BS89]).

Theoretically, Occam draws from the principles of communicating sequential
processes [Hoa78]—a formal language for describing communications between
concurrent processes. This positioning situates Occam between the relatively
low-level Forth on page 1 and the more abstract, high-level APL on page 77,
both in terms of taxonomy and in the context of this book.

Greeting in Occam and KRoC
In this chapter, you’ll primarily use KRoC—the Kent Retargetable occam
Compiler (note the official spelling!) from the University of Kent. The KRoC
implements Occam-π, a modern version of Occam 2.5 infused with some
elements of π-calculus.

π-calculus

π-calculus is a theoretical model for concurrent computing, developed by Robin Milner
in 1992 as an extension of his work on the calculus of communicating systems (CCS).
π-calculus provides a framework for understanding and analyzing the behaviors of
concurrent systems, where multiple processes operate simultaneously and interact.
A key feature of π-calculus is its ability to describe dynamic topology, meaning that
the connections between processes can change over time. This flexibility is achieved
through the concept of “channel mobility,” where the names of communication channels
can be passed between processes, allowing for flexible and evolving communication
structures. π-calculus is highly abstract and mathematical, but it has significantly
influenced computer science and theoretical informatics, particularly in designing
and analyzing distributed systems, communication protocols, and mobile computing.

A significant difference exists between the highly optimized, industrial-grade
KRoC and the “classical” Occam of David May and Tony Hoare. Out of respect
for its originators, this chapter will guide you through classical Occam, providing
specific notes to address the disparities between the two dialects as necessary.

Chapter 2. Appreciating Concurrent Computing with Occam • 44

report erratum • discuss

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

So here’s the standard greeting in Occam, illustrated in two ways. (This code
doesn’t run with KRoC.) One immediate observation is that comments begin
with two dashes and continue until the end of the line.

occam/hello-classical.occ
-- Display "Hello, world!"
CHAN([BYTE]BYTE) output:
output ! "Hello,*sworld!*n"

The peculiar markers *s and *n denote a space and a line break, respectively.
You can substitute *s with a literal space, but *n cannot be replaced with the
familiar \n.

Next, KRoC employs a preprocessor akin to CPP, the C/C++ preprocessor,
except the directives are composed in uppercase letters. The directive #INCLUDE
"course.module" includes the file course.module verbatim. The file contains the KRoC
standard library, a feature absent in classical Occam.

occam/hello.occ
-- Display "Hello, world!"
#INCLUDE "course.module"
PROC hello (CHAN BYTE out!)

out.string ("Hello, world!*n", 0, out!)
:

Lastly, be mindful of the colon at the end of the second example. Usually
placed on a separate line, it signifies the end of a definition (in this case, the
end of the procedure).

You’ll learn about other features used in these examples in the subsequent
sections.

Studying Variables and Data Types
In the spirit of Occam’s razor and in the spirit of being essentially a glorified
assembly language, Occam offers a limited set of numerical data types. Three
primary types are mandatory, with some allowing further specifications:

• INT. Required, equal in size to the computer’s machine word; INT16, INT32,
INT64 are optional extensions.

• BYTE. Required, comprising eight bits; also represents characters.

• BOOL. Required, can be TRUE or FALSE.

• REAL32, REAL64. Both are optional extensions.

report erratum • discuss

Studying Variables and Data Types • 45

http://media.pragprog.com/titles/dzseven/code/occam/hello-classical.occ
http://media.pragprog.com/titles/dzseven/code/occam/hello.occ
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

Simple Data Types

Occam’s palette of simple data types, especially the absence of
required floating point data types, resembles one of Forth,
explained on page 6. It almost feels like all assembly-like lan-
guages are the same, no matter how disguised.

Other simple data types denote Occam-specific objects, such as timers and
channels. If you need an equivalent of a C structure of a C++ class, use dec-
larations RECORD in combination with DATA TYPE. In the example that follows
(highlighted), the former defines a new data structure with two REAL32 fields,
x and y. The latter incorporates the data structure into Occam’s type system.
Consequently, you can generate variables of this data type and access their
fields through square bracket notation.

occam/testrecord.occ
PROC test.record ()

DATA TYPE xy.point➤

RECORD➤

REAL32 x :➤

REAL32 y :➤

:➤

-- In "classical" Occam:
-- RECORD xy.point IS (REAL32, REAL32):
-- Declare a 2D point
xy.point center :

SEQ
-- Initialize the point coordinates
center := [2.0 (REAL32), 3.0 (REAL32)]
-- Translate the point by 1,-1
center[x] := center[x] + 1.0
center[y] := center[y] - 1.0

:

Records

Occam RECORDs loosely correspond to the C language structs or to
the attributes (but not methods) of the C++ language class. The
declaration DATA TYPE loosely corresponds to the C language operator
typedef.

Occam doesn’t support implicit type conversion. You must explicitly convert
a value to a matching type using either of two methods: by prefacing the new
type name before the value (without parentheses, known as pre-casting) or
after the value (in parentheses, referred to as post-casting).

INT big.dog: -- An integer variable
BYTE am.potat: -- A byte-sized variable

Chapter 2. Appreciating Concurrent Computing with Occam • 46

report erratum • discuss

http://media.pragprog.com/titles/dzseven/code/occam/testrecord.occ
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

SEQ -- Disregard!
big.dog := (INT TRUE) + '0' (INT)
am.potat := BYTE big.dog

Take note of a few things: a variable declaration ends with a colon; a block
of code (SEQ, Sequential Processes, on page 50) is indented by two spaces;
pre-casting can be used with constants and variables, whereas post-casting
only applies to constants; if an operand of an arithmetic expression is a pre-
cast, it must be parenthesized.

From the previous code example, you’ve been subtly introduced to identifiers.
Occam identifiers are case-sensitive. They must begin with a letter and can
include only letters, digits, and periods. All variables used in a process need
to be declared in the specification section; their scope remains local to the
specified process and all processes depending on it.

Processes cannot share variables, as two processes may be executed by sep-
arate transputers with no shared memory! The sole method to interchange
values between processes is via channels.

A declaration doesn’t initialize the variable. Hence, you must initialize each
variable prior to its first usage.

In addition to variables, Occam also supports constants. The combination of
keywords VAL (or CONST in some dialects) and IS defines a constant. If the con-
stant’s data type can be inferred, you don’t have to declare it. In classical
Occam, several variables of the same data type can be declared on the same
line, separated by commas.

VAL INT year IS 365:
VAL leap.year IS year + 1:
VAL ESC IS 27 (BYTE):

Navigating Channels
When life gives you no global variables, use message passing, the other data-
sharing mechanism. Message passing in Occam happens through channels.

• Channels are unidirectional. If you send a message through a channel
within a process, you’re prohibited from receiving a message from that
same channel and vice versa.

• Channels are exclusive, allowing for one-to-one communication. Multiple
processes cannot send or receive from the same channel simultaneously.

report erratum • discuss

Navigating Channels • 47

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

• Channels are synchronous, meaning the sending and receiving processes
must have started the send() and receive() operations, respectively, before
the communication can take place.

• Channels are semi-structured, enabling you to send individual bytes or
more complex data structures by defining protocols. This will be discussed
further in Crafting Channel Protocols, on page 59.

Like any other variable, you need to declare a channel in the process specifi-
cation, using the keyword CHAN. The following code snippet outlines the
declaration of an unstructured channel (capable of carrying bytes) named
data.feed:

CHAN BYTE data.feed: -- KRoC
CHAN[BYTE] data.feed: -- "Classical" Occam

Now, let’s shift our focus to processes, the workhorses of Occam.

Exploring Processes
An Occam process is a fundamental unit of computation and concurrency.
Processes, in their simpler forms, serve as building blocks for more complex
ones. A process can either function as an application or form a part of a
larger process.

An Occam process differs from an operating system process, which is an
instance of an application executed by one or more threads. This is because,
firstly, an Occam process forms part of an application rather than being a
standalone application, and secondly, Occam isn’t dependent on an operating
system but was designed to act as the operating system itself.

An Occam process is more akin to a statement in other programming lan-
guages, hence why Occam lacks traditional statements. This distinction is
not merely linguistic: a programming statement is presumed to be part of an
application, whereas an Occam process can, but doesn’t necessarily have to,
be a part. From here on, let’s refer to Occam processes simply as “processes.”

With a few exceptions, processes start, perform an action, and finish (although
some might not). They can be categorized into one of the following classes:
special, action, or construction.

Special Processes
Occam features two types of special processes—SKIP and STOP. Remember Occam
is case sensitive; while SKIP and STOP are reserved words, skip and stop are not.
Also, by Occam’s own rules, OCCAM ≠ Occam ≠ occam, whatever it means.

Chapter 2. Appreciating Concurrent Computing with Occam • 48

report erratum • discuss

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

A SKIP process starts, does nothing, and immediately finishes. It’s typically
used as a placeholder for future development or in instances where Occam’s
grammar necessitates the mention of a process but there’s nothing to mention.
The following is the shortest KRoC program. If it were written in Occam, only
the word SKIP itself would be needed.

occam/minimal.occ
-- The shortest program in Occam
PROC minimal ()

SKIP
:

A STOP process starts, fails (by displaying the message “KRoC: application
error, stopped.”), and never finishes. You can use it to mimic faulty code
fragments but not to terminate an application gracefully.

The Skip Process

A SKIP process loosely corresponds to the pass statement in Python.
Both exist because the indentation is a part of the languages’
grammar that doesn’t allow to represent an empty indented block
as a pair of curly braces {} or a begin–end construct. A STOP process
loosely corresponds to the abort() function in the C standard library.

One critical reason to avoid using STOP, beyond aesthetics, is that it doesn’t
terminate the application; it merely halts the enclosing process. If the
enclosing process is sequential (Sequential Processes, on page 50), stopping
the process and terminating the application are effectively the same. However,
in a concurrent application (Parallel Processes, on page 51) which comprises
several semi-independent processes, stopping one doesn’t affect the others.
You’ll learn how to terminate a concurrent application later on page 68.

Action Processes
In Occam, action or primitive processes form the smallest building blocks of
applications. An action process can be an assignment, input, or output
process.

You’ve already encountered assignment processes. Such a process (known
in other languages as an assignment statement) assigns a new value to an
existing variable. A key point to remember here is that the data types of the
variable on the left-hand side and the expression on the right-hand side must
match. Multiple assignments are also permissible:

a, b := b, a - b

report erratum • discuss

Exploring Processes • 49

http://media.pragprog.com/titles/dzseven/code/occam/minimal.occ
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

An input process receives an item from a predeclared channel and assigns it
to a predeclared variable. Similarly, an output process sends the value of a
constant or a predeclared and initialized variable to a predeclared channel.
The data types of the channel and the value must match.

CHAN BYTE in, out:
BYTE item:
SEQ

in ? item -- "What?" Read/receive a byte from channel 'in'
out ! item -- "Bang!" Write/send a byte to channel 'out'

A process gets blocked if it attempts to receive from a channel with no
incoming message. Similarly, if a process attempts to send a message that
no other process wants to receive, the sender is blocked. Synchronous com-
munications demand full cooperation!

Taming Construction Processes
Suppose you are crafting your first nontrivial Occam application which divides
two floating-point numbers. The application receives the numbers from two
incoming channels (two input processes), calculates and stores the quotient
(an assignment process), and sends it to the outgoing channel (an output process).
You possess the necessary components, but how do you assemble them?

You need containers to pack primitive processes. Such containers are called
construction processes.

Sequential Processes
Most well-known programming languages adhere to the sequential execution
paradigm, where a sequential application starts with the first statement, fol-
lowed by the second, and so on, until the last statement is executed, and the
application terminates. The next executed statement is always the subsequent
textual statement, destination of a conditional branch or unconditional jump.

You can create a sequential application in Occam using a sequential process,
defined with the keyword SEQ. The body of the process must be indented by
two additional spaces relative to the keyword. The procedure divide() in the
subsequent code fragment is sequential, comprising a body (the highlighted
block) and a specification (the first three lines). The final procedure in a file
represents the application’s “main” procedure.

occam/divide.occ
PROC divide ()

CHAN REAL64 in1, in2, out :
REAL64 quotient, m1, m2 :

Chapter 2. Appreciating Concurrent Computing with Occam • 50

report erratum • discuss

http://media.pragprog.com/titles/dzseven/code/occam/divide.occ
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

SEQ➤

in1 ? m1➤

in2 ? m2➤

quotient := m1 / m2➤

out ! quotient➤

:

The colon at the end of a definition indicates it forms part of the specification
of what follows. In the same vein, the procedure divide() also forms part of the
specification of the following empty process (the runtime).

Sequential processes can be nested, although there’s typically no need to do
so. They can also be empty. An empty SEQ is equivalent to a do-nothing SKIP.
KRoC amusingly notes when it encounters an empty SEQ: “Empty SEQ process?
Equivalent to SKIP...”

Parallel Processes
Occam sets itself apart from other programming languages through its
intrinsic support for parallelism at the syntax level.

Consider the two input processes highlighted in the previous code fragment
on page 50; both await values from their respective channels, but the notation
suggests that m1 arrives first, followed by m2. Unless we have specific knowl-
edge about the order of arrival, this assumption holds true only half the time.
What if each number needs preprocessing before division, and that prepro-
cessing takes considerable time? It would be advantageous to receive the first
arriving number and start processing it while waiting for the second.

Occam facilitates concurrency via a parallel process defined with the keyword
PAR. A parallel process (highlighted in the following code fragment) consists
of one or more parallel or sequential subprocesses, executed concurrently.

occam/divide-par.occ
PROC main ()

CHAN REAL64 in1, in2, out :
REAL64 quotient, m1, m2 :
SEQ -- SEQ0

PAR➤

SEQ -- SEQ1➤

in1 ? m1➤

-- preprocess m1 here➤

SEQ -- SEQ2➤

in2 ? m2➤

-- preprocess m2 here➤

quotient := m1 / m2
out ! quotient

:

report erratum • discuss

Taming Construction Processes • 51

http://media.pragprog.com/titles/dzseven/code/occam/divide-par.occ
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

If Occam has access to more than one transputer, SEQ1 and SEQ2 truly run
simultaneously. Otherwise, the order of execution is determined by the runtime
scheduler. The resulting quotient should not depend on the execution order. If
it does, it means SEQ1 and SEQ2 are not independent and shouldn’t be
parallelized.

Parallel execution isn’t unique to Occam. It’s supported by many languages
such as Ada, Concurrent Pascal, Modula-2, Java threads, C++ threads, Python,
Go, Erlang, Rust, Kotlin, and Elixir, among others. However, Occam was the
pioneer in this regard—another reason to remember it.

Developing concurrent and parallel software is challenging for several reasons,
a few of which are named here:

• Future software developers are seldom instructed in concurrent program-
ming, which relies on different concepts, tools, and best practices,
including debugging and testing techniques. Advanced concurrency topics
are outside this story’s scope, but help yourself by reading some good
Erlang books (such as Modern Erlang for Beginners [Ost18]).

• Because of synchronization and coordination issues, parallel processes
cannot share global variables.

• In the world of concurrency, the deadlock is the evil king.

A deadlock is a condition where two or more parallel processes are waiting
for input from one another, and thus neither can continue, as in the following
example:

PAR
SEQ -- SEQ1

chan1 ? x
chan2 ! y

SEQ -- SEQ2
chan2 ? x
chan1 ! y

Here, SEQ1 is waiting to read a value from channel 1, which should be written
by SEQ2, after reading another value from channel 2, which SEQ1 should
write but will not. Phew. By the way, an empty PAR is also equivalent to a do-
nothing SKIP. Read more about deadlocks in Revisiting Deadlocks, on page 57.

Repetitive Processes
Occam features repetitive processes, essentially loop statements, that begin
with the keyword WHILE, followed by a Boolean expression and the loop body.

Chapter 2. Appreciating Concurrent Computing with Occam • 52

report erratum • discuss

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

Boolean expressions can be constants (TRUE or FALSE), relational expressions
(=, <>, >, <, >=, or <=), or logical combinations thereof (AND, OR, or NOT). This
syntax will be familiar to those who have experience programming in Python.

Repetitive Processes

Occam repetitive processes and logical operators correspond to
Python while loops and logical operators.

You can surely recognize the highlighted code as the procedure that estimates
how many times one can divide an integer number by 2 before it becomes
zero. (The quantity is known as the binary logarithm of the number.)

occam/while.occ
PROC main (CHAN BYTE keyboard, screen)

INT x, count:
BYTE in:
SEQ

count := 0
-- Prepare the input
keyboard ? in
x := INT in
WHILE x <> 0➤

SEQ➤

x := x / 2➤

count := count + 1➤

-- Display the result
screen ! BYTE (count + '0')
screen ! '*n'

:

One thing to note about classical Occam—it doesn’t conceptually recognize
standard input and output. Instead, it uses virtual channels, which can
connect to a variety of hardware devices as long as they can send or receive
bytes (a serial port, a parallel port, or even a phone line). Connections to the
hardware are expected to be made at the configuration stage, explained on
page 69. Meanwhile, the application is supposed to work correctly, no matter
how connected.

The KRoC Occam recognizes the need for the standard I/O and allows to pass
CHAN BYTE parameters to the main procedure and recognizes them based on
their names. For example, it treats screen and out as the standard output, and
keyboard as the standard input.

While we’re on the expressions page, let me show you some arithmetic opera-
tors. They look and act as expected: +, -, /, *. The remainder can be written

report erratum • discuss

Taming Construction Processes • 53

http://media.pragprog.com/titles/dzseven/code/occam/while.occ
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

as \ or REM (in different dialects). The bitwise operators are BITNOT (or ~), BITAND
(or /\), BITOR (or \/), >< (XOR), <<, and >> (left and right shift). Somewhat
unusual are the operators PLUS, MINUS, and TIMES. They calculate the sum, the
difference, and the product modulo 2#INT, where #INT is the number of bits
in an integer number. These modulo operators are particularly useful when
working with time.

One peculiarity of Occam is the absence of operation precedence. All operators
are executed from left to right. The value of 10+10/2 is (10+10)/2=10, not 15. Use
parentheses to enforce your desired operation order.

Conditional Processes
The next class of construction processes is conditional processes (if and switch
statements for non-Occam speakers).

An IF process is closer to a C/C++/Java switch statement. Like a switch, it allows
multiple outcomes. However, the desired outcome is chosen based not on
equality but on the sequential evaluation of general Boolean conditions,
including TRUE (always matches) and FALSE (never matches). If an IF process
does not have any matching conditions, it stops (as if by execution of a STOP
process) and reports an error. Add a TRUE SKIP clause at the end to avoid such
errors.

Remember the Toysla electric car on page 14? The following toy example
implements communications between a Toysla engine controller (begins on
line 9) and the “driver” (the other SEQ process), running in parallel. The one-
way communication channel is called toysla. Lines from 20 to the end of the
file illustrate an IF process.

occam/conditional.occ
#INCLUDE "course.module"Line 1

PROC toysla (CHAN BYTE in, out)-

VAL LEFT.TURN IS 0 (BYTE):-

VAL RIGHT.TURN IS 1 (BYTE):-

VAL STOP.AND.QUIT IS MOSTPOS BYTE: --5

BYTE command, execute:-

CHAN OF BYTE toysla:-

PAR-

SEQ -- The car engine controller ---

toysla ? execute10

SEQ -- The "driver"-

out.string ("Enter a command:*n", 0, out!)-

in ? command-

-- Check command validity-

CASE command --15

'L','R','F','B','Q'-

Chapter 2. Appreciating Concurrent Computing with Occam • 54

report erratum • discuss

http://media.pragprog.com/titles/dzseven/code/occam/conditional.occ
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

SKIP-

ELSE-

STOP-

IF --20

command = 'L'-

toysla ! LEFT.TURN-

command = 'R'-

toysla ! RIGHT.TURN-

command = 'Q'25

toysla ! STOP.AND.QUIT-

TRUE-

-- Undefined command-

SKIP-

:30

Line 5 has another treat for you: it shows the operator MOSTPOS that evaluates
to the largest (most positive) number for the specified data type. Likewise,
MOSTNEG evaluates to the smallest number.

Newer Occams add one more tool for constructing conditional processes—
CASE (line 15 of the same code sample). It checks the parameter (which must
be an integer number, or possibly a character) against lists of constant
numbers and executes the matching process.

Alternative Processes and Timers
A problem arises with a conditional process if the conditions require receiving
from multiple channels. An input process is blocking: once you start exe-
cuting it, it doesn’t terminate until something is received, which precludes
the application from checking the other channels. An alternative process
allows you to monitor several channels simultaneously and respond to the
first that is ready to receive.

The concept of simultaneity is intimately related to measuring time. For that,
Occam has timers. Once you define a timer with the namesake keyword TIMER,
you can use it as a channel in an input process. A timer emits integer numbers—
typically, Unix timestamps.

You can also use a timer to introduce a delay with the operator AFTER. The
operator forces the input process to wait until the value of the timer equals
the operand. The operand can be a constant, a variable, or an expression
involving the current time and a delay. Use PLUS to calculate the wake-up time
from the current time and the delay, not +, to avoid numerical overflows.

In some dialects of Occam, a timer is a built-in singleton object accessible as
an input channel TIME, for example, via TIME ? now.

report erratum • discuss

Taming Construction Processes • 55

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

An application with multiple external input channels doesn’t know which
input arrives first or whether it arrives at all. Alternative channels address
the problem of blocking selection, and timers solve the problem of timeouts.

The following example illustrates how timers complement alternative processes
to handle input uncertainty. This application waits for the user to enter a key.
If the user doesn’t respond in two seconds, the application crashes. The high-
lighted alternative process monitors the delay timer clock and the keyboard kbd.

occam/timed-key.occ
#INCLUDE "course.module"
PROC main (CHAN BYTE kbd, scr)

VAL delay IS 2000000: -- 2 sec
INT now:
TIMER clock:
SEQ

out.string ("Enter your key:*n", 0, scr)
clock ? now
BYTE key:
ALT➤

clock ? AFTER (now PLUS delay)➤

STOP -- Too late!➤

kbd ? key➤

out.string ("Welcome!*n", 0, scr)➤

:

You can add Boolean guards to any or all ALT conditions. Receiving from a
channel will be attempted only if the corresponding guard is true. Here’s an
implementation of a gated multiplexor, a process that receives messages from
four incoming channels, src0, src1, src2, and src3, and forwards them to a single
outgoing channel dest:

CHAN INT src0, src1, src2, src3, dest:
BOOL enabled0, enabled1, enabled2, enabled3:
INT x:
ALT

enabled0 & src0 ? x
dest ! x

enabled1 & src1 ? x
dest ! x

enabled2 & src2 ? x
dest ! x

enabled3 & src3 ? x
dest ! x

You may feel disappointed that almost the same code block is repeated in the
previous example four times. What if you want to multiplex 128 channels?

Chapter 2. Appreciating Concurrent Computing with Occam • 56

report erratum • discuss

http://media.pragprog.com/titles/dzseven/code/occam/timed-key.occ
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

Should you copy the block 128 times? Not at all—see Introducing Arrays, on
page 57, and Replicating Processes, on page 64.

Alternative Processes

An alternative process is a loose equivalent of the select() function
in the standard C library.

Revisiting Deadlocks
There used to be two good friends, Alice and Bob. Once, they had a bitter
argument over different dialects of Occam. Chuck, who happened to be their
mutual friend and a go-between, told Alice that Bob would send her a text
message, but only after she texted him first. Then he told Bob that Alice would
send him a text message, but only after he texted her first. The two never
spoke to each other again.

The following example translates the drama into Occam:

occam/deadlock.occ
PROC deadlock ()

VAL hello IS 'H':
CHAN OF BYTE alice.to.bob, bob.to.alice:
PAR

BYTE text.msg:
SEQ -- Alice: text me, then I text you
bob.to.alice ? text.msg
alice.to.bob ! hello

BYTE text.msg:
SEQ -- Bob: text me, then I text you
alice.to.bob ? text.msg
bob.to.alice ! hello

:
-- KRoC: deadlock: no valid processes found in workspace(s)
-- KRoC: program deadlocked (no processes to run)

Deadlocks are real and dangerous; deadlocks are very hard to detect and
debug. Deadlocks are outside this book’s scope, but if you plan to do serious
distributed programming in Occam or another language, you should consult
a good operating system book (for example, Operating System Concepts
[SGG11]), especially a chapter on concurrent programming.

Introducing Arrays
Any respectable programming language has arrays or array-like collections
(tuples, lists, vectors, matrices, you name it). Occam is not an exception.

report erratum • discuss

Revisiting Deadlocks • 57

http://media.pragprog.com/titles/dzseven/code/occam/deadlock.occ
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

Occam arrays are homogeneous, have fixed sizes, and are created uninitialized.
To create an array, specify its size, data type, name, and, optionally, values:

[4]BOOL enabled: -- An array of four Boolean values
VAL trues IS [TRUE, TRUE, TRUE, TRUE]: -- An array of constants (a table)
[8][8]BYTE board: -- An 8x8 array of bytes (a checkerboard)

When describing an array or a table as a procedure parameter, don’t mention
the size. Operator SIZE on line 6 of the next example will calculate it for you.

occam/array-with-loop.occ
-- Define the initializing procedureLine 1

PROC make.true ([]BOOL array)-

INT i:-

SEQ-

i := 05

WHILE i < (SIZE array) ---

SEQ-

array[i] := TRUE-

i := i + 1-

:10

-

PROC main ()-

-- Call the initializing procedure-

[4]BOOL enabled:-

make.true (enabled)15

:-

The body of make.true() appears to be a poor man’s attempt to reimplement a
for loop using a while loop, which it is. Replicating Processes, on page 64, will
provide a better solution.

You can assign a table to an array from a literal or a variable. Once assigned,
the array elements become editable:

enable := [TRUE, TRUE, TRUE, TRUE]

Segments
A segment, which loosely correspond to list slices in Python, is a contiguous
subarray of an array starting at the position p and consisting of n items:

segment := [enable FROM p FOR n] -- In KRoC
segment := enable[FROM p FOR n] -- In some dialects

Segments on the right-hand side are copies of the original arrays, not views.
If you modify a segment, the original array won’t change, and vice versa. On
the contrary, segments on the left-hand side are views of the original array.
Assignment to a segment modifies the original array:

Chapter 2. Appreciating Concurrent Computing with Occam • 58

report erratum • discuss

http://media.pragprog.com/titles/dzseven/code/occam/array-with-loop.occ
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

[5]INT data, copy:
data := [1,2,3,4,5]
copy := [data FROM 0 FOR (SIZE data)]
copy[0] := 0 -- data[0] is still 1
[data FROM 0 FOR 2] := [0,0] -- data is now [0,0,3,4,5]

Strings
Occam wasn’t designed as a string-friendly language. In the spirit of Erlang,
a string in Occam is just an array of printable bytes. The double quotation
mark notation is the syntactic sugar: it makes strings easier to read and type
but doesn’t affect their internal representation:

VAL []BYTE literal.string IS "Hello World!":
[SIZE literal.string]BYTE string.var:
string.var := literal.string -- Copying

Crafting Channel Protocols
Occam channels may be semi-structured connectors, as claimed in Navigating
Channels, on page 47, but some structure never hurts. It’s in your power to
make them fully structured. Simply attach protocols.

A protocol is a scheme that allows a channel to carry typed or mixed-type
data. Protocols can be simple, sequential, array, or variant (case).

Simple Protocols
A simple protocol mandates that all transferrable items belong to one data
type. In the classical Occam, you would supply the data type in the parenthe-
ses after the CHAN. KRoC uses the CHAN OF notation:

-- "classical"
CHAN(INT) int.channel:
-- KRoC
CHAN OF INT int.channel:

A process may receive or send only items whose data type matches the
channel protocol. Sometimes it may be necessary to specify a protocol where
the format of the protocol cannot be defined. Such a protocol is called anarchic
and is introduced with the keyword ANY:

CHAN OF ANY alien.device:

Array Protocols
Array protocols are a subclass of simple protocols. They allow you to send
and receive arrays of known or unknown length. An array whose length is

report erratum • discuss

Crafting Channel Protocols • 59

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

stored in the first item is called a counted array (compare counted strings in
Forth on page 31). A counted array is easy to send but hard to receive.

In the following example, two channels, text.in and text.out, are formatted for
counted byte arrays (strings). The size of an array is an INT16 value separated
from the array body with a double colon (::). When you send a counted array,
Occam first sends its size and then its body:

CHAN OF INT16::[]BYTE text.in, text.out:
INT16 size:
[100]BYTE buffer:
text.out ! 13::"Hello, world!"
text.in ? size::buffer

Sequential Protocols
You can define complex protocols separately from channels by naming them
with the keyword PROTOCOL. Separate definitions are easier to read, are
reusable, and enforce code consistency:

PROTOCOL ID.PROTO IS INT16:
CHAN OF ID.PROTO id.channel:

A sequential protocol is an example of a complex protocol. Use it when you
have a sequential, record-style (records were introduced on page 46) commu-
nications pattern. However, if a record data type has already been created
(xy.point), there’s no reason to define a matching sequential protocol. You can
use a simple protocol with a complex data type!

PROTOCOL POINT.2D IS REAL32; REAL32:
CHAN OF POINT.2D point.data:
-- Alternatively:
CHAN OF xy.point point.data:

Variant (Case) and Tag-Only Protocols
A variant protocol is an advanced form of a sequential protocol in which the
first item serves as a tag and defines the format of the rest of the message.

In classical Occam, a variant channel requires a manual assignment of
numerical values to the tags and receiving through a specialized IF process:

CHAN(1; INT OR
2; REAL32; REAL32 OR
3; [BYTE]BYTE OR
4) in, out:

out ! 1; 100 -- Send the tag and the matching content
SEQ

in ? tag -- Receive the tag

Chapter 2. Appreciating Concurrent Computing with Occam • 60

report erratum • discuss

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

IF -- Inspect the tag, receive the leftover
tag = 1
in ? x

tag = 2
in ? y; z

...

KRoC introduced autodefined tags and a CASE structure consistent with other
modifications in this Occam dialect.

PROTOCOL things
CASE

word; INT
point; REAL32; REAL32
message; BYTE::[]BYTE
sync
:

CHAN OF things in, out:
out ! word; 100 -- Send a "thing"
SEQ

in ? CASE
word; n -- receive a word
action1 (n)➤

point; x; y -- receive a 2D point
action2 (x, y)➤

message; len::buffer -- Receive a string
action3 (len, buffer)➤

sync -- Receive a tag alone
action4 ()➤

Note that the tag sync is not followed by any other items. It represents a sub-
class of variant protocols called tag-only protocols.

Tag-Only Protocols

Messages in tag-only protocols loosely correspond to POSIX signals,
except they are user-defined and sent by processes, not by the
operating system.

You may also have seen function-like objects on the highlighted lines in the
previous example. They are indeed Occam functions, and Functions, on page
62, explains how to use them.

Arranging Code in Compilation Units
Classical Occam allows you to define processes as top-level, first-class state-
ments. According to KRoC, a process must be a part of a compilation unit—a
procedure or a function. An Occam file may contain data type and constant
definitions and any number of compilation units, including no units at all.

report erratum • discuss

Arranging Code in Compilation Units • 61

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

Procedures
You’ve already seen procedures in this chapter, though they weren’t the focus
of discussion but mere wrappers around the code of interest. Let’s look at
them closely.

A procedure, also known as a named process in the classical Occam, has a
name, optional parameters, and optional local variables. Syntactically, a proce-
dure starts with the keyword PROC and ends with a colon : (not a semicolon ;
!). The smallest and arguably the least practical procedure takes no parameters
and does nothing.

PROC does.nothing ()
SKIP -- Must be a process

:

Unless otherwise requested, Occam passes procedure parameters by reference.
You can modify their values if necessary. If you want to pass a parameter by
value, mark it as a VAL.

The main procedure of an application is the last procedure of the application
code file. The name of that procedure is irrelevant, but it is limited in what
parameters it can take. They all must be of type CHAN OF BYTE. The number can
be from zero to three. The first channel, if present, is a link to the application’s
standard input (usually the keyboard). The second channel, if present, is a
link to the standard output (usually the screen). The third one links to the
standard error output. A simplified version of the Unix/Linux tee utility that
reads from standard input and writes to standard output can be implemented
as a seven-line Occam program.

occam/tee.occ
PROC tee (CHAN OF BYTE stdin, stdout, stderr)

BYTE x:
WHILE TRUE

SEQ
stdin ? x
stdout ! x

:

Functions
A function is a more lightweight object than a procedure. It is intended to
perform calculations that don’t involve channel input/output, parallelism, or
parameter modification.

Chapter 2. Appreciating Concurrent Computing with Occam • 62

report erratum • discuss

http://media.pragprog.com/titles/dzseven/code/occam/tee.occ
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

A function consists of a return type declaration, a name, an optional param-
eter list, and an expression or a value process. Occam passes parameters
by value—a function cannot change them. A function may return comma-
separated multiple values but must return at least one.

A simple one-line function without local variables is a wrapper around an
expression. The value of the expression is the value of the function. In the
example, function BOOL is.lower(VAL BYTE ch) returns TRUE if byte ch is a lowercase
letter and FALSE otherwise. (Note the VAL modifier!)

occam/toupper.occ
-- Check if ch is a lowercase letter
BOOL FUNCTION is.lower (VAL BYTE ch) IS (ch >= 'a') AND (ch <= 'z') :

A more typical function is a value process—a process producing a value. The
process still cannot contain input, output, parallel, or alternative subprocesses
but can define local variables. A value process begins with the keyword VALOF
and ends with RESULT, followed by the list of return values.

Function BYTE to.upper(VAL BYTE ch) in the example returns a byte converted to
uppercase, but only if it’s a lowercase character, which is determined by
calling is.lower().

occam/toupper.occ
VAL not.found IS -1:
-- Convert a lowercase letter ch to uppercase
BYTE FUNCTION to.upper (VAL BYTE ch)

BYTE upper.char:
VALOF

IF
is.lower (ch)

upper.char := ch BITAND #DF
TRUE

upper.char := ch
RESULT upper.char

:

Procedures and Functions

Procedures and functions in Occam loosely correspond to proce-
dures and functions in Starset. Procedures in both languages do
not return values and, by default, pass parameters by reference.
Functions in both languages return values and pass parameters
by value.

report erratum • discuss

Arranging Code in Compilation Units • 63

http://media.pragprog.com/titles/dzseven/code/occam/toupper.occ
http://media.pragprog.com/titles/dzseven/code/occam/toupper.occ
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

Functions and procedures are essential code structuring and reuse tools in
Occam and most other languages. They make code easier to write, read,
maintain, and recycle.

Replicating Processes
Occam processes are fantastic; Occam arrays are fabulous. Why don’t we
combine them and get something even better—arrays of processes? Occam
supports them via process replication.

Let’s look again at the code example on page 56 and revisit the problem, “What
if you want to multiplex N=128 channels? Should you copy the block N=128
times?” No, you should instruct Occam to replicate the highlighted block
N times:

ALT
enabled.i & src.i ? x➤

dest ! x➤

...➤

The result is a process replication (also highlighted in the following example):

occam/mux.occ
VAL N IS 128:
PROC mux ()

CHAN OF INT dest:
[N]CHAN OF INT src:
[N]BOOL enabled:
INT x:

WHILE TRUE
-- The replicated part
ALT i=0 FOR N➤

enabled[i] & src[i] ? x➤

dest ! x➤

:

The segment-like structure i=0 FOR N implicitly creates an integer loop variable
i and N instances of the body. The value of i in each instance is different (from
0 to N-1). The procedure mux() multiplexes N input channels []src into one output
channel dest. The Boolean array []enabled selects the channels to multiplex.

When you compile the example, you’ll get a warning message:

/home/dzseven> kroc mux.occ
Warning-occ21-mux.occ(11)- variable `enabled[..]' is undefined here

The message means that the Boolean flags have never been initialized.
Assuming that initially you want to combine all inputs and do some tuning

Chapter 2. Appreciating Concurrent Computing with Occam • 64

report erratum • discuss

http://media.pragprog.com/titles/dzseven/code/occam/mux.occ
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

later, you should set all the array bits to TRUE. If the array were short, this
operation would be a matter of executing several assignment processes. But
not only is it not short, its size is actually not fixed. You need an array of
assignment processes—a sequence replicator:

[N]BOOL enabled:
SEQ i=0 FOR N

enabled[i] := TRUE

The replicator implicitly creates N assignment processes with different values
of i executed strictly one after another. It’s hard not to see a good old for loop
here!

Sequential Process Replicators

A sequential process replicator loosely corresponds to a for loop in
C/C++ and similar languages.

The new multiplexor is much more robust:

occam/mux-new.occ
VAL N IS 128:Line 1

PROC mux ()-

CHAN OF INT dest:-

[N]CHAN OF INT src:-

[N]BOOL enabled:5

INT x:-

-

SEQ-

-- Initialization-

SEQ i=0 FOR N10

enabled[i] := TRUE-

-

-- Multiplexing-

WHILE TRUE ---

ALT i=0 FOR N15

enabled[i] & src[i] ? x-

dest ! x-

:-

What are conditional process replicators good for? For starters, you can write
a character search procedure.

The procedure find.1st() takes three parameters. The first is an immutable
string haystack to be searched (see the sidebar Haystacks and Needles, on
page 66 if intrigued!). The second is a character needle to be found. The last
one is the position of the first found character or a constant not.found:

report erratum • discuss

Replicating Processes • 65

http://media.pragprog.com/titles/dzseven/code/occam/mux-new.occ
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

occam/search.occ
#INCLUDE "toupper.occ"

-- The search procedure
PROC find.1st (VAL []BYTE haystack, VAL BYTE needle, INT pos)

IF
IF i=0 FOR SIZE haystack➤

to.upper (haystack[i]) = to.upper (needle)➤

pos := i➤

TRUE
pos := not.found

:

The highlighted part of the code is a replicated conditional process. It compares
the ith character of the haystack to the needle (both characters are converted to
uppercase to provide case-insensitive search). If the needle is in the haystack,
the comparisons stop at the first match. It’s crucial to understand that the
conditional processes are not executed in parallel. They’re sequential. In a
sense, a replicated conditional process is a sequential loop of conditional
processes. Parallelization is possible but well outside of this book’s scope.

Haystacks and Needles

The function strstr() in the C language library, and similar functions in other languages,
takes two arguments: a haystack and a needle. This metaphor is derived from the idiom
“finding a needle in a haystack,” which refers to the difficulty of finding a small,
specific item in an ample, cluttered space. The metaphor provides an intuitive
understanding of what the function does, making it easier for programmers to
remember and use.

Parallel process replicators have the same structure as the other replicators:
they consist of the keyword PAR, a FOR counter, and the body. A parallel process
replicator creates a loop variable and several identical parallel processes. The
number of processes must be a compile-time constant (it cannot be a variable,
as in the other three types of replicators, due to placement concerns addressed
in Hardware Placement, on page 70).

Parallel replicators are often used in homogeneous pipelines: applications
that pass data through a sequence of simple identical or nearly identical filters.
For example, you can implement a pipeline that takes a stream of numbers
from a channel and collects the biggest N of them. The application may consist
of four types of processes, as shown in the code that follows. The comparator()
procedure reads a number from a channel and compares it to the stored
number. If the new number is bigger, it replaces the stored number and

Chapter 2. Appreciating Concurrent Computing with Occam • 66

report erratum • discuss

http://media.pragprog.com/titles/dzseven/code/occam/search.occ
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

forwards the latter to the next stage. Otherwise, it forwards the new number.
This algorithm is known as bubble sort.

The drain() and feed() processes remove the unused numbers from the pipeline
and feed random numbers to be sorted into the pipeline. Each of the first
three processes handles exactly COUNT numbers and then terminates. They
are fully sequential and do not use parallel process replicators:

occam/topN.occ
VAL COUNT IS 25 :
-- "Bubble sort" comparison
-- largest = number > largest ? number : largest
PROC comparator (CHAN OF INT in, out)

INT number, largest, i:
SEQ

largest := MOSTNEG INT -- Nothing can be smaller
i := COUNT
WHILE i > 0
SEQ

in ? number
IF

number > largest
SEQ

out ! largest
largest := number

TRUE
out ! number

i := i - 1
:

-- Remove smaller items from the pipeline
PROC drain (CHAN OF INT in)

INT x:
SEQ i=0 FOR COUNT

in ? x
:

-- Insert items to be sorted into the pipeline
#INCLUDE "course.module" -- for random()
PROC feed (CHAN OF INT out)

INT seed, number:
SEQ

seed := 0
SEQ i=0 FOR COUNT
SEQ

number, seed := random ((MOSTPOS INT) - 1, seed)
out ! (number + 1)

:

report erratum • discuss

Replicating Processes • 67

http://media.pragprog.com/titles/dzseven/code/occam/topN.occ
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

Magic happens in the sort() procedure. Here, you start a feeder, a drainer, and
N parallel comparators (highlighted). Each comparator takes input from the
previous (or the feeder) and forwards it to the next (or the drainer). The bigger
numbers settle in one of the comparators, while the smaller numbers are
drained:

occam/topN.occ
VAL N IS 5 :
PROC sort ()

[N+1]CHAN OF INT slot:
PAR

-- Feed random numbers
feed (slot[0])
-- Sort
PAR i=0 FOR N➤

comparator (slot[i], slot[i+1])➤

-- Drain the leftovers
drain (slot[N])

:

What if you want to process more than 25 numbers? What if you don’t want
to expose your application to an input sequence of any specific length? The
following section explains how to avoid the limitation.

Terminating a Distributed Application
You’ll see a WHILE TRUE loop on line 14 of the multiplexor example on page 65
and several similar loops in the bubble sorter on page 67. A WHILE TRUE loop
doesn’t terminate, nor does any process enclosing it. How would you gracefully
terminate such a perpetual application?

Distributed termination involves the termination of every constituent process.
It’s very tempting to declare a global Boolean variable whose value would be
checked by every repetitive process in the system before starting the next
iteration. When the value of the variable changes, the processes will stop at
once. Sadly, Occam doesn’t allow global variables.

Another distributed termination option is to connect each parallel process to
a central control process via control channels. Each parallel process would
use ALT to listen to termination instructions and stop when one arrives. This
solution requires a superabundance of rarely used channels and input pro-
cesses, making code hard to develop and maintain.

Lastly, as in the following example, you can integrate data and control mes-
sages and send them through the same channels formatted according to a
case protocol:

Chapter 2. Appreciating Concurrent Computing with Occam • 68

report erratum • discuss

http://media.pragprog.com/titles/dzseven/code/occam/topN.occ
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

occam/mux-term.occ
DATA TYPE Payload IS INT:
PROTOCOL mux.proto

CASE
data; Payload
terminate -- Control

:

VAL N IS 128:
PROC mux ()

CHAN OF mux.proto dest:
[N]CHAN OF mux.proto src:
BOOL continue:
Payload x:

SEQ
-- Initialization
continue := TRUE

-- Multiplexing
WHILE continue
ALT i=0 FOR N

src[i] ? CASE
data; x
SEQ

dest ! data; x
terminate
SEQ

continue := FALSE
dest ! terminate

:

The terminate message is called a marker. It’s sent after the last data item
and “bleeds” data out of communication channels. Generally, it’s incorrect
to terminate a repetitive process immediately after receiving a marker. This
simple solution works only in the absence of looping and parallel channels
data paths in the application. Consult a distributed systems book (for example,
Distributed Systems [vT23]) for more ideas.

Configuring Occam Programs
Your Occam application is written, debugged, and found correct. (The latter
is an exaggeration. It takes some nerve to claim that a distributed applica-
tion is correct.) The last stage of the project is the configuration—tuning the
application parameters.

Prioritization
Alternative Processes and Timers, on page 55, introduced alternative processes
executed based on the availability of inputs. It didn’t say what happens

report erratum • discuss

Configuring Occam Programs • 69

http://media.pragprog.com/titles/dzseven/code/occam/mux-term.occ
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

if two or more inputs become available simultaneously. It’s up to the Occam
runtime scheduler to decide which process to execute first. Fair enough,
the runtime scheduler is clever, but you may want to have a say—in other
words, assign higher or lower priorities to the channels.

Prioritization is a blessing and a curse. On the bright side, it optimizes the per-
formance of critical processes and improves resource utilization. On the dark
side, it causes starvation of lower-priority channels and may lead to undesir-
able scenarios if not done correctly.

Prioritization in Occam is easy: simply put the keyword PRI before the ALT that
you want to prioritize. Now the constituent processes will be executed in the
textual order. This multiplexor favors lower-number channels, consistent
with typical priority assignment schemas:

occam/mux-pri.occ
VAL N IS 128:
PROC mux.with.prios ()

CHAN OF INT dest:
[N]CHAN OF INT src:
INT x:

WHILE TRUE
PRI ALT i=0 FOR N
src[i] ? x

dest ! x
:

The same prioritization mechanism can be used to discriminate parallel pro-
cesses. You are still responsible for choosing the correct order!

Hardware Placement
Being an “assembly language for transputers,” Occam allows you to access
computer hardware directly.

First, you can request that a parallel process is executed by (“placed on”) a
processor/core of your choice. Use the keyword PLACED before the PAR and
keyword PROCESSOR, followed by the processor/core number, before each con-
stituent process. KRoC doesn’t currently support processor placement:

PLACED PAR
PROCESSOR 1

in ? char
PROCESSOR 2

out ! char

With proper permissions, an Occam application can access hardware ports.
The keyword PORT creates an abstraction that behaves like a channel but

Chapter 2. Appreciating Concurrent Computing with Occam • 70

report erratum • discuss

http://media.pragprog.com/titles/dzseven/code/occam/mux-pri.occ
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

retrieves items from a port and sends them to a port. An Occam port must
be placed to a specific bus address:

INT16 status:
PORT OF INT16 uart.status:
PLACE uart.status AT #16000004:
uart.status ? status

Finally, you can map an Occam array to the physical RAM (including video
RAM and device RAM):

VAL screenstart IS #B800:
[32000]BYTE screen:
PLACE screen AT screenstart:
screen[10] := #76 -- "Draw a pixel"

Cool as it is, further configuration story belongs to a different book.

Writing Something Big
What could be a better tribute to William of Ockham, fourteenth-century
English philosopher and theologian, than an exotic programming language
named after him? Only one thing could be better—a simulation of the problem
of dining philosophers in Occam.

Rumor has it that five learned men (“the philosophers”) sit around a table
somewhere in the universe and think. Now and then, at random times, they
get hungry. Luckily, there is a massive dish of pasta on the table. Sadly, being
philosophers, they are poor and can afford only one fork per person, but they
need two each to enjoy the pasta. As shown in the figure on page 72, each
philosopher (P in the figure) grabs the fork (F in the figure) on the left and the
fork on the right, dines, and puts the forks back for his hungry neighbors to
use. (Yes, they share utensils!)

Food for thought—what happens if all men become hungry simultaneously
and pick up their left forks?

Jokes aside, the problem concerns communications, deadlocks, and resource
allocation in distributed systems. It’s worth solving.

You can represent each philosopher and each fork by one parallel process. A
philosopher has two incoming and three outgoing channels: Boolean left.rq and
right.rq for requesting and releasing the namesake forks, Boolean left.ok and right.ok
for receiving the acknowledgments, and a byte-formatted report for reporting
the condition.

report erratum • discuss

Writing Something Big • 71

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

F1

F2

F3

P1

P2

P3

P4

P5

F4

F5

Philosophers have a timer and spend some random time thinking about the
intricacies of Occam programming. When the timers expire, the philosophers
report that they are hungry (literally, for your information), request their left
fork from the fork itself, wait for permission to use it, and then repeat for the
right fork. Once both forks are in order, the philosophers dine, release the forks,
and continue thinking. The process repeats forever. You are welcome to ter-
minate it, say, by limiting the amount of pasta:

occam/philosophers.occ
#INCLUDE "course.module" -- for random()

VAL GOT.IT IS TRUE: -- Some useful constants
VAL PICKUP IS TRUE:
VAL PUTDOWN IS FALSE:

PROC philosopher (CHAN OF BOOL left.rq, right.rq, left.ok, right.ok,
CHAN OF BYTE report, VAL BYTE id)

BOOL any:
TIMER clock:
VAL eat IS 100000:
INT seed, think:

SEQ
think, seed := random (10 * eat, (INT id) + 1)
WHILE TRUE
INT now:
SEQ

-- Think
clock ? now

Chapter 2. Appreciating Concurrent Computing with Occam • 72

report erratum • discuss

http://media.pragprog.com/titles/dzseven/code/occam/philosophers.occ
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

clock ? AFTER (now PLUS think)
think, seed := random (10 * eat, seed)
-- Get hungry
report ! id

left.rq ! PICKUP
left.ok ? any
right.rq ! PICKUP
right.ok ? any
-- Eat
clock ? now
clock ? AFTER (now PLUS eat)
PAR

left.rq ! PUTDOWN
right.rq ! PUTDOWN

-- Think again
:

A fork process uses the same four data channels (but not the reporter). A fork
is initially not used. When it receives a request from a philosopher, it sends
an acknowledgment to the corresponding channel and marks itself as used.
The fork becomes available again if a putdown message comes from the
matching side. If a putdown message comes from the wrong side, the applica-
tion crashes, which should never happen. If a used fork receives a request
from a philosopher, it puts that request on hold. (Doesn’t this paragraph
sound like Alice in Wonderland or some other fantasy tale?)

occam/philosophers.occ
PROC fork (CHAN OF BOOL left.rq, right.rq, left.ok, right.ok)

VAL NOT.USED IS 0(BYTE):
VAL LEFT.USED IS 1(BYTE):
VAL RIGHT.USED IS 2(BYTE):
BYTE used:
SEQ

used := NOT.USED -- not used
WHILE TRUE
BOOL rq:
ALT

used = NOT.USED & left.rq ? rq
IF
rq = PICKUP

SEQ
used := LEFT.USED
left.ok ! GOT.IT

used = NOT.USED & right.rq ? rq
IF
rq = PICKUP

SEQ
used := RIGHT.USED
right.ok ! GOT.IT

report erratum • discuss

Writing Something Big • 73

http://media.pragprog.com/titles/dzseven/code/occam/philosophers.occ
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

used = LEFT.USED & left.rq ? rq
IF
rq = PUTDOWN

used := NOT.USED
used = RIGHT.USED & right.rq ? rq

IF
rq = PUTDOWN

used := NOT.USED
:

The reporter procedure is a trivial multiplexor that collects the reports from
the philosophers and displays them on the screen. Occam doesn’t allow more
than one process to use the screen.

The main procedure defines the 25 channels and starts the reporter, five
forks, and five philosophers as 11 parallel processes. Once the parts find each
other, the simulation begins:

occam/philosophers.occ
-- Essentially a multiplexor
PROC reporter ([]CHAN OF BYTE in, CHAN OF BYTE out)

WHILE TRUE
BYTE x:
ALT i=0 FOR (SIZE in)
in[i] ? x

SEQ
out ! x
out ! '*n'

:

PROC dining.philosophers (CHAN OF BYTE out!)
VAL N IS 5:
[N]CHAN OF BOOL left.rq, right.rq:
[N]CHAN OF BOOL left.ok, right.ok:
[N]CHAN OF BYTE reports:

PAR
reporter (reports, out)
PAR i=0 FOR N
fork (right.rq[i], left.rq[(i+1) REM N],

right.ok[i], left.ok[(i+1) REM N])
PAR i=0 FOR N
philosopher (left.rq[i], right.rq[i],

left.ok[i], right.ok[i], reports[i],
(BYTE i) + 'A')

:

It all runs smoothly for a while, possibly for a long while, but eventually the
application deadlocks because all five stubborn philosophers pick up their
left forks and never put them down again.

Chapter 2. Appreciating Concurrent Computing with Occam • 74

report erratum • discuss

http://media.pragprog.com/titles/dzseven/code/occam/philosophers.occ
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

You don’t need to wait for the end of the party. Philosophy and pasta are
great, but mathematics and arrays are better. APL, an array processing lan-
guage, is your next destination.

Further Reading
• Communicating Sequential Processes [Hoa78]
• Occam Programming Manual [INM84]
• A Tutorial Introduction to OCCAM Programming [PM87]
• Programming in Occam [Jon87]
• Occam Programming: A Practical Approach [Ker87]
• Introduction to occam 2 on the Transputer [BS89]
• Occam 2: Including Occam 1 [Gal96]

report erratum • discuss

Further Reading • 75

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

CHAPTER 3

The universe is written in the language of mathematics, and its
characters are triangles, circles, and other geometric figures.

 ➤ Galileo Galilei, Florentine astronomer, physicist, and
engineer

Embracing Array-Centric
Programming with APL

When it comes to massively parallel processing of multidimensional arrays—
vectors, matrices, datacubes, and so on—nothing seems to beat NumPy, a
numerical Python library (hence the name), and Matlab, the Matrix Laboratory
(hence the name). However, this wasn’t always the case. The first array pro-
cessing language, APL, was designed much earlier.

The original version of APL dates back to 1962 when Kenneth Iverson, a
Canadian computer scientist, introduced it as a form of algebraic and algo-
rithmic notation in his book A Programming Language [Ive62]. APL became a
powerful interactive problem-solving system, first optimized for legendary
IBM OS/360 mainframes (under the name APL\360) and, later, for minis and
personal computers. Unless you have a better alternative, you’ll work with
well-supported and well-documented GNU APL (apl).1 But first, we must have
a serious conversation about the APL character set and the need for a special-
ized keyboard.

Deciphering APL Character Set
If someone asks you what the only thing that differentiates APL from 99.9
percent of other programming languages is, answer without hesitation: it’s
APL’s character set.

The APL founding fathers were of a solid mathematical background. They
intended to create a programming language resembling familiar mathematical
notation as much as possible. Ideally, the user could type a formula in an

1. https://www.gnu.org/software/apl/

report erratum • discuss

https://www.gnu.org/software/apl/
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

APL interpreter window and instantly execute it. That’s how APL ended up
with 65 special characters (in addition to the familiar alphanumerics, spaces,
and punctuation), including ⊖, ⍞, ⌹, a “thumbnail” (⍝), and even a grotesque
overlay of O, Q/U, and T (the end of input—see Performing Input and Output,
on page 93):

The extended alphabet of the language permitted users to write concise
expressions. For example, the following expression calculates the value of
e≈2.718281828 through Taylor series expansion with 170 members—
1++/1÷(!ι170)—and I don’t blame you if you fail to recognize the formula at first
glance.

On the bright side, the value of π in APL is at your fingertips: ○1. The function
○ represents multiplication by π and understandably looks like a circle; though
it would be even more natural for such a function to look like a half-circle ◠
or represent multiplication by 2π.

Modern physical computer keyboards don’t show the extended APL characters.
As an APL coder, you must use a virtual keyboard, buy a pricey specialized
APL keyboard—from Dyalog,2 for example—or install a secondary APL keyboard
layout, not unlike a layout for a foreign language (see Activating the APL
Keyboard Layout, on page 79). Well, APL is a foreign language.

To conclude, the complete APL character set consists of the ASCII alphanu-
meric characters (A through Z, a through z, and 0 through 9), ASCII
punctuation, white spaces, and 65 or more special characters, making APL
the black sheep of programming languages, as the sidebar on page 80 explains.

Some special characters went out of use as early as 1970, making the APL
reader’s life somewhat more manageable.

2. https://www.dyalog.com/

Chapter 3. Embracing Array-Centric Programming with APL • 78

report erratum • discuss

https://www.dyalog.com/
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

I hope I haven’t scared you. You can study J or K instead—they’re remote
relatives of APL that use only standard ASCII characters—or continue with
APL anyway.

J and K

The J programming languagea is another baby of Kenneth Iverson. It appeared first
in 1990. J inherits the compactness and expressiveness of APL but does away with
any special characters. Sadly, along with losing the APL special characters, it also
lost APL’s charm.

The K programming languageb is from 1993 and out of Morgan Stanley. (To be fully
honest, K is a descendant of two more APL-style languages, A and A++.) K’s purpose
was to facilitate the migration of APL code from IBM mainframes to Sun workstations.
K uses heavy operator overloading to make up for the absence of silly special charac-
ters. It’s not clear to me if 10#{1+1.0%x}\1 in K is more readable than 1++/1÷(!ι170)
in APL.

a. https://www.jsoftware.com/help/learning/contents.htm
b. https://xpqz.github.io/kbook/Introduction.html

Activating the APL Keyboard Layout
As a Linux or macOS user, you can switch to the secondary APL keyboard
layout with the program setxkbmap. The following command makes the combi-
nation Right-Alt a layout switch. Note the comma just in front of dyalog. No
space is between them (the invisible “empty” variant before the comma refers
to the us layout):

setxkbmap -layout us,apl -variant ,dyalog -option grp:switch

Press the combination to activate the secondary APL layout. Otherwise, the
standard U.S. layout is used. The same program with different options removes
the Right-Alt binding:

setxkbmap -layout us -option grp:switch

If you’re a Windows user or none of the above worked, visit the Dyalog website3

for more options.

This introduction to APL programming was longer than expected—blame the
APL character set. You’re ready to move on to the rest of the language, for it
deserves it.

3. https://www.dyalog.com/apl-font-keyboard.htm

report erratum • discuss

Activating the APL Keyboard Layout • 79

https://www.jsoftware.com/help/learning/contents.htm
https://xpqz.github.io/kbook/Introduction.html
https://www.dyalog.com/apl-font-keyboard.htm
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

The Black Sheep of Programming Languages

Aside from APL, special (non-ASCII) characters can be found in PL/I (¬), Fortress (→,
⊂, ⊆, ∞), TI-BASIC (≤, ≠, ≥, √, →), Scala (←, ⇒), Haskell (∷, ∀, ⇒, ↣), Agda (ℕ, ∀), and
perhaps some other exotic languages. It’s APL, however, that makes wild and uncon-
strained use of the special symbols.

In APL’s defense, the first version of the American Standard Code for Information
Interchange (ASCII) wasn’t published until 1963, and before that, no standard char-
acter set existed. Any character, technically, was “special.”

IBM devised its staple encoding, Extended Binary Coded Decimal Interchange Code
(EBCDIC), only in 1963–64. At this point, we can only guess the original encoding of
the APL symbols. Fortunately, with the advent of Unicode, the Tower of Babel of the
character codes is once again uniting users and programmers instead of dividing them.

Looking at Data Types
Numbers can be integer and real, positive and negative, and here’s the catch:
APL strongly promotes the one-to-one correspondence between a symbol and
its function. In most programming languages, the minus is used as a con-
stituent of a negative literal expression (-5 is a negative 5) or a unary negation
function (-X is the negation of X, not necessarily a negative number by itself).
In APL, -X is the negation of X, but negative 5 is written as ¯5.

The original APL\360 doesn’t support complex numbers.

A one-dimensional numeric array—a vector—is a sequence of scalars
separated by one or more spaces. Notice that the APL code traditionally starts
in the seventh column. The first six positions are reserved for the output and
line numbers within function definitions (see Define and Call Functions, on
page 94; Fortran has a similar arrangement). Also, when in the interactive
mode, APL displays the value of the most recently entered expression:

1 2.0 3E¯4 ¯5e¯6
1 2 0.0003 ¯0.000005

Oddly, you cannot directly define a one-element array (it would be indistin-
guishable from a scalar), but you can specify a two-element array and
truncate it.

APL strings are enclosed in single quotation marks and cannot have line
breaks. If a quotation mark is an element of a string, it’s represented as two
consecutive quotation marks (compare Starset on page 173). A number
included in a vector of strings remains a number: string vectors don’t have

Chapter 3. Embracing Array-Centric Programming with APL • 80

report erratum • discuss

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

to be homogeneous. By the way, the symbol ⍝, a thumbnail, denotes a com-
ment throughout the line.

'I am a string' ⍝ 13 elements: 'I', ' ', 'a', 'm', ' ', ...
I am a string

'Me, ''too''' ⍝ 9 elements: 'M', 'e', ' ', '''', ...
Me, 'too'

'I' 'am' 'a' 'vector' 'of' 'strings' ⍝ 6 elements: 'I', 'am', ...
I am a vector of strings

'Me,' 2 ⍝ 2 elements: 'Me', 2
Me, 2

You can assign variable names to scalars, vectors, and higher-dimensional
arrays (the operation known in APL literature as specification and respeci-
fication). A variable name is any combination of letters, underlined letters
(obsolete), digits, an underscore, ∆, or ⍙ (also obsolete). However, it cannot
begin with a digit, S∆, or T∆ (the latter two are reserved for debugging). Vari-
able names are case-sensitive. The assignment function is the left arrow ←.

dataSize←32
dataSize

32
DATASIZE

VALUE ERROR
DATASIZE
^
Data←1 2 3
Data

1 2 3

All APL variables, unless declared local (see Creating User-Defined Functions,
on page 94), are global and available to all functions. Once “specified,” a
global variable becomes a part of a workspace—a container for variables,
functions, and other objects that the user creates and interacts with during
a session (user-defined functions are also stored in workspaces). Workspaces
are persistent: they can be saved and later restored. Variables and func-
tions can be listed and erased. Once erased from a workspace, a variable
becomes unavailable (compare operator del in Python):

)VARS
Data dataSize

)ERASE ata ⍝ Intentional mistake
NOT ERASED: ata

)ERASE Data
)VARS

dataSize
)CLEAR

CLEAR WS

report erratum • discuss

Looking at Data Types • 81

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

Commands whose names begin with a right parenthesis (such as)CLEAR) are
system commands. Unlike variable names, they are case-insensitive, but we’ll
type them in uppercase to emphasize their significance.

Congratulations on your first APL experience! Have some rest, but remember
to log off:

)OFF
Goodbye.
Session duration: 59.4107 seconds

In the era of the mighty ancient mainframes and remote terminals, a failure
to log off might have resulted in a hefty bill!

Executing Scalar Operations
All APL executable units are called functions, even if they’re known as opera-
tors in other languages (for example, + and *). Many functions have a unary
(monadic, only with the right argument) and a binary (dyadic, with both
arguments) form. Function calls can also be nullary (niladic, no arguments).
All functions are right-associative—executed from right to left, and this is
another catch. What do you think is the result of 10-5-3-1? No, it’s not 1.

10-5-3-1 ⍝ 10-(5-(3-1))
7

If you don’t like the default evaluation order, use parentheses.

((10-5)-3)-1
1

The right associativity rule may cause unpleasant surprises that are hard to
detect and defuse (here and later, the symbol ⇨ is not a part of APL but shows
that one expression follows from the other):

1<5<10 ⍝ 1<(5<10) ⇨ 1<1 ⇨ 0
0

0=1=2 ⍝ 0=(1=2) ⇨ 0=0 ⇨ 1; really?
1

Many APL functions behave as intuitively expected, at least partially (for
example, +-><=). The table on page 83 gives examples of some unexpectedly
behaving functions.

The question mark function needs some further explanation. In its unary form
?N, it produces a random number from 1 to N, inclusive. N can be a scalar or a
vector. The example in the table is just an example. You will likely get a dif-
ferent result when you run ?2 3 4 yourself. In the binary form K?N, the function

Chapter 3. Embracing Array-Centric Programming with APL • 82

report erratum • discuss

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

BinaryUnary

2×¯1 2 4 ⇨ ¯2 4 6Multiplication×¯1 2 4 ⇨ ¯1 1 1Signum

2÷¯1 2 4 ⇨ ¯2 1 0.5Division÷¯1 2 4 ⇨ ¯1 0.5 0.25Reciprocal

4|¯1 2 4 ⇨ 3 2 0Remainder|¯1 2 4 ⇨ 1 2 4Abs. value

4*¯1 2 4 ⇨ ¯4 16 256Power*¯1 2 4 ⇨ 0.37 7.39 54.60Exponential

4⍟1 2 4 ⇨ 0 0.5 1Any logarithm⍟1 2 4 ⇨ 0 0.69 1.39Nat. logarithm

1.5⌈1 1.51 1.5 ⇨ 1.5 1.51 1.5Maximum⌈1 1.51 1.5 ⇨ 1 2 2Ceiling

1.5⌊1 1.51 1.5 ⇨ 1 1.5 1.5Minimum⌊1 1.51 1.5 ⇨ 1 1 1Floor

2!2 3 4 ⇨ 1 3 6Combination!2 3 4 ⇨ 2 6 24Factorial

2?4 ⇨ 2 4Deal?2 3 4 ⇨ 1 1 3Random

deals, without replacement, K random numbers from 1 to N. The argument
N must be a scalar or one-element vector.

In an expression X op Y, X can be a scalar, and Y can be either a scalar or a
vector. In the latter case, APL “automatically” applies the function op to each
pair of X and Yi, as if in a loop, and creates a new vector. Such implicit looping
operations are called vectorized. You can also apply binary vectorized opera-
tions to pairs of vectors and higher-dimensional arrays as long as their ranks
(numbers of dimensions) and dimensions are equal:

A←1 2 3
B←3 2 1
A+B

4 4 4
A*B ⍝ Exponentiation, not multiplication!

1 4 3
A⌈B

3 2 3
A≠B

1 0 1

Vectorized operations dramatically reduce the need for loops to the extent
that APL provides limited support for the latter. A hardcore APL programmer
uses little or no loops!

A Fuzzy Note

APL assumes that if two numbers are numerically close, they’re
equal. The relational functions ≤, <, =, >, ≥, ≠, and ≡ act accord-
ingly. The measure of the smallest distinguishable difference is
called fuzz. By default, the fuzz is equal to 10-13. You can use the
fuzz by setting the workspace indicator)FUZZ (APL\360) or the ⎕CT
(comparison tolerance) variable in GNU APL.

report erratum • discuss

Executing Scalar Operations • 83

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

A Fuzzy Note

1=1+1E¯13
1

1=1+9E¯12
0

The concept of the fuzzy comparison is often consistent with the
users’ expectations but is mathematically questionable. If you’re
concerned about precision, use integer numbers.

The equality and inequality functions = and ≠ work only on the objects of the
same rank and dimensions. In particular, you cannot use them to check if
two strings or arrays are equal or not equal unless the strings are of the same
length. For more flexible comparison, you need functions match ≡ and non-
match (“natch”) ≢.

1 2 3≠1 2
LENGTH ERROR

1 2 3≠1 2
^ ^
1 2 3≢1 2

1

Both functions are later additions to the language made in 1971. We can only
guess how APL programmers compared strings before then.

Compared to other mainstream programming languages, APL supports Boolean
operations NOR (⍱) and NAND (⍲) but does not support XOR and XNOR.
The operations NOT (~), OR (∨), and AND (∧) work as expected, except that
you must carefully watch the order of their execution. Can you automate an
entrance gate of an American bar serving alcoholic beverages? (Anyone who
enters must be at least 21 years old and have a driver’s license as a proof.)

AGES←21 18 20 21 22 17 ⍝ Some are younger, some are older
HAVE_LICENSE←1 1 0 0 0 1 ⍝ Some do, some don't
MAY_DRINK←AGES≥21∧HAVE_LICENSE ⍝ Some may, some may not
MAY_DRINK

1 0 1 1 1 0

But what if you want to know if the whole gang is welcome in the bar? Then
you need to reduce a Boolean vector to one Boolean value or, in general,
reduce any vector to one value.

Chapter 3. Embracing Array-Centric Programming with APL • 84

report erratum • discuss

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

Mastering Array Operations
Let’s first automate vector and other array creating because typing multidi-
mensional structures on the interpreter’s command line, even if for testing
purposes, is bothersome.

Generate Indexes and Index Arrays
The unary function ιN (literally the Greek letter iota) creates a vector of N
consecutive integer numbers between 0 and N-1 or 1 and N. The function is
called an index generator. The first element of the vector is determined by the
index origin stored in the workspace indicator)ORIGIN (classical APL\360) or
system variable ⎕IO (GNU APL; the box before IO is really a box, not a place-
holder for a missing character). The variable can be only 0 or 1.

ι5 ⍝ The default value of ⎕IO is 1, courtesy of FORTRAN
1 2 3 4 5

⎕IO←0 ⍝ or)ORIGIN 0
ι5

0 1 2 3 4

The same system variable controls array indexing: FORTRAN-style (starting
from 1) vs. C-style (starting from 0). Don’t be fooled by the name; the C lan-
guage appeared when APL was already ten years old! However, regarding the
ravel (traversal) order, APL is on the C side: the last (columns) index changes
faster than the row index, which changes faster than the plane index, and so
forth. In FORTRAN, the first index is the fastest to change.

Index Generator

The index generator ιN loosely corresponds to the range(1,N+1) or
range(N) function in Python, except that the latter is indeed a gen-
erator and produces indexes on demand, not all at once.

Expression ι0 produces an empty array of size zero. This array is peculiar: its
rank also equals zero, yet it’s not a scalar whose rank is undefined.

Empty or not, an array can be assigned to a variable and used in any legal
arithmetic, logical, or relational operation. For example, you may want to
check membership—learn if a specific element belongs to the array:

IDS←ι5
¯3∊IDS

0
3∊IDS

1

report erratum • discuss

Mastering Array Operations • 85

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

The element is in the array, but where? The friendly alter ego of iota, the
index-of function HιN, calculates the index of a needle N in the haystack H.
The index is reported in accordance with the)ORIGIN. If the needle isn’t found,
its index is assumed to be just outside the haystack—the largest H index
plus one:

IDS←ι5
IDSι3

3
IDSι¯3 ⍝ ¯3 not found, index is 5+1

6
3ιIDS ⍝ 3 is in 3 but 1, 2, 4, and 5 are not

2 2 1 2 2

Now, why not replace the element that was found with the one that was not?

IDS←ι5
IDS[3]

3
IDS[IDSι3]←¯3
IDS

1 2 ¯3 4 5
IDS[3]

¯3

The good old 100 percent ASCII-compatible square bracket indexing function
[] works in APL like in C, Java, or Python (save for the)ORIGIN thing), both on
the left and right sides of an assignment statement.

Reshape
Say you want to beat IBM Deep Blue with its own APL, and for that matter,
you need an 8×8 chessboard, also known as a two-dimensional array. APL
says, create a 64-element vector and make it square (reshape it, or “restruc-
ture” in APL-speak).

The binary function S⍴A (literally the Greek letter rho) changes the shape of
the existing data array A according to the specification of vector S. The size
of S equals the rank of the desired reshaped array. Each element of S specifies
the size of the new array along the corresponding dimension. For example,
S←8 8 specifies a square, 8×8 two-dimensional matrix, just what you need for
a chessboard. Likewise, S←2 2 2 2 describes a four-dimensional 2×2×2×2
hypercube with two elements along each dimension (a tesseract).

The following code fragment builds an 8×8 chessboard of 1s two ways (not
exactly what you want, but close enough). It generates a vector of 64 consecutive

Chapter 3. Embracing Array-Centric Programming with APL • 86

report erratum • discuss

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

—And He Built a Crooked House—

Robert Heinlein, an American sci-fi writer, wrote his short story —And He Built a
Crooked House— in 1941. The story takes place in a fancy experimental three-
dimensional building in Los Angeles. As a result of an earthquake, the structure
collapses into a four-dimensional tesseract. An APL programmer would explain that
unfortunate event as an application of the ⍴ function.

numbers and compares each number to 0. Since all numbers are strictly
positive, all logical conditions are true, and that’s how you get the ones.

BOARD←8 8⍴(ι64)>0 ⍝ Either this way
BOARD←8 8⍴0<ι64 ⍝ Or this way
BOARD

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

Notice how the expression ι64>0, without the parentheses, is wrong: it com-
pares 64 and 0 (the result is 1) and then generates a single-element vector.
Right associativity is no joke!

It’s time to unleash the full power of APL and create the “checkered” chess-
board. Initialize a vector of row markers alternating between 0 and 1 every
eight elements. Initialize a vector of column markers alternating between 0
and 1 at every element. Combine the two vectors with an exclusive or operation,
A^B. APL does not directly support the latter, but you can use the equiva-
lence A^B=(A∧~B)∨(B∧~A) (“either A or B, but not both nor neither”). Note that
the first index in a two-dimensional array refers to a row, and the second
refers to a column.

LINEAR←ι64
COLUMNS←2|LINEAR
ROWS←2|⌈LINEAR÷8
CHECKERED←(ROWS∧~COLUMNS)∨(COLUMNS∧~ROWS)
BOARD←8 8⍴CHECKERED

0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0

report erratum • discuss

Mastering Array Operations • 87

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0

BOARD[1;2] ⍝ 2D index
1

As an extension of single-index bracketing, you can list more than one index
to be extracted, and as many times as needed, as in the following example:

A←3 3⍴ι9
A[1 3;] ⍝ rows #1 and #3, all columns

1 2 3
7 8 9

A[;1 3 1 3] ⍝ all rows, columns #1, #3, #1 again, #3 again
1 3 1 3
4 6 4 6
7 9 7 9

A[1 3;1 3 1 3] ⍝ rows #1 and #3, columns #1, #3, #1, #3
1 3 1 3
7 9 7 9

Multidimensional Brackets

APL brackets with more than one index per dimension loosely
correspond to smart indexing in NumPy. An empty index is a Python
equivalent of the slice [:].

When used in a unary way, the function ⍴A calculates the shape of A. Apply
it twice to obtain the rank of A.

BOARD←8 8⍴ι64
⍴BOARD

8 8
⍴⍴BOARD ⍝ A vector of two elements

2
⍴⍴⍴BOARD ⍝ A vector of one element

1
⍴1 ⍝ The dimensions of a scalar are an empty vector. Cannot see it.

⍴⍴1 ⍝ An empty vector is a zero-dimensional object!
0

One of the most helpful features of the binary S⍴A is its ability to go outside the
box. The number of elements in A does not have to match the product of ele-
ments in S. If the latter is smaller than the former, A is truncated to fit its new

Chapter 3. Embracing Array-Centric Programming with APL • 88

report erratum • discuss

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

shape. Alternatively, if the new shape is bigger than the original, A is repeated
to fill it. In particular, if A is a scalar, the scalar is replicated as needed:

3 3⍴ι64 ⍝ Shrinking: 64 is too many
1 2 3
4 5 6
7 8 9

3 3⍴7 ⍝ Expansion: one is too few
7 7 7
7 7 7
7 7 7

3 3⍴ι6 ⍝ Expansion: ι6 is too few, too
1 2 3
4 5 6
1 2 3

You’ll use this feature in Creating User-Defined Functions, on page 94, to
create a better version of the chessboard.

Catenate and Ravel
The binary function X,Y (“comma”) catenates arrays X and Y. The arrays must
have the same first dimension. (The sidebar below addresses the controversy
of catenate vs. concatenate.)

(3⍴¯1),3 3⍴ι9
¯1 1 2 3
¯1 4 5 6
¯1 7 8 9

To Con or Not to Con?

The word catenate means “to add pieces (arrays) together.” The prefix con- introduces
a flavor of mutability: “to add pieces (arrays) to self, thus modifying self.” Although
Google reports 133,000,000 hits for “concatenate” and only 278,000 hits for “catenate,”
let’s stick to the official APL terminology in which arrays are catenated.

Note that a prominent Unix command for combining files is correctly abbreviated as
cat, not con or concat. However, the equally prominent standard C library function strcat()
should have been called strconcat() because it modifies the first argument.

Use the comma to build strings (character arrays) out of constituents.
Speaking of which, here’s APL’s long overdue “Hello, world!” program:

GREETING←'Hello'
WHO←'world'
GREETING,', ',WHO,'!'

Hello, world!

report erratum • discuss

Mastering Array Operations • 89

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

Comma

Function “comma” in APL loosely corresponds to the “plus” opera-
tor in Python when the latter is applied to strings, lists, and tuples,
as in "Hello, "+"world" or [1,2,3]+[4,5,6].

Catenate’s sister unary function ,A ravels the array A by flattening it into a vector.
In a sense, it undoes the results of restructuring the vector into a multidimen-
sional array.

,3 3⍴ι9
1 2 3 4 5 6 7 8 9

9⍴3 3⍴ι9 ⍝ Same as above, but with ⍴
1 2 3 4 5 6 7 8 9

⍴'Hello' 'World' ⍝ Create a vector of two words
2

⍴'Hello','World' ⍝ Create a vector of ten characters
10

Compress, Expand, and Reduce
Compression and reduction functions “deflate” an array by eliminating select
rows and columns or converting the whole array to a single number. The
expansion function, on the contrary, “inflates” it by inserting rows, columns,
and hyperplanes.

The compression function IDX/A selects the columns from array A based on the
Boolean vector IDX. Vector IDX serves as a mask—a column from A is selected
if the corresponding element of IDX is true:

1 0 1/3 3⍴ι9
1 3
4 6
7 9

1 0/2 2 2⍴ι8
1
3

5
7

0/ι8 ⍝ You pushed too hard and got an empty vector!

Conversely, the expansion function IDX\A inserts new columns filled with zeros
or space characters into array A according to the expansion Boolean vector
IDX. Vector IDX must be longer than the first dimension of A. A column is
inserted into A if the corresponding element of IDX is false:

Chapter 3. Embracing Array-Centric Programming with APL • 90

report erratum • discuss

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

1 0 1 0 1\3 3⍴ι9
1 0 2 0 3
4 0 5 0 6
7 0 8 0 9

Curiously, the name APL\360 had a hidden meaning—“APL expands IBM
OS/360.” However, the expression APL\360 is illegal in APL (it causes value
error), and so is 'APL'\360 (it causes domain error).

As a side note, the unary transposition function ⍉A transposes the array A
(swaps its axes). Combining it with the expansion function creates an exquisite
binary N×N frame:

N←3
BORDER←(N+2)⍴1
BORDER[1]←0
BORDER[N+2]←0 ⍝ Prepare a vector 0111...1110
~BORDER\⍉BORDER\N N⍴1 ⍝ Expand, transpose, expand, invert

1 1 1 1 1
1 0 0 0 1
1 0 0 0 1
1 0 0 0 1
1 1 1 1 1

Compression Function

The compression function IDX/A corresponds to Boolean-array
indexing in NumPy, A[IDX], where IDX is the same Boolean vector.

So compression, expansion, and reshaping partially allow you to restructure
arrays. But what about ultimate restructuring—converting an array to a single
number—say, to the sum of all elements? Enter reduction.

The reduction function op/A is a form of compression function that requires
a binary function op as its left argument rather than a value. The function
applies op to the last two elements of A, then to the third element from the
end and the result of the previous operation, and so on:

+/ι4 ⍝ (1+(2+(3+4)))
10

×/ι4 ⍝ (1×(2×(3×4)))
24

-/ι4 ⍝ (1-(2-(3-4))), not 1-2-3-4!
¯2

÷/ι4 ⍝ (1÷(2÷(3÷4))), not 1÷2÷3÷4!
0.375

report erratum • discuss

Mastering Array Operations • 91

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

The Starset language that supports similar functionality doesn’t allow reduction
with asymmetric functions (see Parallel Loops, on page 188). The other functions
include maximum ⌈, minimum ⌊, and logical functions ∧∨⍱⍲, as in the following
examples:

⌈/ι4 ⍝ The larges element
4

⌊/ι4 ⍝ The smallest element
1

∧/1 1 1 1 0 0 0 0 ⍝ All ones?
0

∨/1 1 1 1 0 0 0 0 ⍝ Any ones?
1

Take and Drop
The take and drop functions N↑A and N↓A select subvectors, substrings, and
subarrays from vectors, strings, and arrays. The take function takes (hence
the name) the first N elements of A. The drop function drops (hence the name) the
first N elements of A and returns the rest of A. If A isn’t long enough, it’s padded
with 0s or spaces.

4↑3↓ι100
4 5 6 7

14↑3↓'programming'
gramming

⍴14↑3↓'programming' ⍝ It is longer than you think!
14

If A is an array, then N must be a vector of size ⍴A.

4 4↑3 3↓10 10⍴ι100
34 35 36 37
44 45 46 47
54 55 56 57
64 65 66 67

In the latter example, you drop the first three rows and the first three columns
and then take the next four rows and the next four columns.

Take and Drop

A pair of take and drop functions loosely corresponds to Python’s
slicing operator [x:y]. The functions are not commutative: N↑M↓A
is equivalent to A[M:M+N+1], but M↓N↑A is equivalent to A[M:N+1]
(unless M>N).

Chapter 3. Embracing Array-Centric Programming with APL • 92

report erratum • discuss

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

Performing Input and Output
In the spirit of other interpreted languages, APL is based on a REPL loop:
read a command, evaluate it, print the results, and loop, making the simplest
“Hello, world!” program trivial (the “Hello, world!” code on page 89 is a joke!).
However, implicit printing doesn’t work when the result is assigned to a
variable. To force the printout, assign the result to the system variable ⎕
known as “quad.” (The box is really a box, not a placeholder for a missing
character; see comment on page 85.) Non-incidentally, the variable looks like
a screen or terminal window because it symbolizes your computer’s screen.

A←10 ⍝ No printout
A ⍝ Implicit printout

10
⎕←A←10 ⍝ Explicit printout

10

The last statement in the preceding code snippet is an example of a multiple
assignment. In general, avoid multiple assignments; combined with the right
associativity, their results may be pretty cryptic. However, they’re fully justified
in the case of an assignment to a quad.

Another system variable ⍞ (“quote-quad,” a quad with a quotation mark inside)
behaves like a quad but doesn’t insert unsolicited line breaks. Use it to output
several results on the same line in batch mode.

The same two system variables are used for input. A quad pauses the program
execution and displays a read prompt ⎕: (not a function). It expects you to
type any valid APL command, including numbers, arrays, or quoted strings.
The input is evaluated and used at once. You can put ⎕ anywhere where a
variable or a literal expression is expected.

⎕←A←⎕ ⍝ Read input with echo
⎕:

1 2 3
1 2 3

⍴A
3

⎕+⎕ ⍝ Read two expressions and add them
⎕:

123
⎕:

456
579

report erratum • discuss

Performing Input and Output • 93

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

The latter example may confuse the user because the same prompt is shown
twice. Display additional instructions before asking for more than one input.

The Quad

The quad function ⎕ corresponds to input() in Python 2.7 or a com-
bination of input() and eval() in Python 3.x. Use it with care. The
quote-quad function ⍞ corresponds to raw_input() in Python 2.7 or
input() in Python 3.x. It’s always safe to use.

A quote-quad behaves like ⎕ but doesn’t display the prompt or interpret the
input. Anything you type in is treated as a string, even if it’s not quoted (and
if it is, the quotes become a part of the string).

STR←⍞
Mary had a little lamb

⍴STR
22

EMPTY←⍞ ⍝ Simply press Enter

⍴EMPTY
0

I hear you saying, but what about file I/O? Sorry, no such thing in APL\360.
Use workspaces, explained on page 108.

Creating User-Defined Functions
APL built-in (primitive) functions are powerful and priceless but they can do
only that much. For everything else, you should write user-defined functions.
Technically, they are programmer-defined, but back in the 1960s there was
little difference between users and programmers.

Define and Call Functions
An APL function definition consists of the function name, optional result, up to
two formal arguments, global and optional local variables, and a body. A defini-
tion begins and ends with the symbol ∇ (“nabla” or “del”). Let’s create a function
that takes no arguments (a niladic function) and returns nothing. Such a
function manipulates, and is manipulated through, only the global variables.
Our first function, called CHECK_LOGIN, checks the global variables LOGIN and
PASSWORD; it sets the global variable LOGIN_OK if they match the internally stored
literal constants, which is hardly a useful exercise but a good starting point.

∇CHECK_LOGIN
[1] LOGIN_OK←(LOGIN≡'admin')∧PASSWORD≡'foobar'
[2] ∇

Chapter 3. Embracing Array-Centric Programming with APL • 94

report erratum • discuss

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

Upon entering a function definition with ∇, APL enumerates each line. Line
numbers are used for editing (Edit Functions, on page 96) and flow control
(Branching, on page 97). Once created, a user-defined function can be called
like any other system function, except its name is usually humane.

LOGIN←'admin'
PASSWORD←'password' ⍝ Oh, no!
CHECK_LOGIN
LOGIN_OK

0
PASSWORD←'foobar'
CHECK_LOGIN
LOGIN_OK

1

When asked for, APL happily confirms the function’s existence.

)FNS ⍝ Show the list of all defined functions
CHECK_LOGIN

Functions with implicit arguments and results have limited applicability
because they depend on appropriately named global variables and cannot be
called recursively. The following, more flexible function is monadic (takes one
argument) and explicitly returns the result. Furthermore, it declares a local
variable to protect the global namespace from pollution. It’s based on the
chessboard code on page 87.

∇BOARD←CHESSBOARD N;ROW
[1] ROW←(N⍴ι2)-1
[2] BOARD←N N⍴ROW,~ROW
[3] ∇

MY64←CHESSBOARD 8
MY64

0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

The variable N is the right formal argument (a monadic function doesn’t have
a left argument). The variable ROW, separated by a semicolon, is a local vari-
able. It is deactivated immediately after exiting the function. Any number of
semicolon-separated local variables is allowed if they fit on one line. By APL’s
scoping rules, a local variable in function F is global in function G if F calls G.

report erratum • discuss

Creating User-Defined Functions • 95

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

The result is in the variable BOARD to the left of the function name, separated
by the assignment symbol, which does not constitute an assignment operation
here. The function returns the most recent value of BOARD. A similar mecha-
nism is used in Starset, but the result variable name must be the same as
the function name (Functions, on page 191).

In the final example, a dyadic function DIVISIBLE_BY returns a subvector of
vector V containing the numbers divisible by N:

∇RESULT←V DIVISIBLE_BY N
[1] REMAINDERS←N|V
[2] ZEROREMS←0=REMAINDERS
[3] RESULT←ZEROREMS/V ⍝ Compression!
[4] ∇

STEP_17←(ι100) DIVISIBLE_BY 17
STEP_17

17 34 51 68 85

The argument becomes a global variable if the function fails. It retains its
most recently assigned value and cannot be erased with the)ERASE system
command.

You can pass more than two arguments to a function but must pack them
into an array in the caller and extract them in the function.

Edit Functions
APL\360 doesn’t store function definitions in files (see Working with
Workspaces, on page 108). An APL terminal has some editing facilities that
allow you to edit a function live (“perform open-heart surgery”). Editing is
limited to removing or inserting a line and replacing a line with another line.

First, open the function you want to edit by typing ∇ followed by the function
name. You can view an open function with a quad [⎕]. To save a revised
function, close it with ∇. To exit the editor without saving, type [→].

Suppose you implemented a trivial dyadic function CAT that catenates its
operands:

∇Z←A CAT B
[1] AB←A,B
[2] Z←AB∇

'hello,' CAT 'world!'
hello,world!

You instantly realize that the function isn’t perfect. It has an unnecessary
assignment (lines 1 and 2 can be combined) and doesn’t explain what it does

Chapter 3. Embracing Array-Centric Programming with APL • 96

report erratum • discuss

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

(you’re pedantic). These two problems are easy to fix, explained in the code
comments here:

∇CAT ⍝ Open the function
[3] [⎕] ⍝ Print it out

∇
[0] Z←A CAT B ⍝ Line #0 is the header (can be edited, too)
[1] AB←A,B
[2] Z←AB

∇
[3] [1] Z←A,B ⍝ Overwrite line #1
[2] [∆2] ⍝ Delete line #2
[2] [0.5] 'CATENATING...' ⍝ Insert a new line between #0 and #1
[2] ∇ ⍝ Close the function

'hello,' CAT 'world!'
CATENATING...
hello,world!

If you got used to Microsoft VS Code or even vi, you may find the built-in APL
editor somewhat inconvenient. But it is better than the ancient command-
line editors ed for Unix/Linux and edlin for MS-DOS. Someone should write a
book about seven obscure text editors and start with ed and edlin!

When editing a function, be aware that the line numbers in APL are not just
numbers. They’re mainly used as targets for branches—low-level flow control
operations. If line numbers change, branching operations may need to be
changed too. The following section outlines the problem and proposes a
solution.

Branching
“Branching” is a fancy name for the infamous GOTO statement. To be fair, it
became infamous only after Edsger Dijkstra, one of the founding fathers of
modern computer science, published his open letter “Go To Statement
Considered Harmful” [Dij68] in 1968. Before that, GOTO had been considered
a preferred way to control program execution flow. One can prove that GOTO
suffices for implementing conditional statements, loops, and choices. A pow-
erful tool it is, so don’t blame APL for depending on branching.

You can use the branch arrow →L only in a function definition, not in the
interaction mode. The function depends on line numbers and labels (neither
available in the interaction mode). So, first, a word about labels.

An APL label is a case-sensitive alphanumeric string ending with a colon and
optionally followed by an APL statement. A label is an alias for the line number
on which it is placed. You don’t have to use labels (line numbers are

report erratum • discuss

Branching • 97

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

technically as good as labels), but labels add clarity to your code and make
it easier to modify. The L in →L is a label or a line number.

When executed, the branch statement transfers control to the designated
line. You can start with a ridiculous example: two functions with infinite
loops. The functions differ in using line numbers vs. labels for branching.
Call these functions at your own risk!

∇BUSY2
[1] 'HELLO, WORLD'
[2] →1
[3] ∇

∇BUSY1
[1] AGAIN: 'HELLO, WORLD'
[2] →AGAIN ⍝ Go to label AGAIN, currently on line 1
[3] ∇

The preceding code is also an example of unconditional branching: the
branching function’s destination is defined when writing the program.
Unconditional branching has two special cases. If the destination line number
does not exist (0 or greater than the largest line number), the function exits
and returns to the caller, like this LAZY function:

∇LAZY
[1] →0 ⍝ Get out of here!
[2] 'HELLO, WORLD'
[3] ∇

The other special case is branching to an empty array (for example, to ι0).
Such a branch is ignored, and the function proceeds to the following line.
However, if the array isn’t empty, the program proceeds to the line whose
number is the at the head of the array:

∇GOODFUN
[1] →ι0 ⍝ Branch to an empty array? Oh, just ignore it.
[2] 'HELLO, WORLD'
[3] ∇

Branching through an array head represents a case of a computable branch
statement. The content of the array is dynamic and can be controlled by
shifting (“rotating,” on page 104), compression, or some other mechanism. For
example, consider a function that calculates a square root of number A via
Newton’s method—x1=1; xn+1=(xn+A/xn)/2:

∇Y←SQRT A;X;ACC
[1] X←1 ⍝ Initial approximation
[2] Y←(X+A÷X)÷2 ⍝ Iteration
[3] ACC←|Y-X ⍝ Quality control
[4] X←Y

Chapter 3. Embracing Array-Centric Programming with APL • 98

report erratum • discuss

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

[5] →(ACC>1E¯7)/2 ⍝ Branching
[6] ∇

SQRT 81
9

On line 5, the achieved accuracy ACC is compared to the target value of 10-7.
The Boolean expression is either true (1) or false (0). Therefore, the compres-
sion function (which looks like division but isn’t) is either 1/2 (the first element
“of” scalar 2 is 2 itself) or 0/2 (the zeroth element “of” the same scalar is empty).
The function branches, respectively, to line 2 (loop) or the following line (exit).

For your reference, here’s the same code in the C language, written and for-
matted to resemble the APL original as closely as possible:

double sqrt(double A) { double Y, X, ACC;
X = 1;

line2: Y = (X + A / X) / 2;
ACC = abs(Y - X);
X = Y;
if(ACC > 1e-7) goto line2;
return Y;

}

Yes, the C language still supports the goto statement. No, you shouldn’t use
it: “Go To Statement [still] Considered Harmful.”

You’re ready to write something not trivial—such as a package to generate
the first N prime numbers. The package includes two functions: DIVISORS to
obtain a list of divisors and PRIMES to repeat DIVISORS in a loop. The second
function is insanely inefficient, but it works.

apl/prime.apl
∇RET←DIVISORS N;NUMS

[1] NUMS←ιN ⍝ All numbers from 1 to N
[2] RET←(0=NUMS|N)/NUMS ⍝ Select the numbers that divide into N evenly
[3] ∇
⍝ DIVISORS 111
⍝1 3 37 111

∇RET←PRIMES N;K;DIVS
[1] K←1
[2] RET←ι0 ⍝ Initialize an empty list
[3] DIVS←DIVISORS K➤

[4] RET←RET,(2=⍴DIVS)/K ⍝ Save the numbers that have two divisors➤

[5] K←K+1➤

[6] →(K≤N)/3 ⍝ If not done, repeat from line 3➤

[7] ∇
⍝ PRIMES 55
⍝2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53

report erratum • discuss

Branching • 99

http://media.pragprog.com/titles/dzseven/code/apl/prime.apl
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

The loop in the function PRIMES includes lines 3–6 (highlighted). In the language
of modern structured programming, it’s a do-while loop; it executes the body
at least once and only then checks the termination condition.

APL branching is confusing (had APL been “obscure” because of branching?),
but some branching-related idioms may strengthen your confidence. Consider
the Boolean expression XrY, where r is a dyadic Boolean function and X and Y are
its appropriate operands. Then the following three commands branch to the
line S if XrY is true and proceed to the following command otherwise:

[1] →(XrY)/S ⍝ Select S or empty array through compression
[2] →(XrY)⍴S ⍝ Reshape S to a one-element vector or empty array
[3] →S×ι(XrY) ⍝ Multiply S by a 1 or an empty array

These commands are equivalent to if(r(X,Y)) goto S; in C. If you want to include
an else branch (from a vector of destinations S1 and S2), here are some two-
way branching idioms for you, equivalent to if(r(X,Y)) goto S1; else goto S2;.

[1] →(S1,S2)[1+XrY] ⍝ Indexing
[2] →((XrY),~(XrY))/S1,S2 ⍝ Compression

Finally, if you have many choices based on the integer value N (as in a switch
statement in C) arranged in a vector L, look no further than the next three
“switching” idioms, even though the rotation and drop functions ⌽ and ↓ will
not be known until Adding More Array Operations, on page 101.

[1] →L[N] ⍝ Indexing
[2] →(N-1)⌽L ⍝ Rotation
[3] →(N-1)↓L ⍝ Drop

The nonrecursive function for calculating the first N Fibonacci numbers
illustrates many uses of branching, including error handling (line 1), exiting
the function (line 3), and do-while loop organization (highlighted lines 6–9).

apl/fibonacci.apl
∇L←FIB N;I

[1] →(N≥2)/4 ⍝ Is N large enough? If not, exit
[2] 'VALUE ERROR'
[3] →0 ⍝ Yes, exit
[4] L←1 1 ⍝ The first two numbers
[5] I←2
[6] →(I≥N)/0 ⍝ If done, exit➤

[7] L←L,L[(⍴L)-1]+L[⍴L]➤

[8] I←I+1➤

[9] →6 ⍝ Rinse and repeat➤

[10]∇
⍝ FIB 10
⍝ 1 1 2 3 5 8 13 21 34 55

Chapter 3. Embracing Array-Centric Programming with APL • 100

report erratum • discuss

http://media.pragprog.com/titles/dzseven/code/apl/fibonacci.apl
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

Function TABLE displays a table of first, second, and third degrees of the first
N natural numbers and illustrates using labels instead of line numbers. The
loop is also highlighted.

apl/table.apl
∇TABLE N;I;TAB

[1] →(N≤0)/BADARG
[2] TAB←ι0
[3] I←0
[4] LOOP: →(N<I←I+1)/DONE➤

[5] TAB←TAB,I,(I*2),(I*3)➤

[6] →LOOP➤

[7] DONE: (N,3)⍴TAB
[8] →0
[9] BADARG: 'VALUE ERROR'
[10]∇
⍝ TABLE 3
⍝ 1 1 1
⍝ 2 4 8
⍝ 3 9 27

Have you noticed an embedded assignment statement on line 4? It’s executed
before the comparison and is an equivalent of C’s N<++I. Can you write an
equivalent of C’s N<I++? The answer is in the footnote.4

Now that you know how to build functions yourself, you can look into more
prebuilt array operations, including matrix products, string manipulation,
multidimensional array reduction, and string interpretation.

Adding More Array Operations
Two-dimensional matrices are special in science and technology. Unlike vectors
alone, two-dimensional matrix equations are powerful to describe most pro-
cesses that surround us (including infection diffusion in social networks).
Unlike three- and higher-dimensional arrays, they’re still easy to visualize
and comprehend. Not surprisingly, APL provides special support for two-
dimensional arrays.

Let’s revisit the reduction explained on page 91. In the case of a vector, the
reduction function op/A applies the function op to all elements. In the case of
a matrix, there are two ways to reduce: row-wise and column-wise. Unless
the matrix is symmetric, the outcomes will differ, and they will differ even
more in a three-or-more-dimensional case. To choose the direction of reduc-
tion, specify the dimension axis as the function modifier in square brackets:

4. N<(I←I+1)-1

report erratum • discuss

Adding More Array Operations • 101

http://media.pragprog.com/titles/dzseven/code/apl/table.apl
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

A←3 3⍴ι9
A

1 2 3
4 5 6
7 8 9

+/A ⍝ Row sums (default)
6 15 24

+/[2]A ⍝ Row sums (along the second dimension)
6 15 24

+/[1]A ⍝ Column sums (along the first dimension)
12 15 18

+⌿A ⍝ Column sums -- but why?
12 15 18

Axis Modifiers

Axis modifiers are equivalent to the axis=n option in NumPy and
Pandas. For example, given a two-dimensional array data, the follow-
ing expression calculates the row sums: data.sum(axis=1). Naturally,
Python axes are numbers starting from 0.

Being a careful reader, you must have noticed a previously unseen function
op⌿A in the preceding interaction. The function doesn’t have an axis modifier
but still calculates column sums. The function is an abbreviated version of
op/[1]A in the same spirit as op/A is an abbreviated version of op/[⍴⍴A]A. A matrix
has only two dimensions; both are equally important, and each deserves a
separate function. That’s the APL way.

Another function, scan op\A, also has two versions for the first and the last
dimensions. It applies the function op to each element and the result of the
previous application, calculating a sequence of partial results. Naturally, an
axis modifier is also acceptable.

+\A ⍝ Scan row-wise, same as +⍀[2]A
1 3 6
4 9 15
7 15 24

+⍀A ⍝ Scan column-wise, same as +⍀[1]A
1 2 3
5 7 9
12 15 18

Incidentally, when applied to a vector of natural numbers, a multiplicative
scan produces a vector of partial products, also known as factorials! However,
the reduction is more efficient if you need just one factorial.

Chapter 3. Embracing Array-Centric Programming with APL • 102

report erratum • discuss

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

×\ι10 ⍝ Scan
1 2 6 24 120 720 5040 40320 362880 3628800

×/ι10 ⍝ Reduction
3628800

What Exclamation Point?

Earlier computer keyboards didn’t have the factorial symbol—an
exclamation point character. It was entered by typing the quote
symbol ’ and overtyping a decimal point . over it. I wish I could
show you an example, but my keyboard doesn’t allow overtyping.

The happy take/drop and reduce/scan pairs are invaluable for string manipu-
lation. Here’s how we strip Python-style comments from a line of Python code:

TXT←'print(''Hello, World!'') # Comments ## more comments'
CODE←+/0=+\'#'=TXT
CODE↑TXT

print('Hello, World!')

In brief, compare each character with a '#'; calculate the partial sums (they
switch from 0 to >0 at the first instance of '#'); compare each partial sum to 0;
add up; the sum is the number of characters to the left of the first '#'; take them!

In the context of our discovery of axis modifiers, the simple catenation comma
function on page 89 shines in a new light. It can put string arrays side by
side horizontally (the default behavior—you already know about that):

A←'Hello'
B←'world'
A,B

Helloworld

It can put them side by side vertically (along the new axis number 1.1):

A,[1.1]B
Hw
eo
lr
ll
od

And it can put one above the other (along the new axis 0.9):

A,[0.9]B
Hello
world

You see the same charming concept of fractional line numbers as in the section
Edit Functions, on page 96. Perhaps “charming” isn’t the word one expects
to find in a computer programming book.

report erratum • discuss

Adding More Array Operations • 103

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

Reverse and Rotate
The monadic functions ⌽A and ⊖A reverse array A—flip it horizontally or verti-
cally, respectively:

⌽ι5
5 4 3 2 1

⌽3 3⍴ι9
3 2 1
6 5 4
9 8 7

⊖3 3⍴ι9
7 8 9
4 5 6
1 2 3

In the dyadic forms N⌽A and N⊖A, the same functions rotate (shift) the array
by N positions sideways or vertically. The number of positions may be the
same (if N is a scalar) or different for each row or column.

2⌽ι5
3 4 5 1 2

(ι3)⌽3 3⍴ι9
2 3 1
6 4 5
7 8 9

(ι3)⊖3 3⍴ι9
4 8 3
7 2 6
1 5 9

This little and not-so-clever palindrome checker is still smart enough to
eliminate white spaces before testing but not intelligent enough to convert
the text to lowercase or eliminate punctuation.

TXT←'never odd or even'
TXT←(TXT≠' ')/TXT
∧/TXT=⌽TXT

1

Linear Algebra
Linear algebra is a powerful foundation of modern science, technology, and
engineering. Remember Matlab, the Matrix Laboratory? APL is a matrix labo-
ratory too; it not only excels in linear algebra—it also expands its applications.

The dyadic function A∘.op B calculates the outer product of A and B. It
applies the dyadic function op, either primitive or user-defined, to each pair
of elements from A and B. In the following example, APL builds an array of

Chapter 3. Embracing Array-Centric Programming with APL • 104

report erratum • discuss

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

the smallest elements in every combination of natural numbers from 1 to 4
and another array of the sums of such numbers. The sum is calculated in
the user-defined dyadic function ADD:

(ι4)∘.⌈ι4
1 2 3 4
2 2 3 4
3 3 3 4
4 4 4 4

∇Z←A ADD B
[1] Z←A+B ∇

(ι4)∘.ADD ι4
2 3 4 5
3 4 5 6
4 5 6 7
5 6 7 8

A and B don’t have to be vectors, don’t have to be of the same rank and
dimensions, and don’t even have to be of the same data type. Here, one
extracts every prefix of lengths 1 through 4 from the you-know-which-words:

(ι4)∘.↑'hello' 'world'
h w
he wo
hel wor
hell worl

To make the outer product look more practical, assume you have a highway
connecting two major cities 100 kilometers apart. According to the map, there
are ten towns on the highway whose coordinates are integer but otherwise
look wholly random and even may coincide (don’t ask!). What is the maximum
distance between two towns?

You can solve the problem with APL in three simple steps. First, you need
the “over-each” function A¨B that applies a monadic function A to each element
of B—in our case, it draws ten random numbers from 1 to 100. Second, define
the function X DIST Y, which calculates the distance between two towns.
Finally, use the outer product to generate an array of all distances, flatten it,
and reduce it to its maximal element.

TOWNS←?¨10⍴100
∇D←X DIST Y

[1] D←|X-Y
[2] ∇

⌈/,TOWNS∘.DIST TOWNS ⍝ The result is, naturally, random
80

report erratum • discuss

Adding More Array Operations • 105

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

The Double-Dot

The dyadic function op¨A (“diaeresis,” “dieresis,” or “double-dot”)
is an equivalent of the map() operation found in Python and other
functional languages.

The dyadic function A op1.op2 B calculates the inner product of A and B for the
operations op1 and op2. The function op2 is applied to each pair of elements
for each row in A and column in B. The function op1 further reduces the results
to a single value. In its most familiar form, A+.×B, the inner product is the
good old cross product of two vectors or matrix product of two matrices.

VEC1←1 2 3
VEC2←3 ¯3 1
VEC1+.×VEC2

0
B←2 3⍴ι6
A←3 2⍴ι6
A+.×B

9 12 15
19 26 33
29 40 51

B+.×VEC1
14 32

In a more unorthodox example, the inner product checks if an array of 4-bit
patterns A contains a 4-bit pattern P. The function compares P to each row of
A bitwise and “and”s the results:

A←4 4⍴1 0 0 0 1 1 0 1 1 0 0 1 1 1 1 1
P←1 1 0 1
+/A∧.=P

1

The “domino” function ⌹A (monadic) or B⌹A (dyadic) inverts the matrix A or
divides A into the matrix or vector B. The function does not check if the
inversion/division is possible. It reports a RANK ERROR if they’re not, so you
better be prepared.

By the way, you can now use APL to solve systems of linear equations like
Ax=B. Naturally, in one line.

A←3 3⍴1 1 1 6 ¯4 5 5 2 2
B←2 31 13
B⌹A ⍝ x

3 ¯2 1
(⌹A)+.×B ⍝ Same x

3 ¯2 1

Chapter 3. Embracing Array-Centric Programming with APL • 106

report erratum • discuss

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

Sort
Forget bubble sort, insertion sort, selection sort, and even quick sort! APL
has two monadic sorting functions, ⍋A (“grade-up”) and ⍒A (“grade-down”).
They compute an array of indexes of the elements of A in the order of
increasing or decreasing values, respectively. You can use the computed
arrays later for rearranging the original array.

A←1 3 1 4 6 21
⍒A ⍝ The 6th element, 21, is the largest

6 5 4 2 1 3
A[⍒A]

21 6 4 3 1 1
A[⍋A]

1 1 3 4 6 21

But what about character strings? In APL\360, neither function officially
supported character sorting. One needs to know character encoding—the
numerical values of the characters—to compare characters. No universal
encoding existed in 1962 (actually, not until 1987, when Xerox and Apple
joined their effort to produce Unicode), which made sorting unpredictable.
The introduction of ASCII and, later, Unicode laid a solid foundation for string
ordering. Here’s an example of how Galileo could have created his famous
anagram Altissimum planetam tergeminum observavi (“I have observed the
highest three-form planet”) in APL:

TXT←'ALTISSIMUM PLANETAM TERGEMINUM OBSERVAVI'
TXT[⍋TXT]

AAAABEEEEGIIIILLMMMMMNNOPRRSSSTTTUUVV

No, he could not have—he lived before ASCII and Unicode!

Interpret Strings
Your APL story wouldn’t be complete without some acquaintance with the
“unquote” function, ⍎E. The function executes the literal APL expression E
provided as a string as if typed on the command line.

A cute, though inefficient, example of using unquote is applying the trapezoidal
rule for approximating a definite integral of a user-defined function. The
function FUN is provided at runtime as the right argument. The left argument
is an array containing the integration range endpoints and the number of
subdivisions.

∇Z←RNG INTEGRATE FUN;X;RANGE;DX
[1] RANGE←RNG[2]-RNG[1]
[2] DX←RANGE÷RNG[3]

report erratum • discuss

Adding More Array Operations • 107

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

[3] X←RNG[1]+DX×¯.5+ιRNG[3]
[4] Z←DX×+/⍎FUN
[5] ∇

0 1 10000 INTEGRATE 'X*2' ⍝ True answer: 1/3
0.3333333325

0 (○2) 10000 INTEGRATE '1○X' ⍝ True answer: 0
¯2.543364949E¯16

Note that in the second test case, 1○X represents a circular function number
1 (the sine), and 2○ is 2π, as on page 78.

The Unquote Function

The unquote function ⍎E resembles the notorious Python function
eval(), which you are strongly discouraged from using. However,
unlike eval(), ⍎E is side-effect-free and is considered harmless.

APL provides a dozen other functions (such as circular functions ○, represen-
tation ⊤, base value ⊥, and interaction with the system ⌶). But now it’s time
to save your work.

Working with Workspaces
APL\360 wasn’t just a programming language with an interpreter. It was
meant to be a self-sufficient environment, not requiring an operating system
and essentially becoming an operating system itself. APL developers could
not and did not assume that the host operating system, if any, provided par-
ticular abstractions, such as processes and files. That’s why APL doesn’t
support files as we know them today. Instead, it stores data and commands
in abstract workspaces.

A workspace is a named opaque storage of all your functions and variables.
Workspaces in APL loosely correspond to screens in classical Forth. Both are
used for filesystem-independent long-term storage of data and commands.
In general, you don’t need to know its format—let the APL interpreter handle
that. For example, GNU APL uses XML, but the original APL\360 relied on
something else because XML specification was published only in 2006.

All workspaces together form a workspace library.

Create Workspaces

GNU APL assumes you’ve created a subdirectory called workspaces
in your current working directory. The interpreter uses this subdi-
rectory to store workspaces.

Chapter 3. Embracing Array-Centric Programming with APL • 108

report erratum • discuss

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

Suppose you defined the function INTEGRATE and the array RANGE that specifies
the integration range (code on page 107). You can save the definitions into the
workspace 'integrate' for future use with the command)SAVE. The command)LIB
will show the workspace’s name. Your work is safe; don’t hesitate to log off.

RANGE←0 (○2) 10000
∇Z←RNG INTEGRATE FUN;X;RANGE;DX
...

[5] ∇
)SAVE 'integrate'

2023-04-14 02:45:49 (GMT-4)
)LIB

'integrate'
)OFF

When you come back, the workspace will still be in your library. Load it with
the command)LOAD. Check the workspace identifier with)WSID to ensure that
it’s the proper workspace. Check the list of variables (it contains RANGE and
INTEGRATE). Both items are ready for immediate use.

)LIB
'integrate'

)LOAD 'integrate'
SAVED 2023-40-14 20:45:49 (GMT-4)

)WSID
IS 'integrate'

)FNS
INTEGRATE

)VARS
RANGE

RANGE INTEGRATE '1○X'
¯2.543364949E¯16

)DROP 'integrate'
2023-04-14 02:51:17 (GMT-4)

You can delete a workspace with)DELETE but think twice before you do. Once
deleted, a workspace cannot be restored.

Writing Something Big
Now, get serious and write a helpful tool. What could be a better proof of the
worth of the language?

Consider a complex network—a graph of nodes connected with edges (see my
other book [Zin18] for a complete story). Say the network has 11 nodes and
12 edges. Note that the network is bipartite: a black node is always connected
to a white node. Perhaps the black nodes represent people, the white nodes

report erratum • discuss

Writing Something Big • 109

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

represent organizations, and the edges represent the relationship “works-for,”
as shown in the following image:

O1 O2 O3

P1 P2

P3

P4

P5 P6

P7

P8

Alternatively, you can describe the network as an adjacency matrix EDGES of
zeros and ones with three rows and eight columns. The matrix has a 1 if the
corresponding nodes are connected.

P8P7P6P5P4P3P2P1

00111111O1

01010000O2

11101000O3

You’d like to infer the relationships between the people based on their affilia-
tions with the organizations. For example, P1, P2, and P3 work for O1 and
only for O1. They must be similar to themselves but less similar to P4 and P5,
which have additional employment. In other words, different people belong
to different communities, and you want to unearth the community structure.
One way to accomplish such a task is by applying a generalized similarity
algorithm [Kov10].

Without going into too much detail, which you can look up in the just-
mentioned article, the algorithm iteratively transforms the matrix EDGES and
its transposed sister matrix. In the following pseudocode fragment, .T denotes
transposition, diag(X) is the diagonal vector of X, and X/[i]Y is the division of
matrix X by the vector Y along the axis i:

N←Identity
REPEAT

M ← EDGES×N×EDGES.T; M ← M/[1]√diag(M)/[2]√diag(M)
N ← EDGES.T×M×EDGES; N ← N/[1]√diag(N)/[2]√diag(N)

UNTIL required accuracy achieved.

The APL implementation has 18 lines (excluding the ∇∇ lines), compared to
15 lines in Python with NumPy. It maps nicely to the pseudocode.

Chapter 3. Embracing Array-Centric Programming with APL • 110

report erratum • discuss

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

apl/gensim.apl
∇NN←GENSIM MTX;MINEPS;MAXITER;ITER;S;MTX1;MTX2;N;M;NN;MM;NP;EPS;MORE

[1] MINEPS←1E¯6 ⍝ Initialize precision
[2] MAXITER←50 ⍝ Initialize max number of iterations
[3] ITER←0
[4] S←(⍴MTX)[2] ⍝ Data size
[5] MTX1←MTX-[1]+/MTX÷S ⍝ Normalize the matrix two ways
[6] MTX2←⍉MTX-[2](+/[1]MTX)÷(⍴MTX)[1]
[7] NN←(S,S)⍴1,S⍴0 ⍝ New metric matrix: an "eye"

[8] LOOP: ⍝ Beginning of the "while" loop
[9] MM←MTX1+.×NN+.×⍉MTX1 ⍝ Update metric matrix
[10] M←(1 1⍉MM)*.5 ⍝ Normalize it
[11] MM←(MM÷[1]M)÷[2]M
[12] NP←MTX2+.×MM+.×⍉MTX2 ⍝ Update metric matrix
[13] N←(1 1⍉NP)*.5 ⍝ Normalize it
[14] NP←(NP÷[1]N)÷[2]N
[15] EPS←⌈/,|NP-NN ⍝ Calculate accuracy
[16] NN←NP
[17] ITER←ITER+1
[18] MORE←(EPS>MINEPS)∧ITER<MAXITER
[19] →MORE/LOOP ⍝ End of the "while" loop
[20] ∇

The algorithm produces the matrix SIMS of similarity measures between the
people on the scale -1 (very dissimilar) to +1 (very similar).

EDGES←3 8⍴1 1 1 1 1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 1 1 1
SIMS←GENSIM EDGES
SIMS>0

1 1 1 1 1 1 0 0
1 1 1 1 1 1 0 0
1 1 1 1 1 1 0 0
1 1 1 1 0 1 0 1
1 1 1 0 1 0 0 0
1 1 1 1 0 1 0 1
0 0 0 0 0 0 1 1
0 0 0 1 0 1 1 1

According to SIMS, P1, P2, P3, and P4 are in the same group. P7 and P8 are
in another group. P5 and P6 are more similar to the first group than the
second. Draw a graph of the similarity network as an exercise. You can even
use it for social science simulation—especially if you know some Simula.

Further Reading
• A Programming Language [Ive62]

• APL Programming and Computer Techniques [Kat70]

report erratum • discuss

Further Reading • 111

http://media.pragprog.com/titles/dzseven/code/apl/gensim.apl
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

• Handbook of APL Programming [Wie74]

• APL: The Language and Its Usage [Pol75]

• APL-STAT. A Do-It-Yourself Guide to Computational Statistics Using APL
[RM81]

• APL: An Interactive Approach [Gil83]

• APL Programming Language [Mag83] (in Russian)

• Learning and Applying APL [Leg84]

• APL with a Mathematical Accent [Rei90]

• Mastering Dyalog APL: A Complete Introduction to Dyalog APL [Leg09]

Chapter 3. Embracing Array-Centric Programming with APL • 112

report erratum • discuss

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

CHAPTER 4

We must abstract from nature what is essential.

 ➤ Aristotle, ancient Greek philosopher and polymath

Unveiling Object-Oriented
Programming with Simula

This chapter offers you a gift. Instead of one obscure language, it gives you
two: Simula and ALGOL, because Simula is ALGOL in disguise (specifically,
Simula-67 is a superset of ALGOL-60). Beyond OOP, Simula’s origins in
simulation will introduce you to coroutines and discrete event modeling,
enabling you to simulate complex systems—a skill increasingly crucial in
data-driven decision-making.

But don’t get too excited yet; ALGOL had a massive influence on computing
in general and specifically on programming languages, but, forgotten for any
practical purpose, it’s remarkably boring.

ALGOL is the second oldest programming language, designed in 1958 as a
direct successor to Fortran. Its antiquated features are a clear reminder of
its roots in the early days of computing. ALGOL is characterized by its heavy
syntax, reliance on GOTO statements, a clear divide between functions and
procedures, lack of dynamic memory allocation, and compatibility with punch
cards rather than files.

Such shortcomings, among others, must have prompted the emergence of
Simula between 1962 and 1967. Simula stepped in to supplant ALGOL,
absorbing its core components while enhancing its capabilities. Developed
initially for CDC 3300, it was soon ported to CD 3600, CD 6600, UNIVAC
1108, IBM 360/370, and other computer systems.

Simula rightly prides itself as the pioneer of object-oriented programming.
Though the individual components of this paradigm had been present since
1960, Simula was the first to implement the framework fully. Shortly after,

report erratum • discuss

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

in 1972, Smalltalk followed suit, reinforcing the object-oriented programming
approach.

“It’s ALGOL!”
Boring or not, ALGOL is Simula, and you cannot learn one without learning
the other. Let’s start with the traditional “Hello, world!” chant to illustrate
using comments and compound statements.

simula/hello.sim
% A comment
! Another comment ;
BEGIN

OutText("Hello World!");
COMMENT One more comment ; OutImage;

END of Program

An unterminated comment begins with % and extends to the end of the line.
Terminated comments begin with ! or COMMENT and extend to the first semicolon
because both are statements, and statements must always conclude with a
semicolon. Everything after the END clause to the end of the line is ignored too.

A compound statement is a sequence of single or other compound statements
wrapped in BEGIN and END clauses. It can be utilized in any situation where a
single statement would be expected. A Simula program is typically one com-
pound statement.

Compound Statements

Simula compound statements correspond to the C/C++/Java
compound statements enclosed in curly braces {} or Python blocks
indented by the same amount. Compound statements were first
introduced in ALGOL.

ALGOL-60 and Simula are case-insensitive languages. As a convention, con-
sider typing keywords in uppercase letters and identifiers in mixed-case letters
for better readability and consistency.

Since Simula is a superset of ALGOL-60, treat any reference to Simula as an
implicit reference to ALGOL, and the other way around, until you reach the
section “It’s Simula!”, on page 124. The histories of these two languages diverge
after that point.

Glancing at Variables, Data Types, and Operators
A variable must be declared at the beginning of the statement in which it’s
used before any executable statement (such executable statements are called

Chapter 4. Unveiling Object-Oriented Programming with Simula • 114

report erratum • discuss

http://media.pragprog.com/titles/dzseven/code/simula/hello.sim
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

sentences). A declaration (or a qualification, as it’s known in the original
Simula documentation) includes the name and the data type.

The set of primitive data types in Simula is almost standard for its time. It
has INTEGER numbers (26, -12), REAL numbers (3.14159, 2E-8), BOOLEAN constants
(TRUE and FALSE), and EBCDIC CHARACTER ('*'). Explicit type conversion is not
supported.

Operators in Simula generally behave as you would expect. Many operators
come in two forms: “classical” ALGOL-60 (with non-EBCDIC characters) and
“modern” (only with EBCDIC/ASCII characters). The arithmetic operations
include addition (+), subtraction (-), multiplication (× or *), division (/), integer
division (÷ or //), and exponentiation (↑ or **).

Logical operators encompass the following: greater than (>), less than (<), less
than or equal to (≤ or <=), greater than or equal to (≥ or >=), inequality (≠, ¬=, or
<>, which compares values), reference inequality (=/=, which compares refer-
ences), equality (=, compares values), and reference equality (==, compares
references).

The language also includes the following relational operators: negation (¬ or
NOT), conjunction (∧ or AND), disjunction (∨ or OR), implication (⊃ or IMP, inter-
preted as “B follows from A” or “NOT A OR B”), and equivalence (≡ or EQV,
which is the same as NXOR).

Comparison

Operators = and <> correspond to Python language operators ==
and !=. Operators == and =/= correspond to Python language
operators is and is not.

Characters
Simula characters are enclosed in single quotes. A few procedures are provided
to convert them to and from integer character codes and to test their associ-
ations with character classes.

• rank(c). Returns the integer character code (compare ord(c) in Python).

• char(n). Returns the character that corresponds to the code n (compare
chr(n) in Python).

• digit(c). Returns TRUE if c is a decimal digit.

• letter(c). Returns TRUE if c is a letter (according to the local definition of
letters).

report erratum • discuss

Glancing at Variables, Data Types, and Operators • 115

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

Text Objects and Operations
Simula offers two additional data types specific to its structure: REF and TEXT.
The REF type is a reference to an object, denoted as NONE if no object is refer-
enced. The TEXT type is used for text strings—for example, "Hello, world!". When
not initialized, its value is NOTEXT.

A Simula reference is an alternate identifier for an existing object. An instance
of the TEXT type is a reference to a compound object—a text descriptor.

Unlike the languages we remember, Simula treats text not as a character
array but as a memory file. The text descriptor contains information about
the text area (text buffer), including its memory address, size, and current
position within the text (it starts at 1). Typically, this position points to the
first uninitialized character, but you can reposition it as desired. If T is a text,
then Integer T.Pos returns its current position, T.SetPos(n) sets the current position
to n, Integer T.Length returns the text area size, and Boolean T.More checks if the
position is at the end of the text area.

In Simula, you can create a text object using two methods:

• Allocate a blank space-initialized text area of size n with the procedure
Blanks(n) and then initialize by assigning a literal string.

• Copy a literal string s with the procedure Copy(s).

Note that Simula has two assignment operators. := is used for value assign-
ment, and :- is used for reference assignment:

TEXT t1, t2;
t1 :- Blanks(10); ! Reference assignment ;
t1 := "Hello,"; ! Value assignment ;
t2 :- Copy("World!"); ! Reference assignment ;

Several procedures can be utilized to manipulate texts in Simula, including
the following:

• T.GetChar. Returns the current character and advances the current position.

• T.PutChar(c). Inserts the character c at the current position and advances
the current position.

• T.Sub(p,n). Creates a subtext of length n, starting at the position p.

• T.Strip. Eliminates white spaces (blanks) at the end of text area.

• T.GetInt. Interprets the text as an integer number.

Chapter 4. Unveiling Object-Oriented Programming with Simula • 116

report erratum • discuss

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

• T.GetReal. Interprets the text as a real number.

• T.PutInt(n). Appends an integer number n.

• T.PutFix(n,w). Appends an integer number n of a fixed width w.

• T.PutReal(n,w). Appends a real number n of a fixed width w.

As an example, the following code fragment greets the author. It allocates a
64-character text area, copies the greeting, appends the author’s initials,
removes unused characters, and displays the results.

simula/greet.sim
BEGIN

TEXT txt;
txt :- Blanks(64);
txt := "Hello, ";
txt.SetPos(8); ! Skip over the greeting! ;
txt.PutChar('D');
txt.PutChar('Z');
txt.Strip; ! Remove the trailing blanks ;
OutText(txt);
OutText("!");

END;

If cim is installed on your system, you can compile and run the program as
follows:

/home/dzseven> cim greet.sim
Compiling greet.sim:
gcc -g -O2 -c greet.c
gcc -g -O2 -o greet greet.o -L/usr/local/lib -lcim
/home/dzseven> greet
Hello, DZ!

Arrays
Simula arrays are static and optionally multidimensional. The type, size,
index ranges, and number of dimensions of an array must be declared at
compile time. Indices can start from any value, not limited to 0 or 1. Array
elements can be accessed and modified using parentheses notation.

INTEGER ARRAY age, weight(0:16); ! A vector of length 17 ;
CHARACTER ARRAY chess(1:8,1:8); ! A 2D array 8×8 ;
age(0) := 16;
chess(1,1) := 'Q';

Simula performs a runtime index check and will terminate your program if
an index is out of bounds.

report erratum • discuss

Glancing at Variables, Data Types, and Operators • 117

http://media.pragprog.com/titles/dzseven/code/simula/greet.sim
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

Arrays

Simula arrays are comparable to statically declared arrays in C
and fixed-size arrays in Java.

Investigating Control Structures
Like in most modern programming languages, control structures in Simula
have their roots in ALGOL-60/Fortran. As a result, they bear similarities to
control statements found in languages such as C, C++, Java, and Pascal.

GOTO and Conditional Statements
As a descendant of ALGOL-60, Simula incorporates the GOTO statement, which
wasn’t deemed harmful until 1968. In a Simula program, any line can have
one or more labels. The GOTO/GO TO can transfer control to any of these labels,
paving the way for “spaghetti code” that is notoriously difficult to read and
maintain.

However, more than the GOTO is needed to control code execution beyond a
linear or infinite-loop format. Another required structure is the conditional
statement, which is boringly indistinguishable from its modern counterparts.
In the following example, the program reads and displays up to ten characters
from the stdin known in Simula as SysIn via procedures InChar and OutChar(c). It
uses GOTO and IF to imitate a for loop.

simula/goto.sim
BEGIN

CHARACTER c;
INTEGER i;
i := 10;

loop:
i := i - 1;
c := InChar;
OutChar(c);
IF SysIn.More AND i > 0 THEN ! SysIn = stdin ;

GOTO loop
ELSE

BEGIN END ! Empty block (optional) ;

END;

A SWITCH statement, also known as a computable or assigned GOTO statement,
offers a handy mix of GOTO and IF functionalities. It requires a list of target
labels and an integer choice expression i. The program flow then jumps to
the destination specified by the ith label. Note that the labeling starts from 1.

Chapter 4. Unveiling Object-Oriented Programming with Simula • 118

report erratum • discuss

http://media.pragprog.com/titles/dzseven/code/simula/goto.sim
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

simula/switch.sim
% Switch to the human side!
BEGIN

INTEGER choice;
SWITCH heads := L0, L1, L2;

OutText("How many heads do you have? (0..2)");
OutImage;
choice := InInt;

GOTO heads (choice + 1);
L0: OutText("You are a bot."); GOTO done;
L1: OutText("You are a human."); GOTO done;
L2: OutText("You are a mutant."); GOTO done;

done:
OutImage;

END;

The SWITCH Statement

The SWITCH statement in Simula bears a resemblance to the “com-
puted GOTO” in Fortran. For instance, in Fortran, GOTO (10, 20, 30) K
proceeds to the label 10, 20, or 30, depending on the value of K.

Loops
Despite only officially supporting a single type of loop, Simula demonstrates
a remarkable versatility in creating complex loop structures.

Let’s start with the unofficial loop statement WHILE. The WHILE loop isn’t a part
of the original Simula standard, but it was recommended for implementation
and, respectively, was implemented at least in the cim environment. This loop
operates similarly to its counterpart in most contemporary procedural and
functional programming languages.

simula/copy.sim
% Make a copy of a text
BEGIN

TEXT t1, t2;
t1 :- Copy("Hello, world!");
t2 :- Blanks(t1.Length);

WHILE t1.More DO
t2.PutChar(t1.GetChar); ! Accumulate characters ;

OutText(t2);
END;

Simula’s primary loop structure is the FOR loop. Initiated with the keyword
itself, it’s followed by what appears to be an assignment statement. However,

report erratum • discuss

Investigating Control Structures • 119

http://media.pragprog.com/titles/dzseven/code/simula/switch.sim
http://media.pragprog.com/titles/dzseven/code/simula/copy.sim
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

the right-hand side of the assignment can be a comma-separated combination
of individual values, STEP-UNTIL ranges, and WHILE sequences, as illustrated by
the next code snippet.

simula/loop.sim
% FOR-looping in many ways
BEGIN

INTEGER v;
FOR v := 0,1,2,3,4,5,6,7 DO OutInt(v,4); OutImage; ! list ;
FOR v := 0 STEP 1 UNTIL 7 DO OutInt(v,4); OutImage; ! step ;
FOR v := 1, v*2 WHILE v <= 128 DO OutInt(v,4); OutImage; ! while ;
FOR v := 0,1, ! list ;

2 STEP 1 UNTIL 4, ! step ;
32, v*2 WHILE v <= 128 ! while ;

DO body:
OutInt(v,4); OutImage;

END;

The loop variable v retains its most recently assigned value after the loop.
However, any label defined in the loop (such as body) isn’t visible outside.

Functions OutInt() and OutImage collaborate on making the results visible. The
former formats an integer number and stores its character representation
(digits) in a RAM buffer. The latter forces the content of the buffer to be dis-
played immediately. If you don’t call OutImage, the contents of the buffer will
be displayed only when the program terminates.

Introducing Procedures
As a procedural language, Simula incorporates procedures and function
procedures. The distinction lies in their return values. Similar to void functions
in C and C++, regular procedures don’t yield a return value but instead
operate through side effects, such as altering global variables and parameters
or conducting input/output. On the other hand, function procedures have a
specific data type and must return a value of this type. We’ll refer to both
types as “procedures” for simplicity, with differentiation made only when
required.

Unless declared with the EXTERNAL keyword, procedures must be defined prior
to their initial usage within the same BEGIN/END block. A procedure’s definition
includes the return type (for function procedures), its name, a list of parameter
names enclosed in parentheses, parameter declarations, and the procedure
body enclosed within another BEGIN/END block.

All parameters must have their types declared before the procedure body,
akin to declaring variables. By default, parameters of a primitive data type,

Chapter 4. Unveiling Object-Oriented Programming with Simula • 120

report erratum • discuss

http://media.pragprog.com/titles/dzseven/code/simula/loop.sim
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

except for TEXT, are passed by value. Any changes to these parameters within
the procedure are confined locally and do not persist upon returning to the
caller. Parameters of all other types, by default, are passed by reference,
allowing their modification within the procedure. To pass these parameters
by value to avoid unintentional modification, denote them with the VALUE
keyword.

References

Simula references resemble C++ references. They’re applicable
only to non-primitive data types, including TEXT.

The third mode of parameter passing in Simula is by name, applicable to any
data type marked with the NAME keyword. In this scenario, the formal
parameter’s name is replaced with the actual parameter’s value within the
procedure body, which is subsequently evaluated as part of the procedure
execution. This technique bears a resemblance to macro expansion.

To return a value from a function procedure, assign the value to a variable
that shares its name with the procedure. This variable should not be
declared. A similar return mechanism is used in Starset (refer to Functions,
on page 191).

Here’s an example of the (in)famous recursive Fibonacci number generation
function procedure and another solution based on dynamic programming.
(Fibonacci and His Numbers, on page 122, explains the meaning of the
in- part.)

simula/fibonacci.sim
% Two ways to calculate Fibonacci numbers
BEGIN

! A silly way ;
INTEGER PROCEDURE fib1(n); INTEGER n;
BEGIN

fib1 := IF n = 1 THEN 0
ELSE IF n = 2 THEN 1
ELSE fib1(n-1) + fib1(n-2)

END;

! A smart way ;
INTEGER PROCEDURE fib2(n); INTEGER n;
BEGIN

INTEGER ARRAY F(1:n);
INTEGER i;

F(1) := 0;
IF n > 1 THEN F(2) := 1;

report erratum • discuss

Introducing Procedures • 121

http://media.pragprog.com/titles/dzseven/code/simula/fibonacci.sim
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

FOR i := 3 STEP 1 UNTIL n DO
F(i) := F(i-1) + F(i-2);

fib2 := F(n);
END;

OutInt(fib1(32), 0); OutImage; ! prints 1346269 ;
OutInt(fib2(32), 0); OutImage; ! prints 1346269 ;

END;

Fibonacci and His Numbers

Fibonacci, also known as Leonardo Bonacci, was an Italian mathematician. He is
famous, among other things, for popularizing the Arabic numerals (the Indo-Arabic
numeral system) and the Fibonacci sequence of numbers. The first two Fibonacci
numbers are zero and one, and each successive number is the sum of the two previous:
Fi=Fi-1+Fi-2. The formula screams for a recursive implementation, and the function
procedure fib1(n) in the code fragment on page 121 provides it. However, the cost of
such implementation is enormous; its computational complexity is O(2n), where n is
the Fibonacci index. A solution based on dynamic programming (memoization) has
an O(n) computational complexity—see the function procedure fib2(n).

Note how the function procedure fib1(n) uses the conditional statement as a
conditional expression and returns its value.

The next example illustrates passing parameters by name. The function pro-
cedure swap(a,b) is designed to exchange the values of its two parameters.
However, if you pass the parameters by value (which is the default method
for integers), any changes to these values will only apply within the scope of
the procedure’s body. In contrast, when you pass parameters by name, the
parameters a and b within the procedure are effectively replaced by their
corresponding references at the point of the procedure’s call. Consequently,
the assignments b:=a and a:=c update the actual values of the parameters a
and b at the calling location, not just their local copies within the procedure.

simula/swap.sim
PROCEDURE swap(a,b); NAME a,b; INTEGER a,b;
BEGIN

INTEGER c;
c := b;
b := a;
a := c;

END swap;

Should you find it intriguing, the presence of the procedure’s name swap fol-
lowing the end of the body block is purely informational for the reader. The

Chapter 4. Unveiling Object-Oriented Programming with Simula • 122

report erratum • discuss

http://media.pragprog.com/titles/dzseven/code/simula/swap.sim
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

compiler disregards any text between the END keyword and the subsequent
semicolon.

Managing File I/O
From Simula’s standpoint, a file, or what it terms a data set, is an assembly
of data external to the program and organized sequentially or addressably. A
file comprises images, making it an ImageFile or a text file, or bytes, making it
a ByteFile or a binary file. These two types, ImageFile and ByteFile, are subclasses
of the File class. (Classes in Simula exist! Refer to Switching to Object-Oriented
Programming, on page 125.) You can open files for reading (as InFile and InByteFile),
writing (as OutFile and OutByteFile), or both (as DirectFile and DirectByteFile).

With a multitude of operating systems and even computer systems operating
without an OS, the definition of image within an image file was intended to
depend on the specific implementation. An image file, primarily, is a buffered
file that necessitates reading an image from the file into the RAM and subse-
quently extracting characters and numbers from the RAM image. Contemporary
implementations of Simula assume that an image refers to a line, which is a
series of characters ended by a line break. An image file, therefore, is a text
file that performs line-oriented I/O.

The CopyTextFile(in,out) procedure showcases the fundamental operations with
image files. This includes declaring references to the future open files (REF(InFile)
origin), dynamically creating new file objects (origin :- NEW InFile(inname)—note the
reference assignment operator), opening the files (origin.Open(Blanks(100))), per-
forming input/output, and closing the files (origin.Close). The Open(T) procedure
requires preallocated image storage, provided by a call to Blanks(n). You’re respon-
sible for estimating the maximum string length and supplying enough buffer
space. Your program will crash if it encounters a line longer than the buffer.

simula/copytextfile.sim
BEGIN

PROCEDURE CopyTextFile(inname, outname);
VALUE inname, outname; TEXT inname, outname;
BEGIN

REF(InFile) origin;
REF(OutFile) dest;

origin :- NEW InFile(inname);
dest :- NEW OutFile(outname);
origin.Open(Blanks(100));
dest.Open(Blanks(100));

WHILE NOT origin.Endfile DO
BEGIN

origin.InImage; ! Read the next image! ;

report erratum • discuss

Managing File I/O • 123

http://media.pragprog.com/titles/dzseven/code/simula/copytextfile.sim
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

WHILE origin.More DO ! Read from the image ;
dest.OutChar(origin.InChar);

dest.OutImage;
END;

origin.Close;
dest.Close;

END;

! Testing ;
CopyTextFile("copytextfile.sim", "copytextfile.bak");

END;

A byte (binary) file doesn’t have an internal structure visible to Simula. It
appears as a contiguous sequence of characters and can be read sequen-
tially, one character at a time (as illustrated in the example that follows),
or randomly. For random access, use procedures SetPos(n) and GetPos to control
the current position within the file (refer to Text Objects and Operations, on
page 116: text objects provide the same interface!).

simula/copybinfile.sim
BEGIN

PROCEDURE CopyBinFile(inname, outname);
VALUE inname, outname; TEXT inname, outname;
BEGIN

REF(InByteFile) origin;
REF(OutByteFile) dest;

origin :- NEW InByteFile(inname);
dest :- NEW OutByteFile(outname);
origin.Open;
dest.Open;

WHILE NOT origin.Endfile DO
dest.OutByte(origin.InByte);

origin.Close;
dest.Close;

END;

! Testing ;
CopyBinFile("copybinfile.sim", "copybinfile.bak");

END;

“It’s Simula!”
While ALGOL is Simula, Simula is not ALGOL. Simula provides three revo-
lutionary concepts that differentiate it from its ancestor: object-oriented
programming, coroutines, and explicit support for computer simulation.
We’re going to explore these features in the following three sections.

Chapter 4. Unveiling Object-Oriented Programming with Simula • 124

report erratum • discuss

http://media.pragprog.com/titles/dzseven/code/simula/copybinfile.sim
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

Switching to Object-Oriented Programming
A Simula class consists of a header and a body. The header includes the
class name and, if necessary, parameters and their declarations. The body
houses local variables, procedures, and the core code (the lifeline). This
structure is familiar to developers versed in C++, Java, Python, or similar
languages. However, when introduced in the late 1960s, the concept of
encapsulation was revolutionary.

Defining a Simple Class
The code snippet below outlines a simple class representing a two-dimensional
point. The point comprises two integer attributes: the coordinates x and y.
These attributes must be supplied when creating a new object of the class.

simula/point2d.sim
CLASS Point2d(x,y); INTEGER x,y;
BEGIN

INTEGER seed;

PROCEDURE bounce;
BEGIN

x := RandInt(-10, 10, seed);
y := RandInt(-10, 10, seed);

END bounce;

REF(Point2d) PROCEDURE add(p); REF(Point2d) p;
BEGIN

add :- NEW Point2d(x + p.x, y + p.y);
END add;

seed := Entier(ClockTime); ! Initialize the seed ;
END Point2d;

The class features two methods, bounce and add(p), and a constructor. The con-
structor may not be readily apparent, because it encompasses the remaining
part of the class body after the procedures. It’s worth noting that from the
perspective of Simula, there’s no designated “constructor.” Rather, an object
is seen as a self-contained program with data and actions.

The first procedure, bounce, randomly adjusts the point’s position by generating
new coordinates based on a discrete uniform distribution from -10 to 10. The
distribution relies on the variable seed, passed by name and updated after each
call. The only explicit statement in the object body is the initialization of the
seed to the current clock time (in seconds since midnight), truncated to an
integer number. Consequently, the point’s bounce will be different with each
program run.

report erratum • discuss

Switching to Object-Oriented Programming • 125

http://media.pragprog.com/titles/dzseven/code/simula/point2d.sim
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

The second procedure (a function procedure), add(p), adds two points by
treating them as vectors and combining them coordinate-wise. It accepts a
reference to another existing point as a parameter and returns a reference to
a new dynamically allocated point. The original points remain unaltered.

Simula classes don’t differentiate between public and private access levels.
Any object can access any other object’s variables using the familiar dot
notation (“remote accessing”). You are entrusted with the responsibility of
preserving data integrity.

Simula’s syntax allows object variable access not just through dot notation
but also through a construct called connections. Contemporary interpretations
equate an object’s connection to importing the object’s namespace into the
namespace of the block that’s creating the connection. This connection,
established through the INSPECT statement, enables direct access to the proce-
dures and attributes of the connected object. The following code snippet
illustrates the use of such a connection, established from the main code to
the anonymous object of the highlighted class Informer.

simula/inspect.sim
BEGIN

CLASS Informer;➤

BEGIN➤

PROCEDURE inform(m); TEXT m;➤

BEGIN➤

OutText(m); ! Could be someting else ;➤

OutImage;➤

END inform;➤

END Informer;➤

REF(Informer) i;
i :- NEW informer;
i.inform("Hello, world!"); ! dot notation ;

INSPECT NEW Informer DO ! connection ;
inform("Goodbye, world!")

OTHERWISE ! "exception" ;
OutText("Informer not available");

END;

While a connection can lessen the burden of repetitive typing, especially if
you regularly use procedures like inform(m), it’s advisable to use this feature
sparingly. Excessive usage of connections can obscure the origin of the pro-
cedure and potentially lead to naming conflicts.

Chapter 4. Unveiling Object-Oriented Programming with Simula • 126

report erratum • discuss

http://media.pragprog.com/titles/dzseven/code/simula/inspect.sim
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

The INSPECT Prefix

The prefix INSPECT X DO is loosely equivalent to the Python language
statement from X import * and should be used with equal care.

The OTHERWISE clause functions as an exception handler. If the object being
inspected doesn’t exist (represented by the reference NONE), or if its creation
fails, the code block is prone to crash. The OTHERWISE clause provides a safety
mechanism allowing for a graceful exit instead of an abrupt termination. The
INSPECT/OTHERWISE statement has one more related use, which you’ll master in
Class Inheritance, on page 128.

Referencing External Modules
In addition to being overly simplified, the Point2d class mentioned previously
faces an even more substantial issue. The class merely exists as a template
without any instantiated objects, which hampers its practical applicability.
In other words, it needs the “main program.”

While placing the test program within the same block as the class definitions
may seem acceptable, this method lacks scalability and inhibits the
reusability of classes and procedures. Simula offers a solution to this issue
by facilitating separate compilation and presenting the keyword EXTERNAL to
denote procedures and classes formulated in distinct compilation units (source
code files). A compilation unit that exclusively comprises definitions—without
any directly executable code—is treated as a library module. Meanwhile, a
unit incorporating executable code alongside external references is automat-
ically combined with the precompiled modules to construct a unified program.

The subsequent code fragment refers to an external class, Point2d, defined
elsewhere. As you’ll see in the upcoming section, it’s possible to employ the
same class definition in multiple projects, either directly or via subclassing.

simula/point2d-test.sim
EXTERNAL CLASS Point2d;
BEGIN

REF(Point2d) p1, p2, p3;
p1 :- NEW Point2d(3, 4);
p2 :- NEW Point2d(4, 3);
p2.bounce;
p3 :- p1.add(p2);
OutFix(p3.x, 2, 6);
OutFix(p3.y, 2, 6);

END

report erratum • discuss

Switching to Object-Oriented Programming • 127

http://media.pragprog.com/titles/dzseven/code/simula/point2d-test.sim
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

Compile the code in the correct order and enjoy your first compound Simula
project.

/home/dzseven> cim point2d-test.sim
Compiling point2d-test.sim:
gcc -g -O2 -c point2d-test.c
/home/dzseven> cim point2d.sim
Compiling point2d-test.sim:
gcc -g -O2 -o point2d-test point2d-test.o point2d.o -L/usr/local/lib -lcim
/home/dzseven> point2d-test

9.00 7.00

Class Inheritance
Class inheritance and hierarchy are vital concepts that Simula developers
innovatively introduced. They referred to the process of creating subclasses
as “concatenation,” entailing the fusion of the parent class with additional
blocks.

Multiple Inheritance Is Bad

Multiple inheritance can lead to several problems and should be
used sparingly and with caution, if at all. A common issue with
multiple inheritance is the diamond problem, arising when a class
inherits from two or more classes with a common superclass. If a
method is overridden in one or both parent classes, it can be
ambiguous which version of the method the subclass should
inherit. Multiple inheritance can lead to high coupling between
classes, making the design more rigid and less modular.

To incorporate a radius into your point class, thereby transforming it into a
circle class, there’s no need to recreate the procedures for adding and
bouncing. The notation X CLASS Y extends (or “subclasses”) the class X into Y.
Separating code into distinct compilation units makes subclassing efficient
and straightforward. The following program demonstrates the subclass,
including an external reference to the superclass, and showcases the sub-
class’s application.

simula/circle.sim
BEGIN

EXTERNAL CLASS Point2d;
Point2d CLASS Circle(radius); REAL radius;
BEGIN

REAL PROCEDURE area;
BEGIN

area := 3.141538 * radius ** 2;
END;

END Circle;

Chapter 4. Unveiling Object-Oriented Programming with Simula • 128

report erratum • discuss

http://media.pragprog.com/titles/dzseven/code/simula/circle.sim
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

REF(Circle) c;
c :- NEW Circle(1, 2, 10);
OutFix(c.area, 3, 7);

END;

The object constructor for the Circle class requires three parameters: two for the
superclass Point2d and one for the subclass itself. The Circle class could then serve
as a superclass for various subclasses (for example, annulus, sector, and a circular
segment). Likewise, the Point2d class could be a subclass of a broader GeometricFigure
class, which might be derived from a fundamental Object class. Simula imposes
no restrictions on the depth of the class hierarchy.

Class inheritance paves the way to overriding and virtual procedures.

Imagine a class and its subclass have procedures with the same name. Which
one of them will be called? According to Simula, the procedure that is lexically
closest to the object that calls it—that is, the procedure in the deepest subclass.
If a method is invoked on an object, Simula will first look for that method in the
object’s class. If the method isn’t found there, Simula will look for it in the parent
class and up the inheritance chain. This behavior is called overriding.

Procedure Overriding

Procedure overriding in Simula corresponds to method overriding
in C++, Java, and Python.

A virtual procedure is a procedure with dynamic dispatch. Suppose you create
a superclass Animal and several subclasses: Dog, Cat, and Fish. Some animals
can make specific sounds, such as meowing or barking, but some (Fish) cannot.
Respectively, some subclasses implement the method sound, and some don’t.

simula/animal.sim
CLASS Animal;
% VIRTUAL: PROCEDURE sound; -- According to the standard➤

VIRTUAL:➤

PROCEDURE sound IS➤

PROCEDURE sound; ! Empty body; ;➤

BEGIN
END Animal;

Animal CLASS Cat;
BEGIN

PROCEDURE sound;
BEGIN

OutText("Meow");
END sound;

END Cat;

report erratum • discuss

Switching to Object-Oriented Programming • 129

http://media.pragprog.com/titles/dzseven/code/simula/animal.sim
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

Animal CLASS Fish; ! Empty body; ;

Animal CLASS Dog;
BEGIN

PROCEDURE sound;
BEGIN

OutText("Bark");
END sound;

END Dog;

You can now create an array of Animal objects. Traverse the array in a FOR
loop, query the most specific class of each object, and call the sound-
making procedure, if available. You’ve got the right sounds, but the
implementation is awkward and doesn’t scale well. A better, polymorphic
solution is to declare that an Animal generally has a callable sound-making
procedure; Simula will determine the specifics of the procedure and select
the most suitable, subclass-specific implementation at runtime. This process
of selection is called dynamic dispatch. The declared general procedure is
called virtual (highlighted in the previous code snippet).

Simula standard introduces virtual procedures with the keyword VIRTUAL.
However, cim follows its own quirky syntax. CLASS Animal demonstrates both
variants.

Virtual procedures significantly streamline the “pets” code. Once the sound
procedure is declared virtual, you can invoke it without manually selecting
the appropriate variant. If a choice exists, Simula will take care of the
selection for you. (That’s why the loop skips the fish: the fish makes no
sound.)

simula/pets-1.sim
BEGIN

EXTERNAL CLASS Animal, Cat, Fish, Dog;

INTEGER v;
REF(Animal) ARRAY pets(1:3);
pets(1) :- NEW Dog;
pets(2) :- NEW Cat;
pets(3) :- NEW Fish;

FOR v := 1 STEP 1 UNTIL 2 ! No fish! ; DO
BEGIN

pets(v).sound;
OutImage;

END;
END

Chapter 4. Unveiling Object-Oriented Programming with Simula • 130

report erratum • discuss

http://media.pragprog.com/titles/dzseven/code/simula/pets-1.sim
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

But how do you manage the case of the silent fish? You’ve got two potential
strategies. The first involves implementing a generic instance of the sound
procedure within the superclass. This procedure is invoked if no local instance
has been defined. This method is costly, as it requires reengineering the
superclass.

The second option is to utilize the full power of the INSPECT statement (refer to
the example on page 126). On the one hand, the statement allows “local” access
to the “remote” object variables. On the other hand, though via a different
syntax, it can inspect the class of an object and select an appropriate treat-
ment method, as in the following code fragment. Using the INSPECT statement
doesn’t affect the superclass.

simula/pets-2.sim
BEGIN

EXTERNAL CLASS Animal, Cat, Fish, Dog;

INTEGER v;
REF(Animal) ARRAY pets(1:3);
pets(1) :- NEW Dog;
pets(2) :- NEW Cat;
pets(3) :- NEW Fish;

FOR v := 1 STEP 1 UNTIL 3 DO
BEGIN

INSPECT pets(v) ! What kind of Animal? ;
WHEN Cat DO sound
WHEN Dog DO sound
OTHERWISE OutText("Fish are silent");
OutImage;

END;
END

The Inspect Statement

The INSPECT statement loosely corresponds to a combination of the
type() or isinstance() functions in Python and a conditional statement.

An object Y can access another object X via a reference. However, you may
ask how X could reference itself, for example, for inclusion in a linked list.
(More information about linked lists is available in Class SIMSET, on page
136). This scenario might prompt Java/C++ programmers to instinctively
employ the this keyword, unaware of its Simula origins and consistent naming.
In Simula, the expression THIS C provides a reference to the current object,
cast as a reference of class C. Class C could be the object’s class or any of its
superclasses or subclasses.

report erratum • discuss

Switching to Object-Oriented Programming • 131

http://media.pragprog.com/titles/dzseven/code/simula/pets-2.sim
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

The following blatantly synthetic example is intended to reconcile Python
programmers (selfies) and C++/Java programmers (thisies). It does so by
assigning a self-reference to a variable named self:

CLASS Point2d(x,y); INTEGER x, y;
BEGIN

REF(point2d) self;
self :- THIS Point2d;
self.x := x;
self.y := y;

END Point2d;

In practice, the code between BEGIN and END is redundant.

The remaining two statements related to class hierarchies are IN and IS.
Boolean x IS C checks if object X is an instance of class C. Boolean x IN C checks
if object X is an instance of class C or its subclasses.

The In Expression

The expression x IN C corresponds to a call to the Python function
isninstance(x,C).

Prefixed Blocks
You can convert a Simula block of code (a sequence of statements between
BEGIN and END) into a prefixed block by placing an anonymous object before
it. A prefixed block is identical in purpose to the DO form of the INSPECT state-
ment (see the code on page 126): it allows the enclosed statements unrestricted
access to the object’s variables and procedures, as illustrated in the following
example:

simula/prefixed.sim
BEGIN

CLASS SillyClass(v); INTEGER v; ! Empty body; ;
REF(SillyClass) sc;

sc :- NEW SillyClass(123);
INSPECT sc DO ! INSPECT ;

BEGIN
OutInt(v, 0); OutImage;

END;

SillyClass(123) ! Prefixed block ;
BEGIN

OutInt(v, 0); OutImage;
END;

END;

Chapter 4. Unveiling Object-Oriented Programming with Simula • 132

report erratum • discuss

http://media.pragprog.com/titles/dzseven/code/simula/prefixed.sim
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

Beware of Friends!

Both prefixed blocks and the DO form of the INSPECT statement
breach the principles of code and data encapsulation. They
share similarities with the concept of friend functions and
methods in C++.

Unfortunately, existing Simula documentation doesn’t clarify whether either
of these “friendly” statements should be preferred or the reasoning behind
such a preference.

Designing Coroutines
Simula’s concept of coroutines was genuinely revolutionary in the era of single-
CPU computers (see the list on page 113) with limited or no multitasking.

A coroutine is a dynamic instance of a block of executable code, such as
the body of a class, with its local variables and the program counter. A
coroutine can be in one of four states: attached, detached, resumed, or
terminated, as illustrated by the following UML diagram. (Not familiar with
UML? No problem! You’ll find numerous UML resources in both printed—UML
Distilled: A Brief Guide to the Standard Object Modeling Language [Fow03]—
and electronic form.)1

Your program may comprise several coroutines, but at most one can be
attached. For example, a new class object is created (via NEW) as an attached
block. The attached coroutine, if present, is executed by the CPU until it ter-
minates by passing through the terminating object END or explicitly detaches
itself from the program’s main block. The procedures in a terminated coroutine
remain available to external callers, but the coroutine’s lifeline ends.

1. www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-uml/

report erratum • discuss

Designing Coroutines • 133

http://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-uml/
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

If an attached block detaches itself by calling the procedure Detach, it
becomes dormant. The state of the block (including the local variables
and the program counter) is saved so that the execution can be resumed
later. The control is passed to the main program to which the subroutine
was attached. The latter may call the subroutine again with the Call(X)
procedure. However, unlike a “traditional” subroutine call, the execution
won’t start from the beginning of the block but resumes from the most
recently saved state.

You can also resume the execution of a detached coroutine by calling the
Resume(X) procedure without reattaching it to the main program. Such a
coroutine is called resumed. A resumed coroutine can terminate, detach
itself (the control reverts to the main program), or resume the execution
of another detached block. This way, two coroutines can collaborate by
resuming each other after completing the assigned tasks. Such activity
is called non-preemptive or cooperative multitasking. It assumes that all
involved coroutines are cooperative and always eventually yield control
to their gangmates.

Pthreads vs. Coroutines

As recently as 2011, POSIX Pthreads was a non-preemptive threads
library resembling Simula coroutines. Likewise, goroutines in Go
language and the Python’s asyncio-based coroutines loosely corre-
spond to Simula coroutines.

To understand coroutines better, let’s consider a program simulating the
iconic game of Nim.2 Two players take turns removing at least one match from
a pile of matches. The player who takes the last match loses.

The main program that starts on line 28 of the code fragment on page 135
creates two players (“Alice” and “Bob”) as instances of the class NimPlayer and
initializes the seed of the random number generator and the pile. Upon initial-
ization, each player calls Detach (line 23) and becomes detached. This concludes
the first active phase of the coroutines.

The main program resumes the execution of p1 “Alice” (line 37). The second
active phase begins, during which the coroutines execute the WHILE loop until
one of the players cannot move (loses). After making its turn, a player awakens
its opponent (line 25), and the game continues.

2. https://en.wikipedia.org/wiki/Nim

Chapter 4. Unveiling Object-Oriented Programming with Simula • 134

report erratum • discuss

https://en.wikipedia.org/wiki/Nim
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

simula/nim.sim
BEGINLine 1

INTEGER matches, seed;-

-

CLASS NimPlayer(id); TEXT id;-

BEGIN5

REF(NimPlayer) opponent;-

-

BOOLEAN PROCEDURE move;-

BEGIN-

INTEGER taken;10

taken := RandInt(1, matches, seed);-

matches := matches - taken;-

OutText(id); OutInt(taken, 3); OutInt(matches, 3); OutImage;-

IF matches = 0 THEN-

BEGIN15

OutText(id); OutText(" lost"); OutImage;-

move := FALSE;-

END-

ELSE-

move := TRUE;20

END move;-

-

Detach; ! ;-

WHILE move DO-

Resume(opponent) ! ;25

END NimPlayer;-

-

REF(NimPlayer) p1, p2; ! ;-

p1 :- NEW NimPlayer("Alice");-

p2 :- NEW NimPlayer("Bob ");30

p1.opponent :- p2;-

p2.opponent :- p1;-

-

seed := Entier(ClockTime);-

matches := 100;35

-

Resume(p1); ! ;-

END-

You can implement a similar behavior by having the main block dispatch
both players. Each player will Detach at the end of the turn, and the main
block will Call(X) the players as needed. The benefit of this solution is that
there’s no need for the players to know their opponents: the main program
is in charge of turns, allowing more intricate scheduling patterns.

You might have recognized that the recent code example is essentially a
computer simulation. Simula is the programming language that owns its
existence to ALGOL-60, duly noted, and the need to simulate real-world sys-
tems using computer software. It’s time for the simulation story.

report erratum • discuss

Designing Coroutines • 135

http://media.pragprog.com/titles/dzseven/code/simula/nim.sim
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

Introducing Computer Simulation
By prefixing code with top-level system classes, Simula can be transformed into
application-specific languages. For instance, class Animal lays the foundation for
a zoo, SIMSET (class for manipulating two-way lists, called sets) turns your code
into a list processor, and class Simulation makes it a discrete-event simulator.

Drawing Random Numbers
The first order of business in any simulation environment is (pseudo-)random
number generation. Random numbers are the soul of computer simulation.
They introduce variance and uncertainty, making otherwise deterministic
algorithms lifelike. Genuine random numbers are cryptographically safe
(impossible to predict) but also are hard to generate and cannot be reproduced
if necessary. Since cryptographic safety is typically not a property expected
of a computer simulation system, random numbers are often substituted with
pseudo-random numbers. Simula includes various pseudo-random number
generators for different use cases, with each generator accepting the seed as
a parameter:

• BOOLEANDraw(p,seed). Generates TRUE with the probability p and FALSE otherwise.

• INTEGER RandInt(a,b,seed). Generates a uniformly distributed integer number
from a to b, inclusive.

• REAL Uniform(a,b,seed). Generates a uniformly distributed real number from
a to b, inclusive.

• REAL NegExp(a,seed). Generates an exponentially distributed real number
with the exponent a.

• INTEGER Poisson(a,seed). Generates an integer number with Poisson distribution.

• REAL Erlang(a,b,seed). Generates a real number with Erlang distribution.

The selection of a generator depends on the characteristics of the simulated ran-
dom process. For instance, an exponential distribution can accurately model the
intervals between customer arrivals at a service counter. The specifics of choosing
the appropriate distribution, however, fall beyond the scope of this book.

Class SIMSET
The system class SIMSET, short for simulation set, implements a circular two-way
linked list, primarily designed to represent a SQS, or a sequence set, more com-
monly known as the event queue. This event queue acts as a future predictor

Chapter 4. Unveiling Object-Oriented Programming with Simula • 136

report erratum • discuss

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

for simulations, holding the events that will transpire in the simulated future
along with their respective timestamps.

SIMSET provides subclasses LINKAGE, LINK (a list element), and HEAD. The latter
supplies procedures CLEAR (empty the list), INTEGER CARDINAL (calculate the list
size), BOOLEAN EMPTY (check if the size is zero), and REF(LINK) FIRST and REF(LINK) LAST
(get references to the first and last list elements). The classes are implemented
in Simula (the cim implementation has only 120 lines of code with comments).
This system class provides convenience to application programmers who may
not be very familiar with complex data structures, such as linked lists.

Class Simulation
The class Simulation, a subclass of class SIMSET, contains an inner class, Process.

Process Abstraction

A process is an abstraction denoting an ongoing simulated activity. Take, for
instance, a service counter—perhaps the most frequently simulated system.
It’s a process of serving customers sequentially, one at a time. Where do these
customers originate? From the perspective of the simulated system, they’re
generated by a “customer generator”—another process. Computer modeling
is essentially the art of recognizing processes, including those that don’t exist
in the physical world.

Simula maps processes to coroutines. A process can be in one of four states:
passive, active, suspended, or terminated.

report erratum • discuss

Introducing Computer Simulation • 137

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

A process in its initial state is considered passive, representing a subsystem
ready to operate but yet to be initiated (“activated”). The statement ACTIVATE
triggers a process, scheduling it for immediate or future execution, causing
the process to transition to an active or suspended state, respectively. Only
one active process is active at any given moment; you can reference it using
the method Current.

A suspended process shifts to an active state at its prearranged activation time.
If a suspended process no longer needs activation (for instance, if the prerequisites
for its activation no longer exist), you can abort it using the Cancel(P) method or
adjust the activation time with the REACTIVATE statement.

Finally, an active process can place itself on hold (suspend its execution until
later) with the Hold(time) method, make itself passive with Passivate, or terminate.
If needed, a passivated process can be reactivated. For example, a service counter
that closes at 17:00 and reopens at 9:00 doesn’t need to remain active overnight.

Other useful methods include Simulation.Wait(q), which inserts a process into a
waiting queue denoted by q and passivates it; Simulation.Time, which provides
the current simulation time; Process.Idle, which verifies whether the process is
inactive, and Process.Terminated, which checks if the process has been terminated.

Process Activation

The (RE)ACTIVATE statement in the class is highly versatile, offering a variety of
ways to schedule the execution of process p.

• (RE)ACTIVATE p. Activate the process immediately.

• (RE)ACTIVATE p AT t. Activate the process at time t. Naturally, the time t is
simulation time, not physical time.

• (RE)ACTIVATE p DELAY dt. Activate the process after delay dt.

• (RE)ACTIVATE p AT t PRIOR or (RE)ACTIVATE p DELAY dt PRIOR. Activate the process
at time t before all other processes scheduled at that time or after that
delay. This statement essentially assigns p the highest priority.

• (RE)ACTIVATE p BEFORE p1 or (RE)ACTIVATE p AFTER p1. Activate the process immedi-
ately before or after another process p1. In the case of the AFTER command, p1
could be the CURRENT process.

Simulating a Service Counter

Let’s move again into the familiar territory of simulating a simple service
counter system. This model comprises a hypothetical customer generator, a

Chapter 4. Unveiling Object-Oriented Programming with Simula • 138

report erratum • discuss

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

queue, and several counters. The total number of counters is represented by
NCounters and the currently occupied counters by NBusyCounters. The average
time between customer arrivals and the average service duration are denoted
as AMean and SMean, respectively. Both of these times are determined using an
exponential random number distribution.

It’s Not Normal

It’s a frequently observed misstep to model service duration and
customer interarrival times using a normal (Gaussian) distribution.
The first issue is that a normal distribution can yield negative
values, which are nonsensical in the context of time. Secondly,
these times often display a skewed distribution rather than a
symmetrical one. The most appropriate distribution for these
scenarios is typically the exponential distribution.

The model requires two new classes: the Generator and the Counter. A customer
queue is an instance of the system class Head. The queue is passive; its sole
function is to orderly store the waiting customers.

Don’t confuse this queue with SQS, the event queue that we can think of as
our “future predictor.”

The generator runs a seemingly infinite loop that creates and activates a new
arriving customer and waits (“holds”) for as long as the random number
generator prescribes.

simula/counter.sim
Process CLASS Generator;
BEGIN

WHILE TRUE DO BEGIN
ACTIVATE NEW Customer(Time);
Hold(NegExp(1 / AMean, seed)); ! Wait for the next "arrival";

END;
END Generator;

The experience of a customer is elucidated within the Customer class. A
customer represents a single-use object without any loops. Upon arrival,
a customer checks for the availability of a counter. If all counters are
occupied, the customer joins the queue. If not, the customer claims a
counter (irrespective of which one), receives service, and departs. As it
leaves, the customer reactivates the next customer in the queue (provided
the queue isn’t empty) and updates the statistics. Simula includes a
basic procedure, histo(), for the iterative construction of histograms,
although it doesn’t seem particularly helpful in this context.

report erratum • discuss

Introducing Computer Simulation • 139

http://media.pragprog.com/titles/dzseven/code/simula/counter.sim
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

simula/counter.sim
Process CLASS Customer(Arrival); REAL Arrival;
BEGIN

IF NBusyCounters = NCounters THEN
Wait(Queue); ! Enqueue the customer;

NBusyCounters := NBusyCounters + 1; ! Seize a counter;
Hold(NegExp(1 / SMean, seed)); ! Service;
NBusyCounters := NBusyCounters - 1; ! Release the counter;

IF NOT Queue.Empty THEN
BEGIN

REF(Customer) Next;
Next :- Queue.First;
Next.Out; ! Dequeue;
REACTIVATE Next AFTER Current;

END;

! Collect statistic ;
CustomersOut := CustomersOut + 1;
TotalTime := TotalTime + (Time - Arrival);

END Customer;

The main program is straightforward. A single experimental run is inte-
grated into the namesake procedure run. This procedure returns the average
turnaround time (TAT)—the total time a customer spends in the system,
from entry to exit. The procedure resets the counters, establishes a new
event queue and customer generator (which introduces the first customer),
and waits for eight simulated hours before reporting the result and closing
down.

simula/counter.sim
Simulation BEGIN

INTEGER seed;
INTEGER NCounters, NBusyCounters; ! Numbers of service counters;
INTEGER CustomersOut; ! Number of served customers;
LONG REAL TotalTime, TimeSpent; ! Variables for statistics;
REAL AMean, SMean; ! Mean arrival/service duration;
REF(Head) Queue; ! The customer queue;

«Class definitions are here.»
REAL PROCEDURE run;
BEGIN

TotalTime := TimeSpent := 0;
CustomersOut := NBusyCounters := 0;

Queue :- NEW Head; ! Create an empty queue;
ACTIVATE NEW Generator; ! Start the generator;
Hold((17 - 9) * 60); ! Work day: 9:00-17:00 ;

TimeSpent := TotalTime / CustomersOut;

Chapter 4. Unveiling Object-Oriented Programming with Simula • 140

report erratum • discuss

http://media.pragprog.com/titles/dzseven/code/simula/counter.sim
http://media.pragprog.com/titles/dzseven/code/simula/counter.sim
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

OutInt(NCounters, 2);
OutFix(TimeSpent, 3, 10); OutImage;

END;

AMean := SMean := 1;
seed := Entier(ClockTime);
FOR NCounters := 1 STEP 1 UNTIL 10 DO

run;
END program;

The said procedure runs ten times in a loop for different numbers of counters.
Technically, this part is not a true simulation anymore—it’s the first step
toward system optimization. You might be asked, “How many counters should
we install so that adding another one would not make a significant difference?”
Based on our simulation, the answer would be, “Three counters are sufficient
(given the current arrival frequency and mean service time).”

/home/dzseven> ./counter
1 10.160
2 8.711
3 1.118
4 1.016
5 1.089
6 0.998
7 0.999
8 0.998
9 1.000

10 0.992

21 garbage collection(s) in 0.0 seconds.

Lastly, the Simula runtime environment provides a message at the end of the
program output, stating “21 garbage collection(s) in 0.0 seconds.” Like Java,
Go, APL, and Python, Simula utilizes a garbage collector—a tool that reclaims
the memory that has been allocated but is no longer referenced. In contrast,
languages like C, Forth, and Occam don’t have garbage collectors, requiring
you to manage memory cleanup yourself.

Writing Something Big
An emergency room isn’t a happy place to be. Patients, germs, pain, blood,
nurses, doctors, and the smell of medication obsessively remind you of the
imminent end of your bodily journey. An emergency room is an even worse
place to experiment, with human health and lives at stake. That’s why nobody
experiments with an actual emergency room but with its computer model.
Simula is a great language to simulate such a model.

report erratum • discuss

Writing Something Big • 141

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

This book isn’t about modeling and simulation, so we’ll use a simplified
model. Adhering to the principle of “garbage in, garbage out,” it’s essential to
note that our simulation results, while insightful, won’t necessarily reflect a
reliable representation of a real-life emergency room.

An emergency room operation typically commences with a reception and
waiting area where incoming patients queue for medical attention. In reality,
life-threatening situations are promptly escalated, allowing critical patients
to bypass the waiting queue and proceed directly to an examination room. In
our simulation, we remove the element of mortality—all simulated patients
will wait their turn, irrespective of their condition. However, each patient will
be assigned a Boolean urgency level upon arrival, influencing their subsequent
examination and treatment duration.

Further simplifications include, most notably, these:

• No differentiation is made between nurses and doctors. Every healthcare
professional is considered equal in their capacity to provide treatment.

• No preemption. Newly arriving patients with urgent conditions must wait
their turn, even if their need is greater than those being currently treated.

• No interaction with the broader hospital system. Patients who require
hospitalization are immediately admitted, disregarding any real-life con-
straints like bed availability.

You can remove these and other restrictions by progressively improving the
model and adding more features.

So far, the model has three classes: Arrivals, Doctor, and Patient.

Chapter 4. Unveiling Object-Oriented Programming with Simula • 142

report erratum • discuss

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

The class Arrivals serves as patients’ generator. It draws patients’ interarrival times
from an exponential distribution. It further uses the uniform distribution to model
the urgency of the visit, assuming 67 percent of visits are typically not urgent.

simula/hospital.sim
Process CLASS Arrivals;
BEGIN

id := 1;
WHILE TRUE DO BEGIN

BOOLEAN urgency;
urgency := Draw(1 - 0.67, seed);
ACTIVATE NEW Patient(id, urgency);
Hold(NegExp(1 / arrival_mean, seed));
id := id + 1;

END;
END Arrivals;

The Doctor class emulates a healthcare practitioner. The life cycle of a “doctor”
consists of an infinite loop (bounded only by the duration of the simulation
experiment). A Doctor is activated by the arrival of the first patient (see code
that follows). The doctor then assesses the patient for the urgency of the visit,
estimates the duration of the examination, and pauses execution with the
Hold(exam_t) function. After the pause, the doctor reactivates the patient (who
also was in the passive state) and inspects the waiting queue. If the queue is
empty (no patients waiting), the Doctor gets passivated. Otherwise, it selects
the next patient from the queue and reactivates it.

simula/hospital.sim
Process CLASS Doctor(id); INTEGER id;
BEGIN

REF(Patient) pat;

WHILE TRUE DO BEGIN
REAL exam_t, exam_mean;
doctors_availabe := doctors_availabe - 1;

exam_mean := IF pat.urgent
THEN exam_mean_urgent
ELSE exam_mean_normal;

exam_t := NegExp(1 / exam_mean, seed);

Hold(exam_t);
REACTIVATE pat BEFORE current;

IF NOT queue.Empty THEN BEGIN
pat :- queue.First;
pat.Out; ! Dequeue;
pat.doc :- THIS Doctor;
doctors_availabe := doctors_availabe + 1;
REACTIVATE pat;

END

report erratum • discuss

Writing Something Big • 143

http://media.pragprog.com/titles/dzseven/code/simula/hospital.sim
http://media.pragprog.com/titles/dzseven/code/simula/hospital.sim
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

ELSE BEGIN
pat :- NONE;
doctors_availabe := doctors_availabe + 1;
Passivate; ! Have some sleep ;

END;
END;

END Doctor;

Unlike a doctor’s life cycle, the timeline of a patient, represented by the Patient
class, is linear and finite. Upon arrival, a patient checks for the availability
of doctors. If no doctors are available, the patient settles in the waiting room
and awaits their turn to be called by the next available medical professional.
Alternatively, if a doctor is available (an “idle doctor,” in Simula’s derogatory
parlance), the patient approaches them. In both cases, the patient reacti-
vates the chosen doctor and enters a passive state for the duration of the
examination.

simula/hospital.sim
Process CLASS Patient(id, urgent); BOOLEAN urgent; INTEGER id;
BEGIN

INTEGER v, arrived;
REF(Doctor) doc;

PROCEDURE stats;
BEGIN

wait_t := wait_t + (Time - arrived);
queue_len := queue_len + queue.Cardinal;
n_discharged := n_discharged + 1;

END;

arrived := Time;

IF doctors_availabe = 0 THEN
Wait(queue)

ELSE BEGIN
! Find a doctor ;
FOR v:=1 STEP 1 UNTIL n_doctors DO

IF docs(v).idle THEN BEGIN
doc :- docs(v);
doc.pat :- THIS Patient;
GOTO found;

END;
! This should never happen ;
Error("No doctors available!");

END;
found:

! Start exam ;
stats;
REACTIVATE(doc);
Passivate;

END Patient;

Chapter 4. Unveiling Object-Oriented Programming with Simula • 144

report erratum • discuss

http://media.pragprog.com/titles/dzseven/code/simula/hospital.sim
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

The remaining portion of the code initializes the variables and constructs the
necessary data structures. The simulation commences with the activation of
the Arrivals generator.

simula/hospital.sim
Simulation BEGIN

INTEGER seed, id, n_doctors, doctors_availabe, n_discharged;
INTEGER wait_t, queue_len;
REAL arrival_mean, exam_mean_normal, exam_mean_urgent;
REF(Head) queue;
REF(Doctor) ARRAY docs(1:3);

«Class definitions are here.»
INTEGER v;

arrival_mean := 15; exam_mean_normal := 20; exam_mean_urgent := 40;

n_doctors := UpperBound(docs, 1) - LowerBound(docs, 1) + 1;
doctors_availabe := n_doctors;

queue :- NEW Head; ! Waiting room ;
FOR v := 1 STEP 1 UNTIL n_doctors DO BEGIN

docs(v) :- NEW Doctor(v);
END;

seed := Entier(ClockTime);
ACTIVATE NEW Arrivals;

Hold(24 * 60); ! One complete day ;

OutText("Patients arrived: "); OutInt(id, 0); OutImage;
OutText("Patients discharged: "); OutInt(n_discharged, 0); OutImage;
OutText("Waiting time: "); OutFix(Wait_t / n_discharged, 2, 0); OutImage;
OutText("Queue length: "); OutFix(queue_len / n_discharged, 2, 0); OutImage;

END Simulation;

The program displays the number of arrived and discharged patients, the
average waiting time in the queue, and the average queue length:

/home/dzseven> ./hospital
Patients arrived: 92
Patients discharged: 90
Waiting time: 19.49
Queue length: 1.28

You can add visualization and optimization if necessary, but that’s a topic
for another book (for example, Discrete-Event Simulation: A First Course [LP06]).
Or you may swing far to the other side and dive into what is now called digital
humanities, using SNOBOL.

report erratum • discuss

Writing Something Big • 145

http://media.pragprog.com/titles/dzseven/code/simula/hospital.sim
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

Further Reading
• SIMULA Information. Common Base Language [DMN70]
• Introduction to SIMULA 67 [Lam83]
• Introduction to Programming with Simula [Poo87]
• Object-oriented Programming with SIMULA [Kir89]
• Discrete-Event Simulation. A First Course [LP06]

Chapter 4. Unveiling Object-Oriented Programming with Simula • 146

report erratum • discuss

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

CHAPTER 5

Patterns are not just diagrams that describe the way the world
works, they are the world.

 ➤ Alan Watts, English writer and speaker

Streamlining Text Processing with SNOBOL
How old would you estimate the field of digital humanities to be? The origins
of digital humanities can be traced back to the late 1940s and 1950s. However,
the term digital humanities first emerged in printed materials around 1982,
as indicated by the Google Ngram Viewer,1 and it only gained widespread
popularity after 2002. Alongside the development of this field was the advent
of SNOBOL (string-oriented and symbolic language), a programming language
specifically designed for text manipulation and pattern matching. Developed
between 1962 and 1967, SNOBOL was a significant tool for early computa-
tional approaches in the humanities, as highlighted in SNOBOL Programming
for the Humanities [Hoc86]. SNOBOL gradually went out of use by the early
1990s, but we’ll bring back our memories of it.

SNOBOL was implemented for a broad variety of mainframes and minicom-
puters, such as CDC 3600, UNIVAC 1108, IBM S/360, CDC 6600, RCA
Spectra70, GE 635, PDP-10, Sigma 5/6/7, and Atlas 2. It’s still supported
by enthusiasts and available for all major operating systems.

In keeping with tradition, let’s begin with a look at how comments are made
in SNOBOL. A comment in SNOBOL starts at the beginning of a line, marked
by either an asterisk * or a vertical bar |, and extends to the end of that line.
If any character other than these comment markers appears in the first
position, the line doesn’t qualify as a comment, but it’s not necessarily a
syntax error either.

| This line is a comment.
* And this line is a comment too.
* But this line is a mistake.

C This line is not a mistake and not a comment.

1. https://books.google.com/ngrams/graph?content=digital+humani-
ties%2Csnobol&year_start=1960&year_end=2008&corpus=en-2019&smoothing=0

report erratum • discuss

https://books.google.com/ngrams/graph?content=digital+humanities%2Csnobol&year_start=1960&year_end=2008&corpus=en-2019&smoothing=0
https://books.google.com/ngrams/graph?content=digital+humanities%2Csnobol&year_start=1960&year_end=2008&corpus=en-2019&smoothing=0
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

1 This line is not a mistake and not a comment.
+ This line is a continuation of the previous line.

. And this line is a continuation of the previous line too.

Also, keeping tradition, you must welcome the world in your new language
of study:

OUTPUT = "Hello, world!"
END
| Hello, world!

Beware that all operators, including the assignment operator =, must be
surrounded by spaces. Also, depending on the implementation, SNOBOL
identifiers may be case-sensitive or case-insensitive and have a period in their
names (but not at the first position). Throughout this chapter, let’s assume
that the case of identifiers is irrelevant.

Processing Lines
SNOBOL is a line-oriented pattern-based text processing language.

• Its object of analysis is text: an ordered collection of human-readable
symbols (letters, digits, spaces, and punctuation).

• Its unit of analysis is an individual line of text: a segment of text without
any line breaks, typically constrained in length. For instance, a Python
program line is up to 80 characters, and a typewriter line ranges from 45
to 75 characters. The concept of a line is defined in a subtly recursive
manner: it’s characterized by the absence of line breaks—characters that
terminate a line. Fortunately, line breaks (also known as newlines) are
independently clearly defined by their ASCII/Unicode codes: 10 (LF, “line
feed,” \n), 13 (CR, “carriage return,” \r), or 30 (RS, “record separator” in
QNX environments, \036) along with an EBCDIC code of 15 (NL, “newline,”
\025), and others.

• Its text-processing mechanism is pattern matching and replacement.

SNOBOL isn’t the only programming language that relies on pattern matching:
it’s in excellent company with AWK [AKW23], Perl [chr15], Erlang [Arm13]/Elixir
[Alm18], Haskell [Ski23], Rust [Wol21], and Prolog [Tat22a]. However, it was
the first language designed specifically for pattern matching. Unlike many
later languages where pattern matching is facilitated through specific syntax
or libraries (with a notable exception of Prolog), SNOBOL integrates pattern
matching into the core of its language design, making it a fundamental aspect
of programming in SNOBOL without the need for any special notation.

Chapter 5. Streamlining Text Processing with SNOBOL • 148

report erratum • discuss

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

The SNOBOL virtual machine works by the following algorithm:

1. The subject is evaluated.
2. The pattern is evaluated.
3. The pattern match is performed.
4. The conditional assignments are made.
5. The object is evaluated.
6. The object is assigned.
7. The goto (conditional destination) is evaluated, determining the next

statement in the execution flow.

Note how SNOBOL uses the words subjects and objects. A subject is the input
string to which a pattern is applied during pattern matching operations. An
object is the replacement string in a pattern-matching and substitution
operation. A pattern acts like a “verb,” though this name is not officially
recognized.

Objects ≠ Objects

SNOBOL objects don’t have the same meaning as those in contem-
porary object-oriented programming languages.

Exploring Statements
SNOBOL statements can be informally categorized into one of four classes
based on their function and purpose within the language: assignment, pattern
matching, replacement, and end. The distinctions between these classes are
merely semantic. They relate to the meaning and purpose of the statements
rather than their syntax.

Any SNOBOL statement consists of at least one of the following—a label, a
subject group, and a goto:

• Optional label
• Optional subject group:

– Subject
– Optional pattern
– Optional object group:

• “ = ” (don’t forget the spaces!)
• Optional object

• Optional goto

report erratum • discuss

Exploring Statements • 149

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

The simplest statement, and by extension, the simplest SNOBOL program,
consists solely of the END label. The label has a special meaning: it represents
the end of the program. Any label, including the END label, must start at the
first position of a line; otherwise, it’s interpreted as the beginning of a subject
group. Here’s the program:

The Macro Implementation of SNOBOL4 in C (CSNOBOL4B) Version 2.3.2
by Philip L. Budne, Janurary 1, 2024

SNOBOL4 (Version 3.11, May 19, 1975)
BLOCKS (Version 1.10, April 1, 1973)

Bell Telephone Laboratories, Incorporated

snobol4> END
No errors detected in source program

Normal termination at level 0
-:0: Last statement executed was 0

You can see the complete output of a SNOBOL interpreter in the preceding
program, but only the program code will be shown in the future. Note that
this shortest statement was a part of the “Hello, world!” program on page 148.

Labels and Gotos
Labels and the infamous goto commands, which you’ve already seen in the
section on GOTO and Conditional Statements, on page 118, are key to control-
ling the execution flow in SNOBOL. This approach differs from languages like
Simula and Fortran, where GOTO statements are mainly used within the context
of conditional IF and SWITCH statements. In SNOBOL, goto commands (gotos)
integrate both decision-making and the program’s execution path control.

To illustrate labels and gotos, consider creating a program that copies the
standard input to the standard output, acting as a “do-nothing” filter. The
first step is to copy the first line (“A journey of a thousand miles begins with
a single step.”):

OUTPUT = INPUT
END

Here, OUTPUT is a predefined subject variable whose value is the standard
output stream of the program. Remember, SNOBOL was developed for
mainframes and minicomputers in the pre-C, pre-Unix, and pre-stdout times.
The value of OUTPUT could be a teletypewriter (TTY), line printer, magnetic
tape, or visual display unit (VDU). Another predefined SNOBOL subject, PUNCH,
would represent a keypunch punching holes in paper cards or tapes. The
variable still exists but has no actionable behavior unless your computer has
a keypunch attached.

Chapter 5. Streamlining Text Processing with SNOBOL • 150

report erratum • discuss

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

INPUT, conversely, is a predefined object variable for the standard input stream.
It would be associated with a teletypewriter (yes, it was a half-duplex device),
a punched card/paper tape/magnetic tape reader, or even a light pen.

The purpose of the preceding program, therefore, is to copy a single line of
text from the standard input to the standard output. To extend this to copying
an entire file, you would incorporate the command into a while loop.

However, SNOBOL doesn’t have a special syntax for loops. Looping is
accomplished through a combination of a beginning-of-a-loop label and a
goto command that either conditionally or unconditionally redirects control
back to that label, as demonstrated here:

LOOP OUTPUT = INPUT :(LOOP)
END

LOOP is a label (and so is END). Unlike the END label, the label LOOP is not prede-
fined and does not presuppose any condition or action. It acts as a target of
the unconditional goto command :(LOOP) consisting of the :(...) syntax and the
destination name. The modified program runs forever—but practically until
an exceptional condition occurs, such as the end of the input file.

A minor modification of the goto fixes the problem: introducing the “goto-on-
success” command, :S(...). It’s a form of a conditional goto taken if and only if
the rest of the statement was executed without failure (to be defined). Its
counterpart, :F(...), activates upon statement failure. You can use :S(...) and
:F(...) together to specify different destinations, but you cannot combine them
with :(...).

snobol/copy.sno
* Copy stdin to stdout
AGAIN OUTPUT = INPUT :S(AGAIN)
* Alternative solution:
* AGAIN OUTPUT = INPUT :S(AGAIN)F(END)
END

This completes the overview of labels and gotos in SNOBOL. While you
may see the concept as straightforward, the intricacies lie in its practical
application.

A Note on Arithmetics

In arithmetic expressions, SNOBOL treats number-like string lit-
erals as numbers and converts them to a numeric data type before
evaluating the expression. The division operator, when applied to
integer numbers, performs integer division.

report erratum • discuss

Exploring Statements • 151

http://media.pragprog.com/titles/dzseven/code/snobol/copy.sno
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

Concatenation
Several programming languages, such as Python and C/C++, offer a feature
where adjacent string literals are automatically concatenated without an
explicit operator. SNOBOL furthers this concept by allowing implicit concate-
nation of all adjacent space-separated strings and variables:

OUTPUT = 'Enter your name:'
name = INPUT
OUTPUT = 'Welcome, ' name "!"

* Just a line break
OUTPUT =
END

This example demonstrates various aspects of handling strings: strings can
be enclosed in either single or double quotes; an empty string is implicit and
invisible; and a string literal can be concatenated with a variable and vice
versa. Note that parentheses are required when concatenation occurs on the
subject (left-hand) side, due to its low precedence.

Pattern Matching
To match a pattern to a string, write the string (the “subject”) followed by
spaces and the pattern (the “verb”). The simplest pattern type is a string literal,
which only matches a string that exactly matches its value. The statement
fails if the strings are not equal. The following example imitates a simple login
procedure by displaying a prompt, reading the user’s password, and checking
it against a hardcoded password:

snobol/password.sno
* One BAD password

hardcoded.password = "qwerty"
OUTPUT = "Enter your password:"
password = INPUT
password hardcoded.password :F(BAD.P)
OUTPUT = "Welcome to SNOBOL!" :(END)

BAD.P OUTPUT = "Bad password!"
END

Replacement
The replacement operation clarifies the role of objects. An object is an expression
on the right-hand side of the evaluated assignment operator. It replaces the first
found match within the subject string. The subject is modified in place. If no
modification occurs, the statement fails, potentially triggering an :F(...) goto if
specified.

Chapter 5. Streamlining Text Processing with SNOBOL • 152

report erratum • discuss

http://media.pragprog.com/titles/dzseven/code/snobol/password.sno
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

The next example illustrates replacing all occurrences of the placeholder
{NAME} in the template template with the actual name provided by the user.
The operation repeats in a loop until there are no more placeholders left to
replace:

snobol/template.sno
template = "Dear {NAME}! Welcome to SNOBOL! Thank you, {NAME}!"
OUTPUT = "Enter your name:"
name = INPUT

LOOP template "{NAME}" = name :S(LOOP)
OUTPUT = template

END

* Enter your name:
* DZ
* Dear DZ! Welcome to SNOBOL! Thank you, DZ!

A Note on Line Breaks

SNOBOL doesn’t support the inclusion of explicit newline charac-
ters within strings for formatting. This limitation stems from the
language’s design, which is line-oriented; inherently, lines don’t
contain line breaks.

Text deletion is a special case of text replacement, where the target text is
replaced with an empty string. An empty string can be denoted by "" or the
absence of text:

snobol/nospaces.sno
* Remove all spaces
OUTER line = INPUT :F(END)
INNER line " " = :S(INNER)

OUTPUT = line :(OUTER)
END

The preceding program is an example of a nested loop. The outer loop reads the
text line by line to the end of the file. The inner loop removes spaces from
the current line, one space at a time. The program doesn’t handle tabs yet,
but you’ll fix this deficiency later.

Constructing Patterns
A general SNOBOL pattern is more complex than a mere string of characters.
It’s defined recursively: it can be a simple string, the joining (concatenation)
of two patterns, or a choice (alternation) between them, with the alternation
operation taking precedence over concatenation.

report erratum • discuss

Constructing Patterns • 153

http://media.pragprog.com/titles/dzseven/code/snobol/template.sno
http://media.pragprog.com/titles/dzseven/code/snobol/nospaces.sno
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

Similar to regular expressions, SNOBOL uses a vertical bar | to denote alter-
nation between two options. A pattern like P1 | P2 is considered a match if the
subject string matches P1 or P2. The following example demonstrates how to
use alternation to detect either “Alice” or “Bob” within a line of text:

LOOP line = INPUT :F(END)
line "Alice" | "Bob" :F(LOOP)
OUTPUT = "Found a match!" :(LOOP)

END

Conditional Assignment
This snippet successfully identifies a line containing “Alice” or “Bob” but
doesn’t specify which one was found. To determine the exact match, you can
use a conditional assignment to capture the matched string into a variable
immediately following the pattern (separated by a period). This variable is
only set if the pattern matches:

LOOP line = INPUT :F(END)
line ("Alice" | "Bob") . match :F(LOOP)➤

OUTPUT = "Found a match «" match "»" :(LOOP)
END

The conditional assignment operator is the most tightly bound and attaches
to the nearest pattern to the left. Without enclosing the alternation on the
highlighted line in parentheses, the match variable would only ever capture
"Bob" due to the precedence rules.

The conditional assignment operator is executed once after the first found
match. To find and report every instance of “Alice” or “Bob” in a line, your
pattern should loop through the line, replacing each found instance with an
empty string, allowing for multiple occurrences.

LOOP line = INPUT :F(END)
NEXT line ("Alice" | "Bob") . match = :F(LOOP)

OUTPUT = "Found a match «" match "»" :(NEXT)
END

Alice likes Bob➾

Found a match «Alice»❮

Found a match «Bob»
Chuck hates Bob➾

Found a match «Bob»❮

Chuck means Chuck➾

Alice --[Chuck]-- Bob➾

Found a match «Alice»❮

Found a match «Bob»

Chapter 5. Streamlining Text Processing with SNOBOL • 154

report erratum • discuss

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

You can also use OUTPUT in a conditional assignment to simplify your code,
although this approach limits your ability to format the output text:

LOOP line = INPUT :F(END)
NEXT line ("Alice" | "Bob") . OUTPUT = :F(LOOP)S(NEXT)
END

Alice likes Bob➾

Alice❮

Bob
Chuck hates Bob➾

Bob❮

Chuck means Chuck➾

Alice --[Chuck]-- Bob➾

Alice❮

Bob

This modification reduces the code’s length but at the cost of custom output
formatting flexibility.

Immediate Assignment
SNOBOL executes a conditional assignment operator . (period) only if the
entire pattern matches. If you want to store the results of a partial match,
you can use immediate assignment with the operator $ (dollar sign). The
immediate assignment is useful in a large pattern to learn how much of it
has been matched and extract specific subpattern matches. The following
code snippet attempts to parse a URL by extracting and stripping off the pro-
tocol name. Once you learn about primitive functions on page 157, you’ll be
able to parse URLs in full.

address = ("http" | "https" | "ftp" | "telnet") $ protocol "://"
site = "http://networksciencelab.com/"
site address = ""
output = protocol "://" site

END

You can nest the operators . and $, as in PAT = P1 $ V1 . V2 or PAT = P1 . V1 $ V2.

Cursor Position
Sometimes you may want to know the current pattern-matching cursor
position (the distance from the beginning of the current string to the cur-
rently matched position)—for example, to replace or eliminate the subpattern
match. Operator @ stores the position into the argument variable as an integer

report erratum • discuss

Constructing Patterns • 155

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

number. Here’s how to redact censored words from a predefined list by
replacing them with an equal number of asterisks:

snobol/censor.sno
* Replace censored words with asterisks

&TRIM = 1
censored = ('foo' | 'bar')
pattern = @x censored @y

LOOP text = INPUT :F(END)
MORE text pattern = DUPL("*", y - x) :S(MORE)

OUTPUT = text :(LOOP)
END

* Danger zone! Do not foobar!
| Danger zone! Do not ******!

Function DUPL(s, n) replicates string s n times and is described on page 157.

Using Indirect References
The indirect reference operator $ (dollar sign) turns a string str into a namesake
variable or label. The str might be a direct string literal, an outcome of a string
concatenation, or a string produced by a string function (refer to the section
Understanding Functions and Predicates, on page 157). In the following pro-
gram, the operator concatenates the label prefix “L” and the numerical user
input, directing the program flow to the designated label.

snobol/menu.sno
* Display the menu

OUTPUT = "Menu:"
OUTPUT = "Press 1 for action, 2 for help, 3 for panic" :($("L" INPUT))

* Invoke a menu item
L1 OUTPUT = "Thank you for using Snobol!" :(END)
L2 OUTPUT = "Help is on the way!" :(END)
L3 OUTPUT = "Do not panic!" :(END)
END

Computed GO TO

SNOBOL indirect reference resembles Fortran’s computed GO TO
statement, which determines the control flow path based on the
evaluation of an integer or a real expression.

When employed as a subject, the indirect reference serves as a dynamic code
injection tool, effectively inserting the referenced variable’s value into the
program as if it were an existing variable name. This technique opens up
various possibilities for code manipulation and dynamic variable usage.

Chapter 5. Streamlining Text Processing with SNOBOL • 156

report erratum • discuss

http://media.pragprog.com/titles/dzseven/code/snobol/censor.sno
http://media.pragprog.com/titles/dzseven/code/snobol/menu.sno
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

day = "Monday"
$day = " is a hard day"
OUTPUT = day Monday

END
* Output: Monday is a hard day

A more practical implication of this mechanism is its ability to bypass pre-
scribed naming constraints, enabling the creation and reference of variables
with names that would otherwise be prohibited, such as dates ($"2024-02-23").

Understanding Functions and Predicates
SNOBOL provides a rich set of functions, including primitive and predicate,
and a mechanism for creating user-defined functions.

Primitive Functions
Primitive functions in SNOBOL are similar to those in languages like Python
or C, returning a value for subsequent use. Key examples include the following:

ANY(str). Generates a pattern that matches any one character from str. This
function is complementary to NOTANY(str).

ARBNO(pattern). Generates a pattern that matches any number of repetitions of
the pattern.

APPLY(func,p1,...,pn). Applies function named func with at least n parameters to
the parameters p1, ..., pn.

BREAK(str). Generates a pattern that matches strings not containing any char-
acter from str. This function is complementary to SPAN(str).

COPY(a). Returns a new array, which is a copy of array a (see the section Arrays,
on page 162).

DATE(). Returns the current date as a string in the format “MM/DD/YY
HH:MM:SS”.

DUPL(str, times). Creates a string by repeating str a specified number of times.

ITEM(a,i1,...in). References an element of the array a without using the bracket
form of reference (see the section Arrays, on page 162).

LEN(n). Generates a pattern that matches strings of length n.

NOTANY(str). Generates a pattern that matches any one character not in str. This
function is complementary to ANY(str).

POS(n). Generates a pattern that matches if the current cursor position is n.

report erratum • discuss

Understanding Functions and Predicates • 157

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

REMDR(x, y). Calculates x modulo y.

REPLACE(text, str1, str2). Produces a version of text where each character from str1
is replaced with the corresponding character in str2. The strings must be
of equal length.

RPOS(n). Generates a pattern that matches if the current cursor position is n
from the end of the line.

POS and RPOS

SNOBOL patterns POS(0) and RPOS(0) correspond to the regular
expression operators ^ (beginning of line) and $ (end of line),
respectively.

RTAB(n). Generates a pattern that matches a string from the current cursor
position to the nth position from the end of the line.

SIZE(str). Determines the length of a string.

SPAN(str). Generates a pattern that matches strings containing any character
from str and nothing else. This function is complementary to BREAK(str).

TAB(n). Generates a pattern that matches a string from the current cursor
position to the nth position.

TIME(). Returns the program execution time in milliseconds.

To demonstrate some of these functions, consider a simple game that prompts
the user to input words of matching lengths, utilizing the SIZE() and LEN()
functions for its logic. The game stops when the player succeeds.

snobol/matchgame.sno
* A silly matching game

OUTPUT = "Enter a word: "
pattern = LEN(SIZE(INPUT))

LOOP OUTPUT = "Enter a word of the same length: "
text = INPUT
text pattern :F(LOOP)
OUTPUT = "It's a match!"

END

Primitive Patterns
In addition to pattern-generating functions, SNOBOL provides several pre-
generated primitive patterns, some shown on the following list:

ABORT. Causes an immediate failure.

ARB. Matches any arbitrary sequence of characters.

Chapter 5. Streamlining Text Processing with SNOBOL • 158

report erratum • discuss

http://media.pragprog.com/titles/dzseven/code/snobol/matchgame.sno
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

BAL. Matches any substring surrounded by balanced parentheses.

FAIL. Forces to back up and search for another alternative:

"MISSISSIPPI" ("IS" | "SI" | "IP" | "PI") $ OUTPUT FAIL
END

IS➾

SI➾

IS➾

SI➾

IP➾

PI➾

REM. Matches a string from the current cursor position to the end of the line.
Essentially, it stands for RTAB(0) .

Predicate Functions and Predicates
Unlike the primitive functions, SNOBOL predicate functions fail or return a
null string. You can use them for flow control.

LE(n1, n2). Fails if the numbers are not equal. Other functions in the same
family are GT(n1, n2), NE(n1, n2), EQ(n1, n2), and the like.

LGT(str1, str2). Fails if string str1 is not alphabetically (lexicographically) greater
than str2. Other functions in the same family are LNE(str1, str2), LEQ(str1, str2),
and the like.

DIFFER(p1, p2). Fails if the parameters are identical.

IDENT(p1, p2). Fails if the parameters differ.

INTEGER(n). Fails if the parameter is not an integer number.

~x. Negation unary operator/predicate fails and returns an empty string if
the operand x succeeds. If x fails, then ~x succeeds. In the original
SNOBOL, this operator was known as ¬x.

?x. Interrogation unary operator/predicate fails if the operand x fails. If x fails,
then ?x succeeds and returns an empty string.

Suppose you want to report very long strings (with more than 80 characters)
in a text file. The following program calculates the length of the current string
and compares it to the column width (80). If the predicate function GT() doesn’t
fail, it returns an empty string, which is concatenated to the current line and
printed. Otherwise, the function fails and the program returns to the beginning
of the loop without producing any output.

report erratum • discuss

Understanding Functions and Predicates • 159

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

snobol/showlong.sno
* Report long lines

column.width = 80
LOOP line = INPUT :F(END)

OUTPUT = GT(SIZE(line), column.width) line :(LOOP)
END

User-Defined Functions
Creating custom functions in SNOBOL involves defining a function header
and body. The header includes a prototype, which has the function’s name and
parameters and may also feature an optional entry label.

A function’s prototype is a string that specifies the function name and a list
of parameters, optionally followed by local variables. This string is the first
argument in a call to the built-in DEFINE(proto[, entry]) function. The function’s
name is the default entry label if another entry label isn’t provided. For
example, the zip(str1, str2) function combines two strings character by character,
akin to Python’s zip(seq1, seq2) function:

* Default entry label
DEFINE("zip(str1,str2)")

* Default entry label, some local variables
DEFINE("zip(str1,str2)c1,c2")

* Explicit entry label
DEFINE("zip(str1,str2)", "ZIP.LABEL")

Functions receive parameters by value, allowing for fewer actual parameters
compared to the formal ones listed. Unspecified parameters and local variables
are initialized as empty strings. Any function can be called recursively.

With a grasp of function structure, you can implement the function body.
Let’s proceed with the zip(seq1, seq2) function example:

snobol/zip.sno
* The function zips two strings, discards extra symbols➤

DEFINE("zip(str1,str2)") :(SKP)➤

LOOP str1 LEN(1) . c1 = :F(RETURN)➤

str2 LEN(1) . c2 = :F(RETURN)➤

zip = zip c1 c2 :(LOOP)➤

SKP var1 = INPUT
var2 = INPUT
OUTPUT = zip(var1, var2)

END

Hello➾

World➾

HWeolrllod❮

Chapter 5. Streamlining Text Processing with SNOBOL • 160

report erratum • discuss

http://media.pragprog.com/titles/dzseven/code/snobol/showlong.sno
http://media.pragprog.com/titles/dzseven/code/snobol/zip.sno
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

The function (highlighted) operates by successively removing the first character
from each input string and appending these characters to a result variable
zip (being a local variable, it was implicitly initialized with an empty string).
The loop concludes when it exhausts one of the strings, utilizing pattern
matching to detect this condition.

The result variable, named after the function, is crucial in returning the out-
put. The predefined RETURN label corresponds to the function’s call site, facilitating
the return process alongside the result variable. The goto :F(RETURN) and the
variable zip act as the return zip statement in the less obscure languages.

The last three lines comprise the test case: read two strings, zip them, and
display the result.

One more predefined label, FRETURN, marks failure in predicate functions, as
illustrated by a function that checks for a character’s presence in a string.
Should the sought-after character be found, the function succeeds; otherwise,
it exits upon depleting the input string by returning via :F(FRETURN).

DEFINE("contains(text,char)", "LOOP") :(SKP)
LOOP text char :S(RETURN)

text LEN(1) = :S(LOOP)F(FRETURN)

Between :F(RETURN) and :F(FRETURN), the former indicates a successful return
despite internal failures, while the latter signifies the function’s failure.

Lastly, an unconditional goto (such as :(SKP)) at the function’s start instructs
SNOBOL to bypass the function body initially, executing it only upon an
actual function call.

Keywords
Though not directly related to functions, SNOBOL so-called keywords serve
as runtime language configuration mechanisms and, in that sense, are
functional. A keyword starts with an ampersand, &, and controls a specific
aspect of SNOBOL’s behavior. SNOBOL provides more than thirty keywords.
Here are the most useful of them:

&ALPHABET. Contains a string of the 256 characters in the ASCII collating
sequence. Read-only.

&ANCHOR. Requires that a pattern matches at the beginning of a line.

&DUMP. “Dumps” (prints) the values of all variables (if 1) or variables and arrays
(if 2) on exit.

report erratum • discuss

Understanding Functions and Predicates • 161

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

&INFINITY. Contains the floating point value of infinity. Read-only. Available on
some implementations.

&NAN. Contains the floating point value of NaN (“not a number”). Read-only.
Available on some implementations.

&STNO. Contains the current statement number. Read-only.

&TRIM. Ignores trailing blanks when reading a line.

To illustrate how keywords affect SNOBOL’s behavior, consider the &ANCHOR
keyword. In the first example, attempting to find “lice” in “Alice” fails with
&ANCHOR set to 1, as it requires the pattern to match from the beginning of
the line:

&ANCHOR = 1
"Alice" "lice" :S(END)
OUTPUT = "Alice has lice!"

END

Conversely, with &ANCHOR at its default value (zero), the pattern can match
anywhere within the string, allowing the search for “lice” in “Alice” to succeed:

"Alice" "lice" :S(END)
OUTPUT = "Alice has lice!"

END
| Alice has lice!

Comprehending Data Structures
SNOBOL offers two built-in compound data types: arrays and tables. It also
provides you the ability to define your data structures.

Arrays
In SNOBOL, an array is a heterogeneous (“mix-and-match”), dynamically
created multidimensional structure. The dimensions cannot be altered once
an array is defined through an array prototype.

To instantiate an array, use the ARRAY(proto[, init]) primitive function. The first
parameter is a prototype: a string containing a comma-separated list of
dimensions or dimension slices, such as "2,2:8". This prototype can be a direct
string literal or derived from a string expression through operations like
concatenation or other function calls. An optional second parameter allows
for setting an initial value for all elements within the array.

Accessing array elements is done with an indexing operator that lists integer
indices within angle brackets, starting at 1. Thus, in a 2×4 array, the highest

Chapter 5. Streamlining Text Processing with SNOBOL • 162

report erratum • discuss

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

index is <2,4> and the corresponding element is array<2,4>. An alternative way
to reference the same array element is by calling the function ITEM(array,2,4).
An attempt to access outside the array’s defined bounds fails.

To sort a one- or two-dimensional array by the nth column, call functions
SORT(array[, n]) or RSORT(array[, n]) (for sorting in descending order).

The following program prompts the user for the array size, creates the array
accordingly, and populates it through a loop. Note that this program doesn’t
validate the user-provided array size to ensure it’s a positive integer, which
may lead to a runtime error.

snobol/array.sno
* Create and initialize an array

OUTPUT = "Enter vector size:"
size = INPUT
data = ARRAY(size)
i = 1➤

➤

MORE OUTPUT = "Enter item #" i ":"➤

data<i> = INPUT :F(DONE)➤

i = i + 1 :S(MORE)➤

DONE OUTPUT = "Done!"
END

SNOBOL lacks a built-in loop structure common in many programming
languages. Instead, iteration over an array requires managing the flow of
execution manually through the use of gotos. The highlighted block of the
preceding code demonstrates a pseudo-loop technique by initializing a loop
variable i, implicitly checking its validity in the array access expression data<i>,
and incrementing it.

Tables
Tables in SNOBOL function similarly to dictionaries in Python or maps in
Java, acting as collections that map heterogeneous unique keys to values. To
start using a table, create it with the TABLE([size]) primitive function. The optional
size parameter allows you to specify an initial capacity, although the table can
automatically expand to accommodate more entries as needed.

Tables vs. Dictionaries

Tables in SNOBOL loosely correspond to dictionaries in Python
and maps in Java.

report erratum • discuss

Comprehending Data Structures • 163

http://media.pragprog.com/titles/dzseven/code/snobol/array.sno
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

You can convert a table into a two-dimensional array of two columns—
keys and values—and back with the function CONVERT(object, type). The type
designator is a string "ARRAY" or "TABLE" describing the target data type. As a
note, CONVERT(object, type) can convert anything to a "STRING". It can also convert
some other data types (for example, "REAL") to other data types (for example,
"INTEGER"). When conversion isn’t possible, the function fails.

To illustrate the practical application of tables, arrays, and data conversion,
consider calculating the frequency of characters in a string. This process
involves splitting the input into constituent characters, counting their
occurrences, and displaying the results, as shown here:

snobol/count.sno
* Calculate characters' use frequencies
* Read the text:

text = INPUT

* Create and populate the table, one character at a time
counts = TABLE()

MORE text LEN(1) . char = :F(DONE)
counts<char> = counts<char> + 1 :(MORE)

* Display the counts
DONE counts = RSORT(CONVERT(counts, "ARRAY"), 2)

i = 1
LOOP OUTPUT = counts<i, 1> " appears " counts<i, 2> :F(END)

i = i + 1 :(LOOP)
END

User-Defined Data Types
Primitive function DATA(template) defines a new data type matching the string
template. Think of a new data type as a C/C++ structure or Java class without
methods or visibility attributes. The template looks like a function prototype
where the new data type name is the function name, and the data type fields
are the formal parameters.

Data Types vs. Structures

SNOBOL user-defined data types loosely correspond to structures
(struct) in C and C++.

For example, the following statement defines a new data type called STACK.FRAME
(presumably a stack frame) with two fields: value (the payload) and prev (a ref-
erence to the previous frame).

DATA("STACK.FRAME(value,prev)")

Chapter 5. Streamlining Text Processing with SNOBOL • 164

report erratum • discuss

http://media.pragprog.com/titles/dzseven/code/snobol/count.sno
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

You can create a stack, an instance of a STACK.FRAME, by calling the namesake
function (essentially, a constructor) with the initializing parameters. After
that, the functions value(stack) and prev(stack) serve as accessors to the respective
fields.

With some justifiable effort, you can create an abstract data type by encapsu-
lating the accessors into higher-level functions. Following is an attempt to
create a general-purpose stack, a quintessential element of text parsers. The
implementation provides functions stack() (a constructor), push(stack, item),
pop(stack), and peek(stack). You can test the class without knowing the underlying
implementation.

snobol/stack.sno
* Abstract stack implementationLine 1

DATA("STACK.FRAME(value,prev)")-

-

* New stack: constructor-

DEFINE("stack()") :(STACK.END)5

STACK stack = :(RETURN)-

STACK.END-

-

* Push-

DEFINE("push(s,item)") :(PUSH.END)10

PUSH push = STACK.FRAME(item, s) :(RETURN)-

PUSH.END-

-

* Pop-

DEFINE("pop(s)") :(POP.END)15

POP DATATYPE(s) "STACK.FRAME" :F(FRETURN)-

pop = prev(s) :(RETURN)-

POP.END-

-

* Peek20

DEFINE("peek(s)") :(PEEK.END)-

PEEK peek = value(s) :(RETURN)-

PEEK.END-

-

* Testing25

my.stack = stack()-

my.stack = push(my.stack, "Alice")-

my.stack = push(my.stack, "Bob")-

OUTPUT = peek(my.stack)-

my.stack = pop(my.stack)30

OUTPUT = peek(my.stack)-

my.stack = pop(my.stack)-

||| stack underflow! |||-

my.stack = pop(my.stack)-

END35

report erratum • discuss

Comprehending Data Structures • 165

http://media.pragprog.com/titles/dzseven/code/snobol/stack.sno
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

Note how the function pop(stack) defined on line 14 validates the parameter by
calling another primitive function, DATATYPE(object), before attempting to pop.
If the stack is empty (degenerated into an empty string), the function fails via
:F(FRETURN), preventing the program from an uncontrollable crash.

Evaluating Unevaluated Expressions
A SNOBOL pattern may not include subpatterns that haven’t been defined
yet. But what if a pattern depends on a dynamically updated variable whose
value changes, for example, in a loop? Shouldn’t you redefine it after every
change to the variable? You can, but you don’t have to. An alternative solution
is to use an unevaluated expression prefixed with an asterisk *.

An unevaluated expression is a reference to an actual expression that’s eval-
uated at the time of pattern matching. By that time, the values of all variables
are expected to be already known.

The program that follows extracts and displays the common words in two
strings. A word is defined as a substring that doesn’t contain any punctuation.
The list of punctuation punct is user-defined. Note that SNOBOL has no escape
notation; you have to enter the tab symbol and all sorts of quotation marks
literally.

The program defines two patterns: needle.1 for the first string and needle.2 for
the second string. The first pattern finds a sequence of non-punctuation
symbols via BREAK(punct), stores it in the variable word, and proceeds to match
as many punctuation symbols as possible via SPAN(punct). The extracted word
is used to construct the second pattern by enclosing it in a combination of
any punctuation character or line extents. Since the word isn’t known before
the loop starts, the second pattern treats it as an unevaluated expression
(which it is). Any word in the first string and all matching words in the second
are replaced with empty strings. The shared words are collected into a string
and eventually displayed.

snobol/sharedwords.sno
* Find shared words in two strings

&ANCHOR = 0; &TRIM = 1
punct = " .,;:!?|@()$%{}[]' " '"'

needle.1 = BREAK(punct) . word SPAN(punct)
needle.2 = (ANY(punct) | POS(0)) *word (ANY(punct) | RPOS(0))

s1 = INPUT :F(ERROR)
s2 = INPUT :F(ERROR)

Chapter 5. Streamlining Text Processing with SNOBOL • 166

report erratum • discuss

http://media.pragprog.com/titles/dzseven/code/snobol/sharedwords.sno
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

MORE s1 needle.1 = :F(DONE)
s2 needle.2 = :F(MORE)
list = list word "|" :(MORE)

DONE OUTPUT = list
END

As a side note, storing the words in an array or a table would be more efficient
and appropriate for further processing.

The most powerful application of the unevaluated expression operator is
recursive patterns—patterns that refer to themselves as their subpatterns.
You can use this feature to implement a simple arithmetic expression
checker (supports integer numbers, identifiers with lowercase letters and
digits, parentheses, and the four principal arithmetic operators).

snobol/expression.sno
&TRIM = 1
&ANCHOR = 1

letter = "abcdefghijklmnopqrstuvwxyz_"
digit = "0123456789"
var = ANY(letter) ARBNO(ANY(letter digit))
num = ARBNO(ANY(digit))
add.op = ANY("+-")
mult.op = ANY("*/")
factor = var | num | "(" *expr ")"
term = factor | *term mult.op factor
expr = add.op term | term | *expr add.op term

MORE text = INPUT :F(ERROR)
text expr RPOS(0) :F(BAD)
OUTPUT = "An expression" :(MORE)

BAD OUTPUT = "Not an expression" :(MORE)
END

The complex patterns expr and term refer to themselves, directly and indirectly,
using the asterisk operator. Bear in mind that recursive pattern definitions
cannot use conditional or immediate assignments, because they don’t own
local variables. Only recursive functions are allowed to have them.

You can evaluate an unevaluated expression by pattern matching and calling
the primitive function EVAL(e):

expression = *(x * x * x)
x = 3
OUTPUT = EVAL(expression)

END
| 27

report erratum • discuss

Evaluating Unevaluated Expressions • 167

http://media.pragprog.com/titles/dzseven/code/snobol/expression.sno
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

Direct String Evaluation

Function EVAL(e) loosely corresponds to the namesake Python and
JavaScript functions. The latter functions are considered unsafe
because they execute the string passed to them as code, which can
lead to serious security risks if the string contains malicious code.

Managing Input and Output
Designed for mainframes and minicomputers, SNOBOL has a cumbersome and
not very user-friendly (rather, it’s more user-unfriendly) input/output subsys-
tem built around the concept of an external input/output unit—essentially,
a file, using modern-day terminology. The I/O system is also dependent on
Fortran-style formatting. Fortunately, it’s easy to turn this dependency off.

Function INPUT(sname,unit,buffer,fname) (not to be confused with the namesake
predefined variable) opens the existing disk file fname for reading and associates
it with the stream name sname and I/O unit—an integer number related to the
C language file handle. The number must be 1 through 32, but doesn’t seem
to affect any further operation. The maximum buffer length buffer is another
tribute to the days of mainframes.

Function OUTPUT(sname,unit,format,fname) (also not to be confused with the
namesake predefined variable) opens the disk file fname for writing and asso-
ciates it with the stream name sname and I/O unit. Set the format to an empty
string unless you’re eager to learn Fortran-style formatting.

Function DETACH(sname) closes a previously opened file/stream as close() would
do in C or Python.

Detaching a File

Function DETACH(sname) loosely corresponds to the functions close(f)
and fclose(f) in other modern programming languages.

Once the streams are open, you can use them for reading and writing lines
like INPUT and OUTPUT. Here, the program copies the content of the file "input.dat"
to the file "output.dat" one line at a time, overwriting its previous contents, if any.

INPUT("infile", 3, 80, "input.dat")
OUTPUT("outfile", 4, "", "output.dat")

MORE outfile = infile :S(MORE)
DETACH("outfile")
DETACH("infile")

END

Chapter 5. Streamlining Text Processing with SNOBOL • 168

report erratum • discuss

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

Writing Something Big
What better way to honor a programming language created to facilitate
studies in digital humanities (application of computing or digital technologies
to the disciplines of the humanities) than to run a study in digital humanities,
namely, in text analysis. One of the fundamental tasks in text analysis is
word frequency calculation, the process of identifying the most frequently
used words. Later, you can use those words and their frequencies for text
summarization and comparison.

Developing a solid word-counting program in SNOBOL isn’t so hard. The first
step is to read the text from a file and normalize it—that is, convert it to the
standard character case (lower or upper) to recognize and adequately count
the same word written in different cases. Function freqs(fname), highlighted
in the code listing, creates a table for counting, opens the file fname for reading,
reads the next line, converts it to lowercase, and eliminates non-alphabetic
characters at the beginning of the line.

SNOBOL doesn’t have the convenient case-conversion functions such as
str.upper() available in Java and Python. You must do case conversion via
character replacement (primitive function REPLACE(text, from.str, to.str)).

The function then extracts the next word, a continuous sequence of alphabetic
characters, by matching the line to the pattern wordpat, stores the word through
conditional assignment, and deletes the matching part from the line. Each
successful match makes the line shorter. When the line becomes empty, the
function reads the next line.

snobol/freq.sno
* Find the most frequently used words

&ANCHOR = 1
&TRIM = 1

punct = " ;:.,'~!@#$%^&*()=+[]{}\|/?0123456789 " '"'
lc = 'abcdefghijklmnopqrstuvwxyz'
uc = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
wordpat = SPAN(lc) . word SPAN(punct)

* Function definition
DEFINE("freqs(fname)counter,line") :(END.FREQS)➤

* The main reading and counting loop➤

FREQS counter = TABLE()➤

INPUT("infile", 3, 80, fname)➤

MORE line = infile :F(DONE)➤

line = REPLACE(line, uc, lc)➤

line BREAK(lc) =➤
➤

report erratum • discuss

Writing Something Big • 169

http://media.pragprog.com/titles/dzseven/code/snobol/freq.sno
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

WORD.L line wordpat = :F(MORE)➤

EQ(stops<word>, 1) :S(WORD.L)➤

counter<word> = counter<word> + 1 :(WORD.L)➤
➤

* Sort and trim the counts➤

DONE counts = RSORT(CONVERT(counter, "ARRAY"), 2)➤

i = 1➤

DETACH("infile")➤

freqs = counts :(RETURN)➤

END.FREQS➤

Each extracted word is checked against the list of stopwords: words like the, a,
and when, which are so commonly used that they don’t contribute to the
structure of the text or its story. The list of stopwords is often application-
specific. The one below is taken from the NLTK Python library and augmented
with very Shakespearean words like thy, thou, hath, and thee. The stopwords
are prestored in the table stops as keys, and their values are 1. To test whether
a word is a stopword, function freqs(fname) tests if the corresponding value in
the table is 1 (a stopword) or 0 (the default value of a freshly created table
item, indicating not a stopword).

The function concludes by converting the table to an array, reverse-sorting
the array by frequency of occurrences, closing the file, and returning the
counts.

* Prepare the table of stopwords
stops = TABLE()
stopwords = "i me my myself we our ours ourselves you "

+ "your yours yourself yourselves he him his himself she "
+ "her hers herself it its itself they them their theirs "
+ "themselves what which who whom this that these those am is "
+ "are was were be been being have has had having do does did doing "
+ "a an the and but if or because as until while of at by for with "
+ "about against between into through during before after above below "
+ "to from up down in out on off over under again further then once "
+ "here there when where why how all any both each few more most other "
+ "some such no nor not only own same so than too very s t can will "
+ "just don should now d ll m o re ve y ain aren couldn didn doesn "
+ "hadn hasn haven isn mightn mustn needn shan shouldn wasn weren "
+ "won wouldn tis thy thou shall thee th would mine must hath st "
+ "may enter exit doth exits till upon "

SW.LOOP stopwords wordpat = :F(TEST)
stops<word> = 1 :(SW.LOOP)

In the testing phase—the most intriguing part of the exercise—you apply the
function to three datasets. The program displays the first 50 most frequently
used words for each input file, and the file name. Consequently, you can use
the program’s output in other processing tools (such as statistical or Venn

Chapter 5. Streamlining Text Processing with SNOBOL • 170

report erratum • discuss

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

diagram visualization software). Alternatively, you can challenge yourself and
implement the next steps of the text processing pipeline in SNOBOL.

* Test the program
TEST files = ARRAY(3)

files<1> = "macbeth.txt"
files<2> = "antony-and-cleopatra.txt"
files<3> = "a-midsummer-nights-dream.txt"

j = 1
TEST.LOOP result = freqs(files<j>) :F(END)

i = 1
results = files<j> ":"

CONCAT results = results " " counts<i, 1> :F(PRINT)
GT(i, 50) :S(PRINT)
i = i + 1 :(CONCAT)

PRINT OUTPUT = results
j = j + 1 :(TEST.LOOP)

END

The data for the experiment—Shakespeare’s Macbeth, Antony and Cleopatra,
and A Midsummer Night’s Dream—comes from Folger Shakespeare Library,2

which offers a free collection of Shakespeare’s works in plain text format.

Even the raw-eye inspection of the output reveals an intricate pattern of words
(not to be confused with SNOBOL patterns!). Some words are common to all
three pieces (good, lord, man, speak, say, come), some occur in the plays
pairwise (for example, love in Antony and Cleopatra and A Midsummer Night’s
Dream), and some are unique to the plays (mostly proper names).

2. https://www.folger.edu/explore/shakespeares-works/download/

report erratum • discuss

Writing Something Big • 171

https://www.folger.edu/explore/shakespeares-works/download/
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

macbeth.txt: macbeth lady macduff banquo yet us come first good malcolm let
make lord like time king say ross done man well speak great sir duncan
scene see fear murderer know second one thane doctor lennox go look
siward third give sleep night hand things son witch death knock blood
cannot heart.

antony-and-cleopatra.txt: antony caesar cleopatra enobarbus let charmian good
come well sir make pompey us messenger go say like give madam lord
soldier lepidus take menas eros great egypt scene man one octavia yet
queen world first agrippa speak iras see love hear done know dolabella
heart made noble hand death tell gods.

a-midsummer-nights-dream.txt: love bottom lysander demetrius hermia come quince
pyramus thisbe sweet theseus man one robin let helena see night go good
eyes never lion fair make wall flute well play moon titania look lord say
yet speak like oberon true fairy away take us know lovers heart give day
eye thus hippolyta.

Further analysis of the results could lead to more intriguing observations,
but now you should continue your journey. Your next destination is Starset,
the language so similar to SNOBOL and so different from it.

Further Reading
• The Snobol4 Programming Language [GPP71]
• SNOBOL Programming for the Humanities [Hoc86]

Chapter 5. Streamlining Text Processing with SNOBOL • 172

report erratum • discuss

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

CHAPTER 6

Set theory is a disease from which mathematics will one day
recover.

 ➤ Henri Poincaré, French mathematician, theoretical
physicist, engineer, and philosopher of science

Harnessing Set Data with Starset
The five obscure programming languages you’ve encountered—Forth, Occam,
APL, Simula, and SNOBOL—have been obscured by time. All of them, except
Occam, were designed in the late 1960s to early 1970s, in the early age of
modern computing, when the language developers’ dreams and expectations
didn’t match the available hardware and didn’t have adequate community
support, commercial backing, and suitability for the tasks at hand. They
failed to displace Fortran, COBOL, PL/I, and ALGOL 60, the back-then
workhorses of the computing industry.

The Starset language, on the other hand, was obscured by space. It was
designed in the last years of the Soviet Union behind the crumbling Iron
Curtain to produce a homegrown alternative to Fortran, Pascal, and C. The
language description was published as a book in Russian [GS91], later partially
translated into English [Gil94]. The only known Starset compiler worked under
the MS-DOS operating system. Its source code hasn’t been preserved, so my
team and I had to reimplement it from scratch.

“Hello, Sets!”
Starset is one of the few set-oriented languages. Actually, to the best of our
knowledge, it’s one of two set-oriented programming languages, the other
being SETL (Programming with Sets: An Introduction to SETL [SDDS86]). While
many languages, such as Prolog, Oz, Coq, Haskell, Erlang, Datalog, and
Python, support sets, only Starset and SETL consider them their primary
data types.

Set-oriented languages offer some advantages over other classes of lan-
guages. Set operations are naturally parallelizable, which makes them
well-suited for modern multicore and distributed computing environments.
They are better aligned with mathematical foundations, which can provide a

report erratum • discuss

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

solid theoretical basis for reasoning about data and operation. Finally, they
offer an alternative view on data persistence, replacing relations between data
columns with set relations.

Starset’s set-orientedness does not preclude it from greeting you in a no-
nonsense way:

/* The obligatory first program */
PROC helloworld()

WRITE 'Hello, world!'
ENDPROC

The code in the example declares a procedure called helloworld() that takes no
parameters. The procedure doesn’t return a value. It executes the operator
WRITE (Starset is case-insensitive, but let’s agree to use all uppercase letters
for keywords and built-in, or primitive, subroutines), which prints a string
enclosed in single quotation marks. The comment notation in the first line of
the excerpt is the same as in C or C++.

A Starset program consists of one or more subroutines—procedures operating
via side effects and functions returning values. In the Suffolk StarSet (s3)
implementation, the first procedure (not a function!) in a file is the main one,
regardless of its name, and acts as the program’s entry point. The main pro-
cedure calls all other subroutines if necessary.

Getting to Know Starset Data Types
Starset is a set-oriented language, but what is a set exactly?

A Starset set is a possibly empty collection of distinct words, similar to a
Python set(), Java Set, or C++ std::set—but what exactly is a word? Let’s dive
deeper.

Words
A Starset word is the most fundamental data type, similar to a character
string in languages that support them. In a program, words are enclosed in
single quotation marks. For instance, 'Hello, world!' and 'Starset' are both valid
words, but "Hello, world!" is not (it uses double quotation marks).

If a word resembles a valid integer or floating-point number (possibly in sci-
entific notation), it can be written without quotation marks for convenience.
Thus, -216.000, 3.14159, and .67E+3 are words; from Starset’s point of view, they
are indistinguishable from '-216.000', '3.14159', and '.67E+3'.

Chapter 6. Harnessing Set Data with Starset • 174

report erratum • discuss

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

A word is the only atomic data type in Starset. You can use it to represent
strings, numbers, and logical (Boolean) conditions.

Everything Is a String

Starset’s ubiquitous words—capable of being strings, numbers,
or Boolean conditions—resemble values in the early implementa-
tions of Tcl (Tool Command Language, 1988) and various Unix
shells. Those were stored as character strings, too, and were con-
verted to numbers or Booleans and back as needed.

Depending on the operation (an operator, primitive subroutine, or user-defined
subroutine), a word can behave as a number, string, or condition. For string
operations like concatenation A^B, a word written in numeric notation is
converted to the canonical numeric notation, either in fixed-point without
trailing zeros or integer notation, whichever is shorter. For instance, .67E+3
becomes '670', -216.000 becomes '-216', and 3.14159 remains '3.14159'.

n1 := .67E+3;
n2 := -216.000;
WRITE n1 ^ ' is larger than ' ^ n2 ^ '.'
/* Output: 670 is larger than -216. */

Conversely, a word used in a numerical operation (for example, multiplication
A*B) is implicitly converted to a number. The numeric value of a word is the
longest initial subword that represents a valid number, with the remainder
of the word (the invalid part) ignored. An empty string ('') has a numeric
value of 0.

width := '2 meters';
height := '3.7 centimeters';
area := width * height;
WRITE area
/* Output: 5.4 */

This allows you to include units with values but doesn’t offer unit conversion
or validation. The numeric values of logical expressions are 0 for false and 1
for true. For example, (10>5)+(10<5) is 1 because 10>5 is true and, therefore,
has the numeric value of 1, and for a similar reason (10<5) is 0.

For Boolean operations like logical disjunction A|B, a word is false if its
numeric value is 0 (including empty strings), and true otherwise. In the fol-
lowing example, both operands are malformed numbers. Their longest initial
numeric subwords are empty strings interpreted as false Boolean values.

truth := 'to be' | 'not to be' ;
WRITE truth
/* Output: 0 */

report erratum • discuss

Getting to Know Starset Data Types • 175

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

Word Operators and Functions

Starset provides various word operators for arithmetic, logical, relational,
pattern matching, and membership operations. For instance, the string
multiplication operator S^^N concatenates N copies of string S. So 'ho'^^'3 times'
evaluates to 'hohoho', akin to Python string multiplication.

The numeric/string duality of Starset words requires separate relational opera-
tions for numbers and strings. For example, words word_A and word_B can be
compared numerically (arithmetically) or lexicographically (based on the alpha-
betic positions of the constituent characters). Starset offers different operators
for each ambiguous operation, such as word_A = word_B, word_A != word_B, and
word_A <= word_B for lexicographical comparison vs. word_A == word_B, word_A <>
word_B, and word_A <<= word_B for numerical comparisons.

Both comparison modes can be legally used in most cases, as illustrated in
the following code. The word 'null' is lexicographically (alphabetically) smaller
than the word 'zero' because the character n is closer to the beginning of the
alphabet than the character z. However, the numerical interpretation of both
words is 0, which makes the second relationship false.

WRITE 'null' << 'zero';
/* Output: 1 */
WRITE 'null' < 'zero'
/* Output: 0 */

Only you can decide which mode is suitable.

Starset offers some support for first-order logic quantifiers: “exists” (∃) and
“for all” (∀). Operator (EXIST var IN $set)(ex) checks if a value exists in the set $set,
which, if assigned to the variable var, makes expression ex true. Operator (ALL
var IN $set)(ex) checks if each value in S makes ex true. Both operators loop
through the set $set, evaluate the expression, and stop when it becomes true
(for EXIST) or false (for ALL).

Quantifiers as List Comprehensions

Operators EXIST and ALL can be explained as list comprehension
expressions using Python-like pseudocode:

∃ ::= min(bool(exp(var)) for var in $set); # True if any is true
∀ ::= max(bool(exp(var)) for var in $set); # True if all are true

The difference lies in the choice of the aggregator function
(min vs. max).

Chapter 6. Harnessing Set Data with Starset • 176

report erratum • discuss

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

In the following example (aligned for clarity), the expressions check if a set
contains at least one long word or only long words, respectively. The primitive
function LEN(w) returns the number of characters in the word w or its canonical
numeric representation.

has_long_word := (EXIST w IN $set)(LEN(w) >= 10);
all_long_words := (ALL w IN $set)(LEN(w) >= 10)

Another notable primitive function is CUT(w,pos,len). It extracts a subword from
the word w, starting at position pos (beginning at 1) and containing up to len
characters. If either pos or len is too large, the result is an empty string.

Now, let’s return to sets.

Sets
A set is an unordered collection of literal words or word expressions. In a
program, they are comma-separated and enclosed in curly braces. The name
of a set variable (a variable referring to a set) always begins with a dollar sign,
as if implying that a set holds more value than a single word. An empty set
is denoted as $0, where the metaphor falters because zero dollars is just as
valuable as zero of anything else.

/* Ten decimal digits */
$decimal_digits := {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
/* The same set: The order does not matter */
$decimal_digits := {4, 1, 5, 3, 0, 2, 9, 7, 6, 8};
/* The same set: Duplicates are eliminated */
$decimal_digits := {0, 1, 2, 3, 4, 5, 6, 7, 9, 0, 2, 3, 4, 1, 2, 4, 9, 4};
/* Two binary digits */
$binary_digits := {0, 1};
/* One unary digit */
$unary_digits := {0};
/* No nullary digits */
$nullary_digits := $0

A significant difference between Starset sets and those in other languages is
that Starset sets cannot be recursive and contain other sets or, as you’ll see,
classes. This limitation results in a strict tree-like data hierarchy that simpli-
fies implementation but restricts the expressive power of the language.

Sets can be naturally tested for equality ($set_A = $set_B, $set_A != $set_B), mem-
bership (word IN $set, $set_A SUBSET $set_B), and pattern matching (Set IS Pattern).
They also support common set operations like intersection ($set_A # $set_B),
union ($set_A + $set_B), and difference ($set_A \ $set_B, $set_B \ $set_A).

Primitive functions MINL($set), MAXL($set), MIN($set), and MAX($set) return the
smallest and the largest words in $set, either lexicographically or numerically.

report erratum • discuss

Getting to Know Starset Data Types • 177

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

The function WORD($set,sep) converts a set into a word by concatenating its
members in lexicographical order and using the word sep as a separator. The
function CARD($set) returns the cardinality of $set—the total number of items
in the set.

Finally, set comprehension {Word IN $set : expr} builds a subset of all words Word
in the set $set that make the expression expr true. If you’re familiar with
mathematical set theory, you may recognize the colon as the “such that”
symbol. For example, $a_words is a set of words from $word_set such that each
word starts with the letter 'a':

$a_words := {a_word IN $word_set : /* such that! */ CUT(a_word,1,1)='a'}

Classes
Classes are the third Starset data type. Just as sets group words, classes
group sets. For most purposes, think of them as sets of sets. Class variable
names start with two dollar signs. The special constant $$0 signifies an empty
class. Note that while $0 is equivalent to {}, $$0 differs from {{}}. The latter
denotes a class containing one element, which is an empty set. Following is
an example of a three-element class where two elements are duplicates.

$$data := {{1, 2, 3}, {'a', 'b', 'c', 'd'}, {}, $0};
WRITE CARD($$data)
/* Output: 3 */

As you can see in the preceding example, the CARD($$class) function also works
for classes. Since a class is a “glorified set,” it supports intersection ($$class_A
$$class_b), union ($$class_A + $$class_B), difference ($$class_A \ $$class_B), and class
comprehension:

$$large_sets := {$s IN $$data : CARD($s) >= 3};
WRITE $$large_sets
/* Output: {{1, 2, 3}, {'a', 'b', 'c', 'd'}} */

Mapping Your Data to Words, Sets, and Classes
One way to map your data to Starset words, sets, and classes is by considering
Starset data types as relational database components: words correspond to
individual items, sets represent rows or columns, and classes resemble tables.
However, this analogy is imperfect because a database table (or a spreadsheet
at a smaller scale) is rectangular and addressable:

• All rows have the same number of items.
• All columns have the same number of items.
• Any item is addressable by its row and column indices.

Chapter 6. Harnessing Set Data with Starset • 178

report erratum • discuss

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

Sets in a class are not required to be the same size, and a class, being a set
of sets, cannot be directly addressed (as sets are unordered).

Another approach is to treat sets as key-value pairs, like so, for example:

$$names := {{'_0', 'Mary'}, {'_1', 'John'}, {'_2', 'Ann'}};
$$ages := {{'_0', 24}, {'_1', 27}, {'_2', 18}}

The somewhat odd notation for the keys arises due to the unordered nature
of sets; you cannot determine which word is a key or a value based on their
position for the lack of positions. Keys should possess a unique characteristic
(for example, the prefix '_' followed by a number) that can be identified through
pattern matching.

You can combine an attribute and its value into one word, separated by a
predefined symbol or combination of symbols (for example, '='). This approach
allows you to treat a set like a dictionary, but pattern matching incurs addi-
tional overhead:

$$club := {{'name=Mary', 'age=24'}, {'name=John', 'age=27'},
{'name=Ann', 'age=18'}}

What if the club in the example has two members with the same name and
age? To handle this situation, consider adding a unique user identifier to
each set:

$$club := {{'id=00001', 'name=Mary', 'age=24'},
{'id=00002', 'name=John', 'age=27'},
{'id=00003', 'name=Ann', 'age=18'}, /* an Ann */
{'id=00004', 'name=Ann', 'age=18'}} /* another Ann */

To summarize, you can represent your data in Starset in a “natural” way. Let
your understanding of language statements and procedures, particularly
pattern matching, guide your choice.

Patterns
A pattern is how Starset describes the structure of an object—another word
or a set. Starset provides operations for checking if an object matches the
pattern, and if so, for extracting its components. Patterns are of two types:
word patterns and set patterns.

Word Patterns

Word patterns resemble regular expressions. They consist of one or more atomic
or assigning patterns joined by the word concatenation operator ^. Atomic pat-
terns identify structures, while assigning patterns extract matching subwords.

report erratum • discuss

Getting to Know Starset Data Types • 179

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

Patterns as Regular Expressions

Word patterns in Starset resemble regular expressions in languages
like C++, Java, Perl, and Python.

An atomic pattern can be the following:

• A word literal or expression that matches a subword in the object. For
example, in 'id=00001' subwords match 'id=' (literally 'id=') and '0'^^'4 times'^'1'
('00001').

• A primitive (built-in) pattern, as shown in the following table.

Regex EquivalentInterpretationPattern

.Any symbol[X]

.*Any subword[..]
[a-z]A lowercase letter[l]
[A-Z]An uppercase letter[L]
[a-zA-Z]A letter[Ll]
[a-z]+One or more lowercase letters[lw]
[A-Z]+One or more uppercase letters[LW]
[a-zA-Z]+One or more letters[Lw]
[0-9]A decimal digit[N]
[0-9]+A decimal number[Num]

• A primitive (built-in) function, as shown in this next table.

InterpretationFunction

The word w in the opposite character case[aA(w)]
Any character in w[Any(w)]
Any character not in w[Notany(w)]
The longest subword made of characters in w[Span(w)]
The longest subword made of characters not in w[Break(w)]
The kth position from the start[Pos(k)]
The kth position from the end[Rpos(k)]
Any subword ending at the kth position from the start[Tab(k)]
Any subword ending at the kth position from the end[Rtab(k)]

Note that [Tab(k)] and [Rtab(k)] are shortcuts for [..]^[Pos(k)] and [..]^[Rpos(k)].

Chapter 6. Harnessing Set Data with Starset • 180

report erratum • discuss

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

Primitive patterns and functions are not strings (they’re enclosed in square
brackets rather than quotation marks) and must be concatenated properly.

Unlike regular expressions in other languages, Starset patterns lack the
operators *, ?, and + for optional fragments and repetitions.

Last but not least, patterns are not considered word expressions and cannot
be assigned to variables.

You can now write patterns to match a person’s identifier, name, and age in
the club membership example on page 179. These patterns are no longer
atomic:

/* id_pat */ 'id=' ^ [Num];
/* name_pat */ 'name=' ^ [Lw];
/* age_pat */ 'age=' ^ [Num]

Atomic patterns identify matches but cannot extract the matching parts (like
identifiers, names, and ages). Assigning patterns serve this purpose. An
assigning pattern is an atomic pattern enclosed in parentheses and suffixed
with a period and a word variable name (a free variable).

/* id_pat */ 'id=' ^ ([Num]).id;
/* name_pat */ 'name=' ^ ([Lw]).name;
/* age_pat */ 'age=' ^ ([Num]).age

The free variable must be declared previously. If the atomic pattern within the
parentheses matches a subword, that subword is assigned to the free variable,
a process known as localization in Starset. You can use a localized vari-
able within the pattern after its assignment. The following pattern verifies
that the left side of a comparison operator equals the right:

/* same_pat */ ([..]).var ^ '=' ^ var

The subword before the equal sign localizes the variable x, which is then
reused to match the subword on the right.

Set Patterns

Set patterns match sets. A set pattern is represented as a collection of tem-
plates (which may be empty) enclosed in curly braces. A template can be one
of the following:

• A word pattern P, which can be either atomic or assigning.
• A word pattern P enclosed in angle brackets, <P>.
• A word pattern P enclosed in angle brackets and parentheses, followed

by a period and a free set variable name, (<P>).$var. The variable is localized
if the pattern matches.

report erratum • discuss

Getting to Know Starset Data Types • 181

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

As you can see, set patterns are defined in terms of word patterns.

A set pattern effectively partitions a set into disjoint subsets. The splitting
rules are as follows:

Word pattern. If a template is a word pattern, the corresponding subset is a
single-element set (a singleton) containing the word that matches the
pattern.

Angle-bracketed word pattern. If a template is a word pattern enclosed in
angle brackets, the subset contains all words matching that pattern. Once
matched, words are “temporarily removed” from the original set, preventing
them from being matched again. Starset processes templates from left to
right sequentially, meaning template order can impact how sets are par-
titioned.

Assigning pattern. If a template is an assigning pattern, the free variable gets
localized as a result of the match.

The following examples illustrate set patterns.

• The pattern {([..]).abc, [Span(abc)]} matches a two-word set: one item is an
alphabet (stored in the localized variable abc), and the other item is a word
in that alphabet.

• The pattern {<[Num]>} matches a set of decimal integer numbers. Its
extended version, {<[Num]>, <[Num] ^ '.' ^ [Num]>}, also accommodates
floating-point numbers.

• The pattern {(<[lw]>).$text, Card($text)} matches a set containing lowercase
strings and their count, for example, {'alice', 3, 'in', 'wonderland'}.

Pattern matching is Starset’s primary mechanism for data retrieval. Instead
of using positions or keys to access a value, Starset programmers use patterns
that capture its “look and feel.”

The pattern matching operator in Starset is x IS y. In this expression, x is
a word or set, and y is a word or set pattern. The expression is true (1) if a
match exists and false (0) otherwise. If there’s a match, all free variables are
initialized as a side effect and can be used within the subroutine.

Curiously, Starset distinguishes between conditional statements that use
relational operators (such as equality, inequality, and membership) and those
that use pattern matching operator IS. In the former case, the statement is
called IF; in the latter case, it’s ON. Apart from this difference, their syntax
is identical. Compare the following examples:

Chapter 6. Harnessing Set Data with Starset • 182

report erratum • discuss

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

$member := {'name=Alice', 'age=23', 'id=12345'};
IF CARD($member) = 3

DO
do_something_with($member)

END ELSE DO
WRITE 'Invalid record'

END

vs.

$member := {'name=Alice', 'age=23', 'id=12345'};
ON $member IS {'name=' ^ [Lw], 'id=' ^ [Num], 'age=' ^ [Num]}
DO

do_something_with($member)
END ELSE DO

WRITE 'Invalid record'
END

Incidentally, you’ve just learned something about the structure of Starset
control statements. Like in other modern languages (such as Ruby, Lua,
Elixir, and, to some extent, Erlang, Julia, and MATLAB), they use DO-END
syntax to denote compound statements in the body, and the ELSE block is
always optional.

In addition to direct pattern matching, you can use patterns to create class
indexes, as explained in the following section. They can also organize index-
free sequential loops for sets and classes. The section Exploring Loops, on
page 186, explains how.

Indexing Classes
Adding an index to a class is one way to manage the absence of a natural
order within it. An index is a sequence of keys that prescribes the order in
which the sets within the class are processed. A class can support multiple
indexes, each uniquely named and precomputed before its first use.

Indexes are created using the CREATE INDEX statement:

CREATE INDEX name FOR $set IN $$class;
CREATE INDEX name FOR $set IN $$class BY key;
CREATE INDEX name FOR $set IN $$class ON pat BY key

The statement creates a new index named name for the class $$class, replacing
any existing index with the same name.

As part of index creation, the word expression key is evaluated for each set in
the class (temporarily assigned to the $set loop variable) that matches the set
pattern pat, or {<[..]>} if pat isn’t specified. Any free variable in key must be
localized in the pattern pat.

report erratum • discuss

Getting to Know Starset Data Types • 183

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

If the BY key option is absent, the set key is a lexicographically ordered list of
all words in the set. This list is created solely for executing this statement
and isn’t accessible to the program or you.

Each variant of the CREATE INDEX statement may have optional keywords DESC
(descending), NUM (numerical), or both at the end. Without these options, the
index consists of the calculated keys in increasing lexicographical order.
The options change the order accordingly.

The following examples illustrate index-building operations. They create indexes
for traversing the class $$club in decreasing order of the number of member
attributes, in alphabetic order by name, and numerical order of identifiers.

CREATE INDEX size_idx FOR $member IN $$club BY CARD($member) DESC NUM;
CREATE INDEX name_idx FOR $member IN $$club

ON {'name=' ^ ([Lw]).name, <[..]>} BY name;
CREATE INDEX id_idx FOR $member IN $$club

ON {'id=' ^ ([Num]).id, <[..]>} BY id NUM

You can use class indexes for accessing and modifying classes (see the next
section) or in sequential loops (see the section Sequential Loops, on page 187).
When your program no longer needs an index, remove it by executing the
DROP INDEX statement:

DROP INDEX name CLASS $$class

The statement is silently ignored if the requested index doesn’t exist.

Accessing and Modifying Classes
With indexes in place, your program can manipulate classes by finding,
modifying, deleting, and inserting sets. The respective statements are nonde-
structive FIND and EXTRACT, and destructive MODIFY and INSERT. All of them,
except INSERT, have a STATUS error clause. If the statement succeeds, the word
variable error becomes 0. Otherwise, it becomes 1 or 2, depending on the reason
for the failure.

The FIND statement locates a set in the class $$class whose key in the index
name starts with key. If key is an empty string, the statement finds the first set
in the index. The set is assigned to the variable $set and, as a side effect,
becomes the current element of the $$class in the index. When executed with
the options NEXT or PREV, the statement finds the next or the previous set in
the index and updates the current element. (You must first execute the BY key
form of FIND to establish the current element.)

Chapter 6. Harnessing Set Data with Starset • 184

report erratum • discuss

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

/* Synopsis */
FIND $set IN $$class BY key IN INDEX name STATUS error;
FIND $set IN $$class NEXT IN INDEX name STATUS error;
FIND $set IN $$class PREV IN INDEX name STATUS error;
/* Example */
FIND $member IN $$club BY 23 IN INDEX age STATUS error;
IF !error /* Logical negation */
DO

WRITE $member
END

You can modify the current element with the MODIFY statement or look it up
again with the EXTRACT statement:

EXTRACT $set FROM $$class IN INDEX name STATUS error

The latter statement has two forms (both assume that the index has the
current element). The BY $set form replaces the current element with $set.
The DROP form removes the current element from the class.

MODIFY $$class IN INDEX name BY $set STATUS error;
MODIFY $$class IN INDEX name DROP STATUS error

After the modification, all existing indexes in the $$class are updated. If the
modification didn’t affect the current element, it remains the current element.
Otherwise, the current element becomes undefined.

Finally, the INSERT statement inserts a new set into a class and automatically
updates all the class indexes.

INSERT $set IN $$class

Data Persistency
Starset imitates some aspects of database management systems, particularly
its built-in persistent storage concept. You can save any word, set, or class to
external memory (a file) under a user-defined name. When you save a class,
all its indexes are saved too.

SAVE val AS w

Conversely, a saved variable can be loaded from external memory. The file
“knows” the data type of the variable. The type of the variable var must be
consistent with the recorded type. You cannot save a set and later load it as
a class.

LOAD var FROM w

report erratum • discuss

Getting to Know Starset Data Types • 185

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

External Storage

Starset documentation doesn’t specify the external storage format.
In the Suffolk Starset (s3) implementation, we assume each variable
is stored in a separate file in a Starset-specific format.

The DELWORD w, DELSET $s, and DELCLASS $$c statements remove words, sets, or
classes from external memory. If the target doesn’t exit, the program crashes.

In the following section, you’ll learn more about Starset loops.

Exploring Loops
Starset has an elaborated system of loop statements, including simple,
sequential, and parallel loops.

Simple Loop
A simple loop is a familiar WHILE loop that executes its body—a compound DO-
END statement—as long as the loop condition is true. Consider a code fragment
that implements a procedure for calculating the first count prime numbers. This
example illustrates not only simple loops but also other important concepts:

1. The procedure is defined with the keywords PROC and ENDPROC. If it’s the
first procedure in the program, it’ll be considered the main procedure and
executed (see the example on page 174).

2. The procedure begins with variable declarations. You must declare every
variable in a subroutine according to its type, which might seem redundant
because variable names are type-specific.

3. The READ statement reads a value of any type according to the variable
name from the standard input.

4. The simple loop repeats the body as long as the set of discovered prime
numbers is smaller than requested. The body contains a conditional
statement that’s in charge of discovery.

starset/primes.ss
PROC get_primes()

WORD: x, current, count;
SET: $primes;

$primes := {2};
current := 3;
WRITE 'How many?';
READ count;
WRITE 'Prime number=' ^ 2;

Chapter 6. Harnessing Set Data with Starset • 186

report erratum • discuss

http://media.pragprog.com/titles/dzseven/code/starset/primes.ss
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

WHILE CARD($primes) < count
DO

IF (ALL n IN $primes)((current - (current % n) * n) <> 0)
DO

WRITE 'Prime number=' ^ current;
$primes := $primes + {current};

END;
current := current + 1

END;
WRITE $primes

ENDPROC

The header of the conditional statement checks if the current number is prime
by verifying it’s not divisible by any prime number discovered so far. The
expression (current - (current % n) * n) <> 0 effectively calculates the remainder of
dividing n into current and compares it to zero. The “for all” quantifier repeats
the test for each prime number found so far. If all tests pass, the current
number is declared prime and added to the result set. The procedure contains
a nested loop, though it’s not immediately apparent.

Sequential Loops
A sequential loop processes a set or class elements in a sequence determined
by a class index or calculated on the fly as needed. You may want to look at
sequential class loops first for reasons that will soon become clear. Here’s a
synopsis of the sequential class loop statement:

FORORD $set IN $$class ...
FORORD $set IN $$class BY ex ...
FORORD $set IN $$class ON pat BY ex ...
FORORD $set IN $$class BY INDEX name ...

Additionally, each variant of the loop may include optional keywords DESC and
NUM before the loop body.

The syntax in the first three lines mirrors the CREATE INDEX statement (see the
section Indexing Classes, on page 183). This resemblance isn’t coincidental;
you can use a previously created index to guide the loop (as in the fourth line
of the synopsis) or create an index implicitly while running the loop. In the
latter case, an index is ad hoc and discarded after the loop termination. In
the former case (CREATE INDEX), the index becomes a part of the class and is
even saved into persistent storage. If you plan to use the same index more
than once in your program, consider investing in building and saving it! On
the other hand, if you loop through a class only once, using a throwaway
index might be more efficient.

report erratum • discuss

Exploring Loops • 187

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

Sequential set loops follow the same rules as sequential class loops, except
that you cannot replace them with indexed access. Note that if pat is omitted,
it’s implied to be [..] (the whole word).

FORORD var IN $set ...
FORORD var IN $set BY ex ...
FORORD var IN $set ON pat BY ex ...

With that in mind, display the prime numbers in reverse order:

FORORD p IN $primes NUM DESC
DO

WRITE p
END

You can achieve the same effect using negated numbers as the sorting keys:

FORORD p IN $primes BY -p NUM
DO

WRITE p
END

Parallel Loops
With proper precautions, you can process elements of sets or classes in par-
allel. If you’re familiar with programming languages like Java or Python, a
parallel loop’s syntax will also look familiar:

FOR var IN $set /* accumulating variables here */ ...
FOR $var IN $$class /* accumulating variables here */ ...

Parallel Loops

Parallel loops in Starset resemble foreach loops found in PHP, Perl,
Ruby, Swift, Kotlin, Python, Java, and other similar languages
with the addition of parallel processing.

In each loop iteration, the loop variable var or $var takes the value of the current
set or class item. The order of iterations is determined by the compiler. You
must design the loop body such that the outcome is not affected by the order
of execution. The following constraints must be enforced:

• The loop body may not access the $set or $$class variables to prevent con-
current modifications.

• The following statements with side effects are not allowed in the loop body:
DELWORD, DELSET, DELCLASS, SAVE, LOAD, CREATE INDEX, DROP INDEX, FIND, INSERT,
MODIFY, READ, WRITE, USE, DRIVE. (The last two statements are implementation-
specific and not covered in this book.)

Chapter 6. Harnessing Set Data with Starset • 188

report erratum • discuss

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

• The loop body cannot invoke any subroutine that uses any of the afore-
mentioned statements, either directly or recursively.

• The QUIT and LEAVE statements are not allowed within a parallel loop body.

These and the previous limitations essentially transform Starset into a nearly
pure functional language.

Accumulating variables and their accompanying operators provide mechanisms
for gathering set/class data. The variables are of word type for set loops and
set type for class loops. Word variables support operators + (arithmetic addi-
tion), * (multiplication), & (logical “and”), and | (logical “or”). Set variables
support operators + (set union) and # (set intersection). An accumulating
variable A with an operator ⨂ can only be used in the loop in a reassignment
statement in the forms A := A ⨂ var or A := A ⨂ $var.

Any non-accumulating variable altered during a loop iteration doesn’t retain its
value for the next iteration. Effectively, a non-accumulating variable in a loop
is replaced with a temporary shadow copy discarded after each iteration. This
restriction isolates iterations from one another, facilitating parallel execution.

The name “parallel” in the language documentation is misleading. A loop would
be genuinely parallel if your computer had enough computing cores to run each
iteration at the same time. In practice, only some iterations may run simulta-
neously, or perhaps only one. The term implies that the loop is potentially
parallelizable, but the compiler isn’t obligated to generate parallel code.

The following example calculates the standard deviation of a numerical set:

WORD: sum, sum2, n, std;
sum := 0; sum2 := 0; n := 0

FOR w in $data ACCUM sum+, sum1+, n+
DO

sum := sum + w;
sum2 := sum2 + w * w;
n := n + 1

END;
sum := sum / n;
std := (sum2 / n - sum * sum) ** 0.5

Other Loop Elements
Like most procedural languages, an iteration of any loop in Starset can be
terminated by executing the ITERATE statement. Likewise, executing a LEAVE
statement can terminate any simple or sequential loop (but not a parallel
loop).

report erratum • discuss

Exploring Loops • 189

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

Designing Subroutines
Starset provides two types of subroutines (callable code fragments): procedures
and function procedures, also known as simply functions.

The difference between procedures and functions dates back to the early days
of computing and concerns parameter passing and return values. A procedure
is a subroutine that does not return a value (it’s void, as in C/C++) but receives
its parameters by reference and can modify them. A function is just the oppo-
site: it always returns a value but receives the parameters by value. The copies
of the original parameters essentially become the function’s local variables.

Procedures and Functions

Procedures and functions in Starset loosely correspond to procedures
and functions in Occam. Procedures in both languages don’t return
values and, by default, pass parameters by reference. Functions
in both languages return values and pass parameters by value.

Both procedures and functions consist of three parts: the header (the subrou-
tine name and the list of formal parameters), local variables’ declarations,
and the body. The body consists of one or more statements separated by
semicolons and executed sequentially, unless a conditional statement (IF, ON,
or CHOICE) directs the control flow around them or a loop statement makes
them repeat. The QUIT statement, found anywhere in the body, leads to
immediate termination of the subroutine, passivation (that is, deletion) of all
local variables, and return to the caller.

Note that all variables in Starset belong to a subroutine. Global variables are
not possible, further supporting parallel loops and recursive subroutine calls.

Any subroutine can be called recursively, either directly or indirectly. Tail
recursion elimination isn’t supported. Make sure that any subroutine meant
to be recursive has the base case.

Procedures
Starset procedures are more versatile than functions.

• They can have an empty body (consisting of a null statement).

• They take any number of formal parameters of any type.

• The formal parameters are passed by reference and can be altered in
place. Unfortunately, this feature does not allow to pass expressions as

Chapter 6. Harnessing Set Data with Starset • 190

report erratum • discuss

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

parameters. Any expression to be used in a procedure must be evaluated,
its value stored in a variable, and that value passed to the procedure.

• Procedures don’t return values directly but can manipulate their param-
eters, including those responsible for passing operation status out of the
procedure.

A procedure is invoked by executing the CALL statement that takes the proce-
dure’s name and a comma-separated (or empty) list of actual parameters.

You’ve already seen some examples of procedures in this chapter, but here’s
one more. This procedure recursively counts down from n (an integer word)
to 0. Its execution can cause stack overflow for large values of n.

PROC count_down(n)
WORD: n; /* Declaration */
IF n > 0 DO

n := n - 1;
CALL count_down(n)

END
ELSE DO /* This clause is illustrational and can be removed */

QUIT
END
ENDPROC

Functions
Unlike procedures, a function can return a computed value. However, only
words can be passed as parameters (no sets or classes), and they are passed
by value. It means any modifications to the copy of a parameter in the function
body are discarded after the function quits.

To return a value from a function, assign the value to a variable with the
same name as the function. Unlike in Simula (consult Introducing Procedures,
on page 120), this variable must be declared like any other variable. You can
then assign the returned value to a variable in the caller subroutine.

The “simple” (inefficient) implementation of the function calculating the nth
Fibonacci number is shown here:

starset/fibonacci.ss
FUNC fib(n)
WORD: fib, n;

CHOICE
CASE n==1 DO fib := 0 END
CASE n==2 DO fib := 1 END
OTHERWISE DO fib := fib(n-1) + fib(n-2) END

ENDFUNC

report erratum • discuss

Designing Subroutines • 191

http://media.pragprog.com/titles/dzseven/code/starset/fibonacci.ss
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

PROC test_fib()
WRITE fib(22) /* Output: 10946 */

ENDPROC

Since a function cannot be a program entry point, you must provide a testing
procedure known as a driver.

Writing Something Big
This example aims to show how you can use Starset, a set-based programming
language, to solve a problem that seems utterly unrelated to sets: the eight
queens problem.

The problem and its solution reportedly date back to 1848 when chess com-
poser Max Bezzel published them. If you play chess or at least know the rules,
the problem is about placing eight queens on an eight-by-eight chessboard
such that no queen attacks any other queen. If you don’t play chess, the
problem is about selecting eight locations in an eight-by-eight square grid
such that no two chosen locations share the same row, column, or diagonal.

You can generalize the problem to N queens on an N×N square board. The problem
is trivial for N=1, has no solutions for N=2 or N=3, and has asymptotically
(0.143×N)N solutions in general.

The following problem-solving algorithm is adapted with modifications from
Iazyk Programmirovaniia Starset (in Russian) [GS91], where it’s attributed to
S. Vorobyov.

The main procedure, queens(), declares and initializes the variables, obtains
the board size, and creates a set of the first N natural numbers. If the board

Chapter 6. Harnessing Set Data with Starset • 192

report erratum • discuss

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

size is known at the time of writing the program, the highlighted lines may
be replaced with a set literal. At the end, the procedure calls another proce-
dure, put_queen(size, col, $solutions, $free_rows, $free_main_d, $free_anti_d, solution_id), which
recursively calculates the solutions.

starset/queens.ss
PROC queens()

WORD: column, solution_id, size, k;
SET: $solutions, $free_rows, $free_main_d, $free_anti_d;

$solutions := $0;
$free_rows := $0; /* free rows */
$free_main_d := $0; /* free main diagonals */
$free_anti_d := $0; /* free anti-diagonals */
column := 1; /* number of queens so far */
solution_id := 0;

WRITE 'Enter chessbord size: ';
READ size;

k := 1;➤

WHILE k <= size DO /* Initialize free rows */➤

$free_rows := $free_rows + { k };➤

k := k + 1➤

END;➤

CALL put_queen(size, column, $solutions, $free_rows,
$free_main_d, $free_anti_d, solution_id)

ENDPROC

The recursive procedure takes the following: the size of the board, the current
column being processed, a set storing the positions of the queens placed so far,
a set of rows that are still available for placing a queen ($free_rows), a set of main
diagonals that are still free ($free_main_d), a set of anti-diagonals that are still free
($free_anti_d), and a counter for the number of solutions found (solution_id). The
large number of parameters is due to the lack of global variables.

The procedure iterates over each row in $free_rows in numerical order and cal-
culates the main diagonal and anti-diagonal for the current position. The
current position is valid for placing a queen if neither the main diagonal nor
the anti-diagonal is occupied.

starset/queens.ss
/* -------- Recursive part ---------------- */
PROC put_queen(size, column, $solutions, $free_rows,

$free_main_d, $free_anti_d, solution_id)
WORD: size, column, column_, row, solution_id, main_d, anti_d;
SET: $solutions, $free_rows, $free_main_d, $free_anti_d;
SET: $solutions_, $free_rows_, $free_main_d_, $free_anti_d_;
SET: $free_rows_copy;

report erratum • discuss

Writing Something Big • 193

http://media.pragprog.com/titles/dzseven/code/starset/queens.ss
http://media.pragprog.com/titles/dzseven/code/starset/queens.ss
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

/* No access to $free_rows in the FORORD loop */
$free_rows_copy := $free_rows;
FORORD row IN $free_rows NUM DO

main_d := column - row;
anti_d := column + row;
IF !(main_d IN $free_main_d) & !(anti_d IN $free_anti_d) DO

$solutions_ := $solutions + {'(' ^ column ^ ',' ^ row ^ ')'};
IF column < size DO

$free_rows_ := $free_rows_copy \ {row};
$free_main_d_ := $free_main_d + {main_d};
$free_anti_d_ := $free_anti_d + {anti_d};
column_ := column + 1;
CALL put_queen(size, column_, $solutions_,

$free_rows_, $free_main_d_, $free_anti_d_, solution_id)
END ELSE DO

solution_id := solution_id + 1;
WRITE 'Solution #' ^ solution_id ^ ':' ^ WORD($solutions_)

END
END

END
ENDPROC

If there are more columns to process, the procedure updates the sets to
exclude the current row and include the current diagonals, increments the
column counter, and recursively calls itself with the updated parameters to
place a queen in the next column. When all columns are processed, the pro-
cedure increments the solution counter and prints the current solution.

Enter chessbord size:❮

5➾

Solution #1:(1,1)(2,3)(3,5)(4,2)(5,4)❮

Solution #2:(1,1)(2,4)(3,2)(4,5)(5,3)
Solution #3:(1,2)(2,4)(3,1)(4,3)(5,5)
Solution #4:(1,2)(2,5)(3,3)(4,1)(5,4)
Solution #5:(1,3)(2,1)(3,4)(4,2)(5,5)
Solution #6:(1,3)(2,5)(3,2)(4,4)(5,1)
Solution #7:(1,4)(2,1)(3,3)(4,5)(5,2)
Solution #8:(1,4)(2,2)(3,5)(4,3)(5,1)
Solution #9:(1,5)(2,2)(3,4)(4,1)(5,3)
Solution #10:(1,5)(2,3)(3,1)(4,4)(5,2)

As an exercise, consider using a class to represent the solutions and a set of
queens’ coordinates to represent an individual solution.

Some Starset deficiencies, such as the large number of passed parameters
and the need to create local copies of variables for procedure calls, are
annoying. You can automate such repetitive and tedious tasks in Starset
and other languages by using m4—an obscenely underestimated language

Chapter 6. Harnessing Set Data with Starset • 194

report erratum • discuss

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

for text manipulation and code generation, which you’ll explore in the
next chapter.

Further Reading
• Starset Programming Language [GS91]. This book is in Russian, but it’s

much better than the translated English edition.

• The Set Model for Database and Information Systems [Gil94]

report erratum • discuss

Further Reading • 195

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

CHAPTER 7

Machines take me by surprise with great frequency.

 ➤ Alan Turing, English mathematician, computer scientist,
logician, cryptanalyst, philosopher, and theoretical biologist

Automating Text Generation with m4
APL, Forth, Occam, Simula, and SNOBOL have been obscured by time. Starset
was obscured by space. m4, the last protagonist of this book, is obscured in
plain sight. It’s used in systems like GNU Autoconf (a tool for producing shell
scripts that automatically configure software source code packages), GNU
Automake (a tool for automatically generating Makefiles), and Sendmail (a pop-
ular mail transfer agent)—and yet few programmers know about its existence.

What makes m4 (that’s right, spelled with a lowercase m) different from the
other six obscure languages is its role in the programming ecosystem. m4 is
a preprocessor.

Understanding Preprocessors
A preprocessor is a program that converts one text into another by following
specific rules written in a specific language. Unlike compilers that convert
texts in human-readable (but not necessarily human-spoken) languages into
machine code or any other inhumane representation, preprocessors stay at
the same level of abstraction. If you feed a natural-language text into a pre-
processor, the output is expected to be in a natural language. If you feed a
program written in a programming language into a specialized source-to-
source preprocessor (a transpiler), the output is another program. Preproces-
sors act as language translators, which makes them uniquely suitable for
automated program code generation, a crucial aspect of modern programming.

All preprocessors may be roughly assigned to one of the following classes:
lexical, syntactic, and general-purpose preprocessors.

• Lexical preprocessors operate on the lexical level, processing text and
performing substitutions based on predefined rules. They work with tokens
or sequences of characters without understanding the syntax or structure

report erratum • discuss

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

of the text. An example of a lexical preprocessor is the C preprocessor
(cpp), which handles directives like #include, #define, and #if to manage code
inclusion, macro expansion, and conditional compilation.

• Syntactic preprocessors go a step further by understanding the syntactic
structure of the input text. They can manipulate code based on its syntax,
making more complex transformations possible. A syntactic preprocessor
can analyze the grammatical structure of the text and make changes that
respect this structure. An example of a syntactic preprocessor is XSLT
(extensible stylesheet language transformations), which transforms XML
documents into other formats like HTML, text, or more XML documents
based on the document’s tree structure.

Another example is LaTeX, a powerful typesetting system that fundamen-
tally operates as a preprocessor for TeX (another powerful typesetting
system) by abstracting, simplifying, and extending its functionalities.

• General-purpose preprocessors are versatile tools that can handle a broad
range of preprocessing tasks. They’re not limited to specific types of input
or transformations and can be used in various contexts. GNU m4 is a
prime example of a general-purpose preprocessor. It can perform macro
substitution, file inclusion, text manipulation, and more. Essentially, m4
is a full-scale, Turing-complete programming language, which is why it’s
the subject of this chapter.

Some argue that SNOBOL (see Chapter 5, Streamlining Text Processing
with SNOBOL, on page 147) is a general-purpose preprocessing language
too, but it has already had its moment of glory in this book.

Turing-Completeness

A programming language is Turing-complete if any program that can be written for a
Turing machine can also be written in this language. To meet this requirement, a lan-
guage must be able to manipulate an arbitrary amount of data storage, support
conditional and repeated execution, and be able to read (input) and write (output)
data. XSLT, LaTeX, and m4 are Turing-complete, but the C preprocessor is not.

The required “Hello, world!” program in m4 looks suspiciously non-
programmatic. In fact, it doesn’t look like a program at all.

m4/hello.m4
Hello, world!

That’s one of the core features of m4: anything that’s not explicitly a command
is data. Data is output verbatim. The language has no output statement

Chapter 7. Automating Text Generation with m4 • 198

report erratum • discuss

http://media.pragprog.com/titles/dzseven/code/m4/hello.m4
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

because there’s no need for one. In the same spirit, there’s no input statement
in m4: data is read as it comes through the standard input.

No Read, No Write

m4’s pass-through approach to data processing, which requires
no explicit input or output statements, resembles the AWK
language approach, except that AWK reads the input one line at
a time.

A program that takes data and instructions from the standard input and
outputs the transformed data to the standard output is called a filter. m4 is
a filter.

Last but not least, there’s more than one m4. The original m4 was developed
by UNIX pioneers Brian Kernighan and Dennis Ritchie (K&R) in 1977 as an
extension to m3. The version discussed in this book is GNU m4, designed in
1990. GNU m4 offers many enhancements but remains mostly compatible
with the original m4.

Defining and Using Macros
Macro substitution, also known as macro expansion, is the workhorse of m4.

Simple Macros
Simple macros are names replaced at runtime with their definitions. The fol-
lowing classical example greets the book author by using the function
define(name, definition) to define a macro named AUTHOR. The value (definition) is
Dmitry Z.. No quotation marks are needed, and spaces are allowed in the defi-
nition. By the way, define() is a macro too.

m4/greet.m4
define(AUTHOR, Dmitry Z.)
Hello, AUTHOR!

Let’s execute the code:

/home/dzseven> m4 code/m4/greet.m4

Hello, Dmitry Z.!

The substitution worked, but where does this bothersome blank line come
from? m4 isn’t trying to be too clever; quoting myself, “anything that is not
explicitly a command is data.” “Anything” includes the line break after the
macro definition on the first line. This line break breaks the line in the output.
m4 may be the only programming language in which you need to comment
a line break!

report erratum • discuss

Defining and Using Macros • 199

http://media.pragprog.com/titles/dzseven/code/m4/greet.m4
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

Fortunately, comments aren’t hard. The dnl (“delete to newline”) macro does
what it says: deletes everything to the end of the line, including the end of
the line. The following code works as expected:

m4/greet-w-comment.m4
define(AUTHOR, Dmitry Z.)dnl
Hello, AUTHOR!

/home/dzseven> m4 code/m4/greet-w-comment.m4
Hello, Dmitry Z.!

Sometimes, AUTHOR is just a string literal. To prevent m4 from expanding it,
enclose it in a combination of a backtick ` and a single quote '. m4 removes
both but doesn’t treat AUTHOR as a macro name. But what if you want to pre-
serve the quotes too? No problem—double them!

Hello, `AUTHOR'!
Hello, ``AUTHOR''!
dnl Output:
dnl Hello, AUTHOR!
dnl Hello, `AUTHOR'!

You should quote macro names within the define command to avoid quirky,
unexpected expansions. Also, avoid Python-style line comments starting with
a pound sign #. They don’t do what you expect them to do.

define() vs. #define vs. DEFMACRO

The define() macro in m4 corresponds to the #define directive in the
C preprocessor and (remotely) the DEFMACRO function in Lisp. Unlike
m4 and cpp, Lisp supports both macros and functions. Function
arguments are evaluated before a function call, but macro argu-
ments are not evaluated before a macro expansion.

You’re ready for the first practical application of m4: combining a response
template with specific details.

m4/detail.m4
define(`AUTHOR', Alice)dnl
define(`MANUSCRIPT', My Friend Bob)dnl
define(`MOOD', sorry)dnl
define(`STATUS', rejected)dnl

m4/template.m4
Dear AUTHOR,

We are MOOD to inform you that your manuscript "MANUSCRIPT" has
been STATUS.

Editors

Chapter 7. Automating Text Generation with m4 • 200

report erratum • discuss

http://media.pragprog.com/titles/dzseven/code/m4/greet-w-comment.m4
http://media.pragprog.com/titles/dzseven/code/m4/detail.m4
http://media.pragprog.com/titles/dzseven/code/m4/template.m4
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

You can save the output to a file or, if you’re a command-line geek, pipe it to
a mail-handling program for delivery.

/home/dzseven> m4 code/m4/detail.m4 code/m4/template.m4
Dear Alice,

We are sorry to inform you that your manuscript "My Friend Bob" has
been rejected.

Editors

Nested Macros
Two macros used in the manuscript acceptance/rejection template, MOOD and
STATUS, are not independent. Misusing these macros, such as pairing “happy”
with “rejected,” might perplex the intended reader.

Fortunately, m4 macros can be nested: a body of a macro can be another
macro. In this example, the macros ACCEPT and REJECT each define MOOD and
STATUS; the definitions are internally consistent. For instance, “happy” can be
paired with “accepted” but not with “rejected.”

m4/detail-nested.m4
define(`AUTHOR', Alice)dnl
define(`MANUSCRIPT', My Friend Bob)dnl
define(`REJECT', define(`MOOD', sorry)define(`STATUS', rejected))dnl
define(`ACCEPT', define(`MOOD', happy)define(`STATUS', accepted))dnl
ACCEPT`'dnl

The last line of the file (which could be the first line of the template or a part
of another file, decision.m4) selects the decision. The syntax in m4 is delicate;
an empty string between the macro name and a comment is required to pre-
vent the two from being read as a single token ACCEPTdnl, which is incorrect.

Ratfor

Ratfor [Ker75] (Rational Fortran), the brainchild of Brian Kernighan and Dennis
Ritchie, was the first programming language dependent on m4. It introduced C-style
structural features such as code blocks and modern conditional and loop statements
to the traditional Fortran 66. Rather than altering the language directly, Ratfor
translated C-style code into core Fortran using m4 macros. As such, m4 was a crucial
component of any standard Ratfor distribution.

In a more advanced scenario, the ACCEPT macro changes its definition after
its first use to indicate that the action has been completed, transforming from
`Accepted' to `Already accepted'. A self-modifying macro is a sophisticated form of

report erratum • discuss

Defining and Using Macros • 201

http://media.pragprog.com/titles/dzseven/code/m4/detail-nested.m4
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

nested macro that can change its definition or even delete itself, acting as a
one-time-use macro.

define(`ACCEPT', `define(`ACCEPT',`Already accepted')Accepted')dnl

ACCEPT➾

Accepted❮

ACCEPT➾

Already accepted❮

Another macro, potentially more useful for programmers like you but still
needing more work to become practical, ensures that the header file, foo.h, is
included exactly once in your C/C++ program. This macro deletes its definition
after a single use.

define(`ensure_foo',`undefine(`ensure_foo')`#'include <foo.h>')dnl

ensure_foo➾

#include <foo.h>❮

ensure_foo➾

ensure_foo❮

undefine() vs. #undef

The undefine() macro in m4 is equivalent to the #undef directive in
the C preprocessor and the del statement in Python.

Remember to quote the # in the macro definition because, otherwise, m4
treats it as a comment.

Macros with Arguments
You can “call” (more accurately, “expand”) any macro with any number of
arguments. The macro body has full access to the argument list and decides
how to handle it. Compare the behavior of the user-defined macro foo and
built-in macro len().

define(`foo', `bar')dnl➾

foo➾

bar❮

foo()➾

bar❮

foo(`hello')➾

bar❮

foo(`hello', `world')➾

bar❮

Chapter 7. Automating Text Generation with m4 • 202

report erratum • discuss

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

len➾

len❮

len()➾

0❮

len(`hello')➾

5❮

len(`hello', `world')➾

m4:stdin:1: Warning: excess arguments to builtin `len' ignored❮

5

The foo behaves the same regardless of the number of arguments: one, two,
or none, or even when expanded without the parentheses. On the contrary,
len() calculates the length of a string when given a string, becomes a 0 if the
string is absent, expands to its name when used without parentheses, or
reports a warning if you provide too many arguments.

A macro body refers to the argument list using the $ notation shown as follows:

• $# expands to the number of arguments. Since # is a comment character,
remember to quote $# as `$#'.

• $0 expands to the macro name.

• $* expands to the list of arguments.

• $@ expands to the list of arguments but does not expand quoted argu-
ments.

• $n, where n is a positive integer, expands to the nth argument; if no such
argument is provided, it defaults to an empty string.

False Friends in Makefiles

Some $ notations in m4 look similar to the automatic variables in
the language of the make utility ($@ and $*), but they serve a differ-
ent purpose. The make utility has other automatic variables not
used in m4: $<, $^, $?, $%, and $|.

You can now write a macro that explores and reports its argument list:

define(`my_args', ``$0' // format(`%05d', `$#') // $@ // $*')dnl
my_args(1, Hello, `eval(`1+2')')
dnl Output:
dnl my_args // 00003 // 1,Hello,eval(`1+2') // 1,Hello,3

The macro outputs its name (which must be quoted—otherwise, the macro
spirals into infinite recursion), the number of arguments, and the argument
list in two forms: original and expanded. Note that the code fragment uses
two new built-in macros: eval() and format().

report erratum • discuss

Defining and Using Macros • 203

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

The eval() macro takes a well-formed string representing an arithmetic
expression and produces the value of the expression. Just like Starset on
page 173, m4 treats numbers as strings but doesn’t support floating-point
numbers.

The supported operations are parentheses (); arithmetic, bitwise, and logical
negation -~!; exponentiation **; multiplication, division, modulo, addition, and
subtraction */%+-; relational operations > >= == != < <=; shifts << >>; binary
bitwise operations &^|; and logical operations || &&. The macro follows the
“traditional” POSIX/C evaluation rules.

eval(`1')
dnl Output: 1
eval(`2**4-7')
dnl Output: 9
eval(`2^4!=2**4')
dnl Output: 3
eval(`(2^4)!=(2**4)')
dnl Output: 1
eval(`(2^4)==(2**4)')
dnl Output: 0

For some reason, m4 creators added two overly specialized macros, incr(n) and
decr(n), that expand to an incremented or decremented n, respectively.

incr(100)
dnl Output: 101
decr(101)
dnl Output: 100
incr(eval(`100/'decr(3)))
dnl Output: 51

Note that neither macro can be embedded into the string passed as an argu-
ment to eval(), because the quotes protect it from expanding.

The format(format_string, ...) macro is another homage to the C language—
specifically, the printf() function. The first argument is the format string with
% specifications. The macro supports most ANSI C specifiers with widths,
precisions, and other flags. It expands to a formatted string.

More ANSI C Legacy

Macros format() and eval() correspond to the C language printf()
function and general ANSI C integer arithmetic expressions.

Chapter 7. Automating Text Generation with m4 • 204

report erratum • discuss

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

Returning to the my_args() macro in the code on page 203, the eval() macro in
the $@ output is not expanded and still looks like a function call: eval(`1+2').
However, in the $* output, the macro is expanded and replaced by the result
of the expression evaluation, which is the sum of 1 and 2.

More examples of accessing the argument list await you in the following sections.

Controlling Execution Flow
m4 macros can function as global variables when expanded without arguments
or as functions when arguments are provided. In both cases, m4 can use the
existence of a macro to control program execution flow.

Conditional Expansion
The built-in macro ifdef(name,true_string,false_string) tests if the macro name is
defined and expands to true_string or false_string, depending on the outcome.

With this macro, you can reorganize the code fragment on page 201 to focus
on the decision (ACCEPT vs. REJECT) and define the MOOD and STATUS appropriately.

m4/detail-ifdef.m4
divert(-1)
define(`AUTHOR', Alice)
define(`MANUSCRIPT', My Friend Bob)

The status of the manuscript
define(`ACCEPT')
define(`MOOD', ifdef(`ACCEPT',happy,sorry))
define(`STATUS', ifdef(`ACCEPT',accepted,rejected))
divert

In this example, the divert() macro is used twice to avoid the need for multiple
dnl commands. You’ll read more about its full power in the section Diverting
Output and Including Files, on page 212.

The ifelse() macro, or multibranch macro, is a powerful extension of ifdef(). It’s
essentially a condensed switch statement, as known in C, C++, or Java.

The macro takes 3N+1 arguments, with the last one defaulting to an empty
string. Each triplet of arguments has the form s1,s2,equal_string and is evaluated
as follows:

1. The first two arguments, s1 and s2, are strings compared, character by
character.

2. If the strings are equal, the macro expands to equal_string.

report erratum • discuss

Controlling Execution Flow • 205

http://media.pragprog.com/titles/dzseven/code/m4/detail-ifdef.m4
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

3. Otherwise, the first three arguments are discarded, and the macro is
evaluated with the remaining arguments.

4. If no two strings in the argument list match, the macro expands to its
last argument (which, remember, may be an empty string).

ifdef() vs. #ifdef

The ifdef() macro in m4 is equivalent to the #ifdef/#if defined and
#ifndef directives in the C preprocessor. There’s no direct cpp
equivalent of ifelse().

As a special case, when called with just one argument, the ifelse(comment) macro
is treated as a comment and is discarded.

In the following example, the macro takes ten arguments. The first nine are
arranged in three triplets. The value N is sequentially compared with 1, 2,
and 3 until the match (3) is found. If N were not on the list, the macro would
expand to the tenth argument, more than three.

define(N,3)
ifelse(N,1,one,N,2,two,N,3,three,more than three)
dnl Output:
dnl three

To reinforce your understanding of ifelse() and refresh your knowledge of
recursion, let’s reimplement the ifelse() macro. Imagine that, because of the
negligence of the language developers, it can be called only with four argu-
ments: ifelse(s1,s2,equal_string,nonequal_string). You want to extend its functionality
and define a new macro recur_ifelse() that behaves like the real built-in ifelse()
without restrictions.

The unrestricted macro definition will rely on recursion and, most importantly,
on another built-in macro, shift(args). The shift() macro takes an argument list
args and discards its first element.

The argument list in m4 is a string of comma-separated arguments. It can
be defined as a “variable” (a macro without arguments) or supplied via $
notation as $@ or $*.

define(`alist',`Mary,had,a,little lamb')➾

shift(alist)➾

had,a,little lamb❮

shift(shift(alist))➾

a,little lamb❮

shift(shift(shift(alist)))➾

little lamb❮

Chapter 7. Automating Text Generation with m4 • 206

report erratum • discuss

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

Shifts in Shells

The shift() macro in m4 is equivalent to the shift command in many
POSIX-compatible shell scripting languages (for example, in Bourne
shell, bash, ksh, and zsh).

After shifting, the new argument list can be further used to call another
macro. As shown in the code that follows, the recursive macro recur_ifelse() first
uses the “broken” ifelse() to check the number of arguments $#. If only one
argument is left (presumably, the last one), it becomes the result. Otherwise,
ifelse($1,$2,$3,args') attempts to equate $1 and $2 and returns $3 on success. If
the first two arguments don’t match, the macro expands itself recursively
with the thrice-shifted original argument list.

m4/recur_ifelse.m4
divert(-1)
define(`recur_ifelse', `ifelse(`$#',`1',`$1',➤

`ifelse($1,$2,$3,➤

recur_ifelse(shift(shift(shift($@)))))')')➤

Testing
define(`DEFAULT',`unknown')
define(`name1',`Bob')
define(`name2',`Alice')
define(`name3',`Foobar')
divert`'dnl
name1 is recur_ifelse(name1,`Alice',girl,name1,`Bob',boy,DEFAULT)
name2 is recur_ifelse(name2,`Alice',girl,name2,`Bob',boy,DEFAULT)
name3 is recur_ifelse(name3,`Alice',girl,name3,`Bob',boy,DEFAULT)
dnl Output: Bob is boy
dnl Output: Alice is girl
dnl Output: Chuck is unknown

Each recursive call shortens the argument list. The macro expects that, eventu-
ally, its length becomes one (the base case). The base case is unreachable if the
number of original arguments isn’t 3N+1, leading to infinite recursion. Properly
implementing a recursive macro must ensure that it doesn’t happen—for
example, by checking the original argument list length and reporting an error
via errprint(), yet another built-in macro. The latter is often followed by a call
to m4exit(retval) that instantly exits m4 and returns an integer number retval to
the caller. The m4exit(retval) macro corresponds to the exit(retval) function in the
C language and similar functions in other languages.

Indirect Calls
In addition to calling a macro directly by providing its name with an argument
list in parentheses, m4 allows you to call a macro indirectly by passing its

report erratum • discuss

Controlling Execution Flow • 207

http://media.pragprog.com/titles/dzseven/code/m4/recur_ifelse.m4
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

name as part of the argument list to the built-in macro indir(name,a1,a2,...).
Essentially, the macro name becomes the zeroth argument, which explains
why you access it as $0. (Compare this to how C and C++ refer to the program
name as the zeroth command-line argument.)

define(`raise',`incr($1)')dnl
define(`lower',`decr($1)')dnl
define(`operation',``raise'')dnl
indir(operation,10)dnl
dnl Output:
dnl 11
define(`operation',``lower'')dnl
indir(operation,10)dnl
dnl Output:
dnl 9

indir() and FUNCALL

The indir(args) macro corresponds to the (FUNCALL func arg1 ...) function
in the Lisp language, which is equivalent to (func arg1 ...) but treats
the function name as a regular argument, allowing dynamic
function calls.

A similar macro, builtin(name,a1,a2,...), exists for accessing built-ins. Curiously,
indir() also works for built-ins, but builtin() doesn’t work for user-defined macros.

With indirect macro calls, you can invoke macros whose names don’t meet
m4’s expectations—for example, if they contain illegal characters:

define(`foo-bar',foo`$1'bar)dnl
foo-bar(10) # Not recognized as a macro!
dnl Output: foo-bar(10)
indir(`foo-bar',10)
dnl Output: foo10bar

Naturally, you should avoid giving your macros such convoluted names, but
you may find this feature helpful if dealing with third-party macro packages
and computed macro names.

From Recursive Macros to Loops
Since any problem that can be addressed with a loop can also be transformed
into a tail-recursive format, m4 indirectly supports loops through recursive
macro definitions.

As you’ve already noticed, the macro ifelse() is at the core of any other recursive
macro. Looping is accomplished by shortening the argument list and treating
a macro as a variadic function (a function that accepts a variable number of

Chapter 7. Automating Text Generation with m4 • 208

report erratum • discuss

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

No Loops? No Problem!

m4 isn’t the only programming language that trades loop statements for tail recursion.
Other languages in this group are Elixir [Tat22], Erlang [Arm13], Haskell [Ski23], and
Prolog [Tat22a], to name a few. However, unlike them, m4 isn’t a functional or logic
language, making its case rare and possibly unique.

arguments) or changing one or more arguments until they reach the base
case condition.

The following two examples illustrate the differences between the two program-
ming styles. The first, variadic, example builds a macro that generates an
HTML ordered list from the list of items. It depends on the shift() macro:

define(`gen_ol', `gen_li($@)')dnl
define(`gen_li', `ifelse(`$1',,,`$1gen_li(shift($@))')')dnl
gen_ol(apple, banana, cherry)
dnl Output:
dnl applebananacherry

The macro in the second example produces a list of consecutive integer
numbers. It relies on the incr() macro to change the first argument:

define(`range', `ifelse($1,$2,,`$1,range(incr($1),$2)')')dnl
range(1,10)
dnl Output:
dnl 1,2,3,4,5,6,7,8,9,

Macro Stack
The built-in macros pushdef(name[,body]) and popdef(name) support a stack-like
structure for each defined macro. Calling pushdef() with a name not previously
defined is equivalent to defining a new macro with that name. Macro stacks allow
you to redefine macros temporarily and restore their previous definitions later.

In this example, look at an m4 “implementation” of a fictional self-driving car
that recognizes commands straight, left, right, and go and outputs control
instructions move, keep_left, and keep_right. The script defines and then redefines,
as needed, the go() macro, which, depending on the previously issued com-
mand, activates one of the forward-moving or turning actuators.

m4/sdc.m4
divert(-1)
define(`straight', `ifdef(`go',`popdef(`go')',`define(`go',`move')')')
define(`left', `pushdef(`go',``keep_left'')')
define(`right', `pushdef(`go',``keep_right'')')
divert`'dnl

report erratum • discuss

Controlling Execution Flow • 209

http://media.pragprog.com/titles/dzseven/code/m4/sdc.m4
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

The driving instructions are also written in m4 in the form of macro expansions.

m4/sdc-test.m4
straight go go go
left go go
straight go go
right go go
straight go go go
dnl Output:
dnl move move move
dnl keep_left keep_left
dnl move move
dnl keep_right keep_right
dnl move move move

Handling Text
m4 provides a small but useful collection of built-in text-processing macros.
In addition to the format() macro previously described on page 204, and the len()
macro occasionally mentioned in Macros with Arguments, on page 202, the
collection includes macros translit(), index(), substr(), regexp(), and patsubst(). These
macros work as follows:

The translit(str,chars[,replacement]) macro replaces (transliterates) every character
in str that is also in chars with the corresponding (having the same index)
character in replacement. Before transliteration, m4 shortens chars or replacement
to the same length. If replacement isn’t provided, the chars are erased from the
string—that is, replaced with an empty string. You can specify a character
range in either argument, similar to regular expressions.

The macro index(haystack,needle) finds the index of the first occurrence of needle
in the haystack. Indexing starts at 0. If needle is not found, the macro expands
to -1. If needle is empty or absent, the macro expands to 0 since any string
starts with an empty string.

The substr(str,from[,count]) macro extracts the substring of str starting at index
from with count characters. If count is absent, the substring extends to the end
of str.

Combining these macros, the capitalize(str) capitalizes a word by converting its
first character to uppercase and the rest of the word to lowercase.

define(`capitalize', `translit(substr(`$1',0,1),`a-z',`A-Z')`'dnl
translit(substr(`$1',1),`A-Z',`a-z')')
capitalize(heLLo)
dnl Output:
dnl Hello

Chapter 7. Automating Text Generation with m4 • 210

report erratum • discuss

http://media.pragprog.com/titles/dzseven/code/m4/sdc-test.m4
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

And, as a bonus, here’s a very informal proof of the English language
redundancy:

translit(`Most English sentences can be written without vowels',`aoueiAOUEI')
dnl Output:
dnl Mst nglsh sntncs cn b wrttn wtht vwls

The remaining two macros operate not in terms of strings but regular
expressions.

The regexp(haystack,re_needle[,replacement]) macro searches for re_needle in haystack
and optionally replaces it with replacement. If replacement is missing, the macro
expands to the index of the first match or -1 if there’s no match. Otherwise, the
macro expands to replacement. Note that m4 uses GNU Emacs regular expression
syntax,1 which differs from the more common POSIX regular expressions syn-
tax. Key differences in GNU Emacs regular expressions include the following:

1. Most operators must be prefixed with a backslash, such as \| (alternative)
and \(...\) (grouping).

2. Additional operators refer to the beginning of a word \<, the end of a word
\>, and other positions.

3. In the replacement string, \N refers to the Nth parenthesized group in re_needle,
and \& refers to the whole matching fragment.

Mastering Emacs regular expressions calls for a separate book, so let’s look
only at some simple examples:

define(`TEST',`Mary had a little lamb. His fleece was white as snow.')dnl
dnl Find the first 4-letter word that starts with a lowercase letter
regexp(TEST,`\<[a-z]\w\w\w\>')
dnl Output:
dnl 18
dnl Report that word
substr(TEST,regexp(TEST,`\<[a-z]\w\w\w\>'),4)
dnl Output:
dnl lamb
dnl Find a word longer than five letters and abbreviate it
regexp(TEST,`\<\(\w\w\)\w+\(\w\w\)\>',`\1-\2')
dnl Output:
dnl li-le

Unlike regexp(), the patsubst(haystack,re_needle[,replacement]) macro substitutes all
matching fragments with replacements (or an empty string if replacement isn’t

1. https://www.gnu.org/software/emacs/manual/html_node/emacs/Regexps.html

report erratum • discuss

Handling Text • 211

https://www.gnu.org/software/emacs/manual/html_node/emacs/Regexps.html
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

provided) without affecting the nonmatching text. You can use it to perform
global substitution.

dnl Find all words longer than five letters and abbreviate them
patsubst(TEST,`\<\(\w\w\)\w+\(\w\w\)\>',`\1-\2')
dnl Output:
dnl Mary had a li-le lamb. His fl-ce was wh-te as snow.
dnl Find all words longer than five letters and eliminate them
patsubst(TEST,`\<\(\w\w\)\w+\(\w\w\)\>')
dnl Output:
dnl Mary had a lamb. His was as snow.
dnl Mask all vowels
patsubst(TEST,`\([aoueiAOUEI]\)',`.')
dnl Output:
dnl M.ry h.d . l.ttl. l.mb. H.s fl..c. w.s wh.t. .s sn.w.

Diverting Output and Including Files
You’re already familiar with the divert([N]) macro, but its concept may still be
unclear.

Recall that most m4 scripts act as filters that stream data from the standard
input to the standard output (first mentioned on page 199). Like a natural
water stream, a data stream can be temporarily diverted and later restored.
The divert([N]) macro handles this data stream diversion.

By calling divert(N), you request m4 to stream the data from the standard input
to a temporary storage unit, known as a diversion, numbered N. A diversion
can be implemented as a RAM buffer or a file, depending on how much data
it needs to hold. The divert(-1) macro discards the output, which is why it was
used in previous code examples. The divert(0) macro restores the default data
flow, as does calling divert without arguments.

The undivert(N) macro reconnects the Nth diversion to the m4 pipeline, causing
all further input to be read from that diversion until it empties. If N is not
provided, all diversions are undiverted in numerical order. The divnum macro
expands to the current diversion ID. To discard the already diverted text,
divert the output to -1 and undivert the desired diversion (or all of them) using
divert(-1)undivert.

A toy, but practical, example illustrates how diversions could be used to
generate dynamic HTML pages. Suppose the page sections (for example, the
body and the head) are stored in an HTML template file html-tmpl.html in no
particular order but are clearly marked as BODY and HEAD. The job of the page
generator is to arrange these sections in the correct order and enclose them
in proper tags.

Chapter 7. Automating Text Generation with m4 • 212

report erratum • discuss

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

m4/html-tmpl.html
BODY
<h1>Welcome to The Pragmatic Bookshelf</h1>
<p>This is the main content of the website.</p>
HEAD
<title>The Pragmatic Bookshelf</title>
<link rel="stylesheet" type="text/css" href="styles.css">

The goal is accomplished by streaming each section into a separate diver-
sion. The head goes into diversion 1, the body goes into diversion 2, and so
on. The generator script uses another file-related macro, include(filename). Think of
it as input redirection as opposed to output diversion. As m4 reads the content
of the file filename, it expands the section markers and diverts the sections
appropriately. At the end of the included file, m4 resumes the script execution:
it formats the page and populates it with the undiverted content.

m4/html-gen.m4
divert(-1)Line 1

define(`HEAD_DIV', `1')-

define(`BODY_DIV', `2')-

define(`HEAD',`divert(HEAD_DIV)')-

define(`BODY',`divert(BODY_DIV)')5

include(`m4/html-tmpl.html')-

divert`'dnl-

dnl Page generator-

dnl Run as `m4 -I code code/m4/html-gen.m4'-

<html>10

<head>undivert(HEAD_DIV)</head>-

<body>undivert(BODY_DIV)</body>-

</html>-

For include() to work correctly, the file filename should be in the same directory
as the running script. If not, you should provide the full relative or absolute
path to the file or call m4 with the -I (uppercase i) command-line option speci-
fying the file’s location, as shown on line 9 in the preceding code example.

Interacting with the System
m4 is a Turing-complete programming language, but many tasks are better
left to specialized power tools. m4 designers allow you to utilize the services
the host operating system provides.

The syscmd(cmd) macro executes the specified cmd—a program or a script with
or without command-line options. The command may include pipes, I/O
redirection, and even background execution. Anything permissible on the
shell command line is permissible as an argument to syscmd(). The macro
displays the output of the cmd on the screen but doesn’t feed it into the m4

report erratum • discuss

Interacting with the System • 213

http://media.pragprog.com/titles/dzseven/code/m4/html-tmpl.html
http://media.pragprog.com/titles/dzseven/code/m4/html-gen.m4
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

pipeline. For example, the following macro expands to an empty string and
displays the number of files in the current working directory:

syscmd(ls | wc -l)
dnl Output:
dnl 41
sysval
dnl Output:
dnl 0

The built-in sysval macro expands to the exit status of the shell command.

Calling the System

The syscmd() macro corresponds to the system() POSIX function in
C and similar languages.

If you want to expand the output of a shell program (in other words, stream
the standard output of syscmd() to m4), you must use the esyscmd(cmd) macro.

The esyscmd() macro is ideally suited for obtaining dynamic information about
the host system, such as the date and time, hostname, and available disk
space. Note that the shell command for the latter task, df -h / | tail -1 | awk '{print
$5}', contains quotation marks, which m4 misinterprets as its own quotation
marks. You must temporarily change the quote delimiters to something else,
such as a pair of square brackets []. The change is done by calling the built-in
changequote(start,end) macro. Use the same macro to restore the quote delimiters
to `' after you’re done.

divert(-1)
define(`DATE',`esyscmd(date)')
define(`HOSTNAME',`esyscmd(hostname)')
changequote([,])
define([DISK_USAGE],esyscmd(df -h / | tail -1 | awk '{print $5}'))
changequote(`,')
divert`'dnl
DATE`'HOSTNAME`'DISK_USAGE`'dnl
dnl Output:
dnl Fri May 31 01:08:11 AM EDT 2024
dnl leo
dnl 34%

This example demonstrates capturing and using dynamic system information
within your m4 scripts.

Chapter 7. Automating Text Generation with m4 • 214

report erratum • discuss

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

Writing Something Big
Search the Web for “small-size project in m4.” (Admit that any project in the
“Writing Something Big” sections so far was not really big but barely bigger
than tiny!) You’ll find many ideas that boil down to one: using m4 to generate
text in X from text in Y, where X is usually LaTeX or HTML, and Y is some
other notation, such as Markdown.2 This discovery affirms the language’s
preprocessing nature and makes choosing a “big” project difficult. Nobody
wants yet another HTML code generator.

Fortunately, being Turing-complete, m4 can do much more. For example, it can
model finite state automata (FSA), also known as finite state machines (FSM).

An FSA is a mathematical apparatus for modeling finite-state systems—
systems that can be in exactly one of a finite number of states at any time.
An FSA consists of a set of states (one designated the initial state), a set of
external events, a set of transitions in the form <S1,E,S2,A>, and a set of final,
or terminal, states.

Let’s model a three-color traffic light with a pedestrian crossing option.

The traffic light can be in one of the following states: Red, Green, Yellow (in antici-
pation of red), Yellow (in anticipation of pedestrian crossing), Broken (blinking),
or Crossing (red for car traffic, green for pedestrians).

2. https://daringfireball.net/projects/markdown/

report erratum • discuss

Writing Something Big • 215

https://daringfireball.net/projects/markdown/
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

The FSA starts in the initial state. When event E occurs, the FSA transitions
from the current state, S1, to another state, S2, possibly executing action A.
The events in this model are as follows:

• Timer (an abstraction representing the passage of time)

• Error (something going wrong in the system, causing it to fall back to
blinking)

• Maintenance (resetting the system to the initial state, Green)

• Pedestrian (someone pushing the crossing request button)

The actions associated with each transition mostly place the traffic light in the
namesake physical state by sending Red, Green, Yellow, or Blink signals to the con-
troller. A Maintenance event results in the system being reset to Green. The crossing
request button instructs the main light to go Yellow and the pedestrian signal
to turn to Wait. While in the Crossing state, the system displays Red and Go,
respectively.

The following state transition diagram graphically summarizes the operation
of the traffic light. The rounded rectangles represent states, and the arrows
with names represent transitions. For example, the arrow from Red to Broken
labeled Error implies that when the FSA is in the state Red and the system
breaks, the new state of the system is Broken. The black dot in the lower-left
corner is the initial state.

The m4 program simulates the FSA. It sends a sequence of events to the FSA
and reports its reaction. The program consists of three major parts.

Chapter 7. Automating Text Generation with m4 • 216

report erratum • discuss

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

The first part defines macros responsible for the core functionality of the
automaton. The macros whose names begin with an underscore are helper
macros.

The _error(e) and _warning(e) macros report unexpected events and optionally
terminate the program. The _events macro is a list of event types. It’s built
automatically by collecting event names from the transactions’ definitions
via the _addevent(e) macro. The latter uses built-ins ifelse() and regexp() to check
if the name e is already on the list and add it if it’s not. Note that you cannot
use a comma as a list separator, because the constructed list with commas
looks like more than one argument to define().

m4/fsa.m4
divert(-1)
define(`_error',`errprint(`[[Unexpected: $1]]')m4exit(1)')
define(`_warning',`errprint(`[[Unexpected: $1]]')')
define(`_events',`')
define(`_addevent',`ifelse(regexp(_events,\b`'$1`'\b),-1,`

define(`_events',_events`$1'`|')')')
define(`transition',`define($1`_'$2, `define(`STATE',$3)dnl
[ifelse(len(`$4'),0,`$3',`$4')]')

_addevent($2)')

define(`mkevent',
`define($1,

`ifdef(STATE`_$1',
`indir(STATE`_$1')',
`_warning(`$1')')')')

define(`mkevents',`ifelse(`$1',,,`mkevent($1)mkevents(shift($@))')')

The transition(s1,e,s2[,a]) macro describes a transition. It defines a new macro
whose name is a concatenation of the origin state name and the event name
(for example, Yellow_Error). When the new macro expands (when the state and
the event match), it redefines the current state STATE, expands the action a or the
destination state name if the action isn’t defined, and attempts to add the event
name to the event list.

The mkevent(e) assigns actionable behavior to the event e. If the event is allowed
in the current state, the state/event name macro is expanded. Otherwise,
m4 displays a warning or error message. Finally, mkevents(elist) recursively calls
mkevent(e) for each collected event type—but first, you must convert the vertical
bar-separated event list to an “official” comma-separated argument list, as
highlighted in the following code block.

The second code block meticulously lists every possible transition in the FSA
and implicitly gathers the event names. If you use a CASE (computer-aided

report erratum • discuss

Writing Something Big • 217

http://media.pragprog.com/titles/dzseven/code/m4/fsa.m4
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

software engineering) tool for diagramming, such as VisualParadigm,3 you
may be able to automate the transition generation process, but those tech-
niques are outside this book’s scope.

m4/fsa.m4
dnl Setting up the FSA
transition(Broken,Maintenance,Green,``Reset; Green'')
transition(Crossing,Error,Broken,``Blink'')
transition(Crossing,Timer,Green,)
transition(Green,Error,Broken,``Blink'')
transition(Green,Pedestrian,YellowPed,``Yellow/Wait'')
transition(Green,Timer,Yellow,)
transition(Red,Error,Broken,``Blink'')
transition(Red,Pedestrian,YellowPed,``Yellow/Wait'')
transition(Red,Timer,Green,)
transition(Yellow,Error,Broken,``Blink'')
transition(Yellow,Pedestrian,YellowPed,``Yellow/Wait'')
transition(Yellow,Timer,Red,)
transition(YellowPed,Error,Broken,``Blink'')
transition(YellowPed,Timer,Crossing,``Red/Go'')
transition(initial,Start,Green,)

mkevents(patsubst(_events,`|',`,'))➤

define(`STATE',`initial')
divert`'dnl

The block also defines the automaton’s initial state and generates event-
handling macros.

The last code block tests the model by feeding it legal (previously mentioned)
event names. This specific example starts the traffic light, lets it operate for
a while, causes an error followed by a reset, and even attempts to trigger
another reset when the traffic light isn’t broken. Since such behavior is
undefined, the attempt leads to a warning message.

m4/fsa.m4
dnl Testing
Start Timer Timer Timer Pedestrian Timer
Error Maintenance
Pedestrian Timer Timer Timer Maintenance
dnl Output:
dnl [Green] [Yellow] [Red] [Green] [Yellow/Wait] [Red/Go]
dnl [Blink] [Reset; Green]
dnl [Yellow/Wait] [Red/Go] [Green] [Yellow] [[Unexpected: Maintenance]]

3. https://www.visual-paradigm.com/

Chapter 7. Automating Text Generation with m4 • 218

report erratum • discuss

http://media.pragprog.com/titles/dzseven/code/m4/fsa.m4
http://media.pragprog.com/titles/dzseven/code/m4/fsa.m4
https://www.visual-paradigm.com/
http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

Further Reading
• GNU m4 Reference Manual [SPVB15]

The End of Week Seven
Congratulations! You’re presumably at the end of the seventh week of your
computer-archeological journey. You’ve learned a bit of Forth, Occam, APL,
Simula, SNOBOL, Starset, and m4—programming languages once cherished
and expected to become successful and marketable tools but now virtually
unknown to computer programmers. You just joined the cohort of software
developers who know more about stack and array computing, unorthodox
text and set processing, and computer modeling and simulation than your
average coworker.

report erratum • discuss

Further Reading • 219

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

Bibliography

[AKW23] Alfred Aho, Brian Kernighan, and Peter Weinberger. The AWK Programming
Language. Addison-Wesley, Boston, MA, 2023.

[Alm18] Ulisses Almeida. Learn Functional Programming with Elixir. The Pragmatic
Bookshelf, Dallas, TX, 2018.

[Arm13] Joe Armstrong. Programming Erlang (2nd edition). The Pragmatic Bookshelf,
Dallas, TX, 2nd, 2013.

[Bro04] Leo Brodie. Thinking Forth. Punchy Publishing, USA, 2004.

[Bro87] Leo Brodie. Starting Forth: An Introduction to the Forth Language and
Operating System for Beginners and Professionals. Prentice Hall, Englewood
Cliffs, NJ, 1987.

[BS89] Graham Brookes and Andrew Stewart. Introduction to occam 2 on the
Transputer. Macmillan, New York, NY, 1989.

[chr15] chromatic. Modern Perl, Fourth Edition. The Pragmatic Bookshelf, Dallas,
TX, 2015.

[Dij68] Edsger Dijkstra. “Go To Statement Considered Harmful”. Communications
of the ACM. 11:147–148, 1968.

[DMN70] Ole-Johan Dahl, Bjørn Myhrhaug, and Kristen Nygaard. SIMULA Informa-
tion: Common Base Language. Norwegian Computing Center, Oslo, Norway,
1970.

[Fow03] Martin Fowler. UML Distilled: A Brief Guide to the Standard Object Modeling
Language. Addison-Wesley Professional, Boston, MA, Third, 2003.

[Gal96] John Galletly. Occam 2: Including Occam 1. CRC Press, Boca Raton, FL,
1996.

report erratum • discuss

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

[Gil83] Leonard Gilman. APL: An Interactive Approach. John Wiley & Sons, New
York, NY, 1983.

[Gil94] Mikhail Gilula. The Set Model for Database and Information Systems.
Addison-Wesley, Boston, MA, 1994.

[GPP71] Ralph Griswold, J Poage, and Ivan Polonsky. The Snobol4 Programming
Language. Prentice Hall, Englewood Cliffs, NJ, 1971.

[GS91] Mikhail Gilula and Alexei Stolboushkin. Iazyk Programmirovaniia Starset
(in Russian). Nauka, Moscow, Russia, 1991.

[Hen09] Sten Henriksson. “A Brief History of the Stack”. Proc. SIGCIS 2009 Work-
shop. 2009.

[Hoa78] C.A.R. Hoare. “Communicating Sequential Processes”. Communications of
the ACM. 21:666–677, 1978.

[Hoc86] Susan Hockey. SNOBOL Programming for the Humanities. Oxford University
Press, New York, NY, 1986.

[Hol92] David Holzgang. Understanding Postscript. Sybex, Inc., Alameda, CA, 1992.

[INM84] INMOS Corp. Occam Programming Manual. Prentice Hall, Englewood Cliffs,
NJ, 1984.

[Ive62] Kenneth Iverson. A Programming Language. John Wiley & Sons, New York,
NY, 1962.

[Jon87] Geraint Jones. Programming in Occam. Prentice Hall, Englewood Cliffs, NJ,
1987.

[Kat70] Harry Katzan. APL Programming and Computer Techniques. Van Nostrand
Reinhold, New York, NY, 1970.

[Ker75] Brian Kernighan. “Ratfor—A Preprocessor for a Rational Fortran”. Software
—Practice and Experience. 5:395–406, 1975.

[Ker87] Jon Kerridge. Occam Programming: A Practical Approach. Blackwell Scien-
tific, Chichester, UK, 1987.

[Kir89] Bjorn Kirkerud. Object-Oriented Programming with SIMULA. Addison-Wesley,
Boston, MA, 1989.

[Kov10] Balás Kovács. “A Generalized Model of Relational Similarity”. Social Net-
works. 32:197–211, 2010.

[Lam83] Günther Lamprecht. Introduction to Simula 67. Springer, New York, NY,
1983.

Bibliography • 222

report erratum • discuss

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

[Leg09] Bernard Legrand. Mastering Dyalog APL: A Complete Introduction to Dyalog
APL. Dyalog Limited, Bramley, UK, 2009.

[Leg84] Bernard Legrand. Learning and Applying APL. John Wiley & Sons, New
York, NY, 1984.

[LP06] Lawrence Leemis and Stephen Park. Discrete-Event Simulation: A First
Course. Prentice Hall, Englewood Cliffs, NJ, 2006.

[Mag83] Nikolai Magariu. Iazyk Programmirovaniia APL (in Russian). Radio i Sviaz,
Moscow, Russia, 1983.

[MM80] Richard Miller and Jill Miller. “BREAKFORTH Into FORTH!”. BYTE.
150–164, 1980.

[Ost18] Roberto Ostinelli. Modern Erlang for Beginners. The Pragmatic Bookshelf,
Dallas, TX, 2018.

[Pel11] Stephen Pelc. Programming Forth. MicroProcessor Engineering Limited,
UK, 2011.

[PM87] Dick Pountain and David May. A Tutorial Introduction to OCCAM Program-
ming. INMOS Corp, Bristol, UK, 1987.

[Pol75] Raymond Polivka. APL: The Language and Its Usage. Prentice Hall, Engle-
wood Cliffs, NJ, 1975.

[Poo87] Robert Pooley. Introduction to Programming with Simula. Blackwell Scientific,
Chichester, UK, 1987.

[Rat08] Elizabeth Rather. Forth Application Techniques. FORTH, Inc., Los Angeles,
CA, 2008.

[RC07] Elizabeth Rather and Edward Conklin. Forth Programmer’s Handbook.
BookSurge Publishing, Charleston, SC, 2007.

[RCM93] Elizabeth Rather, Donald Colburn, and Charles Moore. “The Evolution of
Forth”. ACM SIGPLAN Notices. 28:177–199, 1993.

[Rei90] Clifford Reiter. APL with a Mathematical Accent. Routledge and Kegan Paul,
London, 1990.

[RM81] James Ramsey and Gerald Musgrave. APL-STAT: A Do-It-Yourself Guide to
Computational Statistics Using APL. Lifetime Learning Publications, Belmont,
CA, 1981.

[Sca82] Leo Scanlon. FORTH programming. Sams Publishing, Indianapolis, IN,
1982.

report erratum • discuss

Bibliography • 223

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

[SDDS86] Jacob Schwartz, Robert Dewar, Edward Dubinsky, and Edmond Schonberg.
Programming with Sets: An Introduction to SETL. Springer, New York, NY,
1986.

[SGG11] Abraham Silberschatz, Greg Gagne, and Peter Galvin. Operating System
Concepts. John Wiley & Sons, New York, NY, 2011.

[Ski23] Rebecca Skinner. Effective Haskell. The Pragmatic Bookshelf, Dallas, TX,
2023.

[SPVB15] René Seindal, François Pinard, Gary Vaughan, and Eric Blake. GNU M4
Reference Manual. Samurai Media, Wickford, UK, 2015.

[Tat22] Bruce Tate. Programmer Passport: Elixir. The Pragmatic Bookshelf, Dallas,
TX, 2022.

[Tat22a] Bruce Tate. Programmer Passport: Prolog. The Pragmatic Bookshelf, Dallas,
TX, 2022.

[Vic17] Steven Vickers. The Jupiter ACE Manual–35th Anniversary Edition: Forth
Programming. Acorn Books, New Harbor, ME, 2017.

[vT23] Maarten van Steen and Andrew Tanenbaum. Distributed Systems. Maarten
van Steen, Netherlands, 2023.

[Wie74] Clark Wiedmann. Handbook of APL Programming. Petrocelli Books, CA,
1974.

[Wol21] Herbert Wolverson. Hands-on Rust. The Pragmatic Bookshelf, Dallas, TX,
2021.

[Zin18] Dmitry Zinoviev. Complex Network Analysis in Python. The Pragmatic
Bookshelf, Dallas, TX, 2018.

Bibliography • 224

report erratum • discuss

http://pragprog.com/titles/dzseven/errata/add
http://forums.pragprog.com/forums/dzseven

Index

SYMBOLS
! (exclamation point)

comments in Simula, 114
logical negation in m4,

204
by overtyping, 103
“store” word in Forth, 21

!=
set comparisons in

Starset, 177
word comparisons in

Starset, 176

"" (double quotes)
arrays in Forth, 7
strings in Forth, 31
strings in m4, 200, 214
strings in Occam, 59
strings in SNOBOL, 152–

153

(hash sign)
comments in m4, 200
intersection in Starset,

177–178, 189

#>, pictured output in Forth,
35

$ (dollar sign)
assignment in SNOBOL,

155
automatic variables in
make utility, 203

indirect references in
SNOBOL, 156

macros in m4, 203
sets in Starset, 177

$#, macros in m4, 203

$0, empty sets in Starset, 177

$$, class variables in Starset,
178

$$0, empty classes in Starset,
178

$*, macros in m4, 203

$@, macros in m4, 203

% (modulo operator), m4, 204

& (ampersand)
bitwise operator in m4,

204
keywords in SNOBOL,

161
logical “and” in Starset,

189

&&, bitwise operator in m4,
204

'' (single quotes)
characters in Forth, 7, 31
characters in Simula, 115
execution tokens in

Forth, 26
strings in APL, 80
strings in m4, 200, 214
strings in SNOBOL, 152
system interaction in m4,

214
words in Starset, 174

'*', CHARACTER in Simula, 115

((left parenthesis), comments
in Forth, 2

() (parentheses)
arithmetic operations in

m4, 204
comments in Forth, 2, 7
converting values in Oc-

cam, 46
order of evaluation in

APL, 82

order of operations in
Occam, 54

pattern assignment in
Starset, 181

string concatenation in
SNOBOL, 152

system commands in
APL, 82

) (right parenthesis), system
commands in APL, 82

* (asterisk)
comments in SNOBOL,

147
multiplication in Forth, 8
multiplication in m4, 204
multiplication in Occam,

53
multiplication in Simula,

115
multiplication in Starset,

189
unevaluated expressions

in SNOBOL, 166

**
exponentiation in m4,

204
exponentiation in Simula,

115

*/, multiplication by a rational
number in Forth, 8

+ (plus sign)
addition in APL, 82
addition in Forth, 8
addition in m4, 204
addition in Occam, 53
addition in Simula, 115
addition in Starset, 189

class union in Starset,
178

set union in Starset,
177, 189

+!, “add” word in Forth, 21

, (comma)
catenation in APL, 89,

103
constants in Forth, 25
in macros in m4, 217

- (minus sign)
subtraction in APL, 82
subtraction in Forth, 8
subtraction in m4, 204
subtraction in Occam, 53
subtraction in Simula,

115

--, comments in Occam, 45

. (period)
conditional assignment

in SNOBOL, 154
dot notation for Simula

classes, 126
Forth word (dot), 5–6
identifiers in SNOBOL,

148
stack operations in Forth,

9

¨ (“double-dot” or “diaeresis”),
APL, 105

.", strings in Forth, 31

.(, comments in Forth, 3

/ (forward slash)
division in Forth, 7–8
division in m4, 204
division in Occam, 53
division in Simula, 115

//, integer division in Simula,
115

/\, BITAND in Occam, 53

: (colon)
class comprehension in

Starset, 178
compile mode in Forth,

26
defining words in Forth,

11
definitions in Occam, 45,

47, 51
labels in APL, 97
procedures in Occam, 62
set comprehension in

Starset, 178

:(...) syntax, labels in
SNOBOL, 151

:-, assignment operator in
Simula, 116

::, counted arrays in Occam,
60

:=, assignment operator in
Simula, 116

; (semicolon)
comments in Simula, 114
compile mode in Forth,

26
defining words in Forth,

11

<
relational operator in

APL, 83
relational operator in

Forth, 13
relational operator in m4,

204
relational operator in Oc-

cam, 53
relational operator in

Simula, 115

<#, pictured output in Forth,
35

<<
shift in m4, 204
shift in Occam, 53

<<=, word comparisons in
Starset, 176

<=
relational operator in

Forth, 13
relational operator in m4,

204
relational operator in Oc-

cam, 53
relational operator in

Simula, 115
word comparisons in

Starset, 176

<>
relational operator in

Forth, 13
relational operator in Oc-

cam, 53
relational operator in

Simula, 115
word comparisons in

Starset, 176

=
relational operator in

APL, 83
relational operator in

Forth, 13
relational operator in m4,

204

relational operator in Oc-
cam, 53

relational operator in
Simula, 115

set comparisons in
Starset, 177

word comparisons in
Starset, 176

==
relational operator in

Simula, 115
word comparisons in

Starset, 176

>
relational operator in

APL, 83
relational operator in

Forth, 13
relational operator in m4,

204
relational operator in Oc-

cam, 53
relational operator in

Simula, 115

><, XOR in Occam, 53

>=
relational operator in

Forth, 13
relational operator in m4,

204
relational operator in Oc-

cam, 53
relational operator in

Simula, 115

>>
shift in m4, 204
shift in Occam, 53

? (question mark), functions
in APL, 82

@ (at sign)
“fetch” word in Forth, 21
pattern matching in

SNOBOL, 155

[..], Starset pattern, 180

[] (brackets)
indexes in APL, 86, 88
variables in Occam, 46

\ (backslash)
class difference in

Starset, 178
comments in Forth, 2
regular expressions in

m4, 211
remainder in Occam, 53
set difference in Starset,

177

Index • 226

\&, regular expressions in m4,
211

\/, BITOR in Occam, 53

\<, word position in regular
expressions in m4, 211

\>, word position in regular
expressions in m4, 211

^ (caret), concatenation in
word patterns in Starset,
179

^^N, string multiplication in
Starset, 176

_ (underscore), Forth num-
bers, 6

` (backtick), strings in m4,
200

{} (braces)
comments in Forth, 3
replacement in SNOBOL,

152
sets in Starset, 177, 181

| (bar)
bitwise operator in m4,

204
comments in SNOBOL,

147
logical “or” in Starset,

189
patterns in SNOBOL, 154

||, bitwise operator in m4, 204

~ (tilde)
BITNOT in Occam, 53
bitwise negation in m4,

204
negation in SNOBOL, 159
NOT operator in APL, 84

¬
negation in SNOBOL, 159
negation in Simula, 115

¬=, relational operator in
Simula, 115

×, multiplication in Simula,
115

÷, integer division in Simula,
115

π
π-calculus, xix, 44
○ multiplication by π

function in APL, 78,
108

approximations of, 9
Forth, 15

←, assignment in APL, 81

↑
exponentiation in Simula,

115
take in APL, 92, 103

→, exiting APL editor, 96

↓, drop in APL, 92, 100, 103

∀, “for all” quantifier in
Starset, 176

∃, “exists” quantifier in
Starset, 176

∇ (“nabla” or “del”), APL func-
tions, 94, 96

∘.op, APL, 104

∧
AND operator in APL, 84,

92
conjunction in Simula,

115

∨
disjunction in Simula,

115
OR operator in APL, 84,

92

≠
relational operator in

APL, 83
relational operator in

Simula, 115

≡
relational operator in

APL, 83
relational operator in

Simula, 115

≢, relational operator in APL,
84

≤
relational operator in

APL, 83
relational operator in

Simula, 115

≥
relational operator in

APL, 83
relational operator in

Simula, 115

⊃, implication in Simula, 115

⊖ (reverse), APL, 104

⊤ (representation), APL, 108

⊥ (base value), APL, 108

⌈ (maximum) and reduction in
APL, 92

⌊ (minimum) and reduction in
APL, 92

⌶ (system interaction), APL,
108

⌹ (“domino”), APL, 106

⌽ (rotation), APL, 100, 104

⍉ (transposition), APL, 91

⍋, grade-up sorting in APL,
107

⍒, grade-down sorting in APL,
107

⍝ (thumbnail), comments in
APL, 81

⍞ (“quote-quod”) system vari-
able, APL, 93

⍱ (NOR) operator in APL, 84,
92

⍲ (NAND) operator in APL, 84,
92

ι (index-of function), APL, 86

ι (iota), vector creation in APL,
85

⍴A (rho)
calculating shape in APL,

88
reshaping arrays in APL,

86–89

⎕ (quad) system variable, APL,
93, 96

⎕CT (comparison tolerance)
variable in APL, 83

⎕IO system variable in APL, 85

⎕: (read prompt), APL, 93

○ multiplication by π function
in APL, 78, 108

⨂, loops in Starset, 189

DIGITS
$0, macros in m4, 203

0<, number comparisons in
Forth, 12

0<=, number comparisons in
Forth, 12

0<>, number comparisons in
Forth, 12

0=, number comparisons in
Forth, 12

0>, number comparisons in
Forth, 12

0>=, number comparisons in
Forth, 12

1+, increments in Forth, 9

1-, decrements Forth, 9

2!, “store” word in Forth, 21

2*, doubling in Forth, 9

2-variables, Forth, 21

2/, halving in Forth, 9

Index • 227

22/7 approximations of π, 9

2>R, stack operations in
Forth, 11

2@, “fetch” word in Forth, 21

2CONSTANT, Forth, 15

2DROP, stack operations in
Forth, 9

2DUP, stack operations in
Forth, 9

2OVER, Forth, 10

2R>, stack operations in
Forth, 11

2R@, stack operations in
Forth, 11

2ROT, Forth, 10

2SWAP, Forth, 10

2VARIABLE, Forth, 21

3.14159 approximations of π,
9

355/113 approximations of
π, 9

A
A language, 79

A++ language, 79

[aA(w)], Starset pattern, 180

ABORT
Forth, 28
SNOBOL, 158

ABORT", Forth, 28

ABS, Forth, 9

absolute value
APL, 82
Forth, 9

ACCEPT, Forth, 32

action processes, Occam, 48–
49

active processes, Simula, 137

Ada, 43

“add” word (+!), in Forth, 21

addition
APL, 82
Forth, 8
m4, 204
Occam, 53
Simula, 115
Starset, 189

adjacency matrices, 110

adjustment, Forth, 33

AFTER, Occam, 55

AGAIN, Forth, 16

Agda, 80

ALGOL, see also Simula
compound statements,

114
development of, 113
Elbrus-1 supercomputer

and, xiii
Hello, world!, 114

ALGOL-60, see also Simula
arithmetic operations,

115
case and, 114
Pascal and, 31
Simula-67 and, 113

ALGOL-68, xiii

ALL, Starset, 176

ALLOT, Forth, 23

&ALPHABET, SNOBOL, 161

ALT, Occam, 56

ampersand (&)
bitwise operator in m4,

204
keywords in SNOBOL,

161
logical “and” in Starset,

189

anarchic protocols, 59

&ANCHOR, SNOBOL, 161

AND
APL, 84, 92
Forth, 13
Occam, 53
Simula, 115

ANS Forth, 4

ANY
Occam, 59
SNOBOL, 157

[Any(w)], Starset pattern, 180

APL
about, xvii
arrays, data type, 80
arrays, operations, 83,

85–93, 101–108
arrays, vectorized opera-

tions, 83
branching, 95, 97–101
character set, 77–79
chessboard example, 86–

89, 95
data types, 80–82
development of, 77
flow control, 95, 97–101
functions, 82, 94–97, 108
GNU implementation, xix
Hello, world!, 89, 93, 105
input/output, 93–94

interpreters and compil-
ers, xix

keyboard layout, activat-
ing, 79

keyboards for, 78
linear algebra, 104–107
reading list, 111
repository, xix
right associativity, 82
scalar data type, 80
scalar operations, 82–84
similarity network exam-

ple, 109–111
workspaces, 81, 108

APL\360, 77, 91

APPLY, SNOBOL, 157

ARB, SNOBOL, 158

ARBNO, SNOBOL, 157

Aristotle, 113

arithmetic operations
APL, 82
Forth, 8
m4, 204
Occam, 47, 53
Simula, 115
SNOBOL, 151, 167
Starset, 176, 189

ARRAY, SNOBOL, 162

array protocols, 59

arrays
APL data type, 80
APL operations, 83, 85–

93, 101–108
array protocols, 59
branching, 98
catenating in APL, 89,

103
counted arrays, 59
execution vectors in

Forth, 27
Forth, 4, 7, 23–27
Fortran, 85
Occam, 57, 59
rank, 83
raveling in APL, 89
reshaping in APL, 86–89
segments, 58
Simula, 117
size of in Forth, 23
size of in Occam, 58, 60
SNOBOL, 157, 162, 164
vectorized operations in

APL, 83

assigned GOTO statements,
118

assignment
APL, 93

Index • 228

Occam, 49
Simula, 116, 119, 123
SNOBOL, 148–149, 152,

154
Starset, 179, 181

asterisk (*)
comments in SNOBOL,

147
multiplication in Forth, 8
multiplication in m4, 204
multiplication in Occam,

53
multiplication in Simula,

115
multiplication in Starset,

189
unevaluated expressions

in SNOBOL, 166

AT-XY, Forth, 39

at sign (@)
“fetch” word in Forth, 21
pattern matching in

SNOBOL, 155

atomic patterns, Starset,
179, 181

attached coroutines, Simula,
133

AWK, 199

axis modifiers, APL, 101

B
B language, 43

backslash (\)
class difference in

Starset, 178
comments in Forth, 2
regular expressions in

m4, 211
remainder in Occam, 53
set difference in Starset,

177

backtick (`), strings in m4,
200

BAL, SNOBOL, 158

bar (|)
bitwise operator in m4,

204
comments in SNOBOL,

147
logical “or” in Starset,

189
patterns in SNOBOL, 154

base value (⊥), APL, 108

BASIC
Forth integration, 38
loops, 19

BEEP, Forth and Basic, 38

BEGIN
Forth, 16
Simula, 114, 120, 132

Bezzel, Max, 192

bipartite networks, 109

BITAND, Occam, 53

BITNOT, Occam, 53

BITOR, Occam, 53

bits, number of in a byte, 23

bitwise operations
Forth, 13
m4, 204
Occam, 53

BL, Forth, 31

BLANK, Forth, 24

Blanks(n), Simula, 116, 123

blocks, prefixed in Simula,
132

BOOL, Occam, 45

BOOLEAN, Simula, 115

BOOLEAN Draw(), Simula, 136

BOOLEAN EMPTY, Simula, 137

Booleans
APL, branching, 100
APL, operations, 84
Forth, operations, 12
Forth, values, 7
Occam, data types, 45
Occam, guards, 56
Occam, initializing flags,

64
Occam, operations, 54
Occam, repetitive process-

es, 52
Simula, data types, 115
Simula, operations, 116
Simula, set size, 137
Starset, operations, 175

braces ({})
comments in Forth, 3
replacement in SNOBOL,

152
sets in Starset, 177, 181

brackets ([])
indexes in APL, 86, 88
variables in Occam, 46

branching
APL, 95, 97–101
empty arrays, 98
unconditional, 98

BREAK, SNOBOL, 157

[break(w)], Starset pattern, 180

bubble sort, 67

Budne, Phil, xix

BUFFER, Forth, 23

buffers
Forth, 23, 32, 36–37
scratchpad in Forth, 32
Simula, 120, 123
SNOBOL, 168

builtin(), m4, 208

BY key, Starset, 184

BYE, Forth, 4, 28

BYTE, Occam, 45

ByteFile, Simula, 123

bytes, number of bits in, 23

C
C language

goto statement, 99
preprocessors, 198

C", strings in Forth, 31

C, (C-comma), character ar-
rays in Forth, 25

calculators, Reverse Polish
Notation, 5

calculus of communicating
systems (CCS), 44

CALL, Starset, 191

Call(), Simula coroutines, 134

Cancel(), Simula, 138

canonical numeric notation,
175

The Canterbury Tales, xv

capitalize(), m4, 210

CARD, Starset, 178

cardinality, sets in Starset,
178

caret (^), concatenation in
word patterns in Starset,
179

carriage return, Forth, 3

CASE
Forth, 15
Occam, 55, 61

case
ALGOL, 114
APL labels, 97
APL variables, 81
Forth words, 3
m4, 210
Occam reserved words,

48
Simula, 114
SNOBOL, 148, 169

CATCH, Forth, 29–30

Index • 229

catenation
APL, 89, 103
vs. concatenation, 89

CCS (calculus of communicat-
ing systems), 44

CDC computers, 113, 147

ceiling function, APL, 82

CELL, Forth, 22

CELL+, Forth, 22

CELL-, Forth, 22

CELLS, Forth, 22

CHAN, Occam, 48, 59

CHAN OF, Occam, 59

CHAN OF BYTE, Occam, 62

changequote, m4, 214

channels, Occam
assignment processes, 50
channel mobility and
π-calculus, 44

message passing, 47
procedures and, 62
process replication, 64
protocols, 48, 59–61
timers and processes, 55–

57
transputers and, 43
virtual, 53

CHAR, Forth, 31

char(n), Simula, 115

CHAR+, Forth, 22

CHAR-, Forth, 22

[CHAR], Forth, 31

CHARACTER, Simula, 115

characters
APL, character set, 77–79
APL, sorting, 107
Forth, operations, 22,

31, 35
m4, replacing, 210
Occam, 45
Simula, 115
SNOBOL, matching in,

158

CHARS, Forth, 22

Chaucer, Geoffrey, xv

chess
APL chessboard example,

86–89, 95
Starset eight queens

problem, 192–195

CHOICE, Starset, 190

cim, xix

circular functions, APL, 108

CISCs (complex instruction
set computers), 44

class inheritance, Simula,
128–132

classes
Simula, 123, 125–132,

136
Starset, 178, 183–186

CLEAR, Simula, 137

Close(), Simula, 123

CLOSE-FILE, Forth, 37

CLS, Forth and BASIC, 38

CMOVE, Forth, 33

CMOVE>, Forth, 33

COBOL, xvi

code
generation with preproces-

sors, 197
understanding of and ob-

scure language skills,
xv

colon (:)
class comprehension in

Starset, 178
compile mode in Forth,

26
defining words in Forth,

11
definitions in Occam, 45,

47, 51
labels in APL, 97
procedures in Occam, 62
set comprehension in

Starset, 178

colors, Forth, 15

combination function, APL,
82

comma (,)
catenation in APL, 89,

103
constants in Forth, 25
in macros in m4, 217

COMMENT, Simula, 114

comments
APL, 81
Forth, 2, 7
m4, 199
Occam, 45
Simula, 114
SNOBOL, 147
Starset, 174

comparator(), Occam, 66

COMPARE, Forth, 33

comparison operations,
see relational operations

compilers
about, xviii
APL, xix
Forth, xix
m4, xix
Occam, xix, 44
Simula, xix
SNOBOL, xix
Starset, xix, 173, 186

complex instruction set com-
puters (CISCs), 44

complex numbers, APL, 80

compound statements
ALGOL, 114
Simula, 114
Starset, 186

compression, arrays in APL,
90, 98

computable GOTO statements,
118

concatenation
vs. catenation, 89
class inheritance in Sim-

ula, 128
string concatenation in

Starset, 176
string/variable concatena-

tion in SNOBOL, 152
word patterns in Starset

(^), 179

concurrency, see also paral-
lelism

deadlocks, 52, 57, 74
Erlang and, 52

conditionals
Forth, 13–16
m4, 205–207
Occam, 54–57
Simula, 118
SNOBOL, 149, 154
Starset, 182, 186, 190

connections, Simula, 126

CONST, Occam, 47

CONSTANT, Forth, 15

constants
Forth, 15, 31
Occam, 47
pseudo-constants, 15

construction processes, Oc-
cam, 48, 50–57

CONVERT, SNOBOL, 164

cooperative multitasking, 134

COPY, SNOBOL, 157

Copy(s), Simula, 116

CopyTextFile(), Simula, 123

Index • 230

coroutines
Python, 134
Simula, 133–135, 137

counted arrays, 59

coupling, multiple inheritance
and, 128

CR (Forth), 3

CREATE, Forth, 23

CREATE INDEX, Starset, 183, 188

CREATE-FILE, Forth, 36

CSNOBOL4, xix

⎕CT (comparison tolerance)
variable in APL, 83

cursor position, pattern
matching in SNOBOL, 155

CUT, Starset, 177

D
D+, addition in Forth, 8

D-, subtraction in Forth, 8

D., displaying numbers in
Forth, 35

D.R, displaying numbers in
Forth, 35

D0=, number comparisons in
Forth, 12

D<, relational operator in
Forth, 13

DABS, Forth, 9

DATA, SNOBOL, 164

data sets, Simula, 123

data stack, 2, 6

DATA TYPE, Occam, 46

data types
APL, 80–82
Forth, 6
Occam, 45
Simula, 114–118
SNOBOL, 162–166
Starset, 174–186

databases
data persistency in

Starset, 185
Starset mapping concept,

178

DATATYPE, SNOBOL, 166

DATE, SNOBOL, 157

deadlocks
defined, 52, 74
Occam, 52, 57, 74

deal function, APL, 82

DEC PDP-7, 43

decr(), m4, 204

DEFER, Forth, 27

DEFINE, SNOBOL, 160

define(), m4, 199

“del” (∇), APL functions, 94,
96

delays, timers in Occam, 55

DELCLASS, Starset, 186, 188

)DELETE, APL, 109

DELETE-FILE, Forth, 36

DELSET, Starset, 186, 188

DELWORD, Starset, 186, 188

DESC
indexing classes in

Starset, 184
loops in Starset, 187

Detach
Simula coroutines, 134
SNOBOL, 168

detached coroutines, Simula,
133

“diaeresis” (¨), APL, 105

diamond problem, 128

dictionaries, Forth words, 4,
11, 20

DIFFER, SNOBOL, 159

digit(c), Simula, 115

digital humanities, see al-
so SNOBOL

defined, 169
development of, xviii, 147
Shakespeare text analysis

example, 169–172

Dijkstra, Edsger, 2, 97

dining philosophers example
in Occam, 71–75

DirectFile, Simula, 123

DirectFileByteFile, Simula, 123

Discrete-Event Simulation, 145

distributed termination, pro-
cesses, 68

distribution
Erlang, 136
exponential, 139
Gaussian, 139
normal, 139

diversion, m4, 212–213

divert(), m4, 205, 212

division
APL, 82, 106
Forth, 7–8
m4, 204
matrices, 106
Occam, 53

Simula, 115
SNOBOL, 151

divnum(), m4, 212

DMAX, Forth, 9

DMIN, Forth, 9

DNEGATE, Forth, 9

dnl, m4, 200, 205

DO
compound statements in

Starset, 183
INSPECT in Simula, 127,

132
loops in Starset, 186

?DO LOOP, Forth, 18

DO-LOOP, Forth, 18–19

documentation, Forth words,
7

dollar sign ($)
assignment in SNOBOL,

155
automatic variables in
make utility, 203

indirect references in
SNOBOL, 156

macros in m4, 203
sets in Starset, 177

“domino” (⌹), APL, 106

dot notation, Simula classes,
126, see also period

double precision numbers
(DPNs), Forth, 6, 8, 34

“double-dot” (¨), APL, 105

DRAW, Forth and BASIC, 38

Draw(), Simula, 136

DRIVE, Starset, 188

drivers, Starset functions,
192

DROP
stack operations in Forth,

9
Starset, 185

drop (↓), APL, 92, 100, 103

DROP INDEX, Starset, 184, 188

DUMP
Forth, 24
SNOBOL, 161

?DUP
Forth, 13
stack operations in Forth,

9

DUPL, SNOBOL, 156–157

dyadic functions, 82

Index • 231

dyalog, xix

dynamic dispatch, virtual
procedures in Simula, 129

E
e, natural logarithms, 9

⍎E (“unquote”), APL, 107

EBCDIC (Extended Binary
Coded Decimal Interchange
Code), 80, 115

edit functions, APL, 96

editor, APL, 96

eight queens problem, 192–
195

EKEY, Forth, 36

EKEY?, Forth, 36

Elbrus-1, xiii

Elixir, xvi, 209

ELSE
Forth, 14
Starset, 183

Emacs regular expressions,
211

emergency room simulation,
Simula, 141–145

EMIT, Forth, 35, 39

employability, obscure lan-
guage skills and, xv

EMPTY-BUFFERS, Forth, 36

encapsulation, Simula and,
125

END
compound statements in

Simula, 114
compound statements in

Starset, 183
label in SNOBOL, 150
loops in Forth, 17
loops in Starset, 186
prefixed blocks in Simu-

la, 132
procedures in Simula,

120

end statements, SNOBOL,
149

ENDPROC, Starset, 186

equality, fuzzy, 83

equality operators, see rela-
tional operations

EQV, Simula, 115

ERASE, Forth, 24

Erlang
about, xvi
concurrency and, 52

loops, 12
tail recursion, 209
Tk graphical user inter-

face, 38

Erlang distribution, Simula,
136

Erlang() method, Simula, 136

errors
conditional processes in

Occam, 54
exception handling in

Simula, 127
handling in Forth, 28–30
handling in m4, 207, 217
indexes in Starset, 184
linear algebra in APL, 106
procedures in Occam, 62

errprint(), m4, 207

esyscmd(), m4, 214

EVAL(), SNOBOL, 167

eval() macro, m4, 203

event queues, simulations
with Simula, 136

exception frames, 29

exceptions
Forth, 28–30
Simula, 127

exclamation point (!)
comments in Simula, 114
logical negation in m4,

204
by overtyping, 103
“store” word in Forth, 21

exclusive or operations, APL,
87

EXECUTE, Forth, 26, 29

@EXECUTE, Forth, 26

execution tokens (xt), Forth,
26, 29

EXIST, Starset, 176

“exists” quantifier (∃) in
Starset, 176

EXIT, Forth, 20

expansion, arrays in APL, 90

exponential distribution,
136, 139

exponential function, APL, 82

exponentiation
m4, 204
Simula, 115

expr, SNOBOL, 167

Extended Binary Coded Deci-
mal Interchange Code
(EBCDIC), 80, 115

extensible stylesheet language
transformations (XSLT),
198

EXTERNAL, Simula, 120, 127

EXTRACT, Starset, 184–185

F
:F(...), statement failure in

SNOBOL, 151

:F(FRETURN), SNOBOL, 166

:F(RETURN), SNOBOL, 161

factorial function, APL, 82

FAIL, SNOBOL, 158

FALSE
Forth, 7
Occam, 53

fam, Forth, 36

“fetch” word in Forth, 21

Fibonacci numbers
about, 122
APL example, 100
recursion and, 21
Simula example, 121
Starset example, 191

fid, Forth, 36

fig-Forth, 4, 20

FILE-POSITION, Forth, 36

FILE-SIZE, Forth, 36

FILE-STATUS, Forth, 36

files
identifiers Forth, 36
input/output operations

in Forth, 35–37
input/output operations

in m4, 212–213
input/output operations

in SNOBOL, 168
input/output operations

in Simula, 123

FILL, Forth, 24

FILTER, Forth, 25

filters, m4 as, 199

FIND, Starset, 184, 188

finite loops
arrays and, 24
BASIC, 19
Forth, 18–19, 24
Fortran, 19

finite state automata, m4 ex-
ample, 215–218

finite state machines, see fi-
nite state automata

FIX, Forth, 25

flags, Forth, 12, 25, 28

Index • 232

floating-point numbers
Forth, 6–8
infinite, 161
m4, 204
Occam, lack of, 46
SNOBOL, 161
Starset, 174, 182

floor function, APL, 82

flow control
APL, 95, 97–101
defined, 12
Forth, 12–20
m4, 205–210
Simula, 118–120
SNOBOL, 150, 159
Starset, 183, 186–189

FLUSH-FILE, Forth, 37

Folger Shakespeare Library,
171

FOR
Occam, 66
Simula, 119

“for all” quantifier (∀) in
Starset, 176

FORM, Forth, 39

format(), m4, 203, 210

formatted output, Forth, 35

FORORD, Starset, 187

Forth
about, xvii
arrays, 4, 7, 23–27
BASIC integration, 38
comments, 2, 7
compile mode, 11, 26
conditionals, 13–16
data types, 6
development of, 2
errors and exceptions

handling, 28–30
flow control, 12–20
GNU implementation, xix
Hangman example, 38–

41
hardware and, 1–2
Hello, world!, 2–4, 9, 11
input/output operations,

35–37
interpret mode, 11
interpreters and compil-

ers, xix
loops, 16–20, 24
memory operations, 21–

26
reading list, 41
recursion, 20
repository, xix

Reverse Polish Notation,
3, 5

screens, 108
stack manipulation, 9–11
standards, 4
strings, 4, 7, 31–35
terminal controls, 38
terminating sessions, 4
variables, 21–23
vectored execution, 26–28
versions, xix
word lists, 21
words, 3–12

FORTH-79, 4, 10, 20

Fortran
array indexes, 85
computed GOTO, 119, 156
loops, 19
Ratfor, xix, 201
uses, 43

Fortran 66, xix

Fortress, 80

forward slash (/)
division in Forth, 7–8
division in m4, 204
division in Occam, 53
division in Simula, 115

FRETURN, SNOBOL, 161

friend functions, 133

function procedures
Simula, 120–123, 126
Starset, 190–192

functions
APL, 82, 94–97, 108
dyadic, 82
friend functions, 133
function procedures Sim-

ula, 120–123, 126
Lisp, 200, 208
macros as variadic func-

tions in m4, 208
monadic, 82
niladic, 82, 94
Occam, 62, 190
predicate functions in

SNOBOL, 159
SNOBOL, 157–161
Starset, 63, 96, 121,

190–192

)FUZZ, APL, 83

fuzz and equality, 83

G
Galileo, 107

Galileo Galilei, 77

garbage collection, Simula,
141

gated multiplexors, 56

Gaussian distribution, 139

general-purpose preproces-
sors, 198

generalized similarity algo-
rithm, 110

GET-XY, Forth, 39

GetChar, Simula, 116

GetInt, Simula, 116

GetPos, Simula, 124

GetReal, Simula, 117

gforth, xix, 4

GNU, xix

GNU APL, xix, xxi, see al-
so APL

GNU Autoconf, xix, 197

GNU Automake, 197

GNU Emacs, 211

GNU Forth, xix, xxi, see al-
so Forth

GNU m4, xxi, 199, see al-
so m4

GNU Simula, xix, xxi, see al-
so Simula

Go, 134

“Go To Statement Considered
Harmful”, 97

goroutines, 134

GOTO
ALGOL, 113
APL, 97–101
C language, 99
FORTRAN, 119, 156
Simula, 118
SNOBOL, 149–151, 161,

163

H
Hangman example, Forth, 38–

41

hardware
Forth and, 1–2
Occam and, 53, 70

hash sign (#)
comments in m4, 200
intersection in Starset,

177–178, 189

Haskell, xvi, 80, 209

haystack and needles idiom,
66

HEAD, Simula, 137

Index • 233

Heinlein, Robert, 87

Hello, world!
ALGOL, 114
APL, 89, 93, 105
Forth, 2–4, 9, 11
m4, 198
Occam, 45
Simula, 114
SNOBOL, 148
Starset, 174

HERE, Forth, 24

Heron’s method, 17

Hewlett-Packard (HP) calcula-
tors, 5

histo(), Simula, 139

histograms, 139

Hoare, Tony, 44

Hold(), Simula, 138

I
I variable, loop indexes in

Forth, 18

IBM, 80

IDENT, SNOBOL, 159

identifiers, Occam, 47

Idle(), Simula, 138

IDX/A, APL, 90

IDX\A, APL, 90

IF
Forth, 14
Occam, 54, 60
Simula, 118
Starset, 182, 190

IF-ELSE-THEN, Forth, 14

ifdef(), m4, 205

ifelse(), m4, 205, 208, 217

IFTRUE-OTHERWISE-IFEND, Forth,
14

ImageFile, Simula, 123

IMP, Simula, 115

IN
Simula, 132
Starset, 177

InByteFile, Simula, 123

INCLUDE
Forth, 15
Occam, 45

include(), m4, 213

incr(), m4, 204, 209

indentation
development of, xviii
Occam, 47, 49–50

index generators, APL vectors,
85

index origin, APL vectors, 85

index(), m4, 210

index-of function (ι), APL, 86

indexing
APL, 85, 107
Forth, 9
Fortran, 85
m4, 210
NumPy, 88
Simula, 117
SNOBOL, 162
Starset, 183–187

indir(), m4, 207

InFile, Simula, 123

infinite loops
Forth, 16, 19
Lisp, 19
uses, 16

infinite recursion, 207

&INFINITY, SNOBOL, 161

infix notation, 5

inheritance
classes in Simula, 128–

132
multiple, 128

Inmos, 43

INPUT method, SNOBOL, 168

INPUT variable, SNOBOL, 151

input/output operations
APL, 93–94
Forth, 35–37
m4, 199, 212–213
Occam, 53
Simula, 123
SNOBOL, 168

INSERT, Starset, 184, 188

INSPECT, Simula, 126, 131–132

INT, Occam, 45

INTEGER, SNOBOL, 159

INTEGER CARDINAL, Simula, 137

integer division
Simula, 115
SNOBOL, 151

integers
APL, 80
Forth, 6, 8
m4, 203
Occam, 45
Simula, 115–116, 136
SNOBOL, 151
Starset, 174

interpreters
about, xviii
APL, xix
Forth, xix
m4, xix
Occam, xix
quitting in Forth, 28
Simula, xix
SNOBOL, xix
Starset, xix, 173, 186

intersection, Starset, 177–
178, 189

INVERT, Forth, 13

INVIS, Forth and BASIC, 38

⎕IO system variable in APL, 85

ior, Forth, 36

iota (ι), vector creation in APL,
85

IS
Forth, 27
Occam, 47
Simula, 132
Starset, 177–178, 182

ITEM, SNOBOL, 157, 162

ITERATE, Starset, 189

Iverson, Kenneth, 77, 79

J
J language, 79

J variable, loop indexes in
Forth, 18

Jupiter ACE, 38

Jupiter Cantab, 38

justification, justified num-
bers in Forth, 35

K
K language, 79

K variable, loop indexes in
Forth, 18

Kent Retargetable occam
Compiler, see KRoC

Kernighan, Brian, 199, 201

KEY, Forth, 36

key, indexing classes in
Starset, 183

key-value pairs, Starset map-
ping concept, 179

KEY?, Forth, 36

keyboards
APL, 78–79
exclamation point (!) by

overtyping, 103

keywords, SNOBOL, 161

Index • 234

Kotlin, xvi

KRoC
about, xix, 44
input/output and, 53
preprocessor, 45

L
→L, branch arrow in APL, 97

[L], Starset pattern, 180

[l], Starset pattern, 180

labels
APL, 97
Simula, 118
SNOBOL, 149–151, 156

LaTeX, 198

LE, SNOBOL, 159

least significant words
(LSWs), double precision
numbers, 6

LEAVE
Forth, 19
Starset, 189

legacy systems, obscure lan-
guage skills and, xvi

LEN, SNOBOL, 157

len(), m4, 202, 210

Length, Simula, 116

Leonardo Bonacci, see Fi-
bonacci numbers

Leonardo da Vinci, 1

letter(c), Simula, 115

letters, Starset patterns for,
180

lexical preprocessors, 197

LGT, SNOBOL, 159

)LIB, APL, 109

lifeline, 125

line breaks
APL, 80, 93
Forth, 3
m4, 199
Occam, 45
SNOBOL, 148, 153

line labels, Simula, 118

line numbers
APL, 95, 97, 103
fractional, 103

linear algebra, APL, 104–107

LINK, Simula, 137

LINKAGE, Simula, 137

Lisp
functions, 200, 208
loops, 19

macros, 200
Normal Polish Notation,

5
uses, 43

lists, simulations with Simu-
la, 136

[Ll], Starset pattern, 180

)LOAD
APL, 109
BASIC, 38
Forth, 36, 38
Starset, 188

localization, Starset, 181

logarithm functions, APL, 82

logical operations
APL, 84, 92
Forth, 12
m4, 204
Occam, 53
reduction and, 92
Simula, 115
Starset, 175–176

Logo, 38

+LOOP, Forth, 18

loops, see also infinite loops
APL, 83
BASIC, 19
Erlang, 12
exiting in Forth, 19
flow control and, 12
Forth, 16–20, 24
Fortran, 19
Lisp, 19
m4, 208
Occam, 52, 64
Simula, 118–120, 141
SNOBOL, 151, 153, 163
Starset, 186–189

LOOP, SNOBOL, 151

LSWs (least significant
words), double precision
numbers, 6

Lua, xvi

[LW], Starset pattern, 180

[Lw], Starset pattern, 180

[lw], Starset pattern, 180

M
M*, multiplication in Forth, 8

M*/, multiplication by a ratio-
nal number in Forth, 8

M+, addition in Forth, 8

m4
about, xvii
development of, 199

exiting, 207
finite state automata ex-

ample, 215–218
flow control, 205–210
Hello, world!, 198
input/output operations,

199, 212–213
interpreters and compil-

ers, xix
loops, 208
macros, 199–210
as preprocessor, 197
reading list, 218
repository, xix
system interaction, 213
text handling, 210–212
traffic light example, 215–

218
types of, 199
uses today, xvii, xix, 197

m4exit(), m4, 207

Macro SNOBOL4, xix

macros
Lisp, 200
m4, 199–210

make utility, 203

markers, distributed termina-
tion, 69

Matlab, 104

matrices
adjacency matrices, 110
APL, 101, 106

MAX
Forth, 9
Starset, 177

maximum
arithmetic in Forth, 9
maximum (⌈) and reduc-

tion in APL, 92
maximum function in

APL, 82
sets in Starset, 177

MAXL, Starset, 177

May, David, 44

memory
Forth, files, 36
Forth, operations, 21–26
Forth, stacks, 10
Occam and hardware, 71
Simula, files, 123
Simula, garbage collec-

tion, 141
Simula, text, 116
SNOBOL input/output,

168
Starset, 185

Index • 235

microcode and transputers,
44

Milner, Robin, 44

MIN
Forth, 9
Starset, 177

minicomputers, SNOBOL
and, 147

minimum
arithmetic in Forth, 9
minimum (⌊) and reduc-

tion in APL, 92
minimum function in

APL, 82
sets in Starset, 177

MINL, Starset, 177

MINUS, Occam, 53

minus sign (-)
-- for comments in Oc-

cam, 45
subtraction in APL, 82
subtraction in Forth, 8
subtraction in m4, 204
subtraction in Occam, 53
subtraction in Simula,

115

mkevent(), m4, 217

mkevents(), m4, 217

MOD, Forth, 8

Modern Erlang for Beginners,
xvi, 52

MODIFY, Starset, 184–185, 188

modules, referencing external
modules in Simula, 127

modulo operator (%), m4, 204

monadic functions, 82

Moore, Charlie “Chuck”, 2

More, Simula, 116

Morgan Stanley, 79

most significant words
(MSWs), double precision
numbers, 6

MOSTNEG, Occam, 55

MOSTPOS, Occam, 55

MOVE, Forth, 33

MSWs (most significant
words), double precision
numbers, 6

multibranch macros, m4, 205

multiple assignment, APL, 93

multiplication
APL, 82
Forth, 8

m4, 204
Occam, 53
Simula, 115
Starset, 176, 189

multitasking, Simula corou-
tines, 133–135, 137

MYSELF, Forth, 20

N
\N, regular expressions in m4,

211

*n
line breaks in Occam, 45
macros in m4, 203

[N], Starset pattern, 180

“nabla” (∇), APL functions,
94, 96

NAME, Simula, 121

named processes, see proce-
dures

naming conflicts, connections
in Simula, 126

&NAN, SNOBOL, 161

NAND (⍲), APL, 84, 92

natural logarithm function,
APL, 82

needle in haystack idiom, 66

NEGATE, Forth, 9

NegExp(), Simula, 136

networks
bipartite, 109
complex, 109
similarity network exam-

ple in APL, 109–111

Newell, Allen, 2

newlines, see line breaks

niladic functions, 82, 94

Nim, 134

NLTK Python library, 170

non-preemptive multitasking,
134

NOR (⍱), APL, 84, 92

normal distribution, 139

Normal Polish Notation (NPN),
5

NOT
APL, 84
Forth, 13
Occam, 53
Simula, 115

NOTANY, SNOBOL, 157

[Notany(w)], Starset pattern,
180

NOTEXT, Simula, 116

NPN (Normal Polish Notation),
5

NUM keyword
indexing classes in

Starset, 184
loops in Starset, 187

[Num], Starset pattern, 180

>NUMBER, Forth, 34

numbers, see also floating-
point numbers; random
numbers

APL, 80
canonical numeric nota-

tion, 175
complex, 80
converting to strings in

Forth, 34
evaluating most nega-

tive/positive in Occam,
55

Forth, 6, 8, 34
m4, 204
Occam, 45, 55
random, 82, 136
Simula, 115, 117, 136
SNOBOL, 151, 159
Starset, 174–176, 180
Starset patterns for, 180,

182

NumPy, 12, 88

O
object-oriented programming,

see also Simula
development of, xviii, 113
Simula, 125–133

objects, pattern matching in
SNOBOL, 149, 152

obscure languages
numbers of, xvi
peaks and declines table,

xvii
popularity of in TIOBE

Index, xvi
reasons to learn, xv, xviii

Occam, see also channels,
Occam; processes, Occam

about, xvii
arrays, 57, 59
comments, 45
configuring programs, 69
data types, 45
development of, 44
dining philosophers exam-

ple, 71–75
functions, 62, 190

Index • 236

Hello, world!, 45
interpreters and compil-

ers, xix, 44
procedures, 62–64, 190
reading list, 75
repository, xix
tables, 58
transputers and, 43
uses, 43

Occam-π, xix, 44

ON, Starset, 182, 190

Online Historical Encyclopae-
dia of Programming Lan-
guages, xvi

Open Firmware, 1

Open(), Simula, 123

OPEN-FILE, Forth, 36

Operating System Concepts,
57

OR
APL, 84, 92
Forth, 13
Occam, 53
Simula, 115

order
alternative channels in

Occam, 56
Boolean operations in

APL, 84
evaluation order in APL,

82
indexing classes in

Starset, 183
loops in Starset, 188
operations in Occam, 54
processes in Occam, 51,

69
sets in Starset, 179

)ORIGIN workspace indicator in
APL, 85

OTHERWISE, Simula, 127

OutByteFile, Simula, 123

OutFile, Simula, 123

OutImage(), Simula, 120

OutInt(), Simula, 120

OUTPUT method, SNOBOL, 168

OUTPUT variable, SNOBOL,
150, 155

OVER, Forth, 10

overflow, Forth and, 8

P
PAD, Forth, 33

PAGE, Forth, 39

PAR, Occam, 51, 66

parallel processes, Occam,
51–52, 66, 70

parallelism
about, 52
Occam, 51–52, 66, 70
process replicators in Oc-

cam, 66
set-oriented languages,

173
Starset, 188–189
term, 189

parameters
functions vs. parameters

in Starset, 190
passing in Occam, 62
procedures in Simula,

120
user-defined functions in

SNOBOL, 160

parentheses (())
arithmetic operations in

m4, 204
comments in Forth, 2, 7
converting values in Oc-

cam, 46
order of evaluation in

APL, 82
order of operations in

Occam, 54
pattern assignment in

Starset, 181
string concatenation in

SNOBOL, 152
system commands in

APL, 82

Pascal, 31

Passivate(), Simula, 138

passivation
Simula, 137
Starset, 190

patsubst(), m4, 210–211

pattern matching
assigning patterns, 179,

181
atomic patterns, 179, 181
SNOBOL, 147–149, 152–

156, 169
Starset, 177, 179–183

period (.)
conditional assignment

in SNOBOL, 154
dot notation for Simula

classes, 126
Forth word (dot), 5–6, 9
identifiers in SNOBOL,

148

PERM II, 2

pi (π)
π-calculus, xix, 44
○ multiplication by π

function in APL, 78,
108

approximations of, 9
Forth, 15

PI constant, Forth, 15

PICK, Forth, 10

pictured output, Forth, 35

PL/I, 80

PLACED, Occam, 70

PLOT, Forth and BASIC, 38

PLUS, Occam, 53, 55

plus sign (+)
addition in APL, 82
addition in Forth, 8
addition in m4, 204
addition in Occam, 53
addition in Simula, 115
addition in Starset, 189
class union in Starset,

178
set union in Starset,

177, 189

Poincaré, Henri, 173

Poisson distribution, Simula,
136

Poisson(), Simula, 136

popdef(), m4, 209

PORT, Occam, 70

ports, Occam, 70

Pos, Simula, 116

POS(), SNOBOL, 157

[Pos(k)], Starset pattern, 180

POSIX
Pthreads, 134
regular expressions, 211

post-casting, values in Oc-
cam, 46

post-testing loops, Forth, 17

power function, APL, 82

pre-casting, values in Occam,
46

pre-testing loops, Forth, 17–
18

predicate functions, SNOBOL,
159

prefixed blocks, Simula, 132

preprocessors
defined, 197
general-purpose, 198

Index • 237

KRoC, 45
lexical, 197
m4 as, 197
SNOBOL as, 198
syntactic, 198

PRI, Occam, 70

printouts
APL, 93
SNOBOL, 161

prioritization, processes, Oc-
cam, 69

problem-solving, obscure
language skills and, xv

PROC
Occam, 62
Starset, 186

procedures
Occam, 62–64, 190
Simula, 120–123, 126,

129
Starset, 63, 174, 186,

190
virtual, 129

Process, Simula, 137

processes
π-calculus, 44
defined, 137
Simula, 137

processes, Occam
action, 48–49
basics, 48–57
compilation units, 61–64
conditional, 54–57
construction, 48, 50–57
defined, 48
distributed termination,

68
order of execution, 51, 69
parallel, 51–52, 66, 70
placing, 70
repetitive, 52
replicating, 64–68
sequential, 50
sharing variables and, 47
skipping, 48
special, 48
vs. statements, 48
stopping, 48
value processes, 62

processes, named, see proce-
dures

PROCESSOR, Occam, 70

Programming Erlang, xvi

“A Programming Language”,
77

Prolog, 12, 209

PROTOCOL, Occam, 60

protocols
anarchic, 59
array protocols, 59
defined, 59
Occam channels, 48, 59–

61
sequential, 60
tag-only, 60
variant, 60

prototypes
arrays in SNOBOL, 162
user-defined functions in

SNOBOL, 160

pseudo-constants, Forth, 15

Pthreads, 134

PUNCH, SNOBOL, 150

pushdef(), m4, 209

PutChar, Simula, 116

PutFix, Simula, 117

PutInt, Simula, 117

PutReal, Simula, 117

Python
coroutines, 134
loops, 12
stopwords, 170
Tk graphical user inter-

face, 38
Turtle graphics, 38

Q
quad (⎕) system variable, APL,

93, 96

qualifications, Simula, 114

question mark (?), functions
in APL, 82

QUIT
Forth, 28
Starset, 189–190

“quote-quod” (⍞) system vari-
able, APL, 93

quotes, double ("")
arrays in Forth, 7
strings in Forth, 31
strings in m4, 200, 214
strings in Occam, 59
strings in SNOBOL, 152–

153

quotes, single ('')
characters in Forth, 7, 31
characters in Simula, 115
execution tokens in

Forth, 26
strings in APL, 80
strings in m4, 200, 214

strings in SNOBOL, 152
system interaction in m4,

214
words in Starset, 174

R
.R, displaying numbers in

Forth, 35

>R
recursion in Forth, 20
stack operations in Forth,

11

R>
recursion in Forth, 20
stack operations in Forth,

11

R@, stack operations in Forth,
11

R/O, Forth, 36

RAM, Occam, 71

RandInt(), Simula, 136

random numbers
APL, 82
simulations with Simula,

136

rank
APL, 83, 106
arrays, 83
matrices, 106

rank(c), Simula, 115

Rapira (Rapier), xiii

Ratfor, xix, 201

ravel, APL, 89

(RE)ACTIVATE, Simula, 138

READ, Starset, 186, 188

read prompt (⎕:), APL, 93

READ-FILE, Forth, 37

READ-LINE, Forth, 37

reading
files in Forth, 36
files in SNOBOL, 168
files in Simula, 123

reading lists
about, xx
APL, 111
Forth, 41
m4, 218
Occam, 75
Simula, 145
SNOBOL, 172
Starset, 195

REAL, Simula, 115

REAL NegExp(), Simula, 136

Index • 238

real numbers
APL, 80
Occam, 45
Simula, 115, 117, 136

REAL Uniform(), Simula, 136

REAL32, Occam, 45

REAL64, Occam, 45

RECORD, Occam, 46

RECUR, Forth, 20

recursion
APL, 95
avoiding, 21
Forth, 20
infinite, 207
m4, 206–209
SNOBOL, 160–161, 167
Starset, 190, 192
tail, 12, 208

RECURSIVE, Forth, 20

reduction
APL, 90–91, 101
Starset, 92

REF, Simula, 116, 123

REF (LINK), Simula, 137

regexp(), m4, 210–212, 217

regular expressions
Emacs, 211
m4, 210–212, 217
POSIX, 211
Starset, 179

relational operations
APL, 83
Forth, 12
m4, 204
Occam, 53
Simula, 115
SNOBOL, 159
Starset, 176
string comparison in

Forth, 33

REM
Occam, 53
SNOBOL, 159

remainder function
APL, 82
m4, 204
Occam, 53
SNOBOL, 157

REMDR, SNOBOL, 157

RENAME-FILE, Forth, 36

REPEAT, Forth, 17–18

repetitive processes, Occam,
52

REPLACE, SNOBOL, 157

replacement
m4, 210–211
SNOBOL, 149, 152

representation (⊤), APL, 108

REQUIRE, Forth, 30

RESIZE-FILE, Forth, 36

respecification, APL, 81

RESULT, Occam, 63

Resume(), Simula coroutines,
134

resumed coroutines, Simula,
133

RETURN, SNOBOL, 161

return stack, 2, 6

reverse (⊖), APL, 104

Reverse Polish Notation
(RPN), Forth, 3, 5

rho (⍴A)
calculating shape in APL,

88
reshaping arrays in APL,

86–89

right associativity, APL, 82

Ritchie, Dennis, 199, 201

ROT, Forth, 10

-ROT, Forth, 10

rotation (⌽), APL, 100, 104

RPN (Reverse Polish Nota-
tion), Forth, 3, 5

RPOS, SNOBOL, 157

[Rpos(k)], Starset pattern, 180

RSORT, SNOBOL, 163

RTAB, SNOBOL, 158

[Rtab(k)], Starset pattern, 180

runtime
index check in Simula,

117
scheduler and Occam

processes execution or-
der, 52, 69

S
*s, spaces in Occam, 45

S", strings in Forth, 31

:S(...), “goto-on-success” com-
mand in SNOBOL, 151

#S, pictured output in Forth,
35

.S, stack operations in Forth,
13

.s, stack operations in Forth,
5, 9

s3 interpreter, xix

SAVE-BUFFERS, Forth, 36

SAVE
Forth and BASIC, 38
Starset, 185, 188

)SAVE, APL, 109

Scala, 80

scalars
APL data type, 80
APL operations, 82–84

scans, APL, 102

Scheme, xvi

SCR, Forth, 36

scratchpads, Forth, 32

screens, Forth, 108

SEARCH, Forth, 33

searching
classes in Starset, 184
strings in Forth, 33

segments, Occam arrays, 58

semicolon (;)
comments in Simula, 114
compile mode in Forth,

26
defining words in Forth,

11

Sendmail, xix, 197

sentences, Simula, 114

SEQ, Occam, 50

sequence sets (SQS), simula-
tions with Simula, 136

sequential processes, Occam,
50

sequential protocols, Occam,
60

service counter simulations,
136, 138–141

set-oriented languages, see
also Starset

about, 173
SETL, 173

SETL, 173

SetPos, Simula, 116, 124

sets, see also Starset
defined, 177
simulations with Simula,

136
Starset data type, 177–

179, 186
Starset pattern matching,

181–183

Setun, xiii

setxkbmap, 79

Index • 239

Shakespeare text analysis ex-
ample, 169–172

shift(), m4, 206, 209

SIGN, pictured output in
Forth, 35

signed integers
APL, 80
Forth, 6, 8

signum function, APL, 82

similarity network example,
APL, 109–111

SIMSET, Simula, 136

Simula
about, xvii
vs. ALGOL, 124
arrays, 117
classes, 123, 125–132
classes, inheritance, 128–

132
classes, simulation, 136
comments, 114
coroutines, 133–135, 137
data types, 114–118
development of, 113
emergency room simula-

tion, 141–145
file input/output, 123
flow control, 118–120
GNU implementation, xix
Hello, world!, 114
interpreters and compil-

ers, xix
object-oriented program-

ming, 125–133
prefixed blocks, 132
procedures, 120–123,

126, 129
reading list, 145
repository, xix
service counter simula-

tion, 138–141
simulations, 135–141
statements, 114
text operations, 116

Simula-67, 113

Simulation, Simula, 136–138

simulation sets, Simula, 136

simulations
emergency room simula-

tion, 141–145
service counter simula-

tions, 136, 138–141
with Simula, 135–141

SIZE, SNOBOL, 158

SKIP, Occam, 48

:(SKP), SNOBOL, 161

Smalltalk, 114

SNOBOL
about, xvii
arrays, 157, 162, 164
comments, 147
data types, 162–166
development of, 147
flow control, 150, 159
functions, 157–161
Hello, world!, 148
input/output operations,

168
interpreters and compil-

ers, xix
keywords, 161
pattern matching, 147–

149, 152–156, 169
predicate functions, 159
as preprocessor, 198
reading lists, 172
repository, xix
Shakespeare text analysis

example, 169–172
unevaluated expressions,

166–168
uses, 43

snobol4, xix

SORT, SNOBOL, 163

sort(), Occam, 68

sorting
APL, 107
bubble sort, 67
Occam, 67–68
SNOBOL, 163

spaces, see white spaces

SPAN, SNOBOL, 157–158

[Span(w)], Starset pattern, 180

special processes, Occam, 48

specification, APL, 81

SPITBOL, xix

SQS (sequence sets), simula-
tions with Simula, 136

stack-based computing,
see Forth

stacks
data stack, 2, 6
defined, 1
exception frames, 29
Forth advantages, 1
Forth manipulation, 9–11
m4, 209
printing, 13
return stack, 2, 6
SNOBOL, 165

Starset
about, xvii

comments, 174
data types, 174–186
development of, xiv, 173
eight queens problem ex-

ample, 192–195
flow control, 183, 186–

189
functions, 63, 96, 121,

190–192
Hello, world!, 174
interpreters and compil-

ers, xix, 173, 186
loops, 186–189
pattern matching, 177,

179–183
procedures, 63, 174,

186, 190
reading lists, 195
reduction, 92
repository, xix
subroutines, 174, 190–

192
words, data type, 174–

179, 186
words, pattern matching,

179–182

state
finite state automata ex-

ample in m4, 215–218
state transition diagrams,

216

state transition diagrams, 216

statements
Occam, 48
Simula, 114
SNOBOL, 149

STATUS error, Starset, 184

&STNO, SNOBOL, 161

STOP, Occam, 48

stopwords, 170

“store” word in Forth, 21

storing
arrays in Forth, 23
variables in Forth, 21

streams, m4, 214

/STRING, Forth, 33

string-oriented and symbolic
language, see SNOBOL

strings
adjustment in Forth, 33
APL, comparison, 84
APL, data type, 80
APL, interpreting, 107
APL, manipulation, 103
converting in Forth, 34

Index • 240

converting in SNOBOL,
156, 164

counted strings in Forth,
31

Forth, 4, 7, 31–35
length and Simula, 123
length and address in

Forth, 4, 7, 31
m4, 200, 204, 210
Occam, 59
Simula, 116, 123
SNOBOL, 152–161, 164
Starset, 175–177
string comparison in

Forth, 33
string comparison in

Starset, 176
trimming in Forth, 33

Strip, Simula, 116

sts, Forth, 36

Sub, Simula, 116

subjects, pattern matching in
SNOBOL, 149

subroutines, Starset, 174,
190–192

substr(), m4, 210

subtraction
APL, 82, 115
Forth, 8
m4, 204
Occam, 53
Simula, 115

Suffolk Starset, xix, 186

Sun Microsystems, 1

suspended processes, Simula,
137

SWAP, Forth, 10

swap(), Simula, 122

SWITCH, Simula, 118

symbols, Starset patterns for,
180

sync tag, Occam, 61

syntactic preprocessors, 198

syscmd(), m4, 213

system interaction
APL (⌶), 108
m4, 213

T
TAB, SNOBOL, 158

[Tab(k)], Starset pattern, 180

TABLE, SNOBOL, 163

tables
Forth, 25

Occam, 58
SNOBOL, 162–164

tag-only protocols, 60

tail recursion, 12, 208

take (↑), APL, 92, 103

Tcl (Tool Command Lan-
guage), 175

templates, set patterns in
Starset, 181

term, SNOBOL, 167

terminal, controls in Forth,
38

terminated coroutines, Simu-
la, 133

terminated processes, Simula,
137

Terminated(), Simula, 138

tesseracts, 86

TeX, 198

text
m4 processing, 210–212
preprocessors, 197
Simula objects, 116
Simula operations, 116
SNOBOL pattern match-

ing, 147–149, 152–
156, 169

SNOBOL Shakespeare
text analysis example,
169–172

syntactic preprocessors,
198

text descriptors, Simula, 116

TEXT type, Simula, 116

THEN, Forth, 14

THIS, Simula, 131

THROW, Forth, 29–30

thumbnail (⍝), comments in
APL, 81

TI-BASIC, 80

tilde (~)
BITNOT in Occam, 53
bitwise negation in m4,

204
negation in SNOBOL, 159
NOT operator in APL, 84

TIME
Occam, 55
pattern matching in

SNOBOL, 158

time
built-in timers in Occam,

55

modulo operators in Oc-
cam, 53

simulation time in Simu-
la, 138

Time(), Simula, 138

timeouts, Occam, 56

TIMER, Occam, 55

timers, conditional processes
in Occam, 55–57

TIMES, Occam, 53

TIOBE Index, xvi

Tk graphical user interface,
38

TO, Forth, 15

Tool Command Language
(Tcl), 175

traffic light example, 215–218

-TRAILING , Forth, 33

transition(), m4, 217

translit(), m4, 210

transpilers, 197

transposition, arrays in APL,
91

transputers, 43

&TRIM, SNOBOL, 161

TRUE
Forth, 7
Occam, 53

Turing, Alan, 2

Turing, Seindal, 197

Turing-completeness, 198,
213

Turtle graphics, 38

TYPE, Forth, 32, 35, 39

U
U., displaying numbers in

Forth, 35

U.R, displaying numbers in
Forth, 35

U>, relational operator in
Forth, 13

UD., displaying numbers in
Forth, 35

UD.R, displaying numbers in
Forth, 35

UM*, multiplication in Forth,
8

UM/MOD, division in Forth, 8

UML diagrams, 133

unconditional branching, 98

undefine(), m4, 202

Index • 241

underscore (_), Forth num-
bers, 6

undivert(), m4, 212

Unicode, 80, 107

Uniform(), Simula, 136

union, Starset, 177–178, 189

UNIVAC computers, 113, 147

UNLOOP, Forth, 20

“unquote” (⍎E), APL, 107

unsigned integers, Forth, 6,
8

UNTIL, Forth, 17

UNUSED, Forth, 24

USE, Starset, 188

V
VAL, Occam, 47, 62

VALOF, Occam, 63

VALUE
Forth, 15
Simula, 120

value processes, functions in
Occam, 62

values
assignment in Simula,

116
converting in Occam, 46
passing in Occam, 62
post-casting, 46
pre-casting, 46
returning in Starset, 191
swapping parameters in

Simula, 122

VARIABLE, Forth, 21

variables
2-variable, 21
APL, 81, 85
automatic variables in
make utility, 203

Forth, 21–23

free variables in Starset,
181

loops in Starset, 186, 188
Occam, 45, 47
passivation of in Starset,

190
set variables in Starset,

177
Simula, 114, 121
single-byte, 21
SNOBOL, 152, 156
Starset, 121, 177–178,

181, 185–186, 188,
190

variadic functions, macros in
m4, 208

variant protocols, 60

vectored execution, Forth, 26–
28

vectorized operations, APL, 83

vectors, APL, 80, 85–89, 102

VERIFY, Forth and BASIC, 38

VIRTUAL, Simula, 130

virtual channels, Occam, 53

virtual procedures, Simula,
129

VIS, Forth and BASIC, 38

VisualParadigm, 217

Vorobyov, S., 192

W
W/O, Forth, 36

W/R, Forth, 36

Wait(), Simula, 138

Watts, Alan, 147

WHILE
Occam, 52
Simula, 119
Starset, 186

white spaces
Forth, 31, 33

Occam, 45
Simula, 116
SNOBOL, 148, 161

William of Ockham, 43, 71

Wirth, Niklaus, 31

WITHIN, Forth, 13

WORD, Starset, 177

word lists, Forth, 21

words
canonical numeric nota-

tion, 175
Forth, 3–12, 21
Starset data type, 174–

179, 186
Starset patterns, 179–

182
word position in regular

expressions in m4, 211
word-count text analysis

example, 169–172

workspace library, APL, 108

workspaces, APL, 81, 108

WRITE, Starset, 174, 188

WRITE-FILE, Forth, 37

WRITE-LINE, Forth, 37

writing
files in Forth, 36
files in Simula, 123

)WSID, APL, 109

X
[X], Starset pattern, 180

XOR
Forth, 13
Occam, 53

XSLT (extensible stylesheet
language transformations),
198

xt (execution tokens), Forth,
26, 29

Index • 242

Thank you!
We hope you enjoyed this book and that you’re already thinking about what
you want to learn next. To help make that decision easier, we’re offering
you this gift.

Head on over to https://pragprog.com right now, and use the coupon code
BUYANOTHER2024 to save 30% on your next ebook. Offer is void where
prohibited or restricted. This offer does not apply to any edition of the The
Pragmatic Programmer ebook.

And if you’d like to share your own expertise with the world, why not propose
a writing idea to us? After all, many of our best authors started off as our
readers, just like you. With up to a 50% royalty, world-class editorial services,
and a name you trust, there’s nothing to lose. Visit https://pragprog.com/become-
an-author/ today to learn more and to get started.

Thank you for your continued support. We hope to hear from you again
soon!

The Pragmatic Bookshelf

SAVE 30%!
Use coupon code
BUYANOTHER2024

https://pragprog.com
https://pragprog.com/become-an-author/
https://pragprog.com/become-an-author/

Seven More Languages in Seven Weeks
Great programmers aren’t born—they’re made. The
industry is moving from object-oriented languages to
functional languages, and you need to commit to radi-
cal improvement. New programming languages arm
you with the tools and idioms you need to refine your
craft. While other language primers take you through
basic installation and “Hello, World,” we aim higher.
Each language in Seven More Languages in Seven
Weeks will take you on a step-by-step journey through
the most important paradigms of our time. You’ll learn
seven exciting languages: Lua, Factor, Elixir, Elm,
Julia, MiniKanren, and Idris.

Bruce Tate, Fred Daoud, Jack Moffitt, Erin Dees (for-
merly Ian Dees)
(318 pages) ISBN: 9781941222157. $38
https://pragprog.com/book/7lang

Seven Languages in Seven Weeks
You should learn a programming language every year,
as recommended by The Pragmatic Programmer. But
if one per year is good, how about Seven Languages in
Seven Weeks? In this book you’ll get a hands-on tour
of Clojure, Haskell, Io, Prolog, Scala, Erlang, and Ruby.
Whether or not your favorite language is on that list,
you’ll broaden your perspective of programming by
examining these languages side-by-side. You’ll learn
something new from each, and best of all, you’ll learn
how to learn a language quickly.

Bruce A. Tate
(330 pages) ISBN: 9781934356593. $34.95
https://pragprog.com/book/btlang

https://pragprog.com/book/7lang
https://pragprog.com/book/btlang

Complex Network Analysis in Python
Construct, analyze, and visualize networks with net-
workx, a Python language module. Network analysis
is a powerful tool you can apply to a multitude of
datasets and situations. Discover how to work with all
kinds of networks, including social, product, temporal,
spatial, and semantic networks. Convert almost any
real-world data into a complex network—such as rec-
ommendations on co-using cosmetic products, muddy
hedge fund connections, and online friendships. Ana-
lyze and visualize the network, and make business
decisions based on your analysis. If you’re a curious
Python programmer, a data scientist, or a CNA special-
ist interested in mechanizing mundane tasks, you’ll
increase your productivity exponentially.

Dmitry Zinoviev
(260 pages) ISBN: 9781680502695. $35.95
https://pragprog.com/book/dzcnapy

Pythonic Programming
Make your good Python code even better by following
proven and effective pythonic programming tips. Avoid
logical errors that usually go undetected by Python
linters and code formatters, such as frequent data
look-ups in long lists, improper use of local and global
variables, and mishandled user input. Discover rare
language features, like rational numbers, set compre-
hensions, counters, and pickling, that may boost your
productivity. Discover how to apply general program-
ming patterns, including caching, in your Python code.
Become a better-than-average Python programmer,
and develop self-documented, maintainable, easy-to-
understand programs that are fast to run and hard to
break.

Dmitry Zinoviev
(150 pages) ISBN: 9781680508611. $26.95
https://pragprog.com/book/dzpythonic

https://pragprog.com/book/dzcnapy
https://pragprog.com/book/dzpythonic

Data Science Essentials in Python
Go from messy, unstructured artifacts stored in SQL
and NoSQL databases to a neat, well-organized dataset
with this quick reference for the busy data scientist.
Understand text mining, machine learning, and net-
work analysis; process numeric data with the NumPy
and Pandas modules; describe and analyze data using
statistical and network-theoretical methods; and see
actual examples of data analysis at work. This one-
stop solution covers the essential data science you
need in Python.

Dmitry Zinoviev
(224 pages) ISBN: 9781680501841. $29
https://pragprog.com/book/dzpyds

Seven Concurrency Models in Seven Weeks
Your software needs to leverage multiple cores, handle
thousands of users and terabytes of data, and continue
working in the face of both hardware and software
failure. Concurrency and parallelism are the keys, and
Seven Concurrency Models in Seven Weeks equips you
for this new world. See how emerging technologies
such as actors and functional programming address
issues with traditional threads and locks development.
Learn how to exploit the parallelism in your computer’s
GPU and leverage clusters of machines with MapRe-
duce and Stream Processing. And do it all with the
confidence that comes from using tools that help you
write crystal clear, high-quality code.

Paul Butcher
(296 pages) ISBN: 9781937785659. $38
https://pragprog.com/book/pb7con

https://pragprog.com/book/dzpyds
https://pragprog.com/book/pb7con

Seven Web Frameworks in Seven Weeks
Whether you need a new tool or just inspiration, Seven
Web Frameworks in Seven Weeks explores modern
options, giving you a taste of each with ideas that will
help you create better apps. You’ll see frameworks that
leverage modern programming languages, employ
unique architectures, live client-side instead of server-
side, or embrace type systems. You’ll see everything
from familiar Ruby and JavaScript to the more exotic
Erlang, Haskell, and Clojure.

Jack Moffitt, Fred Daoud
(302 pages) ISBN: 9781937785635. $38
https://pragprog.com/book/7web

Seven Mobile Apps in Seven Weeks
Answer the question “Can we build this for ALL the
devices?” with a resounding YES. Learn how to build
apps using seven different platforms: Mobile Web, iOS,
Android, Windows, RubyMotion, React Native, and
Xamarin. Find out which cross-platform solution
makes the most sense for your needs, whether you’re
new to mobile or an experienced developer expanding
your options. Start covering all of the mobile world to-
day.

Tony Hillerson
(370 pages) ISBN: 9781680501483. $40
https://pragprog.com/book/7apps

https://pragprog.com/book/7web
https://pragprog.com/book/7apps

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by professional developers for professional
developers. The titles continue the well-known Pragmatic Programmer style and continue
to garner awards and rave reviews. As development gets more and more difficult, the Prag-
matic Programmers will be there with more titles and products to help you stay on top of
your game.

Visit Us Online
This Book’s Home Page
https://pragprog.com/book/dzseven
Source code from this book, errata, and other resources. Come give us feedback, too!

Keep Up-to-Date
https://pragprog.com
Join our announcement mailing list (low volume) or follow us on Twitter @pragprog for new
titles, sales, coupons, hot tips, and more.

New and Noteworthy
https://pragprog.com/news
Check out the latest Pragmatic developments, new titles, and other offerings.

Buy the Book
If you liked this ebook, perhaps you’d like to have a paper copy of the book. Paperbacks are
available from your local independent bookstore and wherever fine books are sold.

Contact Us
https://pragprog.com/catalogOnline Orders:

support@pragprog.comCustomer Service:

translations@pragprog.comInternational Rights:

academic@pragprog.comAcademic Use:

http://write-for-us.pragprog.comWrite for Us:

https://pragprog.com/book/dzseven
https://pragprog.com
https://pragprog.com/news
https://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://write-for-us.pragprog.com

	Cover
	Table of Contents
	Acknowledgments
	Preface
	Introduction
	About the Languages
	About the Tips
	About You
	About the Software
	Writing Something Big
	Further Reading
	Online Resources
	What to Do Next?

	1. Mastering Stack-Based Computing with Forth
	Understanding Stack Essentials
	Writing Comments and ``Hello, World!''
	Learning Predefined Forth Words
	Dissecting Flow Control
	Discovering Recursion
	Arriving to Memory Operations
	Demystifying Vectored Execution
	Handling Errors and Exceptions
	Exploring Character and String Operations
	Performing Input/Output Operations
	Writing Something Big
	Further Reading

	2. Appreciating Concurrent Computing with Occam
	Paying Tribute to Transputer
	Greeting in Occam and KRoC
	Studying Variables and Data Types
	Navigating Channels
	Exploring Processes
	Taming Construction Processes
	Revisiting Deadlocks
	Introducing Arrays
	Crafting Channel Protocols
	Arranging Code in Compilation Units
	Replicating Processes
	Terminating a Distributed Application
	Configuring Occam Programs
	Writing Something Big
	Further Reading

	3. Embracing Array-Centric Programming with APL
	Deciphering APL Character Set
	Activating the APL Keyboard Layout
	Looking at Data Types
	Executing Scalar Operations
	Mastering Array Operations
	Performing Input and Output
	Creating User-Defined Functions
	Branching
	Adding More Array Operations
	Working with Workspaces
	Writing Something Big
	Further Reading

	4. Unveiling Object-Oriented Programming with Simula
	``It's ALGOL!''
	Glancing at Variables, Data Types, and Operators
	Investigating Control Structures
	Introducing Procedures
	Managing File I/O
	``It's Simula!''
	Switching to Object-Oriented Programming
	Designing Coroutines
	Introducing Computer Simulation
	Writing Something Big
	Further Reading

	5. Streamlining Text Processing with SNOBOL
	Processing Lines
	Exploring Statements
	Constructing Patterns
	Using Indirect References
	Understanding Functions and Predicates
	Comprehending Data Structures
	Evaluating Unevaluated Expressions
	Managing Input and Output
	Writing Something Big
	Further Reading

	6. Harnessing Set Data with Starset
	``Hello, Sets!''
	Getting to Know Starset Data Types
	Exploring Loops
	Designing Subroutines
	Writing Something Big
	Further Reading

	7. Automating Text Generation with m4
	Understanding Preprocessors
	Defining and Using Macros
	Controlling Execution Flow
	Handling Text
	Diverting Output and Including Files
	Interacting with the System
	Writing Something Big
	Further Reading
	The End of Week Seven

	Bibliography
	Index
	– SYMBOLS –
	– DIGITS –
	– A –
	– B –
	– C –
	– D –
	– E –
	– F –
	– G –
	– H –
	– I –
	– J –
	– K –
	– L –
	– M –
	– N –
	– O –
	– P –
	– Q –
	– R –
	– S –
	– T –
	– U –
	– V –
	– W –
	– X –

