

 [image: cover]

Get Programming with Haskell

 Will Kurt

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2018 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 Development editor: Dan Maharry
Senior technical development editor: Al Sherer
Technical development editor: Palak Mathur
Review editor: Aleksandar Dragosavljević
Project editor: David Novak
Copyeditor: Sharon Wilkey
Proofreader: Melody Dolab
Technical proofreader: Vitaly Bragilevsky
Typesetter: Dottie Marsico
Cover designer: Monica Kamsvaag

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 ISBN 9781617293764

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – EBM – 23 22 21 20 19 18

Dedication

 To Lisa and Archer, my source of endless support and inspiration

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this book

 About the author

 Lesson 1. Getting started with Haskell

 Unit 1. Foundations of functional programming

 Lesson 2. Functions and functional programming

 Lesson 3. Lambda functions and lexical scope

 Lesson 4. First-class functions

 Lesson 5. Closures and partial application

 Lesson 6. Lists

 Lesson 7. Rules for recursion and pattern matching

 Lesson 8. Writing recursive functions

 Lesson 9. Higher-order functions

 Lesson 10. Capstone: Functional object-oriented programming with robots!

 Unit 2. Introducing types

 Lesson 11. Type basics

 Lesson 12. Creating your own types

 Lesson 13. Type classes

 Lesson 14. Using type classes

 Lesson 15. Capstone: Secret messages!

 Unit 3. Programming in types

 Lesson 16. Creating types with “and” and “or”

 Lesson 17. Design by composition—Semigroups and Monoids

 Lesson 18. Parameterized types

 Lesson 19. The Maybe type: dealing with missing values

 Lesson 20. Capstone: Time series

 Unit 4. IO in Haskell

 Lesson 21. Hello World!—introducing IO types

 Lesson 22. Interacting with the command line and lazy I/O

 Lesson 23. Working with text and Unicode

 Lesson 24. Working with files

 Lesson 25. Working with binary data

 Lesson 26. Capstone: Processing binary files and book data

 Unit 5. Working with type in a context

 Lesson 27. The Functor type class

 Lesson 28. A peek at the Applicative type class: using functions in a context

 Lesson 29. Lists as context: a deeper look at the Applicative type class

 Lesson 30. Introducing the Monad type class

 Lesson 31. Making Monads easier with do-notation

 Lesson 32. The list monad and list comprehensions

 Lesson 33. Capstone: SQL-like queries in Haskell

 Unit 6. Organizing code and building projects

 Lesson 34. Organizing Haskell code with modules

 Lesson 35. Building projects with stack

 Lesson 36. Property testing with QuickCheck

 Lesson 37. Capstone: Building a prime-number library

 Unit 7. Practical Haskell

 Lesson 38. Errors in Haskell and the Either type

 Lesson 39. Making HTTP requests in Haskell

 Lesson 40. Working with JSON data by using Aeson

 Lesson 41. Using databases in Haskell

 Lesson 42. Efficient, stateful arrays in Haskell

 Afterword. What’s next?

 Answers to end-of-lesson exercises

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this book

 About the author

 Lesson 1. Getting started with Haskell

 1.1. Welcome to Haskell

 1.1.1. The Haskell Platform

 1.1.2. Text editors

 1.2. The Glasgow Haskell Compiler

 1.3. Interacting with Haskell—GHCi

 1.4. Writing and working with Haskell code

 Summary

 Unit 1. Foundations of functional programming

 Lesson 2. Functions and functional programming

 2.1. Functions

 2.2. Functional programming

 2.3. The value of functional programming in practice

 2.3.1. Variables

 2.3.2. Variables that are variable

 Summary

 Lesson 3. Lambda functions and lexical scope

 3.1. Lambda functions

 3.2. Writing your own where clause

 3.3. From lambda to let: making your own variable variables!

 3.4. Practical lambda functions and lexical scope

 Summary

 Lesson 4. First-class functions

 4.1. Functions as arguments

 4.1.1. Lambda functions as arguments

 4.1.2. Example—custom sorting

 4.2. Returning functions

 Summary

 Lesson 5. Closures and partial application

 5.1. Closures—creating functions with functions

 5.2. Example: Generating URLs for an API

 5.2.1. Partial application: making closures simple

 5.3. Putting it all together

 Summary

 Lesson 6. Lists

 6.1. The anatomy of a list

 6.2. Lists and lazy evaluation

 6.3. Common functions on lists

 6.3.1. The !! operator

 6.3.2. length

 6.3.3. reverse

 6.3.4. elem

 6.3.5. take and drop

 6.3.6. zip

 6.3.7. cycle

 Summary

 Lesson 7. Rules for recursion and pattern matching

 7.1. Recursion

 7.2. Rules for recursion

 7.2.1. Rule 1: Identify the end goal(s)

 7.2.2. Rule 2: Determine what happens when a goal is reached

 7.2.3. Rule 3: List all alternate possibilities

 7.2.4. Rule 4: Determine your “Rinse and Repeat”

 7.2.5. Rule 5: Ensure that each alterative moves you toward the goal

 7.3. Your first recursive function: greatest common divisor

 Summary

 Lesson 8. Writing recursive functions

 8.1. Review: Rules of recursion

 8.2. Recursion on lists

 8.2.1. Implementing length

 8.2.2. Implementing take

 8.2.3. Implementing cycle

 8.3. Pathological recursion: Ackerman function and the Collatz conjecture

 8.3.1. The Ackermann function

 8.3.2. The Collatz conjecture

 Summary

 Lesson 9. Higher-order functions

 9.1. Using map

 9.2. Abstracting away recursion with map

 9.3. Filtering a list

 9.4. Folding a list

 Summary

 Lesson 10. Capstone: Functional object-oriented programming with robots!

 10.1. An object with one property: a cup of coffee

 10.1.1. Creating a constructor

 10.1.2. Adding accessors to your object

 10.2. A more complex object: let’s build fighting robots!

 10.2.1. Sending messages between objects

 10.3. Why stateless programming matters

 10.4. Types—objects and so much more!

 Summary

 Extending the exercise

 Unit 2. Introducing types

 Lesson 11. Type basics

 11.1. Types in Haskell

 11.2. Function types

 11.2.1. Functions for converting to and from strings

 11.2.2. Functions with multiple arguments

 11.2.3. Types for first-class functions

 11.3. Type variables

 Summary

 Lesson 12. Creating your own types

 12.1. Using type synonyms

 12.2. Creating new types

 12.3. Using record syntax

 Summary

 Lesson 13. Type classes

 13.1. Further exploring types

 13.2. Type classes

 13.3. The benefits of type classes

 13.4. Defining a type class

 13.5. Common type classes

 13.6. The Ord and Eq type classes

 13.6.1. Bounded

 13.6.2. Show

 13.7. Deriving type classes

 Summary

 Lesson 14. Using type classes

 14.1. A type in need of classes

 14.2. Implementing Show

 14.3. Type classes and polymorphism

 14.4. Default implementation and minimum complete definitions

 14.5. Implementing Ord

 14.6. To derive or not to derive?

 14.7. Type classes for more-complex types

 14.8. Type class roadmap

 Summary

 Lesson 15. Capstone: Secret messages!

 15.1. Ciphers for beginners: ROT13

 15.1.1. Implementing your own ROT cipher

 15.1.2. The rotN algorithm

 15.1.3. Rot encoding a string

 15.1.4. The problem with decoded odd-sized alphabets

 15.2. XOR: The magic of cryptography!

 15.3. Representing values as bits

 15.4. The one-time pad

 15.4.1. Implementing your one-time pad

 15.5. A Cipher class

 Summary

 Extending the exercise

 Unit 3. Programming in types

 Lesson 16. Creating types with “and” and “or”

 16.1. Product types—combining types with “and”

 16.1.1. The curse of product types: hierarchical design

 16.2. Sum types—combining types with “or”

 16.3. Putting together your bookstore

 Summary

 Lesson 17. Design by composition—Semigroups and Monoids

 17.1. Intro to composability—combining functions

 17.2. Combining like types: Semigroups

 17.2.1. The Color Semigroup

 17.2.2. Making Color associative and using guards

 17.3. Composing with identity: Monoids

 17.3.1. mconcat: Combining multiple Monoids at once

 17.3.2. Monoid laws

 17.3.3. Practical Monoids—building probability tables

 Summary

 Lesson 18. Parameterized types

 18.1. Types that take arguments

 18.1.1. A more useful parameterized type: Triple

 18.1.2. Lists

 18.2. Types with more than one parameter

 18.2.1. Tuples

 18.2.2. Kinds: types of types

 18.2.3. Data.Map

 Summary

 Lesson 19. The Maybe type: dealing with missing values

 19.1. Introducing Maybe: solving missing values with types

 19.2. The problem with null

 19.2.1. Handling missing values with errors

 19.2.2. Returning null values

 19.2.3. Using Maybe as a solution to missing values

 19.3. Computing with Maybe

 19.4. Back to the lab! More-complex computation with Maybe

 Summary

 Lesson 20. Capstone: Time series

 20.1. Your data and the TS data type

 20.1.1. Building a basic time-series type

 20.2. Stitching together TS data with Semigroup and Monoid

 20.2.1. Making TS an instance of Monoid

 20.3. Performing calculations on your time series

 20.3.1. Calculating the min and max values for your time series

 20.4. Transforming time series

 20.4.1. Moving average

 Summary

 Extending the exercise

 Unit 4. IO in Haskell

 Lesson 21. Hello World!—introducing IO types

 21.1. IO types—dealing with an impure world

 21.1.1. Examples of IO actions

 21.1.2. Keeping values in the context of IO

 21.2. Do-notation

 21.3. An example: command-line pizza cost calculator

 21.3.1. A peek at Monad—do-notation in Maybe

 21.4. Summary

 Lesson 22. Interacting with the command line and lazy I/O

 22.1. Interacting with the command line the nonlazy way

 22.2. Interacting with lazy I/O

 22.2.1. Thinking of your problem as a lazy list

 Summary

 Lesson 23. Working with text and Unicode

 23.1. The Text type

 23.1.1. When to use Text vs. String

 23.2. Using Data.Text

 23.2.1. OverloadedStrings and Haskell extensions

 23.2.2. Basic Text utilities

 23.3. Text and Unicode

 23.3.1. Searching Sanskrit

 23.4. Text I/O

 Summary

 Lesson 24. Working with files

 24.1. Opening and closing files

 24.2. Simple I/O tools

 24.3. The trouble with lazy I/O

 24.4. Strict I/O

 24.4.1. When to use lazy vs. strict

 Summary

 Lesson 25. Working with binary data

 25.1. Working with binary data by using ByteString

 25.2. Glitching JPEGs

 25.2.1. Inserting random bytes

 25.2.2. Sorting random bytes

 25.2.3. Chaining together IO actions with foldM

 25.3. ByteStrings, Char8, and Unicode

 Summary

 Lesson 26. Capstone: Processing binary files and book data

 26.1. Working with book data

 26.2. Working with MARC records

 26.2.1. Understanding the structure of a MARC record

 26.2.2. Getting the data

 26.2.3. Checking the leader and iterating through your records

 26.2.4. Reading the directory

 26.2.5. Using the directory to look up fields

 26.2.6. Processing the directory entries and looking up MARC fields

 26.2.7. Getting Author and Title information from a MARC field

 26.3. Putting it all together

 Summary

 Extending the exercise

 Unit 5. Working with type in a context

 Lesson 27. The Functor type class

 27.1. An example: computing in a Maybe

 27.2. Using functions in context with the Functor type class

 27.3. Functors are everywhere!

 27.3.1. One interface for four problems

 27.3.2. Converting a Maybe RobotPart to Maybe Html

 27.3.3. Converting a list of RobotParts to a list of HTML

 27.3.4. Converting a Map of RobotParts to HTML

 27.3.5. Transforming an IO RobotPart into IO Html

 Summary

 Lesson 28. A peek at the Applicative type class: using functions in a context

 28.1. A command-line application for calculating the distance between cities

 28.1.1. The limitations of Functor

 28.2. Using <*> for partial application in a context

 28.2.1. Introducing the <*> operator

 28.2.2. Using <*> to finish your city distance program

 28.2.3. Using a multi-argument function in IO using <$> and <*>

 28.3. Using <*> to create data in a context

 28.3.1. Creating a user in the context of a Maybe

 Summary

 Lesson 29. Lists as context: a deeper look at the Applicative type class

 29.1. Introducing the Applicative type class

 29.1.1. The pure method

 29.2. Containers vs. contexts

 29.3. List as a context

 29.3.1. Exploring container vs. context with a list

 29.3.2. A game show example

 29.3.3. Generating the first N prime numbers

 29.3.4. Quickly generating large amounts of test data

 Summary

 Lesson 30. Introducing the Monad type class

 30.1. The limitations of Applicative and Functor

 30.1.1. Combining two Map lookups

 30.1.2. Writing a not-so-trivial echo IO action

 30.2. The bind operator: >>=

 30.3. The Monad type class

 30.3.1. Using Monad to build a Hello <Name> program

 Summary

 Lesson 31. Making Monads easier with do-notation

 31.1. Do-notation revisited

 31.2. Using do-notation to reuse the same code in different contexts

 31.2.1. The problem setup

 31.2.2. The IO context—building a command-line tool

 31.2.3. The Maybe context—working with a map of candidates

 31.2.4. The List context—processing a list of candidates

 31.2.5. Putting it all together and writing a monadic function

 Summary

 Lesson 32. The list monad and list comprehensions

 32.1. Building lists with the list monad

 32.1.1. The guard function

 32.2. List comprehensions

 32.3. Monads: much more than just lists

 Summary

 Lesson 33. Capstone: SQL-like queries in Haskell

 33.1. Getting started

 33.2. Basic queries for your list: select and where

 33.2.1. Implementing _select

 33.2.2. Implementing _where

 33.3. Joining Course and Teacher data types

 33.4. Building your HINQ interface and example queries

 33.5. Making a HINQ type for your queries

 33.6. Running your HINQ queries

 33.6.1. Using HINQ with Maybe types

 33.6.2. Joining multiple lists to get all enrollments

 Summary

 Extending the exercise

 Unit 6. Organizing code and building projects

 Lesson 34. Organizing Haskell code with modules

 34.1. What happens when you write a function with the same name as one in Prelude?

 34.2. Building a multifile program with modules

 34.2.1. Creating the Main module

 34.2.2. Putting your improved isPalindrome code in its own module

 34.2.3. Using your Palindrome module in your Main module

 Summary

 Lesson 35. Building projects with stack

 35.1. Starting a new stack project

 35.2. Understanding the project structure

 35.2.1. The project .cabal file and autogenerated files

 35.2.2. The app, src, and test directories

 35.3. Writing your code

 35.4. Building and running your project!

 35.4.1. A quick improvement: getting rid of language pragmas

 Summary

 Lesson 36. Property testing with QuickCheck

 36.1. Starting a new project

 36.2. Different types of testing

 36.2.1. Manual testing and calling GHCi from stack

 36.2.2. Writing your own unit tests and using stack test

 36.3. Property testing QuickCheck

 36.3.1. Testing properties

 36.3.2. Introducing QuickCheck

 36.3.3. Using QuickCheck with more types and installing packages

 Summary

 Lesson 37. Capstone: Building a prime-number library

 37.1. Starting your new project

 37.2. Modifying the default files

 37.3. Writing your core library functions

 37.3.1. Defining primes

 37.3.2. Defining an isPrime function

 37.4. Writing tests for your code

 37.4.1. Defining properties for isPrime

 37.4.2. Fixing the bug

 37.5. Adding code to factor numbers

 Summary

 Extending the exercise

 Unit 7. Practical Haskell

 Lesson 38. Errors in Haskell and the Either type

 38.1. Head, partial functions, and errors

 38.1.1. Head and partial functions

 38.2. Handling partial functions with Maybe

 38.3. Introducing the Either type

 38.3.1. Building a prime check with Either

 Summary

 Lesson 39. Making HTTP requests in Haskell

 39.1. Getting your project set up

 39.1.1. Your starter code

 39.2. Using the HTTP.Simple module

 39.3. Making an HTTP request

 39.4. Putting it all together

 Summary

 Lesson 40. Working with JSON data by using Aeson

 40.1. Getting set up

 40.1.1. Setting up stack

 40.2. Using the Aeson library

 40.3. Making your data types instances of FromJSON and ToJSON

 40.3.1. The easy way

 40.3.2. Writing your own instances of FromJSON and ToJSON

 40.4. Putting it all together: reading your NOAA data

 Summary

 Lesson 41. Using databases in Haskell

 41.1. Setting up your project

 41.2. Using SQLite and setting up your database

 41.2.1. Your Haskell data

 41.3. Creating data—inserting users and checking out tools

 41.3.1. Adding new users to your database

 41.3.2. Creating checkouts

 41.4. Reading data from the database and FromRow

 41.4.1. Making your data an instance of FromRow

 41.4.2. Listing users and tools

 41.5. Updating existing data

 41.6. Deleting data from your database

 41.7. Putting it all together

 Summary

 Lesson 42. Efficient, stateful arrays in Haskell

 42.1. Creating efficient arrays in Haskell with the UArray type

 42.1.1. The inefficiencies of lazy lists

 42.1.2. Creating a UArray

 42.1.3. Updating your UArray

 42.2. Mutating state with STUArray

 42.3. Taking values out of the ST context

 42.4. Implementing a bubble sort

 Summary

 Afterword. What’s next?

 A deeper dive into Haskell

 More powerful type systems than Haskell?

 Idris—programming with dependent types

 Liquid Haskell—provable types

 Other functional programming languages

 Recommended programming languages in the Lisp family

 Recommended programming languages in the ML family

 Answers to end-of-lesson exercises

 Unit 1

 Lesson 2

 Lesson 3

 Lesson 4

 Lesson 5

 Lesson 6

 Lesson 7

 Lesson 8

 Lesson 9

 Unit 2

 Lesson 11

 Lesson 12

 Lesson 13

 Lesson 14

 Unit 3

 Lesson 16

 Lesson 17

 Lesson 18

 Lesson 19

 Unit 4

 Lesson 21

 Lesson 22

 Lesson 23

 Lesson 24

 Lesson 25

 Unit 5

 Lesson 27

 Lesson 28

 Lesson 29

 Lesson30

 Lesson 31

 Lesson 32

 Unit 6

 Unit 7

 Lesson 38

 Lesson 39

 Lesson 40

 Lesson 41

 Lesson 42

 Index

 List of Figures

 List of Tables

 List of Listings

Preface

 When I was first approached with the idea of writing Get Programming with Haskell, I was unsure of whether I should. At the time, my primary interest was in writing about probability topics on my blog, Count
 Bayesie. Though I had experience teaching both Haskell and functional programming in general, it had been a while, and I was
 frankly a bit rusty. My active interest in data science, probability, and machine learning were somewhat borne out of a personal
 frustration with Haskell. Sure, the language was beautiful and powerful, but in a few ugly lines of R and some linear algebra,
 I could perform sophisticated analysis and build models to predict the future; in Haskell I/O is nontrivial! I was hardly
 the evangelist to write a Haskell book.

 Then I recalled a quote from J.D. Salinger in Seymour: An Introduction, where he describes the trick to writing:

 Ask yourself, as a reader, what piece of writing in all the world ... would [you] most want to read if [you] had [your] heart’s
 choice. The next step is terrible, but so simple I can hardly believe it as I write it. You just sit down shamelessly and
 write the thing yourself.

 I realized this is exactly why I needed to write Get Programming with Haskell. There are a fair number of good Haskell books out there, but none scratched my particular itch for learning Haskell. I’ve
 always wanted to read a book that shows you how to solve practical problems that are often a real pain in Haskell. I don’t
 particularly care to see large, industrial-strength programs, but rather fun experiments that let you explore the world with
 this impressive programming language. I’ve also always wanted to read a Haskell book that’s reasonably short and that, when
 I’m finished, enables me to feel comfortable doing all sorts of fun weekend projects in Haskell. It was with this realization
 that the Haskell book I wanted to read didn’t yet exist that I decided that writing Get Programming with Haskell would be a good idea.

 Now that I’ve finished writing (and reading) this book, I’m thrilled with how much fun I’ve had. Haskell is an endlessly interesting
 language that always offers more to teach. It’s a difficult language to learn, but that’s part of the fun. Nearly every topic
 in this book is likely something you haven’t seen done quite the same way before (unless you’re an experienced Haskeller).
 The joy of Haskell is opening yourself up to a rich learning experience. If you rush to master Haskell, you’ll be in for an
 awful time. If, however, you take the time to explore, to be a beginner again, you’ll find it endlessly rewarding.

Acknowledgments

 Writing a book is an enormous undertaking, and the author is just one of many people essential to making sure the project
 is a success. The first people I have to thank are those who supported me both emotionally and intellectually during this
 great adventure. My wife, Lisa, and son, Archer, have been incredibly patient with my long hours of work and endlessly encouraging
 of me all along the way. I also have to thank my dear friends Dr. Richard Kelley and Xavier Bengoechea, who were a constant
 source of feedback, support, and intellectual stimulation. This book never would have happened if it weren’t for my graduate
 advisor, Dr. Fred Harris, giving me the amazing opportunity to teach Haskell to a group of excited undergraduates. Additionally,
 I want to thank my fellow coworkers at Quick Sprout: Steve Cox, Ian Main, and Hiten Shah, who endured my rambling endlessly
 about Haskell for the last year.

 It’s difficult to overstate how much the incredible team at Manning has contributed to this book; more people have helped
 than can be named in this space. This book would have been a shadow of what it has become without the support of my editor,
 Dan Maharry. Dan has been essential to pushing every good thought I have into a much better one. I also must give Erin Twohey
 credit for being the person who first came up with the crazy idea that I should write a Haskell book. My technical editor,
 Palak Mathur, did a great job of ensuring that the technical content of the book was easy to follow and understand. I also
 want to thank Vitaly Bragilevsky for providing valuable feedback for improving the code in this book, and Sharon Wilkey for
 her patient copyediting. Finally, I’d like to recognize the reviewers who took the time to read and comment on the book: Alexander
 A. Myltsev, Arnaud Bailly, Carlos Aya, Claudio Rodriguez, German Gonzalez-Morris, Hemanth Kapila, James Anaipakos, Kai Gellien,
 Makarand Deshpande, Mikkel Arentoft, Nikita Dyumin, Peter Hampton, Richard Tobias, Sergio Martinez, Victor Tatai, Vitaly Bragilevsky,
 and Yuri Klayman.

About this book

 The aim of Get Programming with Haskell is to give you a thorough-enough introduction to the Haskell programming language that you can write nontrivial, practical
 programs when you finish it. Many other Haskell books focus heavily on the academic foundations of Haskell but often leave
 readers a bit bewildered when it comes to accomplishing tasks that would be mundane in other languages. At the end of this
 book, you should have a solid sense of what makes Haskell interesting as a programming language, and should also be comfortable
 making larger applications that work with I/O, generate random numbers, work with databases, and generally accomplish the
 same things you can in whatever language you’re most comfortable in.

 Who should read this book

 This book is for anyone with existing programming experience who wants to take their programming skills and understanding
 of programming languages to the next level. You can come to your own conclusions about how practical Haskell is, but there
 are two great and practical reasons to learn it.

 First and foremost, even if you never touch Haskell again, learning to be a competent Haskell programmer will make you a better
 programmer in general. Haskell forces you to write safe and functional code, and to model your problems carefully. Learning
 to think in Haskell will make you reason better about abstraction and stop potential bugs in code in any language. I have
 yet to meet a software developer who was proficient in Haskell who was not also an above-average programmer.

 The second benefit of learning Haskell is that it provides a crash course in understanding programming language theory. You
 can’t learn enough Haskell to write nontrivial programs and not come away knowing a fair bit about functional programming,
 lazy evaluation, and sophisticated type systems. This background in programming language theory is not merely beneficial for
 the academically curious, but serves a great pragmatic purpose as well. Language features from Haskell are constantly making
 their way into new programming languages and as new features in existing languages. Knowing Haskell and its features well
 will give you a leg up in understanding what’s coming over the horizon in programming for years to come.

 How this book is organized

 The structure of Get Programming with Haskell might be different from many other programming books you’ve read before. Rather than lengthy chapters, the book is divided
 into short, easy-to-digest lessons. The lessons are grouped into seven units that cover a common topic. Except for the last
 unit, all units end with a capstone feature. These capstone exercises combine everything covered in the unit to create a larger
 code example. All lessons contain Quick Check exercises, easy-to-answer questions that ensure you’re keeping up. At the end
 of each lesson, we also provide a few longer exercises (all of the answers to these are in the back of the book). The units
 cover the following content:

 	Unit 1—This unit sets the foundations for functional programming in general, as well as covering the basics of many of the unique
 features of working with Haskell. After reading this unit, you’ll be familiar enough with the basics of functional programming
 that you could start learning any other functional programming language and find the material familiar.

 	Unit 2—Here you start looking at Haskell’s powerful type system. This unit covers basic types such as Int, Char, and Boolean, and how to make your own data types in Haskell by using these. You’ll also begin looking at Haskell’s type class system,
 which allows you to use the same function for a variety of types.

 	Unit 3—Now that you’ve covered the basics of types in Haskell, you can move to more-abstract types and type classes that make Haskell
 so powerful. You’ll see how Haskell allows you to combine types in ways that aren’t possible in most other programming languages.
 You’ll learn about the Monoid and Semigroup type classes, in addition to seeing how the Maybe type can remove an entire class of errors from your programs.

 	Unit 4—Finally, you’ve learned enough Haskell to discuss I/O. This unit covers all of the basics of performing I/O in Haskell and
 what makes it unique (and sometimes challenging). By the end of this unit, you’ll be comfortable writing command-line tools,
 reading and writing text files, working with Unicode data, and manipulating binary data.

 	Unit 5—By this point in the book, you’ve seen several types that create a context for other types. Maybe types are a context for possibly missing values, and IO types are values that have the context of being used in I/O. In this unit, you’ll take a deep dive into a family of type
 classes that are essential for working with values in a context: Functor, Applicative, and Monad. Though they have intimidating names, they provide a relatively straightforward role: using any function in the various contexts
 that you use frequently. Although these concepts are abstract, they also allow you to find a single way to work with Maybe types, IO types, and even lists.

 	Unit 6—With one of the most challenging topics in the book behind you, it’s time to start thinking about writing real-world code.
 The first thing you need is to make sure your code is organized. This unit starts with a lesson on Haskell’s module system.
 You’ll then spend the rest of the unit learning about stack, a powerful tool for creating and maintaining Haskell projects.

 	Unit 7—We conclude this book by looking at some of the missing pieces for working with Haskell in the real world. This unit begins
 with an overview of handling errors in Haskell, which is different from many other languages. After that, you’ll look at three
 practical tasks in Haskell: using HTTP to make requests to a REST API, parsing JSON data by using the Aeson library, and putting
 together a database-backed application. You’ll end the book by looking at a problem you usually don’t think about using Haskell
 for: efficient, stateful, array-based algorithms.

 The most difficult part of learning (and teaching) Haskell is that you need to cover a fairly large number of topics before
 you can comfortably perform even basic I/O. If your aim is to understand and use Haskell, I recommend that you read each unit
 in succession. But the intention of this book is for you to be able to stop at a few places in the book and still retain something
 of value. Unit 1 is designed to provide you with a solid foundation for any functional programming language. Whether it’s Clojure, Scala,
 F#, Racket, or Common Lisp, all of them share the core features discussed in unit 1. If you already have a background in functional programming, you can feel free to skim unit 1, although you should pay close attention to the lessons on partial application and lazy evaluation. At the end of unit 4, you should know enough Haskell to play around on weekend projects. After unit 5, you should be fairly comfortable moving on to more-advanced topics on your own. Units 6 and 7 are primarily focused on using Haskell for practical projects.

 About the code

 This book contains many code samples. The code in this book is presented in a fixed-width font like this to separate it from ordinary text. Many code samples are annotated using numbers to explain each section of the code. More-complicated
 code examples include arrows pointing out each section and explaining it in more detail. When writing Haskell, you’ll make
 heavy use of the REPL to interact with your code. These sections will be different than normal code sections as they’ll have
 the text GHCi> indicating where the user inputs code. There are also occasional references to the command line, in which case $ is used to indicate where a user is to input commands.

 There are many exercises throughout the book. The exercises take the form of quick checks, which can be answered quickly,
 and lesson exercises that take more time and thought. The code solutions for the quick checks are at the end of each lesson,
 and the code for the lesson exercises is in the appendix at the end of the book.

 Book forum

 Purchase of Get Programming with Haskell includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the author and from other users. To access the forum, go to https://forums.manning.com/forums/get-programming-with-haskell. You can also learn more about Manning’s forums and the rules of conduct at https://forums.manning.com/forums/about.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
 readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author,
 whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions
 lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website
 as long as the book is in print.

About the author

 [image:]

 Will Kurt works as a data scientist at Bombora. With a formal background in both computer science (MS) and English literature
 (BA), he is fascinated with explaining complex technical topics as clearly and generally as possible. He has taught a course
 section on Haskell at the University of Nevada, Reno, and given workshops on functional programming. He also blogs about probability
 at CountBayesie.com.

Lesson 1. Getting started with Haskell

 After reading lesson 1, you’ll be able to

 	Install tools for Haskell development

 	Use GHC and GHCi

 	Use tips for writing Haskell programs

 1.1. Welcome to Haskell

 Before you dive into learning Haskell, you need to become familiar with the basic tools you’ll be using on your journey. This
 lesson walks you through getting started with Haskell. The lesson starts with downloading the basics to write, compile, and
 run Haskell programs. You’ll then look at example code and start thinking about how to write code in Haskell. After this lesson,
 you’ll be ready to dive in!

 1.1.1. The Haskell Platform

 The worst part of learning a new programming language is getting your development environment set up for the first time. Fortunately,
 and somewhat surprisingly, this isn’t a problem at all with Haskell. The Haskell community has put together a single, easily
 installable package of useful tools referred to as the Haskell Platform. The Haskell Platform is the “batteries included” model of packaging a programming language.

 The Haskell Platform includes the following:

 	The Glasgow Haskell Compiler (GHC)

 	An interactive interpreter (GHCi)

 	The stack tool for managing Haskell projects

 	A bunch of useful Haskell packages

 The Haskell Platform can be downloaded from www.haskell.org/downloads#platform. From there, follow the directions for installing on your OS of choice. This book uses Haskell version 8.0.1 or higher.

 1.1.2. Text editors

 Now that you have the Haskell Platform installed, you’re probably curious about which editor you should use. Haskell is a
 language that strongly encourages you to think before you hack. As a result, Haskell programs tend to be extremely terse. There’s little that an editor can do for you, other than manage
 indentation and provide helpful syntax highlighting. Many Haskell developers use Emacs with haskell-mode. But if you’re not already familiar with Emacs (or don’t like to work with it), it’s certainly not worth the work to learn
 Emacs in addition to Haskell. My recommendation is that you look for a Haskell plugin for whatever editor you use the most.
 A bare-bones text editor, such as Pico or Notepad++, will work just fine for this book, and most full-fledged IDEs have Haskell
 plugins.

 1.2. The Glasgow Haskell Compiler

 Haskell is a compiled language, and the Glasgow Haskell Compiler is the reason Haskell is as powerful as it is. The job of
 the compiler is to transform human-readable source code into machine-readable binary. At the end compilation, you’re left
 with an executable binary file. This is different from when you run Ruby, for example, in which another program reads in your
 source code and interprets it on the fly (this is accomplished with an interpreter). The main benefit of a compiler over an interpreter is that because the compiler transforms code in advance, it can perform
 analysis and optimization of the code you’ve written. Because of some other design features of Haskell, namely its powerful
 type system, there’s an adage that if it compiles, it works. Though you’ll use GHC often, never take it for granted. It’s an amazing piece of software in its own right.

 To invoke GHC, open a terminal and type in ghc:

 $ ghc

 In this text, whenever you come across a $ sign, it means you’re typing into a command prompt. Of course, with no file to compile, GHC will complain. To get started,
 you’ll make a simple file called hello.hs. In your text editor of choice, create a new file named hello.hs and enter the following
 code.

 Listing 1.1. hello.hs a Hello World program

 --hello.hs my first Haskell file! 1
main = do 2
 print "Hello World!" 3

 	1 A commented line with the name of your file

 	2 The start of your ‘main’ function

 	3 The main function prints out “Hello World”

 At this point, don’t worry too much about what’s happening in any of the code in this section. Your real aim here is to learn
 the tools you need so that they don’t get in the way while you’re learning Haskell.

 Now that you have a sample file, you can run GHC again, this time passing in your hello.hs file as an argument:

 $ ghc hello.hs
[1 of 1] Compiling Main
Linking hello ...

 If the compilation was successful, GHC will have created three files:

 	hello (hello.exe on Windows)

 	hello.hi

 	hello.o

 Starting out, the most important file is hello, which is your binary executable. Because this file is a binary executable,
 you can simply run the file:

 $./hello
"Hello World!"

 Notice that the default behavior of the compiled program is to execute the logic in main. By default, all Haskell programs you’re compiling need to have a main, which plays a similar role to the Main method in Java/C++/C# or __main__ in Python.

 Like most command-line tools, GHC supports a wide range of optional flags. For example, if you want to compile hello.hs into
 an executable named helloworld, you can use the -o flag:

 $ghc hello.hs -o helloword
[1 of 1] Compiling Main
Linking helloworld

 For a more complete listing of compiler options, call ghc --help (no filename argument is required).

 	

 Quick check 1.1

 Q1:
Copy the code for hello.hs and compile your own executable named testprogram.

 	

 	

 QC 1.1 answer

 1:

Simply copy the code to a file and then run this in the same directory as the file: ghc hello.hs -o testprogram

 	

 1.3. Interacting with Haskell—GHCi

 One of the most useful tools for writing Haskell programs is GHCi, an interactive interface for GHC. Just like GHC, GHCi is
 started with a simple command: ghci. When you start GHCi, you’ll be greeted with a new prompt:

 $ ghci
GHCi>

 This book indicates when you’re using GHCi by using GHCi> for lines you input and a blank for lines that are output by GHCi. The first thing to learn about any program you start from
 the command line is how to get out of it! For GHCi, you use the :q command to exit:

 $ ghci
GHCi> :q
Leaving GHCi.

 Working with GHCi is much like working with interpreters in most interpreted programming languages such as Python and Ruby.
 It can be used as a simple calculator:

 GHCi> 1 + 1
2

 You can also write code on the fly in GHCi:

 GHCi> x = 2 + 2
GHCi> x
4

 Prior to version 8 of GHCi, function and variable definitions needed to be prefaced with a let keyword. This is no longer necessary, but many Haskell examples on the web and in older books still include it:

 GHCi> let f x = x + x
GHCi> f 2
4

 The most important use of GHCi is interacting with programs that you’re writing. There are two ways to load an existing file
 into GHCi. The first is to pass the filename as an argument to ghci:

 $ ghci hello.hs
[1 of 1] Compiling Main
Ok, modules loaded: Main.

 The other is to use the :l (or :load) command in the interactive session:

 $ ghci
GHCi> :l hello.hs
[1 of 1] Compiling Main
Ok, modules loaded: Main.

 In either of these cases, you can then call functions you’ve written:

 GHCi> :l hello.hs
GHCi> main
"Hello World!"

 Unlike compiling files in GHC, your files don’t need a main in order to be loaded into GHCi. Anytime you load a file, you’ll overwrite existing definitions of functions and variables.
 You can continually load your file as you work on it and make changes. Haskell is rather unique in having strong compiler
 support as well as a natural and easy-to-use interactive environment. If you’re coming from an interpreted language such as
 Python, Ruby, or JavaScript, you’ll feel right at home using GHCi. If you’re familiar with compiled languages such as Java,
 C#, or C++, you’ll likely be surprised that you’re working with a compiled language when writing Haskell.

 	

 Quick check 1.2

 Q1:
Edit your Hello World script to say Hello <Name> with your name. Reload this into GHCi and test it out.

 	

 	

 QC 1.2 answer

 1:

Edit your file so that it has your name:

 main = do
 print "Hello Will!"

 In GHCi, load your file:

 GHCi> :l hello.hs
GHCi> main
Hello Will!

 	

 1.4. Writing and working with Haskell code

 One of the most frustrating issues for newcomers to Haskell is that basic I/O in Haskell is a fairly advanced topic. Often
 when new to a language, it’s a common pattern to print output along the way to make sure you understand how a program works.
 In Haskell, this type of ad hoc debugging is usually impossible. It’s easy to get a bug in a Haskell program, along with a
 fairly sophisticated error, and be at an absolute loss as to how to proceed.

 Compounding this problem is that Haskell’s wonderful compiler is also strict about the correctness of your code. If you’re
 used to writing a program, running it, and quickly fixing any errors you made, Haskell will frustrate you. Haskell strongly
 rewards taking time and thinking through problems before running programs. After you gain experience with Haskell, I’m certain
 that these frustrations will become some of your favorite features of the language. The flipside of being obsessed with correctness
 during compilation is that programs will work, and work as expected far more often than you’re likely used to.

 The trick to writing Haskell code with minimal frustration is to write code in little bits, and play with each bit interactively
 as it’s written. To demonstrate this, you’ll take a messy Haskell program and clean it up so it’s easy to understand each
 piece. For this example, you’ll write a command-line app that will draft thank-you emails to readers from authors. Here’s the first, poorly written, version of the program.

 Listing 1.2. A messy version of first_prog.hs

 messyMain :: IO()
messyMain = do
 print "Who is the email for?"
 recipient <- getLine
 print "What is the Title?"
 title <- getLine
 print "Who is the Author?"
 author <- getLine
 print ("Dear " ++ recipient ++ ",\n" ++
 "Thanks for buying " ++ title ++ "\nthanks,\n" ++
 author)

 The key issue is that this code is in one big monolithic function named messyMain. The advice that it’s good practice to write modular code is fairly universal in software, but in Haskell it’s essential
 for writing code that you can understand and troubleshoot. Despite being messy, this program does work. If you changed the
 name of messyMain to main, you could compile and run this program. But you can also load this code into GHCi as it is, assuming that you’re in the same
 directory as your first_prog.hs:

 $ghci
GHCi> :l first_prog.hs
[1 of 1] Compiling Main (first_prog.hs, interpreted)
Ok, modules loaded: Main.

 If you get the Ok from GHCi, you know that your code compiled and works just fine! Notice that GHCi doesn’t care if you have a main function. This is great, as you can still interact with files that don’t have a main. Now you can take your code for a test drive:

 GHCi> messyMain
"Who is the email for?"
Happy Reader
"What is the Title?"
Learn Haskell
"Who is the Author?"
Will Kurt
"Dear Happy Reader,\nThanks for buying Learn Haskell\nthanks,\nWill Kurt"

 Everything works fine, but it’d be much easier to work with if this code was broken up a bit. Your primary goal is to create
 an email, but it’s easy to see that the email consists of tying together three parts: the recipient section, the body, and
 the signature. You’ll start by pulling out these parts into their own functions. The following code is written into your first_prog.hs
 file. Nearly all of the functions and values defined in this book can be assumed to be written into a file you’re currently
 working with. You’ll start with just the toPart function:

 toPart recipient = "Dear" ++ recipient ++ ",\n"

 In this example, you could easily write these three functions together, but it’s often worth it to work slowly and test each
 function as you go. To test this out, you’ll load your file again in GHCi:

 GHCi> :l "first_prog.hs"
[1 of 1] Compiling Main (first_prog.hs, interpreted)
Ok, modules loaded: Main.
GHCi> toPart "Happy Reader"
"DearHappy Reader,\n"
GHCi> toPart "Bob Smith"
"DearBob Smith,\n"

 This pattern of writing code in an editor and then loading and reloading it into GHCi will be your primary means of working
 with code throughout the book. To avoid repetition, the :l "first_prog.hs" will be assumed rather than explicitly written from here on.

 Now that you’ve loaded this into GHCi, you see there’s a slight error, a missing space between Dear and the recipient’s name. Let’s see how to fix this.

 Listing 1.3. Corrected toPart function

 toPart recipient = "Dear " ++ recipient ++ ",\n"

 And back to GHCi:

 GHCi> toPart "Jane Doe"
"Dear Jane Doe,\n"

 Everything looks good. Now to define your two other functions. This time you’ll write them both at the same time. While following
 along, it’s still a good idea to write code one function at a time, load it into GHCi, and make sure it all works before moving
 on.

 Listing 1.4. Defining the bodyPart and fromPart functions

 bodyPart bookTitle = "Thanks for buying " ++ bookTitle ++ ".\n"
fromPart author = "Thanks,\n"++author

 You can test these out as well:

 GHCi> bodyPart "Learn Haskell"
"Thanks for buying Learn Haskell.\n"
GHCi> fromPart "Will Kurt"
"Thanks,\nWill Kurt"

 Everything is looking good! Now you need a function to tie it all together.

 Listing 1.5. Defining the createEmail function

 createEmail recipient bookTitle author = toPart recipient ++
 bodyPart bookTitle ++
 fromPart author

 Notice the alignment of the three function calls. Haskell makes limited use of significant whitespace (but nothing as intense
 as Python). Assume that any formatting in this text is intentional; if sections of code are lined up, it’s for a reason. Most
 editors can handle this automatically with a Haskell plugin.

 With all your functions written, you can test createEmail:

 GHCi> createEmail "Happy Reader" "Learn Haskell" "Will Kurt"
"Dear Happy Reader,\nThanks for buying Learn Haskell.\nThanks,\nWill Kurt"

 Your functions each work as expected. Now you can put them all together in your main.

 Listing 1.6. Improved first_prog.hs with a cleaned-up main

 main = do
 print "Who is the email for?"
 recipient <- getLine
 print "What is the Title?"
 title <- getLine
 print "Who is the Author?"
 author <- getLine
 print (createEmail recipient title author)

 You should be all set to compile, but it’s always a good idea to test in GHCi first:

 GHCi> main
"Who is the email for?"
 Happy Reader
"What is the Title?"
 Learn Haskell
"Who is the Author?"
 Will Kurt
"Dear Happy Reader,\nThanks for buying Learn Haskell.\nThanks,\nWill Kurt"

 It looks like all your pieces are working together, and you were able to play with them each individually to make sure they
 worked as expected. Finally, you can compile your program:

 $ ghc first_prog.hs
[1 of 1] Compiling Main (first_prog.hs, first_prog.o)
Linking first_prog ...
$./first_prog
"Who is the email for?"
Happy Reader
"What is the Title?"
Learn Haskell
"Who is the Author?"
Will Kurt
"Dear Happy Reader,\nThanks for buying Learn Haskell.\nThanks,\nWill Kurt"

 You’ve just finished your first successful Haskell program. With your basic workflow understood, you can now dive into the
 amazing world of Haskell!

 Summary

 In this lesson, our objective was to get you started with Haskell. You started by installing the Haskell Platform, which bundles
 together the tools you’ll be using through this book. These tools include GHC, Haskell’s compiler; GHCi, the interactive interpreter
 for Haskell; and stack, a build tool you’ll use later in the book. The rest of this lesson covered the basics of writing,
 refactoring, interacting with, and compiling Haskell programs. Let’s see if you got this.

 Q1.1
In GHCi, find out what 2123 is.

 Q1.2
Modify the text in each of the functions in first_prog.hs, test them out in GHCi while you do this, and, finally, compile
 a new version of your email templating program so that the executable is named email.

Unit 1. Foundations of functional programming

 There are two major ways to understand the act of programming. The first, and historically more common, is the view that the
 programmer provides a sequence of instructions to a computer in order to make it behave a certain way. This model of programming
 ties the programmer to the design of a particular tool for programming, namely a computer. In this type of programming, the
 computer is a device that takes input, accesses memory, sends instructions to a processing unit, and finally delivers output
 to the user. This model of a computer is called von Neumann architecture, after the famous mathematician and physicist John von Neumann.

 The programming language that best embodies this way of thinking about programs is C. A C program takes in data from the standard
 input controlled by the operating system, stores and retrieves necessary values in physical memory that frequently must be
 manually managed, requires the handling of pointers to a specific block of memory, and finally returns all output through
 the standard output controlled by the OS. When writing C programs, programmers must understand as much about the problem at
 hand as the physical architecture of the computer in front of them.

 But a computer built with von Neumann architecture isn’t the only way to perform computation. Humans perform a wide variety
 of computations that have nothing to do with thinking of memory allocation and instruction sets: sorting books on a shelf,
 solving a derivative of a function in calculus, giving directions to friends, and so forth. When we write C code, we’re programming
 to a specific implementation of computation. John Backus, who led the team that created Fortran, asked in his Turing Award
 lecture, “Can programming be liberated from the von Neumann style?”

 This question leads to the second way to understand programming, which is the subject of the first unit in this book. Functional programming attempts to liberate programming from the von Neumann style. The foundations of functional programming are abstract, mathematical
 notions of computation that transcend a specific implementation. This leads to a method of programming that often solves problems
 simply by describing them. By focusing on computation, not computers, functional programming allows the programmer access
 to powerful abstractions that can make many challenging problems much easier to solve.

 The price of this is that getting started can be much more difficult. Ideas in functional programming are often abstract,
 and we must start by building the idea of programming up from first principles. Many concepts need to be learned before we
 can build useful programs. When working through this first unit, remember that you’re learning to program in a way that transcends
 programming a computer.

 Just as C is the nearly perfect embodiment of the von Neumann style of programming, Haskell is the purest functional programming
 language you can learn. As a language, Haskell commits fully to Backus’s dream and doesn’t allow you to stray back to more-familiar
 styles of programming. This makes learning Haskell more difficult than many other languages, but learning Haskell makes it
 impossible for you to not gain deep insights into functional programming as you go. By the end of this unit, you’ll have a
 strong enough foundation in functional programming to understand the basics of all other functional programming languages,
 as well as being prepared for your journey to learn Haskell.

Lesson 2. Functions and functional programming

 After reading lesson 2, you’ll be able to

 	Understand the general idea of functional programming

 	Define simple functions in Haskell

 	Declare variables in Haskell

 	Explain the benefits of functional programming

 The first topic you need to understand when learning Haskell is, what is functional programming? Functional programming has
 a reputation for being a challenging topic to master. Although this is undoubtedly true, the foundations of functional programming
 are surprisingly straightforward. The first thing you need to learn is what it means to have a function in a functional programming language. You likely already have a good idea of what using a function means. In this lesson,
 you’ll see the simple rules that functions must obey in Haskell that not only make your code easier to reason about, but also
 lead to entirely new ways of thinking about programming.

 	

 Consider this

 You and your friends are out getting pizza. On the menu are three sizes of pizza pie with three different prices:

 	18 inches for $20

 	16 inches for $15

 	12 inches for $10

 You want to know which choice gives you the most pizza for your dollar. You want to write a function that will give you the
 dollar-per-square-inch cost of the pizza.

 	

 2.1. Functions

 What exactly is a function? This is an important question to ask and understand if you’re going to be exploring functional programming.
 The behavior of functions in Haskell comes directly from mathematics. In math, we often say things like f(x) = y, meaning there’s some function f that takes a parameter x and maps to a value y. In mathematics, every x can map to one and only one y. If f(2) = 2,000,000 for a given function f, it can never be the case that f(2) = 2,000,001.

 The thoughtful reader may ask, “What about the square-root function? 4 has two roots, 2 and –2, so how can sqrt x be a true function when it clearly points to two ys!” The key thing to realize is that x and y don’t have to be the same thing. We can say that sqrt x is the positive root, so both x and y are positive real numbers, which resolves this issue. But we can also have sqrt x be a function from a positive real number to pairs of real numbers. In this case, each x maps to exactly one pair.

 In Haskell, functions work exactly as they do in mathematics. Figure 2.1 shows a function named simple.

 Figure 2.1. Defining a simple function

 [image:]

 The simple function takes a single argument x and then returns this argument untouched. Notice that unlike many other programming languages, in Haskell you don’t need
 to specify that you’re returning a value. In Haskell, functions must return a value, so there’s never a need to make this
 explicit. You can load your simple function into GHCi and see how it behaves. To load a function, all you have to do is have
 it in a file and use :load <filename> in GHCi:

 GHCi> simple^2
2
GHCi> simple "dog"
"dog"

 	

 Note

 In this section, we’re using GHCi—Haskell’s Interactive Read-Eval-Print Loop (REPL)—to run commands and get results.

 	

 All functions in Haskell follow three rules that force them to behave like functions in math:

 	All functions must take an argument.

 	All functions must return a value.

 	Anytime a function is called with the same argument, it must return the same value.

 The third rule is part of the basic mathematical definition of a function. When the rule that the same argument must always
 produce the same result is applied to function in a programming language, it’s called referential transparency.

 2.2. Functional programming

 If functions are just mappings from a bunch of xs (that’s the plural of x—“exes”) to a bunch of ys (that’s the plural of y—“whys”) what do they have to do with programming? In the 1930s, a mathematician named Alonzo Church attempted to create a
 system of logic that used only functions and variables (xs and ys). This system of logic is called lambda calculus. In lambda calculus, you represent everything as functions: true and false are functions, and even all the integers can be
 represented as functions.

 Church’s goal was initially to resolve some problems in the mathematical field of set theory. Unfortunately, lambda calculus
 didn’t solve these problems, but something much more interesting came out of Church’s work. It turns out that lambda calculus
 allows for a universal model of computation, equivalent to a Turing machine!

 	

 What is a Turing machine?

 A Turing machine is an abstract model of a computer developed by the famous computer scientist Alan Turing. From a theoretical
 standpoint, the Turing machine is useful because it allows you to reason about what can and can’t be computed, not just on
 a digital computer, but any possible computer. This model also allows computer scientists to show equivalence between computing
 systems if they can each simulate a Turing machine. You can use this to show, for example, that there’s nothing that you can
 compute in Java that you can’t also compute in assembly language.

 	

 This discovery of the relationship between lambda calculus and computing is called the Church-Turing thesis (for more information, see www.alanturing.net/turing_archive/pages/reference%20articles/The%20Turing-Church%20Thesis.html). The wonderful thing about this discovery is that you have a mathematically sound model for programming!

 Most programming languages that you use are marvelous pieces of engineering but provide little assurance about how programs
 will behave. With a mathematical foundation, Haskell is able to remove entire classes of bugs and errors from the code you
 write. Cutting-edge research in programming languages is experimenting with ways to mathematically prove that programs will
 do exactly what you expect. Additionally, the nonmathematical nature of most programming language designs means the abstractions
 you can use are limited by engineering decisions in the language. If you could program math, you’d be able to both prove things
 about your code and have access to the nearly limitless abstractions that mathematics allows. This is the aim of functional
 programming: to bring the power of mathematics to the programmer in a usable way.

 2.3. The value of functional programming in practice

 This mathematical model for programming has a variety of practical implications. Because of the simple rules that all functions
 must take and return values, and must always return the same value for the same argument, Haskell is a safe programming language. Programs are safe when they always behave exactly the way you expect them to and you can easily reason
 about their behavior. A safe programming language is one that forces your programs to behave as expected.

 Let’s look at code that isn’t safe and violates our simple rules for functions. Suppose you’re reading through a new code
 base and you come across lines of code that look like the following.

 Listing 2.1. Hidden state in function calls

 tick()
if(timeToReset){
 reset()
}

 This code clearly isn’t Haskell, because both tick and reset violate the rules we established. Neither function takes any arguments nor returns any value. The question is, then, what
 are these functions doing, and how is this different from functions in Haskell? It’s not a long shot to suppose that tick is incrementing a counter and that reset restores that counter to its starting value. Even if we’re not exactly right, this reasoning gives us insight into our question.
 If you aren’t passing an argument to a function, you must be accessing a value in your environment, and if you aren’t returning
 a value, you must also be changing a value in your environment. When you change a value in your programming environment, you’re
 changing the program’s state. Changing state creates side effects in your code, and these side effects can make code hard to reason about and therefore unsafe.

 It’s likely that both tick and reset are accessing a global variable (a variable reachable from anywhere in the program), which in any programming language is considered poor design. But side
 effects make it hard to reason about even the simplest, well-written code. To see this, you’ll look at a collection of values,
 myList, and reverse it by using built-in functionality. The following code is valid Python, Ruby, and JavaScript; see if you can
 figure out what it does.

 Listing 2.2. Confusing behavior in standard libraries

 myList = [1,2,3]
myList.reverse()
newList = myList.reverse()

 Now what do you expect the value of newList to be? Because this is a valid program in Ruby, Python, and JavaScript, it seems reasonable to assume that the value of newList should be the same. Here are the answers for all three languages:

 Ruby -> [3,2,1]
Python -> None
JavaScript -> [1,2,3]

 Three completely different answers for the exact same code in three languages! Python and JavaScript both have side effects
 that occur when reverse is called. Because the side effects of calling reverse are different for each language and aren’t made visible to the programmer, both languages give different answers. The Ruby
 code here behaves like Haskell, without side effects. Here you see the value of referential transparency. With Haskell, you
 can always see which effects each function has. When you called reset and tick earlier, the changes they made were invisible to you. Without looking at the source code, you have no way of knowing exactly
 which or even how many other values they’re using and changing. Haskell doesn’t allow functions to have side effects, which
 explains why all Haskell functions must take an argument and return a value. If Haskell functions didn’t always return a value,
 they’d have to change a hidden state in the program; otherwise, they’d be useless. If they didn’t take an argument, they’d
 have to access a hidden one, which would mean they’re no longer transparent.

 This small property of Haskell’s functions leads to code that’s dramatically easier to predict. Even in Ruby, the programmer
 is allowed to use side effects. When using another programmer’s code, you still can’t assume anything about what’s happening
 when you call a function or method. Because Haskell doesn’t allow this, you can look at any code, written by any programmer,
 and reason about its behavior.

 	

 Quick check 2.1

 Q1:
Many languages use the ++ operator to increment a value; for example, x++ increments x. Do you think Haskell has an operator or function that works this way?

 	

 	

 QC 2.1 answer

 1:

The ++ operator used in languages such as C++ couldn’t exist in Haskell because it violates our mathematical rules for functions.
 The most obvious rule is that each time you call ++ on a variable, the result is different.

 	

 2.3.1. Variables

 Variables in Haskell are straightforward. Here you’re assigning 2 to the variable x.

 Listing 2.3. Defining your first variable

 x = 2

 The only catch with variables in Haskell is that they’re not really variable at all! If you were to try to compile the following
 bit of Haskell, you’d get an error, as shown in the next listing.

 Listing 2.4. Variables aren’t variable!

 x = 2
x = 3 1

 	1 Won’t compile because it changes the value of x

 A better way to think about variables in Haskell is as definitions. Once again, you see mathematical thinking replace the
 way you typically think about code. The problem is that in most programming languages, variable reassignment is essential
 to solving many problems. The inability to change variables is also related to referential transparency. This may seem like
 a strict rule to follow, but the reward is that you always know that after calling a function, the world remains the same.

 	

 Quick check 2.2

 Q1:
Even languages that don’t have a ++ operator allow for a += operator, often also used for incrementing a value. For example, x += 2 increments x by 2. You can think of += as a function that follows our rules: it takes a value and returns a value. Does this mean += can exist in Haskell?

 	

 	

 QC 2.2 answer

 1:

Although the += operator returns and takes an argument, just like ++, every time you call +=, you get a different result.

 	

 The key benefit of variables in programming is to clarify your code and avoid repetition. For example, suppose you want a
 function called calcChange. This function takes two arguments: how much is owed and how much is given. If you’re given enough money, you return the
 difference. But if you aren’t given enough money, you don’t want to give negative dollars; you’ll return 0. Here’s one way
 to write this.

 Listing 2.5. calcChange v.1

 calcChange owed given = if given - owed > 0
 then given - owed
 else 0

 Two things are wrong with this function:

 	Even for a tiny function, it’s hard to read. Each time you see the expression given - owed, you have to reason about what’s happening. For anything more complicated than subtraction, this would be unpleasant.

 	You’re repeating your computation! Subtraction is a cheap operation, but if this had been a costlier operation, you’d be needlessly
 wasting resources.

 Haskell solves these problems by using a special where clause. Here’s the previous function written with a where clause.

 Listing 2.6. calcChange v.2

 calcChange owed given = if change > 0
 then change
 else 0
 where change = given – owed 1

 	1 given – owed is computed only once and assigned to change.

 The first thing that should strike you as interesting is that a where clause reverses the normal order used to write variables. In most programming languages, variables are declared before they’re
 used. This convention in most programming languages is partially the byproduct of being able to change state. Variable order
 matters because you can always reassign the value of something after you’ve assigned it. In Haskell, because of referential
 transparency, this isn’t an issue. There’s also a readability gain with the Haskell approach: if you read the algorithm, the
 intention is clear right away.

 	

 Quick check 2.3

 Q1:
Fill in the missing part of the following where clause:

 doublePlusTwo x = doubleX + 2
 where doubleX = __________

 	

 	

 QC 2.3 answer

 1:

doublePlusTwo x = doubleX + 2
 where doubleX = x*2

 	

 2.3.2. Variables that are variable

 Because change is an inevitable part of life, sometimes it makes sense to have variables that can be reassigned. One of these
 cases occurs when working in the Haskell REPL, GHCi. When working in GHCi, you’re allowed to reassign variables. Here’s an
 example:

 GHCi> x = 7
GHCi> x
7
GHCi> x = [1,2,3]
GHCi> x
[1,2,3]

 Prior to version 8 of GHC, variables in GHCi needed to be prefaced with the let keyword to mark them as different from other variables in Haskell. You can still define variables by using let in GHCi if you like:

 GHCi> let x = 7
GHCi> x
7

 It’s also worth noting that one-line functions can be defined in the same way:

 GHCi> let f x = x^2
GHCi> f 8
64

 In a few other special contexts in Haskell, you’ll see let used in this way. It can be confusing, but this difference is primarily to make real-world tasks less frustrating.

 It’s important to acknowledge that being able to change the definition of variables in GHCi is a special case. Although Haskell
 may be strict, having to restart GHCi every time you wanted to experiment with a different variable would be frustrating.

 	

 Quick check 2.4

 Q1:
What’s the final value of the x variable in the following code?

 GHCi> let x = simple simple
GHCi> let x = 6

 	

 	

 QC 2.4 answer

 1:

Because you can reassign values, the final value of x is 6.

 	

 Summary

 In this lesson, our objective was to introduce you to functional programming and writing basic functions in Haskell. You saw
 that functional programming puts restrictions on the behavior of a function. These restrictions are as follows:

 	A function must always take an argument.

 	A function must always return a value.

 	Calling the same function with the same argument must always return the same result.

 These three rules have profound consequences for the way you write programs in Haskell. The major benefit of writing code
 in this style is that your programs are much easier to reason about, and behave predictably. Let’s see if you got this.

 Q2.1
You used Haskell’s if then else expression to write calcChange. In Haskell, all if statements must include an else component. Given our three rules for functions, why can’t you have an if statement all by itself?

 Q2.2
Write functions named inc, double, and square that increment, double, and square an argument n, respectively.

 Q2.3
Write a function that takes a value n. If n is even, the function returns n - 2, and if the number is odd, the function returns 3 × n + 1. To check whether the number is even, you can use either Haskell’s even function or mod (Haskell’s modulo function).

Lesson 3. Lambda functions and lexical scope

 After reading lesson 3, you’ll be able to

 	Write lambda functions in Haskell

 	Use lambda functions for ad hoc function definitions

 	Understand lexical scope

 	Create scope with a lambda function

 In this lesson, you’re going to continue your journey into understanding functional programming and Haskell by learning about
 one of the most foundational concepts in all of functional programming: the lambda function. On the surface, a lambda function—which is a function with no name—seems almost too simple to be interesting. But lambda functions provide incredible theoretical
 benefits as well as a surprising amount of real-world usefulness.

 	

 Consider this

 You’re messing around in GHCi and want to quickly calculate the difference between the square of the sum of three values and
 the sum of the squares of three values: 4, 10, 22. You could write this out by hand:

 GHCi> (4 + 10 + 22)^2 - (4^2 + 10^2 + 22^2)

 But this makes it easy to have a typo that causes your expression to create an error. Additionally, it’s difficult to change
 these values if you want to edit this item from your GHCi command history (press the up arrow in GHCi to get the previous
 item). Is there a way to make this a bit cleaner without having to explicitly define a function?

 	

 3.1. Lambda functions

 One of the most foundational concepts in functional programming is a function without a name, called a lambda function (hence lambda calculus). Lambda functions are often referred to using the lowercase Greek letter λ. Another common name for
 a lambda function is an anonymous function. You can use a lambda function to redefine your simple function from lesson 2, only without a name. To do this, you use Haskell’s lambda syntax, shown in figure 3.1.

 Figure 3.1. The simple function rewritten as a lambda function

 [image:]

 Lambda functions are the minimum possible function: they take a value and return a value, and that’s all. You can’t paste
 this anonymous function you just wrote into GHCi or a Haskell program, because it’s just an expression that by itself does
 nothing. To bring life to a lambda function, you must use it for something. The easiest thing you can do is pass an argument
 to it:

 GHCi> (\x -> x) 4
4
GHCi> (\x -> x) "hi"
hi
GHCi> (\x -> x) [1,2,3]
[1,2,3]

 Notice that each time you use your lambda expression, you have to redefine it. This makes sense, because you have no name
 to call it by! Lambda functions are useful but are designed to exist for only a short while. In general, if a named function
 will do the job, it’s better to use one.

 	

 Quick check 3.1

 Q1:
Write a lambda function that doubles its argument, and pass in a few numbers as arguments.

 	

 	

 QC 3.1 answer

 1:

GHCi> (\x -> x*2) 2
4
GHCi> (\x -> x*2) 4
8

 	

 3.2. Writing your own where clause

 A recurring theme in functional programming is that there’s little you can’t build from scratch if you want to. Therefore,
 after you’re experienced in functional programming, you’ll typically have a deep understanding of the way programs work. To
 demonstrate how powerful lambda functions can be, you’ll conduct an experiment by removing Haskell’s where clause and seeing whether you can rebuild it from nothing. It’s worth taking in what this means. So far, where is the only way you know of, inside a function, to store a variable.

 It turns out the lambda function on its own is powerful enough to create variables from nothing. To start, you’ll look at
 a function that uses a where statement. For this function, you’ll take two numbers and return whichever is greater: the sum of the square of the values
 (x^2 + y^2) or the square of the sum ((x + y)^2). Here’s our version with where.

 Listing 3.1. sumSquareOrSquareSum v.1

 sumSquareOrSquareSum x y = if sumSquare > squareSum
 then sumSquare
 else squareSum
 where sumSquare = x^2 + y^2
 squareSum = (x+y)^2

 In sumSquareOrSquareSum, you’re using where to both make your code easier to read and reduce computation (though, technically, Haskell will eliminate many cases of duplicate
 function calls even without variables). Without a where, you could just replace the variables, but then you’re doubling computation and the code is ugly, as you can see here:

 sumSquareOrSquareSum x y = if (x^2 + y^2) > ((x+y)^2)
 then (x^2 + y^2)
 else (x+y)^2

 Your function is relatively trivial, but without where or some sort of variable, it’s hideous! One solution to not having variables is to split your function into two steps. You’ll
 start with a function named body that handles the main comparison part of sumSquareOrSquareSum, and then your new sumSquareOrSquareSum can compute sumSquare and squareSum and pass them to body. Here’s the code for body:

 body sumSquare squareSum = if sumSquare > squareSum
 then sumSquare
 else squareSum

 Then sumSquareOrSquareSum has to compute sumSquare and squareSum and pass them on to body:

 sumSquareOrSquareSum x y = body (x^2 + y^2) ((x+y)^2)

 This solves the problem but adds a lot of work, and you need to define a new, intermediary function body. This is such a simple function that it’d be nice if you didn’t need an in-between step. Because you want to somehow get
 rid of the named body function, this is a perfect job for a lambda function! First let’s look at the lambda function for body:

 body = (\sumSquare squareSum ->
 if sumSquare > squareSum
 then sumSquare
 else squareSum)

 Now if you substitute this lambda function for body in your preceding definition of sumSquareOrSquareSum, you get the expression in figure 3.2.

 Figure 3.2. How sumSquareOrSquareSum works using a lambda function

 [image:]

 This still isn’t as pretty as a where clause (which is why Haskell has one in the first place) but much nicer than what you had before. More important, you’ve
 implemented the idea of variables from scratch!

 	

 Quick check 3.2

 Q1:
Rewrite the following function to use a lambda function in place of where:

 doubleDouble x = dubs*2
where dubs = x*2

 	

 	

 QC 3.2 answer

 1:

doubleDouble x = (\dubs -> dubs*2) (x*2)

 	

 3.3. From lambda to let: making your own variable variables!

 Although the lambda function is messier than the original where, it’s also more powerful! The where statement makes everything much easier to understand, but it’s also syntactically wrapped up in your function. There’s no
 way to just pull out a where section. This clearly isn’t the case with your lambda expression. You pasted it into place and could just as easily pull
 it out. Your lambda function is an expression, a self-contained chunk of code, all on its own.

 Haskell has an alternative to where clauses called let expressions. A let expression allows you to combine the readability of a where clause with the power of your lambda function. Figure 3.3 shows the sumSquareOrSquareSum function using let.

 Figure 3.3. The sumSquareOrSquareSum function rewritten to use a let expression

 [image:]

 Whether you choose to use let or where is a matter of style the vast majority of the time in Haskell.

 At this point, it should be clear that lambda functions, all by themselves, can be immensely powerful. To drive this point
 home, you can also do something that Haskell won’t normally let you do: overwrite variables! For this example, you’re going
 to use a let expression instead of the raw lambda expression for readability. In functional programming, it rarely makes sense to overwrite
 a variable on purpose, but to show it can be done, the next listing shows a function overwrite that takes a variable x and then overwrites its value three times.

 Listing 3.2. The overwrite function

 overwrite x = let x = 2
 in
 let x = 3
 in
 let x = 4
 in
 x

 This, by itself, is a useless function, but it should remind you of the way to redefine variables in GHCi:

 GHCi> let x = 2
GHCi> x
2
GHCi> let x = 3
GHCi> x
3

 The overwrite function provides insight into how GHCi can allow you to redefine variables and still not be “cheating” regarding the rules
 of functional programming.

 	

 Quick check 3.3

 Q1:
Redefine overwrite by using only lambdas.

 	

 	

 QC 3.3 answer

 1:

overwrite x = (\x ->
 (\x ->
 (\x -> x) 4
)3
)2

 	

 And there you have it. If you want to, you can use an unnamed function to allow you to redefine variables just as you would
 in any other programming language.

 3.4. Practical lambda functions and lexical scope

 These let and where examples of using a lambda function may initially seem academic and contrived, but they’re the basis of one of the most important
 design patterns in JavaScript. JavaScript has strong support for lambda functions; the equivalent of \x -> x in JavaScript is as follows:

 function(x){
 return x;
}

 Originally, JavaScript wasn’t designed to do more than add a little flair to websites. Therefore, unfortunate design flaws
 have made large, complex code bases difficult to manage. One of the biggest flaws is that JavaScript has no implementation
 of namespaces or modules. If you need to define a length function in your code, you’d better hope that you aren’t accidently overwriting another length function written in one of the many other libraries you’re using. On top of this, JavaScript makes it extremely easy to accidentally
 declare global variables. To demonstrate this, you’ll start with the function libraryAdd, which you’ll pretend is in a third-party library:

 var libraryAdd = function(a,b){
 c = a + b; 1
 return c;
}

 	1 Oops! You forgot to use JavaScript’s var keyword, accidentally creating a global variable.

 This simple function has a huge problem: the variable c has accidentally been declared a global variable! How dangerous can this be? Here’s an example of how this can cause problems:

 var a = 2;
 var b = 3;
 var c = a + b;
 var d = libraryAdd(10,20); 1
 console.log(c); 2

 	1 Internally, this function accesses a global variable c, but you have no way of knowing that.

 	2 The value of this is 30, not 5!

 You did everything right, but after calling libraryAdd, the variable c is now 30! This occurs because there are no namespaces in JavaScript, so when libraryAdd assigns a value to c, it keeps looking until it finds one or creates a new global variable. Unfortunately, var c is what it finds. Unless you dig deep into someone else’s JavaScript code, you’ll never be able to figure out this bug!

 To solve this problem, JavaScript developers used a lambda function. By wrapping your code in a lambda function and then immediately
 calling that function, you can keep your code safe. This pattern is called an immediately invoked function expression (IIFE). Using IIFE, your code now looks like this:

 (function(){ 1
 var a = 2;
 var b = 3;
 var c = a + b;
 var d = libraryAdd(10,20); 2
 console.log(c); 3
})()

 	1 Defining a lambda function

 	2 This dangerous function can’t hurt you now.

 	3 The correct value of 5

 It’s great that you have a solution! IIFE works on exactly the same principles as our example of replacing a where statement. Whenever you create a new function, named or not, you create a new scope, which is the context in which a variable is defined. When a variable is used, the program looks at the nearest scope; if
 the definition of the variable isn’t there, it goes to the next one up. This particular type of variable lookup is called
 lexical scope. Both Haskell and JavaScript use lexical scoping, which is why IIFE and your lambda function variables behave in a similar
 fashion. Figure 3.4 shows an example of a variable definition and three function definitions that use lexical scope to change their values.

 Figure 3.4. Lexical scope with add1, add2, and add3

 [image:]

 And you can see how different the results are when calling all three functions with the same argument:

 GHCi> add1 1
5
GHCi> add2 1
4
GHCi> add3 1
3

 Being able to use unnamed functions to create scope on the fly is an essential tool for doing much more powerful things with
 lambda functions, which you’ll explore in lesson 5.

 Summary

 In this lesson, our objective was to teach you about lambda functions. Lambda functions are a simple idea: a function with
 no name. But they’re foundational for functional programming. Aside from their role as a theoretical corner store of functional
 programming, they provide practical benefits. The most obvious benefit is that lambda functions allow you to easily write
 functions on the fly. The even more powerful feature of lambda functions is that they allow you to create scope as needed.
 Let’s see if you got this.

 Q3.1
Practice writing lambda functions by rewriting each function in lesson 3 as a lambda expression.

 Q3.2
Using a let expression and a lambda function aren’t exactly the same thing under the hood. For example, the following code will cause
 an error if you try to run it:

 counter x = let x = x + 1
 in
 let x = x + 1
 in
 x

 To prove that let and lambda aren’t identical, rewrite the counter function exactly as it is here, but use nested lambdas instead of let.

 (Hint: Start at the end.)

Lesson 4. First-class functions

 After reading lesson 4, you’ll be able to

 	Understand the definition of first-class functions

 	Use functions as arguments to other functions

 	Abstract computation out of a function

 	Return functions as values

 Although functional programming has long had the reputation of being overly academic, nearly all of the key features of functional
 programming languages are starting to appear in many other more mainstream programming languages. The most widespread of these
 features is that of first-class functions. These are functions that can be passed around like any other values. A decade ago, this idea was shocking to many programmers,
 but today the majority of programming languages support and frequently use this concept. If you’ve ever assigned an event
 handler in JavaScript or passed custom sort logic into a sort method in a language such as Python, you’ve already used first-class
 functions.

 	

 Consider this

 Suppose you want to create a website that compares prices of various items on other sites such as Amazon and eBay. You already
 have a function that returns the URL of the item you need, but you need to write code for each site that determines how to
 extract the price from the page. One solution is to make a custom function for each site:

 getAmazonPrice url
getEbayPrice url
getWalmartPrice url

 This would be fine, except all of these functions share a lot of logic (for example, parsing a string price such as $1,999.99
 into a numeric type such as 1999.99). Is there a way to entirely separate the logic that extracts the price from the HTML
 and pass that into a common getPrice function?

 	

 4.1. Functions as arguments

 The concept of first-class functions is that functions are no different from any other data used in a program. Functions can
 be used as arguments and returned as values from other functions. This is a deceptively powerful feature for a programming
 language to have. It allows you to abstract out any repetitive computation from your code, and ultimately allows you to write
 functions that write other functions.

 Suppose you have a function ifEveninc that increments a number n if it’s even; otherwise, it returns the number unchanged, as the next listing shows.

 Listing 4.1. ifEvenInc

 ifEvenInc n = if even n
 then n + 1
 else n

 Later you find out that you need two more functions, ifEvenDouble and ifEvenSquare, which double and square even numbers, respectively, as shown next. These are easy functions to write, given that you know
 how to write ifEveninc.

 Listing 4.2. ifEvenDouble and ifEvenSquare

 ifEvenDouble n = if even n
 then n * 2
 else n

ifEvenSquare n = if even n
 then n^2
 else n

 Although these functions are easy to write, all three are nearly identical. The only difference is in the behavior of incrementing,
 doubling, and squaring. What you’ve discovered here is a general pattern of computation that you can abstract away. The key
 thing you need to do this is the ability to pass a function as an argument to perform the desired behavior.

 Let’s demonstrate this with the function ifEven, which takes a function and a number as arguments. If that number is even, ifEven applies a function to that number.

 Listing 4.3. ifEven

 ifEven myFunction x = if even x
 then myFunction x
 else x

 You can also abstract out your incrementing, doubling, and squaring behavior into three separate functions:

 inc n = n + 1
double n = n*2
square n = n^2

 Let’s see how to re-create the previous definitions by using the power of first-class functions:

 ifEvenInc n = ifEven inc n
ifEvenDouble n = ifEven double n
ifEvenSquare n = ifEven square n

 Now you can easily handle adding new functions such as ifEvenCube or ifEvenNegate.

 	

 Function and operator precedence

 In this lesson, you’ve already seen examples of functions and operators. For example, inc is a function and + is an operator. An important part of writing Haskell code is that functions are always evaluated before operators. What does
 this mean? Take this example in GHCi:

 GHCi> 1 + 2 * 3
7

 As in most programming languages, * has a higher precedence than +, so you multiply 2 and 3 and then add 1, giving you 7. Now let’s look what happens when you replace 1 + with inc:

 GHCi> inc 2 * 3
9

 This result is different because functions always have precedence over operators. This means that inc 2 is evaluated first and then the result is multiplied by 3. This is true even for multi-argument functions:

 GHCi> add x y = x + y
GHCi> add 1 2 * 3
9

 The key benefit is that this enables you to avoid using a large number of unnecessary parentheses in your code.

 	

 4.1.1. Lambda functions as arguments

 Naming functions is generally a good idea, but you can also use lambda functions to quickly add code to pass into a function.
 If you want to double the value, you can quickly put together a lambda function for this:

 GHCi> ifEven (\x -> x*2) 6
12

 Although named functions are preferred, many times you’ll want to pass in simple functionality.

 	

 Quick check 4.1

 Q1:
Write a lambda function for cubing x and pass it to ifEven.

 	

 	

 QC 4.1 answer

 1:

GHCi> ifEven (\x -> x^3) 4

 	

 4.1.2. Example—custom sorting

 A practical use of passing functions into other functions is for sorting. Suppose you have a list of first and last names.
 In this example, each name is represented as a tuple. A tuple is a type that’s like a list, but it can contain multiple types and is of a fixed size. Here’s an example of a name in a
 tuple:

 author = ("Will","Kurt")

 Tuples of two items (a pair) have two useful functions, fst and snd, which access the first and second elements of the tuple, respectively:

 GHCi> fst author
"Will"
GHCi> snd author
"Kurt"

 Now suppose you have a list of names you want to sort. Here’s a set of names represented as a list of tuples.

 Listing 4.4. names

 names = [("Ian", "Curtis"),
 ("Bernard","Sumner"),
 ("Peter", "Hook"),
 ("Stephen","Morris")]

 You want to sort names. Thankfully, Haskell does have a built-in sort function. To use it, you first need to import the Data.List module. To do this is fairly straightforward; you need to add the following declaration to the top of whatever file you’re
 working in:

 import Data.List

 Alternatively, you can import into GHCi. If you load a file with names and your import, you can see that Haskell’s sort takes a good guess at how to sort these tuples:

 GHCi> sort names
[("Bernard","Sumner"),("Ian", "Curtis"),("Peter", "Hook"),
[image:]("Stephen","Morris")]

 Not bad, given Haskell has no idea what you’re trying to do! Unfortunately, you usually don’t want to sort by first name.
 To solve this, you can use Haskell’s sortBy function, which is included in the Data.List module. You need to supply sortBy with another function that will compare two of your tuple names. After you explain how to compare two elements, the rest
 is taken care of. For this, you write a function compareLastNames. This function takes two arguments, name1 and name2, and returns GT, LT, or EQ. GT, LT, and EQ are special values representing greater than, less than, and equal. In many programming languages, you’d return True or False, or 1, -1, or 0.

 Listing 4.5. compareLastNames

 compareLastNames name1 name2 = if lastName1 > lastName2
 then GT
 else if lastName1 < lastName2
 then LT
 else EQ
 where lastName1 = snd name1
 lastName2 = snd name2

 Now you can go back to GHCi and use sortBy with your custom sorting:

 GHCi> sortBy compareLastNames names
[("Ian", "Curtis"),("Peter", "Hook"),("Stephen","Morris),
[image:]("Bernard","Sumner")]

 Much better! JavaScript, Ruby, and Python all support a similar use of first-class functions for custom sorting, so this technique
 is likely familiar to many programmers.

 	

 Quick check 4.2

 Q1:
In compareLastNames, you didn’t handle the case of having two last names that are the same but with different first names. Modify the compareLastNamesfunction to compare first names and use it to fix compareLastNames.

 	

 	

 QC 4.2 answer

 1:

compareLastNames name1 name2 = if lastName1 > lastName2
 then GT
 else if lastName1 < lastName2
 then LT
 else if firstName1 > firstName2
 then GT
 else if firstName1 < firstName2
 then LT
 else EQ
where lastName1 = snd name1
 lastName2 = snd name2
 firstName1 = fst name1
 firstName2 = fst name2

 	

 4.2. Returning functions

 We’ve talked a fair bit about passing functions as arguments, but this is only half of what it means to have first-class functions
 as values. Functions also return values, so for truly first-class functions, it makes sense that functions must sometimes
 return other functions. As always, the question should be, why would I ever want to return a function? One good reason is
 that you want to dispatch certain functions based on other parameters.

 Suppose you create a Secret Society of Contemporary Alchemists and you need to send newsletters to members at various regional
 post office boxes. There are offices in three cities: San Francisco, Reno, and New York. Here are the office addresses:

 	PO Box 1234, San Francisco, CA, 94111

 	PO Box 789, New York, NY, 10013

 	PO Box 456, Reno, NV, 89523

 You need to build a function that will take a name tuple (as you used before in the sorting example) and an office location
 and then put together the mailing address for you. A first pass at this function might look like the following. The only other
 thing we need to introduce that you haven’t seen yet is the ++ operator used to concatenate strings (and lists).

 Listing 4.6. addressLetter v.1

 addressLetter name location = nameText ++ " - " ++location
 where nameText = (fst name) ++ " " ++ (snd name)

 To use this function, you have to pass a name tuple and the full address:

 GHCi> addressLetter ("Bob","Smith") "PO Box 1234 - San Francisco, CA, 94111"
"Bob Smith - PO Box 1234 - San Francisco, CA, 94111"

 This is a fine solution. You also could easily use variables to keep track of the addresses, and that would make errors much
 less likely (and save typing). You’re all set to send out your newsletters!

 After the first round of newsletters, you get some complaints and requests from the regional offices:

 	San Francisco added a new address for members with last names starting with the letter L or later in the alphabet: PO Box 1010, San Francisco, CA, 94109.

 	New York wants the name followed by a colon rather than a hyphen, for mystical reasons they won’t share.

 	Reno wants only last names to be used for greater secrecy.

 It’s clear that now you need a different function for each office.

 Listing 4.7. sfOffice, nyOffice, renoOffice

 sfOffice name = if lastName < "L"
 then nameText
 ++ " - PO Box 1234 - San Francisco, CA, 94111"
 else nameText
 ++ " - PO Box 1010 - San Francisco, CA, 94109"
 where lastName = snd name
 nameText = (fst name) ++ " " ++ lastName

nyOffice name = nameText ++ ": PO Box 789 - New York, NY, 10013"
 where nameText = (fst name) ++ " " ++ (snd name)
renoOffice name = nameText ++ " - PO Box 456 - Reno, NV 89523"
 where nameText = snd name

 The question now is, how should you use these three functions with addressLetter? You could rewrite addressLetter to take a function rather than a location as an argument. The trouble with this is that the addressLetter function is going to be part of a larger web application, and you’d like to pass in a string parameter for the location.
 What you’d really like is another function that will take a location string and dispatch the right function for you. You’ll
 build a new function called getLocationFunction that will take a single string and dispatch the correct function. Rather than a bunch of nested if then else expressions, you’ll use Haskell’s case expression.

 Listing 4.8. getLocationFunction

 getLocationFunction location = case location of 1
 "ny" -> nyOffice 2
 "sf" -> sfOffice 3
 "reno" -> renoOffice 4
 _ -> (\name -> (fst name) ++ " " ++ (snd name)) 5

 	1 case looks at the value of location.

 	2 If location is ny, returns nyOffice

 	3 If location is sf, returns sfOffice

 	4 If location is reno, returns renoOffice

 	5 If it’s anything else (_ is a wildcard), returns a generic solution

 This case expression should seem straightforward, except for that underscore (_) at the end. You want to capture the situation in which a string other than one of the official locations is passed in. In
 Haskell, _ is used frequently as a wildcard. This is covered in much more depth in the next lesson. In this case, if the user of your
 code passes in an invalid location, you put together a quick lambda function that will make the name tuple into a string.
 Now you have a single function that will return the function you need when you need it. Finally, you can rewrite addressLetter, as shown next.

 Listing 4.9. addressLetter v.2

 addressLetter name location = locationFunction name
 where locationFunction = getLocationFunction location

 In GHCi, you can test that your function performs as expected:

 GHCi> addressLetter ("Bob","Smith") "ny"
"Bob Smith: PO Box 789 - New York, NY, 10013"

GHCi> addressLetter ("Bob","Jones") "ny"
"Bob Jones: PO Box 789 - New York, NY, 10013"

GHCi> addressLetter ("Samantha","Smith") "sf"
"Samantha Smith - PO Box 1010 - San Francisco, CA, 94109"

GHCi> addressLetter ("Bob","Smith") "reno"
"Smith - PO Box 456 - Reno, NV 89523"

GHCi> addressLetter ("Bob","Smith") "la"
"Bob Smith"

 Now that you’ve separated each function needed for generating addresses, you can easily add new rules as they come in from
 each office. In this example, returning functions as values helped tremendously to make your code easier to understand and
 extend. This is a simple use of returning functions as values; all you’ve done is automate the way functions can move around.

 Summary

 In this lesson, our objective was to explain first-class functions. First-class functions allow you to pass functions in as
 arguments as well as return them as values. First-class functions are an incredibly powerful tool, because they allow you
 to abstract out computation from your functions. The power of first-class functions is evidenced by their wide adoption in
 most modern programming languages. Let’s see if you got this.

 Q4.1
Anything that can be compared in Haskell (for example, [Char], which you use for the names in your name tuples) can be compared with a function called compare. The compare function returns GT, LT, or EQ. Rewrite compareLastNames by using compare.

 Q4.2
Define a new location function for Washington, DC and add it to getLocation-Function. In the DC function, everyone’s names must be followed by Esq.

Lesson 5. Closures and partial application

 After reading lesson 5, you’ll be able to

 	Capture values in a lambda expression

 	Use closures to create new functions

 	Simplify this process with partial application

 In this lesson, you’ll learn the final key element of functional programming: closures. Closures are the logical consequence of having lambda functions and first-class functions. By combining these lambda functions and
 first-class functions to create closures, you can dynamically create functions. This turns out to be an incredibly powerful
 abstraction, though the one that takes the most getting used to. Haskell makes closures much easier to work with by allowing
 for partial application. By the end of the lesson, you’ll see how partial application makes otherwise confusing closures much
 easier to work with.

 	

 Consider this

 In the preceding lesson, you learned how to pass in programming logic to other functions because of first-class functions.
 For example, you might have a get-Price function that takes a URL and a website-specific price-extraction function:

 getPrice amazonExtractor url

 Although this is useful, what happens if you need to extract items from 1,000 URLs, but all using amazonExtractor? Is there a way to capture this argument on the fly so you have to pass in only the url parameter for future calls?

 	

 5.1. Closures—creating functions with functions

 In lesson 4, you defined a function named ifEven (listing 4.3). By using a function as an argument to ifEven, you were able to abstract out a pattern of computation. You then created the functions ifEvenInc, ifEvenDouble, and ifEvenSquare.

 Listing 5.1. ifEvenInc, ifEvenDouble, ifEvenSquare

 ifEvenInc n = ifEven inc n
ifEvenDouble n = ifEven double n
ifEvenSquare n = ifEven square n

 Using functions as arguments helped to clean up your code. But you’ll notice you’re still repeating a programming pattern!
 Each of these definitions is identical except for the function you’re passing to ifEven. What you want is a function that builds ifEvenX functions. To solve this, you can build a new function that returns functions, called genIfEven, as shown in figure 5.1.

 Figure 5.1. The genIfEven function lets you build ifEvenX functions simply.

 [image:]

 Now you’re passing in a function and returning a lambda function. The function f that you passed in is captured inside the lambda function! When you capture a value inside a lambda function, this is referred
 to as a closure.

 Even in this small example, it can be difficult to understand exactly what’s happening. To see this better, let’s see how
 to create your ifEvenInc function by using genIfEven, as shown in figure 5.2.

 Figure 5.2. ifEvenInc with closure

 [image:]

 Now let’s move on to a real-world example of using closures to help build URLs to use with an API.

 	

 Quick check 5.1

 Q1:
Write a function genIfXEven that creates a closure with x and returns a new function that allows the user to pass in a function to apply to x if x is even.

 	

 	

 QC 5.1 answer

 1:

ifEven f x = if even x
 then f x
 else x

genIfXEven x = (\f -> ifEven f x)

 	

 5.2. Example: Generating URLs for an API

 One of the most common ways to get data is to make calls to a RESTful API by using an HTTP request. The simplest type of request
 is a GET request, in which all of the parameters you need to send to another server are encoded in the URL. In this example, the data
 you need for each request is as follows:

 	The hostname

 	The name of the resource you’re requesting

 	The ID of the resource

 	Your API key

 Figure 5.3 shows an example URL.

 Figure 5.3. Parts of a URL

 [image:]

 Building a URL from these parts is straightforward. Here’s your basic getRequestURL builder.

 Listing 5.2. getRequestUrl

 getRequestURL host apiKey resource id = host ++
 "/" ++
 resource ++
 "/" ++
 id ++
 "?token=" ++
 apiKey

 One thing that might strike you as odd about this function is that the order of your arguments isn’t the same as the order
 you use them or that they appear in the URL itself. Anytime you might want to use a closure (which in Haskell is pretty much anytime), you want to order your arguments from most
 to least general. In this case, each host can have multiple API keys, each API key is going to use different resources, and each resource
 is going to have many IDs associated with it. The same is true when you define ifEven; the function you pass will work with a huge range of inputs, so it’s more general and should appear first in the argument
 list.

 Now that you have the basic request-generating function down, you can see how it works:

 GHCi> getRequestURL "http://example.com" "1337hAsk3ll" "book" "1234"

"http://example.com/book/1234?token=1337hAsk3ll"

 Great! This is a nice, general solution, and because your team as a whole will be querying many hosts, it’s important not
 to be too specific. Nearly every programmer on the team will be focusing on data from just a few hosts. It seems silly, not
 to mention error-prone, to have programmers manually type in http://example.com every time they need to make a request. What
 you need is a function that everyone can use to generate a request URL builder just for them. The answer to this is a closure.
 Your generator will look like figure 5.4.

 Figure 5.4. Capturing the host value in a closure

 [image:]

 Listing 5.3. exampleUrlBuilder v.1

 exampleUrlBuilder = genHostRequestBuilder "http://example.com"

 When you pass the value example.com, you create a new, unnamed function that captures the host and needs only the three remaining arguments. When you define
 exampleUrlBuilder, you give a name to the anonymous function. Anytime you have a new URL that you want to make requests to, you now have an
 easy way to create a custom function for this. Load this function into GHCi and see how it simplifies your code:

 GHCi> exampleUrlBuilder "1337hAsk3ll" "book" "1234"
"http://example.com/book/1234?token=1337hAsk3ll"

 It’s clear you run into the same problem again when you look at apiKey. Passing your API key in each time you call exampleUrlBuilder is still tedious because you’ll likely be using only one or two API keys. Of course, you can use another closure to fix this!
 This time, you’ll have to pass both your exampleUrlBuilder function and your apiKey to your generator.

