Algorithms

oth edition (pre-publication draft) — December 30, 2018
Y»th edition (pre-publication draft) — April 9, 2019
1st paperback edition — June 13, 2019

123456789 —27262524 2322212019
ISBN: 978-1-792-64483-2 (paperback)

© Copyright 2019 Jeff Erickson

©®

This work is available under a Creative Commons Attribution 4.0 International License.
For license details, see http://creativecommons.org/licenses/by/4.0/.

Download this book at http://jeffe.cs.illinois.edu/teaching/algorithms/
or http://algorithms.wtf
or https://archive.org/details/Algorithms-Jeff-Erickson

Please report errors at https://github.com/jeffgerickson/algorithms

Portions of our programming are mechanically reproduced,
and we now begin our broadcast day.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://jeffe.cs.illinois.edu/teaching/algorithms/
http://algorithms.wtf
https://archive.org/details/Algorithms-Jeff-Erickson
https://github.com/jeffgerickson/algorithms

For Kim, Kay, and Hannah
with love and admiration

And for Erin
with thanks
for breaking her promise

Incipit prologus in libro alghoarismi de practica arismetrice.

— loannis Hispalensis [John of Seville?),
Liber algorismi de pratica arismetrice (c.1135)

Shall I tell you, my friend, how you will come to understand it?
Go and write a book upon it.

— Henry Home, Lord Kames (1696-1782),
in a letter to Sir Gilbert Elliot

The individual is always mistaken. He designed many things, and drew in other
persons as coadjutors, quarrelled with some or all, blundered much, and
something is done; all are a little advanced, but the individual is always mistaken.
It turns out somewhat new and very unlike what he promised himself.

— Ralph Waldo Emerson, “Experience”, Essays, Second Series (1844)

What I have outlined above is the content of a book the realization of whose basic
plan and the incorporation of whose details would perhaps be impossible; what |
have written is a second or third draft of a preliminary version of this book

— Michael Spivak, preface of the first edition of
Differential Geometry, Volume | (1970)

Preface

About This Book

This textbook grew out of a collection of lecture notes that I wrote for various
algorithms classes at the University of Illinois at Urbana-Champaign, which I
have been teaching about once a year since January 1999. Spurred by changes
of our undergraduate theory curriculum, I undertook a major revision of my
notes in 2016; this book consists of a subset of my revised notes on the most
fundamental course material, mostly reflecting the algorithmic content of our
new required junior-level theory course.

Prerequisites

The algorithms classes I teach at Illinois have two significant prerequisites:
a course on discrete mathematics and a course on fundamental data structures.
Consequently, this textbook is probably not suitable for most students as a first

PREFACE

course in data structures and algorithms. In particular, I assume at least passing
familiarity with the following specific topics:

Discrete mathematics: High-school algebra, logarithm identities, naive
set theory, Boolean algebra, first-order predicate logic, sets, functions,
equivalences, partial orders, modular arithmetic, recursive definitions, trees
(as abstract objects, not data structures), graphs (vertices and edges, not
function plots).

Proof techniques: direct, indirect, contradiction, exhaustive case analysis,
and induction (especially “strong” and “structural” induction). Chapter o
uses induction, and whenever Chapter n—1 uses induction, so does Chapter n.

Iterative programming concepts: variables, conditionals, loops, records,
indirection (addresses/pointers/references), subroutines, recursion. I do not
assume fluency in any particular programming language, but I do assume
experience with at least one language that supports both indirection and
recursion.

Fundamental abstract data types: scalars, sequences, vectors, sets, stacks,
queues, maps/dictionaries, ordered maps/dictionaries, priority queues.

Fundamental data structures: arrays, linked lists (single and double,
linear and circular), binary search trees, at least one form of balanced binary
search tree (such as AVL trees, red-black trees, treaps, skip lists, or splay
trees), hash tables, binary heaps, and most importantly, the difference
between this list and the previous list.

Fundamental computational problems: elementary arithmetic, sorting,
searching, enumeration, tree traversal (preorder, inorder, postorder, level-
order, and so on).

Fundamental algorithms: elementary algorism, sequential search, binary
search, sorting (selection, insertion, merge, heap, quick, radix, and so
on), breadth- and depth-first search in (at least binary) trees, and most
importantly, the difference between this list and the previous list.

Elementary algorithm analysis: Asymptotic notation (o, O, ©, Q, w),
translating loops into sums and recursive calls into recurrences, evaluating
simple sums and recurrences.

Mathematical maturity: facility with abstraction, formal (especially recur-
sive) definitions, and (especially inductive) proofs; writing and following
mathematical arguments; recognizing and avoiding syntactic, semantic,
and/or logical nonsense.

The book briefly covers some of this prerequisite material when it arises in
context, but more as a reminder than a good introduction. For a more thorough
overview, I strongly recommend the following freely available references:

Additional References

* Margaret M. Fleck. Building Blocks for Theoretical Computer Science. Version
1.3 (January 2013) or later available from http://mfleck.cs.illinois.edu/
building-blocks/.

* Eric Lehman, F. Thomson Leighton, and Albert R. Meyer. Mathematics for
Computer Science. June 2018 revision available from https://courses.csail.
mit.edu/6.042/spring18/. (I strongly recommend searching for the most
recent revision.)

e Pat Morin. Open Data Structures. Edition 0.1Gf (January 2016) or later
available from http://opendatastructures.org/.

* Don Sheehy. A Course in Data Structures and Object-Oriented Design. Feb-
ruary 2019 or later revision available from https://donsheehy.github.io/
datastructures/.

Additional References

Please do not restrict yourself to this or any other single reference. Authors and
readers bring their own perspectives to any intellectual material; no instructor
“clicks” with every student, or even with every very strong student. Finding the
author that most effectively gets their intuition into your head takes some effort,
but that effort pays off handsomely in the long run.

The following references have been particularly valuable sources of intuition,
examples, exercises, and inspiration; this is not meant to be a complete list.

* Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and
Analysis of Computer Algorithms. Addison-Wesley, 1974. (I used this textbook
as an undergraduate at Rice and again as a masters student at UC Irvine.)

* Boaz Barak. Introduction to Theoretical Computer Science. Textbook draft,
most recently revised June 2019. (Not your grandfather’s theoretical CS
textbook, and so much the better for it; the fact that it’s free is a delightful
bonus.)

e Thomas Cormen, Charles Leiserson, Ron Rivest, and Cliff Stein. Introduction
to Algorithms, third edition. MIT Press/McGraw-Hill, 2009. (I used the first
edition as a teaching assistant at Berkeley.)

* Sanjoy Dasgupta, Christos H. Papadimitriou, and Umesh V. Vazirani. Algo-
rithms. McGraw-Hill, 2006. (Probably the closest in content to this book,
but considerably less verbose.)

» Jeff Edmonds. How to Think about Algorithms. Cambridge University Press,
2008.

* Michael R. Garey and David S. Johnson. Computers and Intractability:
A Guide to the Theory of NP-Completeness. W. H. Freeman, 1979.

http://mfleck.cs.illinois.edu/building-blocks/
http://mfleck.cs.illinois.edu/building-blocks/
http://mfleck.cs.illinois.edu/building-blocks/
https://courses.csail.mit.edu/6.042/spring18/mcs.pdf
https://courses.csail.mit.edu/6.042/spring18/mcs.pdf
https://courses.csail.mit.edu/6.042/spring18/
https://courses.csail.mit.edu/6.042/spring18/
http://opendatastructures.org/
http://opendatastructures.org/
https://donsheehy.github.io/datastructures/
https://donsheehy.github.io/datastructures/
https://donsheehy.github.io/datastructures/
https://introtcs.org/

PREFACE

* Michael T. Goodrich and Roberto Tamassia. Algorithm Design: Foundations,
Analysis, and Internet Examples. John Wiley & Sons, 2002.

+ Jon Kleinberg and Eva Tardos. Algorithm Design. Addison-Wesley, 2005.
Borrow it from the library if you can.

* Donald Knuth. The Art of Computer Programming, volumes 1—4A. Addison-
Wesley, 1997 and 2011. (My parents gave me the first three volumes for
Christmas when I was 14. Alas, I didn’t actually read them until much later.)

e Udi Manber. Introduction to Algorithms: A Creative Approach. Addison-
Wesley, 1989. (I used this textbook as a teaching assistant at Berkeley.)

* Tan Parberry. Problems on Algorithms. Prentice-Hall, 1995 (out of print).
Downloadable from https://larc.unt.edu/ian/books/free/license.html after
you agree to make a small charitable donation. Please honor your agreement.

* Robert Sedgewick and Kevin Wayne. Algorithms. Addison-Wesley, 2011.

* Robert Endre Tarjan. Data Structures and Network Algorithms. SIAM, 1983.

* (Class notes from my own algorithms classes at Berkeley, especially those
taught by Dick Karp and Raimund Seidel.

* Lecture notes, slides, homeworks, exams, video lectures, research papers,
blog posts, StackExchange questions and answers, podcasts, and full-fledged
MOOCs made freely available on the web by innumerable colleagues around
the world.

About the Exercises

Each chapter ends with several exercises, most of which I have used at least
once in a homework assignment, discussion/lab section, or exam. The exercises
are not ordered by increasing difficulty, but (generally) clustered by common
techniques or themes. Some problems are annotated with symbols as follows:

* YRed hearts indicate particularly challenging problems; many of these have
appeared on qualifying exams for PhD students at Illinois. A small number
of really hard problems are marked with Ylarge hearts.

* *Blue diamonds indicate problems that require familiarity with material
from later chapters, but thematically belong where they are. Problems that
require familiarity with earlier material are not marked, however; the book,
like life, is cumulative.

* *Green clubs indicate problems that require familiarity with material out-
side the scope of this book, such as finite-state machines, linear algebra,
probability, or planar graphs. These are rare.

* *Black spades indicate problems that require a significant amount of grunt
work and/or coding. These are rare.

https://larc.unt.edu/ian/books/free/
https://larc.unt.edu/ian/books/free/license.html

Steal This Book!

* *QOrange stars indicate that you are eating Lucky Charms that were manu-
factured before 1998. Ew.

These exercises are designed as opportunities to practice, not as targets for their
own sake. The goal of each problem is not to solve that specific problem, but to
exercise a certain set of skills, or to practice solving a certain type of problem.
Partly for this reason, I don’t provide solutions to the exercises; the solutions are
not the point. In particular, there is no “instructor’s manual”; if you can’t solve a
problem yourself, you probably shouldn’t assign it to your students. That said,
you can probably find solutions to whatever homework problems I've assigned
this semester on the web page of whatever course I'm teaching. And nothing is
stopping you from writing an instructor’s manual!

Steal This Book!

This book is published under a Creative Commons Licence that allows you to
use, redistribute, adapt, and remix its contents without my permission, as long
as you point back to the original source. A complete electronic version of this
book is freely available at any of the following locations:

* The book web site: http://jeffe.cs.illinois.edu/teaching/algorithms/

* The mnemonic shortcut: http://algorithms.wtf

* The bug-report site: https://github.com/jeffgerickson/algorithms

* The Internet Archive: https://archive.org/details/Algorithms-Jeff-Erickson

The book web site also contains several hundred pages of additional lecture
notes on related and more advanced material, as well as a near-complete
archive of past homeworks, exams, discussion/lab problems, and other teaching
resources. Whenever I teach an algorithms class, I revise, update, and sometimes
cull my teaching materials, so you may find more recent revisions on the web
page of whatever course I am currently teaching.

Whether you are a student or an instructor, you are more than welcome to use
any subset of this textbook or my other lecture notes in your own classes, without
asking my permission—that’s why I put them on the web! However, please also
cite this book, either by name or with a link back to http://algorithms.wtf; this
is especially important if you are a student, and you use my course materials to
help with your homework. (Please also check with your instructor.)

However, if you are an instructor, I strongly encourage you to supplement
these with additional material that you write yourself. Writing the material
yourself will strengthen your mastery and in-class presentation of the material,
which will in turn improve your students’ mastery of the material. It will also
get you past the frustration of dealing with the parts of this book that you don’t
like. All textbooks are erap imperfect, and this one is no exception.

http://jeffe.cs.illinois.edu/teaching/algorithms/
http://algorithms.wtf
https://github.com/jeffgerickson/algorithms
https://archive.org/details/Algorithms-Jeff-Erickson
http://algorithms.wtf
https://www.youtube.com/watch?v=lhSjYT7pWkw

PREFACE

Vi

Finally, please make whatever you write freely, easily, and globally avail-
able on the open web—not hidden behind the gates of a learning management
system or some other type of paywall—so that students and instructors else-
where can benefit from your unique insights. In particular, if you develop useful
resources that directly complement this textbook, such as slides, videos, or
solution manuals, please let me know so that I can add links to your resources
from the book web site.

Acknowledgments

This textbook draws heavily on the contributions of countless algorithms students,
teachers, and researchers. In particular, I am immensely grateful to more than
three thousand Illinois students who have used my lecture notes as a primary
reference, offered useful (if sometimes painful) criticism, and suffered through
some truly awful early drafts. Thanks also to many colleagues and students
around the world who have used these notes in their own classes and have sent
helpful feedback and bug reports.

I am particularly grateful for the feedback and contributions (especially
exercises) from my amazing teaching assistants:

Aditya Ramani, Akash Gautam, Alex Steiger, Alina Ene, Amir Nayyeri,
Asha Seetharam, Ashish Vulimiri, Ben Moseley, Brad Sturt, Brian Ensink,
Chao Xu, Charlie Carlson, Chris Neihengen, Connor Clark, Dan Bullok,
Dan Cranston, Daniel Khashabi, David Morrison, Ekta Manaktala, Erin
Wolf Chambers, Gail Steitz, Gio Kao, Grant Czajkowski, Hsien-Chih Chang,
Igor Gammer, Jacob Laurel, John Lee, Johnathon Fischer, Junqging Deng,
Kent Quanrud, Kevin Milans, Kevin Small, Konstantinos Koiliaris, Kyle Fox,
Kyle Jao, Lan Chen, Mark Idleman, Michael Bond, Mitch Harris, Naveen
Arivazhagen, Nick Bachmair, Nick Hurlburt, Nirman Kumar, Nitish Korula,
Patrick Lin, Phillip Shih, Rachit Agarwal, Reza Zamani-Nasab, Rishi Talreja,
Rob McCann, Sahand Mozaffari, Shalan Naqvi, Shripad Thite, Spencer
Gordon, Srihita Vatsavaya, Subhro Roy, Tana Wattanawaroon, Umang
Mathur, Vipul Goyal, Yasu Furakawa, and Yipu Wang.

I've also been helped tremendously by many discussions with faculty col-
leagues at Illinois: Alexandra Kolla, Cinda Heeren, Edgar Ramos, Herbert
Edelsbrunner, Jason Zych, Kim Whittlesey, Lenny Pitt, Madhu Parasarathy,
Mahesh Viswanathan, Margaret Fleck, Shang-Hua Teng, Steve LaValle, and
especially Chandra Chekuri, Ed Reingold, and Sariel Har-Peled.

Of course this book owes a great debt to the people who taught me this
algorithms stuff in the first place: Bob Bixby and Michael Pearlman at Rice;
David Eppstein, Dan Hirschberg, and George Lueker at Irvine; and Abhiram
Ranade, Dick Karp, Manuel Blum, Mike Luby, and Raimund Seidel at Berkeley.

Caveat Lector!

I stole the first iteration of the overall course structure, and the idea to write
up my own lecture notes in the first place, from Herbert Edelsbrunner; the idea
of turning a subset of my notes into a book from Steve LaValle; and several
components of the book design from Robert Ghrist.

Caveat Lector!

Of course, none of those people should be blamed for any flaws in the resulting
book. Despite many rounds of revision and editing, this book contains several
mistakes, bugs, gaffes, omissions, snafus, kludges, typos, mathos, grammaros,
thinkos, brain farts, poor design decisions, historical inaccuracies, anachronisms,
inconsistencies, exaggerations, dithering, blather, distortions, oversimplifications,
redundancy, logorrhea, nonsense, garbage, cruft, junk, and outright lies, all of
which are entirely Steve Skiena’s fault.

I maintain an issue tracker at https://github.com/jeffgerickson/algorithms,
where readers like you can submit bug reports, feature requests, and general
feedback on the book. Please let me know if you find an error of any kind,
whether mathematical, grammatical, historical, typographical, cultural, or
otherwise, whether in the main text, in the exercises, or in my other course
materials. (Steve is unlikely to care.) Of course, all other feedback is also
welcome!

Enjoy!

— Jeff

It is traditional for the author to magnanimously accept the blame for whatever
deficiencies remain. | don't. Any errors, deficiencies, or problems in this book are
somebody else’s fault, but | would appreciate knowing about them so as to
determine who is to blame.

— Steven S. Skiena, The Algorithm Design Manual (1997)

No doubt this statement will be followed by an annotated list of all textbooks,
and why each one is crap.
— Adam Contini, MetaFilter, January 4, 2010

vii

https://github.com/jeffgerickson/algorithms

Preface

About ThisBook
Prerequisites
Additional References
About the Exercises
Steal This Book!
Acknowledgments
Caveat Lector!

Table of Contents

o Introduction

0.1 What is an algorithm? . .
0.2 Multiplication

Table of Contents

ix

........................ 1

TABLE OF CONTENTS

Lattice Multiplication ® Duplation and Mediation ® Compass and Straight-
edge
0.3 Congressional Apportionment
0.4 ABadExample

0.5 Describing Algorithms
Specifying the Problem ® Describing the Algorithm

0.6 Analyzing Algorithms
Correctness ® Running Time

EXercises it i

1 Recursion

1.1 Reductions

1.2 Simplify and Delegate

1.3 Towerof Hanoi

1.4 Mergesort e e
Correctness ® Analysis

1.5 Quicksort e
Correctness ® Analysis

1.6 ThePattern. ittt

1.7 RecursionTrees i
YIgnoring Floors and Ceilings Is Okay, Honest

1.8 YLinear-Time Selectiono i i
Quickselect ® Good pivots ® Analysis ® Sanity Checking

1.9 Fast Multiplication

1.10 Exponentiation e

EXercises. v i e e e e

2 Backtracking
21 NQUEENS e e e e e e
22 Game Trees i v v it i e e e

2.3 SubsetSum
Correctness ® Analysis ® Variants
2.4 The General Pattern

2.5 Text Segmentation (Interpunctio Verborum)
Index Formulation ® YAnalysis ® Variants

2.6 Longest Increasing Subsequence

2.7 Longest Increasing Subsequence, Take2

2.8 Optimal Binary Search Trees
¥ Analysis
EXercises oo u i

3 Dynamic Programming

10
11

14

17

21
21
22
24
26

29

31
31

35

71
71
74
76

Table of Contents

3.1 Matravrtta e 97
Backtracking Can Be Slow ® Memo(r)ization: Remember Everything ® Dy-

namic Programming: Fill Deliberately ® Don’t Remember Everything After

All
3.2 YAside: Even Faster Fibonacci Numbers 103
Whoa! Not so fast!
3.3 Interpunctio Verborum Redux 105
3.4 The Pattern: Smart Recursion 105
3.5 Warning: Greedis Stupid 107
3.6 Longest Increasing Subsequence 109
First Recurrence: Is This Next? ® Second Recurrence: What'’s Next?
3.7 EditDistance. e e e 111
Recursive Structure ® Recurrence ® Dynamic Programming
3.8 SubsetSum e 116
3.9 Optimal Binary Search Trees 117
3.10 Dynamic ProgrammingonTrees. 120
EXercises o i i e e e e 123
Greedy Algorithms 159
4.1 Storing FilesonTape i ittt 159
4.2 Scheduling Classes 161
4.3 General Pattern o i ittt e 164
4.4 Huffman Codes i 165
4.5 StableMatching 170

Some Bad Ideas ® The Boston Pool and Gale-Shapley Algorithms ® Running
Time ® Correctness ® Optimality!

ExXercises. i e e 176

Basic Graph Algorithms 187

5.1 Introduction and History 187

5.2 BasicDefinitions. v v v v vt e e e e e e 190

5.3 Representations and Examples 192

5.4 Data Structures e e 195
Adjacency Lists ® Adjacency Matrices ® Comparison

5.5 Whatever-FirstSearch 199
Analysis

5.6 Important Variants 201

Stack: Depth-First ® Queue: Breadth-First ® Priority Queue: Best-

First ® Disconnected Graphs ® Directed Graphs
5.7 Graph Reductions: Flood Fill 205
EXercises i i e e e 207

Xi

TABLE OF CONTENTS

Xii

Depth-First Search

6.1 Preorder and Postorder
Classifying Vertices and Edges

6.2 Detecting Cycles. e

6.3 Topological Sort.
Implicit Topological Sort

6.4 Memoization and Dynamic Programming
Dynamic Programming in Dags

6.5 Strong Connectivity

6.6 Strong Components in Linear Time
Kosaraju and Sharir’s Algorithm ® YTarjan’s Algorithm

EXErCiSes o v v it e e e e

Minimum Spanning Trees

7.1 Distinct Edge Weights

7.2 The Only Minimum Spanning Tree Algorithm

7.3 BorGvka’s Algorithm
This is the MST Algorithm You Want

7.4 Jarnik’s (“Prim’s”) Algorithm

YImproving Jarnik’s Algorithm
7.5 Kruskal's Algorithm
EXercises o v i e e

Shortest Paths

8.1 ShortestPathTrees

8.2 YNegative EAZeso v v i ittt et

8.3 The Only SSSP Algorithm

8.4 Unweighted Graphs: Breadth-First Search

8.5 Directed Acyclic Graphs: Depth-First Search

8.6 Best-First: Dijkstra’s Algorithm.
No Negative Edges ® YNegative Edges

8.7 Relax ALL the Edges: Bellman-Ford
Moore’s Improvement ® Dynamic Programming Formulation

EXEICiSeS . . & v v et e e e e e e

All-Pairs Shortest Paths

9.1 Introduction e
9.2 Lotsof Single Sources
9.3 Reweighting

9.4 Johnson’s Algorithm
9.5 Dynamic Programming
9.6 Divideand Conquer

225
227

231
232

234

237
238

244

257
257
259
261

263

265
268

273
274
274
276
278
282
284

289

Table of Contents

9.7 Funny Matrix Multiplication 316
9.8 (Kleene-Roy-)Floyd-Warshall(-Ingerman) 318
EXEICISES . o . v v e e e e e e e e 320
10 Maximum Flows & Minimum Cuts 327
10.1 Flows e 328
10.2 CULS . . o v e e e e 329
10.3 The Maxflow-Mincut Theorem 331
10.4 Ford and Fulkerson’s augmenting-path algorithm 334
¥Irrational Capacities
10.5 Combining and Decomposing Flows 336
10.6 Edmonds and Karp’s Algorithms 340
Fattest Augmenting Paths ® Shortest Augmenting Paths
10.7 Further Progress 343
EXercises i e e e 344
11 Applications of Flows and Cuts 353
11.1 Edge-DisjointPaths 353
11.2 Vertex Capacities and Vertex-Disjoint Paths 354
11.3 Bipartite Matching 355
11.4 Tuple Selection, 357
Exam Scheduling
11.5 Disjoint-Path Covers, 360
Minimal Faculty Hiring
11.6 Baseball Elimination i 363
11.7 Project Selection, 366
EXercises o i e 368
12 NP-Hardness 379
121 AGameYouCantWin. i, 379
122 Pversus NP e 381
12.3 NP-hard, NP-easy, and NP-complete 382
12.4 YFormal Definitions (HC SVNT DRACONES) 384
12.5 Reductionsand SAT 385
12.6 3SAT (from CIRCUITSAT) . . . v v v v e e et e e e et e e e 388
12.7 Maximum Independent Set (from 3SAT) 390
12.8 The General Pattern 392
12.9 Clique and Vertex Cover (from Independent Set) 394
12.10 Graph Coloring (from 3SaT) 395
12.11 HamiltonianCycle 398
From Vertex Cover ® From 3SAT ® Variants and Extensions
12.12 Subset Sum (from Vertex Cover) 402

Xiii

TABLE OF CONTENTS

Xiv

Caveat Reductor!
12.13 Other Useful NP-hard Problems
12.14 Choosing the Right Problem
12.15 A Frivolous Real-World Example
12.16 YOn Beyond Zebra
Polynomial Space ® Exponential Time ® Excelsior!
EXErCiSes o v v it e e e e e e

Index

Index of People
Index of Pseudocode
Image Credits

Colophon

442
446
449
451

453

Hinc incipit algorismus. Haec algorismus ars praesens dicitur in qua
talibus indorum fruimur bis quinque figuris 0. 9. 8. 7. 6. 5. 4. 3. 2. 1.

— Friar Alexander de Villa Dei, Carmen de Algorismo (c. 1220)
You are right to demand that an artist engage his work consciously,

but you confuse two different things:
solving the problem and correctly posing the question.

— Anton Chekhov, in a letter to A. S. Suvorin (October 27, 1888)
The more we reduce ourselves to machines in the lower things,
the more force we shall set free to use in the higher.
— Anna C. Brackett, The Technique of Rest (1892)
And here | am at 2:30 a.m. writing about technique, in spite of a strong conviction

that the moment a man begins to talk about technique that's proof that he is fresh
out of ideas.

— Raymond Chandler, letter to Erle Stanley Gardner (May 5, 1939)

Good men don't need rules.
Today is not the day to find out why | have so many,

— The Doctor [Matt Smith], "A Good Man Goes to War”, Doctor Who (2011)

o

Introduction

0.1 What is an algorithm?

An algorithm is an explicit, precise, unambiguous, mechanically-executable
sequence of elementary instructions, usually intended to accomplish a specific
purpose. For example, here is an algorithm for singing that annoying song “99
Bottles of Beer on the Wall”, for arbitrary values of 99:

BorTLESOFBEER(N):
For i <~ n down to 1
Sing “i bottles of beer on the wall, i bottles of beer,”
Sing “Take one down, pass it around, i — 1 bottles of beer on the wall.”

Sing “No bottles of beer on the wall, no bottles of beer,”
Sing “Go to the store, buy some more, n bottles of beer on the wall.”

The word “algorithm” does not derive, as algorithmophobic classicists might
guess, from the Greek roots arithmos (GpiBudg), meaning “number”, and algos

0.

INTRODUCTION

(diAyog), meaning “pain”. Rather, it is a corruption of the name of the gth century
Persian scholar Muhammad ibn Miisa al-Khwarizmi.! Al-Khwarizmi is perhaps
best known as the writer of the treatise Al-Kitab al-mukhtasar fihisab al-gabr
wa’l-muqabala,’ from which the modern word algebra derives. In a different
treatise, al-Khwarizm1 described the modern decimal system for writing and
manipulating numbers—in particular, the use of a small circle or sifr to represent
a missing quantity—which had been developed in India several centuries earlier.
The methods described in this latter treatise, using either written figures or
counting stones, became known in English as algorism or augrym, and its figures
became known in English as ciphers.

Although both place-value notation and al-Khwarizm1’s works were already
known by some European scholars, the “Hindu-Arabic” numeric system was
popularized in Europe by the medieval Italian mathematician and tradesman
Leonardo of Pisa, better known as Fibonacci. Thanks in part to his 1202 book
Liber Abaci,® written figures began to replace the counting table (then known as
an abacus) and finger arithmetic* as the preferred platform for calculation® in
Europe in the 13th century—not because written decimal figures were easier to
learn or use, but because they provided an audit trail. Ciphers became common
in Western Europe only with the advent of movable type, and truly ubiquitous
only after cheap paper became plentiful in the early 19th century.

Eventually the word algorism evolved into the modern algorithm, via folk
etymology from the Greek arithmos (and perhaps the previously mentioned
algos).® Thus, until very recently, the word algorithm referred exclusively

“Mohammad, father of Adbdulla, son of Moses, the Kwarizmian”. Kwarizm is an ancient
city, now called Khiva, in the Khorezm Province of Uzbekistan.

*“The Compendious Book on Calculation by Completion and Balancing”

3While it is tempting to translate the title Liber Abaci as “The Book of the Abacus”, a more
accurate translation is “The Book of Calculation”. Both before and after Fibonacci, the Italian
word abaco was used to describe anything related to numerical calculation—devices, methods,
schools, books, and so on—much in the same way that “computer science” is used today in
English, or as the Chinese phrase for “operations research” translates literally as “the study of
using counting rods”.

4= Reckoning with digits! =1

5The word calculate derives from the Latin word calculus, meaning “small rock”, referring to
the stones on a counting table, or as Chaucer called them, augrym stones. In 440BcE, Herodotus
wrote in his Histories that “The Greeks write and calculate (AoyiteaBon wngorg, literally ‘reckon
with pebbles’) from left to right; the Egyptians do the opposite. Yet they say that their way of
writing is toward the right, and the Greek way toward the left.” (Herodotus is strangely silent on
which end of the egg the Egyptians ate first.)

5Some medieval sources claim that the Greek prefix “algo-” means “art” or “introduction”.
Others claim that algorithms were invented by a Greek philosopher, or a king of India, or perhaps
a king of Spain, named “Algus” or “Algor” or “Argus”. A few, possibly including Dante Alighieri,
even identified the inventor with the mythological Greek shipbuilder and eponymous argonaut.
It’s unclear whether any of these risible claims were intended to be historically accurate, or
merely mnemonic.

0.2. Multiplication

to mechanical techniques for place-value arithmetic using “Arabic” numerals.
People trained in the fast and reliable execution of these procedures were called
algorists or computators, or more simply, computers.

0.2 Multiplication

Although they have been a topic of formal academic study for only a few decades,
algorithms have been with us since the dawn of civilization. Descriptions of
step-by-step arithmetic computation are among the earliest examples of written
human language, long predating the expositions by Fibonacci and al-Khwarizmi,
or even the place-value notation they popularized.

Lattice Multiplication

The most familiar method for multiplying large numbers, at least for American
students, is the lattice algorithm. This algorithm was popularized by Fibonacci
in Liber Abaci, who learned it from Arabic sources including al-Khwarizm1i, who
in turn learned it from Indian sources including Brahmagupta’s 7th-century
treatise Brahmasphutasiddhanta, who may have learned it from Chinese sources.
The oldest surviving descriptions of the algorithm appear in The Mathematical
Classic of Sungi, written in China between the 3rd and sth centuries, and in
Eutocius of Ascalon’s commentaries on Archimedes’ Measurement of the Circle,
written around 500CE, but there is evidence that the algorithm was known much
earlier. Eutocius credits the method to a lost treatise of Apollonius of Perga,
who lived around 300BCE, entitled Okytokion (Qxutékiov).” The Sumerians
recorded multiplication tables on clay tablets as early as 2600BCE, suggesting
that they may have used the lattice algorithm.®

The lattice algorithm assumes that the input numbers are represented as
explicit strings of digits; I'll assume here that we’re working in base ten, but the
algorithm generalizes immediately to any other base. To simplify notation,’ the

7Literally “medicine that promotes quick and easy childbirth”! Pappus of Alexandria repro-
duced several excerpts of Okytokion about 200 years before Eutocius, but his description of the
lattice multiplication algorithm (if he gave one) is also lost.

8There is ample evidence that ancient Sumerians calculated accurately with extremely
large numbers using their base-60 place-value numerical system, but I am not aware of any
surviving record of the actual methods they used. In addition to standard multiplication
and reciprocal tables, tables listing the squares of integers from 1 to 59 have been found,
leading some math historians to conjecture that Babylonians multiplied using an identity like
xy = ((x +y)?—x2—y?)/2. But this trick only works when x + y < 60; history is silent on how
the Babylonians might have computed x? when x > 60.

°but at the risk of inflaming the historical enmity between Greece and Egypt, or Lilliput and
Blefuscu, or Macs and PCs, or people who think zero is a natural number and people who are
wrong

0. INTRODUCTION

input consists of a pair of arrays X[0..m—1] and Y[0..n—1], representing the
numbers

m—1 n—1
x= > X[i]-10' and y= > Y[j]-10,
i=0 =0

and similarly, the output consists of a single array Z[0..m +n—1], representing

the product
m+n—1

g=Xx-y= Z Z[k]- 10k
k=0
The algorithm uses addition and single-digit multiplication as primitive opera-
tions. Addition can be performed using a simple for-loop. In practice, single-digit
multiplication is performed using a lookup table, either carved into clay tablets,
painted on strips of wood or bamboo, written on paper, stored in read-only
memory, or memorized by the computator. The entire lattice algorithm can be
summarized by the formula

>_|
,_n

m—1in—

(x[i]-Y[j]-10"").
i=0

—.
Il
(=)

Different variants of the lattice algorithm evaluate the partial products X[i] -
Y[j]- 10" in different orders and use different strategies for computing their
sum. For example, in Liber Abaco, Fibonacci describes a variant that considers
the mn partial products in increasing order of significance, as shown in modern
pseudocode below.

FiBoNnacciIMuLTiPLy(X[0..m—1],Y[0..n—1]):
hold < 0
fork—Oton+m—1
for all i and j such thati+j=k
hold < hold + X[i]- Y[j]
Z[k] « hold mod 10
hold « |hold/10]

return Z[0..m+n—1]

Fibonacci’s algorithm is often executed by storing all the partial products in a
two-dimensional table (often called a “tableau” or “grate” or “lattice”) and then
summing along the diagonals with appropriate carries, as shown on the right in
Figure o0.1. American elementary-school students are taught to multiply one
factor (the “multiplicand”) by each digit in the other factor (the “multiplier”),
writing down all the multiplicand-by-digit products before adding them up, as
shown on the left in Figure o.1. This was also the method described by Eutocius,
although he fittingly considered the multiplier digits from left to right, as shown

0.2. Multiplication

in Figure 0.2. Both of these variants (and several others) are described and
illustrated side by side in the anonymous 1458 textbook L’Arte dell’Abbaco, also
known as the Treviso Arithmetic, the first printed mathematics book in the West.

0
9 3 q.i‘: ,3' 9 3 4
it T
73 [o /1o o7
23 4 o/ 91 /3!/4li
2302 I‘s/l_f_/li_/&
2932728 |2 51/6l/f-f,264-
2 2z

Figure 0.1. Computing 934 x 314 = 293276 using “long" multiplication (with error-checking by casting
out nines) and “lattice" multiplication, from LArte dellAbbaco (1458). (See Image Credits at the end of
the book.)

11724
> 1172}
1000000
xeof 7 100000}
éml aooﬁ"r) 72125
T 100000
MMM,pque 172124
L e ' 77000
MM goufl 4900 }
M 3Qeur " Ryl
&3 0
, o Boewdd’ 1444
oxe L f Ly L8 8 ES 125
i
ouod iflywot'éﬁ" 13* }

summa 18738774

Figure 0.2. Eutocius’s 6th-century calculation of 1172% X 1172% = 1373877&1, in his commentary on
Archimedes' Measurement of the Circle, transcribed (left) and translated into modern notation (right) by
Johan Heiberg (1891). (See Image Credits at the end of the book.)

All of these variants of the lattice algorithm—and other similar variants
described by Sunzi, al-Khwarizmi, Fibonacci, L’Arte dell’Abbaco, and many other
sources—compute the product of any m-digit number and any n-digit number
in O(mn) time; the running time of every variant is dominated by the number
of single-digit multiplications.

Duplation and Mediation

The lattice algorithm is not the oldest multiplication algorithm for which we
have direct recorded evidence. An even older and arguably simpler algorithm,
which does not rely on place-value notation, is sometimes called Russian peasant
multiplication, Ethiopian peasant multiplication, or just peasant multiplication.A

0.

INTRODUCTION

variant of this algorithm was copied into the Rhind papyrus by the Egyptian
scribe Ahmes around 1650BCE, from a document he claimed was (then) about
350 years old.’® This algorithm was still taught in elementary schools in Eastern
Europe in the late 20th century; it was also commonly used by early digital
computers that did not implement integer multiplication directly in hardware.

The peasant multiplication algorithm reduces the difficult task of multiplying
arbitrary numbers to a sequence of four simpler operations: (1) determining
parity (even or odd), (2) addition, (3) duplation (doubling a number), and (4)
mediation (halving a number, rounding down).

PeasanTMurLTipLY (X, ¥): X Y prod
prod < 0 0
while x > 0 123 +456 = 456

prod < prod +y 30 1824
15: 43648 = 5016
x —[x/2] 71 +7296 = 12312
yeyty 30 414592 = 26904
return prod 1 +29184 = 56088

Figure 0.3. Multiplication by duplation and mediation

The correctness of this algorithm follows by induction from the following
recursive identity, which holds for all non-negative integers x and y:

0 ifx=0
x-y=1lx/2]-(y +y) if x is even
lx/2]- (y+y)+y ifxisodd

Arguably, this recurrence is the peasant multiplication algorithm. Don’t let the
iterative pseudocode fool you; the algorithm is fundamentally recursive!

As stated, PEasaNnTMutTIPLY performs O(log x) parity, addition, and media-
tion operations, but we can improve this bound to O(logmin{x, y}) by swapping
the two arguments when x > y. Assuming the numbers are represented us-
ing any reasonable place-value notation (like binary, decimal, Babylonian
hexagesimal, Egyptian duodecimal, Roman numeral, Chinese counting rods,
bead positions on an abacus, and so on), each operation requires at most
O(log(xy)) = O(logmax{x, y}) single-digit operations, so the overall running
time of the algorithm is O(log min{x, y} - logmax{x, y}) = O(log x - log y).

°The version of this algorithm actually used in ancient Egypt does not use mediation or
parity, but it does use comparisons. To avoid halving, the algorithm pre-computes two tables
by repeated doubling: one containing all the powers of 2 not exceeding x, the other containing
the same powers of 2 multiplied by y. The powers of 2 that sum to x are then found by greedy
subtraction, and the corresponding entries in the other table are added together to form the
product.

0.2. Multiplication

In other words, this algorithm requires O(mn) time to multiply an m-digit
number by an n-digit number; up to constant factors, this is the same running
time as the lattice algorithm. This algorithm requires (a constant factor!) more
paperwork to execute by hand than the lattice algorithm, but the necessary
primitive operations are arguably easier for humans to perform. In fact, the two
algorithms are equivalent when numbers are represented in binary.

Compass and Straightedge

Classical Greek geometers identified numbers (or more accurately, magnitudes)
with line segments of the appropriate length, which they manipulated using two
simple mechanical tools—the compass and the straightedge—versions of which
had already been in common use by surveyors, architects, and other artisans for
centuries. Using only these two tools, these scholars reduced several complex
geometric constructions to the following primitive operations, starting with one
or more identified reference points.

* Draw the unique line passing through two distinct identified points.

* Draw the unique circle centered at one identified point and passing through
another.

* Identify the intersection point (if any) of two lines.
* Identify the intersection points (if any) of a line and a circle.
* Identify the intersection points (if any) of two circles.

In practice, Greek geometry students almost certainly drew their constructions
on an abax (dpag), a table covered in dust or sand."* Centuries earlier, Egyptian
surveyors carried out many of the same constructions using ropes to determine
straight lines and circles on the ground.”” However, Euclid and other Greek
geometers presented compass and straightedge constructions as precise mathe-
matical abstractions—points are ideal points; lines are ideal lines; and circles
are ideal circles.

Figure 0.4 shows an algorithm, described in Euclid’s Elements about 2500
years ago, for multiplying or dividing two magnitudes. The input consists of
four distinct points A, B, C, and D, and the goal is to construct a point Z such
that |AZ| = |AC||AD|/|AB|. In particular, if we define |AB| to be our unit of
length, then the algorithm computes the product of |AC| and |AD|.

Notice that Euclid first defines a new primitive operation RIGHTANGLE by
(as modern programmers would phrase it) writing a subroutine. The correctness

"The written numerals 1 through 9 were known in Europe at least two centuries before
Fibonacci’s Liber Abaci as “gobar numerals”, from the Arabic word ghubar meaning dust, ultimately
referring to the Indian practice of performing arithmetic on tables covered with sand. The Greek
word dpag is the origin of the Latin abacus, which also originally referred to a sand table.

?Remember what “geometry” means? Democritus would later refer to these Egyptian
surveyors, somewhat derisively, as arpedonaptai (dpmedovditton), meaning “rope-fasteners”.

0. INTRODUCTION

{(Construct the line perpendicular to £ passing through P.))
RiGHTANGLE({, P):
Choose a point A€ {
A,B « INTERSECT(CIRCLE(P,A), {)
C,D « INTERSECT(CIRCLE(A, B), CIRCLE(B, A))
return LINE(C, D)

{(Construct a point Z such that |AZ| = |AC||AD|/|AB|.))
MuLtipLYORDIVIDE(A, B, C,D):

a «— RiIGHTANGLE(LINE(A, C),A)

E « INTERSECT(CIRCLE(A, B), @)

F « INTERSECT(CIRCLE(A, D), @)

B < RicHTANGLE(LINE(E, C), F)

y < RIGHTANGLE(f3, F)

return INTERSECT(y, LINE(A, C))

Figure 0.4. Multiplication by compass and straightedge.

of the algorithm follows from the observation that triangles ACE and AZF
are similar. The second and third lines of the main algorithm are ambiguous,
because a intersects any circle centered at A at two distinct points, but the
algorithm is actually correct no matter which intersection points are chosen
for E and F.

Euclid’s algorithm reduces the problem of multiplying two magnitudes
(lengths) to a series of primitive compass-and-straightedge operations. These
operations are difficult to implement precisely on a modern digital computer, but
Euclid’s algorithm wasn’t designed for a digital computer. It was designed for the
Platonic Ideal Geometer, wielding the Platonic Ideal Compass and the Platonic
Ideal Straightedge, who could execute each operation perfectly in constant time
by definition. In this model of computation, MULTIPLYORDIVIDE runs in O(1)
time!

0.3 Congressional Apportionment

Here is another real-world example of an algorithm of significant political
importance. Article I, Section 2 of the United States Constitution requires that
Representatives and direct Taxes shall be apportioned among the several
States which may be included within this Union, according to their respective

Numbers.... The Number of Representatives shall not exceed one for every
thirty Thousand, but each State shall have at Least one Representative. ...

Because there are only a finite number of seats in the House of Representatives,
exact proportional representation requires either shared or fractional represen-
tatives, neither of which are legal. As a result, over the next several decades,
many different apportionment algorithms were proposed and used to round
the ideal fractional solution fairly. The algorithm actually used today, called

0.3. Congressional Apportionment

the Huntington-Hill method or the method of equal proportions, was first
suggested by Census Bureau statistician Joseph Hill in 1911, refined by Harvard
mathematician Edward Huntington in 1920, adopted into Federal law (2 U.S.C.
§2a) in 1941, and survived a Supreme Court challenge in 1992.'3

The Huntington-Hill method allocates representatives to states one at a
time. First, in a preprocessing stage, each state is allocated one representative.
Then in each iteration of the main loop, the next representative is assigned
to the state with the highest priority. The priority of each state is defined
to be P/4/r(r + 1), where P is the state’s population and r is the number of
representatives already allocated to that state.

The algorithm is described in pseudocode in Figure o.5. The input consists of
an array Pop[1..n] storing the populations of the n states and an integer R equal
to the total number of representatives; the algorithm assumes R > n. (Currently,
in the United States, n = 50 and R = 435.) The output array Rep[1..n] records
the number of representatives allocated to each state.

ArpPORTIONCONGRESS(Pop[1..n],R):
PQ < NEWPRIORITYQUEUE

((Give every state its first representative))
fors<—1ton

Rep[s] <1

INSERT (PQ, s, Pop[i]/\/i)

{(Allocate the remaining n — R representatives))
fori —1ton—R
s « ExTrRACTMAX(PQ)
Rep[s] < Rep[s]+1
priority « Pop[s] /\/Rep[s] (Rep[s]+1)
INSERT(PQ, s, priority)

return Rep[1..n]

Figure 0.5. The Huntington-Hill apportionment algorithm

This implementation of Huntington-Hill uses a priority queue that supports
the operations NEWPRIORITYQUEUE, INSERT, and ExTRAcTMAX. (The actual
law doesn’t say anything about priority queues, of course.) The output of the
algorithm, and therefore its correctness, does not depend at all on how this

3Qverruling an earlier ruling by a federal district court, the Supreme Court unanimously
held that any apportionment method adopted in good faith by Congress is constitutional (United
States Department of Commerce v. Montana). The current congressional apportionment algorithm
is described in gruesome detail at the U.S. Census Department web site http://www.census.gov/
topics/public-sector/congressional-apportionment.html. A good history of the apportionment
problem can be found at http://www.thirty-thousand.org/pages/Apportionment.htm. A report
by the Congressional Research Service describing various apportionment methods is available at
http://www.fas.org/sgp/crs/misc/R41382.pdf.

https://www.law.cornell.edu/uscode/text/2/2a
https://www.law.cornell.edu/uscode/text/2/2a
http://www.census.gov/topics/public-sector/congressional-apportionment.html
http://www.census.gov/topics/public-sector/congressional-apportionment.html
http://www.thirty-thousand.org/pages/Apportionment.htm
http://www.fas.org/sgp/crs/misc/R41382.pdf

0.

INTRODUCTION

10

priority queue is implemented. The Census Bureau uses a sorted array, stored
in a single column of an Excel spreadsheet, which is recalculated from scratch
at every iteration. You (should have) learned a more efficient implementation
in your undergraduate data structures class.

Similar apportionment algorithms are used in multi-party parliamentary
elections around the world, where the number of seats allocated to each party
is supposed to be proportional to the number of votes that party receives. The
two most common are the D’Hondt method'# and the Webster—Sainte-Lagué
method,™ which respectively use priorities P/(r + 1) and P/(2r + 1) in place of
the square-root expression in Huntington-Hill. The Huntington-Hill method is
essentially unique to the United States House of Representatives, thanks in part
to the constitutional requirement that each state must be allocated at least one
representative.

0.4 A Bad Example

As a prototypical example of a sequence of instructions that is not actually an

algorithm, consider "Martin’s algorithm”:'¢

BEAMILLIONAIREANDNEVERPAYTAXES():
Get a million dollars.
If the tax man comes to your door and says, “You have never paid taxes!”
Say “I forgot.”

Pretty simple, except for that first step; it’s a doozy! A group of billionaire CEOs,
Silicon Valley venture capitalists, or New York City real-estate hustlers might
consider this an algorithm, because for them the first step is both unambiguous
and trivial,'” but for the rest of us poor slobs, Martin’s procedure is too vague to
be considered an actual algorithm. On the other hand, this is a perfect example
of a reduction—it reduces the problem of being a millionaire and never paying
taxes to the “easier” problem of acquiring a million dollars. We’ll see reductions
over and over again in this book. As hundreds of businessmen and politicians
have demonstrated, if you know how to solve the easier problem, a reduction
tells you how to solve the harder one.

*developed by Thomas Jefferson in 1792, used for U.S. Congressional apportionment from
1792 to 1832, rediscovered by Belgian mathematician Victor D’Hondt in 1878, and refined by Swiss
physicist Eduard Hagenbach-Bischoff in 1888.

>developed by Daniel Webster in 1832, used for U.S. Congressional apportionment from 1842
to 1911, rediscovered by French mathematician André Sainte-Lagué in 1910, and rediscovered
again by German physicist Hans Schepers in 1980.

6Steve Martin, “You Can Be A Millionaire”, Saturday Night Live, January 21, 1978. Also
appears on Comedy Is Not Pretty, Warner Bros. Records, 1979.

7Something something secure quantum blockchain deep-learning something.

https://en.wikipedia.org/wiki/D%27Hondt_method
https://en.wikipedia.org/wiki/Webster/Sainte-Lagu%C3%AB_method
https://en.wikipedia.org/wiki/Webster/Sainte-Lagu%C3%AB_method
https://www.youtube.com/watch?v=zXmQW_aqBks

0.5. Describing Algorithms

Martin’s algorithm, like some of our previous examples, is not the kind
of algorithm that computer scientists are used to thinking about, because it
is phrased in terms of operations that are difficult for computers to perform.
This book focuses (almost!) exclusively on algorithms that can be reasonably
implemented on a standard digital computer. Each step in these algorithms
is either directly supported by common programming languages (such as
arithmetic, assignments, loops, or recursion) or something that you've already
learned how to do (like sorting, binary search, tree traversal, or singing “n
Bottles of Beer on the Wall”).

0.5 Describing Algorithms

The skills required to effectively design and analyze algorithms are entangled
with the skills required to effectively describe algorithms. At least in my classes,
a complete description of any algorithm has four components:

* What: A precise specification of the problem that the algorithm solves.

* How: A precise description of the algorithm itself.

* Why: A proof that the algorithm solves the problem it is supposed to solve.
* How fast: An analysis of the running time of the algorithm.

It is not necessary (or even advisable) to develop these four components in this
particular order. Problem specifications, algorithm descriptions, correctness
proofs, and time analyses usually evolve simultaneously, with the development
of each component informing the development of the others. For example,
we may need to tweak the problem description to support a faster algorithm,
or modify the algorithm to handle a tricky case in the proof of correctness.
Nevertheless, presenting these components separately is usually clearest for the
reader.

As with any writing, it’s important to aim your descriptions at the right
audience; I recommend writing for a competent but skeptical programmer who
is not as clever as you are. Think of yourself six months ago. As you develop any
new algorithm, you will naturally build up lots of intuition about the problem
and about how your algorithm solves it, and your informal reasoning will be
guided by that intuition. But anyone reading your algorithm later, or the code
you derive from it, won’t share your intuition or experience. Neither will your
compiler. Neither will you six months from now. All they will have is your
written description.

Even if you never have to explain your algorithms to anyone else, it’s still
important to develop them with an audience in mind. Trying to communicate
clearly forces you to think more clearly. In particular, writing for a novice
audience, who will interpret your words exactly as written, forces you to work

11

0.

INTRODUCTION

12

through fine details, no matter how “obvious” or “intuitive” your high-level ideas
may seem at the moment. Similarly, writing for a skeptical audience forces you
to develop robust arguments for correctness and efficiency, instead of trusting
your intuition or your intelligence.'®

I cannot emphasize this point enough: Your primary job as an algorithm
designer is teaching other people how and why your algorithms work. If
you can’t communicate your ideas to other human beings, they may as well
not exist. Producing correct and efficient executable code is an important
but secondary goal. Convincing yourself, your professors, your (prospective)
employers, your colleagues, or your students that you are smart is at best a
distant third.

Specifying the Problem

Before we can even start developing a new algorithm, we have to agree on what
problem our algorithm is supposed to solve. Similarly, before we can even start
describing an algorithm, we have to describe the problem that the algorithm is
supposed to solve.

Algorithmic problems are often presented using standard English, in terms
of real-world objects. It’s up to us, the algorithm designers, to restate these
problems in terms of formal, abstract, mathematical objects—numbers, arrays,
lists, graphs, trees, and so on—that we can reason about formally. We must also
determine if the problem statement carries any hidden assumptions, and state
those assumptions explicitly. (For example, in the song “n Bottles of Beer on the
Wall”, n is always a non-negative integer."?)

We may need to refine our specification as we develop the algorithm. For
example, our algorithm may require a particular input representation, or
produce a particular output representation, that was left unspecified in the
original informal problem description. Or our algorithm might actually solve a
more general problem than we were originally asked to solve. (This is a common
feature of recursive algorithms.)

The specification should include just enough detail that someone else could
use our algorithm as a black box, without knowing how or why the algorithm
actually works. In particular, we must describe the type and meaning of each
input parameter, and exactly how the eventual output depends on the input
parameters. On the other hand, our specification should deliberately hide any
details that are not necessary to use the algorithm as a black box. Let that which
does not matter truly slide.

8In particular, T assume that you are a skeptical novice!

“T've never heard anyone sing “+/2 Bottles of Beer on the Wall.” Occasionally I have heard set
theorists singing “X,, bottles of beer on the wall”, but for some reason they always gave up before
the song was over.

0.5. Describing Algorithms

For example, the lattice and duplation-and-mediation algorithms both solve
the same problem: Given two non-negative integers x and y, each represented
as an array of digits, compute the product x - y, also represented as an array of
digits. To someone using these algorithms, the choice of algorithm is completely
irrelevant. On the other hand, the Greek straightedge-and-compass algorithm
solves a different problem, because the input and output values are represented
by line segments instead of arrays of digits.

Describing the Algorithm

Computer programs are concrete representations of algorithms, but algorithms
are not programs. Rather, algorithms are abstract mechanical procedures
that can be implemented in any programming language that supports the
underlying primitive operations. The idiosyncratic syntactic details of your
favorite programming language are utterly irrelevant; focusing on these will
only distract you (and your readers) from what’s really going on.*® A good
algorithm description is closer to what we should write in the comments of a
real program than the code itself. Code is a poor medium for storytelling.

On the other hand, a plain English prose description is usually not a good idea
either. Algorithms have lots of idiomatic structure—especially conditionals, loops,
function calls, and recursion—that are far too easily hidden by unstructured
prose. Colloquial English is full of ambiguities and shades of meaning, but
algorithms must be described as unambiguously as possible. Prose is a poor
medium for precision.

In my opinion, the clearest way to present an algorithm is using a combination
of pseudocode and structured English. Pseudocode uses the structure of formal
programming languages and mathematics to break algorithms into primitive
steps; the primitive steps themselves can be written using mathematical notation,
pure English, or an appropriate mixture of the two, whatever is clearest. Well-
written pseudocode reveals the internal structure of the algorithm but hides
irrelevant implementation details, making the algorithm easier to understand,
analyze, debug, and implement.

*°This is, of course, a matter of religious conviction. Armchair linguists argue incessantly over
the Sapir-Whorf hypothesis, which states (more or less) that people think only in the categories
imposed by their languages. According to an extreme formulation of this principle, some concepts
in one language simply cannot be understood by speakers of other languages, not just because of
technological advancement—How would you translate “jump the shark” or “Fortnite streamer”
into Aramaic?—but because of inherent structural differences between languages and cultures.
For a more skeptical view, see Steven Pinker’s The Language Instinct. There is admittedly some
strength to this idea when applied to different programming paradigms. (What’s the Y combinator,
again? How do templates work? What’s an Abstract Factory?) Fortunately, those differences are
too subtle to have any impact on the material in this book. For a compelling counterexample, see
Chris Okasaki’s monograph Functional Data Structures and its more recent descendants.

13

http://99-bottles-of-beer.net/
https://en.wikipedia.org/wiki/Linguistic_relativity
http://cstheory.stackexchange.com/questions/1539/whats-new-in-purely-functional-data-structures-since-okasaki

0.

INTRODUCTION

14

Whenever we describe an algorithm, our description should include every
detail necessary to fully specify the algorithm, prove its correctness, and analyze
its running time. At the same time, it should exclude any details that are not
necessary to fully specify the algorithm, prove its correctness, and analyze its
running time. (Slide.) At a more practical level, our description should allow
a competent but skeptical programmer who has not read this book to quickly
and correctly implement the algorithm in their favorite programming language,
without understanding why it works.

I don’t want to bore you with the rules I follow for writing pseudocode, but
I must caution against one especially pernicious habit. Never describe repeated
operations informally, as in “Do [this] first, then do [that] second, and so on.” or
“Repeat this process until [something]”. As anyone who has taken one of those
frustrating “What comes next in this sequence?” tests already knows, describing
the first few steps of an algorithm says little or nothing about what happens
in later steps. If your algorithm has a loop, write it as a loop, and explicitly
describe what happens in an arbitrary iteration. Similarly, if your algorithm is
recursive, write it recursively, and explicitly describe the case boundaries and
what happens in each case.

0.6 Analyzing Algorithms

It’s not enough just to write down an algorithm and say “Behold!” We must also
convince our audience (and ourselves!) that the algorithm actually does what
it’s supposed to do, and that it does so efficiently.

Correctness

In some application settings, it is acceptable for programs to behave correctly
most of the time, on all “reasonable” inputs. Not in this book; we require
algorithms that are always correct, for all possible inputs. Moreover, we must
prove that our algorithms are correct; trusting our instincts, or trying a few test
cases, isn’t good enough. Sometimes correctness is truly obvious, especially
for algorithms you’ve seen in earlier courses. On the other hand, “obvious”
is all too often a synonym for “wrong”. Most of the algorithms we discuss in
this course require real work to prove correct. In particular, correctness proofs
usually involve induction. We like induction. Induction is our friend.”

Of course, before we can formally prove that our algorithm does what it’s
supposed to do, we have to formally describe what it’s supposed to do!

#1f induction is not your friend, you will have a hard time with this book.

http://www.research.att.com/~njas/sequences/

0.6. Analyzing Algorithms

Running Time

The most common way of ranking different algorithms for the same problem is
by how quickly they run. Ideally, we want the fastest possible algorithm for any
particular problem. In many application settings, it is acceptable for programs
to run efficiently most of the time, on all “reasonable” inputs. Not in this book;
we require algorithms that always run efficiently, even in the worst case.

But how do we measure running time? As a specific example, how long does
it take to sing the song BoTTLESOFBEER(n)? This is obviously a function of the
input value n, but it also depends on how quickly you can sing. Some singers
might take ten seconds to sing a verse; others might take twenty. Technology
widens the possibilities even further. Dictating the song over a telegraph using
Morse code might take a full minute per verse. Downloading an mp3 over
the Web might take a tenth of a second per verse. Duplicating the mp3 in a
computer’s main memory might take only a few microseconds per verse.

What'’s important here is how the singing time changes as n grows. Singing
BoTTLESOFBEER(2n) requires about twice much time as singing BOTTLESOF-
BeEER(n), no matter what technology is being used. This is reflected in the
asymptotic singing time ©(n).

We can measure time by counting how many times the algorithm executes a
certain instruction or reaches a certain milestone in the “code”. For example,
we might notice that the word “beer” is sung three times in every verse of
BoTTLESOFBEER, so the number of times you sing “beer” is a good indication
of the total singing time. For this question, we can give an exact answer:
BoTrTLESOFBEER(n) mentions beer exactly 3n + 3 times.

Incidentally, there are lots of songs with quadratic singing time. This one is
probably familiar to most English-speakers:

NDaysOrCHRISTMAS(gifts[2..n]):
fori—1ton
Sing “On the ith day of Christmas, my true love gave to me”
for j « i down to 2
Sing “j gifts[j]”
ifi>1
Sing “and”
Sing “a partridge in a pear tree.”

The input to NDaysOFCHRISTMAS is a list of n — 1 gifts, represented here as
an array. It’s quite easy to show that the singing time is ©(n?); in particular,
the singer mentions the name of a gift Z?Zl i =n(n+1)/2 times (counting the
partridge in the pear tree). It’s also easy to see that during the first n days of
Christmas, my true love gave to me exactly ».._; 23:1 j=n(n+1)(n+2)/6=

O(n?) gifts.

15

0.

INTRODUCTION

16

Other quadratic-time songs include “Old MacDonald Had a Farm”, “There
Was an Old Lady Who Swallowed a Fly”, “Hole in the Bottom of the Sea”, “Green
Grow the Rushes O”, “The Rattlin’ Bog”, “The Court Of King Caractacus”,“The
Barley-Mow”, “If I Were Not Upon the Stage”, “Star Trekkin’”,“Ist das nicht
ein Schnitzelbank?”,>2“Il Pulcino Pio”, “Minkurinn { haeensnakofanum”, “Echad
Mi Yodea”, and “To koxopdrkit”. For more examples, consult your favorite
preschooler.

AvoueTrTE(lapart[1..n]):
Chantez « Alouette, gentille alouette, alouette, je te plumerai. »
pourtoutidelan
Chantez « Je te plumerai lapart[i]. Je te plumerai lapart[i]. »
pour tout j de i a 1 {(a rebours))
Chantez « Et lapart[j]! Et lapart[j]!»
Chantez « Alouette! Alouette! Aaaaaa... »
Chantez «...alouette, gentille allouette, alouette, je te plumerai. »

A few songs have even more bizarre singing times. A fairly modern example
is “The TELNET Song” by Guy Steele, which actually takes ©(2") time to sing
the first n verses; Steele recommended n = 4. Finally, there are some songs that
never end.*

Except for “The TELNET Song”, all of these songs are most naturally
expressed as a small set of nested loops, so their running singing times can be
computed using nested summations. The running time of a recursive algorithm is
more easily expressed as a recurrence. For example, the peasant multiplication
algorithm can be expressed recursively as follows:

0 ifx=0
x-y=Alx/2]-(y+y) if x is even
Ix/2]-(y +y)+y ifxisodd

Let T(x,y) denote the number of parity, addition, and mediation operations
required to compute x - y. This function satisfies the recursive inequality
T(x,y) < T(lx/2],2y)+ 2 with base case T (0, y) = 0. Techniques described
in the next chapter imply the upper bound T(x, y) = O(log x).

Sometimes the running time of an algorithm depends on a particular
implementation of some underlying data structure of subroutine. For example,
the Huntington-Hill apportionment algorithm APPORTIONCONGRESS runs in
O(N +RI +(R—n)E) time, where N denotes the running time of NEWPRIORITY-
QUEUE, I denotes the running time of INSERT, and E denotes the running time

*Ja, das ist Otto von Schnitzelpusskrankengescheitmeyer!
*They just go on and on, my friend.

Exercises

of ExTRACTMAX. Under the reasonable assumption that R > 2n (on average,
each state gets at least two representatives), we can simplify this bound to
O(N +R(I + E)). The precise running time depends on the implementation
of the underlying priority queue. The Census Bureau implements the priority
queue as an unsorted array, which gives us N =1 =©(1) and E = ©(n), so the
Census Bureau’s implementation of APPORTIONCONGRESS runs in O(Rn) time.
However, if we implement the priority queue as a binary heap or a heap-ordered
array, we have N = ©(1) and I = E = O(logn), so the overall algorithm runs in
O(Rlogn) time.

Finally, sometimes we are interested in computational resources other than
time, such as space, number of coin flips, number of cache or page faults, number
of inter-process messages, or the number of gifts my true love gave to me. These
resources can be analyzed using the same techniques used to analyze running
time. For example, lattice multiplication of two n-digit numbers requires O(n?)
space if we write down all the partial products before adding them, but only
O(n) space if we add them on the fly.

Exercises

0. Describe and analyze an efficient algorithm that determines, given a legal
arrangement of standard pieces on a standard chess board, which player will
win at chess from the given starting position if both players play perfectly.
[Hint: There is a trivial one-line solution!]

1. (a) Identify (or write) a song that requires O(n®) time to sing the first n
verses.
(b) Identify (or write) a song that requires ©(nlogn) time to sing the first
n verses.
(c) Identify (or write) a song that requires some other weird amount of
time to sing the first n verses.

2. Careful readers might complain that our analysis of songs like “n Bottles of
Beer on the Wall” or “The n Days of Christmas” is overly simplistic, because
larger numbers take longer to sing than shorter numbers. More generally,
because there are only so many words of a given length, larger sets of words
necessarily contain longer words.?* We can more accurately estimate singing
time by counting the number of syllables sung, rather than the number of
words.

(a) How long does it take to sing the integer n?

*4Ja, das ist das Subatomarteilchenbeschleunigungsnaturmafligkeitsuntersuchungsmaschine!

17

0.

INTRODUCTION

18

(b) How long does it take to sing “n Bottles of Beer on the Wall”?
(c) How long does it take to sing “The n Days of Christmas”?

As usual, express your answers in the form O(f (n)) for some function f.

3. The cumulative drinking song “The Barley Mow” has been sung throughout
the British Isles for centuries. The song has many variants; Figure 0.6
contains pseudolyrics for one version traditionally sung in Devon and
Cornwall, where vessel[i] is the name of a vessel that holds 2! ounces of
beer.?>

BArRLEYMow(n):
‘Here’s a health to the barley-mow, my brave boys,”
‘Here’s a health to the barley-mow!”

“We'll drink it out of the jolly brown bowl”

‘Here’s a health to the barley-mow!”

‘Here’s a health to the barley-mow, my brave boys,”
‘Here's a health to the barley-mow!”

fori —1ton
“We'll drink it out of the vessel[i], boys,”
“Here's a health to the barley-mow!”
for j « i downto 1
“The vessel[j]”
"And the jolly brown bowl!"
‘Here's a health to the barley-mow!”
‘Here’s a health to the barley-mow, my brave boys,”
“Here's a health to the barley-mow!”

Figure 0.6. “The Barley Mow".

(a) Suppose each name vessel[i] is a single word, and you can sing four
words a second. How long would it take you to sing BARLEYMow(n)?
(Give a tight asymptotic bound.)

(b) If you want to sing this song for arbitrarily large values of n, you’ll have
to make up your own vessel names. To avoid repetition, these names
must become progressively longer as n increases. Suppose vessel[n] has

*In practice, the song uses some subset of the following vessels; nipperkin, quarter-gill,
half-a-gill, gill, quarter-pint, half-a-pint, pint, quart, pottle, gallon, half-anker, anker, firkin,
half-barrel/kilderkin, barrel, hogshead, pipe/butt, tun, well, river, and ocean. With a few
exceptions (especially at the end), every vessel in this list has twice the volume of its predecessor.
Irish and Scottish versions of the song have slightly different lyrics, and they usually switch to
people (barmaid, landlord, drayer, and so on) after “gallon”.

An early version of the song entitled “Give us once a drink” appears in the play Jack Drum’s
Entertainment (or the Comedie of Pasquill and Katherine) written by John Marston around 1600.
(“Giue vs once a drinke for and the black bole. Sing gentle Butler bally moy!”) There is some
disagreement whether Marston wrote the “high Dutch Song” specifically for the play, whether
“bally moy” is a mondegreen for “barley mow” or vice versa, or whether it’s actually the same
song at all. These discussions are best had over n bottles of beer.

http://www.youtube.com/watch?v=tN7wh3DrIBU
http://books.google.com/books?id=RCFAAAAAYAAJ&pg=PA159#v=onepage&q&f=false
http://books.google.com/books?id=RCFAAAAAYAAJ&pg=PA159#v=onepage&q&f=false
https://en.wikipedia.org/wiki/Mondegreen

Exercises

©(logn) syllables, and you can sing six syllables per second. Now how
long would it take you to sing BARLEYMow(n)? (Give a tight asymptotic
bound.)

(c) Suppose each time you mention the name of a vessel, you actually drink
the corresponding amount of beer: one ounce for the jolly brown bowl,
and 2! ounces for each vessel[i]. Assuming for purposes of this problem
that you are at least 21 years old, exactly how many ounces of beer would
you drink if you sang BARLEYMow(n)? (Give an exact answer, not just
an asymptotic bound.)

. Recall that the input to the Huntington-Hill algorithm APPORTIONCONGRESS
is an array Pop[1..n], where Pop[i] is the population of the ith state, and an
integer R, the total number of representatives to be allotted. The output is
an array Rep[1..n], where Rep[i] is the number of representatives allotted
to the ith state by the algorithm.

The Huntington-Hill algorithm is sometimes described in a way that
avoids the use of priority queues entirely. The top-level algorithm “guesses”
a positive real number D, called the divisor, and then runs the following
subroutine to compute an apportionment. The variable q is the ideal quota
of representatives allocated to a state for the given divisor D; the actual
number of representatives allocated is always either [q] or |q].

HHGuess(Pop[1..n],R,D):
reps < 0
fori«<—1ton
q < Pop[i]/D
ifqg-q<[ql-lq]
Rep[i] < [q]

else

Rep[i] < [q]
reps < reps + Rep[i]

return reps

There are three possibilities for the final return value reps. If reps <R,
we did not allocate enough representatives, which (at least intuitively)
means our divisor D was too small. If reps > R, we allocated too many
representatives, which (at least intuitively) means our divisor D was too
large. Finally, if reps = R, we can return the array Rep[1..n] as the final
apportionment. In practice, we can compute a valid apportionment (with
reps = R) by calling HHGUEss with a small number of integer divisors close
to the standard divisor D = P /R.

In the following problems, let P = Z?:l Pop[i] denote the total popula-
tion of all n states, and assume that n <R < P.

19

0. INTRODUCTION

(a) Show that calling HHGUESs with the standard divisor D = P /R does not
necessarily yield a valid apportionment.

(b) Prove that if HHGUESs returns the same value of reps for two different
divisors D and D’, it also computes the same allocation Rep[1..n] for
both of those divisors.

(c) Prove that if HHGUESSs returns the correct value R, it computes the same
allocation Rep[1..n] as our earlier algorithm APPORTIONCONGRESS.

(d) Prove that a “correct” divisor D does not necessarily exist! That is,
describe inputs Pop[1..n] and R, where n <R < P, such that for every
real number D > 0, the number of representatives allocated by HHGUESs
is not equal to R. [Hint: What happens if we change < to < in the
fourth line of HHGUESS?]

20

The control of a large force is the same principle as the control of a few men:
it is merely a question of dividing up their numbers.

— Sun Zi, The Art of War (c. 400CE), translated by Lionel Giles (1910)

Our life is frittered away by detail.... Simplify, simplify.
— Henry David Thoreau, Walden (1854)

Now, don't ask me what Voom is. | never will know.
But, boy! Let me tell you, it DOES clean up snow!

— Dr. Seuss [Theodor Seuss Geisel], The Cat in the Hat Comes Back (1958)

Do the hard jobs first. The easy jobs will take care of themselves.
— attributed to Dale Carnegie

L

Recursion

1.1 Reductions

Reduction is the single most common technique used in designing algorithms.

Reducing one problem X to another problem Y means to write an algorithm
for X that uses an algorithm for Y as a black box or subroutine. Crucially, the
correctness of the resulting algorithm for X cannot depend in any way on how
the algorithm for Y works. The only thing we can assume is that the black box
solves Y correctly. The inner workings of the black box are simply none of our
business; they’re somebody else’s problem. It’s often best to literally think of the
black box as functioning purely by magic.

For example, the peasant multiplication algorithm described in the previous
chapter reduces the problem of multiplying two arbitrary positive integers to
three simpler problems: addition, mediation (halving), and parity-checking. The
algorithm relies on an abstract “positive integer” data type that supports those
three operations, but the correctness of the multiplication algorithm does not

21

1.

RECURSION

22

depend on the precise data representation (tally marks, clay tokens, Babylonian
hexagesimal, quipu, counting rods, Roman numerals, finger positions, augrym
stones, gobar numerals, binary, negabinary, Gray code, balanced ternary, phinary,
quater-imaginary, . ..), or on the precise implementations of those operations.
Of course, the running time of the multiplication algorithm depends on the
running time of the addition, mediation, and parity operations, but that’s
a separate issue from correctness. Most importantly, we can create a more
efficient multiplication algorithm just by switching to a more efficient number
representation (from tally marks to place-value notation, for example).

Similarly, the Huntington-Hill algorithm reduces the problem of apportioning
Congress to the problem of maintaining a priority queue that supports the
operations INSERT and ExTRAcTMAx. The abstract data type “priority queue” is
a black box; the correctness of the apportionment algorithm does not depend
on any specific priority queue data structure. Of course, the running time of
the apportionment algorithm depends on the running time of the INSERT and
ExTRACTMAX algorithms, but that’s a separate issue from the correctness of the
algorithm. The beauty of the reduction is that we can create a more efficient
apportionment algorithm by simply swapping in a new priority queue data
structure. Moreover, the designer of that data structure does not need to know
or care that it will be used to apportion Congress.

When we design algorithms, we may not know exactly how the basic building
blocks we use are implemented, or how our algorithms might be used as building
blocks to solve even bigger problems. That ignorance is uncomfortable for many
beginners, but it is both unavoidable and extremely useful. Even when you
do know precisely how your components work, it is often extremely helpful to
pretend that you don’t.

1.2 Simplify and Delegate

Recursion is a particularly powerful kind of reduction, which can be described
loosely as follows:

* If the given instance of the problem can be solved directly, solve it directly.
* Otherwise, reduce it to one or more simpler instances of the same problem.

If the self-reference is confusing, it may be helpful to imagine that someone else
is going to solve the simpler problems, just as you would assume for other types
of reductions. I like to call that someone else the Recursion Fairy. Your only
task is to simplify the original problem, or to solve it directly when simplification
is either unnecessary or impossible; the Recursion Fairy will solve all the simpler
subproblems for you, using Methods That Are None Of Your Business So Butt

1.2. Simplify and Delegate

Out.! Mathematically sophisticated readers might recognize the Recursion Fairy
by its more formal name: the Induction Hypothesis.

There is one mild technical condition that must be satisfied in order for
any recursive method to work correctly: There must be no infinite sequence of
reductions to simpler and simpler instances. Eventually, the recursive reductions
must lead to an elementary base case that can be solved by some other method;
otherwise, the recursive algorithm will loop forever. The most common way
to satisfy this condition is to reduce to one or more smaller instances of the
same problem. For example, if the original input is a skreeble with n glurps, the
input to each recursive call should be a skreeble with strictly less than n glurps.
Of course this is impossible if the skreeble has no glurps at all—You can’t have
negative glurps; that would be silly!—so in that case we must grindlebloff the
skreeble using some other method.

We've already seen one instance of this pattern in the peasant multiplication
algorithm, which is based directly on the following recursive identity.

0 ifx=0
x-y=1lx/2]-(y +y) if x is even
x/2]-(y +y)+y ifxisodd

The same recurrence can be expressed algorithmically as follows:

PEAsaNTMuULTIPLY(X, ¥):

ifx=0
return O

else
x' —|x/2]
Y ey+y
prod « PEasaNnTMurTiPLY(x’, y’) {(Recursel))
if x is odd

prod < prod +y

return prod

A lazy Egyptian scribe could execute this algorithm by computing x” and y’,
asking a more junior scribe to multiply x’ and y’, and then possibly adding y
to the junior scribe’s response. The junior scribe’s problem is simpler because
x" < x, and repeatedly decreasing a positive integer eventually leads to 0. How
the junior scribe actually computes x” - y’ is none of the senior scribe’s business
(and it’s none of your business, either).

'When I was an undergraduate, I attributed recursion to “elves” instead of the Recursion Fairy,
referring to the Brothers Grimm story about an old shoemaker who leaves his work unfinished
when he goes to bed, only to discover upon waking that elves (“Wichtelménner”) have finished
everything overnight. Someone more entheogenically experienced than I might recognize these
Rekursionswichtelmanner as Terence McKenna’s “self-transforming machine elves”.

23

1.

RECURSION

24

1.3 Tower of Hanoi

The Tower of Hanoi puzzle was first published—as an actual physical puzzle!—by
the French teacher and recreational mathematician Edouard Lucas in 1883,>
under the pseudonym “N. Claus (de Siam)” (an anagram of “Lucas d’Amiens”).
The following year, Henri de Parville described the puzzle with the following
remarkable story:3

In the great temple at Benares*. .. beneath the dome which marks the centre of
the world, rests a brass plate in which are fixed three diamond needles, each
a cubit high and as thick as the body of a bee. On one of these needles, at the
creation, God placed sixty-four discs of pure gold, the largest disc resting on the
brass plate, and the others getting smaller and smaller up to the top one. Thisis
the Tower of Bramah. Day and night unceasingly the priests transfer the discs
from one diamond needle to another according to the fixed and immutable
laws of Bramah, which require that the priest on duty must not move more
than one disc at a time and that he must place this disc on a needle so that
there is no smaller disc below it. When the sixty-four discs shall have been thus
transferred from the needle on which at the creation God placed them to one
of the other needles, tower, temple, and Brahmins alike will crumble into dust,
and with a thunderclap the world will vanish.

Figure 1.1. The (8-disk) Tower of Hanoi puzzle

Of course, as good computer scientists, our first instinct on reading this
story is to substitute the variable n for the hardwired constant 64. And because
most physical instances of the puzzle are made of wood instead of diamonds
and gold, I will call the three possible locations for the disks “pegs” instead of

*Lucas later claimed to have invented the puzzle in 1876.

3This English translation is taken from W. W. Rouse Ball’s 1892 book Mathematical Recreations
and Essays.

4The “great temple at Benares” is almost certainly the Kashi Vishvanath Temple in Varanasi,
Uttar Pradesh, India, located approximately 2400km west-north-west of Ha Noi, Viét Nam, where
the fictional N. Claus supposedly resided. Coincidentally, the French Army invaded Hanoi in 1883,
the same year Lucas released his puzzle, ultimately leading to its establishment as the capital of
French Indochina.

1.3. Tower of Hanoi

“needles”. How can we move a tower of n disks from one peg to another, using a
third spare peg as an occasional placeholder, without ever placing a disk on top
of a smaller disk?

As N. Claus (de Siam) pointed out in the pamphlet included with his puzzle,
the secret to solving this puzzle is to think recursively. Instead of trying to solve
the entire puzzle at once, let’s concentrate on moving just the largest disk. We
can’t move it at the beginning, because all the other disks are in the way. So
first we have to move those n — 1 smaller disks to the spare peg. Once that’s
done, we can move the largest disk directly to its destination. Finally, to finish
the puzzle, we have to move the n— 1 smaller disks from the spare peg to their
destination.

=N | = | =

\ = | 2

Figure 1.2. The Tower of Hanoi algorithm; ignore everything but the bottom disk.

So now all we have to figure out is how to—

NO!! STOP!!

That'’s it! We're done! We've successfully reduced the n-disk Tower of Hanoi
problem to two instances of the (n — 1)-disk Tower of Hanoi problem, which
we can gleefully hand off to the Recursion Fairy—or to carry Lucas’s metaphor
further, to the junior monks at the temple. Our job is finished. If we didn’t trust
the junior monks, we wouldn’t have hired them; let them do their job in peace.

Our reduction does make one subtle but extremely important assumption:
There is a largest disk. Our recursive algorithm works for any positive number
of disks, but it breaks down when n = 0. We must handle that case using a
different method. Fortunately, the monks at Benares, being good Buddhists, are
quite adept at moving zero disks from one peg to another in no time at all, by
doing nothing.

Figure 1.3. The vacuous base case for the Tower of Hanoi algorithm. There is no spoon.

25

1.

RECURSION

26

It may be tempting to think about how all those smaller disks move around—
or more generally, what happens when the recursion is unrolled—but really,
don’t do it. For most recursive algorithms, unrolling the recursion is neither
necessary nor helpful. Our only task is to reduce the problem instance we’re
given to one or more simpler instances, or to solve the problem directly if such
a reduction is impossible. Our recursive Tower of Hanoi algorithm is trivially
correct when n = 0. For any n > 1, the Recursion Fairy correctly moves the top
n— 1 disks (more formally, the Inductive Hypothesis implies that our recursive
algorithm correctly moves the top n — 1 disks) so our algorithm is correct.

The recursive Hanoi algorithm is expressed in pseudocode in Figure 1.4.
The algorithm moves a stack of n disks from a source peg (src) to a destination
peg (dst) using a third temporary peg (tmp) as a placeholder. Notice that the
algorithm correctly does nothing at all when n = 0.

Hanoi(n, src, dst, tmp):
ifn>0
Hanoi(n — 1,src,tmp,dst) {(Recursel))
move disk n from src to dst
Hanoi(n—1,tmp,dst,src) {(Recursel))

Figure 1.4. A recursive algorithm to solve the Tower of Hanoi

Let T(n) denote the number of moves required to transfer n disks—the
running time of our algorithm. Our vacuous base case implies that T(0) = 0,
and the more general recursive algorithm implies that T(n) =2T(n—1) + 1
for any n > 1. By writing out the first several values of T(n), we can easily
guess that T(n) = 2" — 1; a straightforward induction proof implies that this
guess is correct. In particular, moving a tower of 64 disks requires 264 —1 =
18,446,744,073,709,551,615 individual moves. Thus, even at the impressive rate
of one move per second, the monks at Benares will be at work for approximately
585 billion years (“plus de cing milliards de siécles”) before tower, temple, and
Brahmins alike will crumble into dust, and with a thunderclap the world will
vanish.

1.4 Mergesort

Mergesort is one of the earliest algorithms designed for general-purpose stored-
program computers. The algorithm was developed by John von Neumann in
1945, and described in detail in a publication with Herman Goldstine in 1947, as
one of the first non-numerical programs for the EDVAC.>

5Goldstine and von Neumann actually described an non-recursive variant now usually called
bottom-up mergesort. At the time, large data sets were sorted by special-purpose machines—
almost all built by IBM—that manipulated punched cards using variants of binary radix sort. Von

1.4. Mergesort

1. Divide the input array into two subarrays of roughly equal size.
2. Recursively mergesort each of the subarrays.

3. Merge the newly-sorted subarrays into a single sorted array.

Input: S O R T I N G E X A MP L

Dividle: S O R T I N|G E X A M P L
Recurseleftt T N O R S T|G E X A M P L
RecurseRight: I N 0O R S T|A E G L M P X
Merge: A E G I L M NO PR ST X

Figure 1.5. A mergesort example.

The first step is completely trivial—just divide the array size by two—and
we can delegate the second step to the Recursion Fairy. All the real work is
done in the final merge step. A complete description of the algorithm is given in
Figure 1.6; to keep the recursive structure clear, I've extracted the merge step
into an independent subroutine. The merge algorithm is also recursive—identify
the first element of the output array, and then recursively merge the rest of the
input arrays.

MERGE(A[1..n],m):
ie—1; jem+1
fork«<—1ton
if j >
MERGESORT(A[1..n]): J Br[lk]<—A[i]- Peitl
ifn>1 L ’
elseifi >m
m < |n/2] BIK] —ALj); jej+1
MERGESORT(A[1..m]) {(Recurse!)) else if A[i] < A[j]
MERGESORT(A[m +1..n]) ((Recursel)) B[k] —A[i]; i —i+1
MERGE(A[1..n],m) else
Blk]<A[jl; j<j+1
fork«—1ton
Alk] < B[k]
Figure 1.6. Mergesort
Correctness

To prove that this algorithm is correct, we apply our old friend induction twice,
first to the MERGE subroutine then to the top-level MERGESORT algorithm.

Lemma 1.1. MERGE correctly merges the subarrays A{1..m] and Alm+1..n],
assuming those subarrays are sorted in the input.

Neumann argued (successfully!) that because the EDVAC could sort faster than IBM’s dedicated
sorters, “without human intervention or need for additional equipment”, the EDVAC was an “all
purpose” machine, and special-purpose sorting machines were no longer necessary.

27

1.

RECURSION

28

Proof: Let A[1..n] be any array and m any integer such that the subarrays
A[1..m]and Alm+1..n] are sorted. We prove that for all k from O to n, the last
n—k — 1 iterations of the main loop correctly merge A[i..m] and A[j..n] into
B[k ..n]. The proof proceeds by induction on n —k + 1, the number of elements
remaining to be merged.

If k > n, the algorithm correctly merges the two empty subarrays by doing
absolutely nothing. (This is the base case of the inductive proof.) Otherwise,
there are four cases to consider for the kth iteration of the main loop.

 If j > n, then subarray A[j .. n] is empty, so min(A[i .mJUA[j ..n]) =A[i].

e If i > m, then subarray A[i..m] is empty, so min(A[i .mJUA[] .. n]) =A[j].

« Otherwise, if A[i] <A[j], then min (A[i..m]UA[j..n]) = A[i].

* Otherwise, we must have A[i] > A[j], and min (A[i .mJUA[J .. n]) =A[j].
In all four cases, B[k] is correctly assigned the smallest element of A[i..m]U
A[j..n]. In the two cases with the assignment B[k] < A[i], the Recursion Fairy
correctly merges—sorry, I mean the Induction Hypothesis implies that the last
n — k iterations of the main loop correctly merge A[i + 1..m] and A[j..n] into

B[k +1..n]. Similarly, in the other two cases, the Recursion Fairy also correctly
merges the rest of the subarrays. a

Theorem 1.2. MERGESORT correctly sorts any input array A[1..n].

Proof: We prove the theorem by induction on n. If n < 1, the algorithm
correctly does nothing. Otherwise, the Recursion Fairy correctly sorts—sorry, I
mean the induction hypothesis implies that our algorithm correctly sorts the
two smaller subarrays A[1..m] and Alm + 1..n], after which they are correctly
MERGEA into a single sorted array (by Lemma 1.1). a

Analysis

Because the MERGESORT algorithm is recursive, its running time is naturally
expressed as a recurrence. MERGE clearly takes O(n) time, because it’s a simple
for-loop with constant work per iteration. We immediately obtain the following
recurrence for MERGESORT:

T(n) = T([n/21) + T(Ln/2]) + O(n).

As in most divide-and-conquer recurrences, we can safely strip out the floors
and ceilings (using a technique called domain transformations described later
in this chapter), giving us the simpler recurrence T(n) = 2T (n/2) + O(n). The
“all levels equal” case of the recursion tree method (also described later in this
chapter) immediately implies the closed-form solution T(n) = O(nlogn). Even
if you are not (yet) familiar with recursion trees, you can verify the solution
T(n) = O(nlogn) by induction.

1.5. Quicksort

1.5 Quicksort

Quicksort is another recursive sorting algorithm, discovered by Tony Hoare in
1959 and first published in 1961. In this algorithm, the hard work is splitting
the array into smaller subarrays before recursion, so that merging the sorted
subarrays is trivial.

1. Choose a pivot element from the array.

2. Partition the array into three subarrays containing the elements smaller
than the pivot, the pivot element itself, and the elements larger than the
pivot.

3. Recursively quicksort the first and last subarrays.

lnputt S O R T I NG E X AMP L
Chooseapivott S O R T I N G E X A M[P|L
Partiton: A G 0 E I N L M[P|]T X S R
RecurseLeft:AEGILMNO|E|TXSR
RecurseRightt A E G I L M N O[PJR S T X

Figure 1.7. A quicksort example.

More detailed pseudocode is given in Figure 1.8. In the PARTITION subroutine,
the input parameter p is the index of the pivot element in the unsorted array;
the subroutine partitions the array and returns the new index of the pivot
element. There are many different efficient partitioning algorithms; the one
I'm presenting here is attributed to Nico Lomuto.® The variable £ counts the
number of items in the array that are {ess than the pivot element.

ParTITION(A[1..1],p):
swap A[p] <> A[n]
QuickSorT(A[1..n]): (<0 (#items < pivot))
if (n>1)
Choose a pivot element A[p]
1 < PARTITION(A, p)
QuUICKSORT(A[1..r —1]) ((Recursel))
QuickSorT(A[r +1..n]) ((Recursel))

forie—1ton—1
if Ali] < A[n]
l—1(+1
swap A[£] « A[i]
swap A[n] <> A[{ + 1]
return £ + 1

Figure 1.8. Quicksort

Correctness

Just like mergesort, proving that QUICKSORT is correct requires two separate
induction proofs: one to prove that PARTITION correctly partitions the array, and

®Hoare proposed a more complicated “two-way” partitioning algorithm that has some
practical advantages over Lomuto’s algorithm. On the other hand, Hoare’s partitioning algorithm
is one of the places off-by-one errors go to die.

29

1.

RECURSION

30

the other to prove that QUICKSORT correctly sorts assuming PARTITION is correct.
To prove PARTITION is correct, we need to prove the following loop invariant: At
the end of each iteration of the main loop, everything in the subarray A[1..£]
is fess than A[n], and nothing in the subarray A[£ + 1..i] is less than A[n].
I'll leave the remaining straightforward but tedious details as exercises for the
reader.

Analysis

The analysis of quicksort is also similar to that of mergesort. PARTITION clearly
runs in O(n) time, because it’s a simple for-loop with constant work per iteration.
For QuUIickSORT, we get a recurrence that depends on r, the rank of the chosen
pivot element:

T(nM)=T(r—1)+T(n—r)+0(n)

If we could somehow always magically choose the pivot to be the median element
of the array A, we would have r = [n/2], the two subproblems would be as close
to the same size as possible, the recurrence would become

T(n) = T([n/21—1)+ T(ln/2])+O(n) < 2T(n/2)+0(n),

and we’d have T(n) = O(nlogn) using either the recursion tree method or
the even simpler “Oh yeah, we already solved that recurrence for mergesort”
method.

In fact, as we will see later in this chapter, we can actually locate the
median element in an unsorted array in linear time, but the algorithm is fairly
complicated, and the hidden constant in the O(+) notation is large enough to
make the resulting sorting algorithm impractical. In practice, most programmers
settle for something simple, like choosing the first or last element of the array.
In this case, r can take any value between 1 and n, so we have

T(n)= max (T(r —1D)+Th—r)+ O(n)).

In the worst case, the two subproblems are completely unbalanced—either r = 1
or r = n—and the recurrence becomes T(n) < T(n— 1) + O(n). The solution is
T(n) = 0(n?).

Another common heuristic is called “median of three”—choose three el-
ements (usually at the beginning, middle, and end of the array), and take
the median of those three elements as the pivot. Although this heuristic is
somewhat more efficient in practice than just choosing one element, especially
when the array is already (nearly) sorted, we can still have r =2 orr=n—1
in the worst case. With the median-of-three heuristic, the recurrence becomes
T(n) < T(1) + T(n—2)+ 0(n), whose solution is still T(n) = 0(n?).

1.6. The Pattern

Intuitively, the pivot element should “usually” fall somewhere in the middle of
the array, say with rank between n/10 and 9n/10. This observation suggests that
the “average-case” running time should be O(nlogn). Although this intuition
can be formalized, the most common formalization makes the completely
unrealistic assumption that all permutations of the input array are equally likely.
Real world data may be random, but it is not random in any way that we can
predict in advance, and it is certainly not uniform!”

Occasionally people also consider “best case” running time for some reason.
We won't.

1.6 The Pattern

Both mergesort and quicksort follow a general three-step pattern called divide
and conquer:

1. Divide the given instance of the problem into several independent smaller
instances of exactly the same problem.

2. Delegate each smaller instance to the Recursion Fairy.

3. Combine the solutions for the smaller instances into the final solution
for the given instance.

If the size of any instance falls below some constant threshold, we abandon
recursion and solve the problem directly, by brute force, in constant time.

Proving a divide-and-conquer algorithm correct almost always requires
induction. Analyzing the running time requires setting up and solving a
recurrence, which usually (but unfortunately not always!) can be solved using
recursion trees.

1.7 Recursion Trees

So what are these “recursion trees” I keep talking about? Recursion trees are
a simple, general, pictorial tool for solving divide-and-conquer recurrences. A
recursion tree is a rooted tree with one node for each recursive subproblem. The
value of each node is the amount of time spent on the corresponding subproblem
excluding recursive calls. Thus, the overall running time of the algorithm is the
sum of the values of all nodes in the tree.

To make this idea more concrete, imagine a divide-and-conquer algorithm
that spends O(f (n)) time on non-recursive work, and then makes r recursive

70On the other hand, if we choose the pivot index p uniformly at random, then QUICKSORT runs
in O(nlogn) time with high probability, for every possible input array. The key difference is that
the randomness is controlled by our algorithm, not by the All-Powerful Malicious Adversary who
gives us input data after reading our code. The analysis of randomized quicksort is unfortunately
outside the scope of this book, but you can find relevant lecture notes at http://algorithms.wtf/.

31

http://algorithms.wtf/

1.

RECURSION

32

calls, each on a problem of size n/c. Up to constant factors (which we can
hide in the O() notation), the running time of this algorithm is governed by the
recurrence

T(n)=rT(n/c)+ f(n).

The root of the recursion tree for T(n) has value f(n) and r children,
each of which is the root of a (recursively defined) recursion tree for T(n/c).
Equivalently, a recursion tree is a complete r-ary tree where each node at depth d
contains the value f(n/c?). (Feel free to assume that n is an integer power of c,
so that n/c? is always an integer, although in fact this doesn’t matter.)

In practice, I recommend drawing out the first two or three levels of the
tree, as in Figure 1.9.

f

+

r - f(n/c)

+

r2 - f(n/c?)

[ove

coe +

| o) ”h' /e ”h' /e ”h' /e ”h') ”h') ”h') ”h') |“| - fln/ch)
I - “:\III " — II:IIII " — II:IIII " — II:IIII " — “:III"' — “:III"' — ““ " — ||

Figure 1.9. A recursion tree for the recurrence T(n) = r T(n/c) + f (n)

The leaves of the recursion tree correspond to the base case(s) of the
recurrence. Because we're only looking for asymptotic bounds, the precise base
case doesn’t actually matter; we can safely assume T(n) = 1 for all n < ng,
where ng is an arbitrary positive constant. In particular, we can choose whatever
value of ng is most convenient for our analysis. For this example, I'll choose
ng=1.

Now T (n) is the sum of all values in the recursion tree; we can evaluate this
sum by considering the tree level-by-level. For each integer i, the ith level of
the tree has exactly r' nodes, each with value f(n/c'). Thus,

L
T(n)= Y r' f(n/c") (D)
i=0

where L is the depth of the tree. Our base case ny = 1 immediately implies
L = log,n, because n/ct = ny = 1. It follows that the number of leaves in

1.7. Recursion Trees

the recursion tree is exactly r* = rl°%" = nl°%" Thus, the last term in the
level-by-level sum (%) is n'°%" - f(1) = O(n'°%"), because f(1) = O(1).

There are three common cases where the level-by-level series (%) is especially
easy to evaluate:

* Decreasing: If the series decays exponentially—every term is a constant
factor smaller than the previous term—then T(n) = O(f (n)). In this case,
the sum is dominated by the value at the root of the recursion tree.

* Equal: If all terms in the series are equal, we immediately have T(n) =
O(f(n)-L)=0O(f (n)logn). (The constant c vanishes into the O() notation.)

* Increasing: If the series grows exponentially—every term is a constant factor
larger than the previous term—then T'(n) = O(n'°%"). In this case, the sum
is dominated by the number of leaves in the recursion tree.

In the first and third cases, only the largest term in the geometric series matters;
all other terms are swallowed up by the O(:) notation. In the decreasing case,
we don’t even have to compute L; the asymptotic upper bound would still hold
if the recursion tree were infinite!

As an elementary example, if we draw out the first few levels of the recursion
tree for the (simplified) mergesort recurrence T(n) = 2T(n/2) + O(n), we
discover that all levels are equal, which immediately implies T(n) = O(nlogn).

n/2 n/2

[n/4] [n/4] [n/4] [n/4]

[n/8][n/8||n/s||n8||ns]||n8]|nss] [n/8]
Figure 1.10. The recursion tree for mergesort

The recursion tree technique can also be used for algorithms where the
recursive subproblems have different sizes. For example, if we could somehow
implement quicksort so that the pivot always lands in the middle third of the
sorted array, the worst-case running time would satisfy the recurrence

T(n) < T(n/3)+T(2n/3)+ O(n).

This recurrence might look scary, but it’s actually pretty tame. If we draw
out a few levels of the resulting recursion tree, we quickly realize that the
sum of values on any level is at most n—deeper levels might be missing some
nodes—and the entire tree has depth log; ,, n = O(log n). It immediately follows
that T(n) = O(nlogn). (Moreover, the number of full levels in the recursion

33

1.

RECURSION

34

tree is logy n = Q(logn), so this conservative analysis can be improved by at
most a constant factor, which for our purposes means not at all.) The fact that
the recursion tree is unbalanced simply doesn’t matter.

As a more extreme example, the worst-case recurrence for quicksort T(n) =
T(n—1)+ T(1) + O(n) gives us a completely unbalanced recursion tree, where
one child of each internal node is a leaf. The level-by-level sum doesn’t fall
into any of our three default categories, but we can still derive the solution
T(n) = 0(n?) by observing that every level value is at most n and there are at
most n levels. (Again, this conservative analysis is tight, because n/2 levels each
have value at least n/2.)

Figure 1.11. Recursion trees for quicksort with good pivots (left) and with worst-case pivots (right)

¥ignoring Floors and Ceilings Is Okay, Honest

Careful readers might object that our analysis brushes an important detail under
the rug. The running time of mergesort doesn’t really obey the recurrence
T(n)=2T(n/2)+0(n); after all, the input size n might be odd, and what could
it possibly mean to sort an array of size 42% or 17%? The actual mergesort
recurrence is somewhat messier:

T(n) = T([n/21) + T(Ln/2]) + O(n).

Sure, we could check that T(n) = O(nlogn) using induction, but the necessary
calculations would be awful. Fortunately, there is a simple technique for
removing floors and ceilings from recurrences, called domain transformation.
* First, because we are deriving an upper bound, we can safely overestimate
T(n), once by pretending that the two subproblem sizes are equal, and
again to eliminate the ceiling:®

T(n) < 2T([n/2])+n < 2T(n/2+1)+n.

8Formally, we are treating T as a function over the reals, not just over the integers, that
satisfies the given recurrence with the base case T(n) = C for all n < n,, for some real numbers
C > 0 and n,, > 0 whose values don’t matter. If n happens to be an integer, then T(n) coincides
with the running time of an algorithm on an input of size n, but that doesn’t matter, either.

¥1.8. Linear-Time Selection

* Second, we define a new function S(n) = T(n + a), choosing the constant a
so that S(n) satisfies the simpler recurrence S(n) < 2S(n/2) + O(n). To
find the correct constant a, we derive a recurrence for S from our given
recurrence for T:

S(n) = T(nh+a) [definition of S]
< 2T(n/2+a/2+1)+n+a [recurrence for T]
= 2S(n/2—a/2+1)+n+a [definition of S]

Setting a = 2 simplifies this recurrence to S(n) < 2S(n/2) + n + 2, which is
exactly what we wanted.

* Finally, the recursion tree method implies S(n) = O(nlogn), and therefore
T(n) = S(n—2) = 0((n—2)log(n—2)) = O(nlogn),

exactly as promised.

Similar domain transformations can be used to remove floors, ceilings, and even
lower order terms from any divide and conquer recurrence. But now that we
realize this, we don’t need to bother grinding through the details ever again!
From now on, faced with any divide-and-conquer recurrence, I will silently
brush floors and ceilings and lower-order terms under the rug, and I encourage
you to do the same.

¥1.8 Linear-Time Selection

During our discussion of quicksort, I claimed in passing that we can find the
median of an unsorted array in linear time. The first such algorithm was
discovered by Manuel Blum, Bob Floyd, Vaughan Pratt, Ron Rivest, and Bob
Tarjan in the early 1970s. Their algorithm actually solves the more general
problem of selecting the kth smallest element in an n-element array, given the
array and the integer k as input, using a variant of an algorithm called quickselect
or one-armed quicksort. Quickselect was first described by Tony Hoare in 1961,
literally on the same page where he first published quicksort.

Quickselect

The generic quickselect algorithm chooses a pivot element, partitions the array
using the same PARTITION subroutine as QuickSorT, and then recursively
searches only one of the two subarrays, specifically, the one that contains the
kth smallest element of the original input array. Pseudocode for quickselect is
given in Figure 1.12.

35

1.

RECURSION

36

QuickSELECT(A[1..n], k):
ifn=1
return A[1]
else
Choose a pivot element A[p]
r < PARTITION(A[1..1n],p)

ifk<r

return QUICKSELECT(A[1..r —1],k)
elseif k > r

return QUICKSELECT(A[r + 1..n],k—r)
else

return A[r]

Figure 1.12. Quickselect, or one-armed quicksort

This algorithm has two important features. First, just like quicksort, the
correctness of quickselect does not depend on how the pivot is chosen. Second,
even if we really only care about selecting medians (the special case k =n/2),
Hoare’s recursive strategy requires us to consider the more general selection
problem; the median of the input array A[1..n] is almost never the median of
either of the two smaller subarrays A[1..r —1] or A[r +1..n].

The worst-case running time of QUICKSELECT obeys a recurrence similar to
QuickSorT. We don’t know the value of r, or which of the two subarrays we’ll
recursively search, so we have to assume the worst.

T(n) < max max{T(r—1),T(n—r)}+0(n)

We can simplify the recurrence slightly by letting ¢ denote the length of the
recursive subproblem:

T(n) < max T{)+0(n)
0<t<n—1

If the chosen pivot element is always either the smallest or largest element in
the array, the recurrence simplifies to T(n) = T(n— 1) + O(n), which implies
T(n) = O(n?). (The recursion tree for this recurrence is just a simple path.)

Good pivots

We could avoid this quadratic worst-case behavior if we could somehow magically
choose a good pivot, meaning ¢ < an for some constant a < 1. In this case, the
recurrence would simplify to

T(n) < T(an)+ O(n).

¥1.8. Linear-Time Selection

This recurrence expands into a decreasing geometric series, which is dominated
by its largest term, so T(n) = O(n). (Again, the recursion tree is just a simple
path. The constant in the O(n) running time depends on the constant a.)

In other words, if we could somehow quickly find an element that’s even
close to the median in linear time, we could find the exact median in linear
time. So now all we need is an Approximate Median Fairy. The Blum-Floyd-
Pratt-Rivest-Tarjan algorithm chooses a good quickselect pivot by recursively
computing the median of a carefully-chosen subset of the input array. The
Approximate Median Fairy is just the Recursion Fairy in disguise!

Specifically, we divide the input array into [n/5] blocks, each containing
exactly 5 elements, except possibly the last. (If the last block isn’t full, just throw
in a few 00s.) We compute the median of each block by brute force, collect
those medians into a new array M[1..[n/5]], and then recursively compute
the median of this new array. Finally, we use the median of the block medians
(called “mom” in the pseudocode below) as the quickselect pivot.

MoMSELECT(A[1..n],k):

ifn <25 ((or whatever))
use brute force

else
m « [n/5]
fori —1tom

M[i] «— MEDIANOFFIVE(A[5i —4..5i]) {(Brute forcel))

mom «— MoMSELEcT(M[1..m],|m/2]) {(Recursion!))

r < PARTITION(A[1..n], mom)

ifk<r

return MOMSELECT(A[1..r — 1], k) {(Recursion!))
elseif k > r

return MoMSELECT(A[r +1..n],k—r) ((Recursion/))
else

return mom

MoMSELECT uses recursion for two different purposes; the first time to
choose a pivot element (mom), and the second time to search through the
entries on one side of that pivot.

Analysis

But why is this fast? The first key insight is that the median of medians is a
good pivot. Mom is larger than |_[n /51/ 2J —1 &~ n/10 block medians, and each
block median is larger than two other elements in its block. Thus, mom is bigger
than at least 3n/10 elements in the input array; symmetrically, mom is smaller
than at least 3n/10 elements. Thus, in the worst case, the second recursive call
searches an array of size at most 7n/10.

37

1. RECURSION

38

We can visualize the algorithm’s behavior by drawing the input array as a
5 x [n/5] grid, which each column represents five consecutive elements. For
purposes of illustration, imagine that we sort every column from top down, and
then we sort the columns by their middle element. (Let me emphasize that the
algorithm does not actually do this!) In this arrangement, the median-of-medians
is the element closest to the center of the grid.

The left half of the first three rows of the grid contains 3n/10 elements, each
of which is smaller than mom. If the element we’re looking for is larger than
mom, our algorithm will throw away everything smaller than mom, including
those 3n/10 elements, before recursing. Thus, the input to the recursive
subproblem contains at most 7n/10 elements. A symmetric argument implies
that if our target element is smaller than mom, we discard at least 3n/10
elements larger than mom, so the input to our recursive subproblem has at most
7n/10 elements.

000000000
DDDOOODDQ%%%%%%%

000000000 000000
OO0
OOOOO0CO0OOOOO000

Okay, so mom is a good pivot, but our algorithm still makes two recursive
calls instead of just one; how do we prove linear time? The second key insight is
that the total size of the two recursive subproblems is a constant factor smaller
than the size of the original input array. The worst-case running time of the
algorithm obeys the recurrence

T(n) < T(n/5) + T(7n/10) + O(n).

If we draw out the recursion tree for this recurrence, we observe that the total
work at each level of the recursion tree is at most 9/10 the total work at the
previous level. Thus, the level sums decay exponentially, giving us the solution
T(n) = O(n). (Again, the fact that the recursion tree is unbalanced is completely
immaterial.) Hooray! Thanks, Mom!

V1.8 Linear-Time Selection

| n2s | [7a/50 | | 7n/50 | [49n/100] | o | [2n9] [2n/9] [4ns9]
Figure 1.13. The recursion trees for MOMSELECT and a similar selection algorithm with blocks of size 3

Sanity Checking

At this point, many students ask about that magic constant 5. Why did we
choose that particular block size? The answer is that 5 is the smallest odd
block size that gives us exponential decay in the recursion-tree analysis! (Even
block sizes introduce additional complications.) If we had used blocks of size 3
instead, the running-time recurrence would be

T(n) < T(n/3)+ T(2n/3) + O(n).

We’ve seen this recurrence before! Every level of the recursion tree has total
value at most n, and the depth of the recursion tree is log;,, n = O(logn), so
the solution to this recurrence is T(n) < O(nlogn). (Moreover, this analysis is
tight, because the recursion tree has log; n complete levels.) Median-of-medians
selection using 3-element blocks is no faster than sorting.

Finer analysis reveals that the constant hidden by the O() notation is quite
large, even if we count only comparisons. Selecting the median of 5 elements
requires at most 6 comparisons, so we need at most 6n/5 comparisons to set
up the recursive subproblem. Naively partitioning the array after the recursive
call would require n — 1 comparisons, but we already know 3n/10 elements
larger than the pivot and 3n/10 elements smaller than the pivot, so partitioning
actually requires only 2n/5 additional comparisons. Thus, a more precise
recurrence for the worst-case number of comparisons is

T(n) < T(n/5)+ T(7n/10) + 8n/5.

The recursion tree method implies the upper bound

8n 9\ 8n
T <—> (=) ==2".10=16n.
(n) < 52(10) 5 "

i>0
In practice, median-of-medians selection is not as slow as this worst-case analysis

predicts—getting a worst-case pivot at every level of recursion is incredibly
unlikely—but it is still slower than sorting for even moderately large arrays.°

°In fact, the right way to choose the pivot element in practice is to choose it uniformly at
random. Then the expected number of comparisons required to find the median is at most 4n.
See my randomized algorithms lecture notes at http://algorithms.wtf for more details.

39

http://algorithms.wtf

1. RECURSION

40

1.9 Fast Multiplication

In the previous chapter, we saw two ancient algorithms for multiplying two
n-digit numbers in O(n?) time: the grade-school lattice algorithm and the
Egyptian peasant algorithm.

Maybe we can get a more efficient algorithm by splitting the digit arrays in
half and exploiting the following identity:

(10™a + b)(10™¢ +d) = 10*™ac + 10™(bc + ad) + bd

This recurrence immediately suggests the following divide-and-conquer algo-
rithm to multiply two n-digit numbers x and y. Each of the four sub-products
ac, bc, ad, and bd is computed recursively, but the multiplications in the last
line are not recursive, because we can multiply by a power of ten by shifting the
digits to the left and filling in the correct number of zeros, all in O(n) time.

SeritMurripry(x, y, n):

ifn=1
return x - y

else
m «— [n/2]
a«|x/10™]; b« x mod 10™ {(x =10™a + b))
ce|y/10"|; d <« y mod 10™ {(y =10™c+d))
e < SpLITMuLTIPLY(A, C, M)
f < SpuitMuttirLY(b, d, m)
g <« SprLitMurtipLy(b, ¢, m)
h « SpLrtMurTIPLY(a,d, m)

return 10°™e + 10™(g + h) + f

Correctness of this algorithm follows easily by induction. The running time for
this algorithm follows the recurrence

T(n)=4T([n/2])+ O(n).

The recursion tree method transforms this recurrence into an increasing geo-
metric series, which implies T(n) = 0(n'°%2%) = O(n?). In fact, this algorithm
multiplies each digit of x with each digit of y, just like the lattice algorithm.
So I guess that didn’t work. Too bad. It was a nice idea.

In the mid-1950s, Andrei Kolmogorov, one of the giants of 20th century
mathematics, publicly conjectured that there is no algorithm to multiply two
n-digit numbers in subquadratic time. Kolmogorov organized a seminar at
Moscow University in 1960, where he restated his “n“ conjecture” and posed
several related problems that he planned to discuss at future meetings. Almost
exactly a week later, a 23-year-old student named Anatolii Karatsuba presented
Kolmogorov with a remarkable counterexample. According to Karatsuba himself,

1.9. Fast Multiplication

[n/4|[n/a|[n/4]|n/a] [n/4][n/a|[n/a]|nsa] [n/a][n/a|[na]|nsa] [n/4](n/4][na]|ns4]
Figure 1.14. The recursion tree for naive divide-and-conquer multiplication

After the seminar | told Kolmogorov about the new algorithm and about the
disproof of the n? conjecture. Kolmogorov was very agitated because this
contradicted his very plausible conjecture. At the next meeting of the semi-
nar, Kolmogorov himself told the participants about my method, and at that
point the seminar was terminated.
Karatsuba observed that the middle coefficient bc+ad can be computed from the
other two coefficients ac and bd using only one more recursive multiplication,
via the following algebraic identity:

ac+bd—(a—Db)(c—d)=bc+ad

This trick lets us replace the four recursive calls in the previous algorithm with
only three recursive calls, as shown below:

FastMutrtipLy(x, y,n):

ifn=1
return x - y

else
m«[n/2]
a«|x/10™]; b« x mod 10™ {(x =10Ma+ b))
c<|y/10™]; d « y mod 10™ {(y =10Mc +a))
e < FastMurtIPLY(a, ¢, m)
f < FastMurtipry(b,d, m)
g < FastMurTtiPiy(a — b,c —d, m)
return 10°"e + 10™(e + f —g) + f

The running time of Karatsuba’s FAsTMULTIPLY algorithm follows the recurrence
T(n) <3T([n/2])+0(n)

Once again, the recursion tree method transforms this recurrence into an
increasing geometric series, but the new solution is only T(n) = O(n'%82%) =
0(n1-58496) 3 significant improvement over our earlier quadratic time bound.*®

My presentation simplifies the actual history slightly. In fact, Karatsuba proposed an
algorithm based on the formula (a + b)(c + d) —ac — bd = bc + ad. This algorithm also runs
in O(n's®) time, but the actual recurrence is slightly messier: a — b and ¢ —d are still m-digit
numbers, but a + b and ¢ + d might each have m + 1 digits. The simplification presented here is
due to Donald Knuth.

41

1.

RECURSION

42

Karatsuba’s algorithm arguably launched the design and analysis of algorithms
as a formal field of study.

n/2 n/2 n/2

[n/a||n/a|n/a| [n/a||n/a||na] [n/a]|n/a]|n/a)
Figure 1.15. The recursion tree for Karatsuba's divide-and-conquer multiplication algorithm

We can take Karatsuba’s idea even further, splitting the numbers into
more pieces and combining them in more complicated ways, to obtain even
faster multiplication algorithms. Andrei Toom discovered an infinite family
of algorithms that split any integer into k parts, each with n/k digits, and
then compute the product using only 2k — 1 recursive multiplications; Toom’s
algorithms were further simplified by Stephen Cook in his PhD thesis. For any
fixed k, the Toom-Cook algorithm runs in O(n'*1/(8%)) time, where the hidden
constant in the O(-) notation depends on k.

Ultimately, this divide-and-conquer strategy led Gauss (yes, really) to the
discovery of the Fast Fourier transform." The basic FFT algorithm itself
runs in O(nlogn) time; however, using FFTs for integer multiplication incurs
some small additional overhead. The first FFT-based integer multiplication
algorithm, published by Arnold Schonhage and Volker Strassen in 1971, runs
in O(nlognloglogn) time. Schonhage-Strassen remained the theoretically
fastest integer multiplication algorithm for several decades, before Martin Fiirer
discovered the first of a long series of technical improvements. Finally, in 2019,
David Harvey and Joris van der Hoeven published an algorithm that runs in
O(nlogn) time.*

1.10 Exponentiation

Given a number a and a positive integer n, suppose we want to compute a”. The
standard naive method is a simple for-loop that performs n — 1 multiplications
by a:

"'See http://algorithms.wtf for lecture notes on Fast Fourier transforms.

?Schénhage-Strassen is actually the fastest algorithm in practice for multiplying integers with
more than about 75000 digits; the more recent algorithms of Fiirer, Harvey, van der Hoeven, and
others would be faster “in practice” only for integers with more digits than there are particles in
the universe.

http://algorithms.wtf

1.10. Exponentiation

SLowPoweR(a, n):
X —a
fori—2ton

Xe—Xx-a
return x

This iterative algorithm requires n multiplications.

The input parameter a could be an integer, or a rational, or a floating point
number. In fact, it doesn’t need to be a number at all, as long as it’s something
that we know how to multiply. For example, the same algorithm can be used
to compute powers modulo some finite number (an operation commonly used
in cryptography algorithms) or to compute powers of matrices (an operation
used to evaluate recurrences and to compute shortest paths in graphs). Because
we don’t know what kind of object we’re multiplying, we can’t know how much
time a single multiplication requires, so we’re forced to analyze the running
time in terms of the number of multiplications.

There is a much faster divide-and-conquer method, originally proposed by
the Indian prosodist Pingala in the 2nd century Bcg, which uses the following
simple recursive formula:

1 ifn=0
a = { (a?)? if n> 0 and n is even
(a"212.q otherwise

PINGALAPOWER(a, n):
ifn=1
return a
else
x « PiNGaLAPowER(a,|n/2])
if n is even
return x - x

else
return x - x - a

The total number of multiplications performed by this algorithm satisfies the
recurrence T(n) < T(n/2) + 2. The recursion-tree method immediately give us
the solution T (n) = O(logn).

A nearly identical exponentiation algorithm can also be derived directly
from the Egyptian peasant multiplication algorithm from the previous chapter,
by replacing addition with multiplication (and in particular, replacing duplation
with squaring).

1 ifn=0
a” = { (a®)"? if n> 0 and n is even
(a2 . q otherwise

43

1.

RECURSION

44

PeEAasaNTPOWER(a, n):
ifn=1
return a
else if n is even
return PEasaNTPOwWER(a?, n/2)
else
return PEasaNTPOWER(a?,|n/2])-a

This algorithm—which might reasonably be called “squaring and mediation”—
also performs only O(logn) multiplications.

Both of these algorithms are asymptotically optimal; any algorithm that
computes a” must perform at least Q(logn) multiplications, because each
multiplication at most doubles the largest power computed so far. In fact,
when n is a power of two, both of these algorithms require exactly log, n
multiplications, which is exactly optimal. However, there are slightly faster
methods for other values of n. For example, PINGALAPOWER and PEASANTPOWER
each compute a'® using six multiplications, but in fact only five multiplications

are necessary:

s Pingala: a » a®? - a® - a®—a’ - a'* - a®®

e Peasant: a —» a2 —a* —a® - a2 5 q% = 1
» Optimal: a » a? - a® - a® - a'® - a®
It is a long-standing open question whether the absolute minimum number of

multiplications for a given exponent n can be computed efficiently.

Exercises

Tower of Hanoi

1. Prove that the original recursive Tower of Hanoi algorithm performs exactly
the same sequence of moves—the same disks, to and from the same pegs,
in the same order—as each of the following non-recursive algorithms. The
pegs are labeled 0, 1, and 2, and our problem is to move a stack of n disks
from peg O to peg 2 (as shown on page 24).

(a) If n is even, swap pegs 1 and 2. At the ith step, make the only legal
move that avoids peg i mod 3. If there is no legal move, then all disks
are on peg i mod 3, and the puzzle is solved.

(b) For the first move, move disk 1 to peg 1 if n is even and to peg 2 if n is
odd. Then repeatedly make the only legal move that involves a different
disk from the previous move. If no such move exists, the puzzle is solved.

(c) Pretend that disks n+ 1, n+ 2, and n + 3 are at the bottom of pegs 0, 1,
and 2, respectively. Repeatedly make the only legal move that satisfies
the following constraints, until no such move is possible.

Exercises

* Do not place an odd disk directly on top of another odd disk.
* Do not place an even disk directly on top of another even disk.

* Do not undo the previous move.

(d) Let p(n) denote the smallest integer k such that n/ 2k is not an integer.
For example, p(42) = 2, because 42/2! is an integer but 42/22 is not.
(Equivalently, p(n) is one more than the position of the least significant 1
in the binary representation of n.) Because its behavior resembles the
marks on a ruler, p(n) is sometimes called the ruler function.

RuLErHANOI(N):

i1
while p(i) <n
if n—iis even
move disk p(i) forward {(0>1-2-0))
else
move disk p(i) backward (0 —>2—1— 0))
ie—i+1

2. The Tower of Hanoi is a relatively recent descendant of a much older
mechanical puzzle known as the Chinese linked rings, Baguenaudier, Car-
dan’s Rings, Meleda, Patience, Tiring Irons, Prisoner’s Lock, Spin-Out, and
many other names. This puzzle was already well known in both China
and Europe by the 16th century. The Italian mathematician Luca Pacioli
described the 7-ring puzzle and its solution in his unpublished treatise De
Viribus Quantitatis, written between 1498 and 1506;" only a few years later,
the Ming-dynasty poet Yang Shen described the 9-ring puzzle as “a toy for
women and children”. The puzzle is apocryphally attributed to a 2nd-century
Chinese general, who gave the puzzle to his wife to occupy her time while
he was away at war.

Figure 1.16. The 7-ring Baguenaudier, from Récréations Mathématiques by Edouard Lucas (1891) (See
Image Credits at the end of the book.)

3De Viribus Quantitatis [On the Powers of Numbers] is an important early work on recreational
mathematics and perhaps the oldest surviving treatise on magic. Pacioli is better known for
Summa de Aritmetica, a near-complete encyclopedia of late 15th-century mathematics, which
included the first description of double-entry bookkeeping.

45

1.

RECURSION

46

The Baguenaudier puzzle has many physical forms, but one of the most
common consists of a long metal loop and several rings, which are connected
to a solid base by movable rods. The loop is initially threaded through the
rings as shown in Figure 1.16; the goal of the puzzle is to remove the loop.

More abstractly, we can model the puzzle as a sequence of bits, one
for each ring, where the ith bit is 1 if the loop passes through the ith ring
and 0 otherwise. (Here we index the rings from right to left, as shown in
Figure 1.16.) The puzzle allows two legal moves:

* You can always flip the 1st (= rightmost) bit.
* If the bit string ends with exactly z @s, you can flip the (z + 2)th bit.

The goal of the puzzle is to transform a string of n 1s into a string of n 0s.
For example, the following sequence of 21 moves solves the 5-ring puzzle:

1 3 1 2 1
111171 = 11110 > 11010 — 11011 — 11001 — 11000

5 1 2 1 3

— 01000 — 01001 — 01011 — 010710 — 01110

1 2 1 4 1

— 01111 — 01101 —> 01100 — 00100 — 00101

2 1 3 1 2 1
— 00111 > 00110 — 00010 — 00011 — 00001 — 00000

*(a) Call a sequence of moves reduced if no move is the inverse of the previous

move. Prove that for any non-negative integer n, there is exactly one
reduced sequence of moves that solves the n-ring Baguenaudier puzzle.
[Hint: This problem is much easier if you’re already familiar with
graphs.]

(b) Describe an algorithm to solve the Baguenaudier puzzle. Your input is
the number of rings n; your algorithm should print a reduced sequence
of moves that solves the puzzle. For example, given the integer 5 as
input, your algorithm should print the sequence 1,3,1,2,1,5,1,2,1, 3,
1,2,1,4,1,2,1,3,1,2,1.

(c) Exactly how many moves does your algorithm perform, as a function
of n? Prove your answer is correct.

. A less familiar chapter in the Tower of Hanoi’s history is its brief relocation

of the temple from Benares to Pisa in the early 13th century.'* The relocation
was organized by the wealthy merchant-mathematician Leonardo Fibonacci,
at the request of the Holy Roman Emperor Frederick II, who had heard
reports of the temple from soldiers returning from the Crusades. The Towers
of Pisa and their attendant monks became famous, helping to establish Pisa
as a dominant trading center on the Italian peninsula.

““Portions of this story are actually true.

Exercises

Unfortunately, almost as soon as the temple was moved, one of the
diamond needles began to lean to one side. To avoid the possibility of
the leaning tower falling over from too much use, Fibonacci convinced the
priests to adopt a more relaxed rule: Any number of disks on the leaning
needle can be moved together to another needle in a single move. It was
still forbidden to place a larger disk on top of a smaller disk, and disks had to
be moved one at a time onto the leaning needle or between the two vertical

= |
= | &
A S RN AN

Figure 1.17. The Towers of Pisa. In the fifth move, two disks are taken off the leaning needle.

Thanks to Fibonacci’s new rule, the priests could bring about the end
of the universe somewhat faster from Pisa than they could from Benares.
Fortunately, the temple was moved from Pisa back to Benares after the
newly crowned Pope Gregory IX excommunicated Frederick II, making
the local priests less sympathetic to hosting foreign heretics with strange
mathematical habits. Soon afterward, a bell tower was erected on the spot
where the temple once stood; it too began to lean almost immediately.

Describe an algorithm to transfer a stack of n disks from one vertical
needle to the other vertical needle, using the smallest possible number of
moves. Exactly how many moves does your algorithm perform?

4. Consider the following restricted variants of the Tower of Hanoi puzzle In
each problem, the pegs are numbered 0, 1, and 2, and your task is to move
a stack of n disks from peg 0 to peg 2, exactly as in problem 1.

(a) Suppose you are forbidden to move any disk directly between peg 1 and
peg 2; every move must involve peg 0. Describe an algorithm to solve
this version of the puzzle in as few moves as possible. Exactly how many
moves does your algorithm make?

*¥(b) Suppose you are only allowed to move disks from peg O to peg 2, from
peg 2 to peg 1, or from peg 1 to peg 0. Equivalently, suppose the pegs
are arranged in a circle and numbered in clockwise order, and you are
only allowed to move disks counterclockwise. Describe an algorithm to
solve this version of the puzzle in as few moves as possible. How many
moves does your algorithm make?

47

1. RECURSION

© |©

O}

©

1 2
7

6 8 9

*¥(©

Figure 1.18. The first several moves in a counterclockwise Towers of Hanoi solution.

Finally, suppose your only restriction is that you may never move a disk
directly from peg O to peg 2. Describe an algorithm to solve this version
of the puzzle in as few moves as possible. How many moves does your
algorithm make? [Hint: Matrices! This variant is considerably harder
to analyze than the other two.]

5. Consider the following more complex variant of the Tower of Hanoi puzzle
The puzzle has a row of k pegs, numbered from 1 to k. In a single turn, you
are allowed to move the smallest disk on peg i to either pegi—1 or pegi+1,
for any index i; as usual, you are not allowed to place a bigger disk on a
smaller disk. Your mission is to move a stack of n disks from peg 1 to peg k.

(@

(b)

()

Y(d

MO

48

Describe a recursive algorithm for the case k = 3. Exactly how many
moves does your algorithm make? (This is exactly the same as problem

4(a).)

Describe a recursive algorithm for the case k = n + 1 that requires at
most O(n®) moves. [Hint: Use part (a).]

Describe a recursive algorithm for the case k = n + 1 that requires at
most O(n?) moves. [Hint: Don’t use part (a).]

Describe a recursive algorithm for the case k = 4/n that requires at most
a polynomial number of moves. (Which polynomial??)

Describe and analyze a recursive algorithm for arbitrary n and k. How
small must k be (as a function of n) so that the number of moves is
bounded by a polynomial in n?

Exercises

Recursion Trees

6. Use recursion trees to solve each of the following recurrences.

A(n)=2A(n/4)++vn B(n)=2B(n/4)+n C(n)=2C(n/4)+n>
D(n)=3D(n/3)++vn E(n)=3E(n/3)+n F(n)=3F(n/3)+n?
G(n) =4G(n/2)++/n H(n)=4H(n/2)+n I(n)=4I(n/2)+ n?

7. Use recursion trees to solve each of the following recurrences.
G J(n)=J(n/2)+J(n/3)+J(n/6)+n
k) K(n)=K(n/2)+2K(n/3)+3K(n/4)+ n?
(O L(n)=L(n/15)+ L(n/10)+2L(n/6)+ +/n

¥8. Use recursion trees to solve each of the following recurrences.
(m) M(n)=2M(n/2)+ O(nlogn)
(n) N(n)=2N(n/2)+0(n/logn)
(p) P(n)=+vnP(v¥n)+n
(@ Q(n) =+v2nQ(v2n)+v/n

Sorting

9. Suppose you are given a stack of n pancakes of different sizes. You want to
sort the pancakes so that smaller pancakes are on top of larger pancakes.
The only operation you can perform is a flip—insert a spatula under the
top k pancakes, for some integer k between 1 and n, and flip them all over.

— =

Figure 1.19. Flipping the top four pancakes.

(a) Describe an algorithm to sort an arbitrary stack of n pancakes using
O(n) flips. Exactly how many flips does your algorithm perform in the
worst case?™ [Hint: This problem has nothing to do with the Tower of
Hanoi.]

>The exact worst-case optimal number of flips required to sort n pancakes (either burned or
unburned) is an long-standing open problem; just do the best you can.

49

1.

RECURSION

50

10.

11

(b) For every positive integer n, describe a stack of n pancakes that requires
Q(n) flips to sort.

(c) Now suppose one side of each pancake is burned. Describe an algorithm
to sort an arbitrary stack of n pancakes, so that the burned side of every
pancake is facing down, using O(n) flips. Exactly how many flips does
your algorithm perform in the worst case?

Recall that the median-of-three heuristic examines the first, last, and middle
element of the array, and uses the median of those three elements as a
quicksort pivot. Prove that quicksort with the median-of-three heuristic
requires (n?) time to sort an array of size n in the worst case. Specifically,
for any integer n, describe a permutation of the integers 1 through n,
such that in every recursive call to median-of-three-quicksort, the pivot is
always the second smallest element of the array. Designing this permutation
requires intimate knowledge of the PARTITION subroutine.

(a) Asa warm-up exercise, assume that the PARTITION subroutine is stable,
meaning it preserves the existing order of all elements smaller than the
pivot, and it preserves the existing order of all elements smaller than
the pivot.

Y(b) Assume that the PARTITION subroutine uses the specific algorithm listed
on page 29, which is not stable.

. (@) Hey, Moe! Hey, Larry! Prove that the following algorithm actually sorts

its input!

STOOGESORT(A[0..n—1]):

if n=2and A[0] > A[1]
swap A[0] «— A[1]

elseif n > 2
m=1[2n/3]
STOOGESORT(A[0..m—1])
STOOGESORT(A[n —m..n—1])
STOOGESORT(A[0..m—1])

(b) Would STooGESORT still sort correctly if we replaced m = [2n/3] with
m =|2n/3|? Justify your answer.

(c) State a recurrence (including the base case(s)) for the number of
comparisons executed by STOOGESORT.

(d) Solve the recurrence, and prove that your solution is correct. [Hint:
Ignore the ceiling.]

(e) Prove that the number of swaps executed by STOOGESORT is at most (g)

12. The following cruel and unusual sorting algorithm was proposed by Gary

Miller:

Exercises

13.

14.

CrRUEL(A[1..n]):

ifn>1
CrUEL(A[1..n/2])
CrUEL(A[n/2+1..n])
UNusUAL(A[1..n])

UnusuaL(A[1..n]):

ifn=2
if A[1]> A[2] {(the only comparison!))
swap A[1] «— A[2]
else
fori < 1ton/4 {(swap 2nd and 3rd quarters))
swap A[i +n/4] « Ali +n/2]
UNUsUAL(A[1..n/2]) {{recurse on left half))
UNUsuAL(A[n/2+1..n]) {{recurse on right half))
UnusuaL(A[n/4+1..3n/4]) {{recurse on middle half))

The comparisons performed by this algorithm do not depend at all on
the values in the input array; such a sorting algorithm is called oblivious.
Assume for this problem that the input size n is always a power of 2.

(a) Prove by induction that CRUEL correctly sorts any input array. [Hint:
Consider an array that contains n/4 1s, n/4 2s, n/4 3s, and n/4 4s. Why
is this special case enough?]

(b) Prove that CRUEL would not correctly sort if we removed the for-loop
from UNUSUAL.

(c) Prove that CRUEL would not correctly sort if we swapped the last two
lines of UNUSUAL.

(d) What is the running time of UNusuaL? Justify your answer.

(e) What is the running time of CRUEL? Justify your answer.

An inversion in an array A[1..n] is a pair of indices (i, j) such that i < j and
A[i] > A[j]. The number of inversions in an n-element array is between 0
(if the array is sorted) and ('21) (if the array is sorted backward). Describe
and analyze an algorithm to count the number of inversions in an n-element
array in O(nlogn) time. [Hint: Modify mergesort.]

(a) Suppose you are given two sets of n points, one set {p;, py,...,P,} on the
line y = 0 and the other set {q;,q5, - ..,q,} ontheline y = 1. Create a set
of n line segments by connect each point p; to the corresponding point g;.
Describe and analyze a divide-and-conquer algorithm to determine how
many pairs of these line segments intersect, in O(nlogn) time. [Hint:
See the previous problem.]

(b) Now suppose you are given two sets {p1, Pa, ---,Pn} and {q;,92,---,q5}
of n points on the unit circle. Connect each point p; to the corresponding

51

1. RECURSION

point q;. Describe and analyze a divide-and-conquer algorithm to
determine how many pairs of these line segments intersect in O(n log? n)
time. [Hint: Use your solution to part (a).]

Y(c) Describe an algorithm for part (b) that runs in O(nlogn) time. [Hint:
Use your solution from part (b)!]

qs q; 92 44 q7 43 96

p1 Py P4 P3 Pg P2 Ps

P7 43 G5

Figure 1.20. Eleven intersecting pairs of segments with endpoints on parallel lines, and ten intersecting
pairs of segments with endpoints on a circle.

15. (a) Describe an algorithm that sorts an input array A[1..n] by calling a
subroutine SQrTSORT(k), which sorts the subarray A[k +1..k+ ﬁ] in
place, given an arbitrary integer k between 0 and n — 4/n as input. (To
simplify the problem, assume that 4/n is an integer.) Your algorithm is
only allowed to inspect or modify the input array by calling SQRTSORT;
in particular, your algorithm must not directly compare, move, or copy
array elements. How many times does your algorithm call SQRTSORT in
the worst case?

*(b) Prove that your algorithm from part (a) is optimal up to constant factors.
In other words, if f(n) is the number of times your algorithm calls
SQRTSORT, prove that no algorithm can sort using o(f(n)) calls to
SQRTSORT.

(c) Now suppose SQRTSORT is implemented recursively, by calling your
sorting algorithm from part (a). For example, at the second level of
recursion, the algorithm is sorting arrays roughly of size n'/4. What
is the worst-case running time of the resulting sorting algorithm? (To
simplify the analysis, assume that the array size n has the form 22k, o}
that repeated square roots are always integers.)

Selection

16. Suppose we are given a set S of n items, each with a value and a weight. For
any element x € S, we define two subsets

52

Exercises

17.

18.

19.

* S, is the set of elements of S whose value is less than the value of x.
e S, is the set of elements of S whose value is more than the value of x.

For any subset R C S, let w(R) denote the sum of the weights of elements in R.
The weighted median of R is any element x such that w(S_,) < w(S)/2
and w(S-,) < w(S)/2.

Describe and analyze an algorithm to compute the weighted median
of a given weighted set in O(n) time. Your input consists of two unsorted
arrays S[1..n] and W[1..n], where for each index i, the ith element has
value S[i] and weight W[i]. You may assume that all values are distinct and
all weights are positive.

(a) Describe an algorithm to determine in O(n) time whether an arbitrary
array A[1..n] contains more than n/4 copies of any value.

(b) Describe and analyze an algorithm to determine, given an arbitrary
array A[1..n] and an integer k, whether A contains more than k copies
of any value. Express the running time of your algorithm as a function
of both n and k.

Do not use hashing, or radix sort, or any other method that depends
on the precise input values, as opposed to their order.

Describe an algorithm to compute the median of an array A[1..5] of distinct
numbers using at most 6 comparisons. Instead of writing pseudocode,
describe your algorithm using a decision tree: A binary tree where each
internal node contains a comparison of the form “A[i] 2 A[j]?” and each
leaf contains an index into the array.

< >

< > < >

<

Figure 1.21. Finding the median of a 3-element array using at most 3 comparisons

Consider the generalization of the Blum-Floyd-Pratt-Rivest-Tarjan Mowm-
SELECT algorithm shown in Figure 1.22, which partitions the input array into
[n/b] blocks of size b, instead of [n/5] blocks of size 5, but is otherwise
identical.

1.

RECURSION

54

(@

(b)
*'(C)

(@)

Y(e)

®

Mowm, SELECT(A[1..n], k):
if n < b?
use brute force

else
m«[n/b]
fori«—1tom
M[i] < MEDIANOFB(A[b(i — 1)+ 1..bi])
mom,, < MoM,SELECT(M[1..m],|[m/2])

r < PARTITION(A[1.. 1], mom)

ifk<r

return Mom, SELECT(A[1..r —1],k)
elseif k > r

return Mom, SELECT(A[r +1..n],k—r1)
else

return mom,

Figure 1.22. A parametrized family of selection algorithms; see problem 19.

State a recurrence for the running time of Mom; SELECT, assuming that b
is a constant (so the subroutine MEDIANOFB runs in O(1) time). In
particular, how do the sizes of the recursive subproblems depend on the
constant b? Consider even b and odd b separately.

What is the worst-case running time of Mom; SELECT? [Hint: This is a
trick question.]

What is the worst-case running time of MoM,SELECT? [Hint: This is an
unfair question!]

What is the worst-case running time of Mom;SELECT? Finding an upper
bound on the running time is straightforward; the hard part is showing
that this analysis is actually tight. [Hint: See problem 10.]

What is the worst-case running time of MoM4SELECT? Again, the hard
part is showing that the analysis cannot be improved.*

For any constants b > 5, the algorithm Mowm,SELECT runs in O(n) time,
but different values of b lead to different constant factors. Let M(b)
denote the minimum number of comparisons required to find the median
of b numbers. The exact value of M(b) is known only for b < 13:

b |1 23456 7 8 9 10 11 12 13
M()[0 1 3 4 6 8 10 12 14 16 18 20 23

The median of four elements is either the second smallest or the second largest. In 2014,
Ke Chen and Adrian Dumitrescu proved that if we modify Mom,SELECT to find second-smallest
elements when k < n/2 and second-largest elements when k > n/2, the resulting algorithm runs
in O(n) time! See their paper “Select with Groups of 3 or 4 Takes Linear Time” (WADS 2015,
arXiv:1409.3600) for details.

Exercises

For each b between 5 and 13, find an upper bound on the running time
of Mowm,;, SELECT of the form T(n) < an for some explicit constant ay.
(For example, on page 39 we showed that as < 16.)

(g) Which value of b yields the smallest constant a;? [Hint: This is a trick
question!]

20. Prove that the variant of the Blum-Floyd-Pratt-Rivest-Tarjan SELECT algo-
rithm shown in Figure 1.23, which uses an extra layer of small medians to
choose the main pivot, runs in O(n) time.

MoMoMSELECT(A[1..n], k):
ifn<81
use brute force
else
m <« [n/3]
fori«—1tom
M[i] « MEDIANOF3(A[3i —2..3i])
mm « [m/3]
for j « 1 to mm
Mom[j] < MEDIANOF3(M[3j —2..3j])
momom < MoMoMSELECT(Mom[1..mm],|mm/2])

r < PARTITION(A[1 .. n], momom)

ifk<r

return MomoMSELECT(A[1..r —1],k)
elseif k > r

return MoMOoMSELECT(A[r +1..n],k—r)
else

return momom

Figure 1.23. Selection by median of moms; see problem 20).

21. (a) Suppose we are given two sorted arrays A[1..n] and B[1..n]. Describe
an algorithm to find the median element in the union of A and B in
O(logn) time. You can assume that the arrays contain no duplicate
elements.

(b) Suppose we are given two sorted arrays A[1..m] and B[1..n] and an
integer k. Describe an algorithm to find the kth smallest element in
AUB in ©(log(m + n)) time. For example, if k = 1, your algorithm
should return the smallest element of AU B.) [Hint: Use your solution
to part (a).]

Y(c) Now suppose we are given three sorted arrays A[1..n], B[1..n], and
C[1..n], and an integer k. Describe an algorithm to find the kth smallest
element in AUB U C in O(logn) time.

55

1.

RECURSION

56

(d)

Finally, suppose we are given a two dimensional array A[1..m,1..n] in
which every row A[i, -] is sorted, and an integer k. Describe an algorithm
to find the kth smallest element in A as quickly as possible. How does
the running time of your algorithm depend on m? [Hint: Solve problem
16 first.]

Arithmetic

22. In 1854, archaeologists discovered Sumerians clay tablets, carved around
2000BCE, that list the squares of integers up to 59. This discovery led some
scholars to conjecture that ancient Sumerians performed multiplication by
reduction to squaring, using an identity like x - y = (x? + y? — (x — y)?)/2.
Unfortunately, those same scholars are silent on how the Sumerians sup-
posedly squared larger numbers. Four thousand years later, we can finally
rescue these Sumerian mathematicians from their lives of drudgery through
the power of recursion!

@

(b)

()

23. (a)

(b)

()]

Y(d

Describe a variant of Karatsuba’s algorithm that squares any n-digit
number in O(n'83) time, by reducing to squaring three [n/2]-digit
numbers. (Karatsuba actually did this in 1960.)

Describe a recursive algorithm that squares any n-digit number in
0(n'°#:%) time, by reducing to squaring six [n/3]-digit numbers.

Describe a recursive algorithm that squares any n-digit number in
0(n'°%:°) time, by reducing to squaring only five (n/3 + O(1))-digit
numbers. [Hint: What is (a+ b +c)> 4+ (a—b +¢)??]

Describe and analyze a variant of Karatsuba’s algorithm that multi-
plies any m-digit number and any n-digit number, for any n > m, in
O(nm'831) time.

Describe an algorithm to compute the decimal representation of 2" in
O(nlg 3) time, using the algorithm from part (a) as a subroutine. (The
standard algorithm that computes one digit at a time requires ©(n?)
time.)

Describe a divide-and-conquer algorithm to compute the decimal rep-
resentation of an arbitrary n-bit binary number in O(n'¢%) time. [Hint:
Watch out for an extra log factor in the running time.]

Suppose we can multiply two n-digit numbers in O(M(n)) time. Describe
an algorithm to compute the decimal representation of an arbitrary n-bit
binary number in O(M(n)logn) time. [Hint: The analysis is the hard
part; use a domain transformation.]

Exercises

24. Consider the following classical recursive algorithm for computing the
factorial n! of a non-negative integer n:

(a)
(b)

(@

(d

(e

Y®

FAcTORIAL(N):
ifn=0
return 1
else

return n - FAcToriaL(n— 1)

How many multiplications does this algorithm perform?

How many bits are required to write n! in binary? Express your answer
in the form ©(f (n)), for some familiar function f (n). [Hint: (n/2)"? <
n!<n".]

Your answer to (b) should convince you that the number of multiplications
is not a good estimate of the actual running time of FAcTORIAL. We
can multiply any k-digit number and any [-digit number in O(k - I) time
using either the lattice algorithm or duplation and mediation. What is
the running time of FacToriaL if we use this multiplication algorithm as
a subroutine?

The following recursive algorithm also computes the factorial function,
but using a different grouping of the multiplications:

FaLLiNGg(n, m): {(Compute n!/(n —m)!))
ifm=0
return 1
elseifm=1
return n
else
return FALLING(n,|m/2]) - FaLLiNnG(n — [m/2],[m/2])

What is the running time of FaLLING(n, n) if we use grade-school multi-
plication? [Hint: As usual, ignore the floors and ceilings.]

Describe and analyze a variant of Karatsuba’s algorithm that multiplies
any k-digit number and any [-digit number, for any k > [, in O(k -
1831y = O(k - 19°8) time.

What are the running times of FacToriaL(n) and FaLLiNG(n,n) if we
use the modified Karatsuba multiplication from part (e)?

25. The greatest common divisor of two positive integer x and y, denoted
ged(x, y), is the largest integer d such that both x/d and y/d are integers.
Euclid’s Elements, written around 300BCE, describes the following recursive
algorithm to compute ged(x, y): V7

7Euclid’s algorithm is sometimes incorrectly described as the oldest recursive algorithm,
or even the oldest nontrivial algorithm, even though the Egyptian duplation and mediation
algorithm—which is both nontrivial and recursive—predates Euclid by at least 1500 years.

57

1.

RECURSION

58

@

(b)

(@

(d)

(e)

EucLipGCD(x, ¥):
ifx=y
return x
elseif x >y
return EucLIDGCD(x — y, y)

else

return EucLIDGCD(x, y — x)

Prove that EucLIDGCD correctly computes ged(x, y).*® Specifically:
i. Prove that EucLiDGCD(x, y) divides both x and y.
ii. Prove that every divisor of x and y is a divisor of EucLIDGCD(x, y).

What is the worst-case running time of EucLIDGCD(x, y), as a function
of x and y? (Assume that computing x — y requires O(logx + log y)
time.)

Prove that the following algorithm also computes ged(x, y):

FAasTEUCLIDGCD(x, ¥):
ify=0
return x
elseif x >y
return FAsTEUCLIDGCD(y, x mod y)

else

return FAsTEUucLIDGCD(x, y mod x)

What is the worst-case running time of FAsTEucLIDGCD(x, y), as a
function of x and y? (Assume that computing x mod y takes O(log x -
log y) time.)

Prove that the following algorithm also computes ged(x, y):

BiNARYGCD(x, y):

ifx=y

return x
else if x and y are both even

return 2 - BINARYGCD(x /2, y /2)
else if x is even

return BINARYGCD(x /2, y)
else if y is even

return BINARYGCD(x, y/2)
elseif x >y

return BINARYGCD((x —y)/2,)
else

return BINARYGCD(x, (y —x)/2)

¥Euclid did not do this. Proposition 1 in Elements Book VII states that if EucLIDGCD(x, y) = 1,
then x and y are relatively prime (that is, gcd(x, y) = 1), but the proof only considers the special
case x mod (y mod (x mod y)) = 1. Proposition 2 states that if x and y are not relatively prime,
then EucLipGCD(x, y) = ged(x, y), but the proof only considers the special cases ged(x,y) =y
and ged(x, y) = y mod (x mod y). Finally, these two Propositions do not make a complete proof
that EucLIDGCD is correct. Don’t be like Euclid.

Exercises

(f) What is the worst-case running time of BINARYGCD(x, y), as a function
of x and y? (Assume that computing x — y takes O(logx +log y) time,
and computing z/2 requires O(logz) time.)

Arrays

26.

27.

28.

Suppose you are given a 2" x 2" checkerboard with one (arbitrarily chosen)
square removed. Describe and analyze an algorithm to compute a tiling of
the board by without gaps or overlaps by L-shaped tiles, each composed of 3
squares. Your input is the integer n and two n-bit integers representing the
row and column of the missing square. The output is a list of the positions
and orientations of (4™ —1)/3 tiles. Your algorithm should run in O(4")
time. [Hint: First prove that such a tiling always exists.]

You are a visitor at a political convention (or perhaps a faculty meeting)
with n delegates; each delegate is a member of exactly one political party.
It is impossible to tell which political party any delegate belongs to; in
particular, you will be summarily ejected from the convention if you ask.
However, you can determine whether any pair of delegates belong to the
same party by introducing them to each other. Members of the same political
party always greet each other with smiles and friendly handshakes; members
of different parties always greet each other with angry stares and insults."

(a) Suppose more than half of the delegates belong to the same political
party. Describe an efficient algorithm that identifies all members of this
majority party.

(b) Now suppose there are more than two parties, but one party has a
plurality: more people belong to that party than to any other party.
Present a practical procedure to precisely pick the people from the
plurality political party as parsimoniously as possible, presuming the
plurality party is composed of at least p people. Pretty please.

Smullyan Island has three types of inhabitants: knights always speak the
truth; knaves always lie; and normals sometimes speak the truth and
sometimes don’t. Everyone on the island knows everyone else’s name and
type (knight, knave, or normal). You want to learn the type of every
inhabitant.

You can ask any inhabitant to tell you the type of any other inhabitant.
Specifically, if you ask “Hey X, what is Y’s type?” then X will respond as
follows:

“Real-world politics is much messier than this simplified model, but this is a theory book!

59

1.

RECURSION

60

29.

30.

e If X is a knight, then X will respond with Y’s correct type.

e If X is a knave, then X could respond with either of the types that Y is
not.

e If X is a normal, then X could respond with any of the three types.

The inhabitants will ignore any questions not of this precise form; in
particular, you may not ask an inhabitant about their own type. Asking the
same inhabitant the same question multiple times always yields the same
answer, so there’s no point in asking any question more than once.

(a) Suppose you know that a strict majority of inhabitants are knights.
Describe an efficient algorithm to identify the type of every inhabitant.

(b) Prove that if at most half the inhabitants are knights, it is impossible to
determine the type of every inhabitant.

Most graphics hardware includes support for a low-level operation called blit,
or block transfer, which quickly copies a rectangular chunk of a pixel map
(a two-dimensional array of pixel values) from one location to another. This
is a two-dimensional version of the standard C library function memcpy ().

Suppose we want to rotate an n x n pixel map 90° clockwise. One way to
do this, at least when n is a power of two, is to split the pixel map into four
n/2 x n/2 blocks, move each block to its proper position using a sequence of
five blits, and then recursively rotate each block. (Why five? For the same
reason the Tower of Hanoi puzzle needs a third peg.) Alternately, we could
first recursively rotate the blocks and then blit them into place.

A|B ClA o> A(B > w o>

5 blits recurse recurse 5 blits

C|D DB O|lw C|D 0|o O|lw

Figure 1.24. Two algorithms for rotating a pixel map.

(a) Prove that both versions of the algorithm are correct when n is a power
of 2.

(b) Exactly how many blits does the algorithm perform when n is a power
of 2?

(c) Describe how to modify the algorithm so that it works for arbitrary n,
not just powers of 2. How many blits does your modified algorithm
perform?

(d) What is your algorithm’s running time if a k x k blit takes O(k?) time?

(e) What if a k x k blit takes only O(k) time?

An array A[0..n — 1] of n distinct numbers is bitonic if there are unique
indices i and j such that A[(i —1) mod n] < A[i] > A[(i + 1) mod n] and

Exercises

Figure 1.25. The first rotation algorithm (blit then recurse) in action. (See Image Credits at the end of
the book.)

31.

32.

A[(j —1)mod n] > A[j] < A[(j + 1) mod n]. In other words, a bitonic
sequence either consists of an increasing sequence followed by a decreasing
sequence, or can be circularly shifted to become so. For example,

|4:6:9:8:i7:5:1:2:3]| isbitonic, but
[3i16:9:8:i7:5:1:2!4]| isnot bitonic.

Describe and analyze an algorithm to find the smallest element in an n-
element bitonic array in O(logn) time. You may assume that the numbers
in the input array are distinct.

Suppose we are given an array A[1..n] of n distinct integers, which could be
positive, negative, or zero, sorted in increasing order so that A[1] < A[2] <
- <A[n].

(a) Describe a fast algorithm that either computes an index i such that
Ali] =1 or correctly reports that no such index exists.

(b) Suppose we know in advance that A[1] > 0. Describe an even faster
algorithm that either computes an index i such that A[i] =i or correctly
reports that no such index exists. [Hint: This is really easy.]

Suppose we are given an array A[1..n] with the special property that
A[1] > A[2] and A[n — 1] < A[n]. We say that an element A[x] is a local
minimum if it is less than or equal to both its neighbors, or more formally,
if Alx —1] = Alx] and A[x] < A[x + 1]. For example, there are six local
minima in the following array:

P77z 317 [s 12173 3 4]s 6]9]

61

1.

RECURSION

62

33.

34.

We can obviously find a local minimum in O(n) time by scanning through
the array. Describe and analyze an algorithm that finds a local minimum in
O(logn) time. [Hint: With the given boundary conditions, the array must
have at least one local minimum. Why?]

Suppose you are given a sorted array of n distinct numbers that has been
rotated k steps, for some unknown integer k between 1 and n— 1. That is,
you are given an array A[1..n] such that some prefix A[1..k] is sorted in
increasing order, the corresponding suffix Ak + 1..n] is sorted in increasing
order, and A[n] < A[1].

For example, you might be given the following 16-element array (where
k=10):

19:13.16:18:19:23i28 31137 42| 1.3 4.5 7 8]

(a) Describe and analyze an algorithm to compute the unknown integer k.

(b) Describe and analyze an algorithm to determine if the given array
contains a given number x.

At the end of the second act of the action blockbuster Fast and Impossible
XIIT%: The Last Guardians of Expendable Justice Reloaded,the villainous
Dr. Metaphor hypnotizes the entire Hero League/Force/Squad, arranges
them in a long line at the edge of a cliff, and instructs each hero to shoot
the closest taller heroes to their left and right, at a prearranged signal.

Suppose we are given the heights of all n heroes, in order from left
to right, in an array Ht[1..n]. (To avoid salary arguments, the producers
insisted that no two heroes have the same height.) Then we can compute
the Left and Right targets of each hero in O(n?) time using the following
brute-force algorithm.

WHOTARGETSWHOM(Ht[1..n]):
forje—1ton

((Find the left target L[j] for hero j))
L[j] « NonE
forie—1toj—1
if Ht[i] > Ht[j]
L[jl«i
((Find the right target R[j] for hero j))
R[j] « NoNE
for k < ndownto j+1
if Ht[k] > Ht[j]
R[j]<k

return L[1..n], R[1..n]

Exercises

(@

(b)

(0

Describe a divide-and-conquer algorithm that computes the output of
WHOTARGETSWHOM in O(nlogn) time.

Prove that at least | n/2] of the n heroes are targets. That is, prove that
the output arrays R[0..n— 1] and L[0..n— 1] contain at least [n/2|
distinct values (other than NoNE).

Alas, Dr. Metaphor’s diabolical plan is successful. At the prearranged
signal, all the heroes simultaneously shoot their targets, and all targets
fall over the cliff, apparently dead. Metaphor repeats his dastardly
experiment over and over; after each massacre, he forces the remaining
heroes to choose new targets, following the same algorithm, and then
shoot their targets at the next signal. Eventually, only the shortest
member of the Hero Crew/Alliance/Posse is left alive.*°

Describe and analyze an algorithm to compute the number of rounds
before Dr. Metaphor’s deadly process finally ends. For full credit, your
algorithm should run in O(n) time.

35. You are a contestant on the hit game show “Beat Your Neighbors!” You are
presented with an m x n grid of boxes, each containing a unique number. It
costs $100 to open a box. Your goal is to find a box whose number is larger
than its neighbors in the grid (above, below, left, and right). If you spend
less money than any of your opponents, you win a week-long trip for two to
Las Vegas and a year’s supply of Rice-A-Roni™, to which you are hopelessly
addicted.

(a)

Y(b)

QV(C)

36. (a)

Suppose m = 1. Describe an algorithm that finds a number that is bigger
than either of its neighbors. How many boxes does your algorithm open
in the worst case?

Suppose m = n. Describe an algorithm that finds a number that is bigger
than any of its neighbors. How many boxes does your algorithm open in
the worst case?

Prove that your solution to part (b) is optimal up to a constant factor.

Let n = 2¢ — 1 for some positive integer £. Suppose someone claims to
hold an unsorted array A[1..n] of distinct £-bit strings; thus, exactly one
£-bit string does not appear in A. Suppose further that the only way we
can access A is by calling the function FETCHBIT(i, j), which returns the
jth bit of the string A[i] in O(1) time. Describe an algorithm to find the
missing string in A using only O(n) calls to FETCHBIT.

*In the thrilling final act, Retcon the Squirrel, the last surviving member of the Hero
Team/Group/Society, saves everyone by traveling back in time and retroactively replacing the
other n — 1 heroes with lifelike balloon sculptures. So, yeah, basically it’s Avengers: Endgame.

63

1.

RECURSION

64

¥(b) Now suppose n = 2¢ —k for some positive integers k and ¢, and again we

are given an array A[1 .. n] of distinct £-bit strings. Describe an algorithm
to find the k strings that are missing from A using only O(nlogk) calls
to FETCHBIT.

Trees

37. For this problem, a subtree of a binary tree means any connected subgraph.

38.

A binary tree is complete if every internal node has two children, and every
leaf has exactly the same depth. Describe and analyze a recursive algorithm
to compute the largest complete subtree of a given binary tree. Your algorithm
should return both the root and the depth of this subtree. See Figure 1.26
for an example.

Figure 1.26. The largest complete subtree of this binary tree has depth 3.

Let T be a binary tree with n vertices. Deleting any vertex v splits T into at
most three subtrees, containing the left child of v (if any), the right child
of v (if any), and the parent of v (if any). We call v a central vertex if
each of these smaller trees has at most n/2 vertices. See Figure 1.27 for an
example.

Describe and analyze an algorithm to find a central vertex in an arbitrary
given binary tree. [Hint: First prove that every tree has a central vertex.]

T

Figure 1.27. Deleting a central vertex in a 34-node binary tree, leaving subtrees with 14, 7,and 12 nodes.

Exercises

39.

40.

(a) Professor George O’Jungle has a 27-node binary tree, in which every
node is labeled with a unique letter of the Roman alphabet or the
character &. Preorder and postorder traversals of the tree visit the nodes
in the following order:

* Preorder: TQJHLEMVOTSBRGYZKCA&FPNUDWX
* Postorder: HEMLJVQSGYRZBTCPUDNFW&XAKOI
Draw George’s binary tree.
(b) Recall that a binary tree is full if every non-leaf node has exactly two
children.

i. Describe and analyze a recursive algorithm to reconstruct an arbitrary
full binary tree, given its preorder and postorder node sequences as
input.

ii. Prove that there is no algorithm to reconstruct an arbitrary binary
tree from its preorder and postorder node sequences.

(c) Describe and analyze a recursive algorithm to reconstruct an arbitrary
binary tree, given its preorder and inorder node sequences as input.

(d) Describe and analyze a recursive algorithm to reconstruct an arbitrary
binary search tree, given only its preorder node sequence.

Y(e) Describe and analyze a recursive algorithm to reconstruct an arbitrary

binary search tree, given only its preorder node sequence, in O(n) time.

In parts (b)-(e), assume that all keys are distinct and that the input is
consistent with at least one binary tree.

Suppose we have n points scattered inside a two-dimensional box. A kd-
tree” recursively subdivides the points as follows. If the box contains no
points in its interior, we are done. Otherwise, we split the box into two
smaller boxes with a vertical line, through a median point inside the box
(not on its boundary), partitioning the points as evenly as possible. Then
we recursively build a kd-tree for the points in each of the two smaller
boxes, after rotating them 9o degrees. Thus, we alternate between splitting
vertically and splitting horizontally at each level of recursion. The final
empty boxes are called cells.

*The term “kd-tree” (pronounced “kay dee tree”) was originally an abbreviation for “k-

dimensional tree”, but modern usage ignores this etymology, in part because nobody in their
right mind would ever use the letter k to denote dimension instead of the obviously superior d.
Etymological consistency would require calling the data structure in this problem a “2d-tree”
(or perhaps a “2-d tree”), but the standard nomenclature is now “two-dimensional kd-tree”.
See also: B-tree (maybe), alpha shape, beta skeleton, epsilon net, Potomac River, Mississippi
River, Lake Michigan, Lake Tahoe, Manhattan Island, La Brea Tar Pits, Sahara Desert, Mount
Kilimanjaro, South Vietnam, East Timor, the Milky Way Galaxy, the City of Townsville, and
self-driving automobiles.

65

1.

RECURSION

66

@

(b)

(@)

d

41.

Figure 1.28. A kd-tree for 15 points. The dashed line crosses the four shaded cells.

How many cells are there, as a function of n? Prove your answer is
correct.

In the worst case, exactly how many cells can a horizontal line cross, as
a function of n? Prove your answer is correct. Assume that n = 2k—1
for some integer k. [Hint: There is more than one function f such that
f(1e)=4.]

Suppose we are given n points stored in a kd-tree. Describe and analyze
an algorithm that counts the number of points above a horizontal line
(such as the dashed line in the figure) as quickly as possible. [Hint: Use
part (b).]

Describe an analyze an efficient algorithm that counts, given a kd-tree
containing n points, the number of points that lie inside a rectangle R
with horizontal and vertical sides. [Hint: Use part (c).]

Bob Ratenbur, a new student in CS 225, is trying to write code to perform
preorder, inorder, and postorder traversals of binary trees.

Bob sort-of

understands the basic idea behind the traversal algorithms, but whenever
he actually tries to implement them, he keeps mixing up the recursive calls.
Five minutes before the deadline, Bob frantically submits code with the

following structure:

PREORDER(V): INORDER(V): POSTORDER(V):
if v =NuLL if v =NuLL if v = NuLL
return return return
else else else
print label(v) IORDER(left(v)) IORDER(left(v))
IORDER(left(v)) print label(v) IORDER(right(v))
IORDER(right(v)) IORDER(right(v)) print label(v)

Each Il in this pseudocode hides one of the prefixes PRE, IN, or POsT.

Moreover, each of the following function calls appears exactly once in Bob’s

submitted code:

Exercises

42.

PREORDER (left(Vv)) PREORDER(right(v))

INORDER(left(v)) INORDER(right(v))

PosTORDER (left(v)) PosTORDER(right(v))
Thus, there are precisely 36 possibilities for Bob’s code. Unfortunately, Bob
accidentally deleted his source code after submitting the executable, so
neither you nor he knows which functions were called where.

Now suppose you are given the output of Bob’s traversal algorithms,
executed on some unknown binary tree T. Bob’s output has been helpfully
parsed into three arrays Pre[1..n], In[1..n], and Post[1..n]. You may
assume that these traversal sequences are consistent with exactly one binary
tree T; in particular, the vertex labels of the unknown tree T are distinct,
and every internal node in T has exactly two children.

(a) Describe an algorithm to reconstruct the unknown tree T from the given
traversal sequences.

(b) Describe an algorithm that either reconstructs Bob’s code from the given
traversal sequences, or correctly reports that the traversal sequences are
consistent with more than one set of algorithms.

For example, given the input
Pr