


you can't
catch me!



about this zine

This zine has:

O
\|(II/(1, O

® a:= mannces’ro~ with my general

LV 2 B I B )

debugging prmmples

Vgl //,

(@ a list of my favourite debugging ~s’rra’regles -, which
you can try in any order that makes sense to you

7w




table of contents

MANIFESTO .o, 6-F

@D first steps <>

preserve the crime scene........... 9

read the error message....
reread the error message............ 11
reproduce the bug........coiiiiiiriiiennns 12
inspect unreproducible bugs...........13
identify one small question...........24
retrace the code's steps............ 15

write a failing test ... 16

@ get organized ul

brainstorm some suspects.

rule things out....coooviiiicnienninns

keep a log DoOK.. .ot

draw a diagram ................................... 21

@invesﬁga’re ¢©

add lots of print statements........23
use o debugger.... e 24

Jump info @ REPL....ooviiis 25
find a version that works..oe. 26
look at recent changes.....c......... 27
sprinkle assertions everywhere......28
comment out code.....cooniiiiinne. 29
analyze the logs.....ccooooviicicecn. 30

M) research

read the docs. ..o 32
find the type of bug.., 33
learn one small thing....cvveewnenen. 34
read the library's code....ccorounnne 35
find & new source of info..n. 36
J




/

®simplify (@

write a tiny program...........eeeene. 33
one thing at a time........iie 39
tidy Up Your code.. i 40
delete the buggy code......ccoooovii, 41
reduce randomness........oriiecieneneees 42

® get unstuck @-O

take & breaK ... LU
investigate the bug together ... 45
timebox your investigation............. 46

wrife a message asking for help.... 47
explain the bug out lovd ..o 48
maKe sure your code is running......4q

do the annoying thing...ccoocovcevcrrce 50

@ improve your toolkit %

try out a new tool.......ciiciicns 52
tupes of debugging tools............... 53
shorten your feedback loop........... sY

add pretty prinfing.......ccccovce.....55
colours, graphs, and sounds........... 56

&)
® after it's fixed &

do a victory 1ap. e 58
fell a friend what you learned......59
find related bugs. ..o 60
add a comment ..o, 61
document your quest.......nne 62




y 8y

vnderstand
what happened

o .. 20 minutes later...
o

N &
~ wait, I haven't tried X...

I.‘
@frusf nobody and nothing <]> it's probably your code

1 KNOW my code is rughf

. 2 hours later ..

ugh, my code WAS the
? (BT .

this library
can't be buggy...
or CAN 11777

I—slowlg growing horror



6
@ don't go it alone there's always a reason

WHAT 1S
HAPPENING?1? Jee
00010 "

7 3
Q build your toolkit Q it can be an adventure

computers are
always logical, even
when it doesn't feel
that way

you wouldn't
BELIEVE the
weird bug 1
found!

wow, the CSS
inspector makes
debugging SO
MUCH EASIER




chapter 1

FIRST STEPS

3



flRST\
preserve the crime scene >

32

One of the easiest ways to start is to save a copy
of the buggy code and its inputs/outputs:

don't touch anything! we
@ need to preserve evidence!

Depending on the situation, you might want to:

—+»make a git commit of the buggy code!
(on a branch, just for yov)

- save the input that triggered the bug

—rsave logs/screenshots to analyze later

®




-

Error messages are a goldmine of information, but

read the error message s
S7eP>

they can be very annoying to read:

giant 50 line stack can even be

trace full of misleading, like

. . /-—'" " caal denied"
impenetrable jargon, permission denie
often seems totally sometimes means

unrelated to your bug "doesn't exist"

Al

Tricks to extract information from giant error messages:

4 If there are many different error messages, start
with the first one. Fixing it will often fix the rest.

* If the end of a long error message isn't helpful,
try looking at the beginning (scroll up!)

% On the command line, pipe it to less so that you
can scroll/search it (./my_programl less)

if you don't include 2>&1, less won't show you the )e'rror messages (just the output)

¢IRST \

©




/ e1RSr\
reread the error message 5 s

After I've read the error message, 1 sometimes run
into one of these 3 problems:

misreading the
® 9
message

ok, it says
the error is

in file X spoiler: it

actually
said file Y

(@ disregarding what °e
. well, the message
the message is says X, but that's § )

saying impossible... spoiler: it
was possible

/\.
spoiler: she
did not read it

@

(® rot actually
reading it

-




-

¢IRST \

reproduce the bug S>3

Sr P$
My favourite way to get information about buggy .

code is to run the buggy code and experiment on it.
(Add print statements! Make a tiny change!)

If the bug is happening on your computer every time you
run your program: hooray! You've reproduced the bug!

°%9 oK, time to debug! I've got my
print statements ready to go!
/\

But if you can't make the bug happen, you're left guessing.

009 the next
page has

tips!

what was variable X set to
when the bug happened? guess
there's NO WAY TO KNOW

®




/ . . elRST\
inspect unreproducible bugs >y
SrEPS
When you can't reproduce a bug locally, it's tempting to
just fry random fixes and pray. Resist the temptation!
Some ways to get information:

—» try to reproduce the environment where it happened
—» ask for screenshots / screen recordings

—» add more logging, deploy your code, and repeat until

you understand what caused the bug
incredibly boring
—» read the code VERY VERY carefullye— . . actually does

. . work sometimes
—» do your experimentation somewhere

where you *can* reproduce the bug & ©°" @ staging
server? on someone

else's computer?
\ @




/ eIRST\
identify one small question >

STEPS

Debugging can feel huge and impossible. But all
you have to do to make progress is:
® come up with ONE QUESTION about the bug

® make sure the question is small enough that
you can investigate it in ~20 minutes

(® figure out the answer to that question

@o o 0 © ©

ignore all these = hmm, this database
other questions i query is slow... well, can
for now! one @" g I find out if the query
at a fimel ng i is using an index?

\ ®




/ flRST\
retrace the code's steps s
S7eP2
Here's a classic (but still very effective!) way fo
get started:

(@ find the line of code where the error happened

@ trace backwards to investigate what could have
cavsed that error. keep asking "why?"

There's an error on line S8...
that's because this variable has the wrong valve...
L—-1'he valve is set by calling this function...
that function is making an HTTP request

L.
to the APIL..
% C—the API response doesn't have the
-

format 1 expected! Why is that?

®




write a failing test > s

If your program already has tests, adding a failing
test is a great way fo work on your bug!

°0 this function should return

X, but it's returning Y

4 it forces you to pinpoint what exactly the bug is

U it's easy to tell when you've fixed it (the test passes!)

U you can keep the test to make sure the bug doesn't
come back

N ®




cccccccc

GET ORGANIZED

e
4



-

brainstorm some suspects

Brainstorming every possible cause 1 can think of helps
me not get stuck on the 1 or 2 most obvious possibilities.

rcou(d I be using the
wrong version of this
library?

am 1 passing the wrong
argument to function X?

is something wrong with
the server?

is the entire internet «—]

broken?77?

(-;ET\
oﬁg

P
G"qub

sometimes 1 find it
easier to think
clearly when writing
by hand on paper

no filter! even
ridiculovs ideas!

®




(-;ET\
rule things out o d @

Sqnib
Once 1 have a list of suspects, I can think about
how fo eliminate them.

I'm really confused, but 1
can at least check if the
server returned the right
HTTP response here..

—=| Secrver

SusPiciouS SusPICIoUS

that response looks good!
the server isn't the problem! )

-,—

1
Soswuous

f

here we're assuming that was the only request being made.
Otherwise this wouldn't be a safe conclusion :)

®




( Keep a log book )

I don't usually write things down. But 2 hours into
debugging, 1 get really confused:

0°° (ait, what did that error message 1
o saw 2 hours ago say again exactly??
o
o

did 1 already try this???

Keeping a document with notes makes it WAY easier to
stay on track. It might contain:

-» specific inputs 1 tried

—» error messages 1 saw

—+stack overflow URLs

The log makes it easier to ask for help later if needed!

@




-

state diagram
{inventory page]
cart continve cancel
icon [ ) shopping ’\
M cocticon

or anything else
(like a data structure!)

4 : TN
draw a diagram (o o
Some ideas: 54 N1
network diagram flowchart
2

on off | on of f
L l [+F)
0 J; S seconds
[ll ‘l ‘I 0, oa \) ‘1 lj l[ Oj

@




chapter 3

INVESTIGATE

Qe

1
-



-

add lots of print statements

I love to add print statements that print out 1, 2, 3, 4,

console.log(1)
i' console.log(2) &

console.log(3)

numbers or "wtf??77"

L P

\y
ZsT1S

5.

using descriptive strings is
smarter, but T usuvally vse

This helps me construct a timeline of which parts of my

code ran and in what order:
3 THE ERROR
ness%e@

YTHING
4 EVERTON | g ChUSE \
\

Often I'll discover something surprising, like "wait, 3, never

got printed??? Why not??77".

~N

&

®




-

use a debugger ,/©4«

A debugger is a tool for stepping through your code line by
line and looking at variables. But not all debuggers are equal!
Some languages' debuggers have more features than others.

Your debugger might let you:
% jump into a REPL to poke around (see page 25)

+« watch a location in memory and stop
the program any time it's modified

¥ "record replay" debuggers let you record your entire
program's execution and & time travel#

I just have to reproduce the bug once

I love record/replay debuggers because
they make hard-to-reproduce bugs easier:

N

Ay
st

@




4 \
jump into a REPL ¢v©@

5
st

In dynamic languages (like Python / Ruby / 3S), you
can use a debugger to Jjump into an interactive
console (aka "REPL") at any point in your code.
Here's how to do it in Python 3:

Q@ edit your code my_var = call_some_function()
breakpoint() ¢«— add +his !
@ refresh the page
® play around in the REPL! You can call any
function you want / try out fixes!
How to do it in other languages:
% Ruby: binding.pry

# Python (before 3.7): import pdb; pdb.set_trace()
\_ % Javascript: debugger;

&




find a version that works go@

If 1 have a bug with how I'm using a library, I like to:
— find a code example in the documentation
—» make svure it works
—slowly change it to be more like my broken code
—» test if it's still worKing after every single tiny change

/- OW, THATS S

\ \, / WHAT BROKE
TTIY

This puts me back on solid ground. with every change 1
make that DOESN'T cause the bug to come back, 1
know that change wasn't the problem.

I




N
look at recent changes gkﬁ&
ZsT1¥
Often when something is broken, it's because of a recent
change. Usually I look at recent changes manually, but
git bisect is an amazing tool for finding exactly which
git commit caused the problem.

We don't have space for a full git bisect tutorial here,
but here's how you start using it:

git bisect start
git bisect bad HEAD 1D of a commit that
git bisect good 1fe9dc —— doesn't have the bug

Then you can either tag buggy commits manually or
run a script that does it avtomatically.

1)




-

~
sprinkle assertions everywhere (. Fo)

v
ZEsT18

Some languages have an assert Keyword that you can vse
to crash the program if a condition fails. Assertions let you:

* come up with something that should ALWAYS be true

* immediately crash the program if it isn't

besf am

000
this variable is undefined!!!

STOP EVERYTHING!

This is a great way to force yourself to think about what's
ALWAYS true in your program, and check if you're right.

o
the radivs can never be

0, right? or can it?

%




N
comment out code 2

Z, >
., Ay
ESTT(,

Commenting out code is an amazing way to quickly do
experiments and figure out which part of your code is
to blame. You can:

4« comment out a function call and replace it with a
hardcoded value, to check if the function call is broken

# if the error message doesn't give you a line number,
comment out huge chunks of the program until the
problem goes away

¥ comment out some code and rewrite it to see if
the new version is better

@




/

-

analyze the logs

If you can't reproduce a bug, sometimes you need
to comb through the logs for clues. Some tips:

— filter out irrelevant lines (for example with grep -v)

— find 1 failed request and search for that request's

ID to get all the logs for that request

—* build a timeline: copy and paste log lines (and
your interpretations!) into a document

— if you see a suspicious log line, search to make sure

it doesn't also happen during normal operation

— if there's a cascade of errors, find the first
error that started the problems

o)




chapter 4

RESEARCH

AR



-

read the docs EE]

There are many ways to read the docs!

the surgical strike:
Search for a specific function, find an this is
example on the page, copy it and leave. often me )

the question quest:
You have a specific question and you'll kKeep
skimming different pages until you find the answer.

the IDE integration:
Set up your editor or IDE so that you can
instantly jump to a function's documentation.

the rigorous read:
Get a cup of coffee and read all of the
docs cover to cover, like a book.

®




find the fupe of bug

If the bug is totally new to you, find out if there's
a name people use for that type of bug!

this bug is happening
intermittently, it's so weird.

% that sounds like it might
oh, what's a be a race condition...
race condition?

terminated by signal SIGSEGV (address boundary error) —w segmentation fault

flexbox: div doesn’t fit in other div @ —p item overflowing
container (CSS)

nodename nor servname provided, or not known —w DNS (OOKUp failure

RecursionError: maximum recursion depth exceeded —®» stack overflow

N ®




learn B

Bugs are a GREAT way to discover things on the
edge of your knowledge.

290 % hmm, part of the problem here is that I don't
understand how position: absolute works...

Finding one small thing I don't understand and
learning it is really useful (and pretty funl)

%o
% now 1 understand position: absolute! cool!

&)




-

& search the

4
&

#if it's a Python/IS/Ruby library, sometimes I'll edit the

read the

Lots of code isn't documented. But when there are no docs,
there's always the source code! It sounds intimidating at
first, but a quick search of the code sometimes gets me
my answer really quickly.

Tips for exploring an unfamiliar library's code:

it locally to make it easier to navigate

search for your error message and trace back

library's code on my computer to add print

statements (J'usf remember to take them out after!)

BE

! Tests are a GREAT source of examples

~

>
s € A&b

®




4 N\
find a new source of info =Bl

s e h"b

We all know to look at the official documentation.
Here are some less obvious places to look for answers:
* the projec'l"s Discord, Slack, IRC channel, or mailing list

# code search (search all of GitHub for how other
people are using that library!)

+ GitHub issves (did someone else have the same problem?)
# release notes (is the bug fixed in the new version?)
* o book chapter (you might have a book on this topic!)

* blog posts (sometimes there's an amazing
explanation on the 2nd page of Google results)

N ®




chapter 5

SIMPLIFY




Does your bug involve a library you don't understand?

@GH, requests is NOT working
Lhow I expected it to!

1 like to convert my code using that library intfo a tiny
standalone program which has the same bug:

& —

ant b 20 lines of
giant buggy program buggy code

I find this makes it WAY EASIER to experiment and ask
for help. And if it turns out that library actually has a
bug, you can use your tiny program tfo report it.

-

4 , , \
write a tiny program

o)




4 \
one thing at a time

It's tempting to try lots of fixes at once to save time:

dream: reality:

I'm going to add Z, ° 0
and replace X with
Y, and improve C —

that'll definitely fix

ooo

.. how there's a
new problem AND
it's still broken

If 1 found I've done this by accident, T'll:

—»undo all my changes (git stash!)

-» make a list of things to investigate, one at a time

N ®




g tidy up your code

Messy code is harder to debug. thie function
0°2°° (is 100 lines???

o
°o (who named these t vas
variables?!?! me

Doing a tiny bit of refactoring can make things easier, like:

-» rename variables or functions

-» format it with a code formatter (go fmt, black, etfc.)
-» add comments

-» delete old/untrue comments

Don't go overboard with the refactoring though: making
too many changes can easily introduce new bugs.

N @




~
delete the buggy code

Sometimes the buggy code is not worth salvaging and
should be deleted entirely. Reasons you might do this:

# it uses a confusing

o© . s tan!
library / tool Qo this library isn't
= working, I'm going to
switch to Y instead
# you have a better 0°°( 1 bet 1 could avoid

idea for how to

all these problems if
implement it

1 took X approach
instead...

@




It's much easier to debug when your program does
the exact same thing every time you run it.

00O

the bug only happens 10% of the
time, it's SO HARD to figure out if
my change fixed it or not

There are a bunch of tools for controlling your
program's inputs to reduce randomness, for example:

—» many random number generators let you set the
seed so you get the same results every time

—» faketime fakes the current time

—* libraries like Ruby's vcr can record HTTP requests

. record/replay debuggers like rr record everything

4 O)
reduce randomness

@




chapter 6

GET UNSTUCK

My favourite tricks to get from:
"I'm NEVER going to figure this out!”
to: "it seems obvious now!"”




/ ! GET \
take a break é) B0,
Ys ol

Investigating a tricky bug requires a LOT of focus.

ugh, nothing
is working...

> oo
9oogling the
Same error
Message for
the 7t time — very frustrated

Instead, try one of these magical debugging techniques:
(even a 5 minute break can really help!)

get a coffeel go to bed! ride your bike!
have a
shower!

@




-

I find investigating a bug with someone else SO MUCH more
fun than doing it alone. Debugging together lets you:

™)
investigate the bug fogether ®(’E©

"’Sr\)"

— teach each other new tools!
let"
I wish we could find out ers use my
favourite tool,
X, but that's impossible.,
—» learn new concepts!
what is this oh 1 can
CORS thing?!?! explann that!
—» Keep each other on track

maybe the prob(e@ %

% (we already ruled fhaf out!
-\—righf, 1 forgot! \)
45




. . . GEPN)
timebox your investigation @O,
Y108
Sometimes 1 need to trick myself into getting
started: , 0

UGH, T do NOT want to

look at this CSS bug!!!

.. 15 minutes later .. ¢~ you can't always
solve it in 15
all fixed! that minutes, but this
wasn't so hard! works surprisingly
often!

% 7 OKay, I'll just see what 1 can O
% figure out in 20 minutes... @

®




4 T\
write a message asking for help (©-®

4 d’
QaY
When I'm REALLY stuck, I'll write an email to a friend:
—»"Here's what I'm trying fo do.."
~ "l did X and 1 expected Y to happen, but instead..."
— "Could this be because....?"
— "This seems impossible because..."
— "I've tried A, B, and C to fix it, but..."

This helps me organize my thoughts, and often by
the time I finish writing, I've magically fixed the
problem on my own!

It has to be a specific person, so that the imaginary
version of them in my mind will say useful things :)

- ©




4 explain the bug out loud (,@GE(LD)

Ys oS

Explaining what's going wrong out loud is magic.

so, when I do X thing, I'm getting
an error, and it doesn't make any
sense becavse 1 already checked
that A and B are working....

{ <pavse for 5 seconds> g
N OH T SEE WHAT 1 happy V7' %
DID WRONG to help! '

People call this "rubber ducking" because the other person
might as well be a rubber duck (they don't say anything!)

()




: : GEPN)
make sure your code i running (@,

Ysr0S

NOTHING 1 try is helping,
this is IMPOSSIBLE

o (wait... nothing 1 try is
changing anything.... is my
code even being run??7??

If my changes have no effect at all, often it means I've
made a silly mistake (like forgetting to restart the app)
and my changes aren't being run!

I like to check that my code is being run by printing
something out (like print(”asdf")). Or, if that's not
possible, I'll introduce an error so that it crashes.

©




GEPN )
do the annoying thing B0,

Sometimes when I'm debugging, there are things I'll
refuse to try because they take too long.

§Ooo

But as I become more and more desperate, eventually
I'll give in and do the annoying thing. Often it helps!

° O
FINE, I'll look at that code...
oh, yeah, here's the bug

ugh, that part of the code is so
confusing, 1 don't want to look aft it..

o)




chapter 7

IMPROVE YOUR TOOLKIT



g try out a new tool 5“%

{0035
There are TONS of great debugging tools (listed on
the next page!), but often they have a steep learning
curve. Some tips to get started:

—» get someone more experienced to show this is SO
you an example of how they'd use the tool helpfullt

—» try it out when investigating a low stakes bug,
so it's no big deal if it doesn't work out

—» fake notes with examples of the options you
used, so you can refer to them next time

N ®




/

types of debugging tools

Here are some tools 1I've found useful:

debuggers!
profilers!
tracers!

network spy tfools!

load testers!

test frameworks!
linters/static analysis tools!
data formatting tools!
dynamic analysis tools!
{fuzzers/properfg testing!

I've never used these but lots of
people say they're helpful

(most languages have onel)

perf, pprof, py-spy

strace, ltrace, ftrace, BPF tools
tcpdump, wireshark, ngrep, mitmproxy
selenium, playwright

ab, wrk

pytest, RSpec

black, eslint, pyright

xxd, hexdump, jq, graphviz

valgrind, asan, tsan, ubsan

hypothesis, quickcheck, Go's fuzzer

®



- =)
shorten your feedback loop (gt

7,
%Kz}

When you're investigating a bug, you'll need to
run the buggy code a million times.

UGH, T need to type all this
information intfo the form tfo

trigger the bug AGAIN??? This
is literally the 30th time :( :(

Ways to speed it up:
% Use a browser avtomation tool to fill in
forms / click buttons for you!
* write a unit test!
« autorun your code every time you save!

-

&)




add pretty printing

Sometimes you print out an object, and it just prints
the class name and reference 1D, like this:

(]
MyObject<#18238120323> ©ofugh, thanks,
very helpful...

Implementing a custom string representation for an

The name of the method you need to implement is:

Java: .toString Go: String()

Also, pretty-printing libraries (like pprint in Python or
awesome_print in Ruby) are great for printing out
\_ arrays/hashmaps.

class you're often printing out can save a LOT of time.

Python: .__str__  Ruby: .to_s JavaScript: .toString

QQ&VE Jé\
=

o0, k33

®




colours, graphs, and sounds  (fg=?

Instead of printing text, your program can tell you
about its state by generating a picture! Or playing
sounds at key moments!

Some ways your programs can generate pictures
or sounds:

& add colours to your log lines

&radd around every HTML element!|

#rHaskell has an option to beep “Q» at the
start of every major garbage collection

& draw a chart of events over time

& use graphviz tfo generate a diagram —
of your program's internal state N,
@




chapter 8

AFTER IT'S FIXED

&



Y&TEP\
do a victory lap a,‘éﬁzj

Once you've solved it, don't forget to celebrate! Take a
break! Feel smart!

iy
X

The best part of understanding a bug is that it makes
it SO MUCH easier for you to solve similar future bugs.

I've seen something like this N
fokore = before, maybe the problem is X7
viure

oV
3 colleague, awestruck ~

at your brilliance O
53

o« N howis not the

time for humility

i did it, i did it,
i'm amazing




tell a friend what you learned (; nép
5
I love to celebrate squashing a bug by telling a friend:

hey marie, did you know about
this weird thing that can
happen with CSS flexbox?

Some possible outcomes of this:

— they've seen that bug too, and teach me something else!
—» they (earn something new!

—+they ask questions 1 hadn't thought of

—*they tell me about a website/tool 1 didn't Know about

—»it helps solidify my Knowledge!

&)



— N
find related bugs

When you're done fixing a bug, glance around to
see if there are any obvious places in your code
that have the same bug.

I was calling function X wrong, T'll
check if we're calling that function
wrong anywhere else!

o ©

wow, my assumption about how ¥
worked was TOTALLY wrong, 1

should go back and fix some things...




add a comment

Some bug fixes are a little counterintuitive.
Otherwise you would have written the code that
way in the first place! You might think:
2 ° °( 1 remember why 1 added |
z&;isuco.de, .IﬂsPem‘ 5 hours this is a
999 ™ trapi!

Adding a comment can help future you (or your
coworkers’) avoid accidentally reviving a bug later.

ooh I could simplify :
kfhus code!




GTEN )
document your quest o B o

i

For very fricky bugs, writing up an explanation of what
went wrong and how you figured it out is an amazing way
to share knowledge and make sure you really understand it.

Ways I've done this in the past:

so people can
% complain about it in the internal chat! « search for if!
% write a quick explanation in the commit message

# write a fun blog post telling my tale of woe!

¥+ for really important work bugs, write a 5-page
document with graphs explaining all the weird stuff
I learned along the way

N @




thanks for reading

One more thing: 1 also built a choose-your-own-adventure
debugging game to go with this zine, where you can solve
computer networking mysteries:

https://mysteries.wizardzines.com

credits

Cover art: Vladimir kasikovi¢

Copy editing: Gersande La Fléche
Editing: Dolly Lanuza, Kamal Marhubi
Pairing: Marie Claire LeBlanc Flanagan
and thanks to all the beta readers &




[ove +his?
more ot
* \Wizardzines.com #