 Listing 5.4. genApiRequestBuilder

 genApiRequestBuilder hostBuilder apiKey = (\resource id ->
 hostBuilder apiKey resource id)

 What’s interesting here is that you’re combining both functions as arguments and functions as return values. Inside your closure
 is a copy of the specific function that you’re going to need, as well as the API key you need to capture. Finally, you can
 build a function that makes creating a request URL much easier.

 Listing 5.5. myExampleUrlBuilder v.1

 myExampleUrlBuilder = genApiRequestBuilder exampleUrlBuilder "1337hAsk3ll"

 And you can use this to quickly create URLs for different resource/ID combos:

 GHCi> myExampleUrlBuilder "book" "1234"
"http://example.com/book/1234?token=1337hAsk3ll"

 	

 Quick check 5.2

 Q1:
Write a version of genApiRequestBuilder that also takes the resource as an argument.

 	

 	

 QC 5.2 answer

 1:

genApiRequestBuilder hostBuilder apiKey resource = (\id ->
 hostBuilder apiKey
 resource id)

 	

 5.2.1. Partial application: making closures simple

 Closures are both powerful and useful. But the use of a lambda function to create the closure makes reading and reasoning
 about them more difficult than it should be. Additionally, all the closures you’ve written so far follow a nearly identical
 pattern: provide some of the parameters that a function takes and create a new function awaiting the rest. Suppose you have
 a function add4 that takes four variables and adds them:

 add4 a b c d = a + b + c + d

 Now you want to create a function addXto3, which takes an argument x and then returns a closure awaiting the remaining three arguments:

 addXto3 x = (\b c d ->
 add4 x b c d)

 The explicit lambda makes it relatively hard to reason about what’s happening. What if you want to make an addXYto2?

 addXYto2 x y = (\c d ->
 add4 x y c d)

 With four arguments to manage visually, even this trivial function isn’t easy to understand. Lambda functions are powerful
 and useful, but can definitely clutter up otherwise neat function definitions.

 Haskell has an interesting feature that addresses this problem. What happens if you call add4 with fewer than four arguments? This answer seems obvious: it should throw an error. This isn’t what Haskell does. You can define a mystery value in GHCi by using Add4 and one argument:

 GHCi> mystery = add4 3

 If you run this code, you’ll find that it doesn’t cause an error. Haskell has created a brand new function for you:

 GHCi> mystery 2 3 4
12
GHCi> mystery 5 6 7
21

 This mystery function adds 3 to the three remaining arguments you pass to it. When you call any function with fewer than the required
 number of parameters in Haskell, you get a new function that’s waiting for the remaining parameters. This language feature
 is called partial application. The mystery function is the same thing as if you wrote addXto3 and then passed in the argument 3 to it. Not only has partial application saved you from using a lambda function, but you don’t even need to define the awkwardly
 named addXto3! You can also easily re-create the behavior of addXYto2:

 GHCi> anotherMystery = add4 2 3
GHCi> anotherMystery 1 2
8
GHCi> anotherMystery 4 5
14

 If you find using closures confusing so far, you’re in luck! Thanks to partial application, you rarely have to write or think
 explicitly about closures in Haskell. All of the work of genHostRequestBuilder and genApiRequestBuilder is built in and can be replaced by leaving out the arguments you don’t need.

 Listing 5.6. exampleUrlBuilder v.2 and myExampleUrlBuilder v.2

 exampleUrlBuilder = getRequestUrl "http://example.com"
myExampleUrlBuilder = exampleUrlBuilder "1337hAsk3ll"

 In some cases in Haskell, you’ll still want to use lambda functions to create a closure, but using partial application is
 far more common. Figure 5.5 shows the process of partial application.

 Figure 5.5. Visualizing partial application

 [image:]

 	

 Quick check 5.3

 Q1:
Make a builder function that’s specifically for http://example.com, the 1337hAsk3ll API key, and the book resource. That’s
 a function that requires only the ID of a specific book and then generates the full URL.

 	

 	

 QC 5.3 answer

 1:

exampleBuilder = getRequestUrl "http://example.com" "1337hAsk3ll" "books"

 	

 5.3. Putting it all together

 Partial application is also the reason we created the rule that arguments should be ordered from most to least general. When
 you use partial application, the arguments are applied first to last. You violated this rule when you defined your addressLetter function in lesson 4 (listing 4.6):

 addressLetter name location = locationFunction name
 where locationFunction = getLocationFunction location

 In addressLetter, the name argument comes before the location argument. It makes much more sense that you’d want to create a function addressLetterNY that’s waiting for a name, rather than an addressLetterBobSmith that will write letters to all the Bob Smiths of the world. Rather than rewriting your function, which might not always be
 possible if you’re using functions from another library, you can fix this by creating a partial-application-friendly version,
 as follows.

 Listing 5.7. addressLetterV2

 addressLetterV2 location name = addressLetter name location

 This is a fine solution for the one-time case of fixing your addressLetter function. What if you inherited a code base in which many library functions had this same error in the case of two arguments?
 It’d be nice to find a general solution to this problem rather than individually writing out each case. Combining all the
 things you’ve learned so far, you can do this in a simple function. You want to make a function called flipBinaryArgs that will take a function, flip the order of its arguments, and then return it otherwise untouched. To do this, you need
 a lambda function, first-class functions, and a closure. You can put all these together in a single line of Haskell, as shown
 in figure 5.6.

 Figure 5.6. The flipBinaryArgs function

 [image:]

 Now you can rewrite addressLetterV2 by using flipBinaryArgs, and then create an addressLetterNY:

 addressLetterV2 = flipBinaryArgs addressLetter
addressLetterNY = addressLetterV2 "ny"

 And you can test this out in GHCi:

 GHCi> addressLetterNY ("Bob","Smith")
Bob Smith: PO Box 789 - New York, NY, 10013

 Your flipBinaryArgs function is useful for more than fixing code that didn’t follow our generalization guidelines. Plenty of binary functions
 have a natural order, such as division. A useful trick in Haskell is that any infix operator (such as +, /, -, *) can be used as a prefix function by putting parentheses around it:

 GHCi> 2 + 3
5
GHCi> (+) 2 3
5
GHCi> 10 / 2
5.0
GHCi> (/) 10 2
5.0

 In division and subtraction, the order of arguments is important. Despite there being a natural order for the arguments, it’s
 easy to understand that you might want to create a closure around the second argument. In these cases, you can use flipBinaryArgs to help you. Because flipBinaryArgs is such a useful function, there’s an existing function named flip that behaves the same.

 	

 Quick check 5.4

 Q1:
Use flip and partial application to create a function called subtract2 that removes 2 from whatever number is passed in to it.

 	

 	

 QC 5.4 answer

 1:

subtract2 = flip (-) 2

 	

 Summary

 In this lesson, our objective was to teach the important idea of a closure in functional programming. With lambda functions,
 first-class functions, and closures, you have all you need to perform functional programming. Closures combine lambda functions
 and first-class functions to give you amazing power. With closures, you can easily create new functions on the fly. You also
 learned how partial application makes working with closures much easier. After you’re used to using partial application, you
 may sometimes forget you’re working with closures at all! Let’s see if you got this.

 Q5.1
Now that you know about partial application, you no longer need to use genIfEvenX. Redefine ifEvenInc, ifEvenDouble, and ifEvenSquare by using ifEven and partial application.

 Q5.2
Even if Haskell didn’t have partial application, you could hack together some approximations. Following a similar pattern
 to flipBinaryArgs (figure 5.6), write a function binaryPartialApplication that takes a binary function and one argument and returns a new function waiting for the missing argument.

Lesson 6. Lists

 After reading lesson 6, you’ll be able to

 	Identify the parts that make up a list

 	Know how to build lists

 	Understand the role of lists in functional programming

 	Use common functions on a list

 	Learn the basics of lazy evaluation

 In many ways, an array is the fundamental data structure for programming in C. If you properly understand arrays in C, you
 necessarily understand how memory allocation works, how data is stored on a computer, and the basics of pointers and pointer
 arithmetic. For Haskell (and functional programming in general), the fundamental data structure is a list. Even as you approach
 some of the more advanced topics in this book, such as functors and monads, the simple list will still be the most useful
 example.

 This lesson provides a proper introduction to this surprisingly important data structure. You’ll learn the basics of taking
 lists apart and putting them back together, as well as learning some of the essential functions for a list that Haskell provides.
 Finally, you’ll take a peek at another unique feature of Haskell: lazy evaluation. Lazy evaluation is so powerful that it
 allows you to represent and work with lists that are infinitely long! If you get stuck on a topic in Haskell, it’s almost
 always helpful to turn back to lists to see if they can give you some insight.

 	

 Consider this

 You work for a company that has 10,000 employees, and some of them want to play on an after-work softball team. The company
 has five teams, named after colors, which you want to use to assign employees:

 teams = ["red","yellow","orange","blue","purple"]

 You have a list of employees and you want to match them to the correct team as evenly as possible. What’s a simple way that
 you can use Haskell’s list functions to perform this task?

 	

 6.1. The anatomy of a list

 Lists are the single most important data structure in functional programming. One of the key reasons is that lists are inherently
 recursive. A list is either an empty list or an element followed by another list. Taking apart and building lists are fundamental
 tools for many techniques in functional programming.

 When taking apart a list, the main pieces are the head, the tail, and the end (represented by []). The head is just the first element in a list:

 GHCi> head [1,2,3]
1
GHCi> head [[1,2],[3,4],[5,6]]
[1,2]

 The tail is the rest of the list left over, after the head:

 GHCi> tail [1,2,3]
[2,3]
GHCi> tail [3]
[]

 The tail of a list with just one element is [], which marks the end of the list. This end of the list is just an empty list. But an empty list is different from other lists,
 as it has neither a head nor a tail. Calling head or tail on [] will result in an error. If you look at the head and tail, you can start to see the recursive nature of working with lists:
 a head is an element, and a tail is another list. You can visualize this by imagining tearing the first item off a grocery
 list, as in figure 6.1.

 Figure 6.1. A list is made up of the head element and the tail list.

 [image:]

 You can break a list into pieces, but this does you little good if you can’t put them back together again! In functional programming,
 building lists is just as important as breaking them down. To build a list, you need just one function and the infix operator
 (:), which is called cons. This term is short for construct and has its origins in Lisp. We’ll refer to this operation as consing, because : looks a bit odd in a sentence.

 To make a list, you need to take a value and cons it with another list. The simplest way to make a list is to cons a value
 with the empty list:

 GHCi> 1:[]
[1]

 Under the hood, all lists in Haskell are represented as a bunch of consing operations, and the [...] notation is syntactic sugar (a feature of the programming language syntax designed solely to make things easier to read):

 GHCi> 1:2:3:4:[]
[1,2,3,4]

GHCi> (1,2):(3,4):(5,6):[]
[(1,2),(3,4),(5,6)]

 Notice that all of these lists end with the empty list []. By definition, a list is always a value consed with another list (which can also be an empty list). You could attach the
 value to the front of an existing list if you wanted:

 GHCi> 1:[2,3,4]
[1,2,3,4]

 It’s worth noting that the strings you’ve seen so far are themselves syntactic sugar for lists of characters (denoted by single
 quotes rather than double quotes):

 GHCi>['h','e','l','l','o']
"hello"
GHCi> 'h':'e':'l':'l':'o':[]
"hello"

 An important thing to remember is that in Haskell every element of the list must be the same type. For example, you can cons
 the letter 'h' to the string "ello" because "ello" is just a list of characters and 'h' (single quotes) is a character:

 GHCi> 'h':"ello"
"hello"

 But you can’t cons "h" (double quotes) to "ello" because "h" is a list of one character and the values inside "ello" are individual characters. This becomes more obvious when you remove the syntactic sugar.

 Listing 6.1. Consing characters and strings

 GHCi> "h":"ello" 1
GHCi> ['h']:['e','l','l','o'] 2
GHCi> 'h':[]:'e':'l':'l':'o':[] 3

 	1 Error!

 	2 Same code with one layer of sugar removed

 	3 Completely desugared

 If you do want to combine two lists, you need to concatenate them by using ++. You saw this in lesson 3 with concatenating text, but given that strings are just lists, it will work on any list:

 GHCi> "h" ++ "ello"
"hello"
GHCi> [1] ++ [2,3,4]
[1,2,3,4]

 Consing is important to understand because it’s an essential part of writing recursive functions on lists. Nearly all sequential
 operations in functional programing involve building lists, breaking them apart, or a combination of the two.

 6.2. Lists and lazy evaluation

 Because lists are so important in Haskell, there are many ways to quickly generate ranges of data. Here are some examples:

 GHCi> [1 .. 10] 1
[1,2,3,4,5,6,7,8,9,10]

GHCi> [1,3 .. 10] 2
[1,3,5,7,9]

GHCi> [1, 1.5 .. 5] 3
[1.0,1.5,2.0,2.5,3.0,3.5,4.0,4.5,5.0]

GHCi> [1,0 .. -10] 4
[1,0,-1,-2,-3,-4,-5,-6,-7,-8,-9,-10]

 	1 Generates a list of numbers from 1 through 10

 	2 Adding the next step, 3, generates odd numbers.

 	3 Generates a list in increments of 0.5

 	4 Generates a decrementing list

 These are useful but not particularly interesting. Many programing languages have a range function that works in a similar manner. What happens if you forget to put an upper bound to your range?

 GHCi> [1 ..]
[1,2,3,4,5,6,7,8,9,10,11,12 ..

 An unending list is generated! This is cool but quickly clogs up the terminal and doesn’t seem particularly useful. What’s
 interesting is that you can assign this list to a variable and even use it in a function:

 simple x = x
longList = [1 ..]
stillLongList = simple longList

 What’s shocking is that this code compiles just fine. You defined an infinite list and then used it in a function. Why didn’t
 Haskell get stuck trying to evaluate an infinitely long list? Haskell uses a special form of evaluation called lazy evaluation. In lazy evaluation, no code is evaluated until it’s needed. In the case of longList, none of the values in the list were needed for computation.

 Lazy evaluation has advantages and disadvantages. It’s easy to see some of the advantages. First, you get the computational
 benefit that any code you don’t absolutely need is never computed. Another benefit is that you can define and use interesting
 structures such as an infinite list. This can be useful for plenty of practical problems. The disadvantages of lazy evaluation
 are less obvious. The biggest one is that it’s much harder to reason about the code’s performance. In this trivial example,
 it’s easy to see that any argument passed to simple won’t be evaluated, but even a bit more complexity makes this less obvious. An even bigger problem is that you can easily
 build up large collections of unevaluated functions that would be much cheaper to store as values.

 	

 Quick check 6.1

 Q1:
True or false: You can compile and run a program with the variable backwardsInfinity = reverse [1..].

 	

 	

 QC 6.1 answer

 1:

True. Even though you’re reversing an infinite list, you’re never calling this code, so the infinite list is never evaluated.
 If you loaded this code into GHCi and typed the following

 GHCi> backwardsInfinity

 you’d have a problem, as the program would need to evaluate this argument to print it out.

 	

 6.3. Common functions on lists

 Because lists are so important, a wide range of useful functions are built into Haskell’s standard library module, called
 Prelude. So far, you’ve seen head, tail, : and ++, which allow you to take apart lists and put them back together. There are many other useful functions on lists that will
 come up so frequently when writing Haskell that it’s worth familiarizing yourself with them.

 6.3.1. The !! operator

 If you want to access a particular element of a list by its index, you can use the !! operator. The !! operator takes a list and a number, returning the element at that location in the list. Lists in Haskell are indexed starting
 at 0. If you try to access a value beyond the end of the list, you’ll get an error:

 GHCi> [1,2,3] !! 0
1
GHCi> "puppies" !! 4
'i'
GHCi> [1..10] !! 11
*** Exception: Prelude.!!: index too large

 As mentioned in lesson 5, any infix operator (an operator that’s placed between two values, such as +) can also be used like a prefix function by wrapping it in parentheses:

 GHCi> (!!) [1,2,3] 0
1

 Using prefix notation can often make things such as partial application easier. Prefix notation is also useful for using operators
 as arguments to other functions. You can still use partial application with an infix operator; you just need to wrap the expression
 in parentheses:

 GHCi> paExample1 = (!!) "dog"
GHCi> paExample1 2
'g'
GHCi> paExample2 = ("dog" !!)
GHCi> paExample2 2
'g'

 Notice that in paExample2 you see how partial application works with infix binary operators. To perform partial application on a binary operator, called
 a section, you need to wrap the expression in parentheses. If you include only the argument on the right, the function will be waiting
 for the leftmost argument; if you include only the argument on the left, you get a function waiting for the argument on the
 right. Here’s paExample3, which creates partial application of the right argument:

 GHCi> paExample3 = (!! 2)
GHCi> paExample3 "dog"
'g'

 The important thing to remember about sections is that the parentheses aren’t optional.

 6.3.2. length

 The length function is obvious; it gives you the length of the list!

 GHCi> length [1..20]
20
GHCi> length [(10,20),(1,2),(15,16)]
3
GHCi> length "quicksand"
9

 6.3.3. reverse

 As expected, reverse reverses the list:

 GHCi> reverse [1,2,3]
[3,2,1]
GHCi> reverse "cheese"
"eseehc"

 You can use reverse to make a basic palindrome checker, as shown in the next listing.

 Listing 6.2. isPalindrome

 isPalindrome word = word == reverse word

GHCi> isPalindrome "cheese"
False
GHCi> isPalindrome "racecar"
True
GHCi> isPalindrome [1,2,3]
False
GHCi> isPalindome [1,2,1]
True

 6.3.4. elem

 The elem function takes a value and a list and checks whether the value is in the list:

 GHCi> elem 13 [0,13 .. 100]
True
GHCi> elem 'p' "cheese"
False

 elem is a function that you may want to treat as an infix operator for readability. Any binary function can be treated as an infix
 operator by wrapping it in back-quotes (`). For example, the function respond returns a different response depending on whether a string has an exclamation mark, as follows.

 Listing 6.3. respond

 respond phrase = if '!' `elem` phrase
 then "wow!"
 else "uh.. okay"

GHCi> respond "hello"
"uh.. okay"
GHCi> respond "hello!"
"wow!"

 Whether infix elem adds much readability is certainly debatable, but in the real world you’ll frequently come across infix forms of binary functions.

 6.3.5. take and drop

 The take function takes a number and a list as arguments and then returns the first n elements of the list:

 GHCi> take 5 [2,4..100]
[2,4,6,8,10]
GHCi> take 3 "wonderful"
"won"

 If you ask for more values then a list has, take gives you what it can, with no error:

 GHCi> take 1000000 [1]
[1]

 take works best by being combined with other functions on lists. For example, you can combine take with reverse to get the last n elements of a list.

 Listing 6.4. takeLast

 takeLast n aList = reverse (take n (reverse aList))

GHCi> takeLast 10 [1..100]
[91,92,93,94,95,96,97,98,99,100]

 The drop function is similar to take, except it removes the first n elements of a list:

 GHCi> drop 2 [1,2,3,4,5]
[3,4,5]
GHCi> drop 5 "very awesome"
"awesome"

 6.3.6. zip

 You use zip when you want to combine two lists into tuple pairs. The arguments to zip are two lists. If one list happens to be longer, zip will stop whenever one of the two lists is empty:

 GHCi> zip [1,2,3] [2,4,6]
[(1,2),(2,4),(3,6)]
GHCi> zip "dog" "rabbit"
[('d','r'),('o','a'),('g','b')]
GHCi> zip ['a' .. 'f'] [1 ..]
[('a',1),('b',2),('c',3),('d',4),('e',5),('f',6)]

 6.3.7. cycle

 The cycle function is particularly interesting, because it uses lazy evaluation to create an infinite list. Given a list, cycle repeats that list endlessly. This may seem somewhat useless but comes in handy in a surprising number of situations. For
 example, it’s common in numerical computing to need a list of n ones. With cycle, this function is trivial to make.

 Listing 6.5. ones

 ones n = take n (cycle [1])

GHCi> ones 2
[1,1]
GHCi> ones 4
[1,1,1,1]

 cycle can be extremely useful for dividing members of a list into groups. Imagine you want to divide a list of files and put them
 on n number of servers, or similarly spilt up employees onto n teams. The general solution is to create a new function, assignToGroups, that takes a number of groups and a list, and then cycles through the groups, assigning members to them.

 Listing 6.6. assignToGroups

 assignToGroups n aList = zip groups aList
 where groups = cycle [1..n]

GHCi> assignToGroups 3 ["file1.txt","file2.txt","file3.txt"
 ,"file4.txt","file5.txt","file6.txt","file7.txt"
 ,"file8.txt"]

[(1,"file1.txt"),(2,"file2.txt"),(3,"file3.txt"),(1,"file4.txt"),
[image:](2,"file5.txt"),(3,"file6.txt"),(1,"file7.txt"),(2,"file8.txt")]

GHCi> assignToGroups 2 ["Bob","Kathy","Sue","Joan","Jim","Mike"]
[(1,"Bob"),(2,"Kathy"),(1,"Sue"),(2,"Joan"),(1,"Jim"),(2,"Mike")]

 These functions are just some of the more common of a wide range of list functions that Haskell offers. Not all of the functions
 on lists are included in the standard Prelude module. All list functions, including those automatically included in Prelude, are in the Data.List module. An exhaustive list of Data.List functions can be found online in the standard Haskell documentation (https://hackage.haskell.org/package/basedocs/Data-List.html).

 Summary

 In this lesson, our objective was to go over the basic structure of a list. You learned that a list is made up of a head and a tail that are consed together. We also went over many of the most common functions on a list. Let’s see if you got this.

 Q6.1
Haskell has a function called repeat that takes a value and repeats it infinitely. Using the functions you’ve learned so far, implement your own version of repeat.

 Q6.2
Write a function subseq that takes three arguments: a start position, an end position, and a list. The function should return the subsequence between
 the start and end. For example:

 GHCi> subseq 2 5 [1 .. 10]
[3,4,5]
GHCi> subseq 2 7 "a puppy"
"puppy"

 Q6.3
Write a function inFirstHalf that returns True if an element is in the first half of a list, and otherwise returns False.

Lesson 7. Rules for recursion and pattern matching

 After reading lesson 7, you’ll be able to

 	Understand the definition of a recursive function

 	Learn the rules for writing recursive functions

 	Walk through examples of recursive function definitions

 	Use basic pattern matching to solve recursive problems

 One of the first challenges of writing practical code in a functional language is that because you don’t have state changes,
 you also don’t have common looping functions that rely on changing state, such as for, while, and until loops. All iteration problems have to be solved through recursion. For many programmers, this is a terrifying thought, as
 recursion typically brings up memories of headache-inducing problem solving. Thankfully, you can use a few simple rules to
 make recursion much easier. Additionally, just as Haskell offers partial application to make closures easier to work with,
 Haskell provides a feature called pattern matching to make recursion much saner to reason about.

 	

 Consider this

 In the preceding lesson, you learned the function take, which allows you to take n elements from a list:

 take 3 [1,2,3,4]
[1,2,3]

 How would you write your own version of take in Haskell?

 	

 7.1. Recursion

 In general, something is recursive if it’s defined in terms of itself. This normally leads to headaches, as programmers often imagine unwinding an infinite
 loop of a recursive definition. Recursion doesn’t need to induce headaches, and is often a lot more natural than other forms
 of iteration in programing. Lists are a recursive data structure defined as an empty list, or an element and another list.
 No headaches or mystical acts of mental gymnastics are required to work with lists. Recursive functions are just functions
 that use themselves in their own definition. This, legitimately, sounds confusing.

 But if you think of recursive functions as defining recursive processes, recursion becomes fairly mundane. Nearly every human
 activity is a recursive process! Take washing the dishes. If there are no dishes in the sink, you’re done washing, but if
 there is a dish, you grab it, clean it, and put it on the rack. To continue washing dishes, you repeat until you’re finished.

 	

 Quick check 7.1

 Q1:
Write down something mundane you do daily as a recursive process.

 	

 	

 QC 7.1 answer

 1:

When writing a lesson for this book, I write the lesson and then then do the following:

 	Get edits from the editor.

 	Accept or reject those changes and make my own edits.

 	Submit the lesson to the editor.

 	If the editor is happy, I’m finished!

 Otherwise, go back to step 1.

 	

 7.2. Rules for recursion

 The trouble with recursion comes when you write down recursive processes. Even in the case of a list or a dishwashing algorithm,
 writing these from scratch seems much trickier than just being comfortable with what they are. The secret to writing recursive
 functions is to not think about the recursion! Thinking about recursion too much leads to headaches. The way to solve recursive functions is by following this simple set
 of rules:

 	Identify the end goal(s).

 	Determine what happens when a goal is reached.

 	List all alternate possibilities.

 	Determine your “rinse and repeat” process.

 	Ensure that each alternative moves you toward your goal.

 7.2.1. Rule 1: Identify the end goal(s)

 Generally, recursive processes come to an end. What does this end look like? For a list, the end of the process is the empty
 list; for washing dishes, it’s an empty sink. After you recognize that something is a recursive process, the first step to
 solving it is figuring out when you know you’re finished. Sometimes there’s more than one goal. A telemarketer might have
 to call 100 people or make 5 sales before calling it a day. In this case, the goal is either 100 people have been called,
 or 5 sales have been made.

 7.2.2. Rule 2: Determine what happens when a goal is reached

 For each goal you establish in rule 1, you need to figure out what the result will be. In the case of washing dishes, the
 result is that you’re finished washing the dishes. With functions, you need to return a value, so you have to determine what
 value should be returned at the end state. A typical problem programmers face is trying to think of the goal state in terms
 of being the end of a long recursive process. This is usually unnecessary and overly complicated. Often the answer is obvious
 when you ask the question, “What happens if I call my function on the goal state value?” For example, the end state of the
 Fibonacci sequence is to arrive at 1; by definition, fib 1 = 1. A more mundane example is determining the number of books
 you have by counting the number on each shelf. The goal state is to have no more shelves to count; the number of books on
 no shelves is 0.

 7.2.3. Rule 3: List all alternate possibilities

 If you aren’t at your goal state, what do you have? This sounds like it can be a lot of work, but most of the time you have
 only one or two alternatives to being in the goal state. If you don’t have an empty list, you have a list with something in
 it. If the sink isn’t empty, you have a sink with dishes. For the telemarketer making calls, if you still haven’t called 100
 people or made 5 sales, you have two possibilities. You can call and make a sale, or call and not make a sale.

 7.2.4. Rule 4: Determine your “Rinse and Repeat”

 This rule is nearly identical to rule 2, except you have to repeat your process. Don’t overthink or try to unwind the recursion.
 For a list, you might take the element and look at the tail. For washing dishes, you wash a dish, put it up to dry, and look
 in the sink again. The telemarketer either makes the call, records the sale, and repeats, or records that the call was made
 (no sale) and repeats.

 7.2.5. Rule 5: Ensure that each alterative moves you toward the goal

 This is a big one! For every process you list in rule 4, you need to ask yourself, “Does this move me closer to the goal?”
 If you keep taking the tail of a list, you’ll get the empty list. If you keep removing dishes from the sink, you’ll have an
 empty sink. Recording either sales or calls will eventually cause the counts for each to reach their goal. But suppose you
 want to flip a coin until you get heads. The goal is getting a head: if you get heads, you stop. The alternate is getting
 tails: if you get tails, you flip again. But flipping again doesn’t ensure that you’ll ever get heads. Statistically, you
 should arrive there, so in practice this would be fine, but this is a potentially dangerous function to run (imagine if instead
 of a coin, you used something with a small chance of success).

 7.3. Your first recursive function: greatest common divisor

 To introduce recursion, you’ll start with one of the oldest numeric algorithms in existence: Euclid’s algorithm. This algorithm
 is a remarkably simple method for computing the greatest common divisor (GCD) of two numbers. In case you’ve forgotten, the
 greatest common divisor of two numbers is the largest number that evenly divides them both. For example, the GCD for 20 and
 16 is 4, because 4 is the largest number that divides evenly into both 20 and 16. For 10 and 100, the GCD is 10. Euclid outlined
 the algorithm in his book Elements (written in about 300 BC). Here’s the basic rundown:

 	You start with two numbers, a and b.

 	If you divide a by b and the remainder is 0, clearly b is the GCD.

 	Otherwise, you change the value of a by assigning it the value of b (b becomes the new a). You also change the value of b
 to be the remainder you obtained in step 2 (the new b is the remainder of the original a divided by the original b).

 	Then repeat until a/b has no remainder.

 Let’s work through one example:

 	a = 20, b = 16

 	a/b = 20/16 = 1 remainder 4

 	a = 16, b = 4

 	a/b = 4 remainder 0

 	GCD = b = 4

 To implement this algorithm in code, you want to start with the goal condition (rule 1). The goal is to have no remainder
 for a/b. In code, you use the modulus function to express this idea. In Haskell, your goal is expressed as follows:

 a `mod` b == 0

 The next question to answer is what do you return when you reach the goal state (rule 2)? If a/b has no remainder, b must
 divide a evenly; therefore, b is the GCD. This gives you the entire goal behavior:

 if a `mod` b == 0
then b

 Next you need to figure out all the ways that you can move closer to your goal if your goal isn’t met (rule 3). For this problem,
 there’s only one alternative: the remainder isn’t 0. If the remainder isn’t 0, you repeat the algorithm with b being the new
 a and the new b being the remainder: a `mod` b (rule 4):

 else gcd b (a `mod` b)

 Now you can put all of this into your recursive implementation of Euclid’s algorithm, as shown next.

 Listing 7.1. myGCD

 myGCD a b = if remainder == 0
 then b
 else myGCD b remainder
 where remainder = a `mod` b

 Finally, you make sure you’re moving toward your goal (rule 5). Using the remainder, you’re always going to be shrinking your
 new b; in the worst case (both numbers are prime), you’ll eventually get to 1 for a and b. This confirms that your algorithm
 must terminate. By following the rules for creating recursive functions, you’ve avoided having to think too much about endlessly
 spiraling recursion!

 	

 Quick check 7.2

 Q1:
For the myGCD function, does it matter if a > b or a < b?

 	

 	

 QC 7.2 answer

 1:

It doesn’t matter, and adds only one extra step, if a < b. For example, 20 `mod` 50 is 20, so the next call would be myGCD 50 20, which is just one more step than calling myGCD 50 20 to begin with.

 	

 In our myGCD example, only two possible things can happen: either the goal is met, or the process is repeated. This fits nicely into an
 if then else expression. It’s easy to imagine that as you come across more-complicated functions, you might get larger and larger if then else statements or use case. Haskell has an amazing feature called pattern matching that allows you to peek at the values passed as arguments and behave accordingly. As an example, let’s make a function sayAmount that returns “one” for 1, “two” for 2, and for everything else returns a bunch. First, let’s see how to implement this by using case rather than pattern matching in the function definition.

 Listing 7.2. sayAmount v.1

 sayAmount n = case n of
 1 -> "one"
 2 -> "two"
 n -> "a bunch"

 The pattern matching version of this looks like three separate definitions, each for one of the possible arguments.

 Listing 7.3. sayAmount v.2

 sayAmount 1 = "one"
sayAmount 2 = "two"
sayAmount n = "a bunch"

 Pattern matching, just like case, looks at the options in order, so if you’d placed sayAmount n first in your list, calling sayAmount would always return “a bunch”.

 The important thing to realize about pattern matching is that it can look only at arguments, but it can’t do any computation
 on them when matching. For example, with pattern matching, you can’t check to see whether n is less than 0. Even with this restriction, pattern matching is powerful. You can use pattern matching to check whether a
 list is empty by matching against []:

 isEmpty [] = True
isEmpty aList = False

 In Haskell, it’s standard practice to use _ as a wildcard for values you don’t use. In isEmpty, you don’t use the aList parameter, so standard practice is to write it as follows:

 isEmpty [] = True
isEmpty _ = False

 You can do even more-sophisticated pattern matching on lists. A popular convention in Haskell is to use the single x to represent a single value, and the variable xs to represent a list of values (though we’ll frequently ignore this convention for readability). You could define your own
 version of head as follows:

 myHead (x:xs) = x

 To better understand what Haskell is doing as far as pattern matching is concerned, take a look at figure 7.1 to see how Haskell views a list argument as a pattern.

 Figure 7.1. Visualizing pattern-matching internals for myHead

 [image:]

 Like the real version of head in Haskell, you don’t have a way to handle the case of an empty list, which has no head. You can use Haskell’s error function to throw an error in this case.

 Listing 7.4. myHead

 myHead (x:xs) = x
myHead [] = error "No head for empty list"

 Because you want to think of recursion as merely a list of goals and alternative cases, pattern matching becomes valuable
 in writing recursive code without getting a migraine. The trick is thinking in patterns. Whenever you write recursive functions,
 you can split up the definitions so that you’re concerned only with the goal state, always defined first, and then all the
 possible alternatives one at a time. This often leads to shorter function definitions, but even more important, it makes it
 easier to reason about each step. Pattern matching is a wonderful way to alleviate the pain and symptoms of recursion.

 	

 Quick check 7.3

 Q1:
Fill in this definition of myTail by using pattern matching, and make sure to use _ where the value isn’t needed:

 myTail (<fill in this>) = xs

 	

 	

 QC 7.3 answer

 1:

myTail (_:xs) = xs

 	

 Summary

 In this lesson, our objective was to teach you how to reason about writing recursive functions. When you’re inexperienced
 in writing recursive functions, the problem often can appear much more challenging than it needs to. Here are the general
 rules for recursion that should help when you get stuck:

 	Identify the end goal(s).

 	Determine what happens when a goal is reached.

 	List all alternate possibilities.

 	Determine your “rinse and repeat” process.

 	Ensure that each alternative moves you toward the goal.

 Let’s see if you got this.

 Q7.1
The tail function in Haskell returns an error when called on an empty list. Modify myTail so that it does handle the case of an empty list by returning the empty list.

 Q7.2
Rewrite myGCD by using pattern matching.

Lesson 8. Writing recursive functions

 After reading lesson 8, you’ll be able to

 	See common patterns of applying rules of recursion

 	Understand how to use recursion on lists

 	Learn to time functions in GHCi

 	Reason about the edge cases of our five rules of recursion

 The best way to get better at recursion is to practice, practice, practice! In this lesson, we’ll walk through a variety of
 recursive functions to help you apply the rules of recursion presented in the preceding lesson. As you do this, you’ll start
 to see that a few patterns repeat when solving recursive problems. Because Haskell doesn’t allow you to “cheat” by using stateful
 iteration, nearly all the code you write in Haskell will involve some recursion (though often this is abstracted away). This
 will lead you to quickly becoming comfortable writing recursive functions and solving problems in a recursive style.

 	

 Consider this

 In the preceding lesson, you were asked to consider writing a take function on your own. This time, consider the drop function:

 drop 3 [1,2,3,4]
[4]

 Write your own version of drop and consider how this function is both similar to and different from take.

 	

 8.1. Review: Rules of recursion

 In the preceding lesson, you learned about the rules for writing recursive functions. Here they are again for easy reference:

 	Identify the end goal(s).

 	Determine what happens when a goal is reached.

 	List all alternate possibilities.

 	Determine your “rinse and repeat” process.

 	Ensure that each alternative moves you toward the goal.

 To get a better feel for these rules, you’ll walk through a wide range of examples in this lesson. You’ll also make heavy
 use of pattern matching in order to solve problems recursively as easily as possible.

 8.2. Recursion on lists

 In lesson 6, we talked about how important lists are to functional programming and discussed a few of the functions included in Haskell’s
 Prelude that make working with lists easier. Now you’ll revisit a few of those functions, but this time you’ll write them from scratch.
 This will demonstrate how to think recursively to solve real problems, as well as giving a deeper sense of how these essential
 functions in Haskell work.

 8.2.1. Implementing length

 Calculating the length of a list is one of the simplest and most straightforward examples of a recursive function on a list.
 Using pattern matching, decomposing our problem is easy.

 For our goal state, you have the empty list (rule 1). The majority of recursive functions on a list have the empty list as
 their goal state. What do you do when you get to that goal (rule 2)? Well, the length of an empty list is 0, because there’s nothing in it. Now you have your goal state described:

 myLength [] = 0

 Next you have to consider any alternate cases (rule 3). There’s only one option, which is a nonempty list. When you encounter
 a nonempty list, you know that you’ve seen one element. To get the length of this nonempty list, you add 1 to the length of
 the tail of the list (rule 4):

 myLength xs = 1 + myLength (tail xs)

 Before declaring yourself finished, you have to think about whether this step moves you toward your goal (rule 5). Clearly,
 if you keep taking the tail of a (noninfinite) list, you’ll eventually reach []. No other alternative possibilities are left, and each of your nongoal states moves you toward your goal, so you’re finished!

 Listing 8.1. myLength

 myLength [] = 0
myLength xs = 1 + myLength (tail xs)

 	

 Quick check 8.1

 Q1:
Use pattern matching to rewrite myLength without needing to explicitly call tail.

 	

 	

 QC 8.1 answer

 1:

myLength [] = 0
myLength (x:xs) = 1 + myLength xs

 	

 8.2.2. Implementing take

 The take function is interesting for two reasons: take uses two arguments, n and a list, and it turns out take has two goal states! As is almost always the case, take terminates on the empty list []. As mentioned earlier, unlike tail and head, take has no problem with the empty list, and will return as many items as it can. The other condition when take can be finished occurs when n = 0. In either case, you end up doing the same thing. Taking n elements from an empty list is [], and taking 0 elements of any list is []. So you end up with this:

 myTake _ [] = []
myTake 0 _ = []

 The only case that isn’t the goal occurs when both n is greater than 0 and the list is nonempty. In your length function, you had to worry only about taking apart your list, but with myTake, you’re going to return a list so you have to build one as you go. What is your new list built from? Let’s think about this
 with take 3 [1,2,3,4,5]:

 	You want the first element, 1, and then cons that along with take 2 [2,3,4,5].

 	Then you want the next element, 2, and cons it with take 1 [3,4,5].

 	Then you want 3 and cons it with take 0 [4,5].

 	At 0 you’ve reached a goal, so return [].

 	This leads to 1:2:3:[], which is [1,2,3].

 In code, the process is as follows:

 myTake n (x:xs) = x:rest
 where rest = myTake (n - 1) xs

 Finally, you ask the question, “Does the recursive call move you closer to your goal?” In this case, it’s yes on both counts.
 Reducing n eventually leads to 0, and taking the tail of the list eventually leads to [].

 Listing 8.2. myTake

 myTake _ [] = []
myTake 0 _ = []
myTake n (x:xs) = x:rest
 where rest = myTake (n - 1) xs

 8.2.3. Implementing cycle

 The cycle function is the most interesting of the list functions to implement, and also one that you can write in few languages other
 than Haskell. In cycle, you take a list and repeat it forever. This is possible only because of lazy evaluation, which few languages other than
 Haskell possess. Even more interesting from the viewpoint of our rules is that cycle has no goal state. Thankfully, recursion without goal states, even in Haskell, is fairly rare. Nonetheless, if you understand
 this example, you have a strong understanding of both recursion and lazy evaluation.

 Once again, you’ll be building a list. To start, you’ll build a noninfinite version of the list. The basic behavior you want
 is to return your exact list, only with the first element at the end:

 finiteCycle (first:rest) = first:rest ++ [first]

 The finiteCycle function doesn’t really cycle; it returns your original list with one element at the end. To cycle this, you need to repeat
 the cycle behavior for the rest:[first] section.

 Listing 8.3. myCycle

 myCycle (first:rest) = first:myCycle (rest++[first])

 Even with our rules as a guide, often recursion can cause quite a headache. The key to solving recursive problems is to take
 your time, work through the goals, and reason through the processes. The benefit of recursive problems is that their solutions
 are often just a few lines of code. With practice, you’ll also come to see that there are only a few patterns of recursion.

 8.3. Pathological recursion: Ackerman function and the Collatz conjecture

 In this section, you’ll look at two interesting functions from mathematics that demonstrate some of the limits of our five
 rules for recursion.

 8.3.1. The Ackermann function

 The Ackermann function takes two arguments, m and n. When referring to the mathematical definition of the function, you’ll use A(m, n) to save space.
 The Ackermann function follows these three rules:

 	If m = 0, return n + 1.

 	If n = 0, then A(m – 1, 1).

 	If both m != 0 and n != 0, then A(m –1, A(m, n – 1)).

 Now let’s see how to implement this in Haskell by using our rules. First, your goal state occurs when m is 0, and when you’re in your goal state, you return n + 1. Using pattern matching, this is easy to implement (rules 1 and 2):

 ackermann 0 n = n + 1

 Now you have only two alternatives: n can be 0, and both m and n are nonzero. The definition of the function also tells you what to do in these cases (rules 3 and 4):

 ackermann m 0 = ackermann (m-1) 1
ackermann m n = ackermann (m-1) (ackermann m (n-1))

 Finally, are you moving toward your goal in these two alternates (rule 5)? In the case of n = 0, yes, because if you keep
 decreasing m, you’ll eventually get to m = 0. The same goes for your final case. Even though you have two calls to ackermann, the first m is decreasing to 0, and the n in the second call is decreasing toward 0 as well, which brings you to your goal!

 Everything is perfect until you run the code. You can load this function into GHCi, and this time you can use :set +s to time your function calls:

 GHCi> :set +s
GHCi> ackermann 3 3
61
(0.01 secs)
GHCi> ackermann 3 8
2045
(3.15 secs)
GHCi> ackermann 3 9
4093
(12.97 secs)

 Because your recursive call is making nested calls to itself, its runtime cost quickly starts to explode! Even though you
 followed the rules for recursion, you end up getting into serious trouble with the Ackermann function.

 8.3.2. The Collatz conjecture

 The Collatz conjecture is an addictively fascinating problem in mathematics. The Collatz conjecture involves defining a recursive process given
 a starting number n:

 	If n is 1, you’re finished.

 	If n is even, repeat with n/2.

 	If n is odd, repeat with n × 3 + 1.

 Let’s write a function collatz that implements this process. The only issue is that as described, collatz would always return 1. To spice things up a bit, you’ll record how long it takes to reach 1. So, for example, for collatz 5, you go through the following path:

 5 -> 16 -> 8 -> 4 -> 2 -> 1

 In this case, you’d expect collatz 5 to be 6.

 Now to write your code. First, you establish your goal (rule 1): this is simply the case that n is 1. What do you do when
 you get to your goal (rule 2)? You’ll want to return 1 because we consider this to be one step. You can use pattern matching
 to make this step easy to describe:

 collatz 1 = 1

 Next you have to list your alternatives (rule 3). In this case, you have two alternatives: n isn’t 1 and is even, or n isn’t
 1 and is odd. Because you’re comparing, which requires computation, you can’t use pattern matching for both of these cases:

 collatz n = if even n
 then
 else ...

 You’re nearly finished! The next step is to describe what happens in your alternate cases (rule 4). This is easy, because
 they’re described clearly in the conjecture. Don’t forget that you also want to keep track of how long your path is. This
 means you have to add 1 to your next call to collatz.

 Listing 8.4. collatz

 collatz 1 = 1
collatz n = if even n
 then 1 + collatz (n `div` 2)
 else 1 + collatz (n*3 + 1)

 And your function is all done. This is a fun function to play with:

 GHCi> collatz 9
20
GHCi> collatz 999
50
GHCi> collatz 92
18
GHCi> collatz 91
93
GHCi> map collatz [100 .. 120]
[26,26,26,88,13,39,13,101,114,114,114,70,21,13,34,34,21,21,34,34,21]

 But you forgot to confirm that the recursion in each of your alternate states leads you closer to your goal (rule 5). Your
 first alternate case, of n being even, is no problem. When n is even, you’re dividing it in half; if you keep doing this,
 you’ll eventually reach 1. But in the odd case of n × 3 + 1, it doesn’t look like you’re moving closer. It’s possible, even
 likely, that increasing an odd number in this way, combined with the way you decrease even numbers, always leads to 1. Unfortunately,
 you don’t know. Nobody knows! The Collatz conjecture is the supposition that your collatz function always terminates, but there’s no proof that this is true. If you happen to find a number that locks up GHCi, make
 a note of it; it could lead to a famous mathematical paper!

 This collatz function violates our rules in an interesting way. This doesn’t necessarily mean you should throw the function away. You
 can test it for large ranges of values (figure 8.1), so if you needed to use this function in software, it’s likely okay to use. Nonetheless, it’s important to see that rule
 5 is violated, as this can be extremely dangerous, leading to functions that never terminate.

 Figure 8.1. Visualizing collatz path lengths

 [image:]

 Summary

 In this lesson, our objective was to reinforce the rules of recursion you learned in the preceding lesson. With practice,
 and keeping the rules of recursion in mind, writing recursive code becomes much more natural. You also learned that edge cases
 exist: your code can pass the rules of recursion but still be risky to run, and it can fail to pass the rules but for all
 practical purposes work fine. Let’s see if you got this.

 Q8.1
Implement your own version of reverse, which reverses a list.

 Q8.2
Calculating Fibonacci numbers is perhaps the single most common example of a recursive function. The most straightforward
 definition is as follows:

 fib 0 = 0
fib 1 = 1
fib n = fib (n-1) + fib (n-2)

 Like the Ackermann function, this implementation quickly explodes due to the mutually recursive calls. But unlike the Ackermann
 function, there’s a much more efficient way to compute the nth Fibonacci number. Write a function, fastFib, that can compute the 1,000th Fibonacci number nearly instantly. Hint: fastFib takes three arguments: n1, n2, and counter. To calculate the 1,000th Fibonacci number, you call fastFib 1 1 1000 and for the 5th, you call fastFib 1 1 5.

Lesson 9. Higher-order functions

 After reading lesson 9, you’ll be able to

 	Understand higher-order functions

 	Use map, filter, and foldl to avoid writing explicitly recursive functions

 	Implement many higher-order functions yourself

 In the preceding lesson, you saw a wide variety of recursive functions. Although practice makes writing recursive code easier,
 many functions share the exact same patterns of recursion. Therefore, you can abstract out this recursion into a small number
 of commonly used functions that don’t require you to think about recursion explicitly. The practical answer to the challenge
 of writing recursive code is that you usually use these existing functions, which are part of a group of functions referred
 to as higher-order functions.

 A higher-order function is technically any function that takes another function as an argument. Typically, when higher-order functions are mentioned, a specific group of them comes to mind, and nearly all of these are
 used to abstract away common patterns of recursion. In this lesson, you’ll look at higher-order functions that make writing
 recursive functions much easier. The true cure for recursive headaches is abstraction!

 	

 Consider this

 Here are two functions, add3ToAll and mul3byAll, which add 3 to each member of a list and multiply 3 by each member of the list, respectively:

 add3ToAll [] = []
add3ToAll (x:xs) = (3 + x):add3ToAll xs
mul3ByAll [] = []
mul3ByAll (x:xs) = (3 * x):mul3ByAll xs

 Both functions are easy to write and understand, and they share nearly identical structures. Now imagine a function squareAll, which squares each element in a list. The squareAll function also shares this same basic structure. You can probably think of an endless variety of functions that share this
 exact same pattern. Can you think of how you’d use first-class functions to rewrite these examples by using a new function
 that takes in a function as an argument and a list and can be used to define both add3ByAll and mul3ByAll?

 	

 9.1. Using map

 It’s hard to overstate how important the map function is to functional programming and Haskell. The map function takes another function and a list as arguments and applies that function to each element in the list:

 GHCi> map reverse ["dog","cat", "moose"]
["god","tac","esoom"]
GHCi> map head ["dog","cat", "moose"]
"dcm"
GHCi> map (take 4) ["pumpkin","pie","peanut butter"]
["pump","pie","pean"]

 A common first impression most programmers have of map is that it’s a cleaner version of a for loop. Compare these two approaches to adding the determiner a to a list of animal names in JavaScript (which supports both map and for loops), as shown in the following listing.

 Listing 9.1. JavaScript map example

 var animals = ["dog","cat","moose"]
//with a for loops
for(i = 0; i < animals.length; i++){
 animals[i] = "a " + animals[i]

}
//with map
var addAnA = function(s){return "a "+s}
animals = animals.map(addAnA)

 Even in a language that doesn’t enforce functional programming as strictly as Haskell, map has several advantages. For starters, because you’re passing in a named function, you know exactly what’s happening. Given
 this trivial example, that’s not a big deal, but the body of a for loop can get complicated. If the function is well named, seeing what’s happening in the code is easy. You can also decide
 that you later want to change the behavior of your map (say, using an addAThe function), and all you have to do is change an argument.

 The readability of the code is additionally improved because map is a specific kind of iteration. You know that you’ll get a new list back that’s exactly the same size as the one you put
 in. This advantage may not be obvious when you’re new to map and other higher-order functions on lists. As you become more literate in the idioms of functional programming, you’ll begin
 thinking in terms of how you’re transforming a list rather than the general form of iterating through values that a for loop represents.

 9.2. Abstracting away recursion with map

 The main reason that you use first-class functions, and therefore have higher-order functions, is so you can abstract out
 programming patterns. To make this clear, let’s look at how map works. It turns out that map bears only a superficial resemblance to a for loop, and under the hood looks nothing at all like it. To figure out how map works, you’ll take two simple tasks you could solve with map and then write them assuming map didn’t exist (nor first-class functions, for that matter). You’ll take your addAnA behavior from our JavaScript example and another function that squares a list of numbers, squareAll. For clarification, here’s the map behavior you’re trying to re-create:

 GHCi> map ("a "++) ["train","plane","boat"]
["a train","a plane","a boat"]
GHCi> map (^2) [1,2,3]
[1,4,9]

 You’ll start with addAnA first. Once again, the first question you need to ask is, “What’s your goal state?” Because you’re going straight through
 the list, you’ll be finished when you hit []. The next question is, “What do you do at the end?” You’re trying to add a to each of the terms in the list, and there are no terms, so it’s sensible to return the empty list. The other hint that
 you want to return an empty list is that you’re building a list. If your recursive function returns a list, it must somehow
 end in the empty list. For your goal state, you get a simple definition:

 addAnA [] = []

 The only other possibility is that there’s a nonempty list. In that case, you want to take the head of the list and apply addAnA to whatever is left:

 addAnA (x:xs) = ("a " ++ x):addAnA xs

 Do you meet your demand of moving closer to your goal? Yes, because you’re taking the tail of your list, which will eventually lead you to the empty list.

 The squareAll function follows a similar pattern. It ends at the empty list, and the only other option is for the argument to be a non-empty
 list. In the event of a nonempty list, you square the head and continue on your way:

 squareAll [] = []
squareAll (x:xs) = x^2:squareAll xs

 If you go ahead and remove the concatenating and squaring function, replacing them with an f for any function, you end up with the definition of map!

 Listing 9.2. myMap

 myMap f [] = []
myMap f (x:xs) = (f x):myMap f xs

 If you didn’t have map, you’d end up repeating this pattern of writing a recursive function over and over again. The literal recursion isn’t particularly
 difficult, but would be much less pleasant to write and read frequently. If you find recursion challenging, the good news
 is that any pattern of recursion that has been used enough is abstracted out. In practice, you don’t explicitly write out
 recursive functions that often. But because the common patterns of recursion are already higher-order functions, when you
 do come across a truly recursive problem, it typically requires careful thought.

 9.3. Filtering a list

 Another important higher-order function for working with lists is filter. The filter function looks and behaves similarly to map, taking a function and a list as arguments and returning a list. The difference is that the function passed to filter must be passed a function that returns True or False. The filter function works by keeping only the elements of the list that pass the test:

 GHCi> filter even [1,2,3,4]
[2,4]
GHCi> filter (\(x:xs) -> x == 'a') ["apple","banana","avocado"]
["apple","avocado"]

 The use of filter is straightforward, and it’s a handy tool to have. The most interesting thing about filter is the pattern of recursion it abstracts out. As with map, the goal of filter is an empty list. What makes filter different is that there are two possible alternatives: a nonempty list in which the first element passes, and a nonempty
 list in which the first element doesn’t pass. The only difference is that when the test fails, the element isn’t recursively
 consed to the list.

 Listing 9.3. myFilter

 myFilter test [] = []
myFilter test (x:xs) = if test x 1
 then x:myFilter test xs 2
 else myFilter test xs 3

 	1 See whether the head of the list passes the test.

 	2 If it does pass, cons it with filtering the rest of the list.

 	3 Otherwise, continue filtering the rest of the list.

 	

 Quick check 9.1

 Q1:
Implement remove, which removes elements that pass the test

 	

 	

 QC 9.1 answer

 1:

remove test [] = []
remove test (x:xs) = if test x
 then remove test xs
 else x:remove test xs

 	

 9.4. Folding a list

 The function foldl (the l stands for left, which we’ll explain soon) takes a list and reduces it to a single value. The function takes three arguments: a binary function,
 an initial value, and a list. The most common use of foldl is to sum a list:

 GHCi> foldl (+) 0 [1,2,3,4]
10

 foldl is probably the least obvious of the higher-order functions we’ve covered. The way foldl works is to apply the binary argument to the initial value and the head of the list. The result of this function is now the
 new initial value. Figure 9.1 shows the process.

 Figure 9.1. Visualizing foldl (+)

 [image:]

 	

 Quick check 9.2

 Q1:
Write the function myProduct, which calculates the product of a list of numbers.

 	

 	

 QC 9.2 answer

 1:

myProduct xs = foldl (*) 1 xs

 	

 Fold is useful but definitely takes some practice to get used to. You can build a concatAll function that joins all strings in a list:

 concatAll xs = foldl (++) "" xs

 It’s common to use foldl and map together. For example, you can create sumOfSquares, which squares every value in a list and then takes the sum of it:

 sumOfSquares xs = foldl (+) 0 (map (^2) xs)

 Perhaps the most remarkable use of foldl is to reverse a list. To do this, you need a helper function named rcons, which will cons elements in the reverse order.

 Listing 9.4. myReverse

 rcons x y = y:x
myReverse xs = foldl rcons [] xs

 This is another function worth visualizing to add clarity; see figure 9.2.

 Figure 9.2. Visualizing foldl rcons

 [image:]

 Note that in this case, the “single” value that foldl returns is another list!

 Implementing foldl is a bit trickier than the other functions you’ve seen so far. Once again, your goal state is the empty list, []. But what should you return? Because the initial value will get updated after each call to the binary function, it’ll contain
 the final value in your computation. When you reach the end of the list, you return the current value for init:

 myFoldl f init [] = init

 You have only one other alternative: a nonempty list. For this, you pass your initial value and the head of your list to the
 binary function. This creates your new init value. Then you call myFoldl on the rest of the list by using this new value as your init.

 Listing 9.5. myFoldl

 myFoldl f init [] = init
myFoldl f init (x:xs) = myFoldl f newInit xs
 where newInit = f init x

 	

 Quick check 9.3

 Q1:
True or false: The nongoal step in myFoldl terminates.

 	

 	

 QC 9.3 answer

 1:

True: because you’re always recursing on the rest of the list, it must get smaller until it’s empty (if it’s not infinite).

 	

 The question that remains is, why left fold? It turns out that there’s another way to solve this general problem of folding a list of values into a single value.
 The alterative to foldl is foldr; the r stands for right. If you look at the definition of myFoldr, you can see how it differs.

 Listing 9.6. myFoldr

 myFoldr f init [] = init
myFoldr f init (x:xs) = f x rightResult
 where rightResult = myFoldr f init xs

 The reason we call it a right fold is that there are two arguments in a binary function: a left argument and a right argument. The left fold compacts the
 list into the left argument, and the right fold into the right argument.

 Both performance and computational differences exist between foldl and foldr. At this stage in learning, it’s important to know that these functions give different answers if the order of the application
 matters. For addition, the order doesn’t matter, so these functions behave the same:

 GHCi> foldl (+) 0 [1,2,3,4]
10
GHCi> foldr (+) 0 [1,2,3,4]
10

 But for subtraction, order does matter:

 GHCi> foldl (-) 0 [1,2,3,4]
-10
GHCi> foldr (-) 0 [1,2,3,4]
-2

 When learning Haskell, foldl is preferable for folding lists because its behavior is more intuitive. Understanding the difference between foldl and foldr is a good sign that you’ve mastered recursion.

 	

 The many kinds of folds

 The family of fold functions are, undoubtedly, the trickiest of the higher-order functions introduced here. There’s another
 useful fold function named foldl' (note the tick mark) found in the Data.List module. Here’s a list of advice for when to use each fold:

 	foldl is the most intuitive behaving of the folds, but it usually has terrible performance and can’t be used on infinite lists.

 	foldl' is a nonlazy version of foldl that’s often much more efficient.

 	foldr is often more efficient than foldl and is the only fold that works on infinite lists.

 When learning Haskell, there’s no need to immediately master these various types of folds. You’ll likely run into an issue
 with foldl as you write more-sophisticated Haskell code.

 	

 Summary

 In this lesson, our objective was to introduce you to a family of functions that make working with recursion much easier.
 Many recursive problems can be solved with map, filter, and foldl. When encountering a recursive problem, the first question you should ask is whether you can solve it with one of these three
 functions. Let’s see if you got this.

 Q9.1
Use filter and length to re-create the elem function.

 Q9.2
Your isPalindrome function from lesson 6 doesn’t handle sentences with spaces or capitals. Use map and filter to make sure the phrase “A man a plan a canal Panama” is recognized as a palindrome.

 Q9.3
In mathematics, the harmonic series is the sum of 1/1 + 1/2 + 1/3 + 1/4 Write a function harmonic that takes an argument n and calculates the sum of the series to n. Make sure to use lazy evaluation.

Lesson 10. Capstone: Functional object-oriented programming with robots!

 This capstone covers

 	Using functional programming to create objects

 	Creating example objects that interact with each other

 	Representing state in a functional way

 A common misconception is that object-oriented programming (OOP) and functional programming somehow stand in opposition. In
 reality, this couldn’t be further from the truth. Many functional programming languages support some form of object-oriented
 programming, including Common Lisp, R, F#, OCaml, and Scala. In this unit, you explored the idea that functions can be used
 to perform any computation. So it makes perfect sense that by using the tools of functional programming, you can create a
 basic object-oriented programming system!

 This is your first capstone exercise. In this exercise, you’ll see how to use the tools of functional programming to replicate
 common design features found in OOP languages. You’ll build a simple cup object and then move on to modeling fighting robots!

 	

 Think like a programmer

 Haskell doesn’t use objects, so why on earth should you spend time implementing OOP from scratch? The main reason is it allows
 you to understand the power of the functional tools you’ve been learning about so far. If you can understand how to build
 OOP by using closures, lambdas, and first-class functions, you’ve truly reached functional enlightenment.

 	

 10.1. An object with one property: a cup of coffee

 Let’s start with modeling a simple cup of coffee. You’ll save all the code for this section in a cup.hs file. For this example,
 a cup has only one minimal property: the number of ounces of liquid currently in it. You need a way to store this value so
 you can access it later. This will act as your basic object. Fortunately, in lesson 5, you discovered a useful tool for capturing values inside a function: closures! You’ll define a cup function that takes the number of fluid ounces in the cup and returns a closure storing that value:

 cup flOz = _ -> flOz

 Because you have first-class functions, you can treat this value stored in a closure just like data. You can now pass your
 stored information around like an object. But clearly this isn’t enough, as you can’t do anything interesting with the fact
 that you’ve stored your ounces. What you want is to be able to apply a message to that internal value of the cup. You’ll use
 a first-class function to pass a message to your object. This message can then act on the internal property of the object.
 Notice that you’re going to be using a slightly different pattern of sending messages to the object rather than the common
 approach of calling methods. When calling methods, your object > action pattern looks like figure 10.1.

 Figure 10.1. Method-calling approach to OOP

 [image:]

 Your approach will invert this pattern by sending a message to an object, as shown in figure 10.2.

 Figure 10.2. Message-passing approach to OOP (commonly used in functional programming languages)

 [image:]

 This less common notation is used in the Common Lisp Object System (CLOS) as well as R’s S3 object system.

 10.1.1. Creating a constructor

 The most common way to create an instance of an object is by using a special method called a constructor. The only thing you need to do to create a constructor for your object is to allow a way for you to send a message to your
 object. By adding a single named argument to your closure, you can add a way to pass messages in.

 Listing 10.1. Constructor for a basic cup object

 cup flOz = \message -> message flOz

 Now you have a basic constructor that can make instances of your object. Note that you’ve done this using a lambda function,
 a closure, and first-class functions! In GHCi, you can create an instance of your cup object:

 GHCi> aCup = cup 6

 You can also define a 12-ounce coffee cup in a cup.hs file.

 Listing 10.2. coffeeCup

 coffeeCup = cup 12

 10.1.2. Adding accessors to your object

 You’ve stored your value in an object, but you need something useful for this object to do. Next you’ll create simple messages
 to get and set values inside your object. First you want to be able to get the volume of coffee currently in the cup. You’ll
 create a getOz message that takes a cup object and returns the number of fluid ounces (flOz) it has.

 Listing 10.3. getOz message

 getOz aCup = aCup (\flOz -> flOz)

 To use this function, you pass this message into the object:

 GHCi> getOz coffeeCup
12

 Next you want to do something a little more complicated. The most useful thing to do with a cup is to drink from it! Drinking
 from a cup inherently changes the state of the object. But how in the world are you going to do this in Haskell!? Easy: you’ll
 create a new object behind the scenes. Your message to set a value for fluid ounces needs to return a new instance of your
 object with the internal property appropriately modified.

 Listing 10.4. Defining a drink message that updates state

 drink aCup ozDrank = cup (flOz - ozDrank)
 where flOz = getOz aCup

 Now you can sip some coffee in GHCi:

 GHCi> afterASip = drink coffeeCup 1
GHCi> getOz afterASip
11
GHCi> afterTwoSips = drink afterASip 1
GHCi> getOz afterTwoSips
10
GHCi> afterGulp = drink afterTwoSips 4
GHCi> getOz afterGulp
6

 This definition has one slight bug: you can drink more coffee than the cup can hold.

 The only issue is that your drink message allows you to have negative values in your cup. You can rewrite drink so that the minimum amount of coffee in a cup is 0.

 Listing 10.5. Improving the drink definition

 drink aCup ozDrank = if ozDiff >= 0
 then cup ozDiff
 else cup 0
 where flOz = getOz aCup
 ozDiff = flOz - ozDrank

 With this improvement, your cup can never have a coffee debt:

 GHCi> afterBigGulp = drink coffeeCup 20
GHCi> getOz afterBigGulp
0

 You’ll add one more helper message to check whether the cup is empty.

 Listing 10.6. Defining isEmpty

 isEmpty aCup = getOz aCup == 0

 Because you need to constantly keep track of the object’s state, taking many drinks from the cup could make your code get
 a bit verbose. Luckily, foldl can save you here. In lesson 9, we discussed the fact that foldl is a higher-order function that takes a function, an initial value, and a list and reduces them to a single value. Here’s
 a partial example of using foldl to take five drinks from the cup.

 Listing 10.7. Using foldl to model taking many sips

 afterManySips = foldl drink coffeeCup [1,1,1,1,1]

 In GHCi, you can see that this works without you having to do as much bookkeeping:

 GHCi> getOz afterManySips
7

 10.2. A more complex object: let’s build fighting robots!

 So far, you’ve modeled the basics of an object. You’ve been able to capture information about an object by using a constructor.
 Then you’ve interacted with that object by using accessors. With the basics of representing an object behind you, you can
 build something more exciting. Let’s put together some fighting robots!

 Your robot will have some basic properties:

 	A name

 	An attack strength

 	A number of hit points

 You need something a little more sophisticated to handle these three attributes. You could pass in three values to your closure,
 but that’s going to make working with them confusing. Instead, you’ll use a tuple of values that represent the attributes
 of your robot. For example, ("Bob",10,100) is a robot named Bob that has an attack of 10 and has 100 hit points for his life.

 Rather than sending a message to a single value, you’ll send a message to this collection of attributes. Notice that you’ll
 use pattern matching on our tuple argument to make the values easier to read and understand.

 Listing 10.8. A robot constructor

 robot (name,attack,hp) = \message -> message (name,attack,hp)

 All objects can be viewed as a collection of attributes that you send messages to. In the next unit, you’ll look at Haskell’s
 type system, which allows a much more powerful method of abstracting out data. Even then, the idea of a tuple serving as a
 minimum viable data structure will persist.

 You can create an instance of your robot like this:

 killerRobot = robot ("Kill3r",25,200)

 To make this object useful, you’ll have to add a few accessors so you can work with these values more easily. You’ll start
 by making a helper function that allows you to easily access various parts of your tuple by name. These work just like fst and snd do for a tuple of two values (as used in lesson 4).

 Listing 10.9. name, attack, and hp helper functions

 name (n,_,_) = n
attack (_,a,_) = a
hp (_,_,hp) = hp

 With these helper functions, you can easily implement your getters.

 Listing 10.10. getName, getAttack, and getHP accessors

 getName aRobot = aRobot name
getAttack aRobot = aRobot attack
getHP aRobot = aRobot hp

 Having these accessors means you no longer have to worry about remembering the order of the values in your tuple:

 GHCi> getAttack killerRobot
25
GHCi> getHP killerRobot
200

 Because you have a more complicated object this time, you’ll also want to write some setters that allow you to set the properties.
 Each of these cases will have to return a new instance of your robot.

 Listing 10.11. setName, setAttack, and setHP accessors

 setName aRobot newName = aRobot (\(n,a,h) -> robot (newName,a,h))
setAttack aRobot newAttack = aRobot (\(n,a,h) -> robot (n,newAttack,h))
setHP aRobot newHP = aRobot (\(n,a,h) -> robot (n,a,newHP))

 Notice that now you not only can set values, but also can emulate the behavior of prototype-based object-oriented programming,
 because you never change state.

 	

 Prototype-based OOP

 Prototype-based object-oriented languages, such as JavaScript, create instances of objects by modifying a prototypical object,
 rather than using classes. Prototypes in JavaScript are often a source of much confusion. Here you can see how cloning an
 object and modifying it to create a new object is a natural result of using functional programming. In Haskell, you can create
 new objects by modifying copies of old, existing ones:

 nicerRobot = setName killerRobot "kitty"
gentlerRobot = setAttack killerRobot 5
softerRobot = setHP killerRobot 50

 	

 One more nice function would be to print all your robot’s stats. You’ll define a printRobot message that works much like a toString method in other languages.

 Listing 10.12. Defining a printRobot message

 printRobot aRobot = aRobot (\(n,a,h) -> n ++
 " attack:" ++ (show a) ++
 " hp:"++ (show h))

 This makes inspecting your objects in GHCi much easier:

 GHCi> printRobot killerRobot
"Kill3r attack:25 hp:200"
GHCi> printRobot nicerRobot
"kitty attack:25 hp:200"
GHCi> printRobot gentlerRobot
"Kill3r attack:5 hp:200"
GHCi> printRobot softerRobot
"Kill3r attack:25 hp:50"

 10.2.1. Sending messages between objects

 The most interesting part about fighting robots is the fighting! First you need a send a damage message to a robot. This will
 work just like your drink message did in the cup example (listings 10.4 and 10.5). In this case, you need to get all of your attributes rather than just flOz.

 Listing 10.13. Completing the damage function

 damage aRobot attackDamage = aRobot (\(n,a,h) ->
 robot (n,a,h-attackDamage))

 With the damage message, you can tell a robot that it has taken damage:

 GHCi> afterHit = damage killerRobot 90
GHCi> getHP afterHit
110

 Now it’s time to fight! This is your first case of having one object interact with another, so you’re doing some real OOP
 now. Your fight message is going to be the mainstream OOP equivalent of the following:

 robotOne.fight(robotTwo)

 Your fight message applies damage from the attacker to the defender; additionally, you want to prevent a robot with no life
 from attacking.

 Listing 10.14. The definition of fight

 fight aRobot defender = damage defender attack
 where attack = if getHP aRobot > 10
 then getAttack aRobot
 else 0

 Next you need a contender to fight your killerRobot:

 gentleGiant = robot ("Mr. Friendly", 10, 300)

 Let’s go for a three-round fight:

 gentleGiantRound1 = fight killerRobot gentleGiant
killerRobotRound1 = fight gentleGiant killerRobot
gentleGiantRound2 = fight killerRobotRound1 gentleGiantRound1
killerRobotRound2 = fight gentleGiantRound1 killerRobotRound1
gentleGiantRound3 = fight killerRobotRound2 gentleGiantRound2
killerRobotRound3 = fight gentleGiantRound2 killerRobotRound2

 After this fight, you can see how they both did:

 GHCi> printRobot gentleGiantRound3
"Mr. Friendly attack:10 hp:225"
GHCi> printRobot killerRobotRound3
"Kill3r attack:25 hp:170"

 10.3. Why stateless programming matters

 So far, you’ve been able to create a reasonable approximation of an OOP system. You’ve ended up having to do some extra bookkeeping
 to explicitly keep track of state after each round. Although this solution works, wouldn’t it be easier if you could have
 mutable state to solve these problems? Hidden state would make this code cleaner, but major problems can easily arise with
 hidden state. Let’s look at another fight to see the real costs of having hidden state:

 fastRobot = robot ("speedy", 15, 40)
slowRobot = robot ("slowpoke",20,30)

 Now you’ll have another three-round fight.

 Listing 10.15. Three-round robot fight with simultaneous attacks

 fastRobotRound1 = fight slowRobot fastRobot
slowRobotRound1 = fight fastRobot slowRobot
fastRobotRound2 = fight slowRobotRound1 fastRobotRound1
slowRobotRound2 = fight fastRobotRound1 slowRobotRound1
fastRobotRound3 = fight slowRobotRound2 fastRobotRound2
slowRobotRound3 = fight fastRobotRound2 slowRobotRound2

 And you can check out the results in GHCi:

 GHCi> printRobot fastRobotRound3
"speedy attack:15 hp:0"
GHCi> printRobot slowRobotRound3
"slowpoke attack:20 hp:0"

 Who should win? Because of the way you changed your values, each robot attacks at the exact same time. Looking at the names
 of the robots, the behavior you want is for the fast robot to win. The fast robot should land the fatal blow before the slow
 robot, and the slow robot shouldn’t be able to attack.

 Because you have absolute control over how to handle state, you can change this easily.

 Listing 10.16. Changing the priority of attacks

 slowRobotRound1 = fight fastRobot slowRobot
fastRobotRound1 = fight slowRobotRound1 fastRobot
slowRobotRound2 = fight fastRobotRound1 slowRobotRound1
fastRobotRound2 = fight fastRobotRound1 slowRobotRound1
slowRobotRound3 = fight fastRobotRound2 slowRobotRound2
fastRobotRound3 = fight slowRobotRound3 fastRobotRound2

 In this example, you can make sure that the slow-robot version that’s attacking is the one that’s updated after the faster
 robot strikes first:

 GHCi> printRobot fastRobotRound3
"speedy attack:15 hp:20"
GHCi> printRobot slowRobotRound3
"slowpoke attack:20 hp:-15"

 As expected, your fastRobot wins this match.

 Because you don’t have state in functional programming, you have complete control over the way computation happens. Compare
 this with stateful OOP. Here’s one round using objects storing state:

 fastRobot.fight(slowRobot)
slowRobot.fight(fastRobot)

 But say your code is executed this way:

 slowRobot.fight(fastRobot)
fastRobot.fight(slowRobot)

 Then you’d get completely different results!

 In the case of sequentially executed code, this is no problem at all. But suppose you’re using asynchronous, concurrent, or
 parallel code. You may have no control over when these operations execute! Furthermore, controlling the priority of fights
 would be much more difficult, if you wanted to ensure that fastRobot always got in the first punch.

 As a mental exercise, sketch out how to ensure that fastRobot does damage to slowRobot first, even if you don’t know which of fastRobot.fight and slowRobot.fight will execute first. Now think about how much extra code you’d need in order to solve this for a three-round fight, if it’s possible that round
 3 code could execute before round 1 or round 2. If you’ve ever written low-level parallel code, you’re likely already aware
 of how difficult managing state in this environment can be.

 Believe it or not, Haskell also has solved the problem of round 3 happening before round 2. This may be a surprise, but Haskell
 doesn’t care about the order of these functions! You can rearrange the previous code any way you like and get the exact same
 results!

 Listing 10.17. Order has no importance in execution of Haskell code

 fastRobotRound3 = fight slowRobotRound3 fastRobotRound2
fastRobotRound2 = fight slowRobotRound2 fastRobotRound1
fastRobotRound1 = fight slowRobotRound1 fastRobot
slowRobotRound2 = fight fastRobotRound1 slowRobotRound1
slowRobotRound3 = fight fastRobotRound2 slowRobotRound2
slowRobotRound1 = fight fastRobot slowRobot

 The results in GHCi are the same:

 GHCi> printRobot fastRobotRound3
"speedy attack:15 hp:20"
GHCi> printRobot slowRobotRound3
"slowpoke attack:20 hp:-15"

 Any bugs that might come up because of the order in which the functions have been written are much less common in Haskell.
 Because you can control exactly when and how state is modeled, there are no mysteries at all in how the code is executed.
 We have deliberately made this code more verbose than it needs to be so that it’s easier to understand how much control you
 have over state. This robot fight could happen in any order, and the results are the same.

 10.4. Types—objects and so much more!

 Haskell isn’t an object-oriented language. All of the functionality built here from scratch already exists in a much more
 powerful form, using Haskell’s type system. Many of the ideas used in this section will come up again, but rather than hacking
 together objects, you’ll be creating types. Haskell’s types can replicate all the behavior you’ve modeled here, but give you
 the added benefit that Haskell’s compiler can reason much more deeply about types than your ad hoc objects. Because of this
 ability to reason about types, code created using a powerful type system tends to be much more robust and predictable. The
 advantages you’ve seen from using functional programming are magnified tremendously when you combine them with Haskell’s type
 system.

 Summary

 In this capstone, you

 	Saw that object-oriented programming and functional programming aren’t inherently at odds

 	Represented OOP by using the tools of functional programming covered in this unit

 	Used closures to represent objects created with lambda functions

 	Sent messages to objects by using first-class functions

 	Managed state in a functional way, allowing you to be more exact in controlling program execution

 Extending the exercise

 Here are some ideas for simple exercises you can do to extend this capstone on your own:

 	Use map on a list of robot objects to get the life of each robot in the list.

 	Write a threeRoundFight function that takes two robots and has them fight for three rounds, returning the winner. To avoid having so many different
 variables for robot state, use a series of nested lambda functions so you can just overwrite robotA and robotB.

 	Create a list of three robots. Then create a fourth robot. Use partial application to create a closure for the fight method so the fourth robot can fight all three robots at once, using map. Finally, use map to get the remaining life from the rest of the robots.

Unit 2. Introducing types

 Nearly every programming language supports some idea of types. Types are important because they define the kinds of computation
 allowed on certain data. Take, for example, the text "hello" and the number 6. Say you want to do something like add them together:

 "hello" + 6

 Even someone with no prior programming experience would find this question interesting, because it’s not clear what to do.
 The two most obvious answers are to

 	Throw an error

 	Combine these values in the most reasonable way: "hello6"

 To arrive at either option, you need a way to keep track of the type of your data, as well as the type of data your computation
 is expecting. Typically, we call the value of "hello" a String, and the value of 6 an Int. Regardless of your choice of programming language, you need to know the types you’re dealing with so you can either throw
 an error when they don’t match or do some sort of automatic conversion by knowing how to transform types. Even if you don’t
 think about types much in your programming language of choice, they are an important part of programming.

 Languages such as Ruby, Python, and JavaScript use dynamic typing. In a dynamic type system, all the decisions like the one we made with "hello" and 6 happen during runtime. The benefit of dynamic typing for the programmer is a generally more flexible language and no need
 to manually keep track of types. The danger of dynamic typing is that errors happen only at runtime. For example, say you
 have the following expression in Python:

 def call_on_xmas():
 "santa gets a "+10

 This code will cause an error because Python requires 10 to be converted to a string before adding it to the string literal.
 As you can guess by the function name, this function won’t be called until Christmas! If this mistake snuck into a production
 system, it could mean a frustrating Christmas debugging a rare problem. The solution has been to incorporate extensive unit
 testing to ensure that bugs like this can’t slip in. This somewhat negates the benefit of not having to annotate types as
 you code.

 Languages such as Java, C++, and C# use static typing. With static typing, problems such as "hello" + 6 are resolved during compilation. If a type error occurs, the program won’t compile. The obvious benefit of static typing
 is that an entire class of bugs can’t make it into running programs. The downside, traditionally, is that statically typed
 languages require the programmer to add many type annotations. Type signatures are required for every function/method, and
 all variables must have their type declared.

 Haskell is a statically typed programming language, but it certainly doesn’t look like a statically typed language in the
 examples you’ve seen so far. All of your variables and functions have made no references to types at all. This is because
 Haskell makes heavy use of type inference. The Haskell compiler is smart, and can figure out what types you’re using based on the way the functions and variables are
 used.

 Haskell’s type system is extremely powerful, and is at least as fundamental to making Haskell unique as its adherence to pure
 functional programming. In this unit, you’ll be introduced to the basics of Haskell’s type system. You’ll learn how to model
 data and define your own types and type classes.

Lesson 11. Type basics

 After reading lesson 11, you’ll be able to

 	Understand basic types in Haskell, including Int, String, and Double

 	Read type signatures for functions

 	Use simple type variables

 This lesson introduces one of the most powerful aspects of Haskell: its robust type system. The fundamentals of functional
 programming covered in the preceding lessons are shared by all functional programming languages from Lisp to Scala. It’s Haskell’s
 type system that sets it apart from other programming languages. Our introduction in this lesson starts with the basics of
 Haskell’s type system.

 	

 Consider this

 You need to create a simple function for taking the average of a list of numbers. The most obvious solution is to take the
 sum of the list and divide it by the length of the list:

 myAverage aList = sum aList / length aList

 But this simple definition doesn’t work. How can you write a function to compute the mean of a list of numbers?

 	

 11.1. Types in Haskell

 It may come as a bit of a surprise that Haskell is a statically typed language. Other common statically typed languages include
 C++, C#, and Java. In these and most other statically typed languages, the programmer is burdened with keeping track of type
 annotations. So far in Haskell, you haven’t had to write down any information about the type you’re using for any of your
 values. It turns out this is because Haskell has done it for you! Haskell uses type inference to automatically determine the types of all values at compile time based on the way they’re used! You don’t have to rely
 on Haskell to determine your types for you. Figure 11.1 shows a variable that you’ll give the Int type.

 Figure 11.1. Type signature for a variable

 [image:]

 All types in Haskell start with a capital letter to distinguish them from functions (which all start with a lowercase letter
 or _). The Int type is one of the most ubiquitous and traditional types in programming. Int represents how the computer is to interpret a number represented by a fixed number of bits, often 32 or 64 bits. Because
 you’re describing numbers with a fixed number of bits, you’re limited by a maximum and minimum value that a number can take
 on. For example, if you load x in GHCi, you can do some simple operations to show the limits of this type:

 x :: Int
x = 2

GHCi> x*2000
4000
GHCi> x^2000
0

 As you can see, Haskell handles exceeding the bounds of the Int by returning 0. This property of having limited maximum and minimum values is referred to as being bounded. You’ll learn more about bounded types in lesson 13.

 The Int type is a traditional way of viewing types in programming. Int is a label that tells the computer how to read and understand physical memory. In Haskell, types are more abstract. They provide a way of understanding how values behave and how to organize data. For example, the Integer type more closely resembles the typical Haskell way of thinking about types. Let’s see how to define a new variable y as an Integer.

 Listing 11.1. Integer type

 y :: Integer
y = 2

 You can clearly see the difference between these two types by repeating your calculations from before:

 GHCi> y*2000
4000
GHCi> y^2000
11481306952742545242328332011776819840223177020886952004776427368257662613
923703138566594863165062699184459646389874627734471189608630553314259313561
666531853912998914531228000068877914824004487142892699006348624478161546364
638836394731702604046635397090499655816239880894462960562331164953616422197
033268134416890898445850560237948480791405890093477650042900271670662583052
200813223628129176126788331720659899539641812702177985840404215985318325154
088943390209192055495778358967203916008195721663058275538042558372601552834
878641943205450891527578388262517543552880082284277081796545376218485114902
9376

 As you can see, the Integer type fits more closely with the mathematical sense of what an integer is: any whole number. Unlike the Int type, the Integer type isn’t bounded by memory limitations framed in terms of bytes.

 Haskell supports all the types that you’re likely familiar with in other languages. Here are some examples.

 Listing 11.2. Common types Char, Double, and Bool

 letter :: Char
letter = 'a'

interestRate :: Double
interestRate = 0.375

isFun :: Bool
isFun = True

 Another important type is List. Here are a few examples.

 Listing 11.3. List types

 values :: [Int]
values = [1,2,3]

testScores :: [Double]
testScores = [0.99,0.7,0.8]

letters :: [Char]
letters = ['a','b','c']

 A list of characters is the same as a string:

 GHCi> letters == "abc"
True

 To make things easier, Haskell allows you to use String as a type synonym for [Char]. Both of these type signatures mean exactly the same thing to Haskell:

 aPet :: [Char]
aPet = "cat"

anotherPet :: String
anotherPet = "dog"

 Another important type is a Tuple. You used tuples briefly in lesson 4. When you weren’t thinking about types, tuples didn’t seem too different from a list, but they’re quite a bit more sophisticated.
 Two main differences are that each tuple is of a specific length, and tuples can contain multiple types. A list of type [Char] is a string of any size, whereas a tuple of type (Char) is a tuple of exactly one character. Here are some more tuple examples.

 Listing 11.4. Tuple types

 ageAndHeight ::(Int,Int)
ageAndHeight = (34,74)

firstLastMiddle :: (String,String,Char)
firstLastMiddle = ("Oscar","Grouch",'D')

streetAddress :: (Int,String)
streetAddress = (123,"Happy St.")

 Tuples are useful for modeling simple data types quickly.

 11.2. Function types

 Functions also have type signatures. In Haskell an -> is used to separate arguments and return values. The type signature for double looks like figure 11.2.

 Figure 11.2. Defining the double function by using a type signature

 [image:]

 You could easily have chosen Integer, Double, or any other number of types for your argument. In lesson 12, you’ll look at type classes that allow you to generalize numbers better.

 Taking in an Int and returning an Int works for doubling a number, but it doesn’t work for halving a number. If you want to write a function half and you want to take in an Int, you need to return a Double. Your type signature will look like the following.

 Listing 11.5. Converting from one type to another with half

 half :: Int -> Double

 Now you need to define your function, and a first guess would be this:

 half n = n/2 1

 	1 Incorrect code!

 But this results in an error. The problem is that you’re trying to divide a whole number Int in half, and such a thing is nonsensical because you’ve already declared that you’re going to return a Double. You need to convert your value from an Int into a Double. Most programming languages have the idea of casting a variable from one type to another. Casting forces a value to be represented
 as a different type. Because of this, casting variables often feels like hammering a square peg through a round hole. Haskell
 has no convention for casting types and instead relies on functions that properly transform values from one type to another.
 In this case, you can use Haskell’s fromIntegral function:

 half n = (fromIntegral n) / 2

 Here you’ve transformed n from an Int into a more general number. A good question now might be, “Why don’t you have to call fromIntegral on 2?” In many programming languages, if you want to treat a literal number as a Double, you need to add a decimal to it. In both Python and Ruby, 5/2 is 2 and 5/2.0 is 2.5. Haskell is both stricter and more flexible. It’s stricter because Haskell never does the implicit type conversion that happens
 in Ruby and Python, and it’s more flexible because in Haskell literal numbers are polymorphic: their type is determined from the compiler based on the way they’re used. For example, if you want to use GHCi as a calculator,
 you’ll find you rarely need to worry about type with numbers:

 GHCi> 5/2
2.5

 	

 Quick check 11.1

 Q1:
Haskell has a function named div that does perform integer division (it returns only whole numbers). Write halve, which uses div instead, and include a type signature.

 	

 	

 QC 11.1 answer

 1:

halve :: Integer -> Integer
halve value = value `div` 2

 	

 11.2.1. Functions for converting to and from strings

 One of the most common type conversions is to convert values to and from strings. Haskell has two useful functions that achieve
 this: show and read. Lessons 12 and 13 detail how these work, but for now let’s look at some examples in GHCi. The show function is straightforward:

 GHCi> show 6
"6"
GHCi> show 'c'
"'c'"
GHCi>show 6.0
"6.0"

 	

 Quick check 11.2

 Q1:
Write a function printDouble that takes an Int and returns that value doubled as a string.

 	

 	

 QC 11.2 answer

 1:

printDouble :: Int -> String
printDouble value = show (value*2)

 	

 The read function works by taking a string and converting it to another type. But this is a bit trickier than show. For example, without type signatures, what should Haskell do here?

 z = read "6"

 It’s impossible to tell whether to use Int, Integer, or even Double. If you can’t figure it out, there’s absolutely no way that Haskell can. In this case, type inference can’t save you. There
 are a few ways to fix this. If you use the value z, it’s likely that Haskell will have enough info to figure out how to treat your value:

 q = z / 2

 Now Haskell has enough information to treat z like a Double, even though your String representation didn’t have a decimal. Another solution is to explicitly use your type signature.

 Listing 11.6. Example of reading values from strings: anotherNumber

 anotherNumber :: Int
anotherNumber = read "6"

 Even though you got through the first unit with no type signatures, it’s generally a good idea to always use them. This is
 because in practice type signatures help you reason about the code you’re writing. This little extra annotation lets Haskell
 know what you expect read to do and makes your own intentions clearer in the code. There’s one more way to force Haskell to understand what type you
 want that comes up often in practice. You can always append the expected return type to the end of a function call. This happens
 most frequently in GHCi, but at other times it’s helpful to specify an ambiguous return type:

 GHCi> read "6" :: Int
6
GHCi> read "6" :: Double
6.0

 11.2.2. Functions with multiple arguments

 So far, most of your type signatures have been straightforward. One thing that frequently trips up newcomers to Haskell is
 the type signature for multi-argument functions. Suppose you want a function that takes a house number, street address, and
 town and makes a tuple representing an address. Figure 11.3 shows the type signature.

 Figure 11.3. Type signature for multi-argument functions and definition makeAddress

 [image:]

 What makes this confusing is that there’s no clear separation between which types are for arguments and which are for return
 values. The easy way to remember is that the last type is always the return type. A good question is, why are type signatures
 this way? The reason is that behind the scenes in Haskell, all functions take only one argument. By rewriting makeAddress by using a series of nested lambda functions, as shown in figure 11.4, you can see a multi-argument function the way Haskell does.

 Figure 11.4. Desugaring the multi-argument makeAddress into a sequence of single-argument functions

 [image:]

 You could then call this function like so:

 GHCi> (((makeAddressLambda 123) "Happy St") "Haskell Town")
(123,"Happy St","Haskell Town")

 In this format, each function returns a function waiting for the next. This might seem crazy until you realize this is how
 partial application works! You could apply arguments in exactly the same way with makeAddress and get the exact same results:

 GHCi> (((makeAddress 123) "Happy St") "Haskell Town")
(123,"Happy St","Haskell Town")

 It also turns out that because of the way Haskell evaluates arguments, you can call your desugared lambda version the way
 you would any ordinary function:

 GHCi>makeAddressLambda 123 "Happy St" "Haskell Town"
(123,"Happy St","Haskell Town")

 	

 Quick check 11.3

 Q1:
As each argument is passed to makeAddress, write out the type signature of the returned function.

 	

 	

 QC 11.3 answer

 1:

Starting with our type original type signature:

 makeAddress :: Int -> String -> String -> (Int,String,String)

 And your type signatures is now as follows:

 String -> String -> (Int,String,String)

 Then pass in the first String:

 ((makeAddress 123) "Happy St")

 And here’s the type signature:

 String -> (Int,String,String)

 Finally, if you pass in all of your arguments, you get the type of the result:

 (((makeAddress 123) "Happy St") "Haskell Town")
(Int,String,String)

 	

 Hopefully, this helps to demystify multi-argument type signatures as well as partial application!

 11.2.3. Types for first-class functions

 As we mentioned in lesson 4, functions can take functions as arguments and return functions as values. To write these type signatures, you write the
 individual function values in parentheses. For example, you can rewrite ifEven with a type signature.

 Listing 11.7. Type signatures for first-class functions: ifEven

 ifEven :: (Int -> Int) -> Int -> Int
ifEven f n = if even n
 then f n
 else n

 11.3. Type variables

 We’ve covered a bunch of common types and how they work in functions. But what about the simple function, which returns any value that’s passed in to it? Really, simple could take any type of argument at all. Given what you know so far, you’d have to make a family of simple functions to work with every type.

 Listing 11.8. simpleInt and

 simpleInt :: Int -> Int
simpleInt n = n

simpleChar :: Char -> Char
simpleChar c = c

 But this is ridiculous, and clearly not how Haskell works, because type inference was able to understand simple. To solve this problem, Haskell has type variables. Any lowercase letter in a type signature indicates that any type can be used in that place. The type definition for simple looks like the following.

 Listing 11.9. Using type variables: simple

 simple :: a -> a
simple x = x

 Type variables are literally variables for types. Type variables work exactly like regular variables, but instead of representing
 a value, they represent a type. When you use a function that has a type variable in its signature, you can imagine Haskell
 substituting the variable that’s needed, as shown in figure 11.5.

 Figure 11.5. Visualizing type variables taking on actual values

 [image:]

 Type signatures can contain more than one type of variable. Even though the types can be any value, all types of the same
 variable name must be the same. Here’s an example of a function that makes triples (tuples with three values).

 Listing 11.10. Multiple type variables: makeTriple

 makeTriple :: a -> b -> c -> (a,b,c)
makeTriple x y z = (x,y,z)

 The reason for different names for type variables is the same as using different names for regular variables: they may contain
 different values. In the case of makeTriple, you can imagine a case in which you have a String, a Char, and another String:

 nameTriple = makeTriple "Oscar" 'D' "Grouch"

 In this example, you can imagine that the type signature that Haskell uses looks like this:

 makeTriple :: String -> Char -> String -> (String, Char, String)

 Notice that the definition of makeTriple and makeAddress are nearly identical. But they have different type signatures. Because of makeTriple’s use of type variables, makeTriple can be used for a more general class of problems than makeAddress. For example, you could use makeTriple to replace makeAddress. This doesn’t render makeAddress useless. Because makeAddress has a more specific type signature, you can make more assumptions about how it behaves. Additionally, Haskell’s type checker
 won’t allow you to create an address where you accidently used a String for the number instead of an Int.

 Just as with regular variables, using different names for type variables doesn’t imply that the values represented by the
 variables must be different, only that they can be. Say you compare the type signatures of two unknown functions f1 and f2:

 f1 :: a -> a
f2 :: a -> b

 You know that f2 is a function that can produce a much wider range of possible values. The f1 function could behave only by changing a value and keeping it as the same type: Int -> Int, Char -> Char, and so forth. In contrast, f2 can represent a much broader range of possible behaviors: Int -> Char, Int -> Int, Int -> Bool, Char -> Int, Char -> Bool, and so forth.

 	

 Quick check 11.4

 Q1:
The type signature for map is as follows:

 map :: (a -> b) -> [a] -> [b]

 Why couldn’t it be this?

 map :: (a -> a) -> [a] -> [a]?

 Hint: Fill in the type variables for myMap show [1,2,3,4].

 	

 	

 QC 11.4 answer

 1:

map:: (a -> a) -> [a] -> [a] would mean that map must always return the same type as it currently is.

 In this case, you couldn’t perform

 map show [1,2,3,4]

 because show returns a type String that isn’t consistent with the original type. The real power of map isn’t iteration, but transforming a list of one type into a list of another type.

 	

 Summary

 In this lesson, our objective was to teach you the basics of Haskell’s amazing type system. You saw that Haskell has many
 of the standard types that programmers are familiar with, such as Int, Char, Bool, and String. Despite Haskell’s powerful type system, you were able to get this far in the book without explicitly using types because
 of Haskell’s type inference, which allows Haskell to figure out the types you intend by how they’re used. Even though Haskell
 can often handle your code without types, writing down type signatures turns out to be much more beneficial for the programmer.
 From this point in the book onward, most of our discussion will typically come back to “thinking in types.” Let’s see if you
 got this.

 Q11.1
What is the type signature for filter? How is it different from map?

 Q11.2
In Haskell, both tail and head have an error when called on an empty list. You can write a version of tail that won’t fail but instead return an empty list when called on an empty list. Can you write a version of head that returns an empty list when called on an empty list? To answer this, start by writing out the type signatures of both
 head and tail.

 Q11.3
Recall myFoldl from lesson 9.

 myFoldl f init [] = init
myFoldl f init (x:xs) = myFoldl f newInit xs
 where newInit = f init x

 What’s the type signature of this function? Note: foldl has a different type signature.

Lesson 12. Creating your own types

 After reading lesson 12, you’ll be able to

 	Define type synonyms to clarify code

 	Create your own data type

 	Build types from other types

 	Work with complex types by using record syntax

 In the preceding lesson, you learned how to use the basic types in Haskell. Now it’s time to start creating some types of
 your own. Creating types in Haskell is more important than in most other programming languages, even statically typed ones,
 as nearly every problem you solve will come down to the types you’re using. Even when using an existing type, you’ll often
 want to rename it to make understanding your programs easier. For example, take a look at this type signature:

 areaOfCircle :: Double -> Double

 This is a perfectly fine type signature, but suppose you saw this instead:

 areaOfCircle :: Diameter -> Area

 With this alternate type signature, you know exactly what type of arguments your function expects as well as what the result
 means.

 You’ll also learn how to create more-complicated types of your own. Creating types for data in Haskell is as important as
 creating classes in object-oriented languages.

 	

 Consider this

 You want to write a function that operates on music albums. An album includes the following properties (and types): artist (String), album title (String), year released (Int) and a track listing ([String]). The only way you know how to store all this data right now is with a tuple. Unfortunately, this is a bit unwieldy and makes
 getting information out of the tuple tedious (because it requires pattern matching each attribute). Is there a better way
 to do this?

 	

 12.1. Using type synonyms

 In lesson 11, we mentioned that in Haskell you can replace the [Char] type with String. From Haskell’s perspective, these are two names for the same thing. When you have two names for the same type, it’s referred
 to as a type synonym. Type synonyms are extremely useful, because they make reading type signatures much easier. You could have a function used
 for writing doctors’ reports. The function patientInfo takes a first name, last name, age, and height and is used to create quick summaries of patients.

 Listing 12.1. Defining the patientInfo function

 patientInfo :: String -> String -> Int -> Int -> String
patientInfo fname lname age height = name ++ " " ++ ageHeight
 where name = lname ++ ", " ++ fname
 ageHeight = "(" ++ show age ++ "yrs. " ++ show height ++ "in.)"

 You can use this function in GHCi:

 GHCi> patientInfo "John" "Doe" 43 74
"Doe, John (43yrs. 74in.)"
GHCi> patientInfo "Jane" "Smith" 25 62
"Smith, Jane (25yrs. 62in.)"

 If you assume that patientInfo is part of a larger application, it’s likely that first name, last name, age, and height will be used frequently. Type signatures
 in Haskell are of much more benefit to the programmer than the compiler. You don’t need to have a brand new type for each
 of these values, but quickly skimming a code base and seeing Strings and Ints everywhere isn’t helpful. Just as String is a type synonym for [Char], you’d like to create type synonyms for some of the properties of your patients.

 In Haskell, you can create new type synonyms by using the type keyword. Here’s the code to create the type synonyms you’d like.

 Listing 12.2. Type synonyms: FirstName, LastName, Age, and Height

 type FirstName = String
type LastName = String
type Age = Int
type Height = Int

 You can rewrite the original type signature now as follows:

 patientInfo :: FirstName -> LastName -> Age -> Height -> String

 Creating type synonyms isn’t limited to one-to-one renaming of types. It’s much more sensible to store patient names as a
 tuple. You can use a single type to represent the pair of a first and last name in a tuple as follows.

 Listing 12.3. Type synonym: PatientName

 type PatientName = (String,String)

 And now you can create a few helper functions to get the first and last name of the patient.

 Listing 12.4. Accessing PatientName values: firstName and lastName

 firstName :: PatientName -> String
firstName patient = fst patient

lastName :: PatientName -> String
lastName patient = snd patient

 And you can test your code in GHCi:

 GHCi> firstName testPatient
"John"
GHCi> lastName testPatient
"Doe"

 	

 Quick check 12.1

 Q1:
Rewrite patientInfo to use your patientName type, reducing the total arguments needed to three instead of four.

 	

 	

 QC 12.1 answer

 1:

patientInfoV2 :: PatientName -> Int -> Int -> String
patientInfoV2 (fname,lname) age height = name ++ " " ++ ageHeight
 where name = lname ++ ", " ++ fname
 ageHeight = "(" ++ show age ++ "yrs. " ++ show height ++ "in.)"

 	

 12.2. Creating new types

 Next you’ll add the patient’s sex, which can be either male or female. You could use a string for this, using the literal
 words male and female, or an Int or a Bool. In many other programming languages, this is likely the route you’d take. But none of these types seems like an ideal fit,
 and it’s easy to imagine bugs that might arise from using these solutions. In Haskell, you should use the powerful type system
 to help you as much as you can. To do this, it’s better to create a new type. Creating a new type can be done with the data keyword, as shown in figure 12.1.

 Figure 12.1. Defining the Sex type

 [image:]

 In this new type, you define a few key pieces. The data keyword tells Haskell that you’re defining a new type. The word Sex is the type constructor. In this case, the type constructor is the name of the type, but in later lessons you’ll see that
 type constructors can take arguments. Male and Female are both data constructors. A data constructor is used to create a concrete instance of the type. By separating the data constructors with |, you’re saying, “The Sex type can be either Male or an instance of Female.”

 It turns out that Bool in Haskell is defined exactly the same way:

 data Bool = True | False

 Why not just use Bool as a type synonym? First, you have your own, more readable, data constructors. This makes things like pattern matching easier.
 Here’s a function that returns a single character for the patients’ sex.

 Listing 12.5. Defining the sexInitial function

 sexInitial :: Sex -> Char
sexInitial Male = 'M'
sexInitial Female = 'F'

 If you had used a type synonym, you’d have to use True and False here, which would reduce readability. Even more important is that your compiler can now check to make sure you’re always
 using the correct type. Any potential bug created by accidentally using a Bool in a way incompatible with your Sex type will now be caught.

 Next you want to model the patient’s blood type, which is more complicated than Sex. When you talk about blood types, you say things like, “He has AB positive” or “She’s O negative.” The AB and O part of a
 person’s blood type is called their ABO blood group.

 The ABO blood type can have four values: A, B, AB, or O. This refers to the family of antibodies in the blood. The positive or negative part refers to the person’s Rhesus (Rh) group, which indicates the presence or absence of a particular antigen. A mismatch
 between antibodies and antigens can cause blood transfusions to provoke a deadly immune response.

 To model blood type, you could replicate what you did with Sex and list a long range of data constructors (APos | ANeg | BPos ...). But given that you have two Rh blood types for each ABO blood type, you’d have eight possible constructors! A better solution
 is to start by modeling the Rh and ABO types separately.

 RhType is going to look just like Sex.

 Listing 12.6. Defining the type RhType

 data RhType = Pos | Neg

 ABOType is going to have four possible data constructors.

 Listing 12.7. Defining the type ABOType

 data ABOType = A | B | AB | O

 Finally, you have to define your BloodType. You stated earlier that a BloodType is an ABOType and an RhType, so that’s exactly how you’ll define it, as shown in figure 12.2.

 Figure 12.2. Combining ABOType and RhType to create BloodType

 [image:]

 Notice that in this case, the data constructor has the same name as your type constructor. It doesn’t have to, but in this
 case it makes sense. You need this data constructor to combine your ABOType and RhType. You can read the data constructor as “A BloodType is an ABOType with an RhType.”

 Now you’re able to create BloodType data:

 patient1BT :: BloodType
patient1BT = BloodType A Pos

patient2BT :: BloodType
patient2BT = BloodType O Neg

patient3BT :: BloodType
patient3BT = BloodType AB Pos

 It’d be nice to be able to print out these values. Lesson 13 covers a better way to do this, but for now let’s write showRh, showABO, and showBloodType. Pattern matching with your new types will make this a breeze!

 Listing 12.8. Displaying your types: showRh, showABO, showBloodType

 showRh :: RhType -> String
showRh Pos = "+"
showRh Neg = "-"
showABO :: ABOType -> String
showABO A = "A"
showABO B = "B"
showABO AB = "AB"
showABO O = "O"
showBloodType :: BloodType -> String
showBloodType (BloodType abo rh) = showABO abo ++ showRh rh

 Notice that you’re able to use pattern matching in the last step to easily extract the ABOType and RhType components of BloodType.

 The most interesting question you can ask about blood type is whether one patient can be a donor for another. The rules for
 blood type matching are as follows:

 	A can donate to A and AB.

 	B can donate to B and AB.

 	AB can donate only to AB.

 	O can donate to anybody.

 (Note: We won’t worry about Rh compatibility for this example.)

 You need a function canDonateTo to determine whether one BloodType can donate to another.

 Listing 12.9. Defining the canDonateTo function

 canDonateTo :: BloodType -> BloodType -> Bool
canDonateTo (BloodType O _) _ = True 1
canDonateTo _ (BloodType AB _) = True 2
canDonateTo (BloodType A _) (BloodType A _) = True
canDonateTo (BloodType B _) (BloodType B _) = True
canDonateTo _ _ = False --otherwise

 	1 Universal donor

 	2 Universal receiver

 Here are some examples in GHCi:

 GHCi> canDonateTo patient1BT patient2BT
False
GHCi> canDonateTo patient2BT patient1BT
True
GHCi> canDonateTo patient2BT patient3BT
True
GHCi> canDonateTo patient1BT patient3BT
True
GHCi> canDonateTo patient3BT patient1BT
False

 At this point, it might be nice to refactor your names a bit. Another great feature would be to model an optional middle name.
 Right now you have a PatientName type synonym, which is a tuple with only first and last names. You can combine what you learned for your Sex type and your BloodType type to create a more robust Name type. You’ll add a type synonym for MiddleName and use that to build out a more sophisticated type for names.

 Listing 12.10. Support different names: MiddleName and Name

 type MiddleName = String
data Name = Name FirstName LastName
 | NameWithMiddle FirstName MiddleName LastName

 You can read this definition of Name as follows: a Name is either a first and last name, or a name with a middle name included. You can use pattern matching to create a showName function that works with either constructor.

 Listing 12.11. Displaying multiple constructors: showName

 showName :: Name -> String
showName (Name f l) = f ++ " " ++ l
showName (NameWithMiddle f m l) = f ++ " " ++ m ++ " " ++ l

 Now to create a couple of examples:

 name1 = Name "Jerome" "Salinger"
name2 = NameWithMiddle "Jerome" "David" "Salinger"

 And you can see how these behave in GHCi:

 GHCi> showName name1
"Jerome Salinger"
GHCi> showName name2
"Jerome David Salinger"

 Now you have a much more flexible Name type.

 12.3. Using record syntax

 At the beginning of this lesson, you passed four arguments to your patientInfo function:

 patientInfo :: String -> String -> Int -> Int -> String
patientInfo fname lname age height = name ++ " " ++ ageHeight
 where name = lname ++ ", " ++ fname
 ageHeight = "(" ++ show age ++ "yrs. " ++ show height ++ "in.)"

 What you were trying to capture in defining that function was the idea of passing in a patient, but you didn’t have the tools
 to model that information compactly in Haskell. Now that you’ve learned more about types, you should be able to create a Patient type that contains all this information and more. This will save you from having to pass in a confusing and large number
 of arguments every time you want to perform a task involving patient information in general.

 The first step in modeling a patient should be to list all the features you want to keep track of along with the type that
 should represent them:

 	Name: Name

 	Sex: Sex

 	Age (years): Int

 	Height (inches): Int

 	Weight (pounds): Int

 	Blood type: BloodType

 You can now use the data keyword to create a new type that represents this information just as you did for blood type.

 Listing 12.12. Patient v.1

 data Patient = Patient Name Sex Int Int Int BloodType

 Here you have a compact representation of all six attributes of a patient. This is great, as you can perform all sorts of
 computations on a patient without having to worry about passing in a large list of arguments. Let’s create your first example
 patient:

 johnDoe :: Patient
johnDoe = Patient (Name "John" "Doe") Male 30 74 200 (BloodType AB Pos)

 	

 Quick check 12.2

 Q1:
Create a Jane Elizabeth Smith patient by using whatever reasonable values you like.

 	

 	

 QC 12.2 answer

 1:

janeESmith :: Patient
janeESmith = Patient (NameWithMiddle "Jane" "Elizabeth" "Smith")
 Female 28 62 140

 	

 Creating new data in this way worked great for Sex and BloodType, but it definitely feels awkward for data with so many properties. You could solve some of this with type synonyms from earlier.
 But even if the type definition of Patient was easier to read, you aren’t always going to have the type signature handy. Look away from the page for a second and try
 to remember the order of the values. It’s easy to imagine more values that you could add to the patient definition, which
 would only make this harder.

 This representation of patients has one more annoying issue. It’s reasonable to want to get each value of the patient individually.
 You can accomplish this by writing a bunch of functions to get each value by using pattern matching.

 Listing 12.13. getName, getAge, getBloodType

 getName :: Patient -> Name
getName (Patient n _ _ _ _ _) = n

getAge :: Patient -> Int
getAge (Patient _ _ a _ _ _) = a

getBloodType :: Patient -> BloodType
getBloodType (Patient _ _ _ _ _ bt) = bt

 Pattern matching makes these getters wonderfully easy to write, but having to write out all six of them seems annoying. Imagine
 that your final definition of a Patient ends up being 12 values used to define the type! It’s going to be a lot of work just to get started, which seems unHaskell-like.
 Fortunately, Haskell has a great solution to this problem. You can define data types such as Patient by using record syntax. Defining a new data type by using record syntax makes it much easier to understand which types represent which properties
 of the data type.

 Listing 12.14. Patient v.2 (with record syntax)

 data Patient = Patient { name :: Name
 , sex :: Sex
 , age :: Int
 , height :: Int
 , weight :: Int
 , bloodType :: BloodType }

 The first victory for record syntax is that your type definition is much easier to read and understand now. The next big win
 for record syntax is that creating data for your Patient type is much easier. You can set each field by name, and order no longer matters!

 jackieSmith :: Patient
jackieSmith = Patient {name = Name "Jackie" "Smith"
 , age = 43
 , sex = Female
 , height = 62
 , weight = 115
 , bloodType = BloodType O Neg }

 In addition, you don’t have to write your getters; each field in the record syntax automatically creates a function to access
 that value from the record:

 GHCi> height jackieSmith
62
GHCi> showBloodType (bloodType jackieSmith)
"O-"

 	

 Quick check 12.3

 Q1:
Show Jackie Smith’s name.

 	

 	

 QC 12.3 answer

 1:

showName (name jackieSmith)

 	

 You can also set values in record syntax by passing the new value in curly brackets to your data. Suppose you have to update
 Jackie Smith’s age because of her birthday. Here’s how you could do this using record syntax.

 Listing 12.15. Updating jackieSmith by using record syntax

 jackieSmithUpdated = jackieSmith { age = 44 }

 Because you’re still in a purely functional world, a new Patient type will be created and must be assigned to a variable to be useful.

 Summary

 In this lesson, our objective was to teach you the basics of creating types. You started with type synonyms, which allow you
 to provide alternate names for existing types. Type synonyms make it much easier to understand your code just by reading the
 type signature. Next you learned how to make your own original types by combining existing types with the data keyword. Finally, you learned how record syntax can make it easier to create accessors for your types. Let’s see if you got
 this.

 Q12.1
Write a function similar to canDonateTo that takes two patients as arguments rather than two BloodTypes.

 Q12.2
Implement a patientSummary function that uses your final Patient type. patient-Summary should output a string that looks like this:

Patient Name: Smith, John
Sex: Male
Age: 46
Height: 72 in.
Weight: 210 lbs.
Blood Type: AB+

 If you need to, feel free to create useful helper functions.

Lesson 13. Type classes

 After reading lesson 13, you’ll be able to

 	Understand the basics of type classes

 	Read type class definitions

 	Use common type classes: Num, Show, Eq, Ord, and Bounded

 In this lesson, you’re going to look an important abstraction in Haskell’s type system: type classes. Type classes allow you
 to group types based on shared behavior. At first glance, type classes are similar to interfaces in most object-oriented programming
 languages. A type class states which functions a type must support in the same way that an interface specifies which methods
 a class must support. But type classes play a much more important role in Haskell than interfaces do in languages such as
 Java and C#. The major difference is that as you dive deeper into Haskell, you’ll see that type classes typically require
 you to think in increasingly more powerful forms of abstraction. In many ways, type classes are the heart of Haskell programming.

 	

 Consider this

 You’ve written the function inc to increment a value a few times as a sample function. But how can you write an incrementing function that works with the
 wide range of possible numbers you’ve seen? Frustratingly enough, in unit 1, without specifying types, you could do this. How can you write the type signature of an inc function that works on all numbers?

 	

 13.1. Further exploring types

 At this point, you’ve seen quite a few type signatures and even built some nontrivial types of your own. One of the best ways
 to learn about various Haskell types is to use the :t (or more verbose :type) command in GHCi to inspect the type of function you find in the wild. When you first wrote simple, you did so without a type signature:

 simple x = x

 If you wanted to know what type this function was, you could load it into GHCi and use :t:

 GHCi> :t simple
simple :: t -> t

 You could do the same thing for the lambda version of simple:

 GHCi> :t (\x -> x)
(\x -> x) :: r -> r

 	

 Quick check 13.1

 Q1:
Find the type of the following:

 aList = ["cat","dog","mouse"]

 	

 	

 QC 13.1 answer

 1:

aList = ["cat","dog","mouse"]
GHCi> :t aList
aList :: [[Char]]

 	

 If you start exploring types this way, you’ll almost immediately come across some things you haven’t seen yet. Take, for example,
 something as simple as addition:

 GHCi> :t (+)
(+) :: Num a => a -> a -> a

 With all the time you’ve spent so far looking at types, something as simple as addition trips you up! The big mystery is the
 Num a => part.

 13.2. Type classes

 What you’ve encountered here is your first type class! Type classes in Haskell are a way of describing groups of types that all behave in the same way. If you’re familiar with Java or C#, type
 classes may remind you of interfaces. When you see Num a, the best way to understand that statement is to say that there’s some type a of class Num. But what does it mean to be part of type class Num? Num is a type class generalizing the idea of a number. All things of class Num must have a function (+) defined on them. There are other functions in the type class as well. One of the most valuable GHCi tools is :info, which provides information about types and type classes. If you use :info on Num, you get the following (partial) output.

 Listing 13.1. Num type class definition

 GHCi> :info Num
class Num a where
 (+) :: a -> a -> a
 (-) :: a -> a -> a
 (*) :: a -> a -> a
 negate :: a -> a
 abs :: a -> a
 signum :: a -> a

 What :info is showing is the definition of the type class. The definition is a list of functions that all members of the class must
 implement, along with the type signatures of those functions. The family of functions that describe a number is +, -, *, negate, abs, and signum (gives the sign of a number). Each type signature shows the same type variable a for all arguments and the output. None of these functions can return a different type than it takes as an argument. For example,
 you can’t add two Ints and get a Double.

 	

 Quick check 13.2

 Q1:
Why isn’t division included in the list of functions needed for a Num?

 	

 	

 QC 13.2 answer

 1:

Because division with (/) isn’t defined on all cases of Num.

 	

 13.3. The benefits of type classes

 Why do you need type classes at all? So far in Haskell, each function you’ve defined works for only one specific set of types.
 Without type classes, you’d need a different name for each function that adds a different type of value. You do have type
 variables, but they’re too flexible. For example, say you define myAdd with the following type signature:

 myAdd :: a -> a -> a

 Then you’d need the ability to manually check that you were adding only the types it makes sense to add (which isn’t possible
 in Haskell).

 Type classes also allow you to define functions on a variety of types that you can’t even think of. Suppose you want to write
 an addThenDouble function like the following.

 Listing 13.2. Using type classes: addThenDouble

 addThenDouble :: Num a => a -> a -> a
addThenDouble x y = (x + y)*2

 Because you use the Num type class, this code will automatically work not only on Int and Double, but also on anything that another programmer has written and implemented the Num type class for. If you end up interacting with a Roman Numerals library, as long as the author has implemented the Num type class, this function will still work!

 13.4. Defining a type class

 The output you got from GHCi for Num is the literal definition of the type class. Type class definitions have the structure illustrated in figure 13.1.

 Figure 13.1. Structure of a type class definition

 [image:]

 In the definition of Num, you see plenty of type variables. Nearly all functions required in any type class definition will be expressed in terms
 of type variables, because by definition you’re describing an entire class of types. When you define a type class, you’re
 doing so precisely because you don’t want your functions to be tied to a single type. One way of thinking of type classes
 is as a constraint on the categories of types that a type variable can represent.

 To help solidify the idea, you’ll write a simple type class of your own. Because you’re learning Haskell, a great type class
 to have is Describable. Any type that’s an instance of your Describable type class can describe itself to you in plain English. So you require only one function, which is describe. For whatever type you have, if it’s Describable, calling describe on an instance of the type will tell you all about it. For example, if Bool were Describable, you’d expect this:

 GHCi> describe True
"A member of the Bool class, True is opposite of False"
GHCi> describe False
"A member of the Bool class, False is the opposite of True"

 And if you wanted to describe an Int, you might expect this:

 GHCi> describe (6 :: Int) "A member of the Int class, the number after 5 and
before 7"

 At this point, you won’t worry about implementing a type class (you’ll do that in the next lesson)—only defining it. You know
 that you require only one function, which is describe. The only other thing you need to worry about is the type signature of that function. In each case, the argument for the
 function is whatever type has implemented your type class, and the result is always a string. So you need to use a type variable
 for the first type and a string for the return value. You can put this all together and define your type class as follows.

 Listing 13.3. Defining your own type class: Describable

 class Describable a where
 describe :: a -> String

 And that’s it! If you wanted to, you could build a much larger group of tools that use this type class to provide automatic
 documentation for your code, or generate tutorials for you.

 13.5. Common type classes

 Haskell defines many type classes for your convenience, which you’ll learn about in the course of this book. In this section,
 you’ll look at four more of the most basic: Ord, Eq, Bounded, and Show.

 13.6. The Ord and Eq type classes

 Let’s look at another easy operator, greater than (>):

 GHCi> :t (>)
(>) :: Ord a => a -> a -> Bool

 Here’s a new type class, Ord! This type signature says, “Take any two of the same types that implement Ord, and return a Boolean.” Ord represents all of the things in the universe that can be compared and ordered. Numbers can be compared, but so can strings
 and many other things. Here’s the list of functions that Ord defines.

 Listing 13.4. Ord type class requires Eq type class

 class Eq a => Ord a where
 compare :: a -> a -> Ordering
 (<) :: a -> a -> Bool
 (<=) :: a -> a -> Bool
 (>) :: a -> a -> Bool
 (>=) :: a -> a -> Bool
 max :: a -> a -> a
 min :: a -> a -> a

 Of course, Haskell has to make things complicated. Notice that right in the class definition there’s another type class! In
 this case, it’s the type class Eq. Before you can understand Ord, you should look at Eq.

 Listing 13.5. Eq type class generalizes the idea of equality

 class Eq a where
 (==) :: a -> a -> Bool
 (/=) :: a -> a -> Bool

 The Eq type class needs only two functions: == and /=. If you can tell that two types are equal or not equal, that type belongs in the Eq type class. This explains why the Ord type class includes the Eq type class in its definition. To say that something is ordered, clearly you need to be able to say that things of that type
 can be equal. But the inverse isn’t true. We can describe many things by saying, “These two things are equal,” but not “This
 is better than that one.” You may love vanilla ice cream more than chocolate, and I might love chocolate more than vanilla. You and I can agree that two vanilla ice-cream cones are the same, but we can’t agree on
 the order of a chocolate and vanilla cone. So if you created an IceCream type, you could implement Eq, but not Ord.

 13.6.1. Bounded

 In lesson 11, we mentioned the difference between the Int and Integer types. It turns out this difference is also captured by a type class. The :info command was useful for learning about type classes, but it’s also helpful in learning about types. If you use :info on Int, you get a list of all the type classes that Int is a member of:

 GHCi> :info Int
data Int = GHC.Types.I# GHC.Prim.Int# -- Defined in 'GHC.Types'
instance Bounded Int -- Defined in 'GHC.Enum'
instance Enum Int -- Defined in 'GHC.Enum'
instance Eq Int -- Defined in 'GHC.Classes'
instance Integral Int -- Defined in 'GHC.Real'
instance Num Int -- Defined in 'GHC.Num'
instance Ord Int -- Defined in 'GHC.Classes'
instance Read Int -- Defined in 'GHC.Read'
instance Real Int -- Defined in 'GHC.Real'
instance Show Int -- Defined in 'GHC.Show'

 You can do the same thing for the Integer type. If you did, you’d find there’s a single difference between the two types. Int is an instance of the Bounded type class, and Integer isn’t. Understanding the type classes involved in a type can go a long way toward helping you understand how a type behaves.
 Bounded is another simple type class (most are), which requires only two functions. Here’s the definition of Bounded.

 Listing 13.6. Bounded type class requires values but no functions

 class Bounded a where
 minBound :: a
 maxBound :: a

 Members of Bounded must provide a way to get their upper and lower bounds. What’s interesting is that minBound and maxBounds aren’t functions but values! They take no arguments but are just a value of whatever type they happen to be. Both Char and Int are members of the Bounded type class, so you never have to guess the upper and lower bounds for using these values:

 GHCi> minBound :: Int
-9223372036854775808
GHCi> maxBound :: Int
9223372036854775807
GHCi> minBound :: Char
'\NUL'
GHCi> maxBound :: Char
'\1114111'

 13.6.2. Show

 We mentioned the functions show and read in lesson 11. Show and Read are incredibly useful type classes that make the show and read functions possible. Aside from two special cases for specific types, Show implements just one important function: show.

 Listing 13.7. Show type class definition

 class Show a where
 show :: a -> String

 The show function turns a value into a String. Any type that implements Show can be printed. You’ve been making much heavier use of show than you might have realized. Every time a value is printed in GHCi, it’s printed because it’s a member of the Show type class. As a counter example, let’s define your Icecream type but not implement show.

 Listing 13.8. Defining the Icecream type

 data Icecream = Chocolate | Vanilla

 Icecream is nearly identical to Bool, but Bool implements Show. Look what happens when you type the constructors for these into GHCi:

 GHCi> True
True
GHCi> False
False
GHCi> Chocolate
<interactive>:404:1:
No instance for (Show Icecream) arising from a use of 'print'
In a stmt of an interactive GHCi command: print it

 You get an error because Haskell has no idea how to turn your data constructors into strings. Every value that you’ve seen
 printed in GHCi has happened because of the Show type class.

 13.7. Deriving type classes

 For your Icecream type class, it’s a bit annoying that you have to implement Show. After all, Icecream is just like Bool, so why can’t you have Haskell be smart about it and do what it does with Bool? In Bool, all that happens is that the data constructors are printed out. It just so happens that Haskell is rather smart! When you
 define a type, Haskell can do its best to automatically derive a type class. Here’s the syntax for defining your Icecream type but deriving Show.

 Listing 13.9. The Icecream type deriving the Show type class

 data Icecream = Chocolate | Vanilla deriving (Show)

 Now you can go back to GHCi, and everything works great:

 GHCi> Chocolate
Chocolate
GHCi> Vanilla
Vanilla

 Many of the more popular type classes have a reasonable default implementation. You can also add the Eq type class:

 data Icecream = Chocolate | Vanilla deriving (Show, Eq, Ord)

 And again you can use GHCi to show that you can see whether two flavors of Icecream are identical:

 GHCi> Vanilla == Vanilla
True
GHCi> Chocolate == Vanilla
False
GHCi> Chocolate /= Vanilla
True

 In the next lesson, you’ll look more closely at how to implement your own type classes, as Haskell isn’t always able to guess
 your true intentions.

 	

 Quick check 13.3

 Q1:
See which flavor Haskell thinks is superior by deriving the Ord type class.

 	

 	

 QC 13.3 answer

 1:

If you add deriving Ord to your definition of Icecream, Haskell defaults to the order of the data constructors for determining Ord. So Vanilla will be greater than Chocolate.

 	

 Summary

 In this lesson, our objective was to teach you the basics of type classes. All of the type classes we covered should seem
 familiar to users of object-oriented languages such as Java and C# that support interfaces. The type classes you saw make
 it easy to apply one function to a wide variety of types. This makes testing for equality, sorting data, and converting data
 to a string much easier. Additionally, you saw that Haskell is able to automatically implement type classes for you in some
 cases by using the deriving keyword. Let’s see if you got this.

 Q13.1
If you ran the :info examples, you likely noticed that the type Word has come up a few times. Without looking at external resources, use :info to explore Word and the relevant type classes to come up with your own explanation for the Word type. How is it different from Int?

 Q13.2
One type class we didn’t discuss is Enum. Use :info to look at the definition of this type class, as well as example members. Now consider Int, which is an instance of both Enum and Bounded. Given the following definition of inc:

 inc :: Int -> Int
inc x = x + 1

 and the succ function required by Enum, what’s the difference between inc and succ for Int?

 Q13.3
Write the following function that works just like succ on Bounded types but can be called an unlimited number of times without error. The function will work like inc in the preceding example but works on a wider range of types, including types that aren’t members of Num:

 cycleSucc :: (Bounded a, Enum a, ? a) => a -> a
cycleSucc n = ?

 Your definition will include functions/values from Bounded, Enum, and the mystery type class. Make a note of where each of these three (or more) functions/values comes from.

Lesson 14. Using type classes

 After reading lesson 14, you’ll be able to

 	Implement your own type classes

 	Understand polymorphism in Haskell

 	Know when to use deriving

 	Search for documentation with Hackage and Hoogle

 In lesson 13, you got your first look at type classes, which are Haskell’s way of grouping types by common behaviors they share. In this
 lesson, you’ll take a deeper look at how to implement existing type classes. This will allow you to write new types that take
 advantage of a wide range of existing functions.

 	

 Consider this

 You have a data type consisting of data constructors for New England states:

 data NewEngland = ME | VT | NH | MA | RI | CT

 You want to be able to display them by their full name by using Show. You can easily display their abbreviations by deriving show, but there’s no obvious way to create your own version of show. How can you make your NewEngland type display the full state name by using show?

 	

 14.1. A type in need of classes

 You’ll start by modeling a six-sided die. A good default implementation is a type similar to Bool, only with six values instead of two. You’ll name your data constructors S1 through S6 to represent each of the six sides.

 Listing 14.1. Defining the SixSidedDie data type

 data SixSidedDie = S1 | S2 | S3 | S4 | S5 | S6

 Next you want to implement some useful type classes. Perhaps the most important type class to implement is Show, because you’ll nearly always want to have an easy way to display instances of your type, especially in GHCi. In lesson 13, we mentioned that you could add the deriving keyword to automatically create instances of a class. You could define SixSidedDie this way and call it a day.

 Listing 14.2. The SixSidedDie type deriving Show

 data SixSidedDie = S1 | S2 | S3 | S4 | S5 | S6 deriving (Show)

 If you were to use this type in GHCi, you’d get a simple text version of your data constructors back when you type them:

 GHCi> S1
S1
GHCi> S2
S2
GHCi> S3
S3
GHCi> S4
S4

 This is a bit boring because you’re just printing out your data constructors, which are more meaningful from an implementation
 standpoint than they are readable. Instead, let’s print out the English word for each number.

 14.2. Implementing Show

 To do this, you have to implement your first type class, Show. There’s only one function (or in the case of type classes, we call these methods) that you have to implement, show. Here’s how to implement your type class.

 Listing 14.3. Creating an instance of Show for SixSidedDie

 instance Show SixSidedDie where
 show S1 = "one"
 show S2 = "two"
 show S3 = "three"
 show S4 = "four"
 show S5 = "five"
 show S6 = "six"

 And that’s it! Now you can return to GHCi and much more interesting output than you would with deriving:

 GHCi> S1
one
GHCi> S2
two
GHCi> S6
six

 	

 Quick check 14.1

 Q1:
Rewrite this definition of show to print the numerals 1–6 instead.

 	

 	

 QC 14.1 answer

 1:

data SixSidedDie = S1 | S2 | S3 | S4 | S5 | S6

instance Show SixSidedDie where
show S1 = "I"
show S2 = "II"
show S3 = "III"
show S4 = "IV"
show S5 = "V"
show S6 = "VI"

 	

 14.3. Type classes and polymorphism

 One question that might come up is, why do you have to define show this way? Why do you need to declare an instance of a type class? Surprisingly, if you remove your early instance declaration,
 the following code will compile just fine.

 Listing 14.4. Incorrect attempt to implement show for SixSidedDie

 show :: SixSidedDie -> String
show S1 = "one"
show S2 = "two"
show S3 = "three"
show S4 = "four"
show S5 = "five"
show S6 = "six"

 But if you load this code into GHCi, you get two problems. First, GHCi no longer can print your data constructors by default.
 Second, even if you manually use show, you get an error:

 "Ambiguous occurrence 'show'"

 You haven’t learned about Haskell’s module system yet, but the issue Haskell has is that the definition you just wrote for
 show is conflicting with another that’s defined by the type class. You can see the real problem when you create a TwoSidedDie type and attempt to write show for it.

 Listing 14.5. Demonstrating the need for polymorphism defining show for TwoSidedDie

 data TwoSidedDie = One | Two

show :: TwoSidedDie -> String
show One = "one"
show Two = "two"

 The error you get now is as follows:

 Multiple declarations of 'show'

 The problem is that by default you’d like to have more than one behavior for show, depending on the type you’re using. What you’re looking for here is called polymorphism. Polymorphism means that the same function behaves differently depending on the type of data it’s working with. Polymorphism is important in object-oriented programming and equally so in Haskell. The
 OOP equivalent to show would be a toString method, one that’s common among any classes that can be turned into a string. Type classes are the way you use polymorphism
 in Haskell, as shown in figure 14.1.

 Figure 14.1. Visualizing polymorphism for read

 [image:]

 14.4. Default implementation and minimum complete definitions

 Now that you can produce fun strings for your SixSidedDie, it’d be useful to determine that two dice are the same. This means that you have to implement the Eq class. This is also useful because Eq is the superclass of Ord. You touched on this relationship briefly in lesson 13 without giving it a name. To say that Eq is a superclass of Ord means that every instance of Ord must also be an instance of Eq. Ultimately, you’d like to compare SixSidedDie data constructors, which means implementing Ord, so first you need to implement Eq. Using the :info command in GHCi, you can bring up the class definition for Eq:

 class Eq a where
 (==) :: a -> a -> Bool
 (/=) :: a -> a -> Bool

 You have to implement only two methods: the Equals method (==) and the Not Equals method (/=). Given how smart Haskell has been so far, this should seem like more work than makes sense. After all, if you know the definition
 of (==), the definition of (/=) is not (==). Sure, there may be some exceptions to this, but it seems that in the vast majority of cases, if you know either one, then
 you can determine the other.

 It turns out that Haskell is smart enough to figure this out. Type classes can have default implementations of methods. If you define (==), Haskell can figure out what (/=) means without any help.

 Listing 14.6. Implementing an instance of Eq for SixSidedDie

 instance Eq SixSidedDie where
 (==) S6 S6 = True
 (==) S5 S5 = True
 (==) S4 S4 = True
 (==) S3 S3 = True
 (==) S2 S2 = True
 (==) S1 S1 = True
 (==) _ _ = False

 In GHCi, you’ll see that (/=) works automatically!

 GHCi> S6 == S6
True
GHCi> S6 == S5
False
GHCi> S5 == S6
False
GHCi> S5 /= S6
True
GHCi> S6 /= S6
False

 This is useful, but how in the world are you supposed to know which methods you need to implement? The :info command is a great source of information right at your fingertips, but it isn’t complete documentation. A source of more
 thorough information is Hackage, Haskell’s centralized package library. Hackage can be found on the web at https://hackage.haskell.org. If you go to Eq’s page on Hackage (https://hackage.haskell.org/package/base/docs/Data-Eq.html), you get much more info on Eq (probably more than you could ever want!). For our purposes, the most important part is a section called “Minimum complete
 definition.” For Eq, you find the following:

 (==) | (/=)

 This is much more helpful! To implement the Eq type class, all you have to define is either (==) or (/=). Just as in data declarations, | means or. If you provide either one of these options, Haskell can work out the rest for you.

 	

 Hackage and Hoogle

 Although Hackage may be the central repository for Haskell information, you might find it a pain to search for specific types.
 To solve this, Hackage can be searched via a truly amazing interface called Hoogle. Hoogle can be found at www.haskell.org/hoogle. Hoogle allows you to search by types and type signatures. For example, if you search a -> String, you’ll get results for show along with a variety of other functions. Hoogle alone is enough to make you love Haskell’s type system.

 	

 	

 Quick check 14.2

 Q1:
Use Hoogle to search for the RealFrac type class. What’s its minimal complete definition?

 	

 	

 QC 14.2 answer

 1:

Go to http://hackage.haskell.org/package/base/docs/Prelude.html#t:RealFrac. The minimal complete definition is properFraction.

 	

 14.5. Implementing Ord

 One of the most important features of dice is that there’s an order to their sides. Ord defines a handful of useful functions for comparing a type:

 class Eq a => Ord a where
 compare :: a -> a -> Ordering
 (<) :: a -> a -> Bool
 (<=) :: a -> a -> Bool
 (>) :: a -> a -> Bool
 (>=) :: a -> a -> Bool
 max :: a -> a -> a
 min :: a -> a -> a

 Luckily, on Hackage you can find that only the compare method needs to be implemented. The compare method takes two values of your type and returns Ordering. This is a type you saw briefly when you learned about sort in lesson 4. Ordering is just like Bool, except it has three data constructors. Here’s its definition:

 data Ordering = LT | EQ | GT

 The following is a partial definition of compare.

 Listing 14.7. Partial definition of compare for SixSidedDie

 instance Ord SixSidedDie where
 compare S6 S6 = EQ
 compare S6 _ = GT
 compare _ S6 = LT
 compare S5 S5 = EQ
 compare S5 _ = GT
 compare _ S5 = LT

 Even with clever uses of pattern matching, filling out this complete definition would be a lot of work. Imagine how large
 this definition would be for a 60-sided die!

 	

 Quick check 14.3

 Q1:
Write out the patterns for the case of S4.

 	

 	

 QC 14.3 answer

 1:

compare S4 S4 = EQ

compare _ S4 = LT

 Note: Because of pattern matching, the case of compare S5 S4 and compare S6 S4 will already be matched.

 compare S4 _ = GT

 	

 14.6. To derive or not to derive?

 So far, every class you’ve seen has been derivable, meaning that you can use the deriving keyword to automatically implement these for your new type definition. It’s common
 for programming languages to offer default implementations for things such as an .equals method (which is often too minimal to be useful). The question is, how much should you rely on Haskell to derive your type
 classes versus doing it yourself?

 Let’s look at Ord. In this case, it’s wiser to use deriving (Ord), which works much better in cases of simple types. The default behavior when deriving Ord is to use the order that the data constructors are defined. For example, consider the following listing.

 Listing 14.8. How deriving Ord is determined

 data Test1 = AA | ZZ deriving (Eq, Ord)
data Test2 = ZZZ | AAA deriving (Eq, Ord)

 In GHCi, you can see the following:

 GHCi> AA < ZZ
True
GHCi> AA > ZZ
False
GHCi> AAA > ZZZ
True
GHCi> AAA < ZZZ
False

 	

 Quick check 14.4

 Q1:
Rewrite SixSidedDie to derive both Eq and Ord.

 	

 	

 QC 14.4 answer

 1:

data SixSidedDie = S1 | S2 | S3 | S4 | S5 | S6 deriving (Show,Eq,Ord)

 	

 With Ord, using the deriving keyword saves you from writing a lot of unnecessary and potentially buggy code.

 An even stronger case for using deriving when you can is Enum. The Enum type allows you to represent your dice sides as an enumerated list of constants. This is essentially what we think of when
 we think of a die, so it’ll be useful. Here’s the definition:

 class Enum a where
 succ :: a -> a
 pred :: a -> a
 toEnum :: Int -> a
 fromEnum :: a -> Int
 enumFrom :: a -> [a]
 enumFromThen :: a -> a -> [a]
 enumFromTo :: a -> a -> [a]
 enumFromThenTo :: a -> a -> a -> [a]

 Once again, you’re saved by having to implement only two methods: toEnum and fromEnum. These methods translate your Enum values to and from an Int. Here’s the implementation.

 Listing 14.9. Implementing Enum for SixSidedDie (errors with implementation)

 instance Enum SixSidedDie where
 toEnum 0 = S1
 toEnum 1 = S2
 toEnum 2 = S3
 toEnum 3 = S4
 toEnum 4 = S5
 toEnum 5 = S6
 toEnum _ = error "No such value"

 fromEnum S1 = 0
 fromEnum S2 = 1
 fromEnum S3 = 2
 fromEnum S4 = 3
 fromEnum S5 = 4
 fromEnum S6 = 5

 Now you can see some of the practical benefits of Enum. For starters, you can now generate lists of your SixSidedDie just as you can other values such as Int and Char:

 GHCi> [S1 .. S6]
[one,two,three,four,five,six]
GHCi> [S2,S4 .. S6]
[two,four,six]
GHCi> [S4 .. S6]
[four,five,six]

 This is great so far, but what happens when you create a list with no end?

 GHCi> [S1 ..]
[one,two,three,four,five,six,*** Exception: No such value

 Yikes! You get an error because you didn’t handle the case of having a missing value.

 But if you had just derived your type class, this wouldn’t be a problem:

 data SixSidedDie = S1 | S2 | S3 | S4 | S5 | S6 deriving (Enum)
GHCi> [S1 ..]
[one,two,three,four,five,six]

 Haskell is pretty magical when it comes to deriving type classes. In general, if you don’t have a good reason to implement
 your own, deriving is not only easier, but also often better.

 14.7. Type classes for more-complex types

 In lesson 4, we demonstrated that you can use first-class functions to properly order something like a tuple of names.

 Listing 14.10. Using a type synonym for Name

 type Name = (String,String)

names :: [Name]
names = [("Emil","Cioran")
 , ("Eugene","Thacker")
 , ("Friedrich","Nietzsche")]

 As you may remember, you have a problem when these are sorted:

 GHCi> import Data.List
GHCi> sort names
[("Emil","Cioran"),("Eugene","Thacker"),("Friedrich","Nietzsche")]

 The good thing is that clearly your tuples automatically derive Ord, because they’re sorted well. Unfortunately, they aren’t sorted the way you’d like them to be, by last name and then first
 name. In lesson 4, you used a first-class function and passed it to sortBy, but that’s annoying to do more than once. Clearly, you can implement your own custom Ord for Name.

 Listing 14.11. Attempt to implement Ord for a type synonym

 instance Ord Name where
 compare (f1,l1) (f2,l2) = compare (l1,f1) (l2,f2)

 But when you try to load this code, you get an error! This is because to Haskell, Name is identical to (String, String), and, as you’ve seen, Haskell already knows how to sort these. To solve these issues, you need create a new data type. You
 can do this by using the data as before.

 Listing 14.12. Defining a new type Name using data

 data Name = Name (String, String) deriving (Show, Eq)

 Here the need for data constructors becomes clear. For Haskell, they’re a way to note, “This tuple is special from the others.”
 Now that you have this, you can implement your custom Ord.

 Listing 14.13. Correct implementation of Ord for Name type

 instance Ord Name where
 compare (Name (f1,l1)) (Name (f2,l2)) = compare (l1,f1) (l2,f2)

 Notice that you’re able to exploit the fact that Haskell derives Ord on the (String, String) tuple to make implementing your custom compare much easier:

 names :: [Name]
names = [Name ("Emil","Cioran")
 , Name ("Eugene","Thacker")
 , Name ("Friedrich","Nietzsche")]

 Now your names are sorted as expected:

 GHCi> import Data.List
GHCi> sort names
[Name ("Emil","Cioran"),Name ("Friedrich","Nietzsche"),
[image:]Name ("Eugene","Thacker")]

 	

 Creating types with newtype

 When looking at our type definition for Name, you find an interesting case in which you’d like to use a type synonym, but need to define a data type in order to make
 your type an instance of a type class. Haskell has a preferred method of doing this: using the newtype keyword. Here’s an example of the definition of Name using newtype:

 newtype Name = Name (String, String) deriving (Show, Eq)

 In cases like this, newtype is often more efficient than using data. Any type that you can define with newtype, you can also define using data. But the opposite isn’t true. Types defined with newtype can have only one type constructor and one type (in the case of Name, it’s Tuple). In most cases, when you need a type constructor to make a type synonym more powerful, newtype is going to be the preferred method.

 For simplicity, we’ll stick to creating types with data throughout this book.

 	

 14.8. Type class roadmap

 Figure 14.2 shows the type classes that are defined in Haskell’s standard library. Arrows from one class to another indicate a superclass
 relationship. This unit has covered most of the basic type classes. In unit 3, you’ll start exploring the more abstract type classes Semigroup and Monoid, and you’ll start to see how different type classes can be from interfaces. In unit 5, you’ll look at a family of type classes—Functor, Applicative, and Monad—that provide a way to model the context of a computation. Although this last group is particularly challenging to learn,
 it also allows for some of Haskell’s most powerful abstractions.

 Figure 14.2. Type class road map

 [image:]

 Summary

 In this lesson, our objective was to dive deeper into Haskell’s type classes. You learned how to read type class definitions
 as well as how to make types an instance of a type class beyond simply using the deriving keyword. You also learned when it’s best to use deriving and when you should write your own instances of a type class. Let’s see if you got this.

 Q14.1
Note that Enum doesn’t require either Ord or Eq, even though it maps types to Int values (which implement both Ord and Eq). Ignoring the fact that you can easily use deriving for Eq and Ord, use the derived implementation of Enum to make manually defining Eq and Ord much easier.

 Q14.2
Define a five-sided die (FiveSidedDie type). Then define a type class named Die and at least one method that would be useful to have for a die. Also include superclasses you think make sense for a die.
 Finally, make your FiveSidedDie an instance of Die.

Lesson 15. Capstone: Secret messages!

 This capstone covers

 	Learning about the basics of cryptography

 	Using basic types to model your data

 	Making practical use of Enum and Bounded

 	Writing and making instances of your own Cipher class

 Everybody loves the idea of being able to communicate with a friend in secret. In this capstone, you’re going to take your
 knowledge of types and type classes to build out a few example ciphers. A cipher in cryptography is a means of encoding a message so that others can’t read it. Ciphers are the foundation of cryptography,
 but they’re also just plain fun to play around with. You’ll first look at an easy-to-implement and easy-to-break cipher, then
 you’ll learn more about the basics of encrypting characters, and finally, you’ll build an unbreakable cipher!

 15.1. Ciphers for beginners: ROT13

 Most people discover cryptography in elementary school, as they try to send secret messages to their friends. The typical
 way to encrypt text that most kids stumble upon is the ROT13 method. ROT is short for rotation, and the 13 refers to the number of letters you rotate a given letter by. The ROT13 approach works by translating each letter in a sentence up 13 letters. For example, a is the first letter in the alphabet, and 13 letters away is n. So a would be changed to n during the encoding.

 Let’s try sending a secret message by using ROT13 to make sure you understand it. You’ll send the message Jean-Paul likes Simone. For this example, you’ll treat capital letters like lowercase ones, and ignore spaces and any special characters. The best
 way to visualize ROT13 is as a decoder ring, like the one shown in figure 15.1.

 Figure 15.1. The best way to visualize ROT13 is as a decoder ring.

 [image:]

 Using your decoder ring, you can translate your message. The letter j maps to w, e to r, and so forth. Finally, you end up with Wrna-Cnhy yvxrf Fvzbar.

 The reason you specifically use 13 is that with 26 letters in the alphabet, applying ROT13 twice returns the original text.
 Performing ROT13 on n gives you back an a. Even more interesting is that ROT13 encoding Wrna-Cnhy yvxrf Fvzbar yields Jean-Paul likes Simone. This symmetry is common, and essential to most cryptography systems.

 15.1.1. Implementing your own ROT cipher

 Now that you’ve seen how ROT13 works, let’s make a similar cipher for Haskell’s Char type so that you can encode and decode strings. In the preceding example, you used 13 for your rotation because you had 26
 characters and you wanted to rotate halfway around all the characters to encode your message. You already encountered a problem
 when you had to ignore both spaces and special characters in the sentence Jean-Paul likes Simone. Ideally, you could rotate over all N characters for any given character system. What you want is a generic rotN function that can rotate any alphabet system with N elements. Let’s see how to create a simple four-letter alphabet that you can use to experiment with.

 Listing 15.1. Defining a four-letter alphabet

 data FourLetterAlphabet = L1 | L2 | L3 | L4 deriving (Show,Enum,Bounded)

 It’s important to notice the type classes you derive and why:

 	You add deriving Show to your alphabet to make it easier to work with this type in GHCi.

 	You add deriving Enum because this will allow you to automatically convert your data constructors to type Int. Being able to convert a letter into an Int allows you to use simple math to rotate out letters. You can use fromEnum to convert your letters to Ints, and toEnum to take Ints and turn them back into letters.

 	Finally, you add deriving Bounded because it provides maxBound and minBound values that will help you know how far you have to cycle.

 Now that you have an alphabet class you can work with, let’s think about how the cipher itself is going to work.

 15.1.2. The rotN algorithm

 Here’s how your rotN function is going to work:

 	You pass in the size of your alphabet and a letter you want to rotate.

 	You use the div function to find the middle. Remember, div is different from / in that it divides Ints into whole-valued Ints: although 4 `div` 2 is 2, 5 `div` 2 is also 2. The result of your div function indicates how far you want to rotate your letter.

 	To rotate, you add half of your alphabet size to the Int value of your letter (as an Enum). Of course, for half of your Enum values, adding half the size of the alphabet will give you an Int outside the bounds of your enum. To solve this, you modulo your offset by the alphabet size.

 	Finally, you use toEnum to convert this Int representation of your letter back into an instance of the letter’s type.

 This rotN will work on any type that’s both a member of Bounded and Enum.

 Listing 15.2. A generic rotN function to work on any alphabet

 rotN :: (Bounded a, Enum a) => Int -> a -> a
rotN alphabetSize c = toEnum rotation
 where halfAlphabet = n `div` 2 1
 offset = fromEnum c + halfAlphabet 2
 rotation = offset `mod` alphabetSize 3

 	1 Finds the middle value of your alphabet

 	2 Uses the middle to find the offset of your character

 	3 Uses modulo arithmetic to make sure you’re in the bounds of your Enum

 You can try this with your FourLetterAlphabet in GHCi:

 GHCi> rotN 4 L1
L3
GHCi> rotN 4 L2
L4
GHCi> rotN 4 L3
L1
GHCi> rotN 4 L4
L2

 An interesting point to observe is that the Bool type is also a member of both Enum and Bounded, so your rotN function will also work to rotate Bools. Because of type classes, you can rotate any member of both Enum and Bounded.

 Now you can use rotN to rotate Chars. The only thing you need to do is to figure out how many Chars there are. You can start by using the maxBound value required by the Bounded type class. By using maxBound, you can get the largest Char value. Then you can convert this to an Int by using the fromEnum function required by Enum. Here’s the code to get the number of the largest Char.

 Listing 15.3. Getting the number representing the largest Char

 largestCharNumber :: Int
largestCharNumber = fromEnum (maxBound :: Char) 1

 	1 Notice that you must add :: Char so maxBound knows which type you’re using.

 But the Int value for the lowest Char is 0 (you can get this using the same trick with (minBound). Because of this, the size of the Char alphabet is largestCharNumber + 1. If you look up the Enum type class on Hackage, you’ll find that the definition does assume that Enums start at 0 and go to n–1 (recall that Hackage, https://hackage.haskell.org/, is the online source for full definitions of Haskell type classes). Because of this, it’s generally safe for you to assume
 that the total number of items in any alphabet is always maxBound + 1. If you wanted to write a Char-specific rotN function, it would look like the following.

 Listing 15.4. Rotating a single Char

 rotChar :: Char -> Char
rotChar charToEncrypt = rotN sizeOfAlphabet charToEncrypt
 where sizeOfAlphabet = 1 + fromEnum (maxBound :: Char)

 15.1.3. Rot encoding a string

 So far, you have a method for rotating a single character for any type that’s a member of both Enum and Bounded. But what you want is to encode and decode messages. Messages in any alphabet are just lists of letters. Suppose you have
 a message in your FourLetter-Alphabet you’d like to send.

 Listing 15.5. A message in your four-letter alphabet

 message :: [FourLetterAlphabet]
message = [L1,L3,L4,L1,L1,L2]

 To encode this message, you want to apply the appropriate rotN function to each letter in this list. The best tool to apply a function to each item in a list is map! The following is an encoder for your four-letter alphabet.

 Listing 15.6. Defining a fourLetterEncoder with map

 fourLetterAlphabetEncoder :: [FourLetterAlphabet] -> [FourLetterAlphabet]
fourLetterEncoder vals = map rot4l vals
 where alphaSize = 1 + fromEnum (maxBound :: FourLetterAlphabet)
 rot4l = rotN alphaSize

 Here’s an example in GHCi of your new encoded message:

 GHCi> fourLetterEncoder message
[L3,L1,L2,L3,L3,L4]

 The next step is to rotN decode your message. As you may remember from the first section, the ROT13 cipher is symmetric: to decode an ROT13 message,
 you apply ROT13 to the message once again. It seems that you have an easy solution to your problem: you can apply the same
 rotN function. But this symmetry works only if your alphabet has an even number of letters.

 15.1.4. The problem with decoded odd-sized alphabets

 An issue arises when decoding odd-sized alphabets because you’re doing integer division and always rounding down. As an illustration,
 here’s a ThreeLetterAlphabet and a corresponding secret message and encoder.

 Listing 15.7. A three-letter alphabet, message, and encoder

 data ThreeLetterAlphabet = Alpha
 | Beta
 | Kappa deriving (Show,Enum,Bounded)

threeLetterMessage :: [ThreeLetterAlphabet]
threeLetterMessage = [Alpha,Alpha,Beta,Alpha,Kappa]

threeLetterEncoder :: [ThreeLetterAlphabet] -> [ThreeLetterAlphabet]
threeLetterEncoder vals = map rot3l vals
 where alphaSize = 1 + fromEnum (maxBound :: ThreeLetterAlphabet)
 rot3l = rotN alphaSize

 Now in GHCi, you can compare what happens when trying to encode and decode using the same function for each alphabet:

 GHCi> fourLetterEncoder fourLetterMessage
[L3,L1,L2,L3,L3,L4]
GHCi> fourLetterEncoder (fourLetterEncoder fourLetterMessage)
[L1,L3,L4,L1,L1,L2]
GHCi> threeLetterMessage
[Alpha,Alpha,Beta,Alpha,Kappa]
GHCi> threeLetterEncoder threeLetterMessage
[Beta,Beta,Kappa,Beta,Alpha]
GHCi> threeLetterEncoder (threeLetterEncoder threeLetterMessage)
[Kappa,Kappa,Alpha,Kappa,Beta]

 As you can see, in the case of an odd-numbered alphabet, your encoder isn’t symmetric. To solve this, you can create a similar
 function to rotN, which adds 1 to the offset if the alphabet has an odd number of letters.

 Listing 15.8. A rotNdecoder that works with odd-numbered alphabets

 rotNdecoder :: (Bounded a, Enum a) => Int -> a -> a
rotNdecoder n c = toEnum rotation
 where halfN = n `div` 2
 offset = if even n
 then fromEnum c + halfN
 else 1 + fromEnum c + halfN
 rotation = offset `mod` n

 With rotNdecoder, you can build a much more robust decoder.

 Listing 15.9. A working decoder for ThreeLetterAlphabet

 threeLetterDecoder :: [ThreeLetterAlphabet] -> [ThreeLetterAlphabet]
threeLetterDecoder vals = map rot3ldecoder vals
 where alphaSize = 1 + fromEnum (maxBound :: ThreeLetterAlphabet)
 rot3ldecoder = rotNdecoder alphaSize

 In GHCi, you can see that this works:

 GHCi> threeLetterMessage
[Alpha,Alpha,Beta,Alpha,Kappa]
GHCi> threeLetterEncoder threeLetterMessage
[Beta,Beta,Kappa,Beta,Alpha]
GHCi> threeLetterDecoder (threeLetterEncoder threeLetterMessage)
[Alpha,Alpha,Beta,Alpha,Kappa]

 Finally, you can put this all together to create a robust rotEncoder and rotDecoder to decode strings. These will work even if a single extra Char is added or removed, making the number of Char letters odd.

 Listing 15.10. Rotating strings with rotEncoder and rotDecoder

 rotEncoder :: String -> String
rotEncoder text = map rotChar text
 where alphaSize = 1 + fromEnum (maxBound :: Char)
 rotChar = rotN alphaSize

rotDecoder :: String -> String
rotDecoder text = map rotCharDecoder text
 where alphaSize = 1 + fromEnum (maxBound :: Char)
 rotCharDecoder = rotNdecoder alphaSize

threeLetterEncoder :: [ThreeLetterAlphabet] -> [ThreeLetterAlphabet]
threeLetterEncoder vals = map rot3l vals
 where alphaSize = 1 + fromEnum (maxBound :: ThreeLetterAlphabet)
 rot3l = rotN alphaSize

threeLetterDecoder :: [ThreeLetterAlphabet] -> [ThreeLetterAlphabet]
threeLetterDecoder vals = map rot3ldecoder vals
 where alphaSize = 1 + fromEnum (maxBound :: ThreeLetterAlphabet)
 rot3ldecoder = rotNdecoder alphaSize

fourLetterAlphabetEncoder :: [FourLetterAlphabet] -> [FourLetterAlphabet]
fourLetterEncoder vals = map rot4l vals
 where alphaSize = 1 + fromEnum (maxBound :: FourLetterAlphabet)
 rot4l = rotN alphaSize

fourLetterDecoder :: [FourLetterAlphabet] -> [FourLetterAlphabet]
fourLetterDecoder vals = map rot4ldecoder vals
 where alphaSize = 1 + fromEnum (maxBound :: ThreeLetterAlphabet)
 rot4ldecoder = rotNdecoder alphaSize

 In GHCi, you can explore encoding and decoding messages by rotating around all possible Char values:

 GHCi> rotEncoder "hi"
"\557160\557161"
GHCi> rotDecoder(rotEncoder "hi")
"hi"
GHCi> rotEncoder "Jean-Paul likes Simone"
"\557130\557157\557153\55....
GHCi> rotDecoder (rotEncoder "Jean-Paul likes Simone")
"Jean-Paul likes Simone"

 ROT13 is hardly a secure method of sending messages. Because each letter is always encoded exactly the same way, it’s easy
 to find patterns that allow you to decode the encoded message. Next you’ll look at a cryptographically stronger approach to
 sending secret messages.

 15.2. XOR: The magic of cryptography!

 Before you can implement a much stronger cipher, you need to learn a bit about cryptography. Thankfully, you only need to
 learn about one simple binary operator, XOR. XOR (short for exclusive or) is just like the typical logical OR, only it’s false for the case where both values are true. Table 15.1 shows the values for XORing two Booleans.

 Table 15.1. XOR Booleans

 	
 First value

 	
 Second value

 	
 Result

 	false
 	false
 	false

 	true
 	false
 	true

 	false
 	true
 	true

 	true
 	true
 	false

 XOR is powerful in cryptography because it has two important properties. The first is that like ROT13, XOR is symmetric. XORing two lists of Bools results in a new list of Bools. XORing this new list with either one of the originals results in the other. Figure 15.2 is a visual example.

 Figure 15.2. The symmetric nature of XOR

 [image:]

 The other useful property of XOR is that given a uniform distribution of True and False values (or in practice a string of bits), no matter what the distribution of True and False values in your plain text, the output of the XOR will be a uniform distribution of True and False values. In practice, if you take a nonrandom string of values, such as text, and XOR it with a random one, the result will appear to the observer as random noise. This fixes a major problem with ROT13. Though
 the ROT13-encoded text is illegible on initial inspection, the patterns of characters in the output text are the same as the
 original and thus easy to decode. When properly XORing data, the output is indistinguishable from noise. You can best visualize this by comparing using rotN on an image to XORing it with noise (see figure 15.3). Assume that the gray pixels are False and the black ones are True.

 Figure 15.3. Comparing rotN encoding to XOR on an image

 [image:]

 Let’s define a simple xor function. You’ll start by making a helper function named xorBool, which will operate on two Bools.

 	

 Note

 Haskell’s Data.Bool module does have an xor function that’s identical to this xorBool function.

 	

 Listing 15.11. xorBool, a foundation for xor

 xorBool :: Bool -> Bool -> Bool
xorBool value1 value2 = (value1 || value2) && (not (value1 && value2))

 For your version of xor, your main goal is to easily XOR two lists of Bool values. Internally, in your final xor function, you’ll want to work on pairs because it’s easy to zip the two lists together and then map across the list of pairs.
 As a step toward this, you’ll build an xorPair function that operates on a single pair of Booleans.

 Listing 15.12. xorPair to xor pairs of Bools

 xorPair :: (Bool,Bool) -> Bool
xorPair (v1,v2) = xorBool v1 v2

 Finally, you can put this all together into an xor function that operates on two lists of Booleans.

 Listing 15.13. Finally, your completed xor function

 xor :: [Bool] -> [Bool] -> [Bool]
xor list1 list2 = map xorPair (zip list1 list2)

 With your xor function in hand, the next thing you need to do is figure out how to xor two strings.

 15.3. Representing values as bits

 In cryptography, you don’t think of lists of Booleans but rather streams of bits. To make reasoning about your code in the
 rest of this section easier, you’ll create a useful type synonym, Bits.

 	

 Note

 In unit 4, you’ll look at how Haskell represents different values as bits, but for now you can create your own system to represent
 them.

 	

 Listing 15.14. Bits type synonym

 type Bits = [Bool]

 Your end goal is to encrypt strings of text, but to do that you need to translate them into bits. You can start by first converting
 Ints into bits because each Char can be converted into an Int. Given you have an Int, all you need to do is to transform a base 10 into a stream of bits, which is the binary equivalent.

 You can convert a base 10 number into binary by recursively dividing a number by 2. If there’s no remainder, you add False (or 0) to your list of bits and otherwise add a 1. You stop when the number is either 0 or 1. You’ll define a function named
 intToBits' (note the apostrophe). You’re adding the apostrophe to the name because this function will serve as a helper function for
 your final intToBits function.

 Listing 15.15. intToBits' starting to convert an Int type to Bits

 intToBits' :: Int -> Bits
intToBits' 0 = [False]
intToBits' 1 = [True]
intToBits' n = if (remainder == 0)
 then False : intToBits' nextVal
 else True : intToBits' nextVal
 where remainder = n `mod` 2
 nextVal = n `div` 2

 If you try this on a few well-known powers of 2, you can see that this code has a small issue:

 GHCi> intToBits' 2
[False,True]
GHCi> intToBits' 8
[False,False,False,True]

 This algorithm works well, except your number is reversed! Your final version of this function, intToBits (with no '), will need to reverse the output of intToBits'. Additionally, you’d like all of your Bit lists to be the same size. Right now, intToBits' 0 will return a list of a single Bool, whereas intToBits maxBound will return one with 63 Bools! To solve this, you’ll make sure that you prepend extra False values so that the list is equal to the size of the length of the e converted to bits. For this example, you’ll calculate maxBits first.

 Listing 15.16. maxBits and your final intToBits function

 maxBits :: Int
maxBits = length (intToBits' maxBound)

intToBits :: Int -> Bits
intToBits n = leadingFalses ++ reversedBits
 where reversedBits = reverse (intToBits' n)
 missingBits = maxBits - (length reversedBits)
 leadingFalses = take missingBits (cycle [False])

 Finally, you can convert a single Char into Bits.

 Listing 15.17. charToBits to convert Chars into Bits

 charToBits :: Char -> Bits
charToBits char = intToBits (fromEnum char)

 With charToBits, you have the basic tools to make more cryptographically secure secret messages! The only problem is that you’d like to be
 able to convert bits back into Chars. Fortunately, this isn’t too complicated. You’ll start with a function bitsToInts. You create a list of indices for each bit, and if the Bit is True, you add 2^index. To understand this, it’s helpful to realize that binary 101 in decimal is 1*2^2 + 0*2^1 + 1*2^0. Because
 the only two values are 1 or 0, you take the sum of those nonzero powers. You could use an if then else expression here, but the more Haskellish approach is to use filter.

 Listing 15.18. bitsToInt to go backward from Bits to an Int type

 bitsToInt :: Bits -> Int
bitsToInt bits = sum (map (\x -> 2^(snd x)) trueLocations)
 where size = length bits
 indices = [size-1,size-2 .. 0]
 trueLocations = filter (\x -> fst x == True)
 (zip bits indices)

 You can verify that this function works in GHCi:

 GHCi> bitsToInt (intToBits 32)
32
GHCi> bitsToInt (intToBits maxBound)
9223372036854775807

 	

 Note

 There’s a source of possible errors in your handling of converting integers to bits: you have no way to handle negative numbers.
 This is okay in this case, because you’re using intToBits and its converse only as a means of working with Chars as Enums. All Char Enum values are between 0 and maxBound, so you should never encounter a negative number in practice. In lesson 38, you’ll take a close look at issues like this.

 	

 The last function you need for working with bits is one to convert bitsToChar, which can be done with toEnum.

 Listing 15.19. Completing the transformation by going back from bitsToChar

 bitsToChar :: Bits -> Char
bitsToChar bits = toEnum (bitsToInt bits)

 In GHCi, you can see that this works as well:

 GHCi> bitsToChar (charToBits 'a')
'a'
GHCi> bitsToChar (charToBits maxBound)
'\1114111'
GHCi> bitsToChar (charToBits minBound)
'\NUL'

 Now you can put all these pieces together to make a much more secure system of creating secret messages!

 15.4. The one-time pad

 With your xor function, you can go from the insecure ROT13 cipher to the unbreakable one-time pad! The one-time pad is an incredibly important tool in cryptography; if implemented correctly, it can’t be cracked. Conceptually, the one-time
 pad is simple. You start with your plain text and another text at least as many characters long as your plain text. Then you
 take each character from the second text and xor it with a character from your plain text, one at a time. Traditionally, this second text was written on a pad of paper, hence
 the term pad in the cipher’s name. The one-time pad is uncrackable as long as the pad is sufficiently random and, as indicated by the
 name, you use the pad only once.

 15.4.1. Implementing your one-time pad

 To implement your one-time pad, let’s start with a sample pad.

 Listing 15.20. A simple pad

 myPad :: String
myPad = "Shhhhhh"

 Next you have some plain text to encrypt.

 Listing 15.21. Your plain text

 myPlainText :: String
myPlainText = "Haskell"

 To encrypt your myPlainText, you convert both your pad and your plain text to bits, and then xor the results.

 Listing 15.22. applyOTP' for converting a string to bits with a one-time pad

 applyOTP' :: String -> String -> [Bits]
applyOTP' pad plaintext = map (\pair ->
 (fst pair) `xor` (snd pair))
 (zip padBits plaintextBits)
 where padBits = map charToBits pad
 plaintextBits = map charToBits plaintext

 Of course, applyOTP' gives back only a list of bits. What you want is a string. Your final version of applyOTP will take the output of applyOTP' and map it into a string.

 Listing 15.23. Finally, applyOTP to encode strings using a one-time pad

 applyOTP :: String -> String -> String
applyOTP pad plaintext = map bitsToChar bitList
 where bitList = applyOTP' pad plaintext

 With your final applyOTP, you can encrypt your plain text:

 GHCi> applyOTP myPad myPlainText
"\ESC\t\ESC\ETX\r\EOT\EOT"

 The first thing you should notice is why it’s never a good idea to roll your own cryptography system! Clearly, your simple
 XOR-based one-time pad shows some patterns when you apply the same letters to each other. This is because your pad isn’t a particularly
 good one, given how often letters are repeated in it. Remember that xor provides a uniformly random output, given one of the values being xorBool is also uniformly random. Clearly, your plain text isn’t, and, unfortunately your pad also isn’t random. If your pad was
 random, and an attacker didn’t know the pad, your encrypted text would be uncrackable!

 The interesting thing is that you can decode your text the same way you encoded it. By using partial application (applying
 fewer arguments to a function than required to get a function awaiting the remaining arguments, covered in lesson 5), you can create an encoder/decoder.

 Listing 15.24. Partial application to create an encoderDecoder

 encoderDecoder :: String -> String
encoderDecoder = applyOTP myPad

 Your encoder/decoder will work with any text shorter than your pad:

 GHCi> encoderDecoder "book"
"1\a\a\ETX"
GHCi> encoderDecoder "1\a\a\ETX"
"book"

 With your one-time pad, you have a much better way to send encrypted messages than you started with using ROT13. The biggest
 constraints are that your pad is sufficiently random, and most important: you use it only one time!

 15.5. A Cipher class

 Now that you have two ciphers for encoding messages, it’d be a good idea to write a type class that captures the general behavior
 of encoding and decoding messages. This allows you to create a common interface for any new ciphers you may write, as well
 as making working with rotEncode and applyOTP easier. You’ll create a type class Cipher that requires two methods: encode and decode.

 Listing 15.25. A Cipher class to generalize your cipher operations

 class Cipher a where
 encode :: a -> String -> String
 decode :: a -> String -> String

 But what are the types for your ciphers? So far you don’t have anything that looks like it would be a solid type, just some
 algorithms for transforming strings. You can start by making a simple type for your ROT13 cipher.

 Listing 15.26. The Rot data type

 data Rot = Rot

 What good is a single type and data constructor? By using this simple type and implementing the Cipher class, you can specify ROTN encoding of your text by using the more generic encode and decode functions.

 Listing 15.27. Making Rot an instance of Cipher

 instance Cipher Rot where
 encode Rot text = rotEncoder text
 decode Rot text = rotDecoder text

 To encode text using the ROT13 approach, you pass in the Rot data constructor and your text:

 GHCi> encode Rot "Haskell"
"\557128\557153\557171\557163\557157\557164\557164"
GHCi> decode Rot "\557128\557153\557171\557163\557157\557164\557164"
"Haskell"

 Next you need to make a type for your one-time pad. This is trickier because the one-time pad needs an extra argument. You
 can capture this extra argument in your definition of the type. You’ll create a data type OneTimePad, which takes a String, which will serve as the pad.

 Listing 15.28. The OneTimePad data type

 data OneTimePad = OTP String

 Then you make OneTimePad an instance of the Cipher class.

 Listing 15.29. Making OneTimePad an instance of Cipher

 instance Cipher OneTimePad where
 encode (OTP pad) text = applyOTP pad text
 decode (OTP pad) text = applyOTP pad text

 You can test this if you create an instance of the OneTimePad data type. But what should you use for the pad? As long as it’s longer than your plain text, you should be fine, but how
 can you get something long enough for any possible text you could input? You can solve this by using lazy evaluation to create
 an infinite list of all Chars cycling forever!

 Listing 15.30. Using lazy evaluation to create a limitless pad

 myOTP :: OneTimePad
myOTP = OTP (cycle [minBound .. maxBound])

 Now you can encode and decode strings of any length:

 GHCi> encode myOTP "Learn Haskell"
"Ldcqj%Nf{bog`"
GHCi> decode myOTP "Ldcqj%Nf{bog`"
"Learn Haskell"
GHCi> encode myOTP "this is a longer sentence, I hope it encodes"
"tikp$lu'i)fdbjk}0bw}`pxt}5:R<uqoE\SOHKW\EOT@HDGMOX"
GHCi> decode myOTP "tikp$lu'i)fdbjk}0bw}`pxt}5:R<uqoE\SOHKW\EOT@HDGMOX"
"this is a longer sentence, I hope it encodes"

 With your Cipher class, you have a great interface for working with any sort of secret message system you can think up. But remember: never,
 ever, ever roll your own cryptography for practical use.

 Summary

 In this capstone, you

 	Used some of the basic type classes, Enum and Bounded, to build your own generic rotN cipher.

 	Learned how to use XOR in order to encrypt a stream of Bools.

 	Used type synonyms to help you think of [Bool] as Bits. In the process of translating Char to Bits, and Bits to Char, you explored how different types work together and how to transform data in one type to another. You combined all this knowledge
 to create a powerful cryptographic tool, the one-time pad.

 	Used a type class to create an interface for using different ciphers, and implemented the Cipher class for two types used to represent your different algorithms for encryption.

 Extending the exercise

 The problem with the one-time pad is the one-time pad itself. It has to be at least as long as the message you want to send,
 and you can use it only one time. The solution is to generate your own one-time pad from a “seed.” How is this done? All you
 need is a pseudo-random number generator (PRNG). Given an initial seed value, a PRNG produces a random number. Then this next
 number can be used as the seed for the next number. By generating a stream of Ints, you can use intToBits to create all the necessary xor values you need. In this way, a PRNG can use a single number to transmit an effectively infinitely long one-time pad. Encrypting
 a message by using the output of a PRNG as the pad is called a stream cipher.

 Here’s the Haskell code for a simple PRNG. The specific algorithm is called a linear congruential generator.

 Listing 15.31. A linear congruential PRNG

 prng :: Int -> Int -> Int -> Int -> Int
prng a b maxNumber seed = (a*seed + b) `mod` maxNumber

 The a and b parameters are initialization parameters that help determine the randomness, maxNumber determines the upper bound of the number that can be produced, and finally you have the seed. The following is an example
 of using partial application to create an example PRNG for numbers less than 100.

 Listing 15.32. examplePRNG

 examplePRNG :: Int -> Int
examplePRNG = prng 1337 7 100

 Here you’re generating random numbers in GHCi:

 GHCi> examplePRNG 12345
72
GHCi> examplePRNG 72
71
GHCi> examplePRNG 71
34
GHCi> examplePRNG 34
65

 To explore this on your own, use the PRNG to create a StreamCipher type that can be an instance of the Cipher class. Remember: never use your own crypto in the real world! Assume that this should be used for passing notes only.

Unit 3. Programming in types

 Types in Haskell constitute their own way of writing programs. Unit 1 introduced you to the general ideas of functional programming. If this was your first introduction to functional programming,
 you were likely presented with an entirely new way of thinking about writing code and solving problems. Haskell’s type system
 is so powerful that it’s best to approach it as a second programming language that works in conjunction with what you learned
 in unit 1.

 But what does it mean to think about programming in types? When you look at the type signature of a function—say, a -> b—you can view this signature as a description of a transformation. Suppose you have a type signature CoffeeBeans -> CoffeeGrounds; what function could this possibly describe? Knowing no more than those two types, you could guess that this function is grind. What about CoffeeGrounds -> Water -> Coffee? Clearly, this is the brew function. Types in Haskell allow you to view programs as a series of transformations.

 You can think of transformations as a more abstract level of thinking about functions. When solving problems in Haskell, you can approach them first as a
 sequence of abstract transformations. For example, say you have a large text document and you need to find all the numbers
 in that document and then add them all together. How are you going to solve this problem in Haskell? Let’s start with knowing
 that a document can be represented as a String:

 type Document = String

 Then you need a function that will break your big String into pieces so you can search for numbers:

 Document -> [String]

 Next you need to search for numbers. This will take your list of Strings and a function to check whether a String is a number, and will return your numbers:

 [String] -> (String -> Bool) -> [String]

 Now you have your numbers, but they need to be converted from strings to numbers:

 [String] -> [Integer]

 Finally, you need to take a list of integers and transform it into a single integer:

 [Integer] -> Integer

 And you’re finished! By thinking about the types of transformations that you’re going to make, you’ve been able to design
 your overall program much the same way you design a single function.

 Although this example has shown how types can allow you to design programs, you’ve only scratched the surface of what Haskell’s
 type system has to offer. In this unit, you’ll start exploring the more powerful features of types in Haskell. You’ll combine
 types in ways not possible in other languages, see how types can take arguments of their own, and learn how the right types
 can eliminate entire classes of bugs from your code. The more Haskell you learn, the more you’ll find yourself programming
 in types first and then using functions to hash out the details.

Lesson 16. Creating types with “and” and “or”

 After reading lesson 16, you’ll be able to

 	Understand product types in various programming languages

 	Use sum types to model problems in new ways

 	Think beyond hierarchical program design

 In this lesson, you’ll take a closer look at some of the types we’ve already covered. You’ll do this so you can learn more
 about what makes Haskell’s types unique and how to design programs using types. Most of the types you’ve seen so far are algebraic
 data types. Algebraic data types are any types that can be made by combining other types. The key to understanding algebraic data types is knowing exactly
 how to combine other types. Thankfully, there are only two ways. You can combine multiple types with an and (for example, a name is a String and another String), or you can combine types with an or (for example, a Bool is a True data constructor or a False data constructor). Types that are made by combining other types with an and are called product types. Types combined using or are called sum types.

 	

 Consider this

 You’re writing code to help manage the breakfast menu at a local diner. Breakfast specials are made up of selections of one
 or more sides, a meat choice, and the main meal. Here are the data types for these options:

 data BreakfastSide = Toast | Biscuit | Homefries | Fruit deriving Show
data BreakfastMeat = Sausage | Bacon | Ham deriving Show
data BreakfastMain = Egg | Pancake | Waffle deriving Show

 You want to create a BreakfastSpecial type representing specific combinations of these items that the customer can choose. Here are the options:

 	Kids’ breakfast—One main and one side

 	Basic breakfast—One main, one meat, and one side

 	The lumberjack!—Two mains, two meats, and three sides

 How can you create a single type that allows for these, and only these, possible selections from your other breakfast types?

 	

 16.1. Product types—combining types with “and”

 Product types are created by combining two or more existing types with and. Here are some common examples:

 	A fraction can be defined as a numerator (Integer) and denominator (another Integer).

 	A street address might be a number (Int) and a street name (String).

 	A mailing address might be a street address and a city (String) and a state (String) and a zip code (Int).

 Although the name product type might make this method of combining types sound sophisticated, this is the most common way in all programming languages to
 define types. Nearly all programming languages support product types. The simplest example is a struct from C. Here’s an example
 in C of a struct for a book and an author.

 Listing 16.1. C structs are product types—an example with a book and author

 struct author_name {
 char *first_name;
 char *last_name;
};

struct book {
 author_name author;
 char *isbn;
 char *title;
 int year_published;
 double price;
};

 In this example, you can see that the author_name type is made by combining two Strings (for those unfamiliar, char * in C represents an array of characters). The book type is made by combining an author_name, two Strings, an Int, and a Double. Both author_name and book are made by combining other types with an and. C’s structs are the predecessor to similar types in nearly every language, including classes and JSON. In Haskell, our book
 example would look like this.

 Listing 16.2. C’s author_name and book structs translated to Haskell

 data AuthorName = AuthorName String String

data Book = Author String String Int

 Preferably, you’d use record syntax (lesson 12) to write a version of book even more reminiscent of the C struct.

 Listing 16.3. Using record syntax for Book to show the similarity to a C struct

 data Book = Book {
 author :: AuthorName
 , isbn :: String
 , title :: String
 , year :: Int
 , price :: Double}

 Book and AuthorName are examples of product types and have an analog in nearly every modern programming language. What’s fascinating is that
 in most programming languages, combining types with an and is the only way to make new types.

 	

 Quick check 16.1

 Q1:
Rewrite AuthorName by using record syntax.

 	

 	

 QC 16.1 answer

 1:

data AuthorName = AuthorName {
 firstName :: String
 , lastName :: String
}

 	

 16.1.1. The curse of product types: hierarchical design

 Making new types only by combining existing types leads to an interesting model of designing software. Because of the restriction
 that you can expand an idea only by adding to it, you’re constrained with top-down design, starting with the most abstract
 representation of a type you can imagine. This is the basis for designing software in terms of class hierarchies.

 As an example, suppose you’re writing Java and want to start modeling data for a bookstore. You start with the preceding Book example (assume that the Author class already exists).

 Listing 16.4. A first pass at defining a Book class in Java

 public class Book {
 Author author;
 String isbn;
 String title;
 int yearPublished;
 double price;
}

 This works great until you realize that you also want to sell vinyl records in the bookstore. Your default implementation
 of VinylRecord looks like this.

 Listing 16.5. Expanding your selection by adding a Java class for VinylRecord

 public class VinylRecord {
 String artist;
 String title;
 int yearPublished;
 double price;
}

 VinylRecord is similar to Book, but dissimilar enough that it causes trouble. For starters, you can’t reuse your Author type, because not all artists have names; sometimes the artist is a band rather than an individual. You could use the Author type for Elliott Smith but not for The Smiths, for example. In traditional hierarchical design, there’s no good answer to this issue regarding the Author and artist mismatch (in the next section, you’ll see how to solve this in Haskell). Another problem is that vinyl records don’t have
 an ISBN number.

 The big problem is that you want a single type that represents both vinyl records and books so you can make a searchable inventory.
 Because you can compose types only by and, you need to develop an abstraction that describes everything that records and books have in common. You’ll then implement
 only the differences in the separate classes. This is the fundamental idea behind inheritance. You’ll next create the class StoreItem, which is a superclass of both VinylRecord and Book. Here’s the refactored Java.

 Listing 16.6. Creating a StoreItem superclass of Book and VinylRecord in Java

 public class StoreItem {
 String title;
 int yearPublished;
 double price;
}

public class Book extends StoreItem{
 Author author;
 String isbn;
}

public class VinylRecord extends StoreItem{
 String artist;
}

 The solution works okay. You can now write all the rest of your code to work with StoreItems and then use conditional statements to handle Book and VinylRecord. But suppose you realize that you ordered a range of collectible toy figurines to sell as well. Here’s the basic CollectibleToy class.

 Listing 16.7. A CollectibleToy class in Java

 public class CollectibleToy {
 String name;
 String description;
 double price;
}

 To make everything work, you’ve completely refactored all of your code again! Now StoreItem can have only a price attribute, because it’s the only value that all items share in common. The common attributes between VinylRecord and Book have to go back into those classes. Alternately, you could make a new class that inherits from StoreItem and is a superclass of VinylRecord and Book. What about ColletibleToy’s name attribute? Is that different from title? Maybe you should make an interface for all of your items instead! The point is that even in relatively simple cases, designing
 in strictly product types can quickly get complex.

 In theory, creating object hierarchies is elegant and captures an abstraction about how everything in the world is interrelated.
 In practice, creating even trivial object hierarchies is riddled with design challenges. The root of all these challenges
 is that the only way to combine types in most languages is with an and. This forces you to start from extreme abstraction and move downward. Unfortunately, real life is full of strange edge cases
 that make this much more complicated than you’d typically want.

 	

 Quick check 16.2

 Q1:
Assume you have a Car type. How could you represent a SportsCar as a Car with a Spoiler? (Assume that you have a Spoiler type as well.)

 	

 	

 QC 16.2 answer

 1:

data SportsCar = SportsCar Car Spoiler

 	

 16.2. Sum types—combining types with “or”

 Sum types are a surprisingly powerful tool, given that they provide only the capability to combine two types with or. Here are examples of combining types with or:

 	A die is either a 6-sided die or a 20-sided die or

 	A paper is authored by either a person (String) or a group of people ([String]).

 	A list is either an empty list ([]) or an item consed with another list (a:[a]).

 The most straightforward sum type is Bool.

 Listing 16.8. A common sum type: Bool

 data Bool = False | True

 An instance of Bool is either the False data constructor or the True data constructor. This can give the mistaken impression that sum types are just Haskell’s way of creating enumerative types
 that exist in many other programming languages. But you’ve already seen a case in which sum types can be used for something
 more powerful, in lesson 12 when you defined two types of names.

 Listing 16.9. Using a sum type to model names with and without middle names

 type FirstName = String
type LastName = String
type MiddleName = String

data Name = Name FirstName LastName
 | NameWithMiddle FirstName MiddleName LastName

 In this example, you can use two type constructors that can either be a FirstName consisting of two Strings or a NameWithMiddle consisting of three Strings. Here, using or between two types allows you to be expressive about what types mean. Adding or to the tools you can use to combine types opens up worlds of possibility in Haskell that aren’t available in any other programming
 language without sum types. To see how powerful sum types can be, let’s resolve some of the issues in the previous section.

 An interesting place to start is the difference between author and artist. In our example, you need two types because you
 assume that the name of each book author can be represented as a first and last name, whereas an artist making records can
 be represented as a person’s name or a band’s name. Resolving this problem with product types alone is tricky. But with sum
 types, you can tackle this problem rather easily. You can start with a Creator type that’s either an Author or an Artist (you’ll define these next).

 Listing 16.10. A Creator type that’s either an Author or an Artist

 data Creator = AuthorCreator Author | ArtistCreator Artist

 You already have a Name type, so you can start by defining Author as a name.

 Listing 16.11. Defining the Author type by using your existing Name type

 data Author = Author Name

 An artist is a bit trickier; as we already mentioned, Artist can be a person’s name or a band’s name. To solve this issue, you’ll use another sum type!

 Listing 16.12. An artist can be either a Person or a Band

 data Artist = Person Name | Band String

 This is a good solution, but what about some of those tricky edge cases that pop up in real life all the time? For example,
 what about authors such as H.P. Lovecraft? You could force yourself to use Howard Phillips Lovecraft, but why force yourself to be constrained by your data model? It should be flexible. You can easily fix this by adding another
 data constructor to Name.

 Listing 16.13. Expanding your Name type to work with H.P. Lovecraft

 data Name = Name FirstName LastName
 | NameWithMiddle FirstName MiddleName LastName
 | TwoInitialsWithLast Char Char LastName

 Notice that Artist, Author, and as a result, Creator all depend on the definition of Name. But you had to change only the definition of Name itself and didn’t need to worry at all about how any other types using Name are defined. At the same time, you still benefit from code reuse, as both Artist and Author types benefit from having Name defined in a single place. As an example of all of this, here’s our H.P. Lovecraft Creator type.

 Listing 16.14. Making a Creator type for H.P. Lovecraft

 hpLovecraft :: Creator
hpLovecraft = AuthorCreator
 (Author
 (TwoInitialsWithLast 'H' 'P' "Lovecraft"))

 Although the data constructors in this example may be verbose, in practice you’d likely be using functions that would abstract
 out much of this. Now think of how this solution compares to one you could come up with using hierarchal design required by
 product types. From the hierarchical design standpoint, you’d need to have a Name superclass with only a last-name attribute (because this is the only property that all three types of name share). Then you’d
 need separate subclasses for each of the three data constructors you use. But even then, a name such as Andrew W.K., with a last name as a char, would completely break that model. This is an easy fix with sum types.

 Listing 16.15. Easily expanding Name to work with Andrew W.K.

 data Name = Name FirstName LastName
 | NameWithMiddle FirstName MiddleName LastName
 | TwoInitialsWithLast Char Char LastName
 | FirstNameWithTwoInits FirstName Char Char

 The only solution for the product-type-only view is to create a Name class with a growing list of fields that would be unused attributes:

 public class Name {
 String firstName;
 String lastName;
 String middleName;
 char firstInitial;
 char middleInitial;
 char lastInitial;
}

 This would require a lot of extra code to ensure that everything behaves correctly. Additionally, you have no guarantees about
 your Name being in a valid state. What if all these attributes had values? There’s nothing a type checker in Java could do to ensure
 that a Name object met the constraints you’ve specified for names. In Haskell, you can know that only the explicit types you’ve defined
 can exist.

 16.3. Putting together your bookstore

 Now let’s revisit our bookstore problem and see how thinking with sum types can help. With your powerful Creator type in hand, you can now rewrite Book.

 Listing 16.16. The Book type using Creator

 data Book = Book {
 author :: Creator
 , isbn :: String
 , bookTitle :: String
 , bookYear :: Int
 , bookPrice :: Double
 }

 You can also define your VinylRecord type.

 Listing 16.17. The VinylRecord type

 data VinylRecord = VinylRecord {
 artist :: Creator
 , recordTitle :: String
 , recordYear :: Int
 , recordPrice :: Double
 }

 	

 Why not just price?

 The careful reader may notice that Book and VinylRecord have their own unique name for price. Why not make working with these types more consistent and use the name price rather than bookPrice and recordPrice? The issue here has nothing to do with the limitation of sum types but rather a limitation of Haskell’s way of dealing with
 record syntax. You’ll recall that without record syntax, you’d define your book type as follows:

 data Book = Book Creator String String Int Double

 Record syntax automates creating a function like this:

 price :: Book -> Double
price (Book _ _ _ _ val) = val

 The problem is that using the same name for a property of both a Book and a VinylRecord means defining conflicting functions!

 This is incredibly annoying, and a failing of Haskell I have a hard time forgiving. We’ll touch on workarounds later in the
 book. But if you think this is ridiculous, you’re not alone.

 	

 Now you can trivially create a StoreItem type.

 Listing 16.18. A StoreItem type is either a Book or a VinylRecord

 data StoreItem = BookItem Book | RecordItem VinylRecord

 But once again, we’ve forgotten about the CollectibleToy. Because of sum types, it’s easy to add this data type and extend your StoreItem type to include it.

 Listing 16.19. Adding a CollectibleToy type

 data CollectibleToy = CollectibleToy {
 name :: String
 , descrption :: String
 , toyPrice :: Double
 }

 Fixing StoreItem just means adding one more or.

 Listing 16.20. Easily refactoring StoreItem to include CollectibleToy

 data StoreItem = BookItem Book
 | RecordItem VinylRecord
 | ToyItem CollectibleToy

 Finally, we’ll demonstrate how to build functions that work on all of these types by writing a price function that gets the price of any item.

 Listing 16.21. An example of using the StoreItem type with a price function

 price :: StoreItem -> Double
price (BookItem book) = bookPrice book
price (RecordItem record) = recordPrice record
price (ToyItem toy) = toyPrice toy

 Sum types allow you to be dramatically more expressive with your types while still providing convenient ways to create groups
 of similar types.

 	

 Quick check 16.3

 Q1:
Assume that Creator is an instance of Show. Write a madeBy function that has the type StoreItem -> String and does its best to determine who made the StoreItem.

 	

 	

 QC 16.3 answer

 1:

madeBy :: StoreItem -> String
madeBy (BookItem book) = show (author book)
madeBy (RecordItem record) = show (artist record)
madeBy _ = "unknown"

 	

 Summary

 In this lesson, our objective was to teach you about the two ways to create types from existing types. The first way is with
 product types. Product types work by combining types using and, bundling two or more types together to define a new type. Nearly every programming language supports product types, even
 if not by that name. The other way to combine types is with or. Sum types are much less common than product types. The problem with product types alone is that you’re forced to think in
 hierarchical abstractions. Sum types are a powerful tool that allows you to be much more expressive in defining new types.
 Let’s see if you got this.

 Q16.1
To further complicate the items in your store, you eventually keep an inventory of free pamphlets. Pamphlets have a title,
 a description, and a contact field for the organization that provides the pamphlet. Create the Pamphlet type and add it to StoreItem. Additionally, modify the price so that it works with Pamphlet.

 Q16.2
Create a Shape type that includes the following shapes: Circle, Square, and Rectangle. Then write a function to compute the perimeter of a Shape as well as its area.

Lesson 17. Design by composition—Semigroups and Monoids

 After reading lesson 17, you’ll be able to

 	Create new functions with function composition

 	Use Semigroup to mix colors

 	Learn how to use guards in code

 	Solve probability problems with Monoid

 In the preceding lesson, you looked at how sum types allow you to think outside the typical hierarchical design patterns present
 in most programming languages. Another important way that Haskell diverges from traditional software design is with the idea
 of composability. Composability means that you create something new by combining two like things.

 What does it mean to combine two things? Here are some examples: you can concatenate two lists and get a new list, you can combine two documents and get
 a new document, and you can mix two colors and get a new color. In many programming languages, each of these methods of combining
 types would have its own unique operator or function. In much the same way that nearly every programming language offers a
 standard way to convert a type to a string, Haskell offers a standard way to combine instances of the same type together.

 	

 Consider this

 So far, when you’ve combined multiple strings, you’ve used ++. This can get tedious for larger strings:

 "this" ++ " " ++ "is" ++ " " ++ "a" ++ " " ++ "bit" ++ " " ++ "much"

 Is there a better way to solve this?

 	

 17.1. Intro to composability—combining functions

 Before diving into combining types, let’s look at something more fundamental: combining functions. A special higher-order
 function that’s just a period (called compose) takes two functions as arguments. Using function composition is particularly helpful for combining functions on the fly
 in a readable way. Here are some examples of functions that can easily be expressed using function composition.

 Listing 17.1. Examples of using function composition to create functions

 myLast :: [a] -> a
myLast = head . reverse

myMin :: Ord a => [a] -> a
myMin = head . sort 1

myMax :: Ord a => [a] -> a
myMax = myLast . sort

myAll :: (a -> Bool) -> [a] -> Bool 2
myAll testFunc = (foldr (&&) True) . (map testFunc)

 	1 Using sort requires the Data.List module to be imported.

 	2 myAll tests that a property is true of all items in a list.

 	

 Quick check 17.1

 Q1:
Implement myAny by using function composition. myAny tests that a property is True for at least one value in the list.

 	

 	

 QC 17.1 answer

 1:

myAny :: (a -> Bool) -> [a] -> Bool
myAny testFunc = (foldr (||) False) . (map testFunc)

 Here’s an example:

 GHCi> myAny even [1,2,3]
True

 	

 In many cases where you’d use a lambda expression to create a quick function, function composition will be more efficient
 and easier to read.

 17.2. Combining like types: Semigroups

 To explore composability further, let’s look at a remarkably simple type class called Semigroup. To do this, you need to import Data.Semigroup at the top of your file (Lesson17.hs for this lesson).

 The Semigroup class has only one important method you need, the <> operator. You can think of <> as an operator for combining instances of the same type. You can trivially implement Semigroup for Integer by defining <> as +.

 Listing 17.2. Semigroup for Integer

 instance Semigroup Integer where 1
 (<>) x y = x + y 2

 	1 You use the “instance” keyword to make Integer an instance of the Semigroup type class.

 	2 You define the <> operator as simple addition.

 This may seem all too trivial, but it’s important to think about what this means. Here’s the type signature for (<>):

 (<>) :: Semigroup a => a -> a -> a

 This simple signature is the heart of the idea of composability; you can take two like things and combine them to get a new
 thing of the same type.

 	

 Quick check 17.2

 Q1:
Can you use (/) to make Int a Semigroup?

 	

 	

 QC 17.2 answer

 1:

No, because division doesn’t always return an Int type, which violates the rule.

 	

 17.2.1. The Color Semigroup

 Initially, it might seem like this concept would be useful only for mathematics, but we’re all familiar with this idea from
 an early age. The most well-known example of this is adding colors. As most children experience, we can combine basic colors
 to get a new color. For example:

 	Blue and yellow make green.

 	Red and yellow make orange.

 	Blue and red make purple.

 You can easily use types to represent this problem of mixing colors. First, you need a simple sum type of the colors.

 Listing 17.3. Defining the Color type

 data Color = Red |
 Yellow |
 Blue |
 Green |
 Purple |
 Orange |
 Brown deriving (Show,Eq)

 Next you can implement Semigroup for your Color type.

 Listing 17.4. Implementing Semigroup for Color v1

 instance Semigroup Color where
 (<>) Red Blue = Purple
 (<>) Blue Red = Purple
 (<>) Yellow Blue = Green
 (<>) Blue Yellow = Green
 (<>) Yellow Red = Orange
 (<>) Red Yellow = Orange
 (<>) a b = if a == b
 then a
 else Brown

 Now you can play with colors just as you did when you smeared your fingers in paint as a kid!

 GHCi> Red <> Yellow
Orange
GHCi> Red <> Blue
Purple
GHCi> Green <> Purple
Brown

 This works great, but you get an interesting problem when you add more than two colors. You want your color mixing to be associative.
 Associative means that the order in which you apply your <> operator doesn’t matter. For numbers, this means that 1 + (2 + 3) = (1 + 2) + 3. As you can see, your colors clearly aren’t
 associative:

 GHCi> (Green <> Blue) <> Yellow
Brown
GHCi> Green <> (Blue <> Yellow)
Green

 Not only does this rule about associativity make intuitive sense (mixing colors in any order should give you the same color),
 but this is formally required of the Semigroup type class. This can be one of the more confusing parts of the more advanced type classes we cover in this unit. Many of
 them have type class laws that require certain behavior. Unfortunately, the Haskell compiler can’t enforce these. The best advice is to always carefully
 read the Hackage documentation (https://hackage.haskell.org/) whenever you implement a nontrivial type class on your own.

 17.2.2. Making Color associative and using guards

 You can fix this issue by making it so that if one color is used to make another, combining them yields the composite color.
 So purple plus red is still purple. You could approach this problem by listing out a large number of pattern-matching rules
 comparing each possibility. But this solution would be long. Instead, you’ll use the Haskell feature called guards. Guards work much like pattern matching, but they allow you to do some computation on the arguments you’re going to compare. Figure 17.1 shows an example of a function using guards.

 Figure 17.1. Using guards in howMuch

 [image:]

 With an understanding of guards, you can rewrite your instance of Semigroup for Color so that you adhere to the type class laws for semigroups.

 Listing 17.5. Reimplementing Semigroup for Color to support associativity

 instance Semigroup Color where
 (<>) Red Blue = Purple
 (<>) Blue Red = Purple
 (<>) Yellow Blue = Green
 (<>) Blue Yellow = Green
 (<>) Yellow Red = Orange
 (<>) Red Yellow = Orange
 (<>) a b | a == b = a
 | all (`elem` [Red,Blue,Purple]) [a,b] = Purple
 | all (`elem` [Blue,Yellow,Green]) [a,b] = Green
 | all (`elem` [Red,Yellow,Orange]) [a,b] = Orange
 | otherwise = Brown

 As you can see, now the problem is fixed:

 GHCi> (Green <> Blue) <> Yellow
Green
GHCi> Green <> (Blue <> Yellow)
Green

 Type class laws are important because any other code that uses an instance of a type class will assume that they’re upheld.

 	

 Quick check 17.3

 Q1:
Does your implementation of Semigroup for Integers support associativity?

 	

 	

 QC 17.3 answer

 1:

Yes, because addition of integers is associative: 1 + (2 + 3) = (1 + 2) + 3.

 	

 In the real world, there are many ways to make a new thing from two things of the same type. Imagine the following possibilities
 for composition:

 	Combining two SQL queries to make a new SQL query

 	Combining two snippets of HTML to make a new snippet of HTML

 	Combining two shapes to make a new shape

 17.3. Composing with identity: Monoids

 Another type class that’s similar to Semigroup is Monoid. The only major difference between Semigroup and Monoid is that Monoid requires an identity element for the type. An identity element means that x <> id = x (and id <> x = x). So for addition of integers, the identity element would be 0. But in its current state, your Color type doesn’t have an identity element. Having an identity element might seem like a small detail, but it greatly increases
 the power of a type by allowing you to use a fold function to easily combine lists of the same type.

 The Monoid type class is also interesting because it demonstrates an annoying problem in the evolution of Haskell type classes. Logically,
 you’d assume that the definition of Monoid would look like the following.

 Listing 17.6. The rational definition of Monoid

 class Semigroup a => Monoid a where
 identity :: a

 After all, Monoid should be a subclass of Semigroup because it’s just Semigroup with identity. But Monoid predates Semigroup and isn’t officially a subclass of Semigroup. Instead, the definition of Monoid is perplexing.

 Listing 17.7. The actual definition of Monoid

 class Monoid a where
 mempty :: a
 mappend :: a -> a -> a
 mconcat :: [a] -> a

 Why mempty instead of identity? Why mappened instead of <>? These oddities in naming occur because the Monoid type class was added to Haskell before Semigroup. The most common Monoid is a list. The empty list is the identity for lists, and ++ (the append operator) is the <> operator for lists. The strange names of Monoid’s methods are just m (for Monoid) tacked onto common list functions: empty, append, and concat. Here you can compare all three ways to do the same identity operation on a list:

 GHCi> [1,2,3] ++ []
[1,2,3]

GHCi> [1,2,3] <> []
[1,2,3]

GHCi> [1,2,3] `mappend` mempty
[1,2,3]

 Notice that mappend has the exact same type signature as <>.

 	

 Quick check 17.4

 Q1:
If you implement mappend/<> for Integer as * instead of +, what will your mempty value be?

 	

 	

 QC 17.4 answer

 1:

1, because x × 1 = x.

 	

 17.3.1. mconcat: Combining multiple Monoids at once

 The easiest way to see how powerful identity is, is to explore the final method in the definition of Monoid: mconcat. The only required definitions in Monoid are mempty and mappend. If you implement these two, you get mconcat for free. If you look at the type signature of mconcat, you get a good sense of what it does:

 mconcat :: Monoid a => [a] -> a

 The mconcat method takes a list of Monoids and combines them, returning a single Monoid. The best way to understand mconcat is by taking a list of lists and seeing what happens when you apply mconcat. To make things easier, you’ll use strings because those are just lists of Chars:

 GHCi> mconcat ["does"," this"," make"," sense?"]
"does this make sense?"

 The great thing about mconcat is that because you’ve defined mempty and mappend, Haskell can automatically infer mconcat! This is because the definition of mconcat relies only on foldr (lesson 9), mappend, and mempty. Here’s the definition of mconcat:

 mconcat = foldr mappend mempty

 Any type class method can have a default implementation, provided the implementation needs only a general definition.

 17.3.2. Monoid laws

 Just like Semigroup, there are Monoid type class laws. There are four:

 	The first is that mappend mempty x is x. Remembering that mappend is the same as (++), and mempty is [] for lists, this intuitively means that

[] ++ [1,2,3] = [1,2,3]

 	The second is just the first with the order reversed: mappend x mempty is x. In list form this is

[1,2,3] ++ [] = [1,2,3]

 	The third is that mappend x (mappend y z) = mappend (mappend x y) z. This is just associativity, and again for lists this seems rather obvious:

[1] ++ ([2] ++ [3]) = ([1] ++ [2]) ++ [3]

 Because this is a Semigroup law, then if mappend is already implemented as <>, this law can be assumed because it’s required by the Semigroup laws.

 	The fourth is just our definition of mconcat:

mconcat = foldr mappend mempty

 Note that the reason mconcat uses foldr instead of foldl is due to the way that foldr can work with infinite lists, whereas foldl will force the evaluation.

 17.3.3. Practical Monoids—building probability tables

 Now let’s look at a more practical problem you can solve with monoids. You’d like to create probability tables for events
 and have an easy way to combine them. You’ll start by looking at a simple table for a coin toss. You have only two events:
 getting heads or getting tails. Table 17.1 is your table.

 Table 17.1. Probability of heads or tails

 	
 Event

 	
 Probability

 	Heads
 	0.5

 	Tails
 	0.5

 You have a list of Strings representing events and a list of Doubles representing probabilities.

 Listing 17.8. Type synonyms for Events and Probs

 type Events = [String]
type Probs = [Double]

 Your probability table is just a list of events paired with a list of probabilities.

 Listing 17.9. PTable data type

 data PTable = PTable Events Probs

 Next you need a function to create a PTable. This function will be a basic constructor, but it’ll also ensure that your probabilities sum to 1. This is easily achieved
 by dividing all the probabilities by the sum of the probabilities.

 Listing 17.10. createPTable makes a PTable ensuring all probabilities sum to 1

 createPTable :: Events -> Probs -> PTable
createPTable events probs = PTable events normalizedProbs
 where totalProbs = sum probs
 normalizedProbs = map (\x -> x/totalProbs) probs

 You don’t want to get too far without making PTable an instance of the Show type class. First you should make a simple function that prints a single row in your table.

 Listing 17.11. showPair creates a String for a single event-probability pair

 showPair :: String -> Double -> String
showPair event prob = mconcat [event,"|", show prob,"\n"]

 Notice that you’re able to use mconcat to easily combine this list of strings. Previously, you used the ++ operator to combine strings. It turns out that mconcat not only requires less typing, but also provides a preferable way to combine strings. This is because there are other text
 types in Haskell (discussed in unit 4) that support mconcat, but not ++.

 To make PTable an instance of Show, all you have to do is use zipWith on your showPair function. This is the first time you’ve seen zipWith. This function works by zipping two lists together and applying a function to those lists. Here’s an example adding two lists
 together:

 GHCi> zipWith (+) [1,2,3] [4,5,6]
[5,7,9]

 Now you can use zipWith to make your PTable an instance of Show.

 Listing 17.12. Making PTable an instance of Show

 instance Show PTable where
 show (PTable events probs) = mconcat pairs
 where pairs = zipWith showPair events probs

 In GHCi, you can see that you have the basic setup you need:

 GHCi> createPTable ["heads","tails"] [0.5,0.5]
heads|0.5
tails|0.5

 What you want to be able to model using the Monoid type class is the combination of two (or more) PTables. For example, if you have two coins, you want an outcome like this:

 heads-heads|0.25
heads-tails|0.25
tails-heads|0.25
tails-tails|0.25

 This requires generating a combination of all events and all probabilities. This is called the Cartesian product. You’ll start with a generic way to combine the Cartesian product of two lists with a function. The cartCombine function takes three arguments: a function for combining the two lists, and two lists.

 Listing 17.13. The cartCombine function for the Cartesian product of lists

 cartCombine :: (a -> b -> c) -> [a] -> [b] -> [c]
cartCombine func l1 l2 = zipWith func newL1 cycledL2
 where nToAdd = length l2 1
 repeatedL1 = map (take nToAdd . repeat) l1 2
 newL1 = mconcat repeatedL1 3
 cycledL2 = cycle l2 4

 	1 You need to repeat each element in the first list once for each element in the second.

 	2 Maps l1 and makes nToAdd copies of the element

 	3 The preceding line leaves you with a lists of lists, and you need to join them.

 	4 By cycling the second list, you can use zipWith to combine these two lists.

 Then your functions for combining events and combining probabilities are specific cases of cartCombine.

 Listing 17.14. combineEvents and combineProbs

 combineEvents :: Events -> Events -> Events
combineEvents e1 e2 = cartCombine combiner e1 e2
 where combiner = (\x y -> mconcat [x,"-",y]) 1

combineProbs :: Probs -> Probs -> Probs
combineProbs p1 p2 = cartCombine (*) p1 p2 2

 	1 When combining events, you hyphenate the event names.

 	2 To combine probabilities, you multiply them.

 With your combineEvent and combineProbs, you can now make PTable an instance of Semigroup.

 Listing 17.15. Making PTable an instance of Semigroup

 instance Semigroup PTable where
 (<>) ptable1 (PTable [] []) = ptable1 1
 (<>) (PTable [] []) ptable2 = ptable2
 (<>) (PTable e1 p1) (PTable e2 p2) = createPTable newEvents newProbs
 where newEvents = combineEvents e1 e2
 newProbs = combineProbs p1 p2

 	1 You want to handle the special case of having an empty PTable.

 Finally, you can implement the Monoid type class. For this class, you know that mappend and <> are the same. All you need to do is determine the identity, mempty element. In this case, it’s PTable [] []. Here’s your instance of Monoid for PTable.

 Listing 17.16. Making PTable an instance of Monoid

 instance Monoid PTable where
 mempty = PTable [] []
 mappend = (<>)

 Don’t forget: you gain the power of mconcat for free!

 To see how all this works, let’s see how to create two PTables. The first is a fair coin, and the other is a color spinner with different probabilities for each spinner.

 Listing 17.17. Example PTables coin and spinner

 coin :: PTable
coin = createPTable ["heads","tails"] [0.5,0.5]

spinner :: PTable
spinner = createPTable ["red","blue","green"] [0.1,0.2,0.7]

 If you want to know the probability of getting tails on the coin and blue on the spinner, you can use your <> operator:

 GHCi> coin <> spinner
heads-red|5.0e-2
heads-blue|0.1
heads-green|0.35
tails-red|5.0e-2
tails-blue|0.1
tails-green|0.35

 For your output, you can see that there’s a 0.1, or 10%, probability of flipping tails and spinning blue.

 What about the probability of flipping heads three times in a row? You can use mconcat to make this easier:

 GHCi> mconcat [coin,coin,coin]
heads-heads-heads|0.125
heads-heads-tails|0.125
heads-tails-heads|0.125
heads-tails-tails|0.125
tails-heads-heads|0.125
tails-heads-tails|0.125
tails-tails-heads|0.125
tails-tails-tails|0.125

 In this case, each outcome has the same probability: 12.5%.

 Initially, the idea of abstracting out “combining things” might seem a bit too abstract. Once you start seeing problems in
 terms of monoids, it’s remarkable how frequently they appear every day. Monoids are a great demonstration of the power of
 thinking in types when writing code.

 Summary

 In this lesson, our objective was to introduce you to two interesting type classes in Haskell: Semigroup and Monoid. Though both classes have rather strange names, they provide a relatively simple role. Monoid and Semigroup allow you to combine two instances of a type into a new instance. This idea of abstraction through composition is an important
 one in Haskell. The only difference between Monoid and Semigroup is that Monoid requires you to specify an identity element. Monoid and Semigroup are also a great introduction to the abstract thinking typically involved in more-advanced type classes. Here you start to
 see the philosophical difference between type classes in Haskell and interfaces in most OOP languages. Let’s see if you got
 this.

 Q17.1
Your current implementation of Color doesn’t contain an identity element. Modify the code in this unit so that Color does have an identity element, and then make Color an instance of Monoid.

 Q17.2
If your Events and Probs types were data types and not just synonyms, you could make them instances of Semigroup and Monoid, where combineEvents and combineProbs were the <> operator in each case. Refactor these types and make instances of Semigroup and Monoid.

Lesson 18. Parameterized types

 After reading lesson 18, you’ll be able to

 	Use parameterized types to make generic data types

 	Understand kinds of types

 	Write code using the Data.Map type to look up values

 In this unit so far, we’ve discussed how types can be added and multiplied, like data. Like functions, types can also take
 arguments. Types take arguments by using type variables in their definitions (so their arguments are always other types).
 Types defined using parameters are called parameterized types. Parameterized types perform an important role in Haskell, as they allow you to define generic data structures that work
 with a wide range of existing data.

 	

 Consider this

 Suppose you want to create a type representing a pair of two values of the same type. They could be a pair of Doubles representing latitude and longitude, a pair of Names representing a couple dating, or a pair of graph nodes representing an edge, for example. You don’t want to use the existing
 Tuple type because you want to ensure that the elements in your pair are exactly the same type. How can you accomplish this?

 	

 18.1. Types that take arguments

 If you’re familiar with type generics in languages such as C# and Java, parameterized types will initially seem similar. Like
 generics in C# and Java, parameterized types allow you to create “containers” that can hold other types. For example, List<String> represents a List containing only strings, and KeyValuePair<int, string> represents a pair of values in which an int serves as a key to a string. Usually, you use generic types to constrain the types of values a Container type can take to make it easier to work with. In Haskell, the same is true.

 The most basic parameterized type you could make is a Box that serves as a container for any other type. The Box type is the equivalent of your simple function, but for parameterized types (code from this lesson will go into a Lesson18.hs file). Figure 18.1 details the definition of Box.

 Figure 18.1. Definition of the Box parameterized type

 [image:]

 The Box type is an abstract container that can hold any other type. As soon as you put a type inside Box, the Box type takes on a concrete value. You can use GHCi to explore some of these:

 GHCi> n = 6 :: Int
GHCi> :t Box n
Box n :: Box Int
GHCi> word = "box"
GHCi> :t Box word
Box word :: Box [Char]
GHCi> f x = x
GHCi> :t Box f
Box f :: Box (t -> t)
GHCi> otherBox = Box n
GHCi> :t Box otherBox
Box otherBox :: Box (Box Int)

 You can also make simple functions for your Box, such as wrap and unwrap to put items into or take them out of a box.

 Listing 18.1. Defining the wrap and unwrap functions for Box

 wrap :: a -> Box a
wrap x = Box x

unwrap :: Box a -> a
unwrap (Box x) = x

 Notice that both of these functions don’t know the concrete type of the box, but are still able to work with it.

 	

 Quick check 18.1

 Q1:
What’s the type of wrap (Box 'a')?

 	

 	

 QC 18.1 answer

 1:

Box (Box Char)

 	

 18.1.1. A more useful parameterized type: Triple

 Like the simple function, the Box type is a little too primitive to be of any use. A much more useful container is Triple, which we’ll define as three values that are the same.

 Listing 18.2. Defining the Triple type

 data Triple a = Triple a a a deriving Show

 It’s worth noting that Triple isn’t the same as a 3-tuple (a,b,c). Tuples in Haskell can have different types as values. In this Triple type, all three values must be of the same type. There are many practical cases in which values have this property. For example,
 points in 3D space can be viewed as a Triple of type Double.

 Listing 18.3. Defining a 3D point in space as a Triple

 type Point3D = Triple Double

aPoint :: Point3D
aPoint = Triple 0.1 53.2 12.3

 People’s names can be represented as a Triple of Strings.

 Listing 18.4. Using a Triple to define a name data type

 type FullName = Triple String

aPerson :: FullName
aPerson = Triple "Howard" "Phillips" "Lovecraft"

 Likewise, initials are a Triple of Char.

 Listing 18.5. Using a Triple to define Initials

 type Initials = Triple Char

initials :: Initials
initials = Triple 'H' 'P' 'L'

 Now that you have a model for homogenous Triples, you can write functions one time that work on all these cases. The first thing you can do is create a way to access each
 of the values in the Triple. It turns out that fst and snd are defined on only 2-tuples; in larger tuples, there’s no way to access their values.

 Listing 18.6. Assessors for the Triple type

 first :: Triple a -> a
first (Triple x _ _) = x

second :: Triple a -> a
second (Triple _ x _) = x

third :: Triple a -> a
third (Triple _ _ x) = x

 You can also easily turn your Triple into a list.

 Listing 18.7. Defining a toList function on Triple

 toList :: Triple a -> [a]
toList (Triple x y z) = [x,y,z]

 Finally, you can make a simple tool to transform any Triple and keep it a Triple of the same type.

 Listing 18.8. A function to transform Triples

 transform :: (a -> a) -> Triple a -> Triple a
transform f (Triple x y z) = Triple (f x) (f y) (f z)

 This type of transformation is useful for a variety of things. You can now move your third point in all directions by a constant
 value:

 GHCi> transform (* 3) aPoint
Triple 0.30000000000000004 159.60000000000002 36.900000000000006

 You can reverse all the letters in a person’s name:

 GHCi> transform reverse aPerson
Triple "drawoH" "spillihP" "tfarcevoL"

 Or if you import Data.Char, you can make your initials lowercase:

 GHCi> transform toLower initials
Triple 'h' 'p' 'l'

 By combining this last transformation with toList, you can get a lowercase initial string:

 GHCi> toList (transform toLower initials)
"hpl"

 	

 Quick check 18.2

 Q1:
What’s the difference between transform and the map function for lists? (Hint: Look up the type signature of map again.)

 	

 	

 QC 18.2 answer

 1:

The transform function doesn’t allow you to change the type; that is, a function (a -> b). The map function for lists does allow this.

 	

 18.1.2. Lists

 The most common parameterized type is a List. The List type is interesting because it has a different constructor than most other types you’ve seen. As you know, you use brackets
 to construct a list and put values in them. This is for convenience but makes looking up information about lists more difficult
 than types that have a more typical type constructor. In GHCi, you can get more info on the List type by using :info []. Figure 18.2 shows the formal definition of the List type.

 Figure 18.2. The definition of a List

 [image:]

 What’s fascinating is that this is a complete and working implementation of a list! If you’ve ever written a linked list in
 another programming language, this should come as a surprise. To better understand this, you can reimplement a list on your
 own. The special usage of brackets around the type value is a built-in syntax for lists, one that you can’t emulate. Likewise,
 you can’t use the : cons data constructor either. For this definition, you’ll use the terms List, Cons, and Empty. Here’s the definition.

 Listing 18.9. Defining your own list

 data List a = Empty | Cons a (List a) deriving Show

 Notice that the definition of List is recursive! In plain English, you can read this definition as follows: “A list of type a is either Empty or the consing of the value a with another list of type a.” What may be hard to believe is that this type definition by itself is the complete definition of your List data structure! But here are lists that are identical.

 Listing 18.10. Comparing your List to the built-in list

 builtinEx1 :: [Int]
builtinEx1 = 1:2:3:[]

ourListEx1 :: List Int
ourListEx1 = Cons 1 (Cons 2 (Cons 3 Empty))

builtinEx2 :: [Char]
builtinEx2 = 'c':'a':'t':[]

ourListEx2 :: List Char
ourListEx2 = Cons 'c' (Cons 'a' (Cons 't' Empty))

 As a final demonstration, you can implement map for your list.

 Listing 18.11. Defining ourMap for your list

 ourMap :: (a -> b) -> List a -> List b
ourMap _ Empty = Empty
ourMap func (Cons a rest) = Cons (func a) (ourMap func rest)

 And here’s your code in GHCi:

 GHCi> ourMap (*2) ourListEx1
Cons 2 (Cons 4 (Cons 6 Empty))

 Now you know that next time you’re in a job interview and you’re asked to implement a linked list, your first question should
 be, “Can I do it in Haskell?”

 18.2. Types with more than one parameter

 Just like functions, types can also take more than one argument. The important thing to remember is that more than one type
 parameter means the type can be a container for more than one type. This is different from containing more than one value
 of the same type, as your Triple does.

 18.2.1. Tuples

 Tuples are the most ubiquitous multiparameter type in Haskell and the only multi-parameter type you’ve seen so far. Like lists,
 tuples use a built-in type constructor, (). If you want to use :info on a tuple, you have to use () with one comma inside for every n – 1 items in the tuple. For example, if you want the definition of a 2-tuple, you’d type
 :info (,) into GHCi. Here’s the built-in definition.

 Listing 18.12. Definition of a tuple

 data (,) a b = (,) a b

 Notice that the 2-tuple type definition includes two type variables. As we’ve mentioned before, this gives the tuple the useful
 capability to contain values of two types. In many dynamically typed languages such as Python, Ruby, and JavaScript, ordinary
 lists can contain multiple types. It’s important to realize that Haskell’s tuples aren’t the same as lists in these other
 languages. The reason is that after you make your type, it takes on concrete values. This is best observed if you try to make lists of tuples. Suppose you have an inventory system that keeps
 track of items and their counts.

 Listing 18.13. Exploring the types of tuples

 itemCount1 :: (String,Int)
itemCount1 = ("Erasers",25)

itemCount2 :: (String,Int)
itemCount2 = ("Pencils",25)

itemCount3 :: (String,Int)
itemCount3 = ("Pens",13)

 You can make a list of these items to keep track of your inventory.

 Listing 18.14. Creating an item inventory

 itemInventory :: [(String,Int)]
itemInventory = [itemCount1,itemCount2,itemCount3]

 Notice that you specify the concrete type of your tuple: (String,Int).

 	

 Quick check 18.3

 Q1:
What would happen if you tried to add ("Paper",12.4) to your inventory?

 	

 	

 QC 18.3 answer

 1:

It would cause an error because the rest of your pairs are (String,Int), and ("Paper",12.4) would be a (String,Double).

 	

 18.2.2. Kinds: types of types

 Another thing that Haskell’s types have in common with functions and data is that they have their own types as well! The type
 of a type is called its kind. As you might expect, kinds are abstract. But they’ll come up as you dive deeper into the more advanced types classes covered
 in unit 5 (Functor, Applicative, and Monad).

 The kind of a type indicates the number of parameters the type takes, which are expressed using an asterisk (*). Types that take no parameters have a kind of *, types that take one parameter have the kind * -> *, types with two parameters have the kind * -> * -> *, and so forth.

 In GHCi, you use the :kind command to look up the kinds of any types you’re unsure of (make sure to import Data.Map):

 GHCi> :kind Int
Int :: *
GHCi> :kind Triple
Triple :: * -> *
GHCi> :kind []
[] :: * -> *
GHCi> :kind (,)
(,) :: * -> * -> *
GHCi> :kind Map.Map
Map.Map :: * -> * -> *

 It’s worth pointing out that concrete types have a different kind than their nonconcrete equivalents:

 GHCi> :kind [Int]
[Int] :: *
GHCi> :kind Triple Char
Triple Char :: *

 Kinds may initially seem like abstract nonsense. But understanding kinds can be useful when trying to make instances of type
 classes such as Functor and Monad (which we cover in unit 5).

 	

 Quick check 18.4

 Q1:
What’s the kind of (,,)?

 	

 	

 QC 18.4 answer

 1:

(a,b,c)

 	

 18.2.3. Data.Map

 Another useful parameterized type is Haskell’s Map (not to be confused with the map function). To use Map, you first have to import Data.Map. Because the Data.Map module shares some functions with Prelude, you’re going to do a qualified import. To perform a qualified import, add the details in figure 18.3 to the top of your file.

 Figure 18.3. Using a qualified import

 [image:]

 With your qualified import, every function and type from that module must be prefaced with Map. Map allows you to look up values by using keys. In many other languages, this data type is called Dictionary. The type parameters of Map are the types of the keys and values. Unlike Lists and Tuples, Map’s implementation is nontrivial. The best way to understand this type is through a concrete example.

 Say you work at a mad scientist’s laboratory and have a list of numbers that correspond to various organs used to create hideous
 monsters. You can start by making a quick sum type of relevant body parts.

 Listing 18.15. The Organ data type

 data Organ = Heart | Brain | Kidney | Spleen deriving (Show, Eq)

 Suppose in your inventory you have the following organs. (Duplicates are okay; you can never have enough spleens!)

 Listing 18.16. An example list of organs

 organs :: [Organ]
organs = [Heart,Heart,Brain,Spleen,Spleen,Kidney]

 Now each organ is placed in a numbered drawer so it can be retrieved at a later date. Each drawer has a number on it. Because
 the drawers are going to be used to look up items, each drawer number should be unique. Additionally, it’s important that
 whatever ID you use, it must be of the class Ord. If the drawers have no order to them, it’ll be difficult to look up your organ efficiently!

 	

 Maps and hash tables

 Maps (or dictionaries) are similar to another data structure called a hash table. Both allow you to look up values with keys.
 The big difference between these two structures is the way the values are looked up. In a hash table, a function transforms
 your key into the index of an array where the value is stored. This allows for a fast lookup of items, but requires a large
 amount of memory to store in order to prevent collisions. A map looks up values by using a binary search tree. This is slower
 than a hash table but still fast. The map looks up values by searching the keys needed to have the property of being of class
 Ord, so you can compare two keys and efficiently find them in the tree.

 	

 Here’s your list of IDs (not every drawer has an organ, so gaps exist).

 Listing 18.17. A List of IDs to represent the locations of various organs

 ids :: [Int]
ids = [2,7,13,14,21,24]

 With the organs and the IDs, you have all the information you need to build a Map! This will serve as a catalog of your drawers so you can easily see which items are in which drawer.

 The most common way to build a Map is with the fromList function. By using :t in GHCi, you can see that the type of fromList is as shown in figure 18.4.

 Figure 18.4. The fromList function for building a Map

 [image:]

 Now you can see the type parameters for your map Map: k and a. What’s interesting here is that your key type, k, must be of the class Ord. This restriction is due to the way keys are stored and looked up internally. The other thing to notice is that fromList expects a list of tuples, which represent pairs of keys and values. You could rewrite your two lists in the following way.

 Listing 18.18. Pairs of organs and IDs v1

 pairs = [(2,Heart),(7,Heart),(13,Brain) ...

 But for sufficiently long lists, this would be a real pain! Instead, you can use the handy zip function from lesson 6. The zip function takes two lists and returns a list of pairs.

 Listing 18.19. organPairs created using zip

 organPairs :: [(Int,Organ)]
organPairs = zip ids organs

 Now you have all the parts (get it!?) to put together your organCatalog.

 Listing 18.20. Creating your organCatalog

 organCatalog :: Map.Map Int Organ
organCatalog = Map.fromList organPairs

 Finally, you can look up an item by using Map.lookup. When you do this in GHCi, you get an interesting result:

 GHCi> Map.lookup 7 organCatalog
Just Heart

 You get your Heart back as expected, but it’s preceded by the data constructor Just. If you look at the type signature for Map.lookup, you get the answer.

 Listing 18.21. The type signature for Map.lookup

 Map.lookup :: Ord k => k -> Map.Map k a -> Maybe a

 Map.lookup returns a new parameterized type: Maybe. Maybe is a simple but powerful type that’s the subject of our next lesson!

 Summary

 In this lesson, our objective was to teach you about parameterized types. Parameterized types are types that take one or more
 arguments (like generics in most OOP languages). The most common instance of a parameterized type is List, which can contain elements of any type. Parameterized types can take any number of types as arguments. The number of types
 that a parameterized type takes as arguments defines its kind. Map is a parameterized type that takes two arguments: one for the type of its keys and another for the type of its values. Let’s
 see if you got this.

 Q18.1
For the types Triple and Box, implement a function similar to map, tripleMap, and boxMap.

 Q18.2
Modify the Organ type so that it can be used as a key. Then build a Map, organ-Inventory, of each organ to its count in the organCatalog.

Lesson 19. The Maybe type: dealing with missing values

 After reading lesson 19, you’ll be able to

 	Understand the Maybe type

 	Use the Maybe type to handle missing values

 	Design programs with Maybe types

 Just as type classes can often be much more abstract than interfaces in OOP, parameterized types play a much larger role than
 generics do in most languages. This lesson introduces an important parameterized type: Maybe. Unlike List or Map, which represent containers for values, Maybe is the first of many types you’ll see that represents a context for a value. Maybe types represent values that might be missing. In most languages, a missing value is represented by the null value. By using a context representing a value that might be missing, the Maybe type allows you to write much safer code. Because of the power of the Maybe type, errors related to null values are systematically removed from Haskell programs.

 	

 Consider this

 Suppose you have a simple Map that contains grocery items and indicates the number of them that you need to purchase:

 groceries :: Map.Map String Int
groceries = Map.fromList [("Milk",1),("Candy bars",10),
[image:]("Cheese blocks",2)]

 You accidentally look up MILK instead of Milk. What behavior should you expect from your Map, and how can you handle this type of mistake so that your programs can be sure to run safely even in the presence of missing
 values in your Map?

 	

 19.1. Introducing Maybe: solving missing values with types

 At the end of lesson 18, you were working for a mad scientist organizing a collection of human organs. You used the Map type to store a list of organs for easy lookup. Let’s continue exploring this exercise in a new file named Lesson19.hs. Here’s
 the important code from the preceding lesson:

 import qualified Data.Map as Map

data Organ = Heart | Brain | Kidney | Spleen deriving (Show, Eq)

organs :: [Organ]
organs = [Heart,Heart,Brain,Spleen,Spleen,Kidney]

ids :: [Int]
ids = [2,7,13,14,21,24]

organPairs :: [(Int,Organ)]
organPairs = zip ids organs

organCatalog :: Map.Map Int Organ
organCatalog = Map.fromList organPairs

 Everything was going fine until you decided to use Map.lookup to look up an Organ in your Map. When doing this, you came across a strange new type, Maybe.

 Maybe is a simple but powerful type. So far, all of our parameterized types have been viewed as containers. Maybe is different. Maybe is best understood as a type in a context. The context in this case is that the type contained might be missing. Here’s its
 definition.

 Listing 19.1. Definition of Maybe

 data Maybe a = Nothing | Just a

 Something of a Maybe type can be either Nothing, or Just something of type a. What in the world could this mean? Let’s open up GHCi and see what happens:

 GHCi> Map.lookup 13 organCatalog
Just Brain

 When you look up an ID that’s in the catalog, you get the data constructor Just and the value you expect for that ID. If you look up the type of this value, you get this:

 Map.lookup 13 organCatalog :: Maybe Organ

 In the definition of lookup, the return type is Maybe a. Now that you’ve used lookup, the return type is made concrete and the type is Maybe Organ. The Maybe Organ type means pretty much what it says: this data might be an instance of Organ. When would it not be? Let’s see what happens when you ask for the value of an ID that you know has nothing in it:

 GHCi> Map.lookup 6 organCatalog
Nothing

 	

 Quick check 19.1

 Q1:
What’s the type of Nothing in the preceding example?

 	

 	

 QC 19.1 answer

 1:

The type is Maybe Organ.

 	

 19.2. The problem with null

 The organCatalog has no value at 6. In most programming languages, one of two things happens if you ask for a value that isn’t in the dictionary. Either you
 get an error, or you get back a null value. Both of these responses have major issues.

 19.2.1. Handling missing values with errors

 In the case of throwing an error, many languages don’t require you to catch errors that might be thrown. If a program requests
 an ID not in the dictionary, the programmer must remember to catch the error, or the whole program could crash. Additionally,
 the error must be handled at the time the exception is thrown. This might not seem like a big issue, because it might be wise
 to always stop the error at its source. But suppose that you want to handle the case of a missing Spleen differently from a missing Heart. When the missing ID error is thrown, you might not have enough information to properly handle the different cases of having
 a missing value.

 19.2.2. Returning null values

 Returning null has arguably more problems. The biggest issue is that the programmer once again has to remember to check for null values
 whenever a value that can be null is going to be used. There’s no way for the program to force the programmer to remember
 to check. Null values are also extremely prone to causing errors because they don’t typically behave like the value your program
 is expecting. A simple call of toString can easily cause a null value to throw an error in a part of the program. If you’re a Java or C# developer, the mere phrase
 null pointer exception should be argument enough that null values are tricky.

 19.2.3. Using Maybe as a solution to missing values

 Maybe solves all of these problems in a clever way. When a function returns a value of the Maybe type, the program can’t use that value without dealing with the fact that the value is wrapped in a Maybe. Missing values can never cause an error in Haskell because Maybe makes it impossible to forget that a value might be null. At the same time, the programmer never has to worry about this
 until absolutely necessary. Maybe is used in all the typical places that Null values pop up, including these:

 	Opening files that might not exist

 	Reading from a database that could have null values

 	Making a RESTful API request to a potentially missing resource

 The best way to illustrate the magic of Maybe is with code. Let’s say you’re the assistant of the mad scientist. Periodically you need to do inventory to figure out what
 new body parts must be harvested. You can never remember which drawers have what in them, or even which have anything in them.
 The only way you can query all the drawers is to use every ID in the range of 1 to 50.

 Listing 19.2. List of possibleDrawers in your organCatalog

 possibleDrawers :: [Int]
possibleDrawers = [1 .. 50]

 Next you need a function to get the contents of each drawer. The following maps this list of possible drawers with the lookup function.

 Listing 19.3. Definition of getDrawers

 getDrawerContents :: [Int] -> Map.Map Int Organ -> [Maybe Organ]
getDrawerContents ids catalog = map getContents ids
 where getContents = \id -> Map.lookup id catalog

 With getDrawerContents, you’re ready to search the catalog.

 Listing 19.4. A list of availableOrgans that can contain missing values

 availableOrgans :: [Maybe Organ]
availableOrgans = getDrawerContents possibleDrawers organCatalog

 Had this been a programming language that threw exceptions on nulls, your program would already have blown up. Notice that
 your type is still a List of Maybe Organ. You’ve also avoided the issue with returning a special null value. No matter what you do with this list, until you deal
 explicitly with this possibility of missing values, you must keep this data a Maybe type.

 The final thing that you need is to be able to get a count of a particular organ you’re interested in. At this point, you
 do need to deal with the Maybe.

 Listing 19.5. countOrgan function counts instances of an Organ

 countOrgan :: Organ -> [Maybe Organ] -> Int
countOrgan organ available = length (filter
 (\x -> x == Just organ)
 available)

 The interesting thing here is that you didn’t even have to remove the organ from the Maybe context. Maybe implements Eq, so you can just compare two Maybe Organs. You not only didn’t have to handle any errors, but because your computation never explicitly dealt with values that didn’t exist, you also never had to worry about handling that case! Here’s the final result in GHCi:

 GHCi> countOrgan Brain availableOrgans
1
GHCi> countOrgan Heart availableOrgans
2

 19.3. Computing with Maybe

 It would be useful to be able to print your list of availableOrgans so you could at least see what you have. Both your Organ type and Maybe support Show so you can print it out in GHCi:

 GHCi> show availableOrgans [Nothing,Just Heart,Nothing,Nothing,Nothing,
[image:]Nothing,Just Heart,Nothing,Nothing,Nothing...

 Although you do get printing for free, this is ugly. The first thing you want to do is remove all the Nothing values. You can use filter and pattern matching to achieve this.

 Listing 19.6. Definition of isSomething

 isSomething :: Maybe Organ -> Bool
isSomething Nothing = False
isSomething (Just _) = True

 And now you can filter your list to the organs that aren’t missing.

 Listing 19.7. Using isSomething with filter to clean [Maybe Organ]

 justTheOrgans :: [Maybe Organ]
justTheOrgans = filter isSomething availableOrgans

 In GHCi, you can see that you’ve made quite an improvement:

 GHCi>justTheOrgans
[Just Heart,Just Heart,Just Brain,Just Spleen,Just Spleen,Just Kidney]

 The problem is you still have these Just data constructors in front of everything. You can clean this up with pattern matching as well. You’ll make the showOrgan function that will turn a Maybe Organ into a String. You’ll add the Nothing pattern even though you won’t need it because it’s a good habit to always match all patterns just in case.

 	

 isJust and isNothing

 The Data.Maybe module contains two functions, isJust and isNothing, that solve the general case of handling Just values. isJust is identical to the isSomething function but works on all Maybe types. With Data.Maybe imported, you could’ve solved this problem as follows:

 justTheOrgans = filter isJust availableOrgans

 	

 Listing 19.8. Definition of showOrgan

 showOrgan :: Maybe Organ -> String
showOrgan (Just organ) = show organ
showOrgan Nothing = ""

 Here are a couple of examples in GHCi to get a feel for how this works:

 GHCi> showOrgan (Just Heart)
"Heart"
GHCi> showOrgan Nothing
""

 Now you can map your showOrgan function on justTheOrgans.

 Listing 19.9. Using showOrgan with map

 organList :: [String]
organList = map showOrgan justTheOrgans

 As a final touch, you’ll insert commas to make the list prettier. You can use the intercalate (a fancy word for insert) function in the Data.List module (so you’ll need to add import Data.List to the top of your file):

 cleanList :: String
cleanList = intercalate ", " organList

GHCi> cleanList
"Heart, Heart, Brain, Spleen, Spleen, Kidney"

 	

 Quick check 19.2

 Q1:
Write a function numOrZero that takes a Maybe Int and returns 0 if it’s nothing, and otherwise returns the value.

 	

 	

 QC 19.2 answer

 1:

numOrZero :: Maybe Int -> Int
numOrZero Nothing = 0
numOrZero (Just n) = n

 	

 19.4. Back to the lab! More-complex computation with Maybe

 Suppose you need to do several things to a value in a Maybe. The mad scientist has a more interesting project. You’ll be given a drawer ID. You need to retrieve an item from the drawer.
 Then you’ll put the organ in the appropriate container (a vat, a cooler, or a bag). Finally, you’ll put the container in the
 correct location. Here are the rules for containers and locations:

 For containers:

 	Brains go in a vat.

 	Hearts go in a cooler.

 	Spleens and kidneys go in a bag.

 For locations:

 	Vats and coolers go to the lab.

 	Bags go to the kitchen.

 You’ll start by writing this out, assuming everything goes well and you don’t have to worry about Maybe at all.

 Listing 19.10. Defining key functions and data types for mad scientist request

 data Container = Vat Organ | Cooler Organ | Bag Organ

instance Show Container where
 show (Vat organ) = show organ ++ " in a vat"
 show (Cooler organ) = show organ ++ " in a cooler"
 show (Bag organ) = show organ ++ " in a bag"
data Location = Lab | Kitchen | Bathroom deriving Show

organToContainer :: Organ -> Container
organToContainer Brain = Vat Brain
organToContainer Heart = Cooler Heart
organToContainer organ = Bag organ

placeInLocation :: Container -> (Location,Container)
placeInLocation (Vat a) = (Lab, Vat a)
placeInLocation (Cooler a) = (Lab, Cooler a)
placeInLocation (Bag a) = (Kitchen, Bag a)

 A function, process, will handle taking an Organ and putting it in the proper container and location. Then a report function will take your container and location, and output a report for the mad scientist.

 Listing 19.11. The core functions process and report

 process :: Organ -> (Location, Container)
process organ = placeInLocation (organToContainer organ)

report ::(Location,Container) -> String
report (location,container) = show container ++
 " in the " ++
 show location

 These two functions are written assuming that no organs are missing. You can test how they work before you worry about working with the catalog:

 GHCi> process Brain
(Lab,Brain in a vat)
GHCi> process Heart
(Lab,Heart in a cooler)
GHCi> process Spleen
(Kitchen,Spleen in a bag)
GHCi> process Kidney
(Kitchen,Kidney in a bag)
GHCi> report (process Brain)
"Brain in a vat in the Lab"
GHCi> report (process Spleen)
"Spleen in a bag in the Kitchen"

 You still haven’t handled getting your Maybe Organ out of the catalog. In Haskell, other types such as Maybe handle the many cases in software where things could go wrong. What you’ve done here with your process function is a common pattern in Haskell: you separate the parts of the code for which you need to worry about a problem (for
 example, missing values) from the ones that you don’t. Unlike in most other languages, it’s impossible for Maybe values to accidentally find their way into process. Imagine that you could write code that couldn’t possibly have null values in it!

 Now let’s put this together so you can get data out of your catalog. What you want is something like the following function,
 except you still need to handle the case of Maybe.

 Listing 19.12. Ideal definition of processRequest (won’t compile)

 processRequest :: Int -> Map.Map Int Organ -> String
processRequest id catalog = report (process organ)
 where organ = Map.lookup id catalog

 The trouble is that your organ value is a Maybe Organ type and that process takes an Organ. To solve this given the tools you have now, you’ll have to combine report and process into a function that handles the Maybe Organ.

 Listing 19.13. processAndReport to handle the Maybe Organ data

 processAndReport :: (Maybe Organ) -> String
processAndReport (Just organ) = report (process organ)
processAndReport Nothing = "error, id not found"

 You can now use this function to process the request.

 Listing 19.14. processRequest with support for Maybe Organ

 processRequest :: Int -> Map.Map Int Organ -> String
processRequest id catalog = processAndReport organ
 where organ = Map.lookup id catalog

 This solution works out well, as you can see in GHCi the function handles both null and existing organs:

 GHCi> processRequest 13 organCatalog
"Brain in a vat in the Lab"
GHCi> processRequest 12 organCatalog
"error, id not found"

 There’s one minor issue from a design perspective. Right now your processRequest function handles reporting when there’s an error. Ideally, you’d like the report function to handle this. But to do that given your knowledge so far, you’d have to rewrite process to accept a Maybe. You’d be in a worse situation, because you’d no longer have the advantage of writing a processing function that you can
 guarantee doesn’t have to worry about a missing value.

 	

 Quick check 19.3

 Q1:
How would you rewrite report so that it works with Maybe (Location, Container) and handles the case of the missing Organ?

 	

 	

 QC 19.3 answer

 1:

report :: Maybe (Location,Container) -> String
report Nothing = "container not found"
report (Just (location,container)) = show container ++
 " in the " ++
 show location

 	

 Summary

 In this lesson, our objective was to introduce you to one of Haskell’s more interesting parameterized types: Maybe. The Maybe type allows you to model values that may be missing. Maybe achieves this by using two data constructors, Just and Nothing. Values represented by the Nothing data constructor are missing. Values represented by the Just a constructor can be safely accessed through pattern matching. Maybe is a great example of how powerful types make your code less erro- prone. Because of the Maybe type, the entire class of errors related to having null values is completely eliminated. Let’s see if you got this.

 Q19.1
Write a function emptyDrawers that takes the output of getDrawerContents and tells you the number of drawers that are empty.

 Q19.2
Write a version of map that works for Maybe types, called maybeMap.

Lesson 20. Capstone: Time series

 This capstone covers

 	Learning the basics of time-series analysis

 	Combining multiple time series with Monoid and Semigroup

 	Using Map to solve problems of duplicate values in a time series

 	Avoiding errors involving missing values by using Maybe

 In this capstone, you’ll model time-series data by using tools you’ll build in Haskell. Time-series data is, in theory, relatively
 simple: it’s a series of values and dates for each piece of data. Figure 20.1 presents sales data from the Box & Jenkins data set that’s commonly used to demonstrate a time series (the data used in this
 capstone is also a subset of the first 36 months of this same data).

 Figure 20.1. An example of time-series data for sales

 [image:]

 Although conceptually easy to work with, in practice time-series data presents many interesting challenges. Often you’re missing
 data, need to combine multiple incomplete data sets, and then need to perform analytics on this messy data, which often requires
 other transformations to make sense of. In this capstone, you’ll use the techniques covered in this unit to make tools for
 working with time-series data. You’ll explore how to combine multiple time series into one, take summary statistics (such
 as the average) of time-series data with missing values, and conclude by performing transformations on your data such as smoothing
 to eliminate noise.

 All of the code for this section should live in a file named time_series.hs. The file should have the following imports at
 the top.

 Listing 20.1. Imports for time_series.hs

 import Data.List
import qualified Data.Map as Map
import Data.Semigroup
import Data.Maybe

 With this file started, you’re ready to begin!

 20.1. Your data and the TS data type

 Suppose you’ve started working at a new company and have been tasked with organizing its financial data. You have 36 months
 of (partial) financial data that you need to make sense of. The data is contained in four files, and no file has a complete
 set of data. Because we haven’t covered working with files in Haskell yet, you’ll assume that you’ve read in the data you
 have. You’ll represent each file as lists of (Int,Double) tuples.

 Listing 20.2. Your data

 file1 :: [(Int,Double)]
file1 = [(1, 200.1), (2, 199.5), (3, 199.4)
 , (4, 198.9), (5, 199.0), (6, 200.2)
 , (9, 200.3), (10, 201.2), (12, 202.9)]

file2 :: [(Int,Double)]
file2 = [(11, 201.6), (12, 201.5), (13, 201.5)
 ,(14, 203.5), (15, 204.9), (16, 207.1)
 ,(18, 210.5), (20, 208.8)]

file3 :: [(Int,Double)]
file3 = [(10, 201.2), (11, 201.6), (12, 201.5)
 ,(13, 201.5), (14, 203.5), (17, 210.5)
 ,(24, 215.1), (25, 218.7)]

file4 :: [(Int,Double)]
file4 = [(26, 219.8), (27, 220.5), (28, 223.8)
 ,(29, 222.8), (30, 223.8), (31, 221.7)
 ,(32, 222.3), (33, 220.8), (34, 219.4)
 ,(35, 220.1), (36, 220.6)]

 When working with company data, it’s common to find a similar pattern: you have your data split into multiple files, the data
 in the files is missing points, and there’s overlap in the data as well. You want to be able to do the following:

 	Stitch these files together easily

 	Keep track of the missing data

 	Perform analysis on the time series without having to worry about errors due to missing values

 When stitching timelines together, you combine two timelines to make a new one. This is a familiar pattern that you saw when
 we discussed semigroups. You can solve the problem of stitching together individual time series by making your time series
 an instance of Semigroup. If you want to combine a list of time series elements, you’ll also want to implement Monoid so you can use mconcat. For working with missing values, you can take advantage of your Maybe type. By using careful pattern matching on Maybe values, you can perform functions on your time-series data and handle the case of missing values.

 20.1.1. Building a basic time-series type

 First you need a basic type for your time series. To simplify things, consider that all of your dates are just Ints, which will be a relative index. Having 36 months, days, or milliseconds of data could be represented by the indices 1–36.
 For the values in the type series, you’ll use a type parameter because you don’t want to restrict the type of values you’re
 going to allow in your time series. In this case, you want a type Double, but you could easily have a time series of Bools (“Did we meet the sales goal?”) or a time series of Strings (“Who was the lead sales person?”). The type you use to represent the time series will be a parameterized type of kind * -> *, a parameterized type that takes only one argument. You also want to use a Maybe type for your values because having missing values is a common problem when working with any data. In data analytics, missing
 values are commonly referred to as having the value NA (for not available, as opposed to Null in software). Here’s the definition of your TS type.

 Listing 20.3. The definition of the TS data type

 data TS a = TS [Int] [Maybe a]

 Next you’ll create a function that takes a list of times and a list of values and creates a TS type. As with the data in your files, you’re assuming that the times might not be perfectly contiguous when you create a
 TS type. When you use createTS, you’ll expand the timeline so that it’s contiguous. Then you’ll create a Map by using the existing times and values. You’ll map over the completed list of times and look up the time in your Map. This will automatically create a Maybe a list of your values, where existing values will be Just a and NA values will be Nothing.

 Listing 20.4. createTS to make an easier interface for creating TS types

 createTS :: [Int] -> [a] -> TS a
createTS times values = TS completeTimes extendedValues 1
 where completeTimes = [minimum times .. maximum times] 2
 timeValueMap = Map.fromList (zip times values) 3
 extendedValues = map (\v -> Map.lookup v timeValueMap) 4
 completeTimes

 	1 You want to create your time series with a full timeline and a list of Maybe values; you assume the arguments may represent
 only a limited set of possible values.

 	2 The completeTimes are all the times from the minimum passed into the function up to the maximum.

 	3 You’ll create a simple Map of the times and values you know you have.

 	4 By mapping lookup over complete times, you’ll get Just x values for all existing values and Nothing for all missing values.
 This takes care of filling in your complete set of values to match the complete timeline (even if some of those values are
 missing).

 Your files aren’t in quite the right format for your createTS function, so you’ll make a helper function that will unzip the pairs.

 Listing 20.5. fileToTS to easily convert your file data into TS types

 fileToTS :: [(Int,a)] -> TS a
fileToTS tvPairs = createTS times values
 where (times, values) = unzip tvPairs

 Before you go any further, it’d be nice to make a usable instance of Show for your TS object. First you’ll create a function to show a time/value pair.

 Listing 20.6. showTVPair to render time/value pairs readable

 showTVPair :: Show a => Int -> (Maybe a) -> String
showTVPair time (Just value) = mconcat [show time,"|",show value,"\n"]
showTVPair time Nothing = mconcat [show time,"|NA\n"]

 Now you can make an instance of Show by using zipWith and your showTVPair function.

 Listing 20.7. Making TS an instance of Show by using zipWith and showTVPair

 instance Show a => Show (TS a) where
 show (TS times values) = mconcat rows
 where rows = zipWith showTVPair times values

 You can see your files as TS in GHCi:

 GHCi> fileToTS file1
1|200.1
2|199.5
3|199.4
4|198.9
5|199.0
6|200.2
7|NA
8|NA
9|200.3
10|201.2
11|NA
12|202.9

 Next you can convert all of your files to TS types.

 Listing 20.8. Converting all your data files into TS types

 ts1 :: TS Double
ts1 = fileToTS file1

ts2 :: TS Double
ts2 = fileToTS file2

ts3 :: TS Double
ts3 = fileToTS file3

ts4 :: TS Double
ts4 = fileToTS file4

 Now you have all your file data converted to a basic TS type that you can also print to screen to make it easier to experiment with. Next you’ll solve your first issue, which is
 using Semigroup and Monoid to simplify combining files.

 20.2. Stitching together TS data with Semigroup and Monoid

 With your basic time-series model done, you want to solve the problem of stitching together individual time series. Thinking
 about this problem in types, you want the following type signature:

 TS a -> TS a -> TS a

 You need a function that takes two TS types and returns just one. This type signature should remind you of a familiar pattern. If you look up the type of Semigroup’s <> operator, you’ll see that it’s a generalization of the type signature you’re looking for:

 (<>) :: Semigroup a => a -> a -> a

 This is a good sign that what you want to do is ultimately make TS an instance of Semigroup. Now you have to consider how you’re going to combine two TS types.

 Given that your TS type is basically two lists, it may be tempting to think you can append those two lists to make a new TS type. But you have two issues to solve that make this different from simply appending one list to another. The first is that
 data points aren’t all bound by the range in an individual file; for example, file2 contains a value for date 11, but file1
 includes a value for date 12. The other issue is that two time series might have conflicting values for a single date point.
 Files 1 and 2 both contain information on date 12, but they don’t agree. You’ll solve this problem by having the second file be the one that has priority.

 You can use Map to solve both problems. You’ll start by taking the time/value pairs in the first TS and use them to build them a Map of time/value pairs. You’ll then insert the time/value pairs from the second TS. This will seamlessly combine the two sets of pairs and will handle the overwriting of duplicate values. Figure 20.2 shows how two time series would be combined.

 Figure 20.2. Combining two time series

 [image:]

 The important thing to realize is that the Map to combine all the data from both time series will be of type Map k v, where k is the key type and v is the value type. But your values in the TS are k and Maybe v. You need one small helper function that will allow you to insert pairs of type (k, Maybe v) into a Map of type k v. The following is your insertMaybePair function.

 Listing 20.9. insertMaybePair, a helper function for inserting (k, Maybe v) pairs

 insertMaybePair :: Ord k => Map.Map k v -> (k, Maybe v) -> Map.Map k v
insertMaybePair myMap (_,Nothing) = myMap 1
insertMaybePair myMap (key,(Just value)) = Map.insert key value myMap 2

 	1 Because your map is of actual values, you can ignore the case when the Maybe value is missing by returning the original Map.

 	2 If you have an actual value, you grab it out of the Just context and insert it into your map.

 With insertMaybePair, you have all the tools you need to combine two TS types into a new one. With this, you’ll be able to seamlessly stitch together any two of your sets of data.

 Listing 20.10. combineTS

 combineTS :: TS a -> TS a -> TS a 1
combineTS (TS [] []) ts2 = ts2 1
combineTS ts1 (TS [] []) = ts1
combineTS (TS t1 v1) (TS t2 v2) = TS completeTimes combinedValues
 where bothTimes = mconcat [t1,t2] 2
 completeTimes = [minimum bothTimes .. maximum bothTimes] 3
 tvMap = foldl insertMaybePair Map.empty (zip t1 v1) 4
 updatedMap = foldl insertMaybePair tvMap (zip t2 v2) 5
 combinedValues = map (\v -> Map.lookup v updatedMap) 6
 completeTimes

 	1 If one series is empty, return the nonempty one.

 	2 This indicates all the times in your two TS types. Duplicates may happen, but you use only the minimum and maximum values
 from the combined times.

 	3 Now you can make a complete timeline for both TS types.

 	4 You first insert all the values from ts1 into your Map. The zip function creates a list of time/value pairs, and you use
 foldl to insert them into the Map.

 	5 Then you update that Map with the values from ts2. Inserting this way means duplicate values will automatically be overwritten
 by the values from ts2.

 	6 Finally, you create your list of Maybe values by looking up all the completed times.

 Here’s how your combineTS function works: The first thing you need to do is solve the cases in which one (or both) of your TS types are empty. In this case, you return the nonempty one (or if both are empty, an empty one). If you have two nonempty
 TS types, you combine them by first combining all the times they cover. Using this, you can create a continuous timeline covering
 all the possible times. You then insert all of the existing values for the first TS type into a Map using insertMaybePair and folding over a list of value/time pairs created with zip and initializing the foldl function with an empty Map. After that, you insert the values of the second TS type the same way, only instead of using foldl with an empty Map, you use the Map created in the last step. By inserting the second after the first, you know that the second TS type will have the final say for any duplicates. Finally, you look up all the values in the Map from both TS types, which gives you a list of Maybe values just as in your createTS function.

 And combineTS is all you need to implement a Semigroup! You could’ve put all of this logic directly into the definition of (<>). Personally, I find it easier to debug a separate function. To avoid duplication, it’d be better to paste the definition
 of combineTS as the definition of (<>). But for this example, you’ll define (<>) as combineTS.

 Listing 20.11. Making TS an instance of Semigroup

 instance Semigroup (TS a) where
 (<>) = combineTS

 In GHCi, you can see that you can easily combine two time series now!

 GHCi> ts1 <> ts2
1|200.1
2|199.5
3|199.4
4|198.9
5|199.0
6|200.2
7|NA
8|NA
9|200.3
10|201.2
11|201.6
12|201.5
13|201.5
14|203.5
15|204.9
16|207.1
17|NA
18|210.5
19|NA
20|208.8

 With TS an instance of Semigroup, you can now combine time series, automatically filling missing values and overwriting the duplicate values.

 20.2.1. Making TS an instance of Monoid

 Being able to combine two or more TS types with <> is useful. But given that you have four unique files to combine, it’d be even nicer if you could combine a list of them.
 Thinking in types again, you end up with this type signature to describe the behavior you want:

 [TS a] -> TS a

 Looking at this type signature should remind you of concatenating a list, which is done with the mconcat function. The type signature of mconcat generalizes this pattern:

 mconcat :: Monoid a => [a] -> a

 The only thing missing now is that your TS type isn’t an instance of Monoid.

 As always, after you have Semigroup implemented, all you need is to add the mempty (that is, the identity) element. Without an identity element, you can’t automatically concatenate a list of TS types.

 Listing 20.12. Making TS an instance of Monoid

 instance Monoid (TS a) where
 mempty = TS [] []
 mappend = (<>)

 Because you get mconcat for free with Monoid, you can easily combine lists of TS:

 GHCi> mconcat [ts1,ts2]
1|200.1
2|199.5
3|199.4
4|198.9
5|199.0
6|200.2
7|NA
8|NA
9|200.3
10|201.2
11|201.6
12|201.5
13|201.5
14|203.5
15|204.9
16|207.1
17|NA
18|210.5
19|NA
20|208.8

 Finally, you can stitch together all of your time series into a single time series that’s as complete as possible from all
 of your files.

 Listing 20.13. tsAll easily created using mconcat

 tsAll :: TS Double
tsAll = mconcat [ts1,ts2,ts3,ts4]

 Although it took a bit of work to get here, for all future time-series data you work with, you have a one-liner to safely
 combine separate files into a single TS type.

 20.3. Performing calculations on your time series

 Your time series data isn’t helpful if you can’t do basic analytics with it. The primary reason time series are used in analytics
 is to understand the general trends and changes over time to the value you’re tracking. Even simple questions about a time
 series can be complicated because time-series data rarely represents a nice, neat straight line. To start analyzing your time-series
 data, you’re going to look at simple summary statistics. A summary statistic is a small number of values that help summarize a more complex data set. The most common summary statistic for almost all
 data is the average. In this section, you’ll look at calculating the average (mean) of your data, as well as finding when
 the highest and lowest values in your data happened and what they were.

 The first thing you’ll want to do is calculate the mean of the values in your time series. Your meanTS function will take a TS parameterized with a Real type and return the mean of the values in the TS as a Double. The Real type class allows you to use the realToFrac function to make it easier for you to divide types such as Integer. Your mean will have to return a Maybe type because in two instances there’s no meaningful result: an empty time series and a time series in which all values are
 Nothing.

 First you need a function to calculate the mean of a list.

 Listing 20.14. mean to average a list of most number types

 mean :: (Real a) => [a] -> Double
mean xs = total/count
 where total = (realToFrac . sum) xs
 count = (realToFrac . length) xs

 Then you can move on to your meanTS function:

 meanTS :: (Real a) => TS a -> Maybe Double
meanTS (TS _ []) = Nothing
meanTS (TS times values) = if all (== Nothing) values
 then Nothing
 else Just avg
 where justVals = filter isJust values 1
 cleanVals = map fromJust justVals 2
 avg = mean cleanVals

 	1 isJust requires the import of the Data.Maybe module, and tests whether a value “is Just.”

 	2 fromJust, also in Data.Maybe, is the equivalent of (\(Just x) -> x).

 In GHCi, you can inspect your mean sales over time:

 GHCi> meanTS tsAll
Just 210.5966666666667

 20.3.1. Calculating the min and max values for your time series

 Knowing the minimum and maximum of your time series would also be useful. You don’t want to know only the values that represent
 the min and max, but also the times they happened. Because maxTS and minTS are going to be nearly the same except for their comparators, you might as well make a generic compareTS function that takes a (a -> a -> a) function (a function like max that compares two values and returns the “winner”). Interestingly, your comparison type signature
 is exactly the same as your Semigroup (<>). But type signatures aren’t always enough to tell the entire story. Typically, you want to use Semigroup (and Monoid) to abstract away combining two types, rather than comparing them.

 Again, you’re stuck with the problem that you have a compare function of the type (a -> a -> a) but you’re going to want to compare types (Int, Maybe a). This is because you want to keep track of the value and the time the value happened. But all you care about is comparing
 the values. To make this easier, you’ll write a makeTSCompare function that takes a comparing function (a -> a -> a) and transforms it into a function of type ((Int, Maybe a) -> (Int, Maybe a) -> (Int, Maybe a)). You can transform any function such as min or max and it’ll work with (Int, Maybe a) tuples!

 Listing 20.15. makeTSCompare and useful type synonyms

 type CompareFunc a = a -> a -> a
type TSCompareFunc a = (Int, Maybe a) -> (Int, Maybe a) -> (Int, Maybe a)

makeTSCompare :: Eq a => CompareFunc a -> TSCompareFunc a
makeTSCompare func = newFunc 1
 where newFunc (i1, Nothing) (i2, Nothing) = (i1, Nothing) 2
 newFunc (_, Nothing) (i, val) = (i,val) 3
 newFunc (i, val) (_, Nothing) = i,val) 3
 newFunc (i1,Just val1) (i2,Just val2) = 4
 if func val1 val2 == val1
 then (i1, Just val1)
 else (i2, Just val2)

 	1 Here you’re creating a newFunction to return.

 	2 Even though you’re in a where, you can still do pattern matching.

 	3 These first three cases handle when one or both values are Nothing.

 	4 This last definition performs the behavior of the comparison function, only it returns the full tuple.

 With makeTSCompare, you no longer have to think about using comparison functions such as max and min, or any other similar function. As an example, let’s compare two time/value pairs in GHCi:

 GHCi> makeTSCompare max (3,Just 200) (4,Just 10)
(3,Just 200)

 Now you can build a generic compareTS function that lets you compare all values in a TS type.

 Listing 20.16. compareTS, a generic means of applying comparison functions to TS

 compareTS :: Eq a => (a -> a -> a) -> TS a -> Maybe (Int, Maybe a)
compareTS func (TS [] []) = Nothing
compareTS func (TS times values) = if all (== Nothing) values
 then Nothing
 else Just best
 where pairs = zip times values
 best = foldl (makeTSCompare func) (0, Nothing) pairs

 compareTS allows you to trivially create other comparison functions for TS. Here are max and min.

 Listing 20.17. Trivially creating minTS and maxTS using compareTS

 minTS :: Ord a => TS a -> Maybe (Int, Maybe a)
minTS = compareTS min

maxTS :: Ord a => TS a -> Maybe (Int, Maybe a)
maxTS = compareTS max

 Here are some examples in GHCi:

 GHCi> minTS tsAll
Just (4,Just 198.9)
GHCi> maxTS ts1
Just (12,Just 202.9)

 With a few basic summary statistics to work with, you can move on to more-advanced analysis of time-series data.

 20.4. Transforming time series

 Basic summary statistics can be helpful but are rarely enough to cover all the details you want to know about a time series.
 In the case of monthly sales data, you might want to make sure your company is growing. Because time-series data isn’t a simple
 straight line, it can be surprisingly tricky to answer simple questions such as, “How fast are sales growing?” The most straightforward
 approach is to look not at the values of the time series itself, but at how the values change over time. Another problem is
 that time-series data is noisy. To reduce noise, you perform a task called smoothing, which attempts to remove noise from the data to make it easier to understand. Both of these tasks are a way of transforming
 your original data so that you can extract further insights from it.

 The first transformation you’re going to look at is taking the diff of a TS. The diff indicates the change each day. Say, for example, you have the values shown in figure 20.3.

 Figure 20.3. Visualizing the diff function

 [image:]

 Notice that your list is one value shorter than before. This occurs because there’s nothing to subtract from the first value.
 You’ll have to make sure you add a Nothing value to the beginning of the resulting TS to reflect this. To enable you to see the effect that a diff transformation has on the time series, figure 20.4 shows the original sales data (from figure 20.1) with diff applied.

 Figure 20.4. Sales time series with diff applied

 [image:]

 In terms of types, the diff transformation can be cleanly expressed as follows:

 TS a -> TS a

 This isn’t the perfect description of what you want your final result to be. Your TS type can take any parameter for the type of its values, but not all values can be subtracted from one another. Your transformation
 will be of any Num type because all Num types can be subtracted from each other:

 Num a => TS a -> TS a

 With your revised type signature, you’re being more specific about exactly what type of transformation you’re allowing.

 You once again run into a problem: you’re working with Maybe values when you want to perform an operation on the Num a type inside the Maybe. As you have before, you’ll start with a diffPair function that takes two Maybe a values and subtracts them.

 Listing 20.18. Type signature of diffPair

 diffPair :: Num a => Maybe a -> Maybe a -> Maybe a

 If either value is Nothing, you’re going to return nothing; otherwise, you’ll return the difference.

 Listing 20.19. Definition of diffPair

 diffPair Nothing _ = Nothing
diffPair _ Nothing = Nothing
diffPair (Just x) (Just y) = Just (x - y)

 Now you can create diffTS. You can use zipWith to make this easy. The zipWith function works just like zip, but instead of combining the two values into a tuple, it combines them with a function.

 Listing 20.20. diffTS to take the diff of a TS

 diffTS :: Num a => TS a -> TS a
diffTS (TS [] []) = TS [] []
diffTS (TS times values) = TS times (Nothing:diffValues)
 where shiftValues = tail values
 diffValues = zipWith diffPair shiftValues values

 With diffTS, you can see the mean change in your sales over time:

 GHCi> meanTS (diffTS tsAll)
Just 0.6076923076923071

 On average, your sales have grown about 0.6 each month. The great thing about this is that you can use these tools without
 worrying at all about missing values!

 20.4.1. Moving average

 Another important transformation of time-series data is smoothing. Many times data has noisy spikes, unexplainable drops,
 and other random noise that makes it harder to understand the data. Another issue is seasonality in the data. Suppose you
 have weekly data; do you expect sales to be as good on Sunday as on Tuesday? You don’t want the seasonality of the data to
 affect how you understand it.

 The best way to smooth is by taking a moving average. The moving average is similar to the diff, but rather than looking at just two numbers at a time, you’re averaging over an entire window. A
 moving average takes a parameter n for the number of items it will smooth over. Here’s an example of a moving average of 3 taken over these six numbers:

 1,2,3,4,3,2

2.000000 3.000000 3.333333 3.000000

 To visualize the effects of this smoothing, figure 20.5 shows the original time series (from figure 20.1) with a moving average of 12 applied.

 Figure 20.5. Sales time-series with a moving average of 12 applied

 [image:]

 Notice that you end up missing n/2 values. For diff, you added a single Nothing at the beginning of your data, but for a moving average, you like to “center” the data, adding NA (or Nothing, in this case) values to both ends.

 Your type signature of your movingAverageTS function is going to be more restrictive than your diffTS function. Because you know you’ll be using your mean function to average numbers, you can look at its type signature to help figure out the final type signature for movingAverageTS:

 mean :: (Real a) => [a] -> Double

 Because mean will be doing most of the work for calculating your moving average, you know that your final type signature will involve
 transforming a (Real a) => TS a into one of type TS Double. You also need one more value for your type signature. You need to specify the number of values you want to smooth over.
 This means your final type signature should be as follows:

 movingAverageTS :: (Real a) => TS a -> Int -> TS Double

 With a better sense of your goal, you can start building out the functions that will get you there.

 To make things easier to reason about, you’ll abstract out just the part of the moving average function that has to work with
 a list of [Maybe a], your values from the time series.

 Listing 20.21. meanMaybe, which takes the mean of a list of Maybe a values

 meanMaybe :: (Real a) => [Maybe a] -> Maybe Double
meanMaybe vals = if any (== Nothing) vals
 then Nothing
 else (Just avg)
 where avg = mean (map fromJust vals)

 Now you can write the core logic to calculate your moving average.

 Listing 20.22. movingAvg calculates the moving average of a Maybe a list

 movingAvg :: (Real a) => [Maybe a] -> Int -> [Maybe Double]
movingAvg [] n = []
movingAvg vals n = if length nextVals == n
 then meanMaybe nextVals:movingAvg restVals n
 else []
 where nextVals = take n vals
 restVals = tail vals

 With these two functions taking care of the work, the last thing you need to worry about is making sure your final TS is “centered.” For this, you’ll use integer division with div to give you a whole-number halfway point.

 Listing 20.23. maTS for calculating the moving average of a TS with centering

 movingAverageTS :: (Real a) => TS a -> Int -> TS Double
movingAverageTS (TS [] []) n= TS [] []
movingAverageTS (TS times values) n = TS times smoothedValues
 where ma = movingAvg values n
 nothings = replicate (n `div` 2) Nothing 1
 smoothedValues = mconcat [nothings,ma,nothings]

 	1 The replicate function creates a list of repeated values.

 With movingAverageTS, you can smooth your TS data!

 Summary

 In this capstone, you

 	Learned about common techniques you can apply to working with time-series data

 	Created a TS type that handles the basics of a time series

 	Used Maybe to model NA values in data

 	Used the Map type to handle combining sets of values

 	Combined TS types easily by using Semigroup and Monoid type classes

 	Applied nontrivial computation in the context of a Maybe

 Extending the exercise

 If you’d like to continue this capstone on your own, there’s no limit to the cool stuff you can do with a time series. Easy
 extensions to this project include the following:

 	Use the median rather than the mean for smoothing.

 	Create a function that calculates the div rather than the diff of data, capturing the percent change.

 	Implement a function for calculating the standard deviation of a TS type.

 If you still want more, the next most useful task is to add and subtract time series from each other. For each point in the
 timeline that two TS types have in common, you add or subtract the values as necessary.

Unit 4. IO in Haskell

 So far in this book, you’ve seen many examples of the powerful things you can do with Haskell. A recurring theme of Haskell
 is that much of this power comes from simple things such as referential transparency and Haskell’s type system. But there
 has been one glaring omission so far: I/O.

 No matter what your program does, no matter what language it’s written in, I/O is a hugely important part of software. It’s
 the point where your code meets the real world. So why haven’t you seen much Haskell involving I/O yet? The problem is that
 using I/O inherently requires you to change the world. Take, for example, getting user input from the command line. Each time
 you have a program that requests user input, you expect the result to be different. But in unit 1 we spent a great deal of time talking about how important it is that all functions take an argument, return a value, and
 always return the same value for the same argument. Another issue with I/O is that you’re always changing the world, which
 means you’re dealing with state. If you read a file and write to another, your programs would be useless if you didn’t change
 the world somewhere along the way. But again, avoiding state is one of the key virtues of Haskell discussed in unit 1.

 So how does Haskell solve this problem? As you might expect, Haskell does this by using types. Haskell has a special parameterized type called IO. Any value in an IO context must stay in this context. This prevents code that’s pure (meaning it upholds referential transparency and doesn’t change state) and code that’s necessarily impure from mixing.

 To demonstrate this, you’ll compare two similar mystery functions in both Java and Haskell. You’ll start by taking a look
 at two nearly identical Java methods, called mystery1 and mystery2.

 Listing 1. Two Java methods with the same type signature, mystery1 and mystery2

 public class Example {

 public static int mystery1(int val1, int val2){
 int val3 = 3;
 return Math.pow(val1 + val2 + val3, 2);
 }

 public static int mystery2(int val1, int val2){
 int val3 = 3;
 System.out.print("Enter a number");
 try {
 Scanner in = new Scanner(System.in);
 val3 = in.nextInt();
 } catch (IOException e) {

 e.printStackTrace();
 }
 return Math.pow(val1 + val2 + val3,2);
 }
}

 Here you have two static methods, mystery1 and mystery2. Both do the same thing: they take in two values, add them with a mystery value, and square the result. What’s most important
 is that these methods have identical type signatures in Java. But I don’t think anyone would argue that these methods are
 remotely the same!

 The mystery1 method is predictable. Every time you enter two inputs, you’ll get the exact same output. In Haskell terms, mystery1 is a pure function. If you play around with this function enough, you’ll eventually be able to figure out what it does.

 The mystery2 method, on the other hand, is a different method. Every time you call mystery2, many things can go wrong. Additionally, every time you call mystery2, you’re likely to get a different answer. You may never be able to figure out what mystery2 is doing. Now, in this example you could clearly tell the difference because mystery2 will force a command prompt. But suppose mystery2 just read from a random file on disk. You might never know what it was doing. The idea of mystery functions may seem contrived,
 but anytime you use legacy code or an external library, you’re often dealing with mystery functions: you may easily understand
 them from their behavior, but have no way of knowing what they’re doing.

 Haskell solves this problem by forcing these two functions to be different types. Whenever a function uses IO, the results of that function are forever marked as coming from IO. Here are the two Java methods rewritten as Haskell functions.

 Listing 2. mystery1 and mystery2 rewritten in Haskell

 mystery1 :: Int -> Int -> Int
mystery1 val1 val2 = (val1 + val2 + val3)^2
 where val3 = 3

mystery2 :: Int -> Int -> IO Int
mystery2 val1 val2 = do
 putStrLn "Enter a number"
 val3Input <- getLine
 let val3 = read val3Input
 return ((val1 + val2 + val3)^2)

 Why does this IO type make your code safer? IO makes it impossible to accidentally use values that have been tainted with I/O in other, pure functions. For example, addition
 is a pure function, so you can add the results of two calls to mystery1:

 safeValue = (mystery1 2 4) + (mystery1 5 6)

 But if you try to do the same thing, you’ll get a compiler error:

 unsafeValue = (mystery2 2 4) + (mystery2 2 4)
"No instance for (Num (IO Int)) arising from a use of '+'"

 Although this certainly adds safety to your program, how in the world are you going to do things? In this unit, you’ll focus
 on learning the Haskell tools that enable you to keep your pure code separated from I/O code and still make useful programs
 that interact with the real world. After this unit, you’ll be able to use Haskell for a wide range of everyday, real-world
 programming problems that involve using I/O.

Lesson 21. Hello World!—introducing IO types

 After reading lesson 21, you’ll be able to

 	Understand how Haskell handles I/O by using IO types

 	Use do-notation to perform I/O

 	Write pure programs that interact with the real world

 In lesson 1, you saw a basic example of a Hello World program. In this lesson, you’ll revisit a similar program to get a better sense
 of how I/O works in Haskell. Here’s an example program using I/O that reads a name from the command line and prints out "Hello <name>!".

 Listing 21.1. A simple Hello World program

 helloPerson :: String -> String
helloPerson name = "Hello" ++ " " ++ name ++ "!"

main :: IO ()
main = do
 putStrLn "Hello! What's your name?"
 name <- getLine
 let statement = helloPerson name
 putStrLn statement

 Before you saw any Haskell, you likely could have read this program pretty well. Unfortunately, now that you know more about
 Haskell, this probably looks much more confusing! The helloPerson function should be straightforward, but everything starting with main is different from anything else you’ve seen so far. You should have the following questions:

 	What in the world is the type IO ()?

 	Why is there a do after main?

 	Does putStrLn return a value?

 	Why are some variables assigned with <- and others with let?

 By the end of this lesson, you’ll have a reasonable explanation of each of these things, and hopefully a much better understanding
 of the basics of IO in Haskell.

 	

 Quick check 21.1

 Q1:
Which line retrieves the user’s input? What type do you assume that input is?

 	

 	

 QC 21.1 answer

 1:

The line using getLine receives the input. At this point, it’s safe to assume that input is a String (at the end of the lesson, you’ll know it’s an IO String).

 	

 	

 Consider this

 You can get a line of user input by using the getLine function. But each time getLine is called, it can clearly return a different result. How can this work, given one of the most important features of Haskell
 is always returning the same value for the same input?

 	

 21.1. IO types—dealing with an impure world

 As is often the case with Haskell, if you’re unsure of what’s going on, it’s best to look at the types! The first type you
 have to understand is the IO type. In the preceding unit, you ended by looking at the Maybe type. Maybe is a parameterized type (a type that takes another type as an argument) that represents a context when a value may be missing.
 IO in Haskell is a parameterized type that’s similar to Maybe. The first thing they share in common is that they’re parameterized types of the same kind. You can see this by looking at
 the kind of IO and of Maybe:

 GHCi> :kind Maybe
Maybe :: * -> *
GHCi> :kind IO
IO :: * -> *

 The other thing that Maybe and IO have in common is that (unlike List or Map) they describe a context for their parameters rather than a container. The context for the IO type is that the value has come from an input/output operation. Common examples of this include reading user input, printing
 to standard out, and reading a file.

 With a Maybe type, you’re creating a context for a single specific problem: sometimes a program’s values might not be there. With IO, you’re creating context for a wide range of issues that can happen with IO. Not only is IO prone to errors, but it’s also inherently stateful (writing a file changes something) and also often impure (calling getLine many times could easily yield a different result each time if the user enters different input). Although these may be issues
 in I/O, they’re also essential to the way I/O works. What good is a program that doesn’t change the state of the world in
 some way? To keep Haskell code pure and predictable, you use the IO type to provide a context for data that may not behave the way all of the rest of your Haskell code does. IO actions aren’t functions.

 In your example code, you only see one IO type being declared, the type of your main:

 main :: IO ()

 At first () may seem like a special symbol, but in reality it’s just a tuple of zero elements. In the past, we’ve found tuples representing
 pairs or triples to be useful, but how can a tuple of zero elements be useful? Here are some similar types with Maybe so you can see that IO () is just IO parameterized with (), and can try to figure out why () might be useful:

 GHCi> :type Just (1,2)
Just (1,2) :: (Num t, Num t1) => Maybe (t, t1)
GHCi> :type Just (1)
Just (1) :: Num a => Maybe a
GHCi> :type Just ()
Just () :: Maybe ()

 For Maybe, being parameterized with () is useless. It can have only two values, Just () and Nothing. But arguably, Just () is Nothing. It turns out that representing nothing is exactly why you want to parameterize IO with an empty tuple.

 You can understand this better by thinking about what happens when your main is run. Your last line of code is as follows:

 putStrLn statement

 As you know, this prints your statement. What type does putStrLn return? It has sent a message out into the world, but it’s not clear that anything meaningful is going to come back. In a
 literal sense, putStrLn returns nothing at all. Because Haskell needs a type to associate with your main, but your main doesn’t return anything, you use the () tuple to parameterize your IO type. Because () is essentially nothing, this is the best way to convey this concept to Haskell’s type system.

 Although you may have satisfied Haskell’s type system, something else should be troubling you about your main. In the beginning of the book, we stressed three properties of functions that make functional programming so predictable
 and safe:

 	All functions must take a value.

 	All functions must return a value.

 	Anytime the same argument is supplied, the same value must be returned (referential transparency).

 Clearly, main doesn’t return any meaningful value; it simply performs an action. It turns out that main isn’t a function, because it breaks one of the fundamental rules of functions: it doesn’t return a value. Because of this, we refer
 to main as an IO action. IO actions work much like functions except they violate at least one of the three rules we established for functions early in
 the book. Some IO actions return no value, some take no input, and others don’t always return the same value given the same
 input.

 21.1.1. Examples of IO actions

 If main isn’t a function, it should follow that neither is putStrLn. You can quickly clear this up by looking at putStrLn’s type:

 putStrLn :: String -> IO ()

 As you can see, the return type of putStrLn is IO (). Like main, putStrLn is an IO action because it violates our rule that functions must return values.

 The next confusing function should be getLine. Clearly, this works differently than any other function you’ve seen because it doesn’t take an argument! Here’s the type
 for getLine:

 getLine :: IO String

 Unlike putStrLn, which takes an argument and returns no value, getLine takes no value but returns a type IO String. This means getLine violates our rule that all functions must take an argument. Because getLine violates this rule of functions, it’s also an IO action.

 Now let’s look at a more interesting case. If you import System.Random, you can use randomRIO, which takes a pair of values in a tuple that represents the minimum and maximum of a range and then generates a random number
 in that range. Here’s a simple program called roll.hs that uses randomRIO and, when run, acts like rolling a die.

 Listing 21.2. roll.hs program for simulating the roll of a die

 import System.Random

minDie :: Int
minDie = 1

maxDie :: Int
maxDie = 6

main :: IO ()
main = do
 dieRoll <- randomRIO (minDie,maxDie)
 putStrLn (show dieRoll)

 You can compile your program with GHC and “roll” your die:

 $ ghc roll.hs
$./roll
2

 What about randomRIO? It takes an argument (the min/max pair) and returns an argument (an IO type parameterized with the type of the pair), so is it a function? If you run your program more than once, you’ll see the
 problem:

 $./roll
4
$./roll
6

 Each time you call randomRIO, you get a different result, even with the same argument. This violates the rule of referential transparency. So randomRIO, just like getLine and putStrLn, is an IO action.

 	

 Quick check 21.2

 Q1:
Is it okay if the last line in your main is getLine?

 	

 	

 QC 21.2 answer

 1:

No, because the type of main is IO (), but the type of getLine is IO String

 	

 21.1.2. Keeping values in the context of IO

 The interesting thing about getLine is that you have a useful return value of the type IO String. Just as a Maybe String means that you have a type that might be missing, IO String means that you have a type that comes from I/O. In lesson 19 we discussed the fact that a wide range of errors is caused by missing values that Maybe prevents from leaking into other code. Although null values cause a wide variety of errors, think of how many errors you’ve
 ever encountered caused by I/O!

 Because I/O is so dangerous and unpredictable, after you have a value come from I/O, Haskell doesn’t allow you to use that
 value outside of the context of the IO type. For example, if you fetch a random number using randomRIO, you can’t use that value outside main or a similar IO action. You’ll recall that with Maybe you could use pattern matching to take a value safely out of the context that it might be missing. This is because only one
 thing can go wrong with a Maybe type: the value is Nothing. With I/O, an endless variety of problems could occur. Because of this, after you’re working with data in the context of
 IO, it must stay there. This initially may seem like a burden. After you’re familiar with the way Haskell separates I/O logic
 from everything else, you’ll likely want to replicate this in other programming languages (though you won’t have a powerful
 type system to enforce it).

 21.2. Do-notation

 Not being able to escape the context of IO means that you need a convenient way to perform a sequence of computations within the context of IO. This is the purpose of the special do keyword. This do-notation allows you to treat IO types as if they were regular types. This also explains why some variables use let and others use <-. Variables assigned with <- allow you to act as though a type IO a is just of type a. You use let statements whenever you create variables that aren’t IO types. Figure 21.1 shows the two lines in your main action that use <- and let so you can understand this better.

 Figure 21.1. Treating an IO String like a regular String using do-notation

 [image:]

 You know from earlier that getLine returns a type IO String. The type of name must be IO String. But you want to use name as an argument to helloPerson. Look at the type of hello-Person again:

 helloPerson :: String -> String

 You see that helloPerson works only with an ordinary String, not a type IO String. Do-notation allows you to assign an IO String variable by using <-, to act like it’s an ordinary String, and then to pass it to functions that work with only regular Strings. Here’s our original program again, this time with annotations to highlight where you’re using IO types and regular types.

 Listing 21.3. Understanding do-notation in your Hello World program

 helloPerson :: String -> String
helloPerson name = "Hello" ++ " " ++ name ++ "!"

main :: IO ()
main = do
 putStrLn "Hello! What's your name?"
 name <- getLine 1
 let statement = helloPerson name 2
 putStrLn statement 3

 	1 getLine is an IO action and returns a type IO String.

 	2 helloPerson is a function String -> String, but your IO String ‘name’ still works because of do-notation.

 	3 putStrLn is an IO action that takes a normal String (not an IO String).

 What makes this powerful is that you can blend functions that work with safe, non-IO values and use them seamlessly with data in an IO context.

 	

 Quick check 21.3

 Q1:
Could you simplify your code to combine helloPerson and getLine like this?

 let statement = helloPerson getLine

 	

 	

 QC 21.3 answer

 1:

No, because getLine is still of type IO String.

 	

 21.3. An example: command-line pizza cost calculator

 To get a better sense of how do-notation works, let’s try an extended example. You’ll create a command-line tool that asks
 the user for the size and then the cost of two pizzas, and then tells the user which one is cheaper per square inch. Because
 you’re using IO now, you can finally create a real, compiled program. You’ll call this one pizza.hs. This program will ask you for the cost
 and size of two pizzas and tell you which one is the better deal in terms of cost per square inch. Here’s what it’ll look
 like to compile and run your program:

 $ ghc pizza.hs
$./pizza
What is the size of pizza 1
12
What is the cost of pizza 1
15
What is the size of pizza 2
18
What is the cost of pizza 2
20
The 18.0 pizza is cheaper at 7.859503362562734e-2 per square inch

 When designing programs that use I/O in Haskell, it’s typical to write as much code as you can that doesn’t use IO types. This makes reasoning about problems easier and allows you to easily test and experiment with pure functions. The more
 code you write that isn’t in the IO context, the more code you know will never be vulnerable to I/O errors.

 To get started, you’ll need a function to calculate the cost of a pizza given its diameter. The first thing you need to do
 is calculate the area of a circle given its diameter. The area of a circle is equal to pi × radius2, and the radius is half the diameter.

 Listing 21.4. Calculating the area of a pizza given its diameter

 areaGivenDiameter :: Double -> Double
areaGivenDiameter size = pi*(size/2)^2

 You’ll use size/cost pairs to more easily represent the pizza. You can use a type synonym for this.

 Listing 21.5. Pizza type synonym

 type Pizza = (Double,Double)

 To calculate the cost per square inch, you divide the total cost by the area.

 Listing 21.6. Calculating cost per inch

 costPerInch :: Pizza -> Double
costPerInch (size, cost) = cost / areaGivenDiameter size

 Next you’ll compare two pizzas. The comparePizzas function will take two Pizza pairs and return the cheaper of the two.

 Listing 21.7. Comparing two pizzas

 comparePizzas :: Pizza -> Pizza -> Pizza
comparePizzas p1 p2 = if costP1 < costP2
 then p1
 else p2
 where costP1 = costPerInch p1
 costP2 = costPerInch p2

 Finally, you want to print a statement to the user that indicates which pizza is cheaper and its price per square inch.

 Listing 21.8. Describing a pizza

 describePizza :: Pizza -> String
describePizza (size,cost) = "The " ++ show size ++ " pizza " ++
 "is cheaper at " ++
 show costSqInch ++
 " per square inch"
 where costSqInch = costPerInch (size,cost)

 Now all you have to do is tie this all together in a main. There’s still one interesting problem to solve. getLine returns an IO String, but you need your values to be of type Double. To solve this, you can use read.

 Listing 21.9. Putting all of your code together in main

 main :: IO ()
main = do
 putStrLn "What is the size of pizza 1"
 size1 <- getLine
 putStrLn "What is the cost of pizza 1"
 cost1 <- getLine
 putStrLn "What is the size of pizza 2"
 size2 <- getLine
 putStrLn "What is the cost of pizza 2"
 cost2 <- getLine
 let pizza1 = (read size1, read cost1)
 let pizza2 = (read size2, read cost2)
 let betterPizza = comparePizzas pizza1 pizza2
 putStrLn (describePizza betterPizza)

 The key thing here is that you only worry about the parts of the program that must be done in the context of IO, which is mostly capturing and manipulating your input.

 21.3.1. A peek at Monad—do-notation in Maybe

 IO can use do-notation because it’s a member of a powerful type class called Monad. We discuss Monad much more in unit 5. Do-notation has nothing to do with IO in particular and can be used by any member of Monad to perform computation in a context. The context for values in a Maybe is that they might not exist. The context for IO is that you’re interacting with the real world and your data might not behave as it does in the rest of your Haskell program.

 Maybe is also a member of the Monad type class and therefore can also use do-notation. Suppose that rather than getting your pizza values from user inputs, you
 had to retrieve these values from two Maps: one with sizes and one with costs. Here’s a nearly identical program to the one you just wrote using Maybe. Rather than getting your info from a user, you’ll look up the cost of a pizza by ID in a costData Map.

 Listing 21.10. costData Map containing pizza cost info

 costData :: Map.Map Int Double
costData = Map.fromList [(1,18.0),(2,16.0)]

 Likewise, size is in another Map.

 Listing 21.11. sizeData Map containing pizza size info

 sizeData :: Map.Map Int Double
sizeData = Map.fromList [(1,20.0),(2,15.0)]

 Now here’s a maybeMain function that looks almost the same!

 Listing 21.12. maybeMain: a version of your previous main using Maybe instead of IO

 maybeMain :: Maybe String
maybeMain = do
 size1 <- Map.lookup 1 sizeData
 cost1 <- Map.lookup 1 costData
 size2 <- Map.lookup 2 sizeData
 cost2 <- Map.lookup 2 costData
 let pizza1 = (size1,cost1)
 let pizza2 = (size2,cost2)
 let betterPizza = comparePizzas pizza1 pizza2
 return (describePizza betterPizza)

 The only new thing you’ve added is the return function, which takes a value of a type and puts it back in the context of the do-notation. In this case, a String is returned as a Maybe String. You didn’t need to do this in your main because putStrLn returns a type IO (). In GHCi, you can see that this works out well:

 GHCi> maybeMain
Just "The 20.0 pizza is cheaper at 5.729577951308232e-2 per square inch"

 If you’ve heard of monads before and wondered what all the excitement is about, you may find this example underwhelming. But
 the Monad type class allows you to write general programs that can work in a wide range of contexts. Because of do-notation, you could
 write a different program, using all the same core functions as your original. In most other programming languages, you’d
 likely have to rewrite every function to translate it from one that used IO to one that worked with potentially null values in a dictionary. In unit 5, you’ll dive much deeper into this topic. For now, it’s perfectly okay to think of do-notation as a convenient way to perform
 IO actions in Haskell.

 21.4. Summary

 In this lesson, our object was to teach you how Haskell handles interacting with I/O. The trouble with I/O is that it requires
 all the features of functions that we removed earlier in the book. I/O often changes the state of the world, and likewise
 frequently causes values to return different results each time a function (or, more specifically, action) is called. Haskell
 handles this by ensuring that all I/O logic is contained in an IO type. Unlike the Maybe type, you can never remove values from an IO type after they’re there. To make working with IO types easier, Haskell has a special do-notation that allows you to write code as though you weren’t in the context of an
 IO type. Let’s see if you got this.

 Q21.1
Translate listing 21.1 (reproduced below) into code by using do-notation in a Maybe. Assume that all the user input is replaced with a Map with a value for the input. Ignore the first putStrLn and simply return the statement at the end.

 helloPerson :: String -> String
helloPerson name = "Hello" ++ " " ++ name ++ "!"

main :: IO ()
main = do
 putStrLn "Hello! What's your name?"
 name <- getLine
 let statement = helloPerson name
 putStrLn statement

 Q21.2
Create a program that asks the user to input a number and then returns the nth Fibonacci numbers (see lesson 8 for an example of computing Fibonacci numbers).

Lesson 22. Interacting with the command line and lazy I/O

 After reading lesson 22, you’ll be able to

 	Access command-line arguments

 	Use the traditional approach to interacting through I/O

 	Write I/O code using lazy evaluation to make I/O easier

 Often when people first learn about I/O and Haskell, they assume that I/O is somewhat of a challenge for Haskell because Haskell
 is all about pure programs and I/O is anything but pure. But there’s another way to view I/O that makes it uniquely suited
 to Haskell, and somewhat clunky in other programming languages. Often when working with I/O in any language, we talk about
 I/O streams, but what is a stream? One good way to understand I/O streams is as a lazily evaluated list of characters. STDIN streams
 user input into a program until an eventual end is reached. But this end isn’t always known (and in theory could never occur).
 This is exactly how to think about lists in Haskell when using lazy evaluation.

 This view of I/O is used in nearly every programming language when reading from large files. Often it’s impractical, or even
 impossible, to read a large file into memory before operating on it. But imagine that a given large file was simply some text
 assigned to a variable, and that variable was a lazy list. As you learned earlier, lazy evaluation allows you to operate on infinitely long lists. No matter how large your input is, you can handle it if you treat the problem
 like a large list.

 In this lesson, you’ll look at a simple problem and solve it in a few ways. All you want to do is create a program that reads
 in an arbitrarily long list of numbers entered by a user, and then adds them all up and returns the result to the user. Along
 the way, you’ll learn both how to write traditional I/O and how to use lazy evaluation to come up with a much easier way to
 reason about the solution.

 	

 Consider this

 You want to write a program that will let a user test whether words are palindromes. This is easy for a single word, but how
 can you let the user supply a continuous list of potential palindromes and keep checking as long as the user has words to
 check?

 	

 22.1. Interacting with the command line the nonlazy way

 First let’s design a command-line tool that reads a list of numbers entered by the user and adds them all up. You’ll create
 a program called sum.hs. In the preceding lesson, you dealt with taking in user inputs and performing computations on them.
 The tricky thing this time is that you don’t know how many items the user is going to enter in advance.

 One way to solve this is to allow the user to enter a value as an argument to the program; for example:

 $./sum 4
"enter your numbers"

 3
 5
 9
 25
"your total is 42"

 To get arguments, you can use the getArgs function found in System.Environment. The type signature of getArgs is as follows:

 getArgs :: IO [String]

 So you get a list of Strings in the context of IO. Here’s an example of using getArgs in your main.

 Listing 22.1. Getting command-line arguments by using getArgs

 import System.Environment

main :: IO ()
main = do
 args <- getArgs

 To get a feel for how getArgs works, it would be nice to print out all the args you have. Because you know that args is a list, you could use map to iterate over each value. But you have a problem, because you’re working in the context of a do statement with an IO type. What you want is something like this.

 Listing 22.2. Proposed solution to print your args (note: won’t compile)

 map putStrLn args

 But args isn’t an ordinary list, and putStrLn isn’t an ordinary function. You can map over a list of values in IO with a special version of map that operates on Lists in the context of IO (technically, on any member of the Monad type class). For that, there’s a special helper function called mapM (the M stands for Monad).

 Listing 22.3. Next improvement: using mapM (still won’t compile)

 main :: IO ()
main = do
 args <- getArgs
 mapM putStrLn args

 Now when you compile your program, you still end up getting an error:

 Couldn't match type '[()]' with '()'

 GHC is complaining because the type of main is supposed to be IO (), but you’ll recall that map always returns a list. The trouble is that you just want to iterate over args and perform an IO action. You don’t care about the results, and don’t want a list back at the end. To solve this, there’s another function
 called mapM_ (note the underscore). This works just like mapM but throws away the results. Typically, when a function ends with an underscore in Haskell, it indicates that you’re throwing
 away the results. With this small refactor, you’re ready to go:

 main :: IO ()
main = do
 args <- getArgs
 mapM_ putStrLn args

 You can try a few commands and see what you get:

 $./sum
$./sum 2
2
$./sum 2 3 4 5
2
3
4
5

 	

 Quick check 22.1

 Q1:
Write a main that uses mapM to call getLine three times, and then use mapM_ to print out the values’ input. (Hint: You’ll need to throw away an argument when using mapM with getLine; use (_ -> ...) to achieve this.)

 	

 	

 QC 22.1 answer

 1:

exampleMain :: IO ()
exampleMain = do
 vals <- mapM (_ -> getLine) [1..3]
 mapM_ putStrLn vals

 	

 Now you can add the logic to capture your argument. You should also cover the case of a user failing to enter an argument.
 You’ll treat that as 0 lines. Also note that you’re using the print function for the first time. The print function is (putStrLn . show) and makes printing any type of value easier.

 Listing 22.4. Using a command-line argument to determine how many lines to read

 main :: IO ()
main = do
 args <- getArgs
 let linesToRead = if length args > 0
 then read (head args)
 else 0 :: Int
 print linesToRead

 Now that you know how many lines you need, you need to repeatedly call getLine. Haskell has another useful function for iterating in this way called replicateM. The replicateM function takes a value for the number of times you want to repeat and an IO action and repeats the action as expected. You need to import Control.Monad to do this.

 Listing 22.5. Reading a number of lines equal to the user’s argument

 import Control.Monad

main :: IO ()
main = do
 args <- getArgs
 let linesToRead = if length args > 0
 then read (head args)
 else 0
 numbers <- replicateM linesToRead getLine
 print "sum goes here"

 Okay, you’re almost there! Remember that getLine returns a String in the IO context. Before you can take the sum of all these arguments, you need to convert them to Ints, and then you can return the sum of this list.

 Listing 22.6. The full content of your sum.hs program

 import System.Environment
import Control.Monad

main :: IO ()
main = do
 args <- getArgs
 let linesToRead = if length args > 0
 then read (head args)
 else 0 :: Int
 numbers <- replicateM linesToRead getLine
 let ints = map read numbers :: [Int]
 print (sum ints)

 That was a bit of work, but now you have a tool that lets users enter as many ints as they want, and you can add them up for them:

 $./sum 2
4
59

$./sum 4
1
2
3
410

 Even in this simple program, you’ve covered a number of the tools used to handle user inputs. Table 22.1 covers some useful functions for iterating in an IO type.

 Table 22.1. Functions for iterating in an IO context

 	
 Function

 	
 Behavior

 	mapM
 	Takes an IO action and a regular list, performing the action on each item in the list, and returning a list in the IO context

 	mapM_
 	Same as mapM, but it throws away the values (note the underscore)

 	replicateM
 	Takes an IO action, an Int n, and then repeats the IO action n times, returning the results in an IO list

 	replicateM_
 	Same as replicateM, but it throws away the results

 Next you’ll look at how much easier this would be if you used lazy evaluation.

 	

 Quick check 22.2

 Q1:
Write your own version of replicateM, myReplicateM, that uses mapM. (Don’t worry too much about the type signature.)

 	

 	

 QC 22.2 answer

 1:

myReplicateM :: Monad m => Int -> m a -> m [a]
myReplicateM n func = mapM (_ -> func) [1 .. n]

 	

 22.2. Interacting with lazy I/O

 Your last program worked but had a few issues. First is that you require the user to input the specific number of lines needed.
 The user of your sum program needs to know this ahead of time. What if users are keeping a running tally of visitors to a
 museum, or piping in the output of another program to yours? Recall that the primary purpose of having an IO type is to separate functions that absolutely must work in I/O with more general ones. Ideally, you want as much of your
 program logic outside your main. In this program, all your logic is wrapped up in IO, which indicates that you’re not doing a good job of abstracting out your overall program. This is partially because so much
 I/O behavior is intermingled with what your program is supposed to be doing.

 The root cause of this issue is that you’re treating your I/O data as a sequence of values that you have to deal with immediately.
 An alternative is to think of the stream of data coming from the user in the same way you would any other list in Haskell.
 Rather than think of each piece of data as a discrete user interaction, you can treat the entire interaction as a list of
 characters coming from the user. If you treat your input as a list of Chars, it’s much easier to design your program and forget all about the messy parts of I/O. To do this, you need just one special
 action: getContents. The getContents action lets you treat the I/O stream for STDIN as a list of characters.

 You can use getContents with mapM_ to see how strangely this can act. You’ll be working with a new file named sum_lazy.hs for this section.

 Listing 22.7. A simple main to explore lazy I/O

 main :: IO ()
main = do
 userInput <- getContents
 mapM_ print userInput

 The getContents action reads input until it gets an end-of-file signal. For a normal text file, this is the end of the file, but for user
 input you have to manually enter it (usually via Ctrl-D in most terminals). Before running this program, it’s worth thinking
 about what’s going to happen, given lazy evaluation. In a strict (nonlazy) language, you’d assume that you have to wait until
 you manually enter Ctrl-D before your input would be printed back to use. Let’s see what happens in Haskell:

 $./sum_lazy
hi
'h'
'i'
'\n'
what?
'w'
'h'
'a'
't'
'?'
'\n'

 As you can see, because Haskell can handle lazy lists, it’s able to process your text as soon as you enter it! This means
 you can handle continuous interaction in interesting ways.

 	

 Quick check 22.3

 Q1:
Use lazy I/O to write a program that reverses your input and prints it back to you.

 	

 	

 QC 22.3 answer

 1:

reverser :: IO ()
reverser = do
 input <- getContents
 let reversed = reverse input
 putStrLn reversed

 	

 22.2.1. Thinking of your problem as a lazy list

 With getContents, you can rewrite your program, this time completely ignoring IO until later. All you need to do now is take a list of characters consisting of numbers and newline characters \n. Here’s a sample list.

 Listing 22.8. Sample data representing a string of input characters

 sampleData = ['6','2','\n','2','1','\n']

 If you can write a function that converts this into a list of Ints, you’ll be all set! There’s a useful function for Strings that you can use to make this easy. The lines function allows you to split a string by lines. Here’s an example in GHCi with your sample data:

 GHCi> lines sampleData
["62","21"]

 The Data.List.Split module contains a more generic function than lines, splitOn, which splits a String based on another String. Data.List.Split isn’t part of base Haskell, but is included in the Haskell Platform. If you aren’t using the Haskell Platform, you may need to install it. The splitOn function is a useful one to know when processing text. Here’s how lines could be written with splitOn.

 Listing 22.9. Defining myLines with splitOn from Data.List.Split

 myLines = splitOn "\n"

 With lines, all you need is to map the read function over your new lists and you’ll get your list of Ints. You’ll create a toInts function to do this.

 Listing 22.10. toInts function to convert your Char list into a list of Ints

 toInts :: String -> [Int]
toInts = map read . lines

 Making this function work with IO is remarkably easy. You apply it to your userInput you captured with getContents.

 Listing 22.11. Your lazy solution to processing your numbers

 main :: IO ()
main = do
 userInput <- getContents
 let numbers = toInts userInput
 print (sum numbers)

 As you can see, your final main is much cleaner than your first version. Now you can compile your program and test it out:

 $./sum_lazy
4
234
23
1
3
<ctrl-d>
265

 This is much nicer than before, as your code is cleaner and users don’t have to worry about how many numbers are in the list
 when they start. In this lesson, you’ve seen how to structure your program to work in a way similar to most other programming
 languages. You request data from the user, process that data, and then request more input from the user. In this model, you’re
 performing strict I/O, meaning that you evaluate each piece of data as you get it. In many cases, if you treat the user input as a regular
 lazy list of Chars, you can abstract out nearly all of your non-I/O code much more easily. In the end, you have only one point where you need
 to treat your list as I/O: when you first receive it. This allows all the rest of your code to be written as code that operates
 on a normal list in Haskell.

 	

 Quick check 22.4

 Q1:
Write a program that returns the sum of the squares of the input.

 	

 	

 QC 22.4 answer

 1:

mainSumSquares :: IO ()
mainSumSquares = do
 userInput <- getContents
 let numbers = toInts userInput
 let squares = map (^2) numbers
 print (sum squares)

 	

 Summary

 In this lesson, our objective was to introduce you to the ways to write simple command-line interfaces in Haskell. The most
 familiar way is to treat I/O just like any other programming language. You can use do-notation to create a procedural list
 of IO actions, and build interactions with I/O this way. A more interesting approach, possible in few languages other than Haskell,
 is to take advantage of lazy evaluation. With lazy evaluation, you can think of the entire input stream as a lazily evaluated
 list of characters, [Char]. You can radically simplify your code by writing out pure functions as though they were just working on the type [Char]. Let’s see if you got this.

 Q22.1
Write a program, simple_calc.hs, that reads simple equations involving adding two numbers or multiplying two numbers. The
 program should solve the equation each user types into each line as each line is entered.

 Q22.2
Write a program that allows a user to select a number between 1 and 5 and then prints a famous quote (quotes are of your choosing).
 After printing the quote, the program will ask whether the user would like another. If the user enters n, the program ends; otherwise, the user gets another quote. The program repeats until the user enters n. Try to use lazy evaluation and treat the user input as a list rather than recursively calling main at the end.

Lesson 23. Working with text and Unicode

 After reading lesson 23, you’ll be able to

 	Use the Text type for more-efficient text processing

 	Change Haskell’s behavior with language extensions

 	Program by using common text functions

 	Use Text to properly handle Unicode text

 So far in this book, you’ve made heavy use of the String type. In the preceding lesson, you saw that you can even view an I/O stream as a lazy list of type Char, or a String. String has been useful in helping you explore many topics in this book. Unfortunately, String has a huge problem: it can be woefully inefficient.

 From a philosophical standpoint, nothing could be more perfect than representing one of the more important types in programing
 as one of the most foundational data structures in Haskell: a list. The problem is that a list isn’t a great data structure
 to store data for heavy string processing. The details of Haskell performance are beyond the scope of this book, but it suffices
 to say that implementing Strings as a linked list of characters is needlessly expensive in terms of both time and space.

 In this lesson, you’ll take a look at a new type, Text. You’ll explore how to replace String with Text for more-efficient text processing. Then you’ll learn about the functions common to both String and Text for processing text. Finally, you’ll learn about how Text handles Unicode by building a function that can highlight search text, even in Sanskrit!

 	

 Consider this

 In Haskell, String is a special case of a List. But in most programming languages, string types are stored much more efficiently as arrays. Is there a way in Haskell to
 use the tools you already know about for working with the String type, but still have the efficiency of an array-based implementation?

 	

 23.1. The Text type

 For practical and commercial Haskell programming, the preferred type for working with text data is the type Text. The Text type can be found in the module Data.Text. In practice, Data.Text is almost always imported as a qualified import by using a single letter, usually T:

 import qualified Data.Text as T

 Unlike String, Text is implemented as an array under the hood. This makes many string operations faster and much more memory-efficient. Another
 major difference between Text and String is that Text doesn’t use lazy evaluation. Lazy evaluation proved to be helpful in the preceding lesson, but in many real-world cases it can lead
 to performance headaches. If you do need lazy text, you can use Data.Text.Lazy, which has the same interface as Data.Text.

 23.1.1. When to use Text vs. String

 In the commercial Haskell community, Data.Text is strongly preferred over String. Some members of the Haskell community argue that the standard Prelude should be thrown out for anything practical due to the heavy dependency on String. While learning Haskell, String is useful for two reasons. First, as mentioned, many of the basic string utilities are baked into the standard Prelude. Second, lists are to Haskell what arrays are to C. Many concepts in Haskell are nicely demonstrated with lists, and strings
 are useful lists. For learning purposes, feel free to stick with String. But for anything beyond exercises, use Data.Text as much as possible. You’ll continue to use String in many places in this book but will start to use Data.Text more often.

 23.2. Using Data.Text

 The first thing you need to do is learn how to use the Text type. Data.Text has two functions, pack and unpack, which can be used to convert String -> Text and Text -> String. Figuring out which function does what can easily be determined by their type signatures:

 T.pack :: String -> T.Text
T.unpack :: T.Text -> String

 Here are some examples of converting a String to Text and back again.

 Listing 23.1. Converting back and forth between String and Text types

 firstWord :: String
firstWord = "pessimism"

secondWord :: T.Text
secondWord = T.pack firstWord

thirdWord :: String
thirdWord = T.unpack secondWord

 It’s important to note that conversion isn’t computationally cheap, because you have to traverse the entire string. Avoid
 converting back and forth between Text and String.

 	

 Quick check 23.1

 Q1:
Create fourthWord once again, making the String type T.Text.

 	

 	

 QC 23.1 answer

 1:

fourthWord :: T.Text
fourthWord = T.pack thirdWord

 	

 23.2.1. OverloadedStrings and Haskell extensions

 An annoying thing about T.Text is that this code throws an error.

 Listing 23.2. The problem with using literal strings to define Text

 myWord :: T.Text
myWord = "dog"

 The error you get reads as follows:

 Couldn't match expected type 'T.Text' with actual type '[Char]'

 This error occurs because the literal "dog" is a String. This is particularly annoying because you don’t have this problem with numeric types. Take, for example, these numbers.

 Listing 23.3. The same numeric literal used in three types

 myNum1 :: Int
myNum1 = 3

myNum2 :: Integer
myNum2 = 3

myNum3 :: Double
myNum3 = 3

 This code will compile just fine even though you’ve used the same literal, 3, for three different types.

 Clearly this isn’t a problem that you can solve with clever coding, no matter how powerful Haskell may be. To fix this issue,
 you need a way to fundamentally change how GHC reads your file. Surprisingly, an easy fix for this exists! GHC allows you
 to use language extensions to alter the way Haskell itself works. The specific extension you’re going to use is called OverloadedStrings.

 There are two ways to use a language extension. The first is by using it when compiling with GHC. To do this, use the flag
 -X followed by the extension name. For a program named text.hs, this looks like the following:

 $ ghc text.hs -XOverloadedStrings

 This can also be used as an argument to GHCi, to start an instance of GHCi by using the language extension.

 The trouble is that someone who is using your code (and that someone could be you) might not remember to use this flag. A
 preferred method is to use a LANGUAGE pragma. The pragma looks like this:

 {-# LANGUAGE <Extension Name> #-}

 Here’s a text.hs file that will allow you to use literal values for Text types.

 Listing 23.4. Using OverloadedStrings to easily assign Text using a literal

 {-# LANGUAGE OverloadedStrings #-}
import qualified Data.Text as T

aWord :: T.Text
aWord = "Cheese"

main :: IO ()
main = do
 print aWord

 With the LANGUAGE pragma, you can compile this program just like any other Haskell program.

 Language extensions are powerful and range from practical to experimental. In real-world Haskell, a few extensions are common
 and useful.

 	

 Other useful language extensions

 Language extensions are common in practical Haskell. They’re powerful, as they allow you to use features of Haskell that may
 not be available as a default in the language for years, if ever. OverloadedStrings is the most common. Here are a few others you may come across or find useful:

 	ViewPatterns—Allows for more-sophisticated pattern matching.

 	TemplateHaskell—Provides tools for Haskell metaprogramming.

 	DuplicateRecordFields—Solves the annoying problem from lesson 16, where using the same field name for different types using record syntax causes a conflict.

 	NoImplicitPrelude—As mentioned, some Haskell programmers prefer to use a custom Prelude. This language extension allows you to not use the default Prelude.

 	

 	

 Quick check 23.2

 Q1:
There’s a language extension called TemplateHaskell. How would you compile templates.hs to use this extension? How would you add it using a LANGUAGE pragma?

 	

 	

 QC 23.2 answer

 1:

$ghc templates.hs -XTemplateHaskell

{-# LANGUAGE TemplateHaskell -#}

 	

 23.2.2. Basic Text utilities

 The trouble with using Text instead of String is that most useful functions for working with text are intended to be used with the String type. You definitely don’t want to be converting Text back to String in order to use functions such as lines. Luckily, nearly every important String function has its own version for working on Text in Data.Text. Here’s some sampleInput you’ll work with to show how these functions work.

 Listing 23.5. sampleInput of type Text

 sampleInput :: T.Text
sampleInput = "this\nis\ninput"

 To use lines on this example, all you have to do is make sure you preface lines with T., because of your qualified import. Here’s an example in GHCi:

 GHCi>T.lines sampleInput
["this","is","input"]

 The following are a few other useful functions that exist for both Text and String.

 words

 The words function is the same as lines, but it works for any whitespace characters, rather than just new lines.

 Listing 23.6. someText as a sample input for words

 someText :: T.Text
someText = "Some\ntext for\t you"

 In GHCi, you can easily see how this works:

 GHCi> T.words someText
["Some","text","for","you"]

 splitOn

 Lesson 22 briefly mentioned splitOn. For strings, splitOn is part of the Data.List.Split module. Thankfully, the text version is included in Data.Text so no additional import is needed. splitOn lets you split up text by any substring of text.

 Listing 23.7. Code for splitOn example

 breakText :: T.Text
breakText = "simple"

exampleText :: T.Text
exampleText = "This is simple to do"

 And in GHCi:

 GHCi> T.splitOn breakText exampleText
["This is "," to do"]

 unwords and unlines

 Breaking up Text by using whitespace is fairly common when working with I/O. The inverse is also common, so two functions can undo what you’ve
 just done, conveniently called unlines and unwords. Their usage is fairly obvious, but they’re useful functions to have in your tool belt:

 GHCi> T.unlines (T.lines sampleInput)
"this\nis\ninput\n"
GHCi> T.unwords (T.words someText)
"Some text for you"

 Intercalate

 You’ve used the string version of intercalate before in lesson 18. It’s the opposite of splitOn:

 GHCi> T.intercalate breakText (T.splitOn breakText exampleText)
"This is simple to do"

 Almost any useful function for working with strings works on text and has its own Text version.

 Monoid operations

 The exception to the rule that most useful functions on strings work on text is the ++ operator. So far, you’ve used ++ to combine strings:

 combined :: String
combined = "some" ++ " " ++ "strings"

 Unfortunately, ++ is defined only on the List type, so it won’t work for Text. In lesson 17, we discussed the Monoid and Semigroup type classes, which allow you to combine like types and concatenate lists of the same type. This provides a general solution
 to combining both strings and text. You can either import Semigroup and use <> to combine text, or use mconcat:

 {-# LANGUAGE OverloadedStrings #-}
import qualified Data.Text as T
import Data.Semigroup

combinedTextMonoid :: T.Text
combinedTextMonoid = mconcat ["some"," ","text"]

combinedTextSemigroup :: T.Text
combinedTextSemigroup = "some" <> " " <> "text"

 Because String is also an instance of Monoid and Semigroup, strings can be combined in the same way.

 	

 Quick check 23.3

 Q1:
Create your own version of T.lines and T.unlines by using splitOn and T.intercalate.

 	

 	

 QC 23.3 answer

 1:

myLines :: T.Text -> [T.Text]
myLines text = T.splitOn "\n" text

myUnlines :: [T.Text] -> T.Text
myUnlines textLines = T.intercalate "\n" textLines

 	

 23.3. Text and Unicode

 The Text type has excellent support for working seamlessly with Unicode text. At one point, programmers could largely ignore the complications
 of working with non-ASCII text. If input had accents or umlauts, it could be squashed out of existence; it was acceptable
 to change Charlotte Brontë to Charlotte Bronte. But ignoring Unicode today and in the future is a recipe for disaster. There’s no reason to be unable to record a user’s
 name that includes diacritical marks, or to fail to handle Japanese Kanji.

 23.3.1. Searching Sanskrit

 To demonstrate how seamlessly you can use Text for working with Unicode characters, you’ll build a simple program that highlights words in text. The trick is that you’re
 going to be highlighting Sanskrit words written in Devanagari script! The Unicode text can be easily copied from this link
 if you want to paste this into your editor to follow along: https://gist.github.com/willkurt/4bced09adc2ff9e7ee366b7ad681cac6.

 All of your code will go in a file named bg_highlight.hs. Your program will take a text query and a body of text, and use
 curly braces, {}, to highlight all cases of the word you’re looking for. For example, if dog is your query text, and your main text is a dog walking dogs, you’d expect this output:

 a {dog} walking {dog}s

 In this task, you want to highlight the Sanskrit word dharma in a sample text from the Bhavagad Gita. The word dharma has many meanings in Sanskrit, ranging from duty to references of cosmic order and divine justice. Sanskrit is a language that has no singular writing system. The most popular
 today is Devanagari, an alphabet used by more than 120 languages, including Hindi. Here’s the Sanskrit word dharma written in Devanagari script.

 Listing 23.8. A Unicode text variable for dharma written in Devanagari script

 dharma :: T.Text
dharma = "[image:]"

 Next you’ll take an excerpt from the Bhavagad Gita, itself a part of the Indian epic, The Mahabharata. Here’s our section.

 Listing 23.9. Your search text from the Bhavagad Gita

 bgText :: T.Text
bgText = "[image:]"

 Your goal here is to highlight everywhere in your bgText where the word dharma appears. In English, your first thought might be to split a sentence by using T.words, and then look for the word you’re looking for. But Sanskrit is more complicated. Because Sanskrit was a spoken language
 long before it was written, whenever words are naturally combined when speaking a sentence, they end up combined in text.
 To solve this, you can split your text on the target text query, wrap the query in brackets, and then put it all back together.
 You can use T.splitOn to split up the text, mconcat to add brackets to your query string, and T.intercalate to piece your words back together.

 Here’s your highlight function.

 Listing 23.10. The highlight function for highlighting text segments

 highlight :: T.Text -> T.Text -> T.Text
highlight query fullText = T.intercalate highlighted pieces 1
 where pieces = T.splitOn query fullText 2
 highlighted = mconcat ["{",query,"}"] 3

 	1 After you have the query text format with brackets, you can use intercalate to stitch everything back together.

 	2 Using splitOn, you can find all locations of your query text and split the text based on these locations.

 	3 You can use mconcat to take the query and surround it in brackets.

 Finally, you can put this all together in your main. But first you have to learn how to use IO with your Text type.

 23.4. Text I/O

 Now that you have a highlight function, you want to print the results of your highlighting back to the users. The trouble is that so far you’ve always
 used an IO String type to send output to the user. One solution would be to unpack your end text back into a string. What you want is to have
 a putStrLn for Text; this way, you never have to convert your text to a string (and can hopefully forget about strings altogether). The Data.Text module includes only functions for manipulating text. To perform text I/O, you need to import the Data.Text.IO package. You’ll do another qualified import:

 import qualified Data.Text.IO as TIO

 With TIO.putStrLn, you can print your Text type just as you would String. Any IO action you’ve used related to the String type has an equivalent in Data.Text.IO. Now you can put together your main, which calls your highlight function on your data. Here’s your full file, including the necessary imports and LANGUAGE pragma.

 Listing 23.11. Full file for your program

 {-# LANGUAGE OverloadedStrings #-}
import qualified Data.Text as T
import qualified Data.Text.IO as TIO

dharma :: T.Text
dharma :: "[image:]"

bgText :: T.Text
bgText = "[image:]"

highlight :: T.Text -> T.Text -> T.Text
highlight query fullText = T.intercalate highlighted pieces
 where pieces = T.splitOn query fullText
 highlighted = mconcat ["{",query,"}"]

main = do
 TIO.putStrLn (highlight dharma bgText)

 You can compile your program and see the highlighted text:

 $./bg_highlight
[image:]

 Now you have a program that easily handles Unicode and also works with text data much more efficiently than String.

 Summary

 In this lesson, our objective was to teach you how to efficiently process text (including Unicode) in Haskell by using Data.Text. Although strings as lists of characters are a useful tool for teaching Haskell, in practice they can lead to poor performance.
 The preferred alternative whenever you’re working with text data is to use the Data.Text module. One issue you came across was that Haskell, by default, doesn’t know how to understand string literals as Data.Text. This can be remedied by using the OverloadedStrings language extension. Let’s see if you got this.

 Q23.1
Rewrite the hello_world.hs program (reproduced here) from lesson 21 to use Text instead of String types.

 helloPerson :: String -> String

helloPerson name = "Hello" ++ " " ++ name ++ "!"

main :: IO ()
main = do
 putStrLn "Hello! What's your name?"
 name <- getLine
 let statement = helloPerson name
 putStrLn statement

 Q23.2
Use Data.Text.Lazy and Data.Text.Lazy.IO to rewrite the lazy I/O section from lesson 22 by using the Text type.

 toInts :: String -> [Int]
toInts = map read . lines

main :: IO ()
main = do
 userInput <- getContents
 let numbers = toInts userInput
 print (sum numbers)

Lesson 24. Working with files

 After reading lesson 24, you’ll be able to

 	Work with file handles in Haskell

 	Read from and write to files

 	Understand limitations of lazy evaluation for I/O

 One of the most important uses of I/O is to read and write from files. So far in this unit, you’ve learned a bit of the syntax
 behind IO types in Haskell, saw how to build command-line programs using lazy evaluation, and learned about efficient text processing
 by using the Text type. Now you’ll look at working with files, including how they can make using lazy I/O a bit tricky. You’ll start with the
 basics of opening, closing, reading from, and writing to simple files. Then you’ll write a program that takes various statistics
 from an input file (including word count and character count) and writes them to a file. You’ll discover that even in this
 rather straightforward task, lazy evaluation can be a major headache. The solution is to use strict data types to force the
 program to perform as you’d expect.

 	

 Consider this

 In lesson 22, you saw a way to add up numbers entered in as user input. How can you write the same program that works with a file rather
 than user input (other than manually piping the file into your program)?

 	

 24.1. Opening and closing files

 Before learning how files work in Haskell, you need to have a file to work with. You’ll look at the basics of opening and
 closings files. Your first task is to open and close a text file. Here’s the hello.txt file you’ll start with.

 Listing 24.1. hello.txt sample file

 Hello world!
Good bye world!

 Next you need a file that you’ll put all of your code in. You’ll call your file hello_file.hs. To start, you need to include
 the System.IO module, which will allow you to read and write files:

 import System.IO

 The first thing you need to do to work with your file is open it. To do this, you can use the openFile function, which has the following type signature (reminder: you can use :t to look up the type signature of a function in GHCi):

 openFile :: FilePath -> IOMode -> IO Handle

 As is usually the case, the more you understand the type of a function, the better you can understand how it works. If you
 open GHCi and use the :info command, you’ll find that FilePath is just a type synonym for String:

 type FilePath = String

 Using :info on IOMode, you find it’s a simple type like Bool, consisting of only single constructors:

 data IOMode = ReadMode | WriteMode | AppendMode | ReadWriteMode

 It should be clear from these constructor names that IOMode specifies whether you’re reading, writing, appending, and so forth, your file. This is similar to nearly every other programming
 language, which typically requires programmers to specify what they’re going to be doing with the file they’re accessing.

 	

 Quick check 24.1

 Q1:
If you want to open a file named stuff.txt to read it, what will the function call look like?

 	

 	

 QC 24.1 answer

 1:

openFile "stuff.txt" ReadMode

 	

 You’re then left with the IO Handle. The Handle type is a file handle that lets you pass around a reference to a file. As we’ve discussed throughout the unit, the IO type means that you have a handle in the context of IO. In order to get this file handle, you’ll ultimately be doing the work in your main IO action.

 Now you can put this all together and open hello.txt. The one missing piece is that just as in most other languages, whenever
 you open a file, you want to close it when you’re finished. This can be achieved by using hClose (for handle close).

 Listing 24.2. main, which opens and closes a file

 main :: IO ()
main = do
 myFile <- openFile "hello.txt" ReadMode
 hClose myFile
 putStrLn "done!"

 Opening and closing a file is boring if you don’t do anything with what’s inside! You clearly want to read and write to files.
 To do this, you can use two familiar functions, hPutStrLn and hGetLine. The only difference between these two functions and putStrLn and getLine is that you need to pass in a handle. It turns out that putStrLn is a specific instance of hPutStrLn. In hPutStrLn the handle is assumed to be stdout. Likewise, getLineis hGetLine where the handle is stidn. Here’s a modified version of your code that reads the first line from hello.txt and writes it to the console, and then reads
 the second line and writes it to a new file, goodbye.txt.

 Listing 24.3. Reading from a file and writing to stdout and another file

 main :: IO ()
main = do
 helloFile <- openFile "hello.txt" ReadMode
 firstLine <- hGetLine helloFile
 putStrLn firstLine
 secondLine <- hGetLine helloFile
 goodbyeFile <- openFile "goodbye.txt" WriteMode
 hPutStrLn goodbyeFile secondLine
 hClose helloFile
 hClose goodbyeFile
 putStrLn "done!"

 This program works because you happen to know that hello.txt has two lines. What if you want to revise this program to read each line and print it out as it goes? You’d need to be able
 to check for the end of the file. To do this, you use hIsEOF. Here’s a version of your program that checks the Hello file first before printing out the first line.

 Listing 24.4. Checking whether helloFile is empty before printing the first line

 main :: IO ()
main = do
 helloFile <- openFile "hello.txt" ReadMode
 hasLine <- hIsEOF helloFile
 firstLine <- if not hasLine
 then hGetLine helloFile
 else return "empty"
 putStrLn "done!"

 	

 Quick check 24.2

 Q1:
Write the code to check whether the second line is empty before writing it to a file.

 	

 	

 QC 24.2 answer

 1:

For this example, you’ll return an empty String if there’s no second line.

 hasSecondLine <- hIsEOF helloFile
secondLine <- if not hasSecondLine
 then hGetLine helloFile
 else return ""

 	

 24.2. Simple I/O tools

 Although it’s important to understand how file handles work, in many cases you can get away without dealing with them directly.
 A few useful functions named readFile, writeFile, and appendFile hide away many of the details of reading, writing, and appending files. Here are the type signatures of these functions:

 readFile :: FilePath -> IO String
writeFile :: FilePath -> String -> IO ()
appendFile :: FilePath -> String -> IO ()

 To see how these functions are used, you’ll create a program called fileCounts.hs. Your program will take a file as an argument,
 and then count the characters, words, and lines in the file. The program will display this data to the user as well as append
 the info to a stats.dat file. Here’s an example of what stats.dat will look like, given that it has to be used on two files,
 hello.txt and what.txt.

 Listing 24.5. Sample contents of stats.dat file for your fileCounts.hs program

 hello.txt chars: 29 words: 5 lines: 2
what.txt chars: 30000 words: 2404 lines: 1

 Now you can move on to write your code to perform this analysis.

 The first step is to write a function that gets all of your counts. You can write this by assuming that your input data is
 a String. You’ll represent your counts as a 3-tuple.

 Listing 24.6. getCounts collects character, word, and line count info into a tuple

 getCounts :: String -> (Int,Int,Int)
getCounts input = (charCount, wordCount, lineCount)
 where charCount = length input
 wordCount = (length . words) input
 lineCount = (length . lines) input

 Next you’ll create the countsText function to convert a 3-tuple of counts into a human-readable summary. You’ll use unwords to join your text.

 Listing 24.7. countsText renders count data in a human-readable form

 countsText :: (Int,Int,Int) -> String
countsText (cc,wc,lc) = unwords ["chars: "
 , show cc
 , " words: "
 , show wc
 , " lines: "
 , show lc]

 In GHCi, you can see that this works great:

 GHCi> (countsText . getCounts) "this is\n some text"
"chars: 18 words: 4 lines: 2"

 	

 Quick check 24.3

 Q1:
Why is it preferable to use unwords instead of combining your strings with ++?

 	

 	

 QC 24.3 answer

 1:

The ++ operator is specific to lists. In lesson 23, we talked at length about the other text types beyond String. The unwords function has a version for Text as well as String, whereas ++ works only on type String. Using unwords makes it much, much easier to refactor your code if you decide to swap out String for Text.

 	

 You can now easily put these functions together with readFile and appendFile to build your program.

 Listing 24.8. Putting your code together into main

 main :: IO ()
main = do
 args <- getArgs
 let fileName = head args
 input <- readFile fileName
 let summary = (countsText . getCounts) input
 appendFile "stats.dat" (mconcat [fileName, " ",summary, "\n"])
 putStrLn summary

 If you compile this program, you can see that it works as expected:

 $./fileCounts hello.txt
chars: 29 words: 5 lines: 2

$ cat stats.dat
hello.txt chars: 29 words: 5 lines: 2

 Using readFile and appendFile made solving this problem much easier than if you were using handles and openFile.

 24.3. The trouble with lazy I/O

 Your fileCounts.hs program is clearly missing a lot of important checks: you don’t bother to make sure there are arguments
 or that the file exists. These have been intentionally left out to make the code easier to read for learning. There’s one
 interesting thing you can try that will create a bug that you might not expect. What happens if you try to use fileCounts on its own stats.dat file?

 $./fileCounts stats.dat
fileCounts: stats.dat: openFile: resource busy (file is locked)

 You get an error! The trouble here is that readFile doesn’t close the file handle. Under the hood, readFile uses hGetContents, which works exactly like getContents except you’re required to pass in a file handle. Here’s how readFile is implemented in Haskell:

 readFile :: FilePath -> IO String
readFile name = do
 inputFile <- openFile name ReadMode
 hGetContents inputFile

 You can see that this code never closes the file handle, and just returns the results of hGetContent. If you ever need to view the source of a function in Haskell, you can look it up on Hackage, and the definition will contain
 a link to the source.

 You can see why readFile doesn’t close the handle if you attempt to fix your main by writing out the full operations you need. Here’s your revised code.

 Listing 24.9. Revised main with the readFile function expanded out

 main :: IO ()
main = do
 args <- getArgs
 let fileName = head args
 file <- openFile fileName ReadMode
 input <- hGetContents file
 hClose file
 let summary = (countsText . getCounts) input
 appendFile "stats.dat" (mconcat [fileName, " ",summary, "\n"])
 putStrLn summary

 That’s a bit more verbose, but should prevent the error involving appendFile from trying to write a file that you still have open. Let’s recompile and try this again:

 $./fileCounts stats.dat
fileCounts: stats.dat: hGetContents: illegal operation (delayed read on
[image:]closed handle)

 This time you have an even stranger error! Your program is completely broken now, as it will no longer work with hello.txt
 either:

 $./fileCounts hello.txt
fileCounts: stats.dat: hGetContents: illegal operation (delayed read on
[image:]closed handle)

 The problem here is lazy evaluation. The key to lazy evaluation is that no code is evaluated until it’s absolutely needed.
 Your input isn’t used until you define summary. But the problem doesn’t end there: summary isn’t used until you call appendFile. Because appendFile performs an IO action, it does force summary to be evaluated, which forces input to be evaluated. The real problem is that hClose closes the file immediately because it’s an IO action and must happen as soon as you evaluate it. Figure 24.1 provides a visual of the process.

 Figure 24.1. The problem with closing a file before we use it when using lazy evaluation

 [image:]

 So you can put hClose after appendFile because that’s when summary is finally evaluated, right?

 appendFile (mconcat [fileName, " ",summary, "\n"])
 hClose file

 But now you’re back where you started; you’re closing the file after you need a new handle! You need a solution that forces
 you to evaluate summary before you write to the file. One way to achieve this is to move putStrLn summary before you write to the file. This will force summary to be evaluated first. Then you can close the handle, finally appending the file.

 Listing 24.10. main with the evaluation bugs fixed

 main :: IO ()
main = do
 args <- getArgs
 let fileName = head args
 file <- openFile fileName ReadMode
 input <- hGetContents file 1
 let summary = (countsText . getCounts) input 2
 putStrLn summary 3
 hClose file 4
 appendFile "stats.dat" (mconcat [fileName, " ",summary, "\n"]) 5

 	1 input still hasn’t been evaluated yet.

 	2 Even though summary is defined, it hasn’t been used. Neither summary nor input have been evaluated.

 	3 putStrLn needs to print summary; this forces summary to be evaluated, and thus the input to be read in so it can be used
 by summary.

 	4 Now closing the file causes no problem because the value inside summary has been evaluated.

 	5 Appending the file works as expected; your file will be updated correctly.

 This should serve as an object lesson that although lazy I/O can be powerful, it can also lead to nasty bugs.

 	

 Quick check 24.4

 Q1:
Why doesn’t readFile close the handle?

 	

 	

 QC 24.4 answer

 1:

Because of lazy evaluation, if readFile closes the handle, you’d never be able to use the contents of the file. This is because a function acting on the contents
 of the file wouldn’t be called until after the file handle was closed

 	

 24.4. Strict I/O

 The best solution to this problem is to use a strict (nonlazy) type. We mentioned in lesson 23 that Data.Text is preferred over String when working with text data. We also mentioned that Data.Text is a strict data type (it doesn’t use lazy evaluation). You can rewrite your original program by using the Text type, and your problem will be solved!

 {-# LANGUAGE OverloadedStrings #-}

import System.IO
import System.Environment
import qualified Data.Text as T
import qualified Data.Text.IO as TI

getCounts :: T.Text -> (Int,Int,Int)
getCounts input = (charCount, wordCount, lineCount)
 where charCount = T.length input
 wordCount = (length . T.words) input
 lineCount = (length . T.lines) input

countsText :: (Int,Int,Int) -> T.Text
countsText (cc,wc,lc) = T.pack (unwords ["chars: "
 , show cc
 , " words: "
 , show wc
 , " lines: "
 , show lc])

main :: IO ()
main = do
 args <- getArgs
 let fileName = head args
 input <- TI.readFile fileName
 let summary = (countsText . getCounts) input
 TI.appendFile "stats.dat"
 (mconcat [(T.pack fileName), " ",summary, "\n"])
 TI.putStrLn summary

 Strict evaluation means that your I/O code works just as you’d expect it to in any other programming language. Although lazy
 evaluation has many great benefits, for any nontrivial I/O, reasoning about its behavior can be tricky. Your fileCounts.hs
 was a trivial demo program, but you still had a nasty bug to fix created by lazy evaluation.

 24.4.1. When to use lazy vs. strict

 In this unit, you’ve seen cases in which lazy evaluation in I/O can make life much easier and much more difficult. The key
 factor in deciding between the two is the complexity of your program’s I/O. If your program is reading a single file and doing
 relatively little I/O work, sticking with lazy evaluation will likely provide many benefits and few problems. As soon as your
 I/O becomes even moderately complex, involving reading and writing files, or operations for which order is important, stick
 with strict evaluation.

 Summary

 In this lesson, our objective was to teach you the basics of reading and writing from files in Haskell. Most file I/O is similar
 to other forms of I/O in Haskell that you’ve seen. Issues can arise when you use lazy I/O without understanding how this will
 impact your program’s behavior. Although lazy I/O can greatly simplify code, it becomes incredibly difficult to reason about
 as program complexity increases. Let’s see if you got this.

 Q24.1
Write a version of the Unix cp program that will copy a file and allow you to rename it (just mimic the basic functionality and don’t worry about specific
 flags).

 Q24.2
Write a program called capitalize.hs that will take a file as an argument, read that file, and then rewrite it capitalized.

Lesson 25. Working with binary data

 After reading lesson 25, you’ll be able to

 	Use the ByteString type to efficiently work with binary data

 	Treat ByteStrings as regular ASCII strings by using ByteString.Char8

 	Glitch JPEG images by using Haskell

 	Work with binary Unicode data

 In this lesson, you’ll learn about working with binary file data by using Haskell’s ByteString type. ByteString allows you to treat raw binary data as though it were a regular string. To demonstrate the use of ByteString, you’ll focus on a fun project requiring you to manipulate binary file data. You’ll create a simple command-line tool that
 will allow you to create glitch art, like that in figure 25.1.

 Figure 25.1. A scene from Michael Betancourt’s glitch art video “Kodak Moment” (2013)

 [image:]

 Glitch art is the practice of deliberately corrupting binary data in order to create visual artifacts in an image or video. You’ll work
 on the relatively simple task of “glitching” JPEG images. You’ll also take a look at some of the issues around working with
 binary Unicode data.

 	

 Consider this

 You have the name of the Japanese author Tatsuhiko Takimoto represented in Japanese Kanji using T.Text:

 tatsuhikoTakimoto :: T.Text
tatsuhikoTakimoto = "[image:]"

 You need to know the number of bytes in this text. For ASCII text, this would be the length of the text, but in this case,
 using T.length gives you only the number of characters (5). How can you find the number of bytes?

 	

 25.1. Working with binary data by using ByteString

 So far in the unit, you’ve only looked at working with text in files. You started working with the basic String type and then learned that Text is a better type for working with textual data. Another important type that’s similar to String and Text is called ByteString. The interesting thing about ByteString is that it’s not specifically for text, as the name String might imply. ByteString is an efficient way to deal with any streams of binary data. Like Data.Text, you almost always import Data.ByteString with a qualified import by using a single letter:

 import qualified Data.ByteString as B

 Even though ByteString is an array of bytes and not a type of text, you can always use ASCII to represent strings of bytes. There are 256, or 28 (8 bits) ASCII characters, so every possible byte can be represented as an ASCII character. As long as you’re using the OverloadedStrings extension, you can use literal ASCII strings to represent vectors of bytes.

 Listing 25.1. ByteString defined by using the OverloadedStrings extension

 sampleBytes :: B.ByteString
sampleBytes = "Hello!"

 But you quickly run into a problem if you try to convert your ByteString into an ordinary String by using B.unpack. The following code will throw an error.

 Listing 25.2. Trying to unpack a ByteString into a String causes an error

 sampleString :: String
sampleString = B.unpack sampleBytes

 As you can see by the type signature, B.unpack attempts to convert the ByteString into a list of bytes (of type Word8):

 B.unpack :: B.ByteString -> [GHC.Word.Word8]

 By default, Data.ByteString doesn’t allow you to treat bytes just like Char, so instead you use Data.ByteString.Char8. The Char8 stands for 8-bit Chars (ASCII characters). You need to import Char8 separately, and usually use the qualifier BC:

 import qualified Data.ByteString.Char8 as BC

 You can see the difference between plain ByteString and ByteString.Char8 by looking at the types of their unpack functions:

 B.unpack :: BC.ByteString -> [GHC.Word.Word8]
BC.unpack :: BC.ByteString -> [Char]

 You can see that ByteString.Char8’s unpack works just like Data.Text’s unpack. ByteString.Char8 allows you to use the same core functions for working with text as Data.Text does. The careful reader will also notice that the type signature of B.unpack has changed! B.unpack now uses the ByteString representation from ByteString.Char8. This means you’re free to treat your ByteStrings as plain ASCII text from here on out.

 Like Text, ByteString shares a common API with String. As you’ll see in the next section, you can use all of the same functions you would when working with Text and String with binary data. This makes it easy to reason about efficiently stored binary data just as you would a normal list.

 	

 Quick check 25.1

 Q1:
Write a function that takes numbers in ASCII character form and converts them to Ints. For example, make the following an Int:

 bcInt :: BC.ByteString
bcInt = "6"

 	

 	

 QC 25.1 answer

 1:

bcInt :: BC.ByteString
bcInt = "6"

bcToInt :: BC.ByteString -> Int
bcToInt = read . BC.unpack

 	

 25.2. Glitching JPEGs

 Now that you’ve covered the basic use of ByteString, let’s dive into creating glitch art. All the code for your program will be put in a file called glitcher.hs. You’ll be working
 with an image that can be downloaded from Wikipedia (https://en.wikipedia.org/wiki/H._P._Lovecraft#/media/File:H._P._Lovecraft,_June_1934.jpg). For this exercise, you’ll name this file lovecraft.jpg, shown in figure 25.2.

 Figure 25.2. The target of your glitching is the lovecraft.jpg image.

 [image:]

 To get started with your program, let’s see how to create the basic functionality you want for reading and writing your image.
 Here’s the basic structure of the program:

 	Take a filename argument from the user.

 	Read in the binary data for the image file.

 	Randomly alter bytes in the image data.

 	Write a new file containing the glitched image.

 You’ll use both Data.ByteString and Data.ByteString.Char8 in the program to work with the image’s binary data. Because you’re working with binary data, you want to read in your file
 by using BC.readFile. Here’s the basic outline of your program without any of the glitching code.

 Listing 25.3. Basic layout for your glitcher.hs file

 import System.Environment
import qualified Data.ByteString as B
import qualified Data.ByteString.Char8 as BC

main :: IO ()
main = do
 args <- getArgs 1
 let fileName = head args 2
 imageFile <- BC.readFile fileName 3
 glitched <- return imageFile 4
 let glitchedFileName = mconcat ["glitched_",fileName] 5
 BC.writeFile glitchedFileName glitched 6
 print "all done"

 	1 Using getArgs to access the filename

 	2 The first and only argument should be your file.

 	3 Next you want to read your file in by using the BC version of readFile.

 	4 You’re using return because eventually this will be replaced with an IO action that will alter the binary data.

 	5 Glitching can often create broken files; you definitely want to write to a new file.

 	6 Finally, you use the BC version of writeFile to write your altered data to the new file.

 With this bit of code, you can run your program, pass in a file, and get a new file that should be your glitched JPEG. The
 only thing missing is the code to glitch your image!

 	

 Quick check 25.2

 Q1:
At this point, the glitched variable in your main doesn’t need to be an IO type. Change that line so that glitched is a regular variable.

 	

 	

 QC 25.2 answer

 1:

let glitched = imageFile

 	

 25.2.1. Inserting random bytes

 Part of the aesthetic of glitch art is to try different approaches to corrupting the data and see what works. You’ll start
 with replacing a random byte in the file with another byte you pick at random. Creating a random number requires an IO action. But it’s always best to separate as much code from IO actions as you possibly can, because your non-I/O code is pure and predictable. You can also easily test your code by loading
 it into GHCi and trying it out on a range of data samples.

 Before you make your IO action, you’ll start with a function that will convert an Int to a Char. Because Char is a member of Enum, you can use toEnum. You could use toEnum by itself, but if you do, you have no way to enforce the constraint that your Char is between 0 and 255. To enforce this, you’ll take modulo 255 of the Int you pass to toEnum. You’ll put all this together in an intToChar function.

 Listing 25.4. intToChar creates a valid byte from an Int

 intToChar :: Int -> Char
intToChar int = toEnum safeInt
 where safeInt = int `mod` 255

 Next you need a function that will convert this Char into a ByteString. You can do this by using BC.pack to take your Char and make it a BC.ByteString. Because BC.pack requires a string, you need to put your Char inside a list.

 Listing 25.5. intToBC takes an Int and gives you a single-character ByteString

 intToBC :: Int -> BC.ByteString
intToBC int = BC.pack [intToChar int]

 Now that you have a way to make an Int into a single byte represented as a BC.ByteString, you can write the code to replace a byte with this value. You still don’t need to use IO actions yet.

 Your replaceByte function is the deterministic version of your random goal. This function will take the location of the byte to be replaced,
 the Int value of the new Char/Byte to go there, and the bytes of the image file. You’ll use BC.splitAt to split your byte around the target byte. BC.splitAt will give you a pair of values representing the first part of the data and then the rest (just like calling take and drop at the same time). Then you’ll drop one from the rest of the bytes to make room for your new byte. Finally, you’ll concatenate
 the new byte in the middle of these two sections.

 Listing 25.6. replaceByte removes a byte and replaces it with a new one

 replaceByte :: Int -> Int -> BC.ByteString -> BC.ByteString
replaceByte loc charVal bytes = mconcat [before,newChar,after] 1
 where (before,rest) = BC.splitAt loc bytes 2
 after = BC.drop 1 rest 3
 newChar = intToBC charVal 4

 	1 Your new ByteString is just the parts before and after the byte you’re replacing concatenated with your newChar.

 	2 BC.splitAt will give you a pair of values, like drop and take at the same time. You can use pattern matching to assign these
 to two variables at once.

 	3 You use BC.drop 1 here to remove the byte you’re going to replace.

 	4 You’re representing your byte as an ASCII Char.

 Now you’re ready for your IO action. You’ll be using randomRIO from System.Random. randomRIO will take a pair of values in a tuple and randomly give you a number in that range. Your IO action will be named randomReplaceByte. All randomReplaceByte needs to do is pick two random numbers: one for the Char, and one for the location.

 Listing 25.7. randomReplaceByte applies random numbers to replaceByte

 randomReplaceByte :: BC.ByteString -> IO BC.ByteString
randomReplaceByte bytes = do
 let bytesLength = BC.length bytes
 location <- randomRIO (1,bytesLength)
 charVal <- randomRIO (0,255)
 return (replaceByte location charVal bytes)

 Now you can use this IO action in your main to modify your image file:

 main :: IO ()
main = do
 args <- getArgs
 let fileName = head args
 imageFile <- BC.readFile fileName
 glitched <- randomReplaceByte imageFile
 let glitchedFileName = mconcat ["glitched_",fileName]
 BC.writeFile glitchedFileName glitched
 print "all done"

 You can compile your program and run it at the command line:

 $ ghc glitcher.hs
$./glitcher lovecraft.jpg

 These results are okay but not as dramatic as you’d hoped, as shown in figure 25.3.

 Figure 25.3. The underwhelming effect of changing a single byte

 [image:]

 Let’s try something a bit more sophisticated to see if you can get better results.

 	

 Quick check 25.3

 Q1:
Write an IO action that returns a random Char.

 	

 	

 QC 25.3 answer

 1:

randomChar :: IO Char
randomChar = do
 randomInt <- randomRIO (0,255) -- could also use max and min bound
 return (toEnum randomInt)

 	

 25.2.2. Sorting random bytes

 Another common technique for image glitching is to take a subsection of bytes and sort them. You can achieve this by splitting
 your ByteString at a point by using BC.splitAt, and then splitting the second half of this into a chunk of a fixed size; you sort the chunk and then put it all back together
 with mconcat. Here’s your sortSection function, which takes a starting point of the section, a size of the section, and the byte stream.

 Listing 25.8. sortSection sorts a section of bytes in your file

 sortSection :: Int -> Int -> BC.ByteString -> BC.ByteString
sortSection start size bytes = mconcat [before,changed,after]
 where (before,rest) = BC.splitAt start bytes
 (target,after) = BC.splitAt size rest
 changed = BC.reverse (BC.sort target)

 All you need to use this in your main to create an IO action that picks a random starting point.

 Listing 25.9. Randomizing your sortSection by using an IO action

 randomSortSection :: BC.ByteString -> IO BC.ByteString
randomSortSection bytes = do
 let sectionSize = 25 1
 let bytesLength = BC.length bytes
 start <- randomRIO (0,bytesLength - sectionSize) 2
 return (sortSection start sectionSize bytes)

 	1 Here you’re somewhat arbitrarily picking the size of the section you’re going to sort.

 	2 Using randomRIO to figure out where you should sort your data from

 You can replace randomReplaceByte with randomSortSection and try a revised approach.

 Listing 25.10. Your main revised to use randomSortSection to glitch your file

 main :: IO ()
main = do
 args <- getArgs
 let fileName = head args
 imageFile <- BC.readFile fileName
 glitched <- randomSortSection imageFile
 let glitchedFileName = mconcat ["glitched_",fileName]
 BC.writeFile glitchedFileName glitched
 print "all done"

 With this trick, you get much more interesting results, as you can see in figure 25.4.

 Figure 25.4. A much more interesting result, achieved with randomSortSection

 [image:]

 But you could probably do better if you could combine these approaches!

 25.2.3. Chaining together IO actions with foldM

 Suppose you want to use randomSortSection twice on your data and randomReplaceByte three times. You could rewrite your main like this.

 Listing 25.11. A cumbersome approach to applying multiple actions

 main :: IO ()
main = do
 args <- getArgs
 let fileName = head args
 imageFile <- BC.readFile fileName
 glitched1 <- randomReplaceByte imageFile
 glitched2 <- randomSortSection glitched1
 glitched3 <- randomReplaceByte glitched2
 glitched4 <- randomSortSection glitched3
 glitched5 <- randomReplaceByte glitched4
 let glitchedFileName = mconcat ["glitched_",fileName]
 BC.writeFile glitchedFileName glitched5
 print "all done"

 This works, but it’s clearly cumbersome to write code this way, and it’s easy to make a simple typo with all the names you
 have to keep track of. Instead, you can use foldM from Control.Monad. Just as mapM generalizes map to monads (at this point, just code using do-notation), foldM does the same for folding. With foldM, you can take your original imageFile as the initial values, and then a list of IO actions that will transform your file. The only thing missing is a function that will apply these functions. In this case,
 you can use a simple lambda. Here’s your main rewritten by using foldM.

 Listing 25.12. An improved way to use multiple actions with foldM

 main :: IO ()
main = do
 args <- getArgs
 let fileName = head args
 imageFile <- BC.readFile fileName
 glitched <- foldM (\bytes func -> func bytes) imageFile
 [randomReplaceByte
 ,randomSortSection
 ,randomReplaceByte
 ,randomSortSection
 ,randomReplaceByte]
 let glitchedFileName = mconcat ["glitched_",fileName]
 BC.writeFile glitchedFileName glitched
 print "all done"

 Now you can compile your program one last time and see what kind of glitches you can make! Figure 25.5 shows an example.

 Figure 25.5. Now your beloved author looks more like a resident of Innsmouth!

 [image:]

 There’s still probably more you could do to make this image even more interesting, but now you have a setup that allows you
 to easily chain together whatever strange mutations you can come up with.

 	

 Quick check 25.4

 Q1:
Create a variable glitchActions outside your main that includes all your actions in a list. Don’t forget to give it the correct type.

 	

 	

 QC 25.4 answer

 1:

glitchActions :: [BC.ByteString -> IO BC.ByteString]
glitchActions = [randomReplaceByte
 ,randomSortSection
 ,randomReplaceByte
 ,randomSortSection
 ,randomReplaceByte]

 	

 25.3. ByteStrings, Char8, and Unicode

 As you’ve seen in our glitch art example, ByteString.Char8 is a helpful tool for treating binary data as though it were text. But it’s important to be careful when using ByteString, ByteString.Char8, and Unicode data. Here’s an example of setting a BC.ByteString to a Unicode string (for this Unicode, you’re using the Devanagari script for the famous philosopher Nagarjuna).

 Listing 25.13. Creating a Unicode BC.ByteString

 nagarjunaBC :: BC.ByteString
nagarjunaBC = "[image:]"

 If you load this into GHCi, you see that the Unicode isn’t preserved:

 GHCi> nagarjunaBC
"(>\ETB0M\FSA("

 This isn’t too surprising, as Char8 ByteStrings are only for ASCII. But you may want to transform text to just bytes for a variety of reasons, the primary one being writing
 Unicode to a file as ByteStrings. Suppose you have your Unicode safely represented as the Text type.

 Listing 25.14. Same Unicode example, properly represented as Text

 nagarjunaText :: T.Text
nagarjunaText = "[image:]"

 To convert nagarjunaText to a vector of bytes, you can’t simply use BC.pack because BC.pack is of type String -> ByteString, so first you’d need to use T.unpack and then BC.pack.

 Listing 25.15. Attempting to transform Text into a ByteString

 nagarjunaB :: B.ByteString
nagarjunaB = (BC.pack . T.unpack) nagarjunaText

 If you look at the type signature, you should have your Unicode safely represented as bytes. But if you convert back, you
 see this isn’t the case. Note that you need to do a qualified import of Data.Text.IO to ensure that you’re printing the text properly:

 GHCi> TIO.putStrLn ((T.pack . BC.unpack) nagarjunaB)
"(>\ETB0M\FSA("

 You’re stuck with the same problem! If you had written nagarjunaB to a file, you’d have ultimately lost your Unicode. What you need is a way to convert Text directly to a B.ByteString and not a BC.ByteString along the way. For this, you use Data.Text.Encoding, and you’ll do another qualified import:

 import qualified Data.Text.Encoding as E

 This module contains two essential functions that allow you to perform this direct transformation:

 E.encodeUtf8 :: T.Text -> BC.ByteString
E.decodeUtf8 :: BC.ByteString -> T.Text

 Now you can safely convert Unicode text to raw bytes and back again.

 Listing 25.16. Converting between Text and ByteString with de/encodeUtf8

 nagarjunaSafe :: B.ByteString
nagarjunaSafe = E.encodeUtf8 nagarjunaText

GHCi> TIO.putStrLn (E.decodeUtf8 nagarjunaSafe)
[image:]

 To be safe, never use the convenience of Data.ByteString.Char8 if you’re working with data that may contain Unicode. If you’re working with purely binary data, as in the case of this lesson’s
 example, the combination of regular ByteStrings and Char8 works great. For anything else, stick to ByteString, Text, and Text.Encoding. In this unit’s capstone, you’ll see an extended example of this latter case.

 Summary

 In this lesson, our objective was to teach you about writing binary data in Haskell. The ByteString type allows you to treat raw binary data similarly to the way you would ordinary strings. This can greatly simplify how you
 write programs editing binary data. But it’s essential to remember not to mix single-byte representations of binary data (Char8) with Unicode text. Let’s see if you got this.

 Q25.1
Write a program that reads in a text file and outputs the difference between the number of characters in the file and the
 number of bytes in the file.

 Q25.2
Add another glitching technique, randomReverseBytes, that randomly reverses a section of bytes in your data.

Lesson 26. Capstone: Processing binary files and book data

 This capstone covers

 	Learning about a unique binary format used by libraries

 	Writing tools to bulk-process binary data by using ByteString

 	Working with Unicode data by using the Text type

 	Structuring a large program performing a complicated I/O task

 In this capstone, you’re going to use the data on books created by libraries to make a simple HTML document. Libraries collectively
 spend a huge amount of time cataloging every possible book in existence. Thankfully, much of this data is freely available
 to anyone who wants to explore it. Harvard Library alone has released 12 million book records to be used for free by the public
 (http://library.harvard.edu/open-metadata). The Open Library project contains millions of additional records for use (https://archive.org/details/ol_data).

 In a time when data science is a hot trend, it would be great to make some fun projects with all this data. But there’s a
 big challenge to using this data. Libraries store their book-related metadata in a rather obscure format called a MARC record (for Machine-Readable Cataloging record). This makes using library data much more challenging than if it were in a more common
 format such as JSON or XML. MARC records are in a binary format that also makes heavy use of Unicode to properly store character
 encodings. To use MARC records, you have to be careful about separating when you’re working with bytes from when you’re working with text. This
 is a perfect problem to explore all you’ve learned in this unit!

 Our goal for this capstone is to take a collection of MARC records and convert it into an HTML document that lists the titles
 and authors of every book in the collection. This will leave you with a solid foundation to further explore extracting data from MARC records:

 	You’ll start your journey by creating a type for the book data you want to store and converting that to HTML.

 	Next you have to learn how MARC records are formatted.

 	Then you’ll break apart a bulk of records serialized into a single file into a list of individual records.

 	Once you’ve split the records up, you’ll be able to parse individual files to find the information you need.

 	Finally, you’ll put all of this together into a single program that will process your MARC records into HTML files.

 You’ll be writing all of your code in a single file, marc_to_html.hs. To get started, you’ll need the following imports (plus
 your OverloadedStrings extension).

 Listing 26.1. The necessary imports for marc_to_html.hs

 {-# LANGUAGE OverloadedStrings #-} 1
import qualified Data.ByteString as B 2
import qualified Data.Text as T 3
import qualified Data.Text.IO as TIO 4
import qualified Data.Text.Encoding as E 5
import Data.Maybe 6

 	1 Your OverloadStrings LANGUAGE pragma so you can use string literals for all string types

 	2 Because you’re working with binary data, you need a way to manipulate bytes.

 	3 Anytime you’re working with text, especially Unicode, you need the Text type.

 	4 The IO functions for Text are imported separately.

 	5 Part of working with Unicode is safely encoding and decoding it to and from binary data.

 	6 You’ll be using Maybe types, as the isJust function from the Maybe package is useful.

 You may have noticed that you’re not importing Data.ByteString.Char8. This is because when working with Unicode data, you never want to confuse Unicode text with ASCII text. The best way to ensure this is to use plain old ByteStrings for manipulating bytes and Text for everything else.

 26.1. Working with book data

 Unpacking MARC records is going to be a bit of work, so it’s good to figure out where you want to end up before you get lost.
 Your primary goal is to convert a list of books into an HTML document. The books being in an obscure format is one obstacle
 to our goal. In this capstone, you’re concerned with recording only the author and title of the books. You can use a type
 synonym for these properties. You could use String, but as mentioned in lesson 23, as a general rule it’s much better to use Text when dealing with any large task consisting mostly of text data.

 Now you can create your type synonyms for Author and Title.

 Listing 26.2. Type synonyms for Author and Title

 type Author = T.Text
type Title = T.Text

 Your Book type will be the product type of Author and Title.

 Listing 26.3. Create a Book type

 data Book = Book {
 author :: Author
 ,title :: Title } deriving Show

 Your final function for this will be called booksToHtml and will have the type [Books] -> Html. Before implementing this function, you first need to determine what type Html will be, and ideally how to make an individual book into a snippet of HTML. You can use the Text type once again to model your HTML.

 Listing 26.4. Html type synonym

 type Html = T.Text

 To make transforming a list of books easier to turn into HTML, you’ll start with creating a snippet of HTML for a single book.
 Your HTML will create a paragraph element, and then denote the title with a tag and the author with an tag.

 Listing 26.5. bookToHtml creates an individual snippet of HTML from a book

 bookToHtml :: Book -> Html
bookToHtml book = mconcat ["<p>\n"
 ,titleInTags
 ,authorInTags
 ,"</p>\n"]
 where titleInTags = mconcat["",(title book),"\n"]
 authorInTags = mconcat["",(author book),"\n"]

 Next you need some sample books you can work with.

 Listing 26.6. A collection of sample books

 book1 :: Book
book1 = Book {
 title = "The Conspiracy Against the Human Race"
 ,author = "Ligotti, Thomas"
 }

book2 :: Book
book2 = Book {
 title = "A Short History of Decay"
 ,author = "Cioran, Emil"
 }

book3 :: Book
book3 = Book {
 title = "The Tears of Eros"
 ,author = "Bataille, Georges"
 }

 In GHCi, you can test this bit of code:

 GHCi> bookToHtml book1
"<p>\nThe Conspiracy Against the Human Race\nLigotti,
[image:]Thomas\n</p>\n"

 To transform a list of books, you can map your bookToHtml function over the list. You also need to make sure you add html, head, and body tags as well.

 Listing 26.7. Turning a list of books into an HTML document with booksToHtml

 booksToHtml :: [Book] -> Html
booksToHtml books = mconcat ["<html>\n"
 , "<head><title>books</title>"
 ,"<meta charset='utf-8'/>" 1
 ,"</head>\n"]
 , "<body>\n"
 , booksHtml
 , "\n</body>\n"
 , "</html>"]
 where booksHtml = (mconcat . (map bookToHtml)) books

 	1 Because you’re dealing with Unicode data, it’s important to declare your charset.

 To test this out, you can put your books in a list:

 myBooks :: [Book]
myBooks = [book1,book2,book3]

 Finally, you can build a main and test out your code so far. You’ll assume you’re writing to a file called books.html. Remember that your Html type is Text. To write text to a file, you’ll also need to include Text.IO.

 Listing 26.8. Temporary main to write your books list to HTML

 main :: IO ()
main = TIO.writeFile "books.html" (booksToHtml myBooks)

 Running this program will output your books.html file. Opening it up, you can see that it looks like you’d expect (see figure 26.1).

 Figure 26.1. Your book data rendered as HTML

 [image:]

 With the ability to write books to a file, you can tackle the more complicated issue of working with MARC records.

 26.2. Working with MARC records

 The MARC record is the standard used in libraries for recording and transmitting information about books (called bibliographic data). If you’re interested in data about books, MARC records are an important format to understand. There are many large, freely
 available collections of MARC records online. You’ll be using the Oregon Health & Science University library records in this
 capstone. As noted earlier, MARC stands for Machine-Readable Cataloging record. As indicated by the name, MARC records are designed to be read by machines. Unlike formats such as JSON and XML, they aren’t designed to be human-readable. If you open a MARC record file, you’ll see something that looks like figure 26.2.

 Figure 26.2. The content of a raw MARC record

 [image:]

 If you’ve ever worked with the ID3 tag format for storing MP3 metadata, you’ll find MARC records are similar.

 26.2.1. Understanding the structure of a MARC record

 The MARC record standard was developed in the 1960s with the primary aim of making it efficient to store and transmit information.
 Because of this, MARC records are much less flexible and extensible than formats such as XML or JSON. The MARC record consists of three main parts:

 	The leader

 	The directory

 	The base record

 Figure 26.3 shows an annotated version of your raw MARC record to help visualize how the record is laid out.

 Figure 26.3. Annotated version of the MARC record

 [image:]

 The leader contains information about the record itself, such as the length of the record and where to find the base record. The directory of the record tells you about the information contained in the record and how to access it. For example, you care only about
 the author and title of the book. The directory will tell you that the record contains this information and where to look
 in the file to find it. Finally, the base record is where all the information you need is located. But without the leader and directory, you don’t have the information needed
 to make sense of this part of the file.

 26.2.2. Getting the data

 The first thing you need to do is get some MARC record data you can work with. Thankfully, archive.org has a great collection
 of freely available MARC records. For this project, you’re going to use a collection of records from the Oregon Health & Science University library. Go to the project
 page on archive.org:

 https://archive.org/download/marc_oregon_summit_records/catalog_files/

 Download the ohsu_ncnm_wscc_bibs.mrc file. For this lesson, you’ll rename the file sample.mrc. At 156 MB, this file is the
 smallest of the bunch, but if you’d like to play around with the others, they should all work equally as well.

 26.2.3. Checking the leader and iterating through your records

 Your .mrc file isn’t a single MARC record but rather a collection of records. Before worrying about the details of a single
 record, you need to figure out how to separate all the records in this collection. Unlike many other formats for holding serialized
 data, there’s no delimiter to separate files. You can’t simply split your ByteString stream on a character in order to split your list of records. Instead, you need to look into the leader of each record to
 see how long it is. By looking at the length, you can then iterate through the list and collect records as you go. To begin,
 let’s create synonyms for your MarcRecord and MarcLeader.

 Listing 26.9. Type synonyms for MarcRecordRaw and MarcLeaderRaw

 type MarcRecordRaw = B.ByteString
type MarcLeaderRaw = B.ByteString

 Because you’re primarily manipulating bytes, nearly all of your types when working with the raw MARC record are going to be
 ByteStrings. But using type synonyms will make it much easier to read your code and understand your type signatures. The first take
 you want to do is to get the leader from the record:

 getLeader :: MarcRecordRaw -> MarcLeaderRaw

 The leader is the first 24 bytes of the record, as shown in figure 26.4.

 Figure 26.4. The leader in your record highlighted

 [image:]

 You can declare a variable to keep track of your leader length.

 Listing 26.10. Declaring the length of the leader to be 24

 leaderLength :: Int
leaderLength = 24

 Getting the leader from a MARC record is as straightforward as taking the first 24 characters of the MarcRecord.

 Listing 26.11. getLeader grabs the first 24 bytes of the record

 getLeader :: MarcRecordRaw -> MarcLeaderRaw
getLeader record = B.take leaderLength record

 Just as the first 24 bytes of the MARC record is the leader, the first 5 bytes of the leader contain a number telling you
 the length of the record. For example, in figure 26.4 you see that the record starts with 01292, which means this record is 1,292 bytes long. To get the length of your entire
 record, you need to take these first five characters and then convert them to an Int type. You’ll create a useful helper function, rawToInt, which will safely convert your ByteString to Text, then convert that Text to a String, and finally use read to parse an Int.

 Listing 26.12. rawToInt and getRecordLength

 rawToInt :: B.ByteString -> Int
rawToInt = (read . T.unpack . E.decodeUtf8)

getRecordLength :: MarcLeaderRaw -> Int
getRecordLength leader = rawToInt (B.take 5 leader)

 Now that you have a way to figure out the length of a single record, you can think about separating all the records that you
 find into a list of MarcRecords. You’ll consider your file a ByteString. You want a function that will take that ByteString and separate it into a pair of values: the first record and the rest of the remaining ByteString. You’ll call this function nextAndRest, which has the following type signature:

 nextAndRest :: B.ByteString -> (MarcRecordRaw,B.ByteString)

 You can think of this pair of values as being the same as getting the head and tail of a list. To get this pair, you need
 to get the length of the first record in the stream and then split the stream at this value.

 Listing 26.13. nextAndRest breaks a stream of records into a head and tail

 nextAndRest :: B.ByteString -> (MarcRecordRaw,B.ByteString)
nextAndRest marcStream = B.splitAt recordLength marcStream
 where recordLength = getRecordLength marcStream

 To iterate through the entire file, you recursively use this function to take a record and the rest of the file. You then
 put the record in a list and repeat on the rest of the file until you reach the end.

 Listing 26.14. Converting a stream of raw data into a list of records

 allRecords :: B.ByteString -> [MarcRecordRaw]
allRecords marcStream = if marcStream == B.empty
 then []
 else next : allRecords rest
 where (next, rest) = nextAndRest marcStream

 You can test allRecords by rewriting your main to read in your sample.mrc file and print out the length of that file:

 main :: IO ()
main = do
 marcData <- B.readFile "sample.mrc"
 let marcRecords = allRecords marcData
 print (length marcRecords)

 You can run your main by either compiling your program or loading it into GHCi and calling main:

 GHCi> main
140328

 There are 140,328 records in this collection! Now that you’ve split up all of your records, you can move on to figuring out
 exactly how to get all of your Title and Author data.

 26.2.4. Reading the directory

 MARC records store all the information about a book in fields. Each field has a tag and subfields that tell you more about the information that’s in a book (such as author, title, subject,
 and publication date). Before you can worry about processing the fields, you need to look up all the information about those
 fields in the directory. Like everything else in our MARC records, the directory is a ByteString, but you can create another synonym for readability.

 Listing 26.15. Type synonym for MarcDirectoryRaw

 type MarcDirectoryRaw = B.ByteString

 Unlike the leader, which is always the first 24 characters, the directory can be of variable size. This is because each record
 may contain a different number of fields. You know that the directory starts after the leader, but you have to figure out
 where the directory ends. Unfortunately, the leader doesn’t tell you this information directly. Instead it tells you the base
 address, which is where the base record begins. The directory, then, is what’s missing from where the leader ends and the
 base record begins.

 Information about the base address is located in the leader starting with the 12th character and including the 16th byte (for
 a total of 5 bytes), assuming a 0 index. To access this, you can take the leader, drop the first 12 characters from it, and
 then take the next 5 in the remaining 12 of the leader. After this, you have to convert this value from a ByteString to an Int, just as you did with the recordLength.

 Listing 26.16. Getting the base address to determine the size of the directory

 getBaseAddress :: MarcLeaderRaw -> Int
getBaseAddress leader = rawToInt (B.take 5 remainder)
 where remainder = B.drop 12 leader

 Then, to calculate the length of the directory, you subtract the (leaderLength + 1) from the base address, giving you the value of space between these two values.

 Listing 26.17. Calculating the length of the directory with getDirectoryLength

 getDirectoryLength :: MarcLeaderRaw -> Int
getDirectoryLength leader = getBaseAddress leader - (leaderLength + 1)

 You can now put all these pieces together to get the directory. You start by looking up the directory length from the record,
 and then dropping the leader length and taking the length directly from that.

 Listing 26.18. Putting everything together to getDirectory

 getDirectory :: MarcRecordRaw -> MarcDirectoryRaw
getDirectory record = B.take directoryLength afterLeader
 where directoryLength = getDirectoryLength record
 afterLeader = B.drop leaderLength record

 At this point, you’ve come a long way in understanding this rather opaque format. Now you have to make sense of what’s inside
 the directory.

 26.2.5. Using the directory to look up fields

 At this point, your directory is a big ByteString, which you still need make sense of. As mentioned earlier, the directory allows you to look up fields in the base record.
 It also tells you what fields there are. Thankfully, each instance of this field metadata is exactly the same size: 12 bytes.

 Listing 26.19. MarcDirectoryRaw type synonym and dirEntryLength

 type MarcDirectoryEntryRaw = B.ByteString

dirEntryLength :: Int
dirEntryLength = 12

 Next you need to split up your directory into a list of MarcDirectoryEntries. Here’s the type signature of this function:

 splitDirectory :: MarcDirectoryRaw -> [MarcDirectoryEntryRaw]

 This is a fairly straightforward function: you take a chunk of 12 bytes and add them to a list until there’s no more list
 left.

 Listing 26.20. splitDirectory breaks down the directory into its entries

 splitDirectory directory = if directory == B.empty
 then []
 else nextEntry : splitDirectory restEntries
 where (nextEntry, restEntries) = B.splitAt dirEntryLength directory

 Now that you have this list of raw DirectoryEntries, you’re close to finally getting your author and title data.

 26.2.6. Processing the directory entries and looking up MARC fields

 Each entry in the directory is like a miniature version of the record leader. The metadata for each entry has the following
 information:

 	Tag of the field (first three characters)

 	Length of the field (next four characters)

 	Where the field starts relative to the base address (rest of the chars)

 Because you want to use all this information, you’re going to create a data type for your FieldMetadata.

 Listing 26.21. FieldMetadata type

 data FieldMetadata = FieldMetadata { tag :: T.Text
 , fieldLength :: Int
 , fieldStart :: Int } deriving Show

 Next you have to process your list of MarcDirectoryEntryRaw into a list of FieldMetadata. As is often the case whenever you’re working with lists, it’s easier to start with transforming a single MarcDirectoryEntryRaw into a FieldMetadata type.

 Listing 26.22. Converting a raw directory entry into a FieldMetadata type

 makeFieldMetadata :: MarcDirectoryEntryRaw -> FieldMetadata
makeFieldMetadata entry = FieldMetadata textTag theLength theStart
 where (theTag,rest) = B.splitAt 3 entry
 textTag = E.decodeUtf8 theTag
 (rawLength,rawStart) = B.splitAt 4 rest
 theLength = rawToInt rawLength
 theStart = rawToInt rawStart

 Now converting a list of one type to a list of another is as simple as using map.

 Listing 26.23. Mapping makeFieldMetadata to [FieldMetadata]

 getFieldMetadata :: [MarcDirectoryEntryRaw] -> [FieldMetadata]
getFieldMetadata rawEntries = map makeFieldMetadata rawEntries

 With getFieldMetadata, you can write a function that lets you look up the field itself. Now that you’re looking up fields, you need to stop thinking
 in bytes and start thinking in text. Your fields will have information about author and title, and other text data. You’ll
 create another type synonym for your FieldText.

 Listing 26.24. Type synonym for FieldText

 type FieldText = T.Text

 What you want now is to take a MarcRecordRaw, FieldMetadata and get back a FieldText so you can start looking up useful values!

 To do this, you first have to drop both the leader and the directory from your MarcRecord so you end up with the base record. Then you can drop the fieldStart from the record and finally take the fieldLength from this remaining bit.

 Listing 26.25. Getting the FieldText

 getTextField :: MarcRecordRaw -> FieldMetadata -> FieldText
getTextField record fieldMetadata = E.decodeUtf8 byteStringValue
 where recordLength = getRecordLength record
 baseAddress = getBaseAddress record
 baseRecord = B.drop baseAddress record
 baseAtEntry = B.drop (fieldStart fieldMetadata) baseRecord
 byteStringValue = B.take (fieldLength fieldMetadata) baseAtEntry

 You’ve come a long way in understanding this mysterious format. You have just one step to go, which is processing the FieldText into something you can use.

 26.2.7. Getting Author and Title information from a MARC field

 In MARC records, each special value is associated with a tag. For example, the Title tag is 245. Unfortunately, this isn’t the end of the story. Each field is made up of subfields that are separated by a delimiter, the
 ASCII character number 31. You can use toEnum to get this character.

 Listing 26.26. Getting the field delimiter

 fieldDelimiter :: Char
fieldDelimiter = toEnum 31

 You can use T.split to split the FieldText into subfields. Each subfield is represented by a single character. Each subfield contains a value—for example, a title or
 author. Preceding the value is the subfield code, which is a single letter, as shown in figure 26.5.

 Figure 26.5. An example title subfield a. Notice that a is the first character of the title text you receive.

 [image:]

 To fetch your title, you want field 245 and subfield a, with subfield a being the main title. For your author, you want field 100 and subfield a.

 Listing 26.27. Tags and subfield codes for title and author

 titleTag :: T.Text
titleTag = "245"

titleSubfield :: Char
titleSubfield = 'a'

authorTag :: T.Text
authorTag = "100"

authorSubfield :: Char
authorSubfield = 'a'

 To get the value of a field, you need to look up its location in the record by using FieldMetadata. Then you split the raw field into its subfields. Finally, you look at the first character in each subfield to see whether
 the subfield you want is there.

 Now you have another problem. You don’t know for certain that the field you want will be in your record, and you also don’t
 know that your subfield will be in your field. You need to use the Maybe type to check both of these. You’ll start with lookupFieldMetadata, which will check the directory for the FieldMedata that you’re looking for. If the field doesn’t exist, it returns Nothing; otherwise, it returns just your field.

 Listing 26.28. Safely looking up FieldMetadata from the directory

 lookupFieldMetadata :: T.Text -> MarcRecordRaw -> Maybe FieldMetadata
lookupFieldMetadata aTag record = if length results < 1
 then Nothing
 else Just (head results)

 where metadata = (getFieldMetadata . splitDirectory . getDirectory)
 record
 results = filter ((== aTag) . tag) metadata

 Because you’re going to be concerned with only looking up both a field and a subfield at the same time, you’ll pass this Maybe FieldMetadata into the function that looks up a subfield. The lookupSubfield function will take a Maybe FieldMetadata argument, the subfield Char, and the MarcRecordRaw, returning a Maybe BC.ByteString of the data inside the subfield.

 Listing 26.29. Safely looking up a potentially missing subfield

 lookupSubfield :: (Maybe FieldMetadata) -> Char ->
 MarcRecordRaw -> Maybe T.Text
lookupSubfield Nothing subfield record = Nothing 1
lookupSubfield (Just fieldMetadata) subfield record =
 if results == [] 2
 then Nothing 3
 else Just ((T.drop 1 . head) results) 4
 where rawField = getTextField record fieldMetadata
 subfields = T.split (== fieldDelimiter) rawField
 results = filter ((== subfield) . T.head) subfields

 	1 If the metadata is missing, clearly you can’t look up a subfield.

 	2 If the results of your search for the subfield are empty, the subfield isn’t there.

 	3 Empty results mean you return nothing.

 	4 Otherwise, you turn your subfield value into Text and drop the first character, which is the subfield code.

 All you care about is the value for a specific field/subfield combo. Next you’ll create a specific lookupValue function that takes a tag, a subfield char, and a record.

 Listing 26.30. General lookupValue function for looking up tag-subfield code pairs

 lookupValue :: T.Text -> Char -> MarcRecordRaw -> Maybe T.Text
lookupValue aTag subfield record = lookupSubfield entryMetadata
 subfield record
 where entryMetadata = lookupFieldMetadata aTag record

 You can wrap up getting your values by making two helper functions for lookupAuthor and lookupTitle by using partial application.

 Listing 26.31. Specific cases of looking up Title and Author

 lookupTitle :: MarcRecordRaw -> Maybe Title
lookupTitle = lookupValue titleTag titleSubfield

lookupAuthor :: MarcRecordRaw -> Maybe Author
lookupAuthor = lookupValue authorTag authorSubfield

 At this point, you’ve completely abstracted away the details of working with your MARC record format, and can build your final
 main, which will tie this all together.

 26.3. Putting it all together

 You’ve tackled the mess of writing a parser for your MARC records, but now you have access to a wide range of book information
 you can use. Remembering that you want as little in your main IO action as possible, and you also want to reduce all you have to do to converting a ByteString (representing the MARC file) to HTML (representing your output file). The first step is to convert your ByteString to a list of (Maybe Title, Maybe Author) pairs.

 Listing 26.32. Raw MARC records to Maybe Title, Maybe Author pairs

 marcToPairs :: B.ByteString -> [(Maybe Title, Maybe Author)]
marcToPairs marcStream = zip titles authors
 where records = allRecords marcStream
 titles = map lookupTitle records
 authors = map lookupAuthor records

 Next you’d like to change these Maybe pairs into a list of books. You’ll do this by only making a Book when both Author and Title are Just values. You’ll use the fromJust function found in Data.Maybe to help with this.

 Listing 26.33. Convert Maybe values into Books

 pairsToBooks :: [(Maybe Title, Maybe Author)] -> [Book]
pairsToBooks pairs = map (\(title, author) -> Book {
 title = fromJust title
 ,author = fromJust author
 }) justPairs
 where justPairs = filter (\(title,author) -> isJust title
 && isJust author) pairs

 You already have your booksToHtml function from before, so now you can compose all these functions together to get your final processRecords function. Because there are so many records in your files, you’ll also provide a parameter to specify the number of records
 you’re looking up.

 Listing 26.34. Putting it all together in processRecords

 processRecords :: Int -> B.ByteString -> Html
processRecords n = booksToHtml . pairsToBooks . (take n) . marcToPairs

 Despite this being a lesson on I/O, and this being a fairly intensive I/O task, you might be surprised at how remarkably minimal
 your final main IO action is:

 main :: IO ()
main = do
 marcData <- B.readFile "sample.mrc"
 let processed = processRecords 500 marcData
 TIO.writeFile "books.html" processed

 Now you’ve successfully converted your raw MARC records into a much more readable format. Notice that Unicode values also
 came out okay!

 With lookupValue, you also have a nice, general tool you can use to look up any tag and subfield specified in the MARC standard.

 Summary

 In this capstone, you

 	Modeled textual book data by using the Text type

 	Wrote tools to perform binary fill processing by using ByteString to manipulate bits

 	Safely managed Unicode text within a binary document by using decodeUtf8 and encodeUtf8

 	Successfully transformed an opaque binary format into readable HTML

 Extending the exercise

 Now that you know the basics of processing MARC records, there’s a world of interesting book data out there to explore. If
 you’d like to extend this exercise, look into fleshing out more of the details of processing the MARC record. For example,
 you may have noticed that trailing punctuation sometimes appears after our title. This is because a subfield b contains the rest of the extended title. Combining subfields a and b will give you the full title. The Library of Congress (LoC) provides extensive information on MARC records, and you can start
 exploring at www.loc.gov/marc/bibliographic/.

 Another challenge you didn’t tackle is dealing with an annoying non-Unicode character encoding that exists in a large number
 of MARC records called MARC-8. In MARC-8, a small subset of the Unicode characters is represented differently for historical
 reasons. The LoC has resources to add in this conversion: www.loc.gov/marc/specifications/speccharconversion.html. Whether a record is encoded in MARC-8 or standard Unicode can be determined from the leader. See the “Character Coding Scheme”
 section of the official LoC documentation: www.loc.gov/marc/bibliographic/bdleader.html.

Unit 5. Working with type in a context

 In this unit, you’ll take a look at three of Haskell’s most powerful and often most confusing type classes: Functor, Applicative, and Monad. These type classes have funny names but a relatively straightforward purpose. Each one builds on the other to allow you
 to work in contexts such as IO. In unit 4, you made heavy use of the Monad type class to work in IO. In this unit, you’ll get a much deeper understanding of how that works. To get a better feel for what these abstract type
 classes are doing, you’ll explore types as though they were shapes.

 One way to understand functions is as a means of transforming one type into another. Let’s visualize two types as two shapes,
 a circle and a square, as shown in figure 1.

 Figure 1. A circle and square visually representing two types

 [image:]

 These shapes can represent any two types, Int and Double, String and Text, Name and FirstName, and so forth. When you want to transform a circle into a square, you use a function. You can visualize a function as a connector
 between two shapes, as shown in figure 2.

 Figure 2. A function can transform a circle to a square.

 [image:]

 This connector can represent any function from one type to another. This shape could represent (Int -> Double), (String -> Text), (Name -> FirstName), and so forth. When you want to apply a transformation, you can visualize placing your connector between the initial shape
 (in this case, a circle) and the desired shape (a square); see figure 3.

 Figure 3. Visualizing a function as a way of connecting one shape to another

 [image:]

 As long as each shape matches correctly, you can achieve your desired transformation.

 In this unit, you’ll look at working with types in context. The two best examples of types in context that you’ve seen are
 Maybe types and IO types. Maybe types represent a context in which a value might be missing, and IO types represent a context in which the value has interacted with I/O. Keeping with our visual language, you can imagine types
 in a context as shown in figure 4.

 Figure 4. The shape around the shape represents a context, such as Maybe or IO.

 [image:]

 These shapes can represent types such as IO Int and IO Double, Maybe String and Maybe Text, or Maybe Name and Maybe FirstName. Because these types are in a context, you can’t simply use your old connector to make the transformation. So far in this
 book, you’ve relied on using functions that have both their input and output in a context as well. To perform the transformation
 of your types in a context, you need a connector that looks like figure 5.

 Figure 5. A function that connects two types in a context

 [image:]

 This connector represents functions with type signatures such as (Maybe Int -> Maybe Double), (IO String -> IO Text), and (IO Name -> IO FirstName). With this connector, you can easily transform types in a context, as shown in figure 6.

 Figure 6. As long as your connector matches, you can make the transformation you want.

 [image:]

 This may seem like a perfect solution, but there’s a problem. Let’s look at a function halve, which is of the type Int -> Double, and as expected halves the Int argument.

 Listing 1. A halve function from Int -> Double

 halve :: Int -> Double
halve n = fromIntegral n / 2.0

 This is a straightforward function, but suppose you want to halve a Maybe Int. Given the tools you have, you have to write a wrapper for this that works with Maybe types.

 Listing 2. halveMaybe wraps halve function to work with Maybe types

 halveMaybe :: Maybe Int -> Maybe Double
halveMaybe (Just n) = Just (halve n)
halveMaybe Nothing = Nothing

 For this one example, it’s not a big deal to write a simple wrapper. But consider the wide range of existing functions from
 a -> b. To use any of these with Maybe types would require nearly identical wrappers. Even worse is that you have no way of writing these wrappers for IO types!

 This is where Functor, Applicative, and Monad come in. You can think of these type classes as adapters that allow you to work with different connectors so long as the
 underlying types (circle and square) are the same. In the halve example, you worried about transforming your basic Int-to-Double adapter to work with types in context. This is the job of the Functor type class, illustrated in figure 7.

 Figure 7. The Functor type class solves this mismatch between types in a context and a connector.

 [image:]

 But you can have three other types of mismatches. The Applicative type class solves two of these. The first occurs when the first part of your connector is in a context, but not its result,
 as shown in figure 8.

 Figure 8. This is one of the mismatches that Applicative solves.

 [image:]

 The other problem occurs when an entire function is in a context. For example, a function of the type Maybe (Int -> Double) means you have a function that might itself be missing. This may sound strange, but it can easily happen when using partial
 application with Maybe or IO types. Figure 9 illustrates this interesting case.

 Figure 9. Sometimes the connector itself is trapped in a context; Applicative solves this problem as well.

 [image:]

 There’s only one possible mismatch between a function and types in a context left. This occurs when the argument to a function
 isn’t in a context, but the result is. This is more common than you may think. Both Map.lookup and putStrLn have type signatures like this. This problem is solved by the Monad type class, illustrated in figure 10.

 Figure 10. The Monad type class provides an adapter for this final possible mismatch.

 [image:]

 When you combine all three of these type classes, there’s no function that you can’t use in a context such as Maybe or IO, so long as the underlying types match. This is a big deal because it means that you can perform any computation you’d like
 in a context and have the tools to reuse large amounts of existing code between different contexts.

Lesson 27. The Functor type class

 After reading lesson 27, you’ll be able to

 	Use the Functor type class

 	Solve problems with fmap and <$>

 	Understand kinds for Functors

 So far in this book, you’ve seen quite a few parameterized types (types that take another type as an argument). You’ve looked
 at types that represent containers, such as List and Map. You’ve also seen parameterized types that represent a context, such as Maybe for missing values and IO for values that come from the complex world of I/O. In this lesson, you’ll explore the powerful Functor type class. The Functor type class provides a generic interface for applying functions to values in a container or context. To get a sense of this,
 suppose you have the following types:

 	[Int]

 	Map String Int

 	Maybe Int

 	IO Int

 These are four different types, but they’re all parameterized by the same type: Int (Map is a special case, but the values are type Int). Now suppose you have a function with the following type signature:

 Int -> String

 This is a function that takes an Int and returns a String. In most programming languages, you’d need to write a custom version for your Int -> String function for each of these parameterized types. Because of the Functor type class, you have a uniform way to apply your single function to all these cases.

 	

 Consider this

 You have a potentially missing Int (a Maybe Int). You want to square this value, turn it into a string, and then add an ! to the end. The function that you want to pass this value to, printInt, assumes that there might be missing values already:

 printInt :: Maybe String -> IO ()
printInt Nothing = putStrLn "value missing"
printInt (Just val) = putStrLn val

 How can you transform your Maybe Int into a Maybe String to be used by printInt?

 	

 27.1. An example: computing in a Maybe

 Maybe has already proven a useful solution to your problem of potentially missing values. But when you were introduced to Maybe in lesson 19, you still had to deal with the problem of handling the possibility of a missing value as soon as you encountered it in your
 program. It turns out you can do computation on a potentially missing value without having to worry about whether it’s actually
 missing.

 Suppose you get a number from a database. There are plenty of reasons why a request to a database would result in a null value.
 Here are two sample values of type Maybe Int: failedRequest and successfulRequest.

 Listing 27.1. Possibly null values: successfulRequest and failedRequest

 successfulRequest :: Maybe Int
successfulRequest = Just 6

failedRequest :: Maybe Int
failedRequest = Nothing

 Next imagine you need to increment the number you received from the database and then write it back to the database. From
 a design standpoint, assume that the logic that talks to the database handles the case of null values by not writing the value.
 Ideally, you’d like to keep your value in a Maybe. Given what you know so far, you could write a special incMaybe function to handle this.

 Listing 27.2. Defining incMaybe to increment Maybe Int values

 incMaybe :: Maybe Int -> Maybe Int
incMaybe (Just n) = Just (n + 1)
incMaybe Nothing = Nothing

 In GHCi, this works just fine:

 GHCi> incMaybe successfulRequest
Just 7
GHCi> incMaybe failedRequest
Nothing

 The problem is that this solution scales horribly. The increment function is just (+ 1), but in our example, you need to rewrite it for Maybe. This solution means that you’d have to rewrite a special version of every existing function you want to use in a Maybe! This greatly limits the usefulness of tools such as Maybe. It turns out Haskell has a type class that solves this problem, called Functor.

 	

 Quick check 27.1

 Q1:
Write the function reverseMaybe :: Maybe String -> Maybe String that reverses a Maybe String and returns it as a Maybe String.

 	

 	

 QC 27.1 answer

 1:

reverseMaybe :: Maybe String -> Maybe String
reverseMaybe Nothing = Nothing
reverseMaybe (Just string) = Just (reverse string)

 	

 27.2. Using functions in context with the Functor type class

 Haskell has a wonderful solution to this problem. Maybe is a member of the Functor type class. The Functor type class requires only one definition: fmap, as shown in figure 27.1.

 Figure 27.1. The type signature for the fmap function

 [image:]

 Going back to your visual language from the introduction, fmap provides an adapter, as shown in figure 27.2. Notice that we’re using <$>, which is a synonym for fmap (except it’s a binary operator rather than a function).

 Figure 27.2. Visualizing how fmap, also <$>, works as an adapter, allowing you to work with types in a context.

 [image:]

 You can define fmap as a generalization of your custom incMaybe function.

 Listing 27.3. Making Maybe an instance of Functor

 instance Functor Maybe where
 fmap func (Just n) = Just (func n)
 fmap func Nothing = Nothing

 With fmap, you no longer need a special function for keeping your value in a Maybe:

 GHCi> fmap (+ 1) successfulRequest
Just 7
GHCi> fmap (+ 1) failedRequest
Nothing

 Though fmap is the official function name, in practice the binary operator <$> is used much more frequently:

 GHCi> (+ 1) <$> successfulRequest
Just 7
GHCi> (+ 1) <$> failedRequest
Nothing

 In this example, (+ 1) adds 1 into the Maybe Int and returns a Maybe Int as well. But it’s important to realize that the type signature of the function in fmap is (a -> b), meaning that the Maybe returned doesn’t need to be parameterized by the same type. Here are two examples of going from a Maybe Int to a Maybe String.

 Listing 27.4. Examples of using fmaps from one type to another

 successStr :: Maybe String
successStr = show <$> successfulRequest

failStr :: Maybe String
failStr = show <$> failedRequest

 This ability to transform the types of values inside a Maybe is the true power of the Functor type class.

 	

 Quick check 27.2

 Q1:
Use fmap or <$> to reverse a Maybe String.

 	

 	

 QC 27.2 answer

 1:

GHCi> reverse <$> Just "cat"
Just "tac"

 	

 	

 Strange type class names?

 Semigroup, Monoid, and now Functor! What’s up with these weird type class names? All these names come from fields of mathematics called abstract algebra and
 category theory. You absolutely don’t need to know any advanced mathematics to use them. All of these type classes represent
 the design patterns of functional programming. If you’ve used Java, C#, or any enterprise programming language, you’re likely
 familiar with object-oriented design patterns such as the Singleton, Observer, and Factory patterns. These names are more
 reasonable-sounding only because they’ve become part of the everyday vocabulary of OOP. Both OOP design patterns and category
 theoretic type classes abstract out common programming patterns. The only difference is that Haskell’s are based on mathematical
 foundations, rather than ad hoc patterns discovered in code. Just as Haskell’s functions derive power from their mathematical
 basis, so do Haskell’s design patterns.

 	

 27.3. Functors are everywhere!

 To understand instances of Functor, you’ll run through some examples. Recall from lesson 18 that kinds are the types of types. Types of a kind * -> * are parameterized types that take just one type parameter. All Functors must be of kind * ->*. It also turns out that many parameterized types of kind * -> * are instances of Functor.

 Members of Functor that you’ve seen so far in this book include List, Map, Maybe, and IO. To demonstrate how Functor allows you to generalize by solving a single problem the same way in multiple parameterized types, you’ll explore how working
 with the same data type in multiple contexts can represent different problems. Then you’ll see how Functor’s <$> makes it easy to solve each of these problems in the same way. Rather than work with simple types such as Int or String, you’ll work with something more complicated: a RobotPart data type.

 27.3.1. One interface for four problems

 In this example, you’re going to assume that you’re in the business of manufacturing robot parts. Here’s the basic data type
 for your robot part.

 Listing 27.5. RobotPart defined using record syntax

 data RobotPart = RobotPart
 { name :: String
 , description :: String
 , cost :: Double
 , count :: Int
 } deriving Show

 Here are some example robot parts you’ll use in this section.

 Listing 27.6. Example robot parts: leftArm, rightArm, and robotHead

 leftArm :: RobotPart
leftArm = RobotPart
 { name = "left arm"
 , description = "left arm for face punching!"
 , cost = 1000.00
 , count = 3
 }

rightArm :: RobotPart
rightArm = RobotPart
 { name = "right arm"
 , description = "right arm for kind hand gestures"
 , cost = 1025.00
 , count = 5
 }

robotHead :: RobotPart
robotHead = RobotPart
 { name = "robot head"
 , description = "this head looks mad"
 , cost = 5092.25
 , count = 2
 }

 One of the most common things you’ll need to do is to render the information contained in a RobotPart as HTML. Here’s code for rendering an individual RobotPart as an HTML snippet.

 Listing 27.7. Rendering a RobotPart as HTML

 type Html = String

renderHtml :: RobotPart -> Html
renderHtml part = mconcat ["<h2>",partName, "</h2>"
 ,"<p><h3>desc</h3>",partDesc
 ,"</p><p><h3>cost</h3>"
 ,partCost
 ,"</p><p><h3>count</h3>"
 ,partCount,"</p>"]
 where partName = name part
 partDesc = description part
 partCost = show (cost part)
 partCount = show (count part)

 In many cases, you’ll want to convert a RobotPart into an HTML snippet. Next you’ll see four scenarios of this, using different parametrized types.

 You’ll start by using the Map type to create partsDB, which is your internal database of RobotParts.

 Listing 27.8. Your RobotPart “database”

 import qualified Data.Map as Map 1

partsDB :: Map.Map Int RobotPart
partsDB = Map.fromList keyVals
 where keys = [1,2,3]
 vals = [leftArm,rightArm,robotHead]
 keyVals = zip keys vals

 	1 Remember to include this in the top of your file if you’re using Map.

 Map is a useful type for this example because it naturally involves three instances of Functor: it’s made from a List, returns Maybe values, and is itself a Functor.

 27.3.2. Converting a Maybe RobotPart to Maybe Html

 Now suppose you have a website driven by partsDB. It’s reasonable that you’d have a request containing an ID for a part that you wish to insert into a web page. You’ll assume
 that an insertSnippet IO action will take HTML and insert it into a page’s template. It’s also reasonable to assume that many data models might be generating snippets. Because any one of these models may have
 an error, you’ll assume that insertSnippet accepts Maybe Html as its input, allowing the template engine to handle missing snippets as it sees fit. Here’s the type signature of your imaginary
 function:

 insertSnippet :: Maybe Html -> IO ()

 The problem you need to solve is looking up a part and passing that part as Maybe Html to insertSnippet. Here’s an example of fetching a RobotPart from your partsDB.

 Listing 27.9. partVal: a Maybe RobotPart value

 partVal :: Maybe RobotPart
partVal = Map.lookup 1 partsDB

 Because Maybe is a Functor, you can use <$> to transform your RobotPart into HTML while remaining in a Maybe.

 Listing 27.10. Using <$> to transform RobotPart to HTML, remaining in Maybe

 partHtml :: Maybe Html
partHtml = renderHtml <$> partVal

 You can now pass partHtml to insertSnippet easily because of Functor.

 27.3.3. Converting a list of RobotParts to a list of HTML

 Next suppose you want to create an index page of all your parts. You can get a list of parts from your partsDB like this.

 Listing 27.11. A list of RobotParts

 allParts :: [RobotPart]
allParts = map snd (Map.toList partsDB)

 List is also an instance of Functor. In fact, fmap for a List is the regular map function you’ve been using since unit 1. Here’s how you can apply renderHtml to a list of values by using <$>.

 Listing 27.12. Transforming a list of RobotParts to HTML with <$> instead of map

 allPartsHtml :: [Html]
allPartsHtml = renderHtml <$> allParts

 Because <$> is just fmap, and for lists fmap is just map, this code is identical to the following.

 Listing 27.13. The traditional way of transforming a list by using map

 allPartsHtml :: [Html]
allPartsHtml = map renderHtml allParts

 For lists, it’s more common to use map over <$>, but it’s important to realize these are identical. One way to think of the Functor type class is as “things that can be mapped over.”

 	

 Quick check 27.3

 Q1:
Rewrite the definition of all parts to use <$> instead of map.

 	

 	

 QC 27.3 answer

 1:

allParts :: [RobotPart]
allParts = snd <$> Map.toList partsDB

 	

 27.3.4. Converting a Map of RobotParts to HTML

 The partsDB Map has been useful, but it turns out all you need it for is converting RobotParts to HTML. If that’s the case, wouldn’t it make more sense to have an htmlPartsDB so you don’t have to continually convert? Because Map is an instance of Functor, you can do this easily.

 Listing 27.14. Turning your partsDB into a Map of HTML rather than RobotParts

 htmlPartsDB :: Map.Map Int Html
htmlPartsDB = renderHtml <$> partsDB

 Now you can see that you’ve transformed your Map of RobotParts into a Map of Html snippets!

 GHCi> Map.lookup 1 htmlPartsDB
Just "<h2>left arm</h2><p><h3>desc</h3>left ...

 This example highlights just how powerful the simple interface that Functor provides can be. You can now trivially perform any transformation that you can on a RobotPart to an entire Map of robot parts.

 The careful reader may have noticed something strange about Map being a Functor. Map’s kind is * -> * -> * because Map takes two type arguments, one for its keys and another for its values. Earlier we said that Functors must be of kind * -> *, so how can this be? If you look at the behavior of <$> on your partsDB, it becomes clear. Functor for Map is concerned only about the Map’s values and not its keys. When Map is made an instance of Functor, you’re concerned only about a single type variable, the one used for its values. So for the purposes of Map being a member of Functor, you treat it as being of kind * -> *. When we introduced kinds in lesson 18, they may have seemed overly abstract. But they can be useful for catching issues that arise with more advanced type classes.

 27.3.5. Transforming an IO RobotPart into IO Html

 Finally, you might have a RobotPart that comes from IO. You’ll simulate this by using return to create an IO type of a RobotPart.

 Listing 27.15. Simulating a RobotPart coming from an IO context

 leftArmIO :: IO RobotPart
leftArmIO = return leftArm

 Suppose you want to turn this into HTML so that you can write the HTML snippet to a file. By now, the pattern should start
 to be familiar.

 Listing 27.16. Transforming

 htmlSnippet :: IO Html
htmlSnippet = renderHtml <$> leftArmIO

 Let’s take a look at all of these transformations at once:

 partHtml :: Maybe Html
partHtml = renderHtml <$> partVal

allPartsHtml :: [Html]
allPartsHtml = renderHtml <$> allParts

htmlPartsDB :: Map.Map Int Html
htmlPartsDB = renderHtml <$> partsDB

htmlSnippet :: IO Html
htmlSnippet = renderHtml <$> leftArmIO

 As you can see, Functor’s <$> provides a common interface to apply any function to a value in a context. For types such as List and Map, this is a convenient way to update values in these containers. For IO, it’s essential to be able to change values in an IO context, because you can’t take IO values out of their context.

 Summary

 In this lesson, our objective was to introduce you to the Functor type class. The Functor type class allows you to apply an ordinary function to values inside a container (for example, List) or a context (for example, IO or Maybe). If you have a function Int -> Double and a value Maybe Int, you can use Functor’s fmap (or the <$> operator) to apply the Int -> Double function to the Maybe Int value, resulting in a Maybe Double value. Functors are incredibly useful because they allow you to reuse a single function with any type belonging to the Functor type class. [Int], Maybe Int, and IO Int can all use the same core functions. Let’s see if you got this.

 Q27.1
When we introduced parameterized types in lesson 15, you used a minimal type Box as the example:

 data Box a = Box a deriving Show

 Implement the Functor type class for Box. Then implement morePresents, which changes a box from type Box a to one of type Box [a], which has n copies of the original value in the box in a list. Make sure to use fmap to implement this.

 QC27.2
Now suppose you have a simple box like this:

 myBox :: Box Int
myBox = Box 1

 Use fmap to put the value in your Box in another Box. Then define a function unwrap that takes a value out of a box, and use fmap on that function to get your original box. Here’s how your code should work in GHCi:

 GHCi> wrapped = fmap ? myBox
GHCi> wrapped
Box (Box 1)
GHCi> fmap unwrap wrapped
Box 1

 Q27.3
Write a command-line interface for partsDB that lets the user look up the cost of an item, given an ID. Use the Maybe type to handle the case of the user entering missing input.

Lesson 28. A peek at the Applicative type class: using functions in a context

 After reading lesson 28, you’ll be able to

 	Build an application that handles missing data

 	Extend the power of the Functor type class with the Applicative type

 	Use Applicative to use one data model in many contexts

 In the preceding lesson, you learned how the Functor type class allows you to perform computation inside a container such as List or a context such as Maybe and IO. The key method behind Functor is fmap (more commonly, the <$> operator), which works just like map on a list. In this lesson, you’ll work with a more powerful type class called Applicative. The Applicative type class extends the power of Functor by allowing you to use functions that are themselves in a context.

 Although this may not seem useful, it allows you to chain together long sequences of computation in a context such as IO or Maybe.

 In your first example, you’ll see the limitations of Functor by building a command-line tool that allows the user to calculate the distance between two cities. The issue is that you
 need to pass two Maybe values to a function, which surprisingly Functor can’t do. You’ll then see how Applicative resolves this issue. After you learn about Applicative, you’ll see how this can help you create data in the context of either IO or Maybe, while allowing you to reuse the majority of your code.

 	

 Consider this

 You want to combine a first- and last-name string to create a person’s name: "Alan" ++ " " ++ "Turing". The trouble is, both your first and last names are Maybe Strings because they come from an unreliable source and might be missing. How can you combine these Strings and return a Maybe String for the name?

 	

 28.1. A command-line application for calculating the distance between cities

 In this section, you’re going to build a simple command-line application that allows the user to enter cities by name and
 then returns the distance between them. The big challenge you’ll face is ensuring that your application fails gracefully when
 the user enters a city not in your database. You’ll use the Maybe type and the Functor type class to achieve this, but you’ll find you need something a bit more powerful to deal with having two values in a Maybe context.

 	

 Note

 Everything in this section should go in a file named dist.hs.

 	

 Let’s assume you have a Map type (remember to add import qualified Data.Map as Map) for locations on the globe and their latitude and longitude as a tuple.

 Listing 28.1. Using a Map as your database of city coordinates

 type LatLong = (Double,Double)

locationDB :: Map.Map String LatLong
locationDB = Map.fromList [("Arkham",(42.6054,-70.7829))
 ,("Innsmouth",(42.8250,-70.8150))
 ,("Carcosa",(29.9714,-90.7694))
 ,("New York",(40.7776,-73.9691))]

 What you’d like to do is calculate the distance between two points on the globe from your locationDB. To do this, you need to use the formula for calculating distance on a globe. Because a globe curves, you can’t calculate
 the straight-line distance between two points. Instead, you need to use the Haversine formula. Note that you need to convert your latitude and longitude to radians first. Here’s an implementation of haversine (you don’t need to understand the details of this function).

 Listing 28.2. Computing the distance between two points with haversine

 toRadians :: Double -> Double
toRadians degrees = degrees * pi / 180

latLongToRads :: LatLong -> (Double,Double)
latLongToRads (lat,long) = (rlat,rlong)
 where rlat = toRadians lat
 rlong = toRadians long

haversine :: LatLong -> LatLong -> Double
haversine coords1 coords2 = earthRadius * c
 where (rlat1,rlong1) = latLongToRads coords1
 (rlat2,rlong2) = latLongToRads coords2
 dlat = rlat2 - rlat1
 dlong = rlong2 - rlong1
 a = (sin (dlat/2))^2 + cos rlat1 * cos rlat2 * (sin (dlong/2))^2
 c = 2 * atan2 (sqrt a) (sqrt (1-a))
 earthRadius = 3961.0

 Here’s an example of using haversine to compute the distance between two points on the globe:

 GHCi> haversine (40.7776,-73.9691) (42.6054,-70.7829)
207.3909006336738

 Next you want to make a simple command-line tool that will let the user get the distance between two cities. You want the
 user to enter in two city names, and you’ll return the distance. Given that you’re dealing with user input, you definitely
 need to handle the case in which the user enters a city that doesn’t exist in your database. If one of the names is missing,
 you’ll let the user know that an error occurred in their input.

 As is often helpful, you’ll start reasoning backward from where you want to end up. What you want to end up with is an IO action that takes a Maybe value for your distance and either prints the distance or tells the user that an error occurred.

 Listing 28.3. An IO action to handle printing your potentially missing distance

 printDistance :: Maybe Double -> IO ()
printDistance Nothing = putStrLn "Error, invalid city entered"
printDistance (Just distance) = putStrLn (show distance ++ " miles")

 Now you just have to tie everything together. You need to get two locations from your locationDB, calculate their distance, and then pass that distance to printDistance. The trouble is that your locationDB will give you Maybe values. Thinking in types, here’s the problem. You have haversine, which is of this type:

 haversine :: LatLong -> LatLong -> Double

 What you need is a function that looks like figure 28.1.

 Figure 28.1. The signature of the function you need to connect your locationsDB with printDistance

 [image:]

 This is almost exactly the type signature of haversine, but everything is in the context of a Maybe. This problem should be reminiscent of the problem you solved with Functor. You want to be able to use normal functions in a context. The naive solution is to put a wrapper function around haversine, which will work the specific case of Maybe.

 Listing 28.4. One solution to working in a Maybe is to create wrapper functions

 haversineMaybe :: Maybe LatLong -> Maybe LatLong -> Maybe Double
haversineMaybe Nothing _ = Nothing
haversineMaybe _ Nothing = Nothing
haversineMaybe (Just val1) (Just val2) = Just (haversine val1 val2)

 The haversineMaybe solution is a poor one for two reasons. First, you have to write wrappers for any similar function, which is needlessly repetitive.
 Second, you have to write a different version of haversineMaybe for other similar context types such as IO. Because the promise of the Functor type is to provide a general way of working in different contexts, let’s see if you can solve this problem with Functor.

 	

 Quick check 28.1

 Q1:
Write addMaybe for adding two Maybe Ints.

 	

 	

 QC 28.1 answer

 1:

addMaybe :: Maybe Int -> Maybe Int -> Maybe Int
addMaybe (Just x) (Just y) = Just (x + y)
addMaybe _ _ = Nothing

 	

 28.1.1. The limitations of Functor

 Before you dive in, let’s refresh your memory on Functor’s only method, fmap, and look at its type signature, shown in figure 28.2.

 Figure 28.2. Annotated type signature for Functor’s only method, fmap

 [image:]

 The fmap function takes any function from type a to type b, and the value of type a in the context of a Functor (like Maybe), and returns a value of type b in the same context. If you think of the problem in terms of types, this is pretty close. The major difference is you have
 one extra argument. What you want to do is this:

 	Take haversine, which is (LatLong -> LatLong -> Double).

 	Take two arguments of type Maybe: Maybe LatLong -> Maybe LatLong.

 	And finally, you want your answer in a Maybe: Maybe Double.

 This leads to the following series of type transformations:

 (LatLong -> LatLong -> Double) ->
 (Maybe LatLong -> Maybe LatLong -> Maybe Double)

 If you translate this to a more generic type signature, you get the following:

 Functor f => (a -> b -> c) -> f a -> f b -> f c

 This is nearly identical to fmap, except you’re adding one argument. This is one of the limitations of Functor’s fmap: it only works on single-argument functions. Because your main problem is having an extra argument, using partial application
 should move you close to a solution.

 	

 Quick check 28.2

 Q1:
Suppose you don’t have to worry about Maybes and have raw coordinate pairs. If you have the pair newYork, how would you make a function distanceFromNY that’s waiting for an additional location?

 	

 	

 QC 28.2 answer

 1:

distanceFromNY = haversine newYork

 	

 28.2. Using <*> for partial application in a context

 The problem you need to solve now is generalizing Functor’s fmap to work with multiple arguments. In lesson 5, you learned that partial application means that calling an argument with fewer arguments than it requires results in a function
 waiting for the remaining arguments. Then in section 10.2.2, you saw that all functions are functions of one argument. Multi-argument
 functions are just a chain of single-argument functions. The key to solving your problem lies in being able to perform partial
 application in a context such as Maybe or IO.

 The real limitation of Functor’s <$> is that if you end up with a function in a context, through partial application, you have no way of using that function.
 For example, you can use <$>, (+), and the number 1 in a context to create a maybeInc function.

 Listing 28.5. Using Functor’s <$> operator for partial application in a context

 maybeInc = (+) <$> Just 1

 If you look up the type of this function, you find that it’s as follows:

 maybeInc :: Maybe (Integer -> Integer)

 The (+) operator is a function that takes two values; by using <$> on a Maybe value, you created a function waiting for a missing value, but it’s inside a Maybe. You now have a Maybe function, but there’s no way to apply this function! Recalling the visual language of circles and squares in context, you’ve
 arrived at a problem of finding an adapter for the situation illustrated in figure 28.3.

 Figure 28.3. You need a new type of adapter for connecting types in a context with functions in a context.

 [image:]

 Thankfully, there’s another type class that solves precisely this problem!

 28.2.1. Introducing the <*> operator

 A powerful type class called Applicative contains a method that’s the <*> operator (pronounced app). If you look at the type signature of <*>, you can see what this does, as shown in figure 28.4.

 Figure 28.4. Annotated type signature for the <*> operator

 [image:]

 Applicative’s <*> allows you to apply a function in a context. Now you can use maybeInc to increment Maybe values. Here are a couple of examples in GHCi:

 GHCi> maybeInc <*> Just 5
Just 6
GHCi> maybeInc <*> Nothing
Nothing
GHCi> maybeInc <*> Just 100
Just 101

 You’ve not only solved the case of combining two values inside a Maybe, but also found a general way to use existing binary functions in a Maybe context.

 You can use this to combine Strings in a Maybe context as well:

 GHCi> (++) <$> Just "cats" <*> Just " and dogs"
Just "cats and dogs"
GHCi> (++) <$> Nothing <*> Just " and dogs"
Nothing
GHCi> (++) <$> Just "cats" <*> Nothing
Nothing

 Because of the way partial application works, you can use <$> and <*> to chain together any number of arguments.

 	

 Quick check 28.3

 Q1:
Use the pattern for using binary values in a context for the functions (*), div, and mod on these two values:

 val1 = Just 10
val2 = Just 5

 	

 	

 QC 28.3 answer

 1:

val1 = (Just 10)
val2 = (Just 5)
result1 = (+) <$> val1 <*> val2
result2 = div <$> val1 <*> val2
result3 = mod <$> val1 <*> val2

 	

 28.2.2. Using <*> to finish your city distance program

 With Applicative and <*>, you can finally solve your problem of wanting to use your haversine function with two Maybe values:

 GHCi> startingCity = Map.lookup "Carcosa" locationDB
GHCi> destCity = Map.lookup "Innsmouth" locationDB
GHCi> haversine <$> startingCity <*> destCity
Just 1415.7942372467567

 Because of heavy use of operators here, this can be difficult to parse. Figure 28.5 illustrates the key part of this to help clarify.

 Figure 28.5. Combining <$> with <*> to compute haversine in a Maybe context

 [image:]

 Now that you can extend the power of fmap with <*>, you can put everything together to build a program that will take two city names from user input, and output the distance.
 Here’s the main for your program.

 Listing 28.6. The main for dist.hs

 main :: IO ()
main = do
 putStrLn "Enter the starting city name:"
 startingInput <- getLine
 let startingCity = Map.lookup startingInput locationDB
 putStrLn "Enter the destination city name:"
 destInput <- getLine
 let destCity = Map.lookup destInput locationDB
 let distance = haversine <$> startingCity <*> destCity
 printDistance distance

 If you compile this program, you can see that you can now handle user input errors quite well:

 $./dist
Enter the starting city name:
Carcosa
Enter the destination city name:
Innsmouth
1415.7942372467567 miles

 And now an example with a city not in your database:

 $./dist
Enter the starting city name:
Carcosa
Enter the destination city name:
Chicago
Error, invalid city entered

 This example demonstrates the value of Functors and Applicatives. You just wrote a program that handles missing values well, but not once did you have to check whether a value was null
 using conditionals, or worry about exception handling. Even better, you could write the core functionality of your program,
 haversine, as though nothing in the world might go wrong.

 Haskell’s type system makes it impossible for you to accidentally pass a Maybe LatLong to haversine. In nearly every other programming language, even those with static types such as Java and C#, there’s no way to ensure that
 a null value doesn’t sneak into a function. Functor and Applicative complement this safety by making it easy to mix regular functions such as haversine with Maybe types or IO types, without compromising that safety.

 28.2.3. Using a multi-argument function in IO using <$> and <*>

 IO is also a member of Applicative. To show this off, let’s see how to use <$> and <*> to make a simple command-line tool that returns the minimum of three numbers entered by the user, called min3.hs. You’ll
 start with a three-argument function called minOfThree, which gives you the minimum of three values.

 Listing 28.7. minOfThree function takes three arguments and returns the smallest

 minOfThree :: (Ord a) => a -> a -> a -> a
minOfThree val1 val2 val3 = min val1 (min val2 val3)

 Next you’ll create a simple IO action, readInt, which will read an Int from the command line.

 Listing 28.8. A simple readInt IO action made using <$>

 readInt :: IO Int
readInt = read <$> getLine

 Now you can use <$> with <*> to make an IO action that reads in three Ints and returns the minimum.

 Listing 28.9. minOfInts shows using multiple arguments with <*>

 minOfInts :: IO Int
minOfInts = minOfThree <$> readInt <*> readInt <*> readInt

 Finally, you can put this in a main.

 Listing 28.10. Your main for min3.hs

 main :: IO ()
main = do
 putStrLn "Enter three numbers"
 minInt <- minOfInts
 putStrLn (show minInt ++ " is the smallest")

 Now you can compile and run your min3.hs:

 $ ghc min3.hs
$./min3.hs
Enter three numbers
1
2
3

1 is the smallest

 Because of the power of partial application and <*>, you can chain together as many arguments as you’d like!

 	

 Quick check 28.4

 Q1:
Use minOfThree to get the Maybe Int value of these three Maybe values:

 Just 10
Just 3
Just 6

 	

 	

 QC 28.4 answer

 1:

GHCi> minOfThree <$> Just 10 <*> Just 3 <*> Just 6
Just 3

 	

 28.3. Using <*> to create data in a context

 One of the most common uses of Applicatives in practice occurs when you want to create data, but all the information you need for the data is in a context such as a
 Maybe or IO. For example, suppose you have user data for a video game.

 Listing 28.11. User data for a game

 data User = User
 { name :: String
 , gamerId :: Int
 , score :: Int
 } deriving Show

 It’s important to note that just because you’re using record syntax doesn’t mean that you can’t create the type as you would
 without it. For example:

 GHCi> User {name = "Sue", gamerId = 1337, score = 9001}
User {name = "Sue", gamerId = 1337, score = 9001}
GHCi> User "Sue" 1337 9001
User {name = "Sue", gamerId = 1337, score = 9001}
GHCi>

 Let’s look at two cases where you want to create a user from data that’s in a context.

 28.3.1. Creating a user in the context of a Maybe

 The first context is a Maybe. It’s reasonable to assume that you’ve gathered the necessary information from sources in which the data might be missing.
 Here are some sample Maybe types that you’ll pretend come from a server that might have accidently sent you missing data.

 Listing 28.12. Maybe types for the necessary information to create a user

 serverUsername :: Maybe String
serverUsername = Just "Sue"

serverGamerId :: Maybe Int
serverGamerId = Just 1337

serverScore :: Maybe Int
serverScore = Just 9001

 To create a user from this data, you can use <$> and <*>, because your data constructor User works as a function that takes three arguments. Here’s your code to do this in GHCi:

 GHCi> User <$> serverUsername <*> serverGamerId <*> serverScore
Just (User {name = "Sue", gamerId = 1337, score = 9001})

 Another context in which you might want to create a user is from IO. You can make a command-line tool that reads three lines of input for the user values and outputs your user data. You’ll
 reuse the readInt function from the preceding lesson to transform user input directly to an Int.

 Listing 28.13. Using Applicative to create a user from IO types

 readInt :: IO Int
readInt = read <$> getLine

main :: IO ()
main = do
 putStrLn "Enter a username, gamerId and score"
 user <- User <$> getLine <*> readInt <*> readInt
 print user

 The powerful thing here is that you need to define only a single type, User, that works with regular Strings and Ints. Because of the Applicative type class, you can trivially use the same code to create a user in different contexts.

 	

 Quick check 28.5

 Q1:
Show the result of creating a user with a missing (Nothing) userName.

 	

 	

 QC 28.5 answer

 1:

GHCi> User <$> Nothing <*> serverGamerId <*> serverScore
Nothing

 	

 Summary

 In this lesson, our objective was to introduce you to the Applicative type class. The Applicative’s <*> operator allows you to use functions that are themselves in a context. For example, if you have a function that might not
 exist, Maybe (Int -> Double), you can apply it to a value in the same context, Maybe Int, and get a result still in that context, Maybe Double. This may seem like a seldom-used operator, but it’s essential to being able to extend Functor to multi-argument functions. Because of the prevalence of partial application in Haskell programs, it’s fairly common to
 wind up with a function in a context. Without Applicative, it’d be impossible to use these functions in many cases. Let’s see if you got this.

 Q28.1
Writing haversineMaybe (listing 28.4) was straightforward. Write the function haversineIO without using <*>. Here’s the type signature:

 haversineIO :: IO LatLong -> IO LatLong -> IO Double

 Q28.2
Rewrite haversineIO, this time using <*>.

 Q28.3
Recall the RobotPart type from the preceding lesson:

 data RobotPart = RobotPart
 { name :: String
 , description :: String
 , cost :: Double
 , count :: Int
 } deriving Show

 Make a command-line application that has a database of various RobotParts (at least five), and then lets the user enter in two-part IDs and returns the one with the lowest cost. Handle the case
 of the user entering an ID that’s not in the parts database.

Lesson 29. Lists as context: a deeper look at the Applicative type class

 After reading lesson 29, you’ll be able to

 	Explain the formal definition of the Applicative type class

 	Represent parameterized types as either containers or contexts

 	Use List as a context to explore nondeterministic computing

 In the preceding lesson, you learned how to use the <*> (pronounced app) operator to extend the power of Functor’s <$> (pronounced fmap) operator. In this lesson, you’ll take a closer look at the Applicative type class. You’ll explore the difference between types that represent a container and types that represent a context. You’ll
 finish by looking at the powerful things you can achieve by using lists as a context.

 	

 Consider this

 A breakfast place offers you the choice of the following:

 	Coffee or tea

 	Eggs, pancakes, or waffles

 	Toast or a biscuit

 	Sausage, ham, or bacon

 What are all the possible meals you could choose, and how can you use List to help?

 	

 29.1. Introducing the Applicative type class

 The Applicative type class allows you to use functions that are inside a context, such as Maybe or IO. As you saw in the preceding lesson, this extends the power of the Functor type class. Because of the way that Applicative works with Functor, Functor is a superclass of Applicative. See figure 29.1.

 Figure 29.1. Functor is the superclass of applicative. Figure 29.2 provides the definition of Applicative with its two required methods.

 [image:]

 One tricky thing in this definition is that there are two constraints on your type variable f. The first says that f is a Functor, which enforces that Applicative must be a Functor, and then you define f as your stand-in for Applicative. In your method signatures, f is a variable for any Applicative (see figure 29.2). Notice that the operator <*> has the same type signature as your fmap, except the function argument is also in a context. This small difference in <*> allows you to chain together larger sequences of functions inside members of the Functor type class. Here are a few examples of using <$> and <*> to perform mathematical operations on Maybe types:

 GHCi> (*) <$> Just 6 <*> Just 7
Just 42
GHCi> div <$> Just 6 <*> Just 7
Just 0
GHCi> mod <$> Just 6 <*> Just 7
Just 6

 Figure 29.2. Type class definition for Applicative

 [image:]

 This solution may seem either elegant or confusing, depending on how comfortable you are with Haskell’s infix binary operators.
 Undoubtedly, using <$> and <*> can initially seem confusing. Further complicating the issue is that unlike <$> and fmap, <*> has no equivalent function. If you’re struggling with these operators, the best solution is practice. Try going back to some
 of the examples in unit 1 and change values used as arguments to Maybe values. Remember, because of fmap and <*>, you don’t need to rewrite any functions to work with Maybe values.

 	

 Quick check 29.1

 Q1:
Use <$> and <*> to combine two Maybe String types with ++.

 	

 	

 QC 29.1 answer

 1:

GHCi>(++) <$> Just "Learn" <*> Just " Haskell"
Just "Learn Haskell"

 	

 29.1.1. The pure method

 The function pure is the second method required by the Applicative type class. The pure method is a useful helper function for taking an ordinary value or function and putting it into a context. The best way to
 understand pure is to play around with it in GHCi. In the example of a Maybe, pure will return a Just:

 GHCi> pure 6 :: Maybe Int
Just 6

 You can also use pure to put a function into the context of Applicative. For example, if you want to add 6 to (Just 5), you can use either fmap or pure:

 GHCi> (6+) <$> Just 5
Just 11
GHCi> pure (6+) <*> Just 5
Just 11

 Though these examples are fairly simple, in practice you’ll frequently want a quick way to transform a value into the desired
 Applicative type. In our visual language, pure also performs an important role, as shown in figure 29.3.

 Figure 29.3. The pure method means you always have a way to take an ordinary type and put it in a context.

 [image:]

 Because of pure, you can take any value that’s not in a context and trivially put it in one. This is vital to allowing all possible computations
 in a context.

 	

 Quick check 29.2

 Q1:
Make the String "Hello World" into an IO String.

 	

 	

 QC 29.2 answer

 1:

hello :: IO String
hello = pure "Hello World"

 	

 29.2. Containers vs. contexts

 So far, we’ve talked somewhat loosely about the difference between parameterized types that represent containers and contexts.
 At this point, you need to be a bit clearer about what you mean by these terms. The reason is that unlike Functor, Applicative and the next lesson’s type class Monad make sense only when you’re talking about types as a context. Here’s the distinction in a nutshell:

 	Parameterized types that represent a container are types that represent a data structure.

 	When a type is a context, extra information is implied about the type, beyond its structure.

 Let’s explore this further. The best test of whether a type is a container is whether you can tell what it does, independent of its name. For example, consider the 2-tuple (a,b). You could implement the same type named Blah.

 Listing 29.1. A poorly named 2-tuple is still the same thing

 data Blah a b = Blah a b

 Even with a completely useless name like Blah, it’s hard to argue that this type is any different than a regular tuple pair (a,b).

 The Data.Map type is another, similar structure. You could call this a Dictionary, a Binary-SearchTree, a MagicLookupBox, and so forth. But what the type means is implied by the data structure itself. Even if the entire set of functions around
 Map were written in an alien language, you’d still quickly figure out what the type is used for. (Probably...eventually.)

 It’s worth pointing out that the 2-tuple (,) and Data.Map are both instances of Functor but not instances of Applicative. Remember that the key power of Applicative is that it lets you apply a function in a parameterized type. Another good way to differentiate containers from contexts
 is to ask, “Does it make sense to have a <type> function?” Maybe (a -> b) is a function from a -> b that itself might not exist because it was made via partial application with a Nothing value. An IO (a -> b) function is any function that’s operating in the world of IO. What does a Data.Map function mean? Likewise, what does a 2-tuple function mean? If you can answer these questions, you have the starting ground
 for figuring out the Applicative instance for these types.

 When a type is a context, on the other hand, extra information is implied about the type, beyond its structure. The most obvious
 case is the IO type. When you first introduce parameterized types, you introduce the idea of a Box type.

 Listing 29.2. The trivial Box type doesn’t seem much different from IO

 data Box a = Box a

 Clearly, Box is a uselessly trivial type. But there’s no difference at the data constructor level between Box and IO. IO, from our perspective, is just a data constructor that wraps types that came from IO (there’s much more to the IO type, but not that you can immediately see).

 The Maybe type is another context type. Suppose you want to create a parameterized type for a resource-constrained computation. You
 could imagine this type as follows.

 Listing 29.3. A type representing if there are enough resources to continue

 data ResourceConstrained a = NoResources | Okay a

 Behind the scenes, there would be a lot of magic determining resource usage, but this type is no different from Maybe at the type-constructor level. Most of the information about this type is in a context that you assume about the type itself.

 The best way to understand this distinction between container and context is to look at an example. List turns out to be the perfect case. It’s easy to understand List as a container because it’s a common data structure. But List also describes a context. If you understand how List can be a container and a context, you’re on the path to truly understanding Applicatives.

 	

 Quick check 29.3

 Q1:
Suppose you want to make it so that (pure +) <*> (1,2) <*> (3,4) = (1+2,1+4,2+3,2+4) = (3,5,5,6). Why doesn’t this work?

 	

 	

 QC 29.3 answer

 1:

This doesn’t work because (3,5,5,6) is an entirely different type than (1,2) or (3,4). The first is type (a,b,c,d), and the other two are (a,b).

 	

 29.3. List as a context

 The List type, being a fundamental example of nearly everything in Haskell, is both a container and a context. List as a container is easy to understand. List is basically a chain of buckets of whatever type of data you want to hold. But List is a member of Applicative, so there must be a way to view List as a context.

 The reason context matters for a list is that to use Applicative, you need to be able to answer the question, “What does it mean to apply a function to two or more values in the context
 of a list?” For example, what does [1000,2000,3000] + [500,20000] mean? The naive assumption might be as follows:

 [1000,2000,3000] + [500,20000] = [1000,2000,3000,500,20000]

 But this would be just adding two lists, which is concatenation (the ++ operator for lists). What you’re curious about is what it means to combine two values in the context of List by using addition. In terms of Applicative, you’d read this statement as follows:

 pure (+) <*> [1000,2000,3000] <*> [500,20000]

 The List data structure alone doesn’t give you enough information to say what this means. To understand how you add two values in
 a list, you need extra context to interpret the general idea of applying a binary function to values in lists.

 The best way to understand List as a context is that it describes nondeterministic computation. Normally, you think of programming as purely deterministic. Each step in the computation is followed by another
 in a precise order that yields one, final result. In nondeterministic computing, you’re computing multiple possibilities all
 at once. In terms of thinking nondeterministically, when you add values in the context of a list, you’re adding together all
 possible values from the two contexts. You can see the somewhat surprising result of using <*> with Lists in GHCi:

 GHCi> pure (+) <*> [1000,2000,3000] <*> [500,20000]
[1500,21000,2500,22000,3500,23000]

 Adding together two Ints in the context of a List means adding all possible combinations of the values in those lists.

 29.3.1. Exploring container vs. context with a list

 It’s important to take a moment and point out the major differences between a list as a container and a list as a context:

 	A list as a container is a sequence of values that can hold any type. Each item in the list points to the next one or to the empty list.

 	A list as a context represents a set of possibilities. Think of a list as a context as being a single variable that can contain many possible
 values.

 Don’t be fooled by your familiarity with List as a container. Both Maybe and IO are much simpler contexts to reason about. A Maybe Int is a single Int value in the context that it may be missing. An IO Int is an Int value in the context that it was produced by an IO action that may have produced side effects or other issues. An [Int] is an Int in the context that there are many possible values for that Int. Because there are many possible values for that [Int], when you apply a function (Int -> Int -> Int) in the context of a list, you must think nondeterministically and compute all possible results of that operation.

 29.3.2. A game show example

 As an example, suppose you’re on a game show and you get to choose one of three doors and then one of two boxes. Behind the
 doors are prizes worth $1,000, $2,000, and $3,000. You don’t know which you’ll get, so you can represent this as a list.

 Listing 29.4. Nondeterministic possibilities for door values

 doorPrize :: [Int]
doorPrize = [1000,2000,3000]

 After the door, you choose one of two boxes; a box can contain either $500 or $20,000. You can represent these possibilities
 as a list as well.

 Listing 29.5. Nondeterministic possibilities for box prizes

 boxPrize :: [Int]
boxPrize = [500,20000]

 In a deterministic context, you can open only one door, and pick only one box, getting only one prize. But if you nondeterministically
 think about this problem, you’re computing all possible combinations of doors you can open and boxes you can pick. Deterministically,
 if you want to talk about prizes, you’re talking about the one prize you can win. Figure 29.4 presents the deterministic and nondeterministic ways to understand your prize.

 Figure 29.4. Thinking of lists as nondeterministic computing is hard because you normally think deterministically.

 [image:]

 The equation for your totalPrize in a deterministic world would be the following (you use the prefix (+) so it’s easy to compare with the Applicative version).

 Listing 29.6. Deterministic door prize can represent only a single path

 totalPrize :: Int
totalPrize = (+) doorPrize boxPrize

 In a nondeterministic context, you’re talking about all possible prizes that can be won. You can describe the nondeterministic
 totalPrize with the function shown in figure 29.5.

 Figure 29.5. Nondeterministic computing computes on all possible paths, rather than just one.

 [image:]

 In GHCi, you can see that totalPrize represents all possible prizes that can be won:

 GHCi> totalPrize
[1500,21000,2500,22000,3500,23000]

 When you add two lists in context, you get the combination of all possible worlds. For each door prize, you can pick one of
 the two possible box prizes. The results of adding two lists within the context of a list are all possible solutions in your
 nondeterministic world.

 Next you’ll look at two more examples of practical nondeterministic computing. You’ll use nondeterministic computing to compute
 all nonprime numbers, allowing you to easily identify primes. Then you’ll use nondeterministic computing to quickly generate
 a set of possible test data.

 	

 Quick check 29.4

 Q1:
Solve this problem if the boxes contain a prize multiplier instead of just an additional prize. The multipliers are 10× and
 50×.

 	

 	

 QC 29.4 answer

 1:

boxMultiplier = [10,50]
newOutcomes = pure (*) <*> doorPrize <*> boxMultiplier

GHCi> newOutcomes
[10000,50000,20000,100000,30000,150000]

 	

 29.3.3. Generating the first N prime numbers

 A prime number is any number divisible by only 1 and itself. Suppose you want to generate a list of prime numbers. There’s an amazingly
 simple method for computing a list of primes using the Applicative properties of a list. Here’s the basic process:

 	Start with your list from 2 to n.

 	Determine all the nonprime numbers (composite numbers).

 	Filter out all items from the list that aren’t composite.

 The only question remaining then is, “How do you compute the composite numbers?” A composite number is any number that results from multiplying two or more other numbers together. You can easily build this list by multiplying
 each number in your [2 .. n] list by itself. How can you do this easily? With Applicative! For example, if you have [2..4], you can use multiplication *, pure, and <*> to build your list of all possible numbers that are made from these numbers:

 GHCi> pure (*) <*> [2 .. 4] <*> [2 .. 4]
[4,6,8,6,9,12,8,12,16]

 This list is inefficient, as it includes numbers out of your range as well as duplicate numbers. But it’ll include every composite
 number in your range. Given this bit of code, you can easily write your function for listing all prime numbers to n.

 Listing 29.7. primesToN, a simple but inefficient primer algorithm

 primesToN :: Integer -> [Integer]
primesToN n = filter isNotComposite twoThroughN
 where twoThroughN = [2 .. n]
 composite = pure (*) <*> twoThroughN <*> twoThroughN
 isNotComposite = not . (`elem` composite)

 Although not the most efficient prime-number-generating algorithm, this is incredibly easy to implement and works well enough
 for reasonably small ranges:

 GHCi> primesToN 32
[2,3,5,7,11,13,17,19,23,29,31]

 If you ever need to whip up a quick prime-number generator, this little trick can be a useful tool to have.

 29.3.4. Quickly generating large amounts of test data

 In the preceding lesson, we showed how a User could be created in different contexts by using Applicative. You used this User type for a user in a video game:

 data User = User {
 name :: String
 , gamerId :: Int
 , score :: Int
 } deriving Show

 You used Applicative to create instances of User in the context of both IO and Maybe. To demonstrate how powerful the list context is, you’ll do the same thing, only to create a large amount of test data.

 Suppose you have a list of usernames, some typical and others problematic in certain cases. Thinking of lists as context,
 testNames represents possible names.

 Listing 29.8. Some testNames for your data

 testNames :: [String]
testNames = ["John Smith"
 ,"Robert'); DROP TABLE Students;--"
 ,"Christina NULL"
 ,"Randall Munroe"]

 You want to test possible gamer IDs with gamerIds.

 Listing 29.9. testIds with different values

 testIds :: [Int]
testIds = [1337
 ,0123
 ,999999]

 And you also want to make sure you have possible troublesome scores as well.

 Listing 29.10. Sample testScores for testing

 testScores :: [Int]
testScores = [0
 ,100000
 ,-99999]

 What you want to do is generate test data that includes all possible combinations of these values. This means nondeterministically
 computing a list of possible users. You could do that by hand, but that would mean writing out 4 × 3 × 3 = 36 entries! Plus,
 if you later decide to add another value to any of those lists, it means a lot of work for you.

 Instead, you can use the Applicative properties of List to nondeterministically generate your test data for you. You’ll do this exactly the same way you created User types for IO and Maybe in the preceding lesson.

 Listing 29.11. Same pattern used for IO and Maybe to generate many test users

 testData :: [User]
testData = pure User <*> testNames
 <*> testIds
 <*> testScores

 In GHCi, you can see that you’ve successfully created a list of all 36 possible combinations of these values. Even better,
 to update your list, you have to add whatever values you like to testNames, testIds, or testScores:

 GHCi> length testData
36
GHCi> take 3 testData
[User {name = "John Smith", gamerId = 1337, score = 0}
,User {name = "John Smith", gamerId = 1337, score = 100000}
,User {name = "John Smith", gamerId = 1337, score = -99999}]

 Using the List type to perform nondeterministic computing shows how powerful the Applicative type class can be when working with contexts!

 	

 Quick check 29.5

 Q1:
Add your own name to testNames and regenerate the data. How many examples are there now?

 	

 	

 QC 29.5 answer

 1:

testNames = ["Will Kurt"
 , "John Smith"
 ,"Robert'); DROP TABLE Students;--"
 ,"Christina NULL"
 ,"Randall Munroe"]

testData :: [User]
testData = pure User <*> testNames
 <*> testIds
 <*> testScores

 There are now 45 examples.

 	

 Summary

 In this lesson, our objective was to give you a deeper insight into the Applicative type class. You were formally introduced to the full Applicative type class, which includes the <*> operator you learned in the preceding lesson, as well as the pure method. The role of pure is to take normal values and put them into the context you need; for example, turning an Int into a Maybe Int. You also focused on the differences between containers and contexts by exploring a list as a context. Contexts differ from
 containers in that they require you to understand something about the computation happening beyond what the data structure
 alone tells you. For lists, this means representing nondeterministic computation, rather than just a container for sequential
 data. Let’s see if you got this.

 Q29.1
To prove that Applicative is strictly more powerful than Functor, write a universal version of fmap, called allFmap, that defines fmap for all members of the Applicative type class. Because it works for all instances of Applicative, the only functions you can use are the methods required by the Applicative type class. To get you started, here’s your type signature:

 allFmap :: Applicative f => (a -> b) -> f a -> f b

 When you’re finished, test this out on List and Maybe, which are both members of Applicative:

 GHCi> allFmap (+ 1) [1,2,3]
[2,3,4]
GHCi> allFmap (+ 1) (Just 5)
Just 6
GHCi> allFmap (+ 1) Nothing
Nothing

 Q29.2
Translate the following expression into one where the result is a Maybe Int. The catch is that you may not add (or remove) anything to the code except pure and <*>. You can’t use the Just constructor or any extra parentheses.

 example :: Int
example = (*) ((+) 2 4) 6

 Here’s the type signature for your answer:

 exampleMaybe :: Maybe Int

 Q29.3
Take the following example and use nondeterministic computing with Lists to determine how much beer you need to purchase to assure there will be enough:

 	You bought beer last night but don’t remember whether it was a 6-pack or a 12-pack.

 	You and your roommate each had two beers last night.

 	You’re having either two or three friends coming over tonight, depending on who can come.

 	For a long night of gaming, you expect the average person to drink three to four beers.

Lesson 30. Introducing the Monad type class

 After reading lesson 30, you’ll be able to

 	Understand the limitations of both Functor and Applicative

 	Use Monad’s (>>=) operator to chain together functions in a context

 	Write IO code without do-notation

 You’ve just finished learning about two important type classes, Functor and Applicative. Each has allowed you to perform increasingly powerful computations within a context such as Maybe or IO. Functor allows you to change individual values in a context:

 GHCi> (+ 2) <$> Just 3
Just 5

 Applicative increases your power by enabling you to use partial application in a context. This, in turn, allows you to use multiple arguments
 in a context:

 GHCi> pure (+) <*> Just 3 <*> Just 2
Just 5

 In this lesson, you’ll look at the final evolution of this process, the Monad type class. Through one more operator, the Monad type class will allow you to perform any arbitrary computation in a context you’d like. You already saw this power in unit 4 with do-notation, which is syntactic sugar for the methods of the Monad type class.

 Listing 30.1. A quick reminder of do-notation

 main :: IO ()
main = do
 putStrLn "Remember do-notation!"
 putStrLn "It makes things easy!"

 To understand why you need the Monad type class, you’ll ignore do-notation for this lesson and see why you need Monads at all, given how powerful Functor and Applicative are. Because do-notation does make life much easier, you’ll revisit it in the next lesson.

 You’ll start this lesson by looking at two relatively straightforward problems that are frustratingly challenging to solve
 with Functor or Applicative. You’ll then learn about Monad’s powerful bind operator, and how it can make these problems easy to solve. You’ll conclude this lesson by using Monad’s methods to write IO actions similar to what you used do-notation for in unit 4.

 	

 Consider this

 How would you write a single IO action that reads in a number from the user, doubles it, and prints that value back to the user, without using do-notation?

 	

 30.1. The limitations of Applicative and Functor

 Remembering back to our visual representation of Functor, Applicative, and Monad, you’ve solved three of the four possible mismatches. The Functor’s fmap provides an adapter when you have a value in a context and a regular function, and want your result in a context, as shown
 in figure 30.1.

 Figure 30.1. A visualization of the mismatch between function and context that Functor solves

 [image:]

 Applicative’s <*> allows you to connect a function in a context with values in a context, as shown in figure 30.2.

 Figure 30.2. Applicative's <*> solves the problem of functions themselves being in a context.

 [image:]

 And finally, Applicative’s pure method allows you to handle the case of your final result not being in a context, as shown in figure 30.3.

 Figure 30.3. Applicative’s pure method means you can always put a result into a context.

 [image:]

 This leaves one problem left to solve, when the initial argument isn’t in a context but its result is, as shown in figure 30.4.

 Figure 30.4. This is the only pattern you need a solution for; the Monad type class provides an answer.

 [image:]

 After you have a solution for this last pattern, you have a solution for using any possible function in a context. This last
 case may initially seem like an odd one, but it appears often. Next you’ll investigate two examples of when this comes up
 and how Functor and Applicative can’t help.

 30.1.1. Combining two Map lookups

 In this section, you’ll explore a common issue of needing to look up a value in one Map in order to access another value in a second Map. This can happen anytime you need one value to look up another, such as the following:

 	Looking up a zip code to find a city, and then looking up the city to find the state

 	Using an employee name to look up an employee ID, and then using the ID to look up a record

 	Taking a stock ticker and looking up the company name, and then looking up the company location

 You’re writing code for managing user credits for a mobile gaming platform. Currently, each user is identified as a unique
 GamerId that’s just an Int. Suppose that earlier instances of your program used a unique Username, a String, to associate a user with the credits in their account. Because of this legacy dependence of Username as an identity, to look up user credits on newer users, you still have to look up a Username given a GamerId and then use the Username to look up the credits in their account. Here’s the basic code to get you started.

 Listing 30.2. Basic setup for the problem of combining two Map lookups

 import qualified Data.Map as Map

type UserName = String
type GamerId = Int
type PlayerCredits = Int

userNameDB :: Map.Map GamerId UserName 1
userNameDB = Map.fromList [(1,"nYarlathoTep")
 ,(2,"KINGinYELLOW")
 ,(3,"dagon1997")
 ,(4,"rcarter1919")
 ,(5,"xCTHULHUx")
 ,(6,"yogSOThoth")]

creditsDB :: Map.Map UserName PlayerCredits 2
creditsDB = Map.fromList [("nYarlathoTep",2000)
 ,("KINGinYELLOW",15000)
 ,("dagon1997",300)
 ,("rcarter1919",12)
 ,("xCTHULHUx",50000)
 ,("yogSOThoth",150000)]

 	1 This Map represents the database you’re getting your UserName from, given a GamerId.

 	2 This Map represents the database; you’ll use the UserName to look up PlayerCredits.

 With your sample data in place, you can start working on your main problem: writing a function to look up a user’s credits
 given that user’s GamerId. You want a function that will look up PlayerCredits given a GamerId. You still want your PlayerCredits value to be a Maybe PlayerCredits because it’s entirely possible that either you have a missing GamerId or there’s a missing entry for your GamerID in creditsDB. The function you want is as follows.

 Listing 30.3. Type signature of your goal function, creditsFromId

 creditsFromId :: GamerId -> Maybe PlayerCredits

 To create this function, you have to combine two Map.lookup functions. You’ll create helper functions that abstract out your databases. The lookupUserName function will take a GamerID and give you a Maybe UserName result, and the lookupCredits function will take a UserName and give the user a Maybe Credits result.

 Listing 30.4. The functions to combine: lookupUserName and lookupCredits

 lookupUserName :: GamerId -> Maybe UserName
lookupUserName id = Map.lookup id userNameDB

lookupCredits :: UserName -> Maybe PlayerCredits
lookupCredits username = Map.lookup username creditsDB

 Before you dive deeper, you should think about the type signature of the missing function that you need. You need to connect
 the result of lookupUserName, Maybe Username, with the function lookupCredits, UserName -> Maybe PlayerCredits. For this concrete case, the type signature of your function is as follows:

 Maybe UserName -> (UserName -> Maybe PlayerCredits) -> Maybe PlayerCredits

 Applicative and Functor have taught you to think more abstractly about solving problems in types such as Maybe. The general form of the combining function you want is as follows:

 Applicative f => f a -> (a -> f b) -> f b

 You’ll assume the Applicative constraint rather than Functor only because Applicative is more powerful. If you can’t solve your problem with Applicative, you can’t solve it with Functor either. Now let’s take a look at the tools you get from Applicative and Functor:

 (<$>) :: Functor f => (a -> b) -> f a -> f b
(<*>) :: Applicative f => f (a -> b) -> f a -> f b
pure :: Applicative f => a -> f a

 Unfortunately, for all the power you’ve gained with Applicative, it doesn’t look like any combination of these tools will solve this rather straightforward problem of wanting to chain together
 two functions. You can solve this problem by writing a wrapper for lookup-Credits to be a function of Maybe UserName -> Maybe PlayerCredits.

 Listing 30.5. altLookupCredits, a solution without using Functor or Applicative

 altLookupCredits :: Maybe UserName -> Maybe PlayerCredits
altLookupCredits Nothing = Nothing
altLookupCredits (Just username) = lookupCredits username

 Now you can put together your final creditsFromId function.

 Listing 30.6. Going straight from GamerId -> Maybe PlayerCredits

 creditsFromId :: GamerId -> Maybe PlayerCredits
creditsFromId id = altLookupCredits (lookupUserName id)

 And you can see in GHCi that this works well:

 GHCi> creditsFromId 1
Just 2000
GHCi> creditsFromId 100
Nothing

 This solution works, but having to write a wrapper function to make it work for Maybe should be a warning at this point. In lesson 28, you saw a similar pattern of being forced to write a wrapper function to work in a context as motivating more powerful type
 classes. But at this point, you might not be convinced of the need for yet another, even more powerful type class.

 	

 Quick check 30.1

 Q1:
Interestingly enough, the following function seems to do what you want and compiles just fine. What’s the issue? (Hint: Look
 at its type signature in GHCi.)

 creditsFromIdStrange id = pure lookupCredits <*> lookupUserName id

 	

 	

 QC 30.1 answer

 1:

The trouble with this function is that it returns a Maybe (Maybe PlayerCredits). That’s a nested Maybe!

 	

 30.1.2. Writing a not-so-trivial echo IO action

 The reason your problem with Maybe doesn’t seem so bad is that Maybe is an easy context to work in. You can always manually create a solution to any Maybe problem by a clever use of pattern matching on Just and Nothing. The IO type, on the other hand, isn’t nearly as friendly. To demonstrate this, let’s attempt to solve an easy-looking problem. You
 want to write a simple IO action, echo. The echo action is a single action that reads in user input and immediately prints it back. To do this, you need to combine two IO actions that you already know well:

 getLine :: IO String
putStrLn :: String -> IO ()

 And of course the type of echo is as follows:

 echo :: IO ()

 You need to combine getLine with putStrLn. If you once again think of this problem in types, you’ll see a familiar pattern. You need a function that combines getLine and putStrln and returns an IO String:

 IO String -> (String -> IO ()) -> IO ()

 If you abstract this out, you have this:

 Applicative f => f a -> (a -> f b) -> f b

 This is exactly the same type signature you ended up with before. To solve this problem, you need something strictly more
 powerful than either Functor or Applicative. This finally brings you to the Monad type class!

 	

 Quick check 30.2

 Q1:
Why can’t you write a function like creditsFromId to solve this problem?

 altLookupCredits :: Maybe UserName -> Maybe PlayerCredits
altLookupCredits Nothing = Nothing
altLookupCredits (Just username) = lookupCredits username

creditsFromId :: GamerId -> Maybe PlayerCredits
creditsFromId id = altLookupCredits (lookupUserName id)

 	

 	

 QC 30.2 answer

 1:

You have no way of getting a value out of an IO context as you do a Maybe context. You need more powerful tools such as Applicative and Functor to work with IO types.

 	

 30.2. The bind operator: >>=

 The missing operator you need is >>= (pronounced bind) and has the following type signature:

 (>>=) :: Monad m => m a -> (a -> m b) -> m b

 As you can see, (>>=) has exactly the signature you were looking for! From the type class constraint, you can see that >>= is a member of the Monad type class. Maybe and IO are both instances of Monad, which means you can use >>= to solve your problems. With bind, you can find a more elegant solution to your creditFromId function.

 Listing 30.7. creditsFromId rewritten to use bind instead of pattern matching

 creditsFromId :: GamerId -> Maybe PlayerCredits
creditsFromId id = lookupUserName id >>= lookupCredits

 As you can see, >>= allows you to chain together a function of a type (a -> m b). In the case of Maybe, this means you can endlessly chain together lookups. For example, suppose you have yet another level of indirection. Imagine
 your mobile gaming company was purchased by WillCo Industries, and now each GamerId is itself associated with a WillCoId.

 Listing 30.8. Adding yet another Map to lookup in order to get a user’s credit

 type WillCoId = Int

gamerIdDB :: Map.Map WillCoId GamerId
gamerIdDB = Map.fromList [(1001,1)
 ,(1002,2)
 ,(1003,3)
 ,(1004,4)
 ,(1005,5)
 ,(1006,6)]

lookupGamerId :: WillCoId -> Maybe GamerId
lookupGamerId id = Map.lookup id gamerIdDB

 Now you need a new function, creditsFromWCId, of type WillCoId -> Maybe PlayerCredits. You can easily create this by chaining all three of your lookup functions with >>=.

 Listing 30.9. You can chain together arbitrarily many lookups with >>=

 creditsFromWCId :: WillCoId -> Maybe PlayerCredits
creditsFromWCId id = lookupGamerId id >>= lookupUserName >>= lookupCredits

 In GHCi, you can see that this works as expected:

 GHCi> creditsFromWCId 1001
Just 2000
GHCi> creditsFromWCId 100
Nothing

 Although using >>= made chaining together Maybe functions much easier, it’s essential to solving your IO action problem. When you left off, you wanted to chain together getLine and putStrLn. But you were absolutely stuck because there was no way to combine these actions and there was no way to crack open the IO type to write a wrapper as you did for Maybe. With >>=, creating an echo function is trivially easy. Let’s put what you know into an echo.hs file and see how it behaves.

 Listing 30.10. Using >>= to create your echo function

 echo :: IO ()
echo = getLine >>= putStrLn

main :: IO ()
main = echo

 If you compile this program, you can see that it behaves as expected:

 $ ghc echo.hs
$./echo
Hello World!
Hello World!

 The >>= operator is the heart of the Monad type class. Though relatively simple, the >>= operator is the final piece in your puzzle. Now that you have <$>, <*>, pure, and >>=, you can chain together any computation you need in a context.

 	

 Quick check 30.3

 Q1:
Combine readInt and printDouble (defined next) into a single IO action:

 readInt :: IO Int
readInt = read <$> getLine

printDouble :: Int -> IO ()
printDouble n = print (n*2)

 	

 	

 QC 30.3 answer

 1:

readInt :: IO Int
readInt = read <$> getLine

printDouble :: Int -> IO ()
printDouble n = print (n*2)

readInt >>= printDouble

 	

 30.3. The Monad type class

 In the same way the Applicative type class extends the power of Functor, the Monad type class extends the power of Applicative. See figure 30.5.

 Figure 30.5. Functor is a superclass of Applicative, which is a superclass of Monad.

 [image:]

 Here’s the definition of Monad:

 class Applicative m => Monad (m :: * -> *) where
 (>>=) :: m a -> (a -> m b) -> m b
 (>>) :: m a -> m b -> m b
 return :: a -> m a
 fail :: String -> m a

 Here you have four important methods in your type class definition. The only method required for the minimum definition of
 Monad is >>=. You’ve already seen how >>= lets you chain together a sequence of functions that put a normal value into a context. The fail method handles the case of errors happening in your Monad. For Maybe, fail returns Nothing; and for IO, fail raises an I/O error. You’ll discuss fail in more depth in unit 7 when we discuss handling errors in Haskell. That leaves only >> and return to explain.

 The return method should look awfully familiar. If you compare this to pure, you’ll find they’re nearly identical:

 pure :: Applicative f => a -> f a
return :: Monad m => a -> m a

 The only difference is that pure has a type class restraint on Applicative, whereas return has a constraint on the Monad type class. It turns out that pure and return are identical and have different names only for historical reasons. The Monad type class predates the Applicative type class, so the return method exists for legacy reasons. Because every Monad must be an Applicative, it would be reasonable to use pure over return because pure will work everywhere return does. But this isn’t typically the case. When using pure in the context of Monad, it’s preferable to stick with return.

 Finally, you can look at the >> operator. If you look carefully, >> has a rather strange type signature, as shown in figure 30.6.

 Figure 30.6. The >> operator has a strange type signature but is useful for Monads with side effects.

 [image:]

 It looks like this operator throws away the first m a type. It turns out this is exactly what >> does. Why would you want this? It’s particularly useful in contexts that produce side effects such as IO (there are others, which we’ll discuss in unit 7). So far, the only context you’ve seen like this is IO. Whenever you use putStrLn, you don’t get anything back. It’s common that you’ll want to print something to the user and just throw away the IO () result. For example, you might want to modify your echo.hs program so that it lets your user know what it’s doing.

 Listing 30.11. Showing the benefit of >> with a verbose version of echo

 echoVerbose :: IO ()
echoVerbose = putStrLn "Enter a String an we'll echo it!" >>
 getLine >>= putStrLn

main :: IO ()
main = echoVerbose

 When working with IO, >> is useful anytime you need to perform an IO action that doesn’t meaningfully return a value.

 30.3.1. Using Monad to build a Hello <Name> program

 To demonstrate how you tie all these together, let’s write a simple IO action that will ask a user’s name, and then print out "Hello, <NAME>!". You need to chain together a few basic functions to do this. The first is an IO action that will ask for the name; this is simply putStrLn with your question.

 Listing 30.12. askForName IO action

 askForName :: IO ()
askForName = putStrLn "What is your name?"

 The next IO action you need to use is getLine. After that, you need to take the result of getLine and make your "Hello, <NAME>!" string. This function is a regular function of the form String -> String.

 Listing 30.13. nameStatement works on normal String rather than IO String

 nameStatement :: String -> String
nameStatement name = "Hello, " ++ name ++ "!"

 Then you have to send the results of this to putStrLn, and your action is finished. You start with chaining together askForName and getLine with >>, because you don’t need the results:

 (askForName >> getLine)

 The next part is tricky; you now have an IO String, but you need to connect it with name-Statement, which is a regular String -> String function. You can use >>= to do this if you can make nameStatement return an IO String. You could rewrite nameStatement, but a more common solution is to wrap nameStatement in a lambda and use return at the end. Because of type inference, Haskell knows which context to put the type into, as shown in figure 30.7.

 Figure 30.7. Using a lambda expression with return to transform a type a -> a into a -> m a

 [image:]

 	

 Quick check 30.4

 Q1:
Turn (+ 2) from type Num a => a -> a to type Num a => a -> IO a using a lambda and return. Use :t in GHCi to double-check that you’re getting the correct type.

 	

 	

 QC 30.4 answer

 1:

(\n -> return ((+ 2) n))

 	

 This is your program so far:

 (askForName >> getLine) >>= (\name -> return (nameStatement name))

 To finish, you use >>= to return the results to putStrLn. Here’s your final helloName IO action.

 Listing 30.14. Your Hello Name program using Monad methods

 helloName :: IO ()
helloName = askForName >>
 getLine >>=
 (\name ->
 return (nameStatement name)) >>=
 putStrLn

 You can either make this its own program or use GHCi to test it out. Here’s the result in GHCi:

 GHCi> helloName
What is your name?
Will
Hello, Will!

 The great thing about using Monad to solve this problem is that you were able to chain all your functions and actions together relatively easily. The bad part
 is that if you had to add more IO functions such as nameStatement, all these lambdas would get a bit annoying. Additionally, going back and forth with all these operators can be confusing.
 In the next lesson, you’ll see how the do-notation from unit 4 is just syntactic sugar over Monad’s methods.

 Summary

 In this lesson, our objective was to introduce you to the Monad type class. The Monad type class is the final refinement of computing in a context that you started with Functor. The most important method of the Monad type class is the >>= (pronounced bind) operator. You use >>= to chain together functions of the type (a -> m b). This is particularly important for working with the IO type. Unlike Maybe, you can’t trivially use pattern matching to access values inside the IO context. The Monad type class is what makes I/O programming possible. Let’s see if you got this.

 Q30.1
To prove that Monad is strictly more powerful than Functor, write a universal version of <$>, as in the preceding lesson’s exercise, called allFmapM, that defines <$> for all members of the Monad type class. Because it works for all instances of Monad, the only functions you can use are the methods required by the Monad type class (and lambda functions). To get you started, here’s your type signature:

 allFmapM :: Monad m => (a -> b) -> m a -> m b

 Q30.2
To prove that Monad is strictly more powerful than Applicative, write a universal version of <*>, called allApp, that defines <*> for all members of the Monad type class. Because it works for all instances of Monad, the only functions you can use are the methods required by the Monad type class (and lambda functions). To get you started, here’s your type signature:

 allApp :: Monad m => m (a -> b) -> m a -> m b

 This question is much trickier than the last one. Two hints:

 	Try to think exclusively in terms of the type signatures.

 	Use <$> if you want and replace it with your answer to Q29.1

 Q30.3
Implement a bind function which is the same as (>>=) for Maybe:

 bind :: Maybe a -> (a -> Maybe b) -> Maybe b

Lesson 31. Making Monads easier with do-notation

 After reading lesson 31, you’ll be able to

 	Use do-notation to simplify working with Monads

 	Translate from Monad methods and lambdas to do-notation

 	Generate code from one instance of Monad to all Monads

 The Monad type class allows for powerful abstraction when using types in context. But the use of the Monad methods >>=, >>, and return quickly becomes cumbersome. In this lesson, you’ll look at two useful tools that make working with Monads significantly easier. The first is do-notation, which you already made heavy use of in unit 4. Now you’ll get a sense of how do-notation works behind the scenes. After this, you’ll learn about how List works as a Monad. This leads to another abstraction over Monads that makes them even easier to work with: list comprehensions. Although it’s important to understand the methods of the
 Monad type class, in practice most of the work you’ll do with Monads involves using these methods of simplifying your code.

 In the preceding lesson, you left off with a helloName IO action that asks the user for their name and then says hello to them.

 Listing 31.1. helloName

 askForName :: IO ()
askForName = putStrLn "What is your name?"

nameStatement :: String -> String
nameStatement name = "Hello, " ++ name ++ "!"

helloName :: IO ()
helloName = askForName >>
 getLine >>=
 (\name ->
 return (nameStatement name)) >>=
 putStrLn

 You were able to achieve this by using the methods of the Monad type class. As a refresher, here are those methods:

 	>> allows you to perform an IO action and chain it with another action, ignoring its value.

 	>>= allows you to perform an IO action and then hand off the return value of that function to another waiting for a value.

 	(\x -> return (func x)) allows you to take an ordinary function and have it work in the context of IO.

 The good thing about all this is that now you have the tool to do basically anything that you’d like inside a context such
 as IO or Maybe. Unfortunately, this code is messy, and is difficult to read and write. Thankfully, Haskell has a great solution to this
 problem!

 	

 Consider this

 Write a program by using the tools of the Monad type class that takes a pair of values in a context, and then returns the maximum of each pair. Here’s your type signature
 to get you started:

 maxPairM :: (Monad m, Ord a) => m (a,a) -> m a

 The resulting function should work on IO (a,a), Maybe (a,a), and [(a,a)].

 	

 31.1. Do-notation revisited

 It turns out that you’ve already seen the solution to making your monadic code look cleaner: do-notation. Do-notation is syntactic
 sugar for using >>, >>=, and (\x -> return (func x)). Here’s the previous example rewritten in do-notation.

 Listing 31.2. Rewriting helloName using do-notation

 helloNameDo :: IO ()
helloNameDo = do
 askForName
 name <- getLine
 putStrLn (nameStatement name)

 Figure 31.1 provides an annotated version of this transformation.

 Figure 31.1. Mapping Monad methods to do-notation

 [image:]

 It’s a useful exercise to learn how to translate back and forth between using Monad’s operators and do-notation. In unit 4, you saw this simple Hello World program.

 Listing 31.3. A program illustrating do-notation

 helloPerson :: String -> String
helloPerson name = "Hello" ++ " " ++ name ++ "!"

main :: IO ()
main = do
 name <- getLine
 let statement = helloPerson name
 putStrLn statement

 You can desugar main, as shown in figure 31.2.

 Figure 31.2. Desugaring do-notation

 [image:]

 If you’re having trouble understanding the translation of let and <- into lambda expressions, it’d be a good idea to review lesson 3 from unit 1. For reasons that should be clear, do-notation is strongly preferred for nontrivial use of monadic operators. But for simple
 cases such as an echo function, using >>= is often easier than doing things with do-notation.

 Listing 31.4. A trivial IO action in which >>= makes more sense than do

 echo :: IO ()
echo = getLine >>= putStrLn

 When learning Haskell, it’s okay if translating back and forth between do-notation and lambda with Monad methods takes some work. The important thing is to realize that there’s nothing magic about do-notation.

 	

 Quick check 31.1

 Q1:
Rewrite echo by using do-notation.

 	

 	

 QC 31.1 answer

 1:

echo :: IO ()
echo = do
 val <- getLine
 putStrLn val

 	

 31.2. Using do-notation to reuse the same code in different contexts

 In unit 4, when you first saw do-notation, you briefly touched on the idea that the power of the Monad type class is that it allows you to create different programs by using the same code in different contexts. The example you
 used in lesson 21 was creating an I/O program that asked a user for information about comparing the costs of two pizzas. Because do-notation
 works on all members of Monad, you were able to trivially translate this program to work with Maybe types when your values came from Data.Maps rather than IO.

 To further demonstrate the idea that Monad allows you to easily reuse code across different contexts, you’re going to look at a series of examples of using the same
 code in different contexts. The fundamental issue is processing data on job candidates for your company. You want to determine
 whether they’ve passed or failed your interview process. You’ll see how the same code can handle candidates in the context
 of IO, Maybe, and even List. In the end, you’ll be able to refactor the code you’ve reused in each section to a single function that works on all instances
 of Monad.

 31.2.1. The problem setup

 To get started, you need to model your candidate data. Each Candidate is tracked by a unique ID. During the interview, candidates are given a code review and a culture fit interview. Each of
 these is scored by using a grade.

 Listing 31.5. The Grade data type code review and culture fit

 data Grade = F | D | C | B | A deriving (Eq, Ord, Enum, Show, Read)

 Because you have a variety of research positions, you also keep track of the candidates’ education level, and some positions
 require a minimum degree.

 Listing 31.6. The Degree data type for highest level of education

 data Degree = HS | BA | MS | PhD deriving (Eq, Ord, Enum, Show, Read)

 Here’s your final model for your Candidate.

 Listing 31.7. The Candidate data type representing performance on an interview

 data Candidate = Candidate
 { candidateId :: Int
 , codeReview :: Grade
 , cultureFit :: Grade
 , education :: Degree } deriving Show

 The big thing you want to do is determine whether a candidate is viable. If a candidate is viable, you’ll pass that person
 on to a committee for review. Here’s your code for viable, which makes sure a candidate passes your minimum requirements.

 Listing 31.8. The viable function checks how well your Candidate did

 viable :: Candidate -> Bool
viable candidate = all (== True) tests
 where passedCoding = codeReview candidate > B
 passedCultureFit = cultureFit candidate > C
 educationMin = education candidate >= MS
 tests = [passedCoding
 ,passedCultureFit
 ,educationMin]

 Next you’ll look at three contexts in which you might want to check whether a candidate is viable.

 	

 Quick check 31.2

 Q1:
Create a Candidate type and see whether that candidate is viable.

 	

 	

 QC 31.2 answer

 1:

testCandidate :: Candidate
testCandidate = Candidate
 { candidateId = 1
 , codeReview = A
 , cultureFit = A
 , education = PhD }

GHCi> viable testCandidate
True

 	

 31.2.2. The IO context—building a command-line tool

 Your first case is building a command-line tool so that someone can manually enter in the data about a candidate. This task
 should be similar to the types of problems you solved in unit 4. The only difference is that in unit 4 you treated do-notation a bit like magic. The first thing you need is a bunch of simple IO actions to read in Int, Grade, and Degree types. You could use do-notation to implement these actions, but this is a great example of when using >>= comes in handy. Each of these actions needs a way to connect getLine with reading the result, and finally returning that result back as an IO type.

 Listing 31.9. Useful IO actions for building your Candidate

 readInt :: IO Int
readInt = getLine >>= (return . read)

readGrade :: IO Grade
readGrade = getLine >>= (return . read)

readDegree :: IO Degree
readDegree = getLine >>= (return . read)

 With these helper actions, you can create a single IO action that reads in a candidate. For this action, all you’re doing is adding output to help the user understand what to
 enter. This use of do-notation is exactly the same type of problem you solved in unit 4, so it should feel fairly familiar.

 Listing 31.10. A single function to read your candidate in from the command line

 readCandidate :: IO Candidate
readCandidate = do
 putStrLn "enter id:"
 cId <- readInt
 putStrLn "enter code grade:"
 codeGrade <- readGrade
 putStrLn "enter culture fit grade:"
 cultureGrade <- readGrade
 putStrLn "enter education:"
 degree <- readDegree
 return (Candidate { candidateId = cId
 , codeReview = codeGrade
 , cultureFit = cultureGrade
 , education = degree })

 The core logic of your program is an assessCandidateIO action. This will take in a candidate, check whether the candidate is viable, and then return a String as passed if the candidate passed; otherwise it will return failed. You can write this action easily by using do-notation.

 Listing 31.11. An IO action that lets you know if candidate passed/failed

 assessCandidateIO :: IO String
assessCandidateIO = do
 candidate <- readCandidate
 let passed = viable candidate
 let statement = if passed
 then "passed"
 else "failed"
 return statement

 You could put this in a main, compile your program, and run it, but in this case it’s easier to use GHCi:

 GHCi> assessCandidateIO
enter id:
1
enter code grade:
A
enter culture fit grade:
B
enter education:
PhD
"passed"

 Because you have the Monad type class, you have an easy way to take a Candidate that wasn’t designed with I/O in mind and use that Candidate in the IO context.

 	

 Quick check 31.3

 Q1:
Rewrite readGrade with do-notation.

 	

 	

 QC 31.3 answer

 1:

readGradeDo :: IO Grade
readGradeDo = do
 input <- getLine
 return (read input)

 	

 31.2.3. The Maybe context—working with a map of candidates

 Entering users one by one in the command line is a tedious way to check candidate data. In our next example, you’ll use Data.Map to store a bunch of candidates and then look them up. First you need a few candidates to work with.

 Listing 31.12. Example candidates

 candidate1 :: Candidate
candidate1 = Candidate { candidateId = 1
 , codeReview = A
 , cultureFit = A
 , education = BA }

candidate2 :: Candidate
candidate2 = Candidate { candidateId = 2
 , codeReview = C
 , cultureFit = A
 , education = PhD }

candidate3 :: Candidate
candidate3 = Candidate { candidateId = 3
 , codeReview = A
 , cultureFit = B
 , education = MS }

 Then you can put all these candidates into candidateDB.

 Listing 31.13. Putting your example candidates in a Data.Map

 candidateDB :: Map.Map Int Candidate
candidateDB = Map.fromList [(1,candidate1)
 ,(2,candidate2)
 ,(3,candidate3)]

 Once again you want to assess your candidates and return a string if you’ve found them. Now you can use your candidateDB. Because each lookup will return a Maybe type, you have a problem in a different context than the IO case before. In the last example, you were worried about interacting with a user; now you’re concerned with passing around
 potentially missing values. To handle this, you need a function that looks a lot like assessCandidateIO but works for Maybe types.

 Listing 31.14. Similarity between assessCandidateMaybe and assessCandidateIO

 assessCandidateMaybe :: Int -> Maybe String
assessCandidateMaybe cId = do
 candidate <- Map.lookup cId candidateDB
 let passed = viable candidate
 let statement = if passed
 then "passed"
 else "failed"
 return statement

 Now all you have to do is pass in a potential candidate’s ID and you’ll get your result in a Maybe context:

 GHCi> assessCandidateMaybe 1
Just "failed"
GHCi> assessCandidateMaybe 3
Just "passed"
GHCi> assessCandidateMaybe 4
Nothing

 Notice that your code is essentially identical. This is because after you assign a variable with <- in do-notation, you get to pretend it’s an ordinary type that’s not in a particular context. The Monad type class and do-notation have abstracted away the context you’re working in. The immediate benefit in this case is you
 get to solve your problem without having to think about missing values at all. The larger benefit in terms of abstraction
 is that you can start thinking about all problems in a context in the same way. Not only is it easier to reason about potentially
 missing values, but along the way you can start designing programs that work in any context.

 	

 Quick check 31.4

 Q1:
Write a simple function Maybe String -> String that will print failed/passed if there’s a result and error id not found for the Nothing constructor.

 	

 	

 QC 31.4 answer

 1:

failPassOrElse :: Maybe String -> String
failPassOrElse Nothing = "error id not found"
failPassOrElse (Just val) = val

 	

 31.2.4. The List context—processing a list of candidates

 It should come as no surprise that List is also a Monad, as List is an example of virtually every feature of Haskell. In the next lesson, you’ll look more into what this means, but for now
 let’s see what happens when you want to look at a list of candidates.

 Listing 31.15. A list of possible candidates

 candidates :: [Candidate]
candidates = [candidate1
 ,candidate2
 ,candidate3]

 Because List is an instance of Monad, you should be able to convert your other assess-Candidate function into an assessCandidateList function. If you do and pass in a list, you get a useful result.

 Listing 31.16. Assessing a list of candidates using List as a Monad

 assessCandidateList :: [Candidate] -> [String]
assessCandidateList candidates = do
 candidate <- candidates
 let passed = viable candidate
 let statement = if passed
 then "passed"
 else "failed"
 return statement

 As you can see in GHCi, this checks each of your candidates in the list to see whether they pass and returns a list indicating
 whether candidates have passed or failed:

 GHCi> assessCandidateList candidates
["failed","failed","passed"]

 Once again, you haven’t done much to change the core logic of your assessCandidateX functions. Working with lists by using the tools of the Monad type class, you can treat entire lists as single values. If you didn’t know Haskell, you could easily read the body of your
 assessCandidateList function, but you’d likely assume it was for a single value. You could’ve written this code by using a list function such
 as map.

 Listing 31.17. A list-specific way to assess candidates

 assessCandidates :: [Candidate] -> [String]
assessCandidates candidates = map (\x -> if x
 then "passed"
 else "failed") passed
 where passed = map viable candidates

 But this code has two issues in terms of abstraction. The first is that you’re forced to think of the problem in terms of
 a list. Showing this same code to someone unfamiliar with Haskell, they’d likely be much more confused by the use of map. The second, and more important, is that there’s no way to generalize this code to other types in a context. The assessCandidates code is completely distinct from the assessCandidateIO and assess-CandidateMaybe code you’ve written, even though it does the exact same thing.

 In the next section, you’ll start thinking about problems in terms of Monads and realize that you have a general solution that you can easily put together to solve all three of the contexts you’ve
 explored so far.

 	

 Quick check 31.5

 Q1:
Does assessCandidateList handle the empty list?

 	

 	

 QC 31.5 answer

 1:

It does! Passing any empty list to assessCandidateList returns the empty list.

 	

 31.2.5. Putting it all together and writing a monadic function

 So far, you’ve focused primarily on the way that do-notation and the Monad type class allow you to solve problems while abstracting away the context:

 	You can write code for IO types and not worry about the mismatch between IO Strings and regular Strings.

 	You can write code for Maybe and forget about dealing with missing values.

 	You can even write code for lists and pretend you have only a single value.

 But there’s another benefit to Monad that can emerge as a consequence of letting you forget context when you write programs. The action and two functions you
 wrote—assessCandidateIO, assessCandiateMaybe, and assessCandidateList—all share nearly identical code. Not only is it easier to solve a problem in a specific context with the Monad type class, but you end up with a single solution that works in any context.

 The only limitation to using the same code in all three contexts is that the type signatures are too restrictive. Because
 IO, Maybe, and List are all instances of Monad, you can use a type class constraint in your definition of a universal assessCandidate function. The amazing thing here is you need to change only the type signature of your assessCandidateList function to do this.

 Listing 31.18. The monadic assessCandidate works on IO, Maybe, and List

 assessCandidate :: Monad m => m Candidate -> m String
assessCandidate candidates = do
 candidate <- candidates
 let passed = viable candidate
 let statement = if passed
 then "passed"
 else "failed"
 return statement

 In GHCi, you can now demonstrate by using this single function in three contexts:

 GHCi> assessCandidate readCandidate
enter id:
1
enter code grade:
A
enter culture fit grade:
B
enter education:
PhD
"passed"

GHCi> assessCandidate (Map.lookup 1 candidateDB)
Just "failed"
GHCi> assessCandidate (Map.lookup 2 candidateDB)
Just "failed"
GHCi> assessCandidate (Map.lookup 3 candidateDB)
Just "passed"

GHCi> assessCandidate candidates
["failed","failed","passed"]

 Many of the examples you’ve seen so far show how the Monad type class allows you to write code for regular types and use them in increasingly powerful ways in a context such as Maybe, IO, or List. Here you see how to take code that does work in one of these contexts and generalize it to work in all contexts because
 of Monad.

 Summary

 In this lesson, our objective was to teach you do-notation for working with Monads. The good news is that you already have plenty of experience using do-notation, as it was used heavily in unit 4. It’s still important to understand desugared monadic code as it can help tremendously in debugging and understanding issues
 when working with Monads. You also saw how code written for IO using do-notation can be trivially rewritten for Maybe types. Although this is useful in itself, it also means you can write more generalized code that will work on all Monads. Let’s see if you got this.

 Q31.1
At the end of lesson 21, you saw the following program used to calculate the cost of pizza:

 main :: IO ()
main = do
 putStrLn "What is the size of pizza 1"
 size1 <- getLine
 putStrLn "What is the cost of pizza 1"
 cost1 <- getLine
 putStrLn "What is the size of pizza 2"
 size2 <- getLine
 putStrLn "What is the cost of pizza 2"
 cost2 <- getLine
 let pizza1 = (read size1, read cost1)
 let pizza2 = (read size2, read cost2)
 let betterPizza = comparePizzas pizza1 pizza2
 putStrLn (describePizza betterPizza)

 Desugar this code to use >>=, >>, return and lambda functions rather than do-notation.

 Q31.2
At the end of lesson 21 in unit 4, we first introduced the idea that do-notation isn’t specific to IO. You ended up with this function for a Maybe type:

 maybeMain :: Maybe String
maybeMain = do
 size1 <- Map.lookup 1 sizeData
 cost1 <- Map.lookup 1 costData
 size2 <- Map.lookup 2 sizeData
 cost2 <- Map.lookup 2 costData
 let pizza1 = (size1,cost1)
 let pizza2 = (size2,cost2)
 let betterPizza = comparePizzas pizza1 pizza2
 return (describePizza betterPizza)

 Rewrite this function so it works with the List type (don’t worry if the results seem strange).

 Q31.3
Refactor the maybeMain function from the preceding exercise so that it works with any Monad. You’ll need to change the type signature as well as remove the type-specific parts from the body of the function.

Lesson 32. The list monad and list comprehensions

 After reading lesson 32, you’ll be able to

 	Use do-notation to generate lists

 	Filter results in do-notation by using guard

 	Further simplify do-notation with list comprehensions

 At the end of the preceding lesson, you saw that List is an instance of Monad. You saw only a simple example of using List as a Monad to process a list of candidates.

 Listing 32.1. The assessCandidateList function from the previous lesson

 assessCandidateList :: [Candidate] -> [String]
assessCandidateList candidates = do
 candidate <- candidates 1
 let passed = viable candidate 2
 let statement = if passed 3
 then "passed"
 else "failed"
 return statement 4

 	1 By using <- , you’re able to treat your list of candidates like a single candidate.

 	2 The viable function takes a single candidate as an argument.

 	3 Again you’re treating the results of computation on your candidates as operations on a single Candidate.

 	4 When you return the results, you get your list back.

 What makes using List as a Monad so interesting is that when you assign your list to a variable using <-, you get to treat it as though it were a single value. The rest of this code looks like it’s operating on one candidate,
 and yet the final result is the same as applying your logic to every candidate in a list.

 When you looked at List as Applicative, you saw some initially confusing examples of nondeterministic computing. For example, if you have two lists and use pure (*) to multiply them with <*>, you get every possible combination of the values from the two lists combined:

 GHCi> pure (*) <*> [1 .. 4] <*> [5,6,7]
[5,6,7,10,12,14,15,18,21,20,24,28]

 You may expect List as Monad to be even more confusing, but it turns out to be surprisingly familiar. The list monad allows you to trivially build complicated
 lists in an easy-to-program fashion. This is similar to LINQ in C# or list comprehensions in Python and other languages. It
 turns out there’s even a way to further simplify do-notation for lists that makes generating lists even easier.

 	

 Consider this

 What’s the simplest way to create a list of the square of every odd number less than 20?

 	

 32.1. Building lists with the list monad

 The main use of the list monad is to quickly generate lists. Figure 32.1 shows an example of using the list monad to create a list of powers of 2.

 In GHCi, you can use this to create the first 10 powers of 2:

 GHCi> powersOfTwo 10
[2,4,8,16,32,64,128,256,512,1024]

 Notice that in this definition you can treat the entire list as a single value and the results are as you’d expect. You could
 easily solve this with map, as you would have in unit 1:

 powersOfTwoMap :: Int -> [Int]
powersOfTwoMap n = map (\x -> 2^x) [1 .. n]

 Figure 32.1. Generating lists by thinking of List as a Monad

 [image:]

 But in this case, you’re thinking of a list as a list data structure, not abstracting out the context of the list. For this
 case, the version using map is probably much easier to write and read. But as you generate more complicated lists, being able to focus on how you’d transform
 a single value can be helpful. Here are some more examples of generating lists with do-notation.

 You can combine two lists easily. Suppose you want powers of 2 and 3 as n pairs.

 Listing 32.2. Making a list of pairs by using do-notation

 powersOfTwoAndThree :: Int -> [(Int,Int)]
powersOfTwoAndThree n = do
 value <- [1 .. n] 1
 let powersOfTwo = 2^value 2
 let powersOfThree = 3^value 3
 return (powersOfTwo,powersOfThree) 4

 	1 Again, you’re treating a list as a single value.

 	2 powersOfTwo is a single value representing a list of powers of 2.

 	3 powersOfThree is a single value representing a list of powers of 3.

 	4 When you return this single pair, it’s actually a list of pairs.

 Now you have a list for pairs of powers of 2 and powers of 3:

 GHCi> powersOfTwoAndThree 5
[(2,3),(4,9),(8,27),(16,81),(32,243)]

 In the preceding example, you used one list, value, to generate your powers of 2. If you make two lists and combine them into pairs the same way, you get different results.
 Here’s a function that will generate all possible combinations of odd and even numbers up to n:

 allEvenOdds :: Int -> [(Int,Int)]
allEvenOdds n = do
 evenValue <- [2,4 .. n] 1
 oddValue <- [1,3 .. n] 2
 return (evenValue,oddValue) 3

 	1 evenValue is a single value representing a list.

 	2 oddValue is another single value representing a list.

 	3 Because evenValue and oddValue were created with <-, this pair represents all possible pairs from the two values.

 As you can see in GHCi, you don’t get a list of size n, but rather all possible combinations of even and odd values:

 GHCi> allEvenOdds 5
[(2,1),(2,3),(2,5),(4,1),(4,3),(4,5)]
GHCi> allEvenOdds 6
[(2,1),(2,3),(2,5),(4,1),(4,3),(4,5),(6,1),(6,3),(6,5)]

 	

 Quick check 32.1

 Q1:
Use do-notation to generate pairs of numbers up to 10 and their squares.

 	

 	

 QC 32.1 answer

 1:

valAndSquare :: [(Int,Int)]
valAndSquare = do
 val <- [1 .. 10]
 return (val,val^2)

 	

 32.1.1. The guard function

 Another useful trick is to filter lists. Again you could use filter, but when working with monads, you’d like to be able to reason about a value outside its context. In Control.Monad, a function called guard allows you to filter your values in a list. You have to import Control.Monad to use guard. Here’s a method of generating even numbers by using guard:

 evensGuard :: Int -> [Int]
evensGuard n = do
 value <- [1 .. n]
 guard(even value) 1
 return value

 	1 guard filters out all the values that don’t satisfy your test.

 Although do-notation makes it easy to generate arbitrarily complex lists by using the methods of Monad, there’s a more familiar interface for this.

 	

 Quick check 32.2

 Q1:
Write filter by using guard and do-notation.

 	

 	

 QC 32.2 answer

 1:

guardFilter :: (a -> Bool) -> [a] -> [a]
guardFilter test vals = do
 val <- vals
 guard(test val)
 return val

 	

 	

 The guard function and the Alternative type class

 If you look at guard’s type signature, you find that it’s a strange function. Most notably, it has a type class constraint you haven’t seen before:

 guard :: Alternative f => Bool -> f()

 The Alternative type class is a subclass of Applicative (meaning all instances of Alternative must be instances of Applicative). But, unlike Applicative, Alternative isn’t a superclass of Monad; not all Monads are instances of Alternative. For the guard function, the key method of Alternative is empty, which works exactly like mempty from Monoid. Both List and Maybe are instances of Alternative. List’s empty value is [], and Maybe’s is Nothing. IO, however, isn’t an instance of Alternative. You can’t use guard with IO types.

 When you first encounter guard, it might seem like magic. Surely, there must be some stateful mischief going on behind the scenes! Surprisingly, guard is a completely pure function. It’s far beyond the scope of this book, but if you feel comfortable with Monads, revisit guard and see whether you can implement it yourself. To understand guard, it helps tremendously to translate from do-notation back to >>=, >>, and lambdas. Learning about guard will also teach you a lot about the subtleties of >>. Again, this isn’t a particularly useful exercise for beginners, but highly recommended after you’re comfortable working
 with Monads.

 	

 32.2. List comprehensions

 If you’re a Python developer, you likely find this method of generating lists a bit verbose. Python uses a special syntax
 to generate lists, called list comprehensions. Here’s a Python list comprehension to generate powers of 2:

 Python> [n**2 for n in range(10)]
[1, 2, 4, 8, 16, 32, 64, 128, 256, 512]

 Python’s list comprehensions also allow you to filter a list on a condition. Here’s a list of squares that are even:

 Python> [n**2 for n in range(10) if n**2 % 2 == 0]
[0, 4, 16, 36, 64]

 Because you’ve been playing with do-notation and lists, this should look close, though more compact, to what you’ve been doing.
 Here’s the do-notation version of the last Python list comprehension in Haskell, evenSquares.

 Listing 32.3. evenPowersOfTwo emulates Python’s list comprehensions

 evenSquares :: [Int]
evenSquares = do
 n <- [0 .. 9]
 let nSquared = n^2
 guard(even nSquared)
 return nSquared

 It may come as a bit of a surprise to any Python programmer, but list comprehensions are just specialized applications of
 monads! Of course, our Haskell example is significantly more verbose than Python’s. By this point in your journey to learning
 Haskell, the phrase “Haskell is more verbose than ...” should be surprising. Not to be outdone in terseness, Haskell has a
 further refinement of do-notation specifically for lists: Haskell’s list comprehensions.

 List comprehensions provide an even simpler way of generating lists than do-notation. Figure 32.2 shows how to translate a function, powersOfTwo, from do-notation to a list comprehension.

 Figure 32.2. List comprehensions simplify do-notation even further for generating lists.

 [image:]

 The conversion is reasonably straightforward; here’s powersOfTwoAndThree converted:

 powersOfTwoAndThree :: Int -> [(Int,Int)]
powersOfTwoAndThree n = [(powersOfTwo,powersOfThree)
 | value <- [1 .. n]
 , let powersOfTwo = 2^value 1
 , let powersOfThree = 3^value] 2

 	1 As you can see, this is nearly identical to do-notation, except lines are separated by a commas and the new line is purely
 optional.

 	2 For clarity, the full variable names are used. Typically, shorter variables are used to keep the comprehension a one-liner
 if possible.

 One thing that makes list comprehensions much easier to work with is that you start with the result and then show how it’s
 generated. It’s often easier to understand what a list comprehension is doing just by looking at the beginning of it:

 allEvenOdds :: Int -> [(Int,Int)]
allEvenOdds n = [(evenValue,oddValue) | evenValue <- [2,4 .. n]
 , oddValue <- [1,3 .. n]]

 The guard function is completely abstracted out of list comprehensions:

 evensGuard :: Int -> [Int]
evensGuard n = [value | value <- [1 .. n], even value]

 List comprehensions are a nice way to make working with the list monad even easier. The other great insight here is that if
 you’ve used them in another language, you already have experience writing monadic code! Despite their prominence in Haskell,
 nothing prevents monads from existing in other languages that support the basics of functional programming covered in unit 1: first-class functions, lambda expressions, and closures. You could build a primate list comprehension system in any language
 that supports this. You’d simply have to implement >>=, >>, and return.

 	

 Quick check 32.3

 Q1:
Write a list comprehension that takes the following words

 ["brown","blue","pink","orange"]

 and capitalizes the first letter, and prepends Mr. in front. (Hint: use Data.Char’s toUpper.)

 	

 	

 QC 32.3 answer

 1:

import Data.Char

answer :: [String]
answer = ["Mr. " ++ capVal | val <-
 ["brown","blue","pink","organge","white"]
 , let capVal = (\(x:xs) ->
 toUpper x:xs) val]

 	

 32.3. Monads: much more than just lists

 In this unit’s capstone, you’re going to take abstracting operations on lists one step further by creating a SQL-like interface
 for working with lists. All of this time thinking about the list monad may leave you thinking that monads are all about lists.
 Don’t forget about unit 4! Even though we didn’t discuss it much, nearly every line of code you wrote in that lesson used the Monad type class.

 By the end of this unit, you’ll have taken a deep dive into two ways of thinking in Monads: IO and List. The goal here is to show you how powerful an abstraction the idea of working in a context can be. For IO, you used working in a context to separate stateful, nonpure code necessary for I/O from the rest of your safe, predictable
 program logic. For lists, you’ve seen how to make generating complex data much easier by using the Monad type class. You’ve also seen many examples of using monads to write programs with Maybe types. This has allowed you to write complex programs dealing with missing values while never having to think about how you’ll
 handle those missing values. All three of these contexts are extremely different, and yet the Monad type class allows you to think about them the exact same way.

 Summary

 In this lesson, our objective was to further explain the Monad type class by exploring how List behaves as a member of Monad. It may be surprising for many people learning Haskell to discover that list comprehensions, popular in the Python programming
 language, are equivalent to Monads. Any list comprehension can be trivially converted to do-notation, and any code using do-notation can be trivially desugared
 to >>= and lambdas. The amazing thing about the Monad type class is that it allows you to abstract out the logic you might use in a list comprehension and seamlessly apply it
 to both Maybe types and IO types! Let’s see if you got this.

 Q32.1
Use a list comprehension that generates a list of correct calendar dates, given that you know the number of days in each month.
 For example, it should start with 1 .. 31 for January and be followed by 1 .. 28 for February.

 Q32.2
Translate the preceding question into do-notation, and then into Monad methods and lambdas.

Lesson 33. Capstone: SQL-like queries in Haskell

 This capstone covers

 	Using the Monad type class to create SQL-like queries on lists

 	Generalizing functions written for one Monad (for example, List) to many

 	Organizing functions with types

 In the preceding lesson, you saw how List as a Monad can also be understood as a list comprehension, which is used heavily in Python. In this capstone, you’re going to take your
 use of lists and monads one step further to create a SQL-like interface to lists (and other monads). SQL is used as the primary
 means to query relational databases. It has a clean syntax for representing the relationships between data. For example, if
 you had data about teachers teaching classes, you could query the teachers teaching English like this:

 select teacherName from
teacher inner join course
on teacher.id = course.teacherId
where course.title = "English";

 This allows you to easily combine two data sets, the teacher table and course table, to extract relevant information. You’ll
 build a set of tools you’ll call HINQ (borrowing its name from the similar .NET tool LINQ). HINQ will allow you to query your
 data relationally. You’ll make extensive use of the Monad type class to make this possible. In the end, you’ll have a query tool that

 	Provides a familiar interface for querying relational data in Haskell

 	Is strongly typed

 	Uses lazy evaluation to allow you to pass around queries without executing them

 	Can be used seamlessly with other Haskell functions

 You’ll start by making some select queries on a list, learn to filter your queries with a where function, and finally build
 a join function that allows you to easily combine complex data inside a monad.

 33.1. Getting started

 Let’s start with some basic data. You can put everything you need in a file named hinq.hs. Because you want to see how well
 you can treat lists such as tables in a relational database, you’ll use an example involving students, teachers, courses,
 and enrollments. Figure 33.1 illustrates this setup.

 Figure 33.1. The relationships among the basic data you’ll be working with

 [image:]

 You’ll start with modeling your student. Each student has a name, which you’ll keep to firstName and lastName.

 Listing 33.1. A simple Name data type with its Show instance

 data Name = Name
 { firstName ::String
 , lastName :: String }

instance Show Name where
 show (Name first last) = mconcat [first," ",last]

 Then each student has a grade level.

 Listing 33.2. GradeLevel represents the student’s grade

 data GradeLevel = Freshman
 | Sophmore
 | Junior
 | Senior deriving (Eq,Ord,Enum,Show)

 In addition to these two things, you’ll include a unique student ID. Here’s your Student data type.

 Listing 33.3. The Student data type

 data Student = Student
 { studentId :: Int
 , gradeLevel :: GradeLevel
 , studentName :: Name } deriving Show

 And you want a list of students you can play with.

 Listing 33.4. A list of example students that you can query

 students :: [Student]
students = [(Student 1 Senior (Name "Audre" "Lorde"))
 ,(Student 2 Junior (Name "Leslie" "Silko"))
 ,(Student 3 Freshman (Name "Judith" "Butler"))
 ,(Student 4 Senior (Name "Guy" "Debord"))
 ,(Student 5 Sophmore (Name "Jean" "Baudrillard"))
 ,(Student 6 Junior (Name "Julia" "Kristeva"))]

 With just this list, you can move on to building out your basic operations, select and where. In addition to select and where,
 you’ll also want a join function that will allow you to combine two lists based on a common property.

 Thinking in types, you can reason about these three functions as follows: Your select function needs to take a function representing
 the property being selected and a list of items to select from. Then the result will be a list of the selected property. Figure 33.2 shows the type signature of select.

 Figure 33.2. The type signature of your select function

 [image:]

 Your where function will take a test function (which is just a function from a -> Bool) and a list and will return only the remaining values in the list. The type signature of where is shown in figure 33.3.

 Figure 33.3. The type signature for your where function

 [image:]

 Finally, your join function will take two lists of potentially different types, and then two functions that extract a property
 from each list. It’s important that both properties are of the same type and instances of Eq so they can be compared. The result of join will be a list of tuples of the matching values from the original lists. Here’s
 the type signature for the join function (we’ll explain this in more detail when you implement it):

 Eq c => [a] -> [b] -> (a -> c) -> (b -> c) -> [(a,b)]

 Next you’ll get started with implementing your select and where functions, which will make it easy to perform simple queries
 on lists.

 33.2. Basic queries for your list: select and where

 The functions you’ll start with are select and where. The select clause in SQL allows you to select properties from a table:

 select studentName from students;

 This query gives you all the student names from the students table. In the case of your HINQ queries, you’d expect select to give you all the names from a list of students. The where clause in SQL allows you to condition your select on a given value:

 select * from students where gradeLevel = 'Senior';

 In this SQL statement, you’d select all the entries in the student table that have a grade level of Senior. Notice that in most databases, you’d have to represent the grade level as a String, but in Haskell you get the benefit of using a specific type.

 Now you can move on to implementing these as functions. You’ll preface all the functions for HINQ with an underscore (_), not only because you haven’t covered modules and want to avoid collision, but also because where is a reserved keyword.

 33.2.1. Implementing _select

 The easiest operation to implement is _select. The _select function works just like fmap, only you’ll use the Monad syntax in this case.

 Listing 33.5. The _select function is just fmap

 _select :: (a -> b) -> [a] -> [b]
_select prop vals = do
 val <- vals
 return (prop val)

 Here are a few examples of selecting properties from your students in GHCi:

 GHCi> _select (firstName . studentName) students
["Audre","Leslie","Judith","Guy","Jean","Julia"]
GHCi> _select gradeLevel students
[Senior,Junior,Freshman,Senior,Sophmore,Junior]

 This example may make it seem like _select can choose only a single property, but you can easily use a lambda to make a single function that selects two properties:

 GHCi> _select (\x -> (studentName x, gradeLevel x)) students
[(Audre Lorde,Senior),(Leslie Silko,Junior),(Judith Butler,Freshman),
[image:](Guy Debord,Senior),(Jean Baudrillard,Sophmore),(Julia Kristeva,Junior)]

 Even after all the tricks of functional programming you’ve learned so far, it’s easy to forget how much power combining first-class
 functions with lambda functions can provide.

 One more thing to notice is that your _select function is strictly less powerful than fmap solely because of its type signature. If you had literally defined _select as _select = fmap, your _select function would work on all members of the Functor type class. Later in this capstone, you’ll refactor your code (though for monads), but it’s worth realizing just how powerful
 a type signature can be.

 33.2.2. Implementing _where

 Your _where function will also be surprisingly simple. You’ll create a simple wrapper around guard, which will take a test function and your list. Remember, to use guard, you’ll have to import Control.Monad. The _where function is more complicated than _select because it’s not just the guard function (whereas _select could be defined as fmap). You’ll use the <- assignment to treat your list like a single value and then use your test function with guard to filter out the results that don’t pass your test.

 Listing 33.6. _where allows you to filter your queries

 _where :: (a -> Bool) -> [a] -> [a]
_where test vals = do
 val <- vals
 guard (test val)
 return val

 To show off _where, you’ll start with a helper function that tests whether a String starts with a specific letter.

 Listing 33.7. Check whether a String starts with a particular character using startsWith

 startsWith :: Char -> String -> Bool
startsWith char string = char == (head string)

 Now you can use where and select together to select only the students with names starting with J:

 GHCi> _where (startsWith 'J' . firstName) (_select studentName students)
[Judith Butler,Jean Baudrillard,Julia Kristeva]

 With the basics of _select and _where down, you can start to look at the heart of relational queries: _join.

 33.3. Joining Course and Teacher data types

 Before you join two data sets, you need to create more data. You’ll look at teachers and courses next. Your Teachers have a teacherId and a teacherName.

 Listing 33.8. A Teacher data type

 data Teacher = Teacher
 { teacherId :: Int
 , teacherName :: Name } deriving Show

 Here are some example teachers.

 Listing 33.9. A list of example teachers

 teachers :: [Teacher]
teachers = [Teacher 100 (Name "Simone" "De Beauvior")
 ,Teacher 200 (Name "Susan" "Sontag")]

 Your courses have a courseId, a courseTitle, and a teacher. The teacher is an Int that represents the teacherId of the Teacher leading the Course.

 Listing 33.10. Course data type references a Teacher by ID

 data Course = Course
 { courseId :: Int
 , courseTitle :: String
 , teacher :: Int } deriving Show

 And you need some examples.

 Listing 33.11. A list of example courses

 courses :: [Course]
courses = [Course 101 "French" 100
 ,Course 201 "English" 200]

 Now what you want is to join these two data sets. In SQL terms, the join you’re describing is an inner join, meaning that you care only about matching pairs. In SQL, the following query returns pairs of teachers and the class they
 teach:

 select * from
teachers inner join courses
on (teachers.teacherId = courses.teacher);

 You’re going to assume that for your _join, you’ll be checking to see whether a given property of data in one list is equal to another property in another list. This
 will have a rather large type signature. What you want to pass into your _join function is two lists, and then a function to select the property to join those lists on, and finally it will return those
 lists combined. Figure 33.4 shows the type signature to help you understand the process.

 Figure 33.4. Reading the type signature for _join

 [image:]

 You’ll create your _join the same way a join works in the relational algebra used to create databases. You’ll start by computing the Cartesian product
 of your two lists (by itself, this is a cross join in SQL). The Cartesian product is the combination of all possible pairs. Before you return the result, you’ll filter these pairs out by matching property
 values (based on the properties you passed in, as shown in figure 33.5).

 Figure 33.5. The _join function joins two data sets on matching properties.

 [image:]

 You can use _join to combine your teachers and courses:

 GHCi> _join teachers courses teacherId teacher
[(Teacher {teacherId = 100, teacherName = Simone De Beauvior},
[image:]Course {courseId = 101, courseTitle = "French", teacher = 100}),
[image:](Teacher {teacherId = 200, teacherName = Susan Sontag},Course
[image:]{courseId = 201, courseTitle = "English", teacher = 200})]

 With the three major parts of your query language together, you can start packaging _select, _where, and _join into an easier-to-use format.

 33.4. Building your HINQ interface and example queries

 You want to make it a bit easier to stick together the pieces of your query. Here’s an example of using all three functions
 to find a list of English teachers (there’s only one).

 Listing 33.12. You need a way to pleasantly combine _join, _select , and _where

 joinData = (_join teachers courses teacherId teacher)
whereResult = _where ((== "English") . courseTitle . snd) joinData
selectResult = _select (teacherName . fst) whereResult

 This solution is okay, but what you want is your query to feel like a SQL query. Typically, SQL queries are structured like
 this:

 select <elements> from <data> where <tests>

 Your data can be either a list or data created from joining two lists together. You want to be able to restructure your query
 so it looks like this:

 (_select (teacherName . fst))
(_join teachers courses teacherId teacher)
(_where ((== "English") .courseTitle . snd))

 You can achieve this by using lambda functions to restructure your code so it looks the way you want it to. You’ll create
 a function called _hinq that will take the _select,_join, and _where queries in the order you expect and then use lambdas behind the scenes to restructure everything.

 Listing 33.13. _hinq function allows you to restructure your query

 _hinq selectQuery joinQuery whereQuery = (\joinData ->
 (\whereResult ->
 selectQuery whereResult)
 (whereQuery joinData)
) joinQuery

 The _hinq function can be used to run your query. Obviously, this code isn’t a perfect replication of SQL or LINQ, but it’s pretty
 close and allows you to think about combining two lists in the same way you would a relational query. Here’s the previous
 query restructured using your _hinq function.

 Listing 33.14. Using _hinq allows you to approximate SQL syntax in Haskell

 finalResult :: [Name]
finalResult = _hinq (_select (teacherName . fst))
 (_join teachers courses teacherId teacher)
 (_where ((== "English") .courseTitle . snd))

 There’s one small annoyance left. Suppose you want to get the first names from your finalResult for all teachers, not just those teaching English. To do this, you wouldn’t need a _where clause. You can solve this by using (_ -> True), which will automatically make everything True.

 Listing 33.15. One possible solution to a missing _where

 teacherFirstName :: [String]
teacherFirstName = _hinq (_select firstName)
 finalResult
 (_where (_ -> True))

 This works, but it’s no fun to have to remember to pass in this universally true statement. And Haskell doesn’t support default
 arguments. How can you make an easier way to deal with cases with missing where clauses? You’ll use a HINQ type that will have two constructors.

 33.5. Making a HINQ type for your queries

 In this section, you’ll create a HINQ type that represents a query. You know that a query can be a select clause, join/data clause, and a where clause, or just
 the first two. This will allow you to run queries with and without _where statements. Before moving on, though, you need to make one more improvement in your _select, _where, and _join functions. Currently, these all operate on lists, but you can generalize this so they work on other monads. To fix this,
 you don’t need to change your code at all, only make your type signatures less restrictive. But you’ll have to add a type
 class constraint. The guard function works on types of the Alternative type class. Alternative is a subtype of Applicative, and includes defining an empty element for the type (a lot like Monoid). Both List and Maybe are members of Alternative, but IO isn’t. To use the Alternative type class, you need to import Control.Applicative. Here are your refactored type signatures that will extend the power of your HINQ queries.

 Listing 33.16. _select, _where, and _join functions can work for all monads

 _select :: Monad m => (a -> b) -> m a -> m b
_where :: (Monad m, Alternative m) => (a -> Bool) -> m a -> m a
_join :: (Monad m, Alternative m, Eq c) => m a -> m b ->
 (a -> c) -> (b -> c) -> m (a,b)

 This is a great example of why writing monadic code is so useful. You start by solving your problem for just the List type. But you can make your code dramatically more generalized by changing the type signatures! If you had used list-specific
 functions, such as map and filter, this would require much more work to refactor. Now that your types are refactored, you can make a generic HINQ type to represent the queries you’re interested in running, as shown in figure 33.6.

 Figure 33.6. Understanding the HINQ data type

 [image:]

 This constructor uses the types of your _selector, _join, and possibly _where functions. With this data type, you can write a runHINQ function that takes a HINQ type and runs the query.

 Listing 33.17. runHINQ function allows you to execute HINQ queries

 runHINQ :: (Monad m, Alternative m) => HINQ m a b -> m b
runHINQ (HINQ sClause jClause wClause) = _hinq sClause jClause wClause
runHINQ (HINQ_ sClause jClause) = _hinq sClause jClause
 (_where (_ -> True))

 The other benefit of having the HINQ type is that it clarifies the originally long type you were working with. Let’s run a few queries to see how it does!

 33.6. Running your HINQ queries

 With your HINQ type, you can start exploring different queries you might want to run. You’ll start by revisiting your English teacher query.
 Here’s the full HINQ query with a type signature:

 query1 :: HINQ [] (Teacher, Course) Name
query1 = HINQ (_select (teacherName . fst))
 (_join teachers courses teacherId teacher)
 (_where ((== "English") .courseTitle . snd))

 Because Haskell uses lazy evaluation, simply defining this query doesn’t run it. This is great because it emulates the behavior
 of .NET LINQ (which also uses lazy evaluation) and it means you can pass around expensive computation without worrying about
 running the queries until you need the result. Another great thing about HINQ is that it’s strongly typed. You’ll easily be
 able to find bugs in your query because Haskell’s type checker will yell at you. Because of type inference, you can always
 choose to leave the type out for quick queries. Run query1 and look at the result:

 GHCi> runHINQ query1
[Susan Sontag]

 If you want to select teacher names from a similar data set, you can omit the where clause and use HINQ_:

 query2 :: HINQ [] Teacher Name
query2 = HINQ_ (_select teacherName)
 teachers

 This is the same as using _select on teachers by itself, but it shows that your query type works even for extremely simple cases. You can see that you get
 the results you expect in GHCi:

 GHCi> runHINQ query2
[Simone De Beauvior,Susan Sontag]

 Lists are the most common use of something like HINQ, but remember that you refactored it to work with all members of Monad and Alternative. Next you’ll look at an example of querying a Maybe.

 33.6.1. Using HINQ with Maybe types

 It’s not hard to imagine that you could end up with a Maybe Teacher and a Maybe Course. Just because you don’t have a list of values doesn’t mean you don’t want to join your teacher with the course. Here’s an
 example of a possible Teacher and a possible Course.

 Listing 33.18. Because it’s written for monads you can query Maybe types

 possibleTeacher :: Maybe Teacher
possibleTeacher = Just (head teachers)

possibleCourse :: Maybe Course
possibleCourse = Just (head courses)

 Running a query with a Maybe type means that you’ll get results only if the query doesn’t fail. It can fail from missing data or because it doesn’t find a match. Here’s your English teacher query again for Maybe types.

 Listing 33.19. An example of a Maybe query

 maybeQuery1 :: HINQ Maybe (Teacher,Course) Name
maybeQuery1 = HINQ (_select (teacherName . fst))
 (_join possibleTeacher possibleCourse
 teacherId teacher)
 (_where ((== "French") .courseTitle . snd))

 Even in a Maybe context, you can still think relationally, run queries, and get your results:

 GHCi> runHINQ maybeQuery1
Just Simone De Beauvior

 If you had a missing course, you can still safely run the query.

 Listing 33.20. You can join Maybe data and easily handle the case of missing data

 missingCourse :: Maybe Course
missingCourse = Nothing

maybeQuery2 :: HINQ Maybe (Teacher,Course) Name
maybeQuery2 = HINQ (_select (teacherName . fst))
 (_join possibleTeacher missingCourse teacherId teacher)
 (_where ((== "French") .courseTitle . snd))

 In GHCi, you can see that the missing data is still handled safely:

 GHCi> runHINQ maybeQuery2
Nothing

 You’ll end this capstone by using HINQ to solve a more complicated problem involving multiple joins.

 33.6.2. Joining multiple lists to get all enrollments

 Next you’ll look at querying your data to determine course enrollment. To do this, you need another data type to represent
 an enrollment. Enrollment is a student ID and a course ID. Here’s the type you’ll use to represent this.

 Listing 33.21. Enrollment relates a Student to a Course

 data Enrollment = Enrollment
 { student :: Int
 , course :: Int } deriving Show

 You can represent all of your student enrollments by creating a list of them, each pairing a student’s ID with a course ID.

 Listing 33.22. A list of example enrollments

 enrollments :: [Enrollment]
enrollments = [(Enrollment 1 101)
 ,(Enrollment 2 101)
 ,(Enrollment 2 201)
 ,(Enrollment 3 101)
 ,(Enrollment 4 201)
 ,(Enrollment 4 101)
 ,(Enrollment 5 101)
 ,(Enrollment 6 201)]

 Suppose you want to get a list of all the students’ names paired with the name of the course they’re enrolled in. To do this,
 you need to join students with enrollments, and then join the result of that with courses. You can get all of the student
 enrollments in one go by using a HINQ_ query. This is a great example of the occasional times you may want to take advantage of type inference. How your queries
 combine types can get complicated, so writing out the full type signature can be tough. Thankfully, type inference takes care
 of all the work for you! This query will join students and enrollments to get a list of courses the students are enrolled
 in.

 Listing 33.23. Queries students and the course they’re enrolled in

 studentEnrollmentsQ = HINQ_ (_select (\(st,en) ->
 (studentName st, course en))
 (_join students enrollments studentId student)

 Even though you didn’t want to have to worry about the type signature of the query, you know the result should be a Name and an Id. When you run this query, you can make sure that this is the type of your result.

 Listing 33.24. Running a query for studentEnrollments

 studentEnrollments :: [(Name, Int)]
studentEnrollments = runHINQ studentEnrollmentsQ

 In GHCi, you can double-check that your query ran as expected.

 GHCi> studentEnrollments
[(Audre Lorde,101),(Leslie Silko,101),(Leslie Silko,201),
[image:](Judith Butler,101),(Guy Debord,201),(Guy Debord,101),
[image:](Jean Baudrillard,101),(Julia Kristeva,201)]

 Now suppose you want to get a list of all English students. To do this, you need to join studentEnrollments with courses. Here’s your query for selecting the name of students enrolled in an English course.

 Listing 33.25. Joining studentEnrollments with courses

 englishStudentsQ = HINQ (_select (fst . fst))
 (_join studentEnrollments
 courses
 snd
 courseId)
 (_where ((== "English") . courseTitle . snd))

 Notice that your _where clause used data in courses, but your select is concerned only about which students are in the course. Now you can run your query and get a list of englishStudents.

 Listing 33.26. Running the englishStudentsQ query to list English students

 englishStudents :: [Name]
englishStudents = runHINQ englishStudentsQ

 With HINQ, you were able to join three lists together just as though they were tables in a relational database.

 You can also use HINQ inside a function to make generic tools for querying your data. Suppose you want a function getEnrollments that would list all the students enrolled in a class. You can pass in the course’s name to the query you used last.

 Listing 33.27. getEnrollments queries your data for enrollments

 getEnrollments :: String -> [Name]
getEnrollments courseName = runHINQ courseQuery
 where courseQuery = HINQ (_select (fst . fst))
 (_join studentEnrollments
 courses
 snd
 courseId)
 (_where ((== courseName) . courseTitle . snd))

 In GHCi, you can see that this function works as expected:

 GHCi> getEnrollments "English"
[Leslie Silko,Guy Debord,Julia Kristeva]
GHCi> getEnrollments "French"
[Audre Lorde,Leslie Silko,Judith Butler,Guy Debord,Jean Baudrillard]

 And there you have it! With the power of monads, you’ve been able to successfully approximate a relational query engine that’s
 reasonably similar to both SQL and LINQ. Not only are your queries easier to read, but you also get lazy evaluation and a
 powerful type system to make your system more efficient and robust. Furthermore, for any new types you have, if you implement
 Monad and Alternative, you can use HINQ on those data types for free! Nearly all the code you wrote to implement used the Monad type class. By combining monads, sum types (your HINQ type), lazy evaluation, and first-class functions, you were able to
 build a powerful query engine from scratch!

 Summary

 In this capstone you

 	Learned how to easily implement _select and _where for lists

 	Used the Cartesian product of two lists to replicate a database join

 	Easily changed functions on lists to functions on monads in general

 	Saw how lambda functions can allow you to restructure the way functions are called

 	Made working with HINQ queries easier by using a HINQ data type

 Extending the exercise

 Now that you have the basics of your HINQ queries down, try to extend them the Haskell way! See if you can implement Semigroup and Monoid for HINQ. For Monoid, you might have to refactor your HINQ type to include the empty query. If you can define Monoid for HINQ, you can concatenate a list of HINQ queries into a single query!

Unit 6. Organizing code and building projects

 Congratulations! You’ve made it through the most challenging topics in the book. Starting with this unit, the rest of this
 book focuses on practical uses of the topics we’ve covered so far. After you’re finished, you should be comfortable building
 a wide range of common programming projects in Haskell.

 In this unit, you’ll look at a topic that will be familiar if you’re an experienced programmer: organizing code and building
 projects. Haskell still has some fun tricks up its sleeve, but nothing that’s as strange as you’ve experienced on your journey
 to get here.

 You’ll start this unit learning about Haskell’s module system. Surprisingly, there’s nothing strange or unique about the purpose
 of Haskell’s modules. Just as in any other programming language, they serve to group functions into a single namespace and
 help organize reusable code. After that, you’ll learn about Haskell’s build system: stack. Again, stack is a typical, though
 solid, build system used to help automate the building of projects. The one interesting, but not particularly challenging,
 topic we’ll cover is Haskell’s QuickCheck testing library. QuickCheck automatically generates test cases for your code based
 on a set of properties that you define.

 After you’ve completed this unit, coding in Haskell should feel more like everyday software development. You’ll conclude this
 unit by building a library for working with prime numbers, and in many ways, this should feel like building a library in just
 about any programming language.

Lesson 34. Organizing Haskell code with modules

 After reading lesson 34, you’ll be able to

 	Understand the main module implicitly used when you create a program

 	Create namespaces for your functions by using modules

 	Separate programs into multiple files

 	Selectively import functions from modules

 Up to this point in the book, we’ve covered a wide range of interesting topics related to Haskell. But we haven’t discussed
 one of the most basic topics: creating namespaces for your functions. Haskell uses a system of modules to create separate
 namespaces for functions and allow you to organize your code much better. This works similarly to modules in languages such
 as Ruby and Python, and to packages and namespaces in languages such as Java and C#.

 You’ve already used Haskell’s module system. Every time you use import, you’re including a new module in your program. Additionally, all the built-in functions and types you have—such as [], length, and (:)—are all included in the standard module named Prelude that’s automatically imported. The full documentation for Prelude can be found on Hackage (https://hackage.haskell.org/package/base/docs/Prelude.html).

 So far in this book, we’ve avoided modules by keeping all of your code in the same file and giving your functions unique names
 when there’s a conflict. In this lesson, you’ll start organizing your code correctly into modules. You’ll focus on a simple
 example: writing a command-line tool that prompts the user for a word and indicates whether the word is a palindrome. Ideally,
 you’d like to keep the main IO action in a separate file from the functions that work to determine whether text is a palindrome. This keeps your code better
 organized and makes it easier to extend your program with more code in the future. You’ll start by writing your program as
 a single file, and then correctly separating the code into two files.

 	

 Consider this

 You have a type for books and a type for magazines. Each has the same field names, but they represent different things:

 data Book = Book
 { title :: String
 , price :: Double }

data Magazine = Magazine
 { title :: String
 , price :: Double }

 Both types are written using record syntax, which creates a problem. Record syntax automatically creates accessor functions
 title and price. Unfortunately, this causes an error because you’re attempting to define two functions of the same name. You want to avoid
 giving these fields such as bookTitle and bookPrice. How can you resolve this conflict?

 	

 34.1. What happens when you write a function with the same name as one in Prelude?

 To get started, let’s create a better version of the default head function that you’ve been using throughout the book. In Prelude, head is defined as follows.

 Listing 34.1. The definition in Prelude of head

 head :: [a] -> a
head (x:_) = x
head [] = errorEmptyList "head" 1

 	1 errorEmptyList is a List-specific way to throw an error.

 The head function has a problem in that it throws an error when it’s applied to an empty list. This isn’t ideal for Haskell, and lesson 38 covers this in more detail when we talk about handling errors. The reason head throws an error is that there often isn’t a sensible value you can return. Languages such as Lisp and Scheme will return
 the empty list as the result of calling head on an empty list, but Haskell’s type system doesn’t allow this (because the empty list is usually a different type than values
 in the list itself). But you can come up with a solution to this problem if you constrain head to work on members of the Monoid type class. You’ll recall from lesson 17 that the Monoid type class is defined as follows.

 Listing 34.2. The definition of the Monoid type class

 class Monoid m where
 mempty :: m
 mappend :: m -> m -> m
 mconcat :: [m] -> m

 All Monoids are required to define a mempty element. The mempty element represents the empty value for instances of Monoid. List is an instance of Monoid, and mempty is just the empty list, []. For members of Monoid, you can return the mempty element when you have an empty list. Here’s your new, safer version of head.

 Listing 34.3. Oops, you accidentally created a function that already has a name!

 head :: Monoid a => [a] -> a
head (x:xs) = x
head [] = mempty

 If you write this code in a file, it’ll compile just fine, even though you’ve “accidentally” used the name of an existing
 function. That’s because the head you use all the time is part of the Prelude module. To test your new head function, you need an example of a list with values that are members of Monoid. In this case, you’ll use an empty list of lists (remember, the elements of your list must be an instance of Monoid).

 Listing 34.4. An example list that’s a list of values that are an instance of Monoid

 example :: [[Int]]
example = []

 You can compile this code just fine, but something happens if you try to use head in GHCi. Because there’s already a function called head when you run this code in GHCi, you get an error that looks something like this:

 Ambiguous occurrence 'head' 1
It could refer to either 'Main.head' 2
defined at ...
or 'Prelude.head' 3

 	1 The error is that you have two functions named head, and Haskell doesn’t know which you want.

 	2 The version you wrote is this version. Haskell has automatically created a default module for you.

 	3 The head function you’re used to lives in the Prelude module.

 The problem is that Haskell doesn’t know which head you mean—the one defined in Prelude or the one you just wrote. What’s interesting is that the complaint is that there’s a Main.head function. When you don’t explicitly tell Haskell that you’re in a module, Haskell assumes that you’re the Main module. You can make this explicit by using the following line at the top of your file.

 Listing 34.5. Explicitly defining a module for your code

 module Main where 1

head :: Monoid a => [a] -> a
head (x:xs) = x
head [] = mempty

example :: [[Int]]
example = []

 	1 This line is the only code that’s different from your original code.

 To specify precisely which head you mean, you can fully qualify your function’s name with the name of the module. You use Main.head to specify your head, and Prelude.head to use the default Prelude definition of head. Here’s an example in GHCi:

 GHCi> Main.head example
[]
GHCi> Prelude.head example
*** Exception: Prelude.head: empty list

 Next, you’ll expand on your use of modules to build a simple program that’s spread over two files.

 	

 Quick check 34.1

 Q1:
Suppose you need to store the length of an object as a variable. For example:

 length :: Int
length = 8

 How would you use that value without conflicting with the existing length function in Prelude?

 	

 	

 QC 34.1 answer

 1:

You need to qualify the value as Main.length:

 length :: Int
length = 8

doubleLength :: Int
doubleLength = Main.length * 2

 	

 34.2. Building a multifile program with modules

 In this section, you’ll build a simple program that reads a line of user input and then indicates whether the word is a palindrome.
 You’ll start with a quick, single-file version of the program that can detect palindromes such as racecar but fails on Racecar! You’ll then refactor your code into two files, one dealing with the main program logic and the other a library to put all
 your code for properly detecting palindromes.

 It’s generally good practice to separate groups of related functions into separate modules. The main module should primarily
 be concerned with the execution of your program. All of the logic for reasoning about palindromes should be kept in a separate
 file, because this makes it easier to keep track of the locations of library functions. Additionally, you can hide functions
 in a module the same way classes in Java or C# can have private methods. This allows you to have encapsulation so that only
 the functions you wish to export are available for use.

 34.2.1. Creating the Main module

 So far, you’ve been pretty casual with your filenames. Now that you’re starting to think about properly organizing code, you
 should be more careful. As you saw in unit 4, each Haskell program has a main function the same way that Java programs have a main method. Normally, you expect the main function to live in the Main module. Convention in Haskell is that modules should live in files of the same name as the module. When creating your palindrome
 project, you should start with a file named Main.hs. Here’s your program.

 Listing 34.6. A first draft of your Main module

 module Main where 1
isPalindrome :: String -> Bool 2
isPalindrome text = text == reverse text

main :: IO () 3
main = do
 print "Enter a word and I'll let you know if it's a palindrome!"
 text <- getLine
 let response = if isPalindrome text
 then "it is!"
 else "it's not!"
 print response

 	1 Here you’re explicitly declaring your module name.

 	2 This is your naive implementation of isPalindrome.

 	3 Your main IO action reads the user input, checks whether the input is a palindrome, and then prints the result.

 You can compile this program and test out your code or just load it into GHCi. You can see that your palindrome program isn’t
 as robust as you’d like:

 GHCi> main
"Enter a word and I'll let you know if it's a palindrome!"
racecar
"it is!"
GHCi> main
"Enter a word and I'll let you know if it's a palindrome!"
A man, a plan, a canal: Panama!
"it's not!"

 Your program correctly identifies racecar as a palindrome, but fails to identify A man, a plan, a canal: Panama! What you need is a bit of preprocessing for your strings to strip out whitespace, remove punctuation, and ignore case. In
 the past, you would just add this code to your file. But it makes sense to pull out your palindrome code into a separate file
 for two reasons. First, it makes your Main cleaner, and second, you can then more easily reuse your palindrome code in other programs.

 34.2.2. Putting your improved isPalindrome code in its own module

 You’ll put your palindrome code in a separate module. The module’s name will be Palindrome, so your code should be in a file named Palindrome.hs. Your Palindrome module will have a function, also named isPalindrome, which will be the function used by the Main module. You want to write a more robust version of isPalindrome so your module will also contain a series of helper functions: stripWhiteSpace, stripPunctuation, toLowerCase, and preprocess, which performs all of these. Here’s your full Palindrome.hs file.

 Listing 34.7. The Palindrome.hs file

 module Palindrome(isPalindrome) where 1

import Data.Char (toLower,isSpace,isPunctuation) 2

stripWhiteSpace :: String -> String 3
stripWhiteSpace text = filter (not . isSpace) text

stripPunctuation :: String -> String
stripPunctuation text = filter (not . isPunctuation) text

toLowerCase :: String -> String
toLowerCase text = map toLower text

preprocess :: String -> String
preprocess = stripWhiteSpace . stripPunctuation . toLowerCase

isPalindrome :: String -> Bool
isPalindrome text = cleanText == reverse cleanText
 where cleanText = preProcess text

 	1 You declare that your module is named Palindrome and that it exports a single function isPalindrome.

 	2 You could import the entire Data.Char module, but you need only the three functions listed.

 	3 The rest of the code is just like any other code written in this book.

 Let’s walk through this file step-by-step to get a better sense of what’s happening. You could’ve started your Palindrome function this way:

 module Palindrome where

 By default, this will export all the functions that you’re defining in Palindrome.hs. But you don’t want to export your helper
 functions; all you care about is isPalindrome. You can achieve this by listing all the functions you want to export in parentheses after the module name:

 module Palindrome(isPalindrome) where

 Here’s another way to format your export functions so that you can easily accommodate exporting additional functions:

 module Palindrome
 (isPalindrome
) where

 Now the only function available from your Palindrome module is isPalindrome.

 To create your helper functions, you need a few functions from the Data.Char module. In the past, you’ve crudely imported the entire module whenever you need to use one. But just as you can selectively
 export functions, you can also selectively import them. This import statement imports only the three functions you’ll need.

 Listing 34.8. Importing only a specific subset of functions from Data.Char

 import Data.Char (toLower,isSpace,isPunctuation)

 The primary benefits of importing functions this way are that it improves readability and reduces the possibility that you’ll
 have an unexpected namespace collision when performing a nonqualified import.

 Now the rest of your file is just like any other Haskell file you’ve used so far. All your helper functions are relatively
 self-explanatory.

 Listing 34.9. The code in your module for properly detecting palindromes

 stripWhiteSpace :: String -> String 1
stripWhiteSpace text = filter (not . isSpace) text

stripPunctuation :: String -> String 2
stripPunctuation text = filter (not . isPunctuation) text

toLowerCase :: String -> String 3
toLowerCase text = map toLower text

preprocess :: String -> String 4
preprocess = stripWhiteSpace . stripPunctuation . toLowerCase

isPalindrome :: String -> Bool 5
isPalindrome text = cleanText == reverse cleanText
 where cleanText = preprocess text

 	1 This function strips out the whitespace from your text.

 	2 Next you can remove all the punctuation.

 	3 The last step is to make sure your String is all lowercase.

 	4 You use function composition to put these all together.

 	5 Finally, you end up with a much-improved version of isPalindrome.

 Your Palindrome module doesn’t have a main because it’s just a library of functions. Even without a main, you can still load your file into GHCi and test it out:

 GHCi> isPalindrome "racecar"
True
GHCi> isPalindrome "A man, a plan, a canal: Panama!"
True

 Now that you understand your Palindrome module, let’s go back and refactor your Main module.

 	

 Quick check 34.2

 Q1:
Modify the module declaration so that you also export preprocess.

 	

 	

 QC 34.2 answer

 1:

module Palindrome(
 isPalindrome
 ,preprocess
) where

 	

 34.2.3. Using your Palindrome module in your Main module

 To use Palindrome, you add the import to your Main as you would any other module. As you’ll soon see, when your module is in the same directory as your Main, compiling your Main will automatically compile your other module.

 Let’s suppose you’d like to keep your existing definition of isPalindrome in your Main. In the past, you’ve used import qualified Module as X to provide a named import for the modules you’d like to use (such as import qualified Data.Text as T). If you leave off the as X part of your qualified import, you use the name of the module itself to reference functions in that module. Here’s the start
 of your main refactored.

 Listing 34.10. Performing a qualified import of your Palindrome module

 module Main where
import qualified Palindrome

 Now all you have left to do is change your call to isPalindrome to Palindrome.isPalindrome and you’re all set.

 Listing 34.11. Using the qualified Palindrome.isPalindrome function

 let response = if Palindrome.isPalindrome text

 Here’s your fully refactored Main.hs.

 Listing 34.12. Your Main.hs file that uses your Palindrome.hs file

 module Main where
import qualified Palindrome

isPalindrome :: String -> Bool
isPalindrome text = text == (reverse text)

main :: IO ()
main = do
 print "Enter a word and I'll let you know if it's a palindrome!"
 text <- getLine
 let response = if Palindrome.isPalindrome text
 then "it is!"
 else "it's not!"
 print response

 Compiling this program is surprisingly simple. You can compile your Main.hs file with GHC and it’ll automatically find your
 module:

 $ ghc Main.hs
[1 of 2] Compiling Palindrome (Palindrome.hs, Palindrome.o)
[2 of 2] Compiling Main (Main.hs, Main.o)
Linking Main ...

 Finally, you can run your Main executable:

 $./Main
"Enter a word and I'll let you know if it's a palindrome!"
A man, a plan, a canal, Panama!
"it is!"

 This is a trivial case of having a simple module in the same directory. In the next lesson, you’ll explore stack, which is
 a powerful and popular build tool for Haskell. If you’re going to be building anything nontrivial, make sure you do it with
 stack. Nonetheless, it’s still helpful to understand how to compile multiple-file programs by hand.

 	

 Quick check 34.3

 Q1:
You shouldn’t leave Main.isPalindrome there, as it’s no longer necessary. If you remove the code for Main.isPalindrome, how can you refactor your code so you no longer need to qualify Palindrome.isPalindrome?

 	

 	

 QC 34.3 answer

 1:

Change import qualified Palindrome to import Palindrome. Then remove Palindrome. from Palindrome.isPalindrome.

 	

 Summary

 In this lesson, our goal was to teach you how to use modules to organize your Haskell programs. You learned how most of your
 programs automatically belong to a Main module. Next, you saw how to organize programs into separate files and compile them into a single program. You also learned
 how to export specific functions from your modules while hiding the rest. Let’s see if you got this.

 Q34.1
Recall that in unit 4 we mentioned that Data.Text is strongly preferred over String for working with text data. Refactor this project to use Data.Text instead of String (in both the Main and Palindrome modules).

 Q34.2
In unit 4, lesson 25, you wrote a program to “glitch” binary images. Revisit that program and pull out all the code specific to glitching images
 into its own Glitch module.

Lesson 35. Building projects with stack

 After reading lesson 35, you’ll be able to

 	Work with Haskell’s stack build tool

 	Build stack projects

 	Configure key files generated by stack

 When moving beyond learning a programming language to using it for more serious projects, one of the most important things
 to have is proper build automation. One universal option is to use a tool such as GNU Make. But many languages have their
 own build tools. Java has several industrial-strength options such as Ant and Maven, Scala has sbt, and Ruby has rake. Given
 Haskell’s academic history, it might come as a surprise that Haskell too has a powerful build tool: stack. The stack build
 tool is a relatively recent addition to the Haskell ecosystem, but it has had a tremendous impact. stack automates and manages
 several parts of Haskell projects:

 	Provides an isolated installation of GHC per project to ensure that you’re always using the correct version

 	Handles the installation of packages and their dependencies

 	Automates the building of the project

 	Aids you in organizing and running tests on your project

 This lesson introduces the basics of creating and building a project by using stack. In the preceding lesson, you saw how
 modules in Haskell let you separate your code into multiple files. In this lesson, you’re going to build the same project
 but change two things. First, you’ll use Data.Text rather than String for your program. As mentioned in unit 4, Data.Text is strongly preferred over String for real-world text. Second, this time, rather than compile modules, you’ll use stack. stack comes with the Haskell platform
 (recommended in lesson 1), or if you prefer you can download stack by itself from https://docs.haskellstack.org/. Because stack handles installing copies of GHC and GHCi, after you’re familiar with stack, it’s the only tool you need to
 install to get started with Haskell.

 	

 Consider this

 Like all languages, Haskell is always changing over time. How can you make sure that code you’ve written today still builds
 in five years?

 	

 35.1. Starting a new stack project

 The first thing you need to do is make sure that stack is up-to-date. You can do this with the stack update command:

 $ stack update

 It’s common for this operation to take a long time the first time you run stack (or when it has been a long time). Because
 stack is making sure you have a clean environment to build projects in, many first-time tasks might take a few minutes for
 everything to run. Rest assured that after you’re using stack, many of these tasks will run much faster, as stack is good
 at managing the resources it needs.

 Now that you’re up-to-date, you can build your project. For this, you can use the new command. You’ll name your project palindrome-checker:

 $ stack new palindrome-checker

 Running this command causes stack to create a new project. After this command has run, you should have a new directory named
 palindrome-checker. If you look inside palindrome-checker, you’ll find the following files and directories:

 LICENSE src
Setup.hs stack.yaml
app test
palindrone-checker.cabal

 Next you’ll make sense of everything that stack has created for you.

 35.2. Understanding the project structure

 When you run stack new, stack builds a new project from a template. You didn’t supply an argument for your template, so stack uses the default one.
 For now, you’re going to stick with the default template, but many templates exist that you can choose from (https://github.com/commercialhaskell/stack-templates is a source for many).

 35.2.1. The project .cabal file and autogenerated files

 In the top-level directory for your project, you have the following files, and all of these were created by stack for you:

 	LICENSE

 	Setup.hs

 	palindrome-checker.cabal

 	stack.yaml

 The only file that you’re primarily interested in at this point is palindrome-checker.cabal, which is your project configuration
 file. It contains all the metadata related to your project. In the beginning of the file, you have the basic information you’d
 expect about the project name, version, description, and so forth:

 name: palindrome-checker
version: 0.1.0.0
synopsis: Initial project template from stack
description: Please see README.md
homepage: https://github.com/githubuser/palindrone-checker#readme
license: BSD3
license-file: LICENSE
author: Author name here
maintainer: example@example.com
copyright: 2016 Author name here

 A section of palindrome-checker.cabal includes information about where your library files are stored in the project, which
 libraries you use, and which version of the Haskell language you’re using:

 library
 hs-source-dirs: src
 exposed-modules: Lib
 build-depends: base >= 4.7 && < 5
 default-language: Haskell2010

 The most important lines in this part of the configuration are hs-source-dirs and exposed-modules. The hs-source-dirs value tells you which subdirectory of your project your library files live in. You can see that the default value for this
 is src. You’ll notice that stack already generated a source directory for you. The exposed-modules value tells you which libraries you’re using. By default, stack creates a Lib module that’s located in src/Lib.hs. You can add more values to exposed-modules by placing them on separate lines with commas, like this:

 exposed-modules: Lib,
 Palindrome,
 Utils

 When first getting started with stack, especially for smaller projects, you can put all the library functions you write in
 src/Lib.hs. You’ll cover the build-depends argument in a later section, and for the most part you shouldn’t need to worry about the default-language value.

 You also have information on where the files you’ll be using to build your executable will be stored, the name of your Main module, and default command-line arguments you’re going to use when running your program:

 executable palindrome-checker-exe
 hs-source-dirs: app
 main-is: Main.hs
 ghc-options: -threaded -rtsopts -with-rtsopts=-N
 build-depends: base
 , palindrone-checker
 default-language: Haskell2010

 stack separates the code for your libraries from the code for running your program into separate directories. The hs-source-dirs
 value specifies the name of the directory where the program’s Main module lives. Just like the library section of the .cabal file, the executable section tells you in which file your main is located with the main-is value. Once again, stack has automatically created the app directory (specified by hs-source-dirs) for you and placed a Main.hs
 file inside.

 There’s a lot more in the .cabal file, but what we’ve discussed so far should cover the basics you’ll need for creating new
 projects. Next you’ll look at some of the directories and code generated for you by stack. We’ll point out other interesting parts of the .cabal file as you work through projects
 that use them in the rest of this book.

 	

 Quick check 35.1

 Q1:
Set your name as the project’s author.

 	

 	

 QC 35.1 answer

 1:

Change the author line in the project’s .cabal file to your name, like this:

 author: Will Kurt

 	

 35.2.2. The app, src, and test directories

 stack also automatically creates three directories for you:

 	app

 	src

 	test

 In the preceding section, you saw that app and src are created for your executable and library modules. You’ll ignore test
 for now, as you’ll explore testing in much more depth in lesson 36. We also mentioned that stack automatically includes two files in these: app/Main.hs and src/Lib.hs. These files and directories
 serve as a template for a minimal Haskell project.

 The Main.hs file generated looks like this.

 Listing 35.1. The default Main module generated by stack

 module Main where

import Lib

main :: IO ()
main = someFunc

 This is a simple file, but it provides guidance on how to think about stack projects. The only thing this Main module does is import the Lib module and then define a main IO action that’s just the someFunc function. Where does someFunc come from? It’s defined in the Lib module. The Lib module is located in src/Lib.hs and looks like this.

 Listing 35.2. The default Lib module generated by stack

 module Lib
 (someFunc
) where

someFunc :: IO ()
someFunc = putStrLn "someFunc"

 someFunc is a trivial function that prints someFunc. Though simple, these two files give you a solid foundation for getting started building a project using stack. Your Main module logic should be minimal, relying primarily on library functions defined in the Lib module. Now let’s start translating your project from the last lesson to work with stack!

 	

 Quick check 35.2

 Q1:
We haven’t covered building a project in stack yet, but when you run this project, what should it do based on the default
 code you have?

 	

 	

 QC 35.2 answer

 1:

The program should print out someFunc.

 	

 35.3. Writing your code

 Let’s start with your Palindrome module. Remember, unlike last time, this time you’re going to write a library that works with the Data.Text type, rather than just Strings. Because you’re using stack, you want to put this file into the src directory. Rather than create a Palindrome.hs file,
 you’ll go ahead and overwrite the Lib.hs stack created for you. For simple programs like this, you can put all of your utilities
 into a single module.

 Listing 35.3. Rewriting Palindrome from the preceding lesson to work with Text

 {-# LANGUAGE OverloadedStrings #-}
module Lib
 (isPalindrome
) where

import qualified Data.Text as T
import Data.Char (toLower,isSpace,isPunctuation)

stripWhiteSpace :: T.Text -> T.Text
stripWhiteSpace text = T.filter (not . isSpace) text

stripPunctuation :: T.Text -> T.Text
stripPunctuation text = T.filter (not . isPunctuation) text

preProcess :: T.Text -> T.Text
preProcess = stripWhiteSpace . stripPunctuation . T.toLower

isPalindrome :: T.Text -> Bool
isPalindrome text = cleanText == T.reverse cleanText
 where cleanText = preProcess text

 Next you need to write your Main. This time you won’t use a qualified import (but you’ll need to make a small change so that your code works with Data.Text). Because your Main is essential to building your executable, it goes in the app directory (this is declared in your project’s .cabal file!).
 You overwrite the generated Main.hs with your own. Here’s your revised Main.hs.

 Listing 35.4. Writing the Main.hs file for your palindrome checker

 {-# LANGUAGE OverloadedStrings #-}
module Main where

import Lib
import Data.Text as T
import Data.Text.IO as TIO

main :: IO ()
main = do
 TIO.putStrLn "Enter a word and I'll let you know if it's a palindrome!"
 text <- TIO.getLine
 let response = if isPalindrome text
 then "it is!"
 else "it's not!"
 TIO.putStrLn response

 Now you’re almost ready, except you have to add edit your .cabal file. You have to tell stack about any modules you’re depending
 on. For both your Main.hs file and your Lib.hs file, you’re using Data.Text. For both your library and executable sections of palindrome-checker.cabal, you need to add the text package to the list
 of dependencies:

 library
 hs-source-dirs: src
 exposed-modules: Lib
 build-depends: base >= 4.7 && < 5
 , text
 default-language: Haskell2010

executable palindrone-checker-exe
 hs-source-dirs: app
 main-is: Main.hs
 ghc-options: -threaded -rtsopts -with-rtsopts=-N
 build-depends: base
 , palindrone-checker
 , text
 default-language: Haskell2010

 Now you’re all set to build your project!

 	

 Quick check 35.3

 Q1:
If you wanted to keep your Palindrome module named Palindrome and in the original Palindrome.hs file, what would you have to change about your .cabal file?

 	

 	

 QC 35.3 answer

 1:

Change the exposed-modules value to Palindrome:

 library
 hs-source-dirs: src
 exposed-modules: Palindrome

 	

 35.4. Building and running your project!

 Finally, you’re ready to put everything together and build your project. The first command you need to run is setup. In your project directory, run this command:

 $ stack setup

 This command ensures that stack is using the correct version of GHC. For simple pro-jects like ours, this isn’t a big deal,
 but with the ever-changing nature of Haskell, ensuring that your project is built with the version of GHC you used to write it is important. Specifying the version of GHC you want
 to use is done indirectly by choosing your stack resolver version. The stack resolver is set in the stack.yaml file:

 resolver: lts-7.9

 This book was written using the lts-7.9 version of the stack resolver, which uses GHC version 8.0.1. By default, stack uses
 the most recent stable resolver. Most of the time, this is what you want, but if you have any trouble building a project in
 this book, setting the resolver to lts-7.9 will likely fix this. You can find a listing of the current resolver versions at
 www.stackage.org, and info about a specific resolver can be found by appending the resolver version to that URL (for example, www.stackage.org/lts-7.9 for the lts-7.9 resolver).

 Next you have to build your project. This can be done with the following:

 $ stack build

 Don’t be concerned if this command takes a bit of time to run the first time you use stack or build your project. Future builds
 will go much faster.

 After you run this command, you’re ready to run your project. In the past, you manually used GHC to compile an executable,
 and then you could run it like any other program. In the case of stack, you’ll use the exec command. You need to pass in the name of your executable, which is defined in your palindrome-checker.cabal file:

 executable palindrone-checker-exe

 The name of the executable comes right after the executable in the executable section. By default, it’s <project-name>-exe:

 $ stack exec palindrone-checker-exe
Enter a word and I'll let you know if it's a palindrome!
A man, a plan, a canal: Panama!
it is!

 Great, your program works!

 35.4.1. A quick improvement: getting rid of language pragmas

 One annoying thing about your program, and any large program involving Data.Text, is that you have to remember to add your OverloadedStrings pragma to every file. Thankfully, stack has a great fix for this. You can add the following line to your palindrome-checker.cabal
 file and universally apply the OverloadString language extension. You add the following line after default-language: Haskell2010 to both your library and executable sections of palindrome-checker.cabal:

 extensions: OverloadedStrings

 With this in place, you no longer have to add your pragma or remember compiler flags. You can build your project again, and
 everything should run fine.

 Summary

 In this lesson, our objective was to teach you how to use the stack tool to build and manage Haskell projects. You learned
 by creating a new stack project and exploring the files and directories it created for you. Next you organized the code from
 the preceding lesson into separate files in the stack project directory. Finally, you built your palindrome project in a reliable
 and repeatable way. Let’s see if you got this.

 Q35.1
Make the following changes to this project:

 	Set the author, description, and maintainer email to the correct info.

 	Return the definition of Lib.hs to the original one created by stack.

 	Add the code for isPalindrome into a Palindrome module in src/Palindrome.hs.

 	Make sure that OverloadedStrings is set at the project level.

 Q35.2
Refactor the code in unit 4, lesson 21, for comparing the cost of two pizzas into a stack project. All of the supporting code in the original program file should
 be in either Lib.hs or an additional library module.

Lesson 36. Property testing with QuickCheck

 After reading lesson 36, you’ll be able to

 	Use stack ghci to interact with a stack project

 	Run tests with stack test

 	Use QuickCheck for property testing

 	Install packages with stack install

 The preceding lesson introduced Haskell’s powerful build tool, stack. You saw how to build a project, but we cheated a bit.
 You copied the code you wrote when learning about modules and pasted it in. In this lesson, you’re going to rebuild your palindrome
 project, but this time you’ll develop it as though you were building a project from the beginning. Your focus this time will
 be on testing your code. So far in this book, you’ve done only manual testing of your functions. With stack, you can make
 automated tests from the beginning. You’ll start this lesson by learning about using GHCi with stack for manual testing of
 your modules. Then you’ll learn to use stack test to run simple unit tests you’ll write. Finally, you’ll learn about property testing and the amazing tool QuickCheck, which
 allows you to quickly generate many tests.

 One thing you may have noticed in this unit is that everything should seem more familiar to you than nearly every other topic
 we’ve covered in Haskell. Even QuickCheck, which is a more powerful approach to testing then you may have seen before, is
 not so much mind-bending as interesting and useful. The reason for this familiarity is that stack has been largely developed by real-world software engineers interested in shipping and maintaining production code.
 It’s likely that any standard approach to software engineering you prefer (such as test-driven development or behavior-driven
 development) can be supported easily with stack. Because of tools such as stack, Haskell is more able to be used for real
 software than at any time in its history. This unit is meant to give you only a quick introduction to software development
 with Haskell and stack. For more detailed information, visit haskellstack.org and stackage.org.

 	

 Consider this

 When developing projects with stack, how can you interact with your code and make sure it behaves as you’d like?

 	

 36.1. Starting a new project

 Let’s start a new palindrome project, pretending for a moment that this is a brand new problem you’re solving. You’ll stick
 with the same problem you’ve been working on so you don’t have to worry too much about what your code does and can focus on
 how you think about writing programs when using stack. Because the focus of this unit is on testing, you’ll call this project
 palindrome-testing. Here’s your command for creating this new project:

 $ stack new palindrome-testing

 Rather than jump straight to your Main module, let’s see how to start building out the functionality you’ll be using in src/Lib.hs. Stack created a default Main for you, so you’ll want to clean that out because you’ll be overwriting Lib. You’ll replace the default someFunc function with a simple "Hello World!".

 Listing 36.1. Small refactor to Main.hs file so you can focus on your Lib.hs file

 module Main where

import Lib

main :: IO ()
main = putStrLn "Hello World!"

 For most of this project, you’ll be working in your src/Lib.hs, creating the library functions that you’ll eventually use
 in your Main. You’ll start with implementing the simplest version of isPalindrome, just as you would if you were starting this project completely from scratch.

 Listing 36.2. A minimal definition of isPalindrome

 module Lib
 (isPalindrome
) where

isPalindrome :: String -> Bool
isPalindrome text = text == reverse text

 Now that you have some code, you can start interacting with it and testing it the stack way!

 	

 Quick check 36.1

 Q1:
You’re going to be adding only a few functions to the Lib module, and you’ll end up exporting all of them. Given that’s the
 case, what’s a more efficient way to define this module?

 	

 	

 QC 36.1 answer

 1:

module Lib where

isPalindrome :: String -> Bool
isPalindrome text = text == reverse text

 	

 36.2. Different types of testing

 When we typically think of testing code, we often think about unit testing individual cases of potential bugs. But testing
 doesn’t need to mean specifically unit testing. Whenever you load your code into GHCi to play with a function you wrote, you’re
 testing your code; you’re just doing it manually. You’ll start this section by looking at how to use GHCi with stack to manually
 test your code. Then you’ll use the stack test command to automatically run crude unit tests you’ll write. Finally, you’ll see that Haskell offers a powerful alternative
 to unit testing called property testing. If unit testing is essentially automating manual tests, then property testing is automating unit tests.

 This lesson takes a rather traditional approach to testing. You’ll start with writing code, manually testing it, and only
 then move on to writing more formal tests for your code. But there’s nothing inherent to Haskell that requires this approach. If you prefer to take a test-driven development (TDD)
 approach, you can certainly revisit this lesson in reverse, writing all of your tests first. Even if you prefer behavior-driven
 development, popularized by Ruby’s RSpec, Haskell has an equivalent testing library, Hspec. (Hspec isn’t covered here but
 should be straightforward to implement after you finish this unit.)

 36.2.1. Manual testing and calling GHCi from stack

 Because you’re using stack, you have to approach using GHCi a bit differently. First set up and build your project to make
 sure everything works okay:

 $ cd palindrome-testing
$ stack setup
...
$ stack build
...

 Because stack is creating a safe, reproducible, isolated environment for your project, you don’t want to run ghci from the command line to interact with your project. This is because each project has its own libraries and even possibly
 its own version of GHC installed just for it. To safely interact with your project, you need to run stack ghci. For this section, rather than use the GHCi> prompt as you have throughout the book, you’ll use the actual prompt you get from stack ghci:

 $ stack ghci
*Main Lib>

 Because you’ve built your project and are running stack GHCi, you’ll notice that you have the Main and Lib modules loaded as indicated by the prompt. You can test out your code from here:

 *Main Lib> isPalindrome "racecar"
True
*Main Lib> isPalindrome "cat"
False
*Main Lib> isPalindrome "racecar!"
False

 And here you find the first error! The string "racecar!" should be a palindrome, but it’s not. Now you can go back and add a quick fix for this.

 Listing 36.3. Iteratively testing and fixing isPalindrome

 isPalindrome :: String -> Bool
isPalindrome text = cleanText == reverse cleanText
 where cleanText = filter (not . (== '!')) text

 You don’t even have to run stack build again to test this; you can quit ghci and restart with stack ghci. If your changes have been made only to code files and no configuration changes have been made, you can also type :r into GHCi to reload your code without exiting:

 *Main Lib> :r
*Main Lib> isPalindrome "racecar!"
True

 And you see that your code works!

 	

 Quick check 36.2

 Q1:
Test whether sam I mas is a palindrome

 	

 	

 QC 36.2 answer

 1:

*Main Lib> isPalindrome "sam I mas"
True

 	

 36.2.2. Writing your own unit tests and using stack test

 Manually testing as you just did is fine for hashing out new ideas. As your program grows in complexity, you’ll want to automate
 this. Thankfully, stack has a built-in command for running tests. In the test directory, you’ll find another file autogenerated
 for you called Spec.hs. Like Main.hs and Lib.hs, stack has autogenerated some code there for you.

 Listing 36.4. The contents of Spec.hs generated by stack

 main :: IO ()
main = putStrLn "Test suite not yet implemented"

 Haskell has packages for unit testing (such as Hspec, similar to Ruby’s RSpec, and HUnit, similar to Java’s JUnit), but for
 now you’ll start with a simple unit-testing framework of your own. All you’ll do is define an assert IO action that takes a Bool (in this case, a test of a function) and prints either a passing message or a fail message.

 Listing 36.5. A minimal function for unit testing

 assert :: Bool -> String -> String -> IO ()
assert test passStatement failStatement = if test
 then putStrLn passStatement
 else putStrLn failStatement

 Next you can fill out your main with a few tests. You’ll also need to import the Lib module. Here’s your first round of a test suite.

 Listing 36.6. Your Spec.hs file with a few simple unit tests

 import Lib

assert :: Bool -> String -> String -> IO ()
assert test passStatement failStatement = if test
 then putStrLn passStatement
 else putStrLn failStatement

main :: IO ()
main = do
 putStrLn "Running tests..."
 assert (isPalindrome "racecar") "passed 'racecar'" "FAIL: 'racecar'"
 assert (isPalindrome "racecar!") "passed 'racecar!'" "FAIL: 'racecar!'"
 assert ((not . isPalindrome) "cat") "passed 'cat'" "FAIL: 'cat'"
 putStrLn "done!"

 To run these tests, you use the stack test command:

 $ stack test

Running tests...
passed 'racecar'
passed 'racecar!'
passed 'cat'
done!

 Great! Next let’s add another test, the word racecar. (with a period at the end).

 Listing 36.7. Adding another test to your main IO action

 assert (isPalindrome "racecar.") "passed 'racecar.'" "FAIL: 'racecar.'"

 If you run your tests again, you see that your isPalindrome function is lacking:

 Running tests...
passed 'racecar'
passed 'racecar!'
passed 'cat'
FAIL: 'racecar.'
done!

 You can come up with a lame fix for this problem by redefining isPalindrome once again.

 Listing 36.8. Another minimal fix for the issues in your isPalindrome function

 isPalindrome :: String -> Bool
isPalindrome text = cleanText == reverse cleanText
 where cleanText = filter (not . (`elem` ['!','.'])) text

 You already know that the correct solution to this problem is to use the isPunctuation function in Data.Char. But this iterative approach to fixing bugs is common, if often less trivial. If you run your tests again, you find you’ve
 fixed this bug:

 Running tests...
passed 'racecar'
passed 'racecar!'
passed 'cat'
passed 'racecar.'
done!

 But this fix feels unsatisfactory because you know there’s more punctuation you’re missing. Even though you know that isPunctuation is the better solution, in order to test this solution, you still have to think of a huge range of possible tests: race-car, :racecar:, racecar?, and so forth. In the next section, you’ll learn about a powerful type of testing available in Haskell called property testing. This automates much of the hassle of creating individual unit tests.

 	

 Quick check 36.3

 Q1:
Add a test for :racecar: to your list of tests and rerun the test suite.

 	

 	

 QC 36.3 answer

 1:

main :: IO ()
main = do
 putStrLn "Running tests..."
 assert (isPalindrome "racecar") "passed 'racecar'" "FAIL: 'racecar'"
 assert (isPalindrome "racecar!") "passed 'racecar!'" "FAIL: 'racecar!'"
 assert ((not . isPalindrome) "cat") "passed 'cat'" "FAIL: 'cat'"
 assert (isPalindrome "racecar.") "passed 'racecar.'" "FAIL: 'racecar.'"
 assert (isPalindrome ":racecar:")
 "passed ':racecar:'" "FAIL: ':racecar:'"
 putStrLn "done!"

 This passes because :racecar: is a palindrome even with punctuation.

 	

 36.3. Property testing QuickCheck

 Before diving into property testing, let’s clean up your library a bit. It’s pretty clear that the part of isPalindrome that gives you cleanText is going to get large fast, so you’ll refactor this out into a preprocess function.

 Listing 36.9. Your code is starting to get a bit cleaner

 module Lib
 (isPalindrome
 , preprocess
) where

preprocess :: String -> String
preprocess text = filter (not . (`elem` ['!','.'])) text

isPalindrome :: String -> Bool
isPalindrome text = cleanText == reverse cleanText
 where cleanText = preprocess text

 Now the function you really care about testing is preprocess. You want to test preprocess, but you’ve already seen that unit testing is going to quickly get tedious, and you’re still likely to miss something.

 36.3.1. Testing properties

 In the abstract, what you want to test about the preprocess function is that it has a certain property. Mainly, you want to test that the output, given the input, is punctuation invariant, which is a fancy way of saying you don’t care about whether the input string has punctuation.

 You can write a function to express this property. You’ll need to import Data.Char (isPunctuation) and put this function in your Spec.hs file.

 Listing 36.10. Expressing the property you want to test in a function

 prop_punctuationInvariant text = preprocess text ==
 preprocess noPuncText
 where noPuncText = filter (not . isPunctuation) text

 If you read what this code says, it expresses the core of what you’re trying to achieve:

 "Calling preprocess on text should give the same answer as calling
 preprocess on the same text with no punctuation"

 Having this property written in code is great, but you still don’t have a way to test it. You need a way get a range of possible
 values for your text automatically. This is where the QuickCheck library comes in.

 	

 Quick check 36.4

 Q1:
Write a property prop_reverseInvariant that demonstrates the obvious fact that the results of isPalindrome should be the same whether or not you reverse the input.

 	

 	

 QC 36.4 answer

 1:

prop_reverseInvariant text = isPalindrome text ==
[image:](isPalindrome (reverse text))

 	

 36.3.2. Introducing QuickCheck

 Haskell’s QuickCheck library is built around the idea of property testing. The prop_punctuationInvariant function was your first example of a property. The way QuickCheck works is that you supply properties that your code is supposed
 to uphold, and then QuickCheck automatically generates values and tests them on the functions, making sure the properties
 are upheld. Now let’s replace your simple unit tests with some property tests.

 The first thing you have to do is add QuickCheck to your build-depends in the .cabal file.

 Listing 36.11. Modified palindrome-testing.cabal file

 test-suite palindrome-testing-test
 type: exitcode-stdio-1.0
 hs-source-dirs: test
 main-is: Spec.hs
 build-depends: base
 , palindrome-testing
 , QuickCheck
 ghc-options: -threaded -rtsopts -with-rtsopts=-N
 default-language: Haskell2010

 Now you can include import Test.QuickCheck at the top of Spec.hs file. To use QuickCheck, you call the quickCheck function on your property inside the main.

 Listing 36.12. Using the quickCheck function in your Spec.hs file

 main :: IO ()
main = do
 quickCheck prop_punctuationInvariant
 putStrLn "done!"

 When you run your test, see that you get a failure (as expected):

 Progress: 1/2*** Failed! Falsifiable (after 4 tests and 2 shrinks):
"\187"

 In passing in values to your prop_punctuationInvariant, QuickCheck tried \187, which is a Unicode punctuation mark. In a sense, QuickCheck has automatically created a bunch of unit tests for you. To
 show how well QuickCheck catches bugs, let’s take the lazy approach to removing punctuation and modify your preprocess function to handle \187 as well.

 Listing 36.13. Refactoring preprocess based on feedback from QuickCheck

 preprocess :: String -> String
preprocess text = filter (not . (`elem` ['!','.','\187'])) text

 If you run your tests again, you find that QuickCheck still isn’t happy:

 Failed! Falsifiable (after 11 tests and 2 shrinks):
";"

 This time, the semicolon is the problem.

 	

 Note

 QuickCheck uses carefully chosen but random values, so you might get different errors when you run this locally.

 	

 This time let’s refactor your code the correct way, using isPunctuation.

 Listing 36.14. Fixing the issue with punctuation the correct way

 import Data.Char(isPunctuation)

preprocess :: String -> String
preprocess text = filter (not . isPunctuation) text

 This time you get a much happier response when you run stack test:

 OK, passed 100 tests.

 As you might guess from this message, QuickCheck strategically tried 100 strings on your property, and they all passed! Is
 100 tests not enough to make you feel secure? Let’s try 1,000 using quickCheckWith. To do this, you’ll use record syntax to update a standard argument value passed in to the function (see lesson 12).

 Listing 36.15. You can tell QuickCheck to run as many tests as you’d like

 main :: IO ()
main = do
 quickCheckWith stdArgs { maxSuccess = 1000} prop_punctuationInvariant
 putStrLn "done!"

 If you run your tests, you’ll see that QuickCheck is still happy, and you might feel more secure that you’ve tried enough
 inputs:

 OK, passed 1000 tests.

 Even though you’ve just written a single property test for isPalindrome, you’ve replaced the need to write countless unit tests!

 	

 Quick check 36.5

 Q1:
Add a quickCheck test for the prop_reverseInvariant defined in the preceding exercise

 	

 	

 QC 36.5 answer

 1:

prop_reverseInvariant text = isPalindrome text == isPalindrome
[image:](reverse text)

main :: IO ()
main = do
 quickCheckWith stdArgs { maxSuccess = 1000} prop_punctuationInvariant
 quickCheck prop_reverseInvariant
 putStrLn "done!"

 	

 36.3.3. Using QuickCheck with more types and installing packages

 The tricky part of QuickCheck is generating the input values to test on. All types that QuickCheck can automatically test
 must be an instance of the type class Arbitrary. A detailed explanation of implementing Arbitrary is beyond the scope of this book. The bad news is that only a few base types are instances of Arbitrary. The good news is that you can install a package that greatly extends the types covered by QuickCheck.

 For example, Data.Text by default isn’t an instance of Arbitrary and won’t work with QuickCheck. You can remedy this by installing the quickcheck-instances package. You can do this with
 the stack install command:

 $ stack install quickcheck-instances

 This installs a new package in your palindrome-testing project.

 Let’s first see how to refactor your Lib.hs file to work with text.

 Listing 36.16. Refactoring your Lib module to use Data.Text instead of String

 module Lib
 (isPalindrome
 , preprocess
) where

import Data.Text as T
import Data.Char(isPunctuation)

preprocess :: T.Text -> T.Text
preprocess text = T.filter (not . isPunctuation) text

isPalindrome :: T.Text -> Bool
isPalindrome text = cleanText == T.reverse cleanText
 where cleanText = preprocess text

 Don’t forget to add text to build-depends in the library section of your project’s .cabal file. You can make a similar refactor to your Spec.hs file.

 Listing 36.17. Refactoring Spec.hs to work with Data.Text

 import Lib
import Test.QuickCheck
import Test.QuickCheck.Instances
import Data.Char(isPunctuation)
import Data.Text as T

prop_punctuationInvariant text = preprocess text == preprocess noPuncText
 where noPuncText = T.filter (not . isPunctuation) text

main :: IO ()
main = do
 quickCheckWith stdArgs { maxSuccess = 1000} prop_punctuationInvariant
 putStrLn "done!"

 For this to run, you need to add both text and quickcheck-instances to your test suite build-depends in the .cabal file.

 Finally, you can test your newly refactored code:

 $ stack test
...
 OK, passed 1000 tests.

 Here you can also see another benefit of property testing. This refactor was relatively straightforward. Imagine how much
 work this would have taken if you had handwritten a suite of unit tests and needed to change the type on all of them!

 Summary

 In this lesson, our objective was to teach you how to test your Haskell code. You started by manually testing your code by
 using stack ghci. Using GHCi inside stack ensures that your code will build as expected. After manual testing, you used the stack test command to build and run a series of simple unit tests. Finally, you generalized your unit testing by creating property tests
 with QuickCheck. Let’s see if you got this.

 Q36.1
Complete this palindrome-testing project so it’s the same as the code in the preceding lesson. Then implement property tests
 to fully test preprocess, ensuring that whitespace doesn’t matter and that capitalization doesn’t matter.

Lesson 37. Capstone: Building a prime-number library

 This capstone covers

 	Building a new project by using stack

 	Writing basic library functions for working with prime numbers

 	Using stack test and QuickCheck to check for bugs as you go

 	Refactoring code to fix errors

 	Adding new functions and tests to your project as you go

 So far in this unit, you’ve focused on one problem: creating a program for working with palindromes. For this capstone, you’ll
 be reiterating over all the work you’ve done creating modules and learning about stack with a new problem. This time you’ll
 be working on creating a library to work with prime numbers. You’ll focus on three essential problems:

 	Listing out primes less than a specified number

 	Determining whether a given number is prime

 	Breaking a number into its prime factors

 The first thing that you’ll need is a way to create a list of prime numbers. Here’s the type signature for that list:

 primes :: [Int]

 You’ll achieve this by using a prime sieve, which works by filtering out the prime numbers. In terms of types, this will require
 you to take an [Int] of possible primes and then return an [Int] of just primes. The function that will perform this work is sieve:

 sieve :: [Int] -> [Int]

 With a list of primes in hand, you can easily check whether a number is prime by seeing if it’s a member of the list. Normally,
 you’d think of this as simply a function Int -> Bool, but because there are some numbers that you don’t want to consider valid for your primality check (such as negative numbers),
 you’ll return a Maybe Bool:

 isPrime :: Int -> Maybe Bool

 Finally, you’ll look at factoring numbers into primes. Because of the same issue of having isPrime return a Maybe Bool, your primeFactors function will return a Maybe [Int] representing a possible list of factors:

 primeFactors :: Int -> Maybe [Int]

 You’ll build this entire project by using stack, making sure to build out useful tests along the way to help you design your
 program. Your code for this capstone will remain relatively straightforward, as our main goal is to reinforce the basics of
 using stack to build a project.

 37.1. Starting your new project

 As always, your first step in creating a new project is to use the stack new command to create your project. You’ll call this project primes:

 $ stack new primes

 When stack has finished, you should have a nice, new project directory waiting for you. Let’s go ahead and change to that
 directory:

 $ cd primes

 As a refresher, you can look at the files and directories that stack has created. The directories are as follows:

 	app—Where your Main module will live; by default contains Main.hs

 	src—All your library files will be here; by default contains Lib.hs

 	test—You’ll keep all your testing code in this directory; by default contains Spec.hs

 The files created for you are as follows, and shown in figure 37.1:

 	primes.cabal—The file where you’ll do most of your configuration

 	LICENSE—Describes the license you’re using for your software

 	stack.yaml—Contains some extra configuration data used by stack

 	Setup.hs—A file used by the underlying cabal system that you can ignore

 Figure 37.1. The files created by stack

 [image:]

 With these files in place, you have everything you need to get started writing your code!

 37.2. Modifying the default files

 Stack generated a bunch of useful starter files for you in app/Main.hs and src/Lib.hs, including example code that you don’t
 need for this project. Because you’re mostly concerned about your library functions, you’ll start by changing your app/Main.hs
 into something that does essentially nothing other than import the Primes module you’ll be making.

 Listing 37.1. Your modified Main module in app/Main.hs

 module Main where

import Primes 1

main :: IO ()
main = return () 2

 	1 You’re going to change your Lib.hs file to Primes.hs.

 	2 You removed the someFunc stack included and return the empty tuple.

 Next, you want to change your src/Lib.hs. Because you’re creating a library of functions for working with prime numbers, you
 want to change the name of this file to Primes.hs and likewise change the module name to Primes. You’ll also start by creating a dummy list of primes that your other functions will use. You’ll start with a list of all
 numbers and refactor this later.

 Listing 37.2. Changing src/Lib.hs to src/Primes.hs

 module Primes where

primes :: [Int]
primes = [1 ..]

 Remember that you must also tell stack that you changed the name of your library file. To do this, open the primes.cabal file.
 Find the library section and change the exposed-modules value.

 Listing 37.3. Modifying primes.cabal to reflect the change of your library module

 library
 hs-source-dirs: src
 exposed-modules: Primes 1
 build-depends: base >= 4.7 && < 5
 default-language: Haskell2010

 	1 This value was previously Lib.

 As a sanity check, set up and build your project:

 $ stack setup
...
$ stack build
...

 At this point, you haven’t done anything too complex, so if you do get an error, it’s likely due to a spelling mistake or
 forgetting to save a modified default file.

 37.3. Writing your core library functions

 With the basics all set, you’re ready to start writing code. The first thing you need to do is to generate a list of prime
 numbers that your other functions will use. In unit 5, you saw how to use the Applicative type’s <*> operator to generate a list of primes. But this technique is inefficient. This time you’ll use a better option called the
 sieve of Eratosthenes. This algorithm works by iterating through a list of numbers and filtering out all the nonprimes. You start with 2, which
 is the first prime, and then remove all the other numbers that are evenly divisible by 2. Then you take the next number in
 your list, which is 3. You remove all the remaining numbers that are evenly divisible by 3. Here’s the step-by-step process
 for finding the primes less than 10:

 1. Start with 2–10: [2,3,4,5,6,7,8,9,10]

 2. 2 is the next number, so you put it in a primes list and remove all the rest:

[2] and [3,5,7,9]

 3. Then you get 3, which you add to your list and remove all numbers divisible by 3:

[2,3] and [5,7]

 4. You repeat with 5:

[2,3,5] and [7]

 5. And finally, with [7]:

[2,3,5,7] and []

 You can implement this function recursively. As with many recursive functions, you know that you’re finished when you reach
 the end of the list. Otherwise, you repeat the process described previously. Here’s the code in Haskell for your sieve (this
 function belongs in src/Primes.hs).

 Listing 37.4. Recursive implementation of the sieve of Eratosthenes

 sieve :: [Int] -> [Int]
sieve [] = []
sieve (nextPrime:rest) = nextPrime : sieve noFactors
 where noFactors = filter (not . (== 0) . (`mod` nextPrime)) rest

 You can use the stack ghci command to interact with your new function:

 GHCi> sieve [2 .. 20]
[2,3,5,7,11,13,17,19]
GHCi> sieve [2 .. 200]
[2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,
[image:]103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,
[image:]197,199]

 The sieve isn’t an end to itself. You’re going to use this sieve to generate a list of prime numbers that you’ll use for other
 functions, such as isPrime.

 37.3.1. Defining primes

 You can easily replace your dummy primes variable with a list of primes generated by your sieve function. You could write
 this value as follows.

 Listing 37.5. Creating a list of all possible primes

 primes :: [Int]
primes = sieve [2 ..]

 This generates a list of all primes smaller than the maximum Int value. Although this is philosophically great, you can see just how large the maxBound for Int is in GHCi:

 GHCi> maxBound :: Int
9223372036854775807

 Even with your much more efficient method of computing primes, you don’t want to allow users of your library to use this algorithm
 to test for large prime numbers, because this would still take a long time. Furthermore, the approximate number of primes
 less than your maxBound is around 2 × 1017! If you naively assume that each Int is stored as 4 bytes (which isn’t the case), you’d need over 800 petabytes to store this list! Lazy evaluation can be great
 in these cases, but you don’t want to allow the user of this library to accidentally request that much memory.

 Instead you’ll start with a reasonable upper bound on the primes you’ll be searching for. For this simple example, you’ll
 leave it at primes less than 10,000.

 Listing 37.6. Using sieve to generate a reasonable list of primes

 primes :: [Int]
primes = sieve [2 .. 10000]

 You can play with your new list of primes in GHCi:

 GHCi> length primes
1229
GHCi> take 10 primes
[2,3,5,7,11,13,17,19,23,29]

 If you do decide to make your limit of primes higher (say, primes less than 100,000), something annoying happens. The first
 time you use the primes list, returning your answer will take an extremely long time. This is partially due to tricky issues
 that can come up with lazy evaluation, and because you’re using a list. In most other programming languages, you’d want to implement your sieve as an array and update the values in place. In unit 7, you’ll look at how to achieve this in Haskell.

 37.3.2. Defining an isPrime function

 Now that you have a list of primes, defining an isPrime function seems trivial: you just check whether the value is in your list. You’d start with a type signature like this:

 isPrime :: Int -> Bool

 But things aren’t quite that simple. Here are a couple of edge cases:

 	What about negative numbers?

 	What about values greater than the size of your sieve?

 What should you do for these? One solution would be to simply return False. But this doesn’t seem correct. The biggest issue is that the user of your function could put in a legitimate, albeit large,
 prime number and get the wrong answer. Additionally, although it’s true that –13 isn’t prime, it’s not not prime the same way that 4 isn’t prime. The number 4 isn’t prime because it’s a composite number. A composite number is one that
 has two or more prime factors—in this case, 2 and 2. The number –13 isn’t prime because we typically don’t consider negative
 numbers to be prime.

 This is a great case for using Maybe. You’ll return Just True for primes within your range, Just False for composite numbers within your range, and Nothing for all the exceptions we mentioned. Here’s your slightly more complicated isPrimes function.

 Listing 37.7. A more robust version of isPrime

 isPrime :: Int -> Maybe Bool
isPrime n | n < 0 = Nothing
 | n >= length primes = Nothing
 | otherwise = Just (n `elem` primes)

 In the past, you’ve thought of Maybe types as being just for null values, but you can see here how this can be used for other cases of missing values. In this
 case, your result is missing because the answer doesn’t make sense for several reasons.

 After you add your isPrime function to Primes.hs, you can test it out in GHCi:

 GHCi> isPrime 8
Just False
GHCi> isPrime 17
Just True
GHCi> map isPrime [2 .. 20]
[Just True,Just True,Just False,Just True,Just False,Just True,Just
[image:]False,Just False,Just False,Just True,Just False,Just True,Just False,
[image:]Just False,Just False,Just True,Just False,Just True,Just False]
GHCi> isPrime (-13)
Nothing

 Because you’re working with a more complicated definition of isPrime than you expected, now would also be a good time to start with more rigorous testing.

 37.4. Writing tests for your code

 The next step is to start testing your code by using more than just GHCi, and that means using the test suite you saw in the
 previous lesson, QuickCheck. Let’s start with the basic setup. First, you need to edit your primes.cabal file so that the
 test-suite section includes QuickCheck. You won’t need the quickcheck-instances package this time because you’ll use Ints, which work with QuickCheck by default.

 Listing 37.8. Changing test-suite in primes.cabal to include QuickCheck

 test-suite primes-test
 type: exitcode-stdio-1.0
 hs-source-dirs: test
 main-is: Spec.hs
 build-depends: base
 , primes
 , QuickCheck 1
 ghc-options: -threaded -rtsopts -with-rtsopts=-N
 default-language: Haskell2010

 	1 This is the only addition you need to make to use QuickCheck.

 The next file you need to modify is test/Spec.hs. You’ll start by adding some imports that you need.

 Listing 37.9. Adding necessary imports to test/Spec.hs

 import Test.QuickCheck
import Primes

main :: IO ()
main = putStrLn "Test suite not yet implemented"

 Even though you haven’t written any tests yet, you should still run stack test to make sure that everything is in good working order:

 $ stack test
Test suite not yet implemented

 If you get this message, everything should be working. Time to start with some basic properties that your isPrime function needs to have.

 37.4.1. Defining properties for isPrime

 The first property to define is a basic one that makes sure that you’re getting your Maybe types correct. Remember that numbers larger than your list of primes, and numbers less than 0, should return a Nothing value; anything else should be a Just value. You’ll import Data.Maybe so that you can use the isJust function to quickly check whether a Maybe value is a Just value. Here’s the definition of prop_validPrimesOnly.

 Listing 37.10. prop_validPrimesOnly tests that you get Nothing and Just values

 import Data.Maybe

prop_validPrimesOnly val = if val < 0 || val >= length primes
 then result == Nothing
 else isJust result
 where result = isPrime val

 All you need to do for this test is refactor your main IO action to run the new test.

 Listing 37.11. Adding prop_validPrimesOnly to your main

 main :: IO ()
main = do
 quickCheck prop_validPrimesOnly

 Before running your test suite, you’ll add a few more tests.

 Testing that primes are, in fact, prime

 The most obvious property that needs to be upheld is that primes are prime. You can do this by generating a list of all the
 numbers less than your prime, starting at 2. Then you’ll filter this list to see if any of the values evenly divide your input
 number. In this test, you’re concerned only with the case in which the function returns Just True, indicating a prime. Here’s the definition of prop_primesArePrime.

 Listing 37.12. Testing that numbers your function thinks are prime, are prime

 prop_primesArePrime val = if result == Just True
 then length divisors == 0
 else True
 where result = isPrime val
 divisors = filter ((== 0) . (val `mod`)) [2 .. (val - 1)]

 This way to verify primes isn’t as efficient as the way you generate them, but that’s okay because you’ll run this test only
 occasionally. This is a great demonstration of how powerful property tests can be. You can use a method that’s less efficient
 but easier to reason about to test a wide range of possible inputs.

 Testing that nonprimes are composite

 The final test to add for your isPrime function is the opposite of the preceding one. You’ll check that if your function returns Just False, the input number has at least one number that’s less than it and evenly divides it.

 Listing 37.13. Testing that the nonprimes are composite numbers

 prop_nonPrimesAreComposite val = if result == Just False
 then length divisors > 0
 else True
 where result = isPrime val
 divisors = filter ((== 0) . (val `mod`)) [2 .. (val - 1)]

 This is another nice example of a property you want your function to uphold. Rather than just testing a handful of composite
 number examples, you’re defining what it means to be not prime.

 Running your tests

 All you have to do now is to add a few more calls to quickCheck to your main. This time you’ll do quickCheckWith and run 1,000 tests rather than just 100. After all, a lot of numbers are possible inputs for an Int type, so you want to make sure you check a good number of them.

 Listing 37.14. Modifying your main to test your additional properties

 main :: IO ()
main = do
 quickCheck prop_validPrimesOnly
 quickCheckWith stdArgs { maxSuccess = 1000} prop_primesArePrime
 quickCheckWith stdArgs { maxSuccess = 1000} prop_nonPrimesAreComposite

 Now if you run this test, you see you missed something!

 +++ OK, passed 100 tests.
+++ OK, passed 1000 tests.
*** Failed! Falsifiable (after 1 test):
0

 You fail because 0 isn’t composite! When you decided which numbers should be Nothing, you decided on numbers less than zero. But your property test has led you to an interesting problem: 0 (and 1 for that matter)
 isn’t composite and isn’t prime. So what should you do? Perhaps the best part of your property test is that you have an answer
 already written down. You’ve decided that isPrime should return Just True for primes and Just False for composite numbers. This decision means that any user of isPrime can safely assume that Just False means that the number used as an input is composite. Your property test caught an error in your thinking and helped you to
 understand what the right solution should be.

 37.4.2. Fixing the bug

 Fixing this bug is straightforward. You have to refactor your isPrime function so it returns Nothing for all values less than 2, rather than 0.

 Listing 37.15. Fixing the bug in isPrime

 isPrime :: Int -> Maybe Bool
isPrime n | n < 2 = Nothing
 | n >= length primes = Nothing
 | otherwise = Just (n `elem` primes)

 You need to change your prop_validPrimesOnly test to reflect this change as well.

 Listing 37.16. Updating your prop_validPrimesOnly after updated isPrime

 prop_validPrimesOnly val = if val < 2 || val >= length primes
 then result == Nothing
 else isJust result
 where result = isPrime val

 Now if you rerun your tests, you get an OK for everything:

 +++ OK, passed 100 tests.
+++ OK, passed 1000 tests.
+++ OK, passed 1000 tests.

 With the ability to list primes and detect primes, you can move on to a slightly more interesting problem, which is dividing
 a number into its prime factors.

 37.5. Adding code to factor numbers

 The final function you’ll add is a function to generate all the prime factors of a number. The prime factors are the prime
 numbers that when multiplied together give you the original number. For example:

 4 = [2,2]
6 = [2,3]
18 = [2,3,3]

 For the same reason you needed to with isPrime, you want to return a Maybe list of prime factors. This is in case your number is negative, or larger than your largest prime number.

 You’ll start by making an unsafe version of this function that returns a regular list, rather than a Maybe list. The algorithm is simple. You’ll start with a number and a list of primes. Then you check whether the number is easily
 divisible by each prime in the list. You’ll remove the primes from the list if they aren’t evenly divisible. You can define
 this function recursively as follows.

 Listing 37.17. An unsafe version of your prime factorization algorithm

 unsafePrimeFactors :: Int -> [Int] -> [Int]
unsafePrimeFactors 0 [] = []
unsafePrimeFactors n [] = []
unsafePrimeFactors n (next:primes) = if n `mod` next == 0
 then next:unsafePrimeFactors
 [image:](n `div` next) (next:primes)
 else unsafePrimeFactors n primes

 Now all you have to do is wrap this unsafe function in code that handles the cases in which you want to return missing values.

 Listing 37.18. Wrapping unsafePrimeFactors to make it safe

 primeFactors :: Int -> Maybe [Int]
primeFactors n | n < 2 = Nothing
 | n >= length primes = Nothing
 | otherwise = Just (unsafePrimeFactors n primesLessThanN)
 where primesLessThanN = filter (<= n) primes

 The final step is to add tests for your new function.

 The most obvious property of your factors is that the product of these factors should return the original values. You’ll test
 this with the prop_factorsMakeOriginal property.

 Listing 37.19. Making sure the product of your factors is the original value

 prop_factorsMakeOriginal val = if result == Nothing
 then True
 else product (fromJust result) == val
 where result = primeFactors val

 One more error you could have is somehow having a nonprime value in your results. The prop_allFactorsPrime property tests that all your prime factors are truly prime. Because you already tested isPrime, you can feel free to use that in this test.

 Listing 37.20. Ensuring that all your factors are prime

 prop_allFactorsPrime val = if result == Nothing
 then True
 else all (== Just True) resultsPrime
 where result = primeFactors val
 resultsPrime = map isPrime (fromJust result)

 Your last step is to update your main.

 Listing 37.21. Your final main in src/Spec.hs to run all your property tests

 main :: IO ()
main = do
 quickCheck prop_validPrimesOnly
 quickCheckWith stdArgs { maxSuccess = 1000} prop_primesArePrime
 quickCheckWith stdArgs { maxSuccess = 1000} prop_nonPrimesAreComposite
 quickCheck prop_factorsSumToOriginal
 quickCheck prop_allFactorsPrime

 Running these five property tests, which in this case are the equivalent of 2,300 unit tests, you can see that your code works
 as you’d expect:

 +++ OK, passed 100 tests.
+++ OK, passed 1000 tests.
+++ OK, passed 1000 tests.
+++ OK, passed 100 tests.
+++ OK, passed 100 tests.

 You’ve just completed your second project using stack, and this time you’ve walked through everything in one go. As you can
 see, stack is a useful tool that makes writing code in Haskell much more manageable. In the next unit, you’ll use stack for
 all the practical code examples.

 Summary

 In this capstone, you

 	Created a new stack project

 	Modified the default source files and configuration

 	Wrote your basic library code and manually tested it in GHCi

 	Implemented property tests to check for bugs

 	Used QuickCheck and stack test to find errors in your functions

 	Refactored your code to fix the bugs

 	Extended your library functions with new code and tests

 Extending the exercise

 The easiest way to extend this exercise is to go ahead and put some code in your app/Main.hs file to allow a user to test
 numbers for primality, factor primes, or both. An interesting challenge would be to handle the case of Nothing results from either function. Here’s an example of how this might look:

 $ stack exe primes-exe
Enter a number to check if it's prime:
4
It is prime!

$ stack exe primes-exe
Enter a number to Factor:
100000000000
Sorry, this number is not a valid candidate for primality testing

 A trickier challenge would be to consider more sophisticated prime checking algorithms. For example, there’s a probabilistic
 primality test called the Miller-Rabin primality test. By implementing this algorithm, you could allow your isPrime function to work with much larger inputs. Wikipedia provides a good overview of this algorithm: https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test.

Unit 7. Practical Haskell

 Welcome to the last unit of Get Programming with Haskell! By this point, you’ve come a long way from learning the basics of referential transparency and the benefits of functional
 programming. This last unit is different from most of the others. The goal of unit 7 is to ease the transition from learning Haskell to writing real-world code. I’ve often found that many students of Haskell
 (myself included) find the transition from reading about Haskell to writing everyday code in Haskell to be more challenging
 than expected.

 To ease this transition, this unit will ensure that you have some familiarity with a range of tasks that provide a solid foundation
 for building larger and more complex programs. You’ll start by learning how Haskell handles errors and will then be introduced
 to a useful type called Either.

 Next, you’ll build three practical projects. In the first, you’ll make a simple HTTP request in Haskell by using a RESTful
 API. Interacting with HTTP is an increasingly large part of what most programmers have to deal with every day. Even if you
 aren’t interested in web development, it won’t be long until you find yourself needing to fetch data from the web. You’ll
 then use the results from this project to learn how to parse JSON data in Haskell by using the Aeson library. JSON is perhaps
 the most ubiquitous format for data today; parsing JSON comes up in many common programming projects. After that, you’ll learn
 how to use Haskell with a SQL database by building a command-line tool for a community tool-sharing library. Your application
 will cover all of the basic CRUD database tasks.

 In the final lesson of this unit, you’ll say goodbye to Get Programming with Haskell by learning to do something you don’t normally think of using Haskell for: classic array algorithms. In this lesson, you’ll
 use the STUArray type to implement a sorting algorithm that’s stateful, doesn’t use lazy evaluation, and should perform as well as in most
 nonfunctional languages. If you can implement a proper bubble sort in a purely functional language, you can use Haskell for
 anything.

Lesson 38. Errors in Haskell and the Either type

 After reading lesson 38, you’ll be able to

 	Throw errors by using the error function

 	Understand the dangers of throwing errors

 	Use Maybe as a method for handling errors

 	Handle more sophisticated errors with the Either type

 Most of what makes Haskell so powerful is based on the language being safe, predictable, and reliable. Although Haskell reduces
 or eliminates many problems, errors are an unavoidable part of real-world programming. In this lesson, you’ll learn how to
 think about handling errors in Haskell. The traditional approach of throwing an exception is frowned upon in Haskell, as this
 makes it easy to have runtime errors the compiler can’t catch. Although Haskell does allow you to throw errors, there are
 better ways to solve many problems that come up in your programs. You’ve already spent a lot of time with one of these methods:
 using the Maybe type. The trouble with Maybe is that you don’t have a lot of options for communicating what went wrong. Haskell provides a more powerful type, Either, that lets you use any value you’d like to provide information about an error.

 In this lesson, you’ll use the error function, Maybe type, and Either type in Haskell to resolve exceptions in your programs. You’ll start by exploring the head function. Though head is one of the first functions you learned, its implementation has a major issue: it’s easy to use head and create runtime errors that can’t be captured by Haskell’s type system. You’ll look at several alternative ways to handle
 the case where head fails. This problem can be better solved by using the familiar Maybe type, and you can give more informative errors by using a new type you’ll learn about, called Either. You’ll conclude by building a simple command-line tool that checks whether a number is prime. You’ll use the Either type and your own error data type to represent errors and display them to the user.

 	

 Consider this

 You have a list representing employee ID numbers. Employee IDs can’t be larger than 10000 or less than 0. You have an idInUse function that checks whether a specific ID is being used. How can you write a function that lets a programmer using idInUse distinguish between a user that isn’t in the database and a value that’s outside the range of valid employee IDs?

 	

 38.1. Head, partial functions, and errors

 One of the first functions you were introduced to was head. The head function gives you the first element in the list, if there is one. The trouble with head is what to do when there’s no first element in the list (an empty list). See figure 38.1.

 Figure 38.1. How can you solve the case of calling head on an empty list?

 [image:]

 Initially, head seems like an incredibly useful function. Many recursive functions you write in Haskell use lists, and accessing the first
 item in a list is a common requirement.

 But head has one big issue. When you call head on an empty list, you get an error:

 GHCi> head [1]
1
GHCi> head []
*** Exception: Prelude.head: empty list

 In most programming languages, throwing an exception like this is common practice. In Haskell, this is a big problem, because
 throwing an exception makes your code unpredictable. One of the key benefits of using Haskell is that your programs are safer
 and more predictable. But nothing about the head function, or its type signature, gives you any indication that it could suddenly blow up:

 head :: [a] -> a

 By this point in the book, you’ve seen firsthand that if a Haskell program compiles, it likely runs as expected. But head violates this rule by making it easy to write code that compiles but then causes an error at runtime.

 For example, suppose you naively implement a recursive myTake function using head and tail.

 Listing 38.1. A function that easily causes an error when used but compiles fine

 myTake :: Int -> [a] -> [a]
myTake 0 _ = []
myTake n xs = head xs : myTake (n-1) (tail xs)

 Let’s compile this code, only this time you’ll set a compiler flag to warn of any potential problems with the code. You can
 do this by using the -Wall flag. This can be done in stack by adding -Wall to the ghc-options value in the executable section of the .cabal file. As a refresher from lesson 35, open the headaches.cabal file in the projects root directory, find the executable section of the .cabal file, and append
 -Wall to the list of ghc-options as shown here:

 executable headaches-exe
 hs-source-dirs: app
 main-is: Main.hs
 ghc-options: -threaded -rtsopts -with-rtsopts=-N -Wall 1
 build-depends: base
 , headaches
 default-language: Haskell2010

 	1 The Wall argument sets all warnings to be checked when the program is compiled.

 After you change your file, you need to restart GHCi (which will automatically rebuild your project). Now if you build your
 project, you’ll get no complaints from the compiler. But it’s trivial to see that this code produces an error:

 GHCi> myTake 2 [1,2,3] :: [Int]
[1,2]
GHCi> myTake 4 [1,2,3] :: [Int]
[1,2,3,*** Exception: Prelude.head: empty list

 Imagine that this code is running and processing requests from a user. This kind of failure would be frustrating, especially
 given that you’re using Haskell.

 To understand why head is so dangerous, let’s compare this to the exact same version using pattern matching.

 Listing 38.2. An identical function to myTake, which throws a compiler warning

 myTakePM :: Int -> [a] -> [a]
myTakePM 0 _ = []
myTakePM n (x:xs) = x : myTakePM (n-1) xs

 This code is identical in behavior to myTake, but when you compile with -Wall, you get a helpful error:

 Pattern match(es) are non-exhaustive
 In an equation for 'myTakePM':
 Patterns not matched: p [] where p is not one of {0}

 This tells you that your function doesn’t have a pattern for the empty list! Even though this is identical to the code using
 head, GHC can warn you about this.

 	

 Note

 If you don’t want to miss warnings on large projects, you can compile with -error, which causes an error anytime a warning is found.

 	

 	

 Quick check 38.1

 Q1:
Which of the following is the missing pattern that would fix myTakePM?

 myTakePM _0 [] = []

myTakePM _ [] = []

myTakePM 0 (x:xs) = []

 	

 	

 QC 38.1 answer

 1:

You need to add the following pattern:

 myTakePM _ [] = []

 	

 38.1.1. Head and partial functions

 The head function is an example of a partial function. In lesson 2, you learned that every function must take an argument and return a result. Partial functions don’t violate this rule, but
 they have one significant failing. They aren’t defined on all inputs. The head function is undefined on the empty list.

 Nearly all errors in software are the result of partial functions. Your program receives input you don’t expect, and the program
 has no way of dealing with it. Throwing an error is an obvious solution to this problem. Throwing errors in Haskell is simple:
 you use the error function. Here’s myHead with an error.

 Listing 38.3. myHead, an example of throwing an error

 myHead :: [a] -> a
myHead [] = error "empty list" 1
myHead (x:_) = x

 	1 Throws an error whenever myHead matches an empty list

 In Haskell, throwing errors is considered bad practice. This is because, as you saw with myTake, it’s easy to introduce bugs into code that the compiler can’t check. In practice, you should never use head, and instead use pattern matching. If you replace any instance of using head and tail in your code with pattern matching, the compiler can warn you of errors.

 The real question is, what do you do about partial functions in general? Ideally, you want a way to transform your partial
 function into one that works on all values. Another common partial function is (/), which is undefined for 0. But Haskell avoids throwing an error in this case by providing a different solution:

 GHCi> 2 / 0
Infinity

 This is a nice solution to the problem of dividing by zero, but solutions like this exist for only a few specific cases. What
 you want is a way to use types to capture when errors might happen. Your compiler can help in writing more error-resistant
 code.

 	

 Quick check 38.2

 Q1:
The following are all partial functions included in Prelude. For what inputs do they fail?

 	maximum

 	succ

 	sum

 	

 	

 QC 38.2 answer

 1:

 	maximum—Fails on the empty list

 	succ—Fails on maxBound for the type

 	sum—Fails on infinite lists

 	

 38.2. Handling partial functions with Maybe

 It turns out you’ve already seen one of the most useful ways to handle partial functions: Maybe. In many of the examples of Maybe that you’ve used, there would be a Null value in other languages. But Maybe is a reasonable way to transform any partial function into a complete function. Here’s your code for maybeHead.

 Listing 38.4. Using Maybe to make head a complete function

 maybeHead :: [a] -> Maybe a
maybeHead [] = Nothing
maybeHead (x:_) = Just x

 With maybeHead, you can safely take the head of a list:

 GHCi> maybeHead [1]
Just 1
GHCi> maybeHead []
Nothing

 In unit 5, you learned that Maybe is an instance of Monad (and therefore Functor and Applicative), which allows you to perform computation on values in a Maybe context. Recall that the Functor type class allows you to use <$> to apply a function to a Maybe value. Here’s an example of using the maybeHead function, as well as using <$> to operate on the values it produces:

 GHCi> (+2) <$> maybeHead [1]
Just 3
GHCi> (+2) <$> maybeHead []
Nothing

 The Applicative type class provides the <*> operator, so you can chain together functions in a context, most commonly used for multi-argument functions. Here’s how to
 use <$> with <*> to cons a result from maybeHead with a Just []:

 GHCi> (:) <$> maybeHead [1,2,3] <*> Just []
Just [1]
GHCi> (:) <$> maybeHead [] <*> Just []
Nothing

 You can combine maybeHead with <$> and <*> to write a new, safer version of myTake.

 Listing 38.5. A safer version of myTake using maybeHead instead of head

 myTakeSafer :: Int -> Maybe [a] -> Maybe [a]
myTakeSafer 0 _ = Just []
myTakeSafer n (Just xs) = (:) <$> maybeHead xs
 <*> myTakeSafer (n-1) (Just (tail xs))

 In GHCi, you can see that the myTakeSafer function works just fine with error-causing inputs:

 GHCi> myTakeSafer 3 (Just [1,2,3])
Just [1,2,3]
GHCi> myTakeSafer 6 (Just [1,2,3])
Nothing

 As you can see, myTakeSafer works as you’d expect (though differently than take, which would return the full list). Note that the reason you named it
 safer, not safe, is that, unfortunately, tail is also a partial function.

 38.3. Introducing the Either type

 We’ve spent a lot of time in this book talking about the power of Maybe, but it does have one major limitation. As you write more sophisticated programs, the Nothing result becomes harder to interpret. Recall that in our unit 6 capstone you had an isPrime function. Here’s a simplified version of isPrime:

 primes :: [Int] 1
primes = [2,3,5,7]

maxN :: Int
maxN = 10 2

isPrime :: Int -> Maybe Bool
isPrime n
 | n < 2 = Nothing 3
 | n > maxN = Nothing 4
 | otherwise = Just (n `elem` primes) 5

 	1 The list of primes you’re using to determine whether a number is prime

 	2 The largest value you’ll check for primality

 	3 If the number is less than 2, you don’t consider checking it.

 	4 If the number is greater than your max, you can’t know whether it’s prime.

 	5 If the number is a valid candidate, check whether it’s prime.

 You made this function of type Int -> Maybe Bool because you wanted to handle your edge cases. The key issue is that you want a False value for isPrime to mean that a number is composite. But there are two problems. Numbers such as 0 and 1 are neither composite nor prime.
 Additionally, the isPrime function limits how large a number can be, and you don’t want to return False just because a value is too expensive to compute.

 Now imagine you’re using isPrime in your own software. When you call isPrime 9997, you get Nothing as a result. What in the world does this mean? You’d have to look up the documentation (hoping there is any) to find out.
 The nice thing about errors is that you get an error message. Although Maybe does give you lots of safety, unless Nothing has an obvious interpretation, as in the case of Null values, it’s not useful. Fortunately, Haskell has another type, similar to Maybe, that allows you to create much more expressive errors while remaining safe.

 	

 Quick check 38.3

 Q1:
Suppose you have this list:

 oddList :: [Maybe Int]
oddList = [Nothing]

 	

 	

 QC 38.3 answer

 1:

Maybe Int

 	

 The type you’ll be looking at is called Either. Though only a bit more complicated than Maybe, its definition can be confusing. Here’s the definition of Either:

 data Either a b = Left a | Right b

 Either has two confusingly named data constructors: Left and Right. For handling errors, you can consider the Left constructor as the case of having an error, and the Right constructor for when things go as planned. A more user-friendly, but less general way to define Either is as follows:

 data Either a b = Fail a | Correct b

 In practice, the Right constructor works exactly like Just for Maybe. The key difference between the two is that Left allows you to have more information than Nothing. Also notice that Either takes two type parameters. This allows you to have a type for sending error messages and a type for your actual data. To
 demonstrate, here’s an example of making a safer head function with Either.

 Listing 38.6. A safer version of head written using Either

 eitherHead :: [a] -> Either String a
eitherHead [] = Left "There is no head because the list is empty"
eitherHead (x:xs) = Right x

 Notice that the Left constructor takes a String, whereas the Right constructor returns the value from the first item in your list. Here are some example lists you can test on:

 intExample :: [Int]
intExample = [1,2,3]

intExampleEmpty :: [Int]
intExampleEmpty = []

charExample :: [Char]
charExample = "cat"

charExampleEmpty :: [Char]
charExampleEmpty = ""

 In GHCi, you can see how Either works, as well as the types you get back:

 GHCi> eitherHead intExample
Right 1
GHCi> eitherHead intExampleEmpty
Left "There is no head because the list is empty"
GHCi> eitherHead charExample
Right 'c'
GHCi> eitherHead charExampleEmpty
Left "There is no head because the list is empty"

 The Either type is also a member of Monad (and thus Functor and Applicative as well). Here’s a simple example of using <$> to increment the head of your intExample:

 GHCi> (+ 1) <$> (eitherHead intExample)
Right 2
GHCi> (+ 1) <$> (eitherHead intExampleEmpty)
Left "There is no head because the list is empty"

 The Either type combines the safety of Maybe with the clarity that error messages provide.

 	

 Quick check 38.4

 Q1:
Use <$> and <*> to add the first and second numbers in intExample by using eitherHead.

 	

 	

 QC 38.4 answer

 1:

(+) <$> eitherHead intExample <*> eitherHead (tail intExample)

 	

 38.3.1. Building a prime check with Either

 To demonstrate working with Either, let’s see how to build a basic command-line tool to check whether a number is prime. You’ll keep your isPrime function minimal, focusing on using the Either type. You’ll begin by using a String for your error message. Then you’ll take advantage of the fact that Either lets you use any type you want to, allowing you to create your own error types.

 The nice thing about Either is you don’t have to stick to a single error message. You can have as many as you’d like. Your improved isPrime function will let you know whether a value isn’t a valid candidate for primality checking, or whether the number is too large.

 Listing 38.7. isPrime refactors to use multiple messages when a number is invalid

 isPrime :: Int -> Either String Bool
isPrime n
 | n < 2 = Left "Numbers less than 2 are not candidates for primes"
 | n > maxN = Left "Value exceeds limits of prime checker"
 | otherwise = Right (n `elem` primes)

 Here are a few tests of this function in GHCi:

 GHCi> isPrime 5
Right True
GHCi> isPrime 6
Right False
GHCi> isPrime 100
Left "Value exceeds limits of prime checker"
GHCi> isPrime (-29)
Left "Numbers less than 2 are not candidates for primes"

 So far, you haven’t taken advantage of Either being able to take two types; you’ve exclusively used String for the Left constructor. In most programming languages, you can represent errors by using a class. This makes it easier to model specific
 types of errors. Either allows you to do this as well. You’ll start by making your errors into a type of their own.

 Listing 38.8. The PrimeError types for representing your errors as types

 data PrimeError = TooLarge | InvalidValue

 Now you can make this an instance of Show so you can easily print out these errors.

 Listing 38.9. Making PrimeError an instance of Show

 instance Show PrimeError where
 show TooLarge = "Value exceed max bound"
 show InvalidValue = "Value is not a valid candidate for prime checking"

 With your new PrimeError type, you can refactor your isPrime function to show off these errors.

 Listing 38.10. Refactoring isPrime to use PrimeError

 isPrime :: Int -> Either PrimeError Bool
isPrime n
 | n < 2 = Left InvalidValue
 | n > maxN = Left TooLarge
 | otherwise = Right (n `elem` primes)

 This makes your code much more readable. Additionally, you now have an easily reusable data type that will work with your
 errors. Here are some examples of your new function in GHCi:

 GHCi> isPrime 99
Left Value exceed max bound
GHCi> isPrime 0:
Left Value is not a valid candidate for prime checking

 Next you’ll create a displayResult function that will convert your Either response into a String.

 Listing 38.11. Translating your isPrime result to be human-readable

 displayResult :: Either PrimeError Bool -> String
displayResult (Right True) = "It's prime"
displayResult (Right False) = "It's composite"
displayResult (Left primeError) = show primeError

 Finally, you can put together a simple main IO action that reads as follows.

 Listing 38.12. The main to check for primes from user input

 main :: IO ()
main = do
 print "Enter a number to test for primality:"
 n <- read <$> getLine
 let result = isPrime n
 print (displayResult result)

 Now you can build and run your program:

 $ stack build
$ stack exec primechecker-exe
"Enter a number to test for primality:"
6
"It's composite"

$ stack exec headaches-exe
"Enter a number to test for primality:"
5
"It's prime"

$ stack exec headaches-exe
"Enter a number to test for primality:"
213
"Value exceed max bound"

$ stack exec headaches-exe
"Enter a number to test for primality:"
0
"Value is not a valid candidate for prime checking"

 With your PrimeError type, you were able to replicate more sophisticated ways of modeling errors in OOP languages. The great thing about Either is that because the Left constructor can be any type, there’s no limit to how expressive you can be. If you wanted to, you could return a function!

 Summary

 In this lesson, our objective was to teach you how to safely handle errors in Haskell. You started by looking at the way head uses error to signal when you have an empty list with no head. Neither your type checker nor GHC’s warnings let you know this is a problem.
 This is ultimately caused by head being a partial function, a function that doesn’t return a result for all possible inputs. This can be solved by using a
 Maybe type. Although Maybe types do make your code safer, they can make errors hard to understand. Finally, you saw that the Either type provides the best of both worlds, allowing you to safely handle errors as well as providing detailed information about
 them.

 Q38.1
Make a function addStrInts that takes two Ints represented as Strings and adds them. The function would return an Either String Int. The Right constructor should return the result, provided that the two arguments can be parsed into Ints (use Data.Char isDigit to check). Return a different Left result for the three possible cases:

 	First value can’t be parsed.

 	Second value can’t be parsed.

 	Neither value can be parsed.

 Q38.2
The following are all partial functions. Use the type specified to implement a safer version of the function:

 	succ—Maybe

 	tail—[a] (Keep the type the same.)

 	last—Either (last fails on empty lists and infinite lists; use an upper bound for the infinite case.)

Lesson 39. Making HTTP requests in Haskell

 After reading lesson 39, you’ll be able to

 	Fetch web pages by using Haskell

 	Generate more complex requests by setting headers and using HTTPS

 	Understand how to approach learning new Haskell types and libraries

 In this lesson, you’ll learn how to make an HTTP request in Haskell and save the results to a file. The data you’ll fetch
 is from the National Oceanic and Atmospheric Administration (NOAA) Climate Data API. This API requires you to send a custom
 HTTP request that uses SSL and has a custom header for authentication. You’ll use the Network.HTTP.Simple library, which will allow you to make simple requests as well as create custom HTTP requests. You’ll start by learning how
 to use Network.HTTP.Simple to fetch a web page from a URL. Then you’ll create a specific request for the NOAA API. In the end, you’ll have fetched JSON
 data from this API to be used in the next lesson.

 	

 Consider this

 How would you go about writing a Haskell program that when ran would fetch the homepage of reddit.com and write it to a local
 .html file?

 	

 39.1. Getting your project set up

 In this lesson, you’ll look at one of the most common tasks in contemporary programming: making an HTTP request. The aim of
 this project is to create a script that makes a request to the NOAA Climate Data API. The NOAA Climate Data API contains access
 to a wide range of climate-related data. On the API’s website (https://www.ncdc.noaa.gov/cdo-web/webservices/v2#gettingStarted), you can find a list of endpoints that the API offers. Here are a few of them:

 	/datasets—Tells you which data sets are available

 	/locations—Gives the locations available to look up

 	/stations—Provides information on available weather observation stations

 	/data—Provides access to the raw data

 Building a full wrapper for the NOAA API would be a project beyond the scope of a single lesson. You’ll focus on the first
 step in this process: getting results from the /datasets endpoint. The /datasets endpoint provides essential metadata you
 need to pass to the /data endpoint to request your data. Here’s an example entry:

 "uid":"gov.noaa.ncdc:C00822",
"mindate":"2010-01-01",
"maxdate":"2010-12-01",
"name":"Normals Monthly",
"datacoverage":1,
"id":"NORMAL_MLY"

 Even though fetching this data is a small part of the overall API, after you understand the basics of working with HTTP in
 Haskell, extending the project is straightforward. After you’ve made the request, you’ll write the body of the request to
 a JSON file. Although this is a fairly straightforward task, you’ll learn much about working with real-world Haskell along
 the way.

 You’ll create a new stack project called http-lesson. As a quick refresher, the following steps will create and build your project:

 $ stack update
$ stack new http-lesson
$ cd http-lesson
$ stack setup
$ stack build

 For this simple project, you’ll keep everything in the Main module located in app/Main.hs.

 	

 Note

 This project uses the NOAA Climate Data API to fetch JSON and save it to a file. In the next lesson, you’ll parse that JSON.
 This API is free to use but does require the user to request an API token. To get your token, go to www.ncdc.noaa.gov/cdo-web/token and fill in the form with your email address. Your token should be sent quickly. You’ll be making a request to see which
 data sets the API allows access to.

 	

 After you have your API token, you can start coding up your project.

 39.1.1. Your starter code

 You’ll start with adding imports to your Main module. Notice that you’ll import both Data.ByteString and Data.ByteString.Lazy. Importing multiple text or ByteString types is common in real-world Haskell. In this case, you’re doing so because different parts of the library you’ll be using
 require using either strict or lazy ByteStrings. You’ll import the Char8 module for both of these libraries, as it will make using them much easier, as we discussed in lesson 25. Finally, you’ll add the Network.HTTP.Simple library, which you’ll use for your HTTP requests.

 Listing 39.1. The imports for your app/Main.hs file

 module Main where

import qualified Data.ByteString as B
import qualified Data.ByteString.Char8 as BC
import qualified Data.ByteString.Lazy as L
import qualified Data.ByteString.Lazy.Char8 as LC
import Network.HTTP.Simple

 Before you continue, you also need to update your http-lesson.cabal file to support these imports. You’ll add bytestring and http-conduit to your build-depends section. Because you’re working with ByteStrings and Char8, it’s also helpful to include the OverloadedStrings extension.

 Listing 39.2. Modifying your project’s .cabal file

 executable http-lesson-exe
 hs-source-dirs: app
 main-is: Main.hs
 ghc-options: -threaded -rtsopts -with-rtsopts=-N
build-depends: base
 , http-lesson
 , bytestring 1
 , http-conduit 2
 default-language: Haskell2010
 extensions: OverloadedStrings 3

 	1 This is necessary for the various Data.ByteString imports.

 	2 http-conduit is the library that includes Network.HTTP.Simple.

 	3 OverloadedStrings makes working with ByteStrings much easier.

 Note that stack will handle downloading all of your dependencies for http-conduit, and you don’t need to explicitly use the stack install command.

 Next you can start fleshing out your Main with variables for the data you need. You’re only going to be concerned about a single API request, which will allow you
 to list all the data sets in the NOAA Climate Data API.

 Listing 39.3. Variables that will be helpful in making your HTTP requests

 myToken :: BC.ByteString
myToken = "<API TOKEN HERE>"

noaaHost :: BC.ByteString
noaaHost = "www.ncdc.noaa.gov"

apiPath :: BC.ByteString
apiPath = "/cdo-web/api/v2/datasets"

 You also need placeholder code in your main IO action to ensure that your code will compile.

 Listing 39.4. Placeholder code for your main action

 main :: IO ()
main = print "hi"

 	

 Quick check 39.1

 Q1:
If you didn’t include your OverloadedStrings extension in the .cabal file, how could you modify Main.hs to support OverloadedStrings?

 	

 	

 QC 39.1 answer

 1:

You could use the LANGUAGE pragma:

 {-# LANGUAGE OverloadedStrings -#}

 	

 39.2. Using the HTTP.Simple module

 Now that you have the basics in place, you can start playing around with HTTP requests. You’ll use the module Network.HTTP.Simple, which is part of the http-conduit package. As the name indicates, HTTP.Simple makes it easy for you to make simple HTTP requests. You’ll use the httpLBS (the LBS stands for lazy ByteString) function to submit your request. Normally, you’d have to create an instance of the Request data type to pass into this function. But httpLBS is able to cleverly take advantage of OverloadedStrings to make sure the correct type is passed in. Here’s a quick sample of fetching the data from the popular tech news site,
 Hacker News (https://news.ycombinator.com):

 GHCi> import Network.HTTP.Simple
GHCi> response = httpLBS "http://news.ycombinator.com"

 If you type this into GHCi, you’ll notice that the response variable is set instantly, even though you’re making an HTTP request. Typically, an HTTP request results in a noticeable
 delay in time due to the nature of making the request itself. Your variable is assigned instantly because of lazy evaluation.
 Even though you’ve defined a request, you still haven’t used it. If you enter response again, you’ll notice a slight delay:

 GHCi> response
<large output>

 You want to be able to access different pieces of your response. The first thing to check is the status code of the response.
 This is the HTTP code that tells whether your request was successful.

 	

 Common HTTP codes

 In case you’re unfamiliar, here are some common HTTP status codes:

 	200 OK—The request was successful.

 	301 Moved Permanently—The resource being requested has moved.

 	404 Not Found—The resource is missing.

 	

 Network.HTTP.Simple contains the function getResponseStatusCode that gives you the status of your response. If you run this in GHCi, you immediately come across a problem:

 GHCi> getResponseStatusCode response

<interactive>:6:23: error:
 No instance for (Control.Monad.IO.Class.MonadIO Response)
 arising from a use of 'response'

 What happened here? The issue is that getResponseStatusCode is expecting a plain response type, as you can see from its type signature:

 getResponseStatusCode :: Response a -> Int

 But to make your HTTP request, you had to use IO, which means that your response variable is an IO (Response a) type.

 	

 A popular alternative to HTTP.Simple

 Although Network.HTTP.Simple is fairly straightforward, it’s relatively bare bones. Many other Haskell packages are available for making HTTP requests.
 One of the more popular is the wreq package (https://hackage.haskell.org/package/wreq). Although wreq is a nice library, it would require you to learn another abstract Haskell topic: Lens. It’s worth pointing out that it’s
 common for Haskell packages to use new and interesting abstractions. If you loved unit 5 on monads, you may find this one of the more exciting parts of writing Haskell. But the love of abstraction can also be a
 frustration for beginners who may not want to learn yet another new idea when they just want to fetch data from an API.

 	

 You can solve this problem in two ways. The first way is to use your Functor <$> operator:

 GHCi> getResponseStatusCode <$> response
200

 Remember that <$> allows you to take a pure function and put it in a context. If you look at the type of your result, you’ll see it’s also
 in a context:

 GHCi> :t getResponseStatusCode <$> response
getResponseStatusCode <$> response
:: Control.Monad.IO.Class.MonadIO f => f Int

 An alternative solution is to assign response by using <- rather than =. Just as when you’re using do-notation, this allows you to treat a value in a context as though it were a pure value:

 GHCi> response <- httpLBS "http://news.ycombinator.com"
GHCi> getResponseStatusCode response
200

 Now that you understand the basics of an HTTP request, you’ll move on to make a more sophisticated request.

 	

 Quick check 39.2

 Q1:
There’s also a getResponseHeader function. Use both <$> and <- to get the header of the response.

 	

 	

 QC 39.2 answer

 1:

Method 1:

 GHCi> import Network.HTTP.Simple
GHCi> response = httpLBS "http://news.ycombinator.com"
GHCi> getResponseHeader <$> response

 Method 2:

 GHCi> response <- httpLBS "http://news.ycombinator.com"
GHCi> getResponseHeader response

 	

 39.3. Making an HTTP request

 Although your simple use of httpLBS is convenient, you need to change a few things. Your request to the API requires you to use HTTPS rather than plain HTTP,
 as well as to pass your token in the header. You can’t simply put a URL into your request; you also need to do the following:

 	Add your token to the header.

 	Specify the host and path for your request.

 	Make sure you’re using the GET method for your request.

 	Make sure your request works for an SSL connection.

 You can do this by using a series of functions that set these properties for your request. The code to build your request
 follows. Even though making this request is straightforward, you’re using an operator that you haven’t used in this book so
 far: the $ operator. The $ operator automatically wraps parentheses around your code (for more details, see the following sidebar).

 Listing 39.5. The code for building an HTTPS request for the API

 buildRequest :: BC.ByteString -> BC.ByteString -> BC.ByteString
 -> BC.ByteString -> Request
buildRequest token host method path = setRequestMethod method
 $ setRequestHost host
 $ setRequestHeader "token" [token]
 $ setRequestPath path
 $ setRequestSecure True
 $ setRequestPort 443
 $ defaultRequest

request :: Request
request = buildRequest myToken noaaHost "GET" apiPath

 	

 The $ operator

 The $ operator is most commonly used to automatically create parentheses. You can visualize the opening parentheses as starting
 with the $ and ending at the end of the function definition (covering multiple lines if necessary). For example, suppose you want to
 double 2 + 2. You need to add parentheses to make sure the operation works correctly:

 GHCi> (*2) 2 + 2
6
GHCi> (*2) (2 + 2)
8

 You could alternatively write this:

 GHCi> (*2) $ 2 + 2
8

 Here’s another example:

 GHCi> head (map (++"!") ["dog","cat"])
"dog!"
GHCi> head $ map (++"!") ["dog","cat"]
"dog!"

 For beginners, the $ often makes Haskell code more difficult to parse. In practice, the $ operator is used frequently, and you’ll likely find you prefer using it over many parentheses. There’s nothing magical about
 $; if you look at its type signature, you can see how it works:

 ($) :: (a -> b) -> a -> b

 The arguments are just a function and a value. The trick is that $ is a binary operator, so it has lower precedence than the other functions you’re using. Therefore, the argument for the function
 will be evaluated as though it were in parentheses.

 	

 The interesting thing about this code is the way you’re handling changing the state of your request. You have a bunch of setValue functions, but how are they setting a value? You’ll get a better sense of what’s going on if you explore the types of these
 set methods:

 GHCi> :t setRequestMethod
setRequestMethod :: BC.ByteString -> Request -> Request

GHCi> :t setRequestHeader
setRequestHeader:: HeaderName -> [BC.ByteString] -> Request -> Request

 Here you see one functional solution to having state. Each setValue function takes the argument for the parameter it’s going to set and existing request data. You start with an initial request,
 defaultRequest, which is provided by the Network.HTTP.Simple module. You then create a new copy of the request data with the modified parameter, finally returning the modified request
 as a result. You saw this type of solution in unit 1, only much more verbose. You could rewrite your function, explicitly controlling your state with a let clause. Notice that these function calls are in reverse order.

 Listing 39.6. buildRequest rewritten with the state saved as variables

 buildRequest token host method path =
 let state1 = setRequestPort 443 defaultRequest
 in let state2 = setRequestSecure True state1
 in let state3 = setRequestPath path state2
 in let state4 = setRequestHeader "token" [token] state3
 in setRequestHost host state4

 Using the $ operator to make each setValue function serve as the argument to the next function makes the code much more compact. Haskellers strongly prefer terse code
 whenever possible, though this can sometimes make reading the code more difficult when starting out.

 39.4. Putting it all together

 Now you have to put together your main IO action. You can pass your request into httpLBS. Then you’ll get the status. After you have the status, you’ll check whether it’s 200. If it’s 200, you’ll write the data
 to a file by using the getResponseBody function. Otherwise, you’ll alert the user that there was an error in your request. When you write your file, it’s important
 to notice that you’re using the raw lazy ByteStrings with L.writeFile rather than the Char8 version LC.writeFile. In lesson 25, we mentioned that when you use binary data that may include Unicode, you should never write it using the Char8 interface, as it can corrupt your data.

 Listing 39.7. Your final main for writing your request to a JSON file

 main :: IO ()
main = do
 response <- httpLBS request
 let status = getResponseStatusCode response
 if status == 200
 then do
 print "saving request to file"
 let jsonBody = getResponseBody response
 L.writeFile "data.json" jsonBody
 else print "request failed with error"

 Now you have a basic application that can fetch data from the REST API and write it to a file. This is just a taste of the
 type of HTTP request you can make using Haskell. The full documentation for this library can be found at https://haskell-lang.org/library/http-client.

 Summary

 In this lesson, our objective was to give you a quick overview of how to make an HTTP request in Haskell. In addition to learning
 how to make an HTTP request, you learned how to go about learning new libraries in Haskell. Let’s see if you got this.

 Q39.1
Build a function buildRequestNOSSL that works exactly like buildRequest, only it doesn’t support SSL.

 Q39.2
Improve the output of your code when something goes wrong. getResponseStatus will give you a data type including both the statusCode and the statusMessage. Fix main so that if you do get a non-200 statusCode, you print out the appropriate error.

Lesson 40. Working with JSON data by using Aeson

 After reading lesson 40, you’ll be able to

 	Transform Haskell types into JSON

 	Read JSON into a Haskell type

 	Use the DeriveGeneric extension to implement needed classes

 	Write you own instances of ToJSON and FromJSON

 In this lesson, you’ll work with JavaScript Object Notation (JSON) data, one of the most popular ways to store and transmit
 data. The JSON format originates in simple JavaScript objects and is heavily used in transmitting data through HTTP APIs.
 Because the format is so simple, it has seen widespread adoption outside the web, frequently being used as a method of storing
 data and for tasks such as creating configuration files. Figure 40.1 shows an example JSON object used with the Google Analytics API.

 Figure 40.1. An example of JSON data from the Google Analytics API

 [image:]

 In the previous lesson, you ended up downloading a JSON file containing information on data sets available through the NOAA
 Climate Data API. In this lesson, you’re going to build a simple command-line application that opens that JSON file and prints
 out the data sources in the file. Before you get there, you’ll learn how to work with JSON. You’ll create types that you can
 turn into JSON as well as create types representing JSON that you’ll read in.

 	

 Consider this

 You have a data type representing a user:

 data User = User
 { userId :: Int
 , userName :: T.Text
 , email :: T.Text
 }

 The process of transforming objects into and out of JSON is known as serialization and deserialization, respectively. You
 may have come across this in other languages. If you have a data type representing a user, how did you serialize and deserialize
 to and from this type?

 	

 40.1. Getting set up

 The key challenge of working with JSON in Haskell is that JSON supports only a few simple types: objects, strings, numbers
 (technically just floats), Booleans, and lists. In many programming languages, JSON is supported by using a dictionary-like
 data structure. You’ll use the Aeson library, which provides a much more appropriate solution for Haskell. Aeson allows you
 to translate back and forth between Haskell’s powerful data types and JSON.

 Aeson relies on two key functions for translating back and forth between Haskell data types and JSON: encode and decode. To use these two functions, you need to make your data an instance of two type classes: ToJSON (encode) and FromJSON (decode). We’ll demonstrate two ways to do this. The first is automatically deriving the type classes with the help of a
 language extension. The other is to implement these classes yourself.

 After you’ve learned how to use Aeson, you can create a data type representing the JSON data you downloaded from NOAA. The
 JSON response from the NOAA Climate Data API involves nested objects, so you’ll implement a nontrivial data type to interact
 with this data. Finally, you’ll put everything together that will allow you to list the contents of your file.

 40.1.1. Setting up stack

 You’ll use a stack project called json-lesson for this lesson. As you did last time, for convenience, you’ll keep all of your code in the Main module. The first thing you need to do is set up your Main.hs file. You’ll start by importing the basics. You’ll use the
 popular Aeson library for working with JSON (Aeson was the father of the ancient Greek mythical hero Jason). In this lesson,
 all the textual data you’re working with will be in the form of Data.Text, because this is the preferred method in Haskell for representing text. You also need to import lazy ByteStrings and the Char8 helper for these. Your JSON will be represented as ByteStrings by default until you transform it into more meaningful types. Here’s your starter Main.hs file, which includes all the imports
 you need for this lesson.

 Listing 40.1. Your Main.hs file

 module Main where
import Data.Aeson
import Data.Text as T
import Data.ByteString.Lazy as B
import Data.ByteString.Lazy.Char8 as BC
import GHC.Generics

main :: IO ()
main = print "hi"

 You also have to add these libraries to your json-lesson.cabal file. You want to make sure you’re using the OverloadedStrings extension. You’ll also use a new extension for this lesson.

 Listing 40.2. Adding your build depends on language extensions

 build-depends: base
 , json-lesson
 , aeson
 , bytestring
 , text
 default-language: Haskell2010
 extensions: OverloadedStrings
 , DeriveGeneric

 Now you can start exploring how you’re going to model JSON in Haskell.

 40.2. Using the Aeson library

 To work with JSON, you’ll use the most popular Haskell library for JSON: Aeson. The main challenge you face when working with
 JSON and Haskell is that JSON has little regard for types, representing most of its data as strings. The great thing about
 Aeson is that it lets you apply Haskell’s strong type system to JSON data. You get the ease of working with a widely adopted
 and flexible data format without having to sacrifice any of Haskell’s power and type-related safety.

 Aeson relies on two straightforward functions to do the bulk of the work. The decode function takes JSON data and transforms it into a target type. Here’s the type signature for decode:

 decode :: FromJSON a => ByteString -> Maybe a

 Two things are worth noticing here. First is that you return a Maybe type. As mentioned in lesson 38, Maybe is a good way to handle errors in Haskell. In this case, the type of errors you’re concerned with are parsing the JSON data
 correctly. There are many ways your parse could go wrong; for example, the JSON could be malformed or not match the type you expect. If something goes wrong with parsing the JSON data, you’ll get a Nothing value. You also learned that Either is often a better type because it can tell you what went wrong. Aeson also offers an eitherDecode function that will give you more informative error messages by using the Left constructor (remember that Left is the constructor used for errors):

 eitherDecode :: FromJSON a => ByteString -> Either String a

 The other important thing to notice is that the type parameter of your Maybe (or Either) type is constrained by the type class FromJSON. Making a type an instance of FromJSON enables you to convert raw JSON into a Maybe instance of your type. You’ll explore ways of making data an instance of FromJSON in the next section.

 The other important function in Aeson is encode, which performs the opposite function as decode. Here’s the type signature of encode:

 encode :: ToJSON a => a -> ByteString

 The encode function takes a type that’s an instance of ToJSON and returns a JSON object represented as a ByteString. ToJSON is the counterpart to FromJSON. If a type is an instance of both FromJSON and ToJSON, it can trivially be converted to and from JSON. Next you’ll look at how to take your data and make it an instance of each
 of these type classes.

 	

 Quick check 40.1

 Q1:
Why does encode return a ByteString rather than a Maybe ByteString?

 	

 	

 QC 40.1 answer

 1:

Because there’s no way that your data type could fail to be turned into JSON. The issue arises only when you have JSON that
 may not be able to be parsed into your original type.

 	

 40.3. Making your data types instances of FromJSON and ToJSON

 The aim of Aeson is to make it trivial to convert back and forth between Haskell data types and raw JSON. This is a particularly
 interesting challenge because JSON has a limited number of types to work with: numbers (technically just floats), strings,
 Booleans, and arrays of values. To do this, Aeson uses two type classes: FromJSON and ToJSON. The FromJSON type class allows you to parse JSON and turn it into a Haskell data type, and ToJSON allows you to turn Haskell data types into JSON. Aeson does a remarkably good job of making this easy in many cases.

 40.3.1. The easy way

 For many data types in Haskell, implementing both ToJSON and FromJSON is remarkably easy. Let’s start with a Book type, which you’ll make an instance of both ToJSON and FromJSON. Your Book type will be incredibly simple, having only a text value for the title, another text value for the author, and an Int for the year of publication. Later in this lesson, you’ll look at more complicated data. Here’s the definition of your Book type.

 Listing 40.3. A straightforward Book type

 data Book = Book
 { title :: T.Text
 , author :: T.Text
 , year :: Int
 } deriving Show

 There’s an easy way to make the Book type both an instance of FromJSON and ToJSON. To do this, you need to use another language extension called DeriveGeneric. This extension adds support for better generic programming in Haskell. This makes it possible to write generic instances
 of a type class definition, allowing for new data to easily be an instance of a class with no extra code required. The DeriveGeneric extension makes it possible to easily derive instances of FromJSON and ToJSON. All you have to do is add Generic to your deriving statement.

 Listing 40.4. Adding deriving Generic to your Book type

 data Book = Book
 { title :: T.Text
 , author :: T.Text
 , year :: Int
 } deriving (Show,Generic)

 Finally, you have to declare Book an instance of FromJSON and ToJSON. You need to do nothing more than add these two lines (no additional where clause or definition is necessary).

 Listing 40.5. Making your Book type an instance of both FromJSON and ToJSON

 instance FromJSON Book
instance ToJSON Book

 To demonstrate the power of these type classes, let’s take an example of your type and encode it.

 Listing 40.6. Taking a Book type and converting it to JSON

 myBook :: Book
myBook = Book {author="Will Kurt"
 ,title="Learn Haskell"
 ,year=2017}

myBookJSON :: BC.ByteString
myBookJSON = encode myBook

 In GHCi, you can see how this looks:

 GHCi> myBook
Book {title = "Learn Haskell", author = "Will Kurt", year = 2017}
GHCi> myBookJSON
"{\"author\":\"Will Kurt\",\"title\":\"Learn Haskell\",\"year\":2017}"

 You can also do the reverse just as easily. Here’s a raw JSON ByteString that you’ll parse into your data type.

 Listing 40.7. Taking a JSON representation of your book and converting it to a Book

 rawJSON :: BC.ByteString
rawJSON = "{\"author\":\"Emil Ciroan\",\"title\":
[image:]\"A Short History of Decay\",\"year=1949}"

bookFromJSON :: Maybe Book
bookFromJSON = decode rawJSON

 In GHCi, you can see that you’ve successfully created a Book from this JSON:

 GHCi> bookFromJSON
Just (Book { title = "A Short History of Decay"
 , author = "Emil Ciroan"
 , year = 1949})

 This is a powerful feature of Aeson. From a string of JSON, which usually has little type information, you were able to successfully
 create a Haskell type. In many languages, parsing JSON means getting a hash table or a dictionary of keys and values. Because
 of Aeson, you can get something much more powerful from your JSON.

 Notice that your result is wrapped in the Just data constructor. That’s because a parsing error could have easily made it impossible to make an instance of your type. If
 you have malformed JSON that doesn’t work, you get nothing.

 Listing 40.8. Parsing JSON that doesn’t match your type

 wrongJSON :: BC.ByteString
wrongJSON = "{\"writer\":\"Emil Cioran\",\"title\":
[image:]\"A Short History of Decay\",\"year\"=1949}"

bookFromWrongJSON :: Maybe Book
bookFromWrongJSON = decode wrongJSON

 As expected, when you load this into GHCi, you see that your result is Nothing:

 GHCi> bookFromWrongJSON
Nothing

 This is also a great example of the limitations of Maybe. You know what went wrong when parsing this JSON because you purposefully wrote this code with an error. But in a real project,
 this would be an amazingly frustrating error, especially if you didn’t have easy access to the raw JSON data to inspect. As
 an alternative, you can use eitherDecode, which gives you much more information:

 GHCi> eitherDecode wrongJSON :: Either String Book
Left "Error in $: The key \"author\" was not found"

 Now you know exactly why your parse failed.

 Although using DeriveGeneric makes using Aeson incredibly easy, you won’t always be able to take advantage of this. Occasionally, you’ll have to help
 Aeson figure out how exactly to parse your data.

 	

 Quick check 40.2

 Q1:
Use Generic to implement ToJSON and FromJSON for this type:

 data Name = Name
 { firstName :: T.Text
 , lastName :: T.Text
 } deriving (Show)

 	

 	

 QC 40.2 answer

 1:

data Name = Name
 { firstName :: T.Text
 , lastName :: T.Text
 } deriving (Show,Generic)

instance FromJSON Name
instance ToJSON Name

 	

 40.3.2. Writing your own instances of FromJSON and ToJSON

 In the preceding example, you started with a type you defined and made it work with JSON. In practice, you’re just as often
 working with someone else’s JSON data. Here’s an example of an error message you might get as a response to a JSON request
 because of an error on the other person’s server.

 Listing 40.9. An example of JSON you don’t have control over

 sampleError :: BC.ByteString
sampleError = "{\"message\":\"oops!\",\"error\": 123}"

 To use Aeson, you need to model this request with your own data type. When you do this, you’ll immediately see there’s a problem.
 Here’s the first attempt to model this error message.

 Listing 40.10. Unfortunately, you can’t model this JSON by using Haskell

 data ErrorMessage = ErrorMessage
 { message :: T.Text
 , error :: Int 1
 } deriving Show

 	1 The error is because of this property.

 The problem here is that you have a property named error, but you can’t have this, because error is already defined in Haskell. You could rewrite your type to avoid this collision.

 Listing 40.11. Haskell code that works but doesn’t match the original JSON

 data ErrorMessage = ErrorMessage
 { message :: T.Text
 , errorCode :: Int
 } deriving Show

 Unfortunately, if you try to automatically derive ToJSON and FromJSON, your programs will expect an errorCode field instead of error. If you were in control of this JSON, you could rename the field, but you’re not. You need another solution to this problem.

 To make your ErrorMessage type an instance of FromJSON, you need to define one function: parseJSON. You can do this in the following way.

 Listing 40.12. Making ErrorMessage an instance of FromJSON

 instance FromJSON ErrorMessage where
 parseJSON (Object v) =
 ErrorMessage <$> v .: "message"
 <*> v .: "error"

 This code is confusing, so breaking it down is worthwhile. The first part shows the method you need to define and the argument
 it takes:

 parseJSON (Object v)

 The (Object v) is the JSON object being parsed. When you take just the v inside, you’re accessing that value of that JSON object. Next you have a bunch of infix operators you need to make sense
 of. You’ve seen this pattern before, in unit 5, when you learned about common uses of applicatives:

 ErrorMessage <$> value <*> value

 As a refresher, suppose the values for your ErrorMessage were in a Maybe context.

 Listing 40.13. Values for constructing an ErrorMessage in a Maybe context

 exampleMessage :: Maybe T.Text
exampleMessage = Just "Opps"

exampleError :: Maybe Int
exampleError = Just 123

 If you want to make an ErrorMessage, you can combine <$> and <*> to safely make this ErrorMessage in the context of a Maybe:

 GHCi> ErrorMessage <$> exampleMessage <*> exampleError
Just (ErrorMessage {message = "Opps", errorCode = 123})

 This pattern works with any instance of Monad. In this case, you’re not working with values in a Maybe context but in a Parser context. This brings you to the final mystery: what’s the (.:) operator? You can figure this out by looking at its type:

 (.:) :: FromJSON a => Object -> Text -> Parser a

 This operator takes an Object (your JSON object) and some text and returns a value parsed into a context. For example, this line of code is trying to parse
 the message field from your JSON object:

 v .: "message"

 The result is a value in a Parser context. The reason you need a context for your parse is that it can fail if there’s trouble parsing.

 	

 Quick check 40.3

 Q1:
Make the Name type into an instance of FromJSON without Generic:

 data Name = Name
 { firstName :: T.Text
 , lastName :: T.Text
 } deriving (Show)

 	

 	

 QC 40.3 answer

 1:

instance FromJSON Name where
 parseJSON (Object v) =
 Name <$> v .: "firstName"
 <*> v .: "lastName"

 	

 Now that your ErrorMessage type is an instance of FromJSON, you can finally parse the incoming JSON ErrorMessages.

 Listing 40.14. With your custom FromJSON, you can now parse your JSON

 sampleErrorMessage :: Maybe ErrorMessage
sampleErrorMessage = decode sampleError

 In GHCi, you find this works as expected:

 GHCi> sampleErrorMessage
Just (ErrorMessage {message = "oops!", errorCode = 123})

 And of course you want to go back again. The syntax for creating your message is different:

 instance ToJSON ErrorMessage where
 toJSON (ErrorMessage message errorCode) =
 object ["message" .= message
 , "error" .= errorCode
]

 Once again you have a confusing bit of code. This time you’re defining the toJSON method. You can see that the method takes your data constructor and pattern matches on its two arguments, message and errorCode:

 toJSON (ErrorMessage message errorCode)

 You then use the object function to create your JSON object, passing the values of your data type into the correct fields for the JSON object:

 object ["message" .= message
 , "error" .= errorCode
]

 You have another new operator here, (.=). This operator is used to create a key/value pair matching the value of your data with the field name for the JSON object.

 	

 Quick check 40.4

 Q1:
Finally, make Name an instance of ToJSON without Generic:

 data Name = Name
 { firstName :: T.Text
 , lastName :: T.Text
 } deriving (Show)

 	

 	

 QC 40.4 answer

 1:

instance ToJSON Name where
 toJSON (Name firstName lastName) =
 object ["firstName" .= firstName
 , "lastName" .= lastName
]

 	

 Now you can create your own raw JSON, just like the one you received.

 Listing 40.15. Creating an error message to test your instance of ToJSON

 anErrorMessage :: ErrorMessage
anErrorMessage = ErrorMessage "Everything is Okay" 0

 Again, you can see that this works exactly as you expect:

 GHCi> encode anErrorMessage
"{\"error\":0,\"message\":\"Everything is Okay\"}"

 Now that you have down all the basics of working with JSON data in Haskell, let’s take a look at a more complex problem.

 40.4. Putting it all together: reading your NOAA data

 In the preceding lesson, you learned how to use HTTP.Simple to save a JSON file to disk. You saved a list of NOAA data sets to a file named data.json. If you didn’t run the code from
 lesson 39, you can get the data here: https://gist.github.com/willkurt/9dc14babbffea1a30c2a1e121a81bc0a. Now you’re going to read in that file and print the names of the data sets. The interesting thing about this file is that
 the JSON isn’t a simple type. Your JSON data has nested results and looks like this.

 Listing 40.16. The JSON from the NOAA has a nested structure

 {
 "metadata":{
 "resultset":{
 "offset":1,
 "count":11,
 "limit":25
 }
 },
 "results":[
 {
 "uid":"gov.noaa.ncdc:C00861",
 "mindate":"1763-01-01",
 "maxdate":"2017-02-01",
 "name":"Daily Summaries",
 "datacoverage":1,
 "id":"GHCND"
 },

 You’re going to model the entire response with a NOAAResponse data type. NOAAResponse is made up of two types: Metadata and Results. Metadata itself contains another type, Resultset. Then you have NOAAResults, which contains values.

 You’ll start with your basic result, because that’s ultimately what you’re interested in, and it doesn’t contain any more
 sophisticated types. Because Result contains an id value, you need to define a custom implementation of your instances. Here’s the data type for Result. You’ll name this type NOAAResult to distinguish it from the Result type in Aeson.

 Listing 40.17. Use NOAAResult type to print the names of the data sets

 data NOAAResult = NOAAResult
 { uid :: T.Text
 , mindate :: T.Text
 , maxdate :: T.Text
 , name :: T.Text
 , datacoverage :: Int
 , resultId :: T.Text
 } deriving Show

 Because the data uses id instead of resultId, you need to make your own instance of FromJSON. You’re not concerned about ToJSON, because you’ll be reading only from the data.

 Listing 40.18. Making NOAAResult an instance of FromJSON

 instance FromJSON NOAAResult where
 parseJSON (Object v) =
 NOAAResult <$> v .: "uid"
 <*> v .: "mindate"
 <*> v .: "maxdate"
 <*> v .: "name"
 <*> v .: "datacoverage"
 <*> v .: "id"

 Next you need to tackle the Metadata type. The first part of your Metadata is Resultset. Thankfully, you don’t need a custom implementation of FromJSON. You just need to define your type, add deriving (Generic), and make it an instance of your type class.

 Listing 40.19. Using Generic to derive the FromJSON instance for Resultset

 data Resultset = Resultset
 { offset :: Int
 , count :: Int
 , limit :: Int
 } deriving (Show,Generic)

instance FromJSON Resultset

 The Metadata data type itself has only the Resultset value, and it’s simple to write.

 Listing 40.20. Making the Metadata type

 data Metadata = Metadata
 {
 resultset :: Resultset
 } deriving (Show,Generic)

instance FromJSON Metadata

 Finally, you put together these other types into your NOAAResponse. Like your other types, there’s no issue with the naming of your values so you can derive the necessary class.

 Listing 40.21. Putting all your types together into a NOAAResponse type

 data NOAAResponse = NOAAResponse
 { metadata :: Metadata
 , results :: [NOAAResult]
 } deriving (Show,Generic)

instance FromJSON NOAAResponse

 Your goal is to print out all the types in the file. To do this, you’ll create a printResults IO action. Because your data will be a Maybe type, you need to handle the case of the parse failing. For this, you’ll print a message that an error occurred. Otherwise,
 you’ll use forM_ from the Control.Monad module (remember to import Control.Monad) to loop through your results and print them. The forM_ function works just like the mapM_ function, only it reverses the order of the data and the function used to map over the data.

 Listing 40.22. Printing the results

 printResults :: Maybe [NOAAResult] -> IO ()
printResults Nothing = print "error loading data"
printResults (Just results) = do
 forM_ results (print . name)
 print dataName

 Now you can write your main, which will read in the file, parse the JSON, and iterate through your results.

 Listing 40.23. Putting everything together into your main

 main :: IO ()
main = do
 jsonData <- B.readFile "data.json"
 let noaaResponse = decode jsonData :: Maybe NOAAResponse
 let noaaResults = results <$> noaaResponse
 printResults noaaResults

 Now you can load your project into GHCi (or use stack build to run it if you’d prefer) and see how it works:

 GHCi> main
"Daily Summaries"
"Global Summary of the Month"
"Global Summary of the Year"
"Weather Radar (Level II)"
"Weather Radar (Level III)"
"Normals Annual/Seasonal"
"Normals Daily"
"Normals Hourly"
"Normals Monthly"
"Precipitation 15 Minute"
"Precipitation Hourly"

 And there you have it; you’ve successfully used Haskell to parse a nontrivial JSON file.

 Summary

 In this lesson, our objective was to teach you how to parse and create JSON files by using Haskell. You used the popular Aeson
 library, which makes it possible to convert back and forth between Haskell data types and JSON. The conversion between data
 types and JSON is achieved with two type classes: FromJSON and ToJSON. In the best case, you can use the DeriveGeneric language extension to derive these classes automatically. Even in the worst case, where you have to help Aeson translate
 your data types, doing this is still relatively easy. Let’s see if you got this.

 Q40.1
Make your NOAAResponse type an instance of ToJSON. This requires making all the types used by this type instances of ToJSON as well.

 Q40.2
Make a Sum type called IntList and use DerivingGeneric to make it an instance of ToJSON. Don’t use the existing List type, but rather write it from scratch. Here’s an example of an IntList:

 intListExample :: IntList
intListExample = Cons 1 $
 Cons 2 EmptyList

Lesson 41. Using databases in Haskell

 After reading lesson 41, you’ll be able to

 	Connect to a SQLite database from Haskell

 	Translate SQL rows into Haskell data types

 	Create, read, update, and delete database data with Haskell

 In this lesson, you’ll learn how to work with databases when using Haskell. In particular, you’ll use the SQLite3 relational
 database management system (RDBMS) and the sqlite-simple Haskell library. You’ll explore this topic by building a command-line interface for a tool-lending library. This will require
 you to perform all of the essential CRUD tasks commonly associated with RDBMS use. The CRUD tasks are as follows:

 	Create—Adding new data to the database

 	Read—Querying the database for information

 	Update—Modifying existing data in the database

 	Delete—Removing data from the database

 You’ll use the sqlite-simple library to interact with your database. sqlite-simple is a mid-level abstraction over the database, meaning that while many of the low-level connection details are abstracted away, you’ll still
 be writing a large amount of raw SQL queries. The most important abstraction that sqlite-simple helps with is transforming SQL queries into lists of Haskell data types.

 Here’s the rundown of the project you’ll be building. Suppose you have a friend who’s setting up a basic community tool-lending
 library. Your friend needs a system to help manage the basics of keeping track of the inventory and checking out tools from
 the library. From the RDBMS side of things, this project will involve three tables: tools, users, and checkedout. From the
 Haskell standpoint, you’ll worry about modeling only users and tools. By the end of this lesson, you’ll have a command-line
 application that supports the following operations:

 	Listing all of the users and tools

 	Listing all the checked-out and available tools

 	Adding new users to the database

 	Checking items back in

 	Recording the number of times a tool has been checked out, and how recently

 By the end of this lesson, we’ll have covered performing the majority of database operations through Haskell.

 41.1. Setting up your project

 In this lesson, you’ll keep all of your code in a stack project named db-lesson. As in all the lessons in this unit, you’ll keep your code in the Main module for simplicity (though this project could easily be refactored into multiple files). You’ll start with your app/Main.hs
 file. Here’s the starter code, including the imports you’ll use for this lesson.

 Listing 41.1. The app/Main.hs file starter code

 module Main where

import Control.Applicative
import Database.SQLite.Simple 1
import Database.SQLite.Simple.FromRow 2
import Data.Time 3

main :: IO ()
main = print "db-lesson"

 	1 This is the library you’ll use to work with SQLite.

 	2 FromRow is an important type class you’ll need.

 	3 You’ll also explore using types of dates in this lesson.

 The build-depends you need to add to the project’s .cabal file is sqlite-simple, the module you’ll be using to interact with SQLite, and time, which will help you manage dates.

 Listing 41.2. The changes to build-depends in db-lesson.cabal

 build-depends: base
 , db-notes
 , time
 , sqlite-simple

 You’ll also use the OverloadedStrings extension, because many of your strings will be interpreted as SQL queries by the SQLite Simple library.

 Listing 41.3. Use the OverloadedStrings extension in db-lesson.cabal

 extensions: OverloadedStrings

 After all of this code is in place, you can run the setup and build commands in stack to ensure that your project is set up correctly.

 41.2. Using SQLite and setting up your database

 For this lesson, you’ll use the SQLite3 database management system, because it’s easy to install and get started with. SQLite
 can be downloaded from www.sqlite.org. Because SQLite3 is designed to be easy to deploy, setup should be straightforward on your system (if you don’t already have
 it installed).

 Your tool library will use a database that consists of a users table, a tools table, and a checkedout table that represents
 which tools are checked out to which person. Figure 41.1 provides a basic entity-relationship diagram to show how your tables are set up.

 Figure 41.1. The setup of your database

 [image:]

 You’ll start your project off with sample data as well. Here’s the code to build your database; this code will go in a file
 named build_db.sql, which should be kept in the root directory of your db-lesson project.

 Listing 41.4. The code for building your database

 DROP TABLE IF EXISTS checkedout;
DROP TABLE IF EXISTS tools;
DROP TABLE IF EXISTS users;

CREATE TABLE users (
 id INTEGER PRIMARY KEY,
 username TEXT
);

CREATE TABLE tools (
 id INTEGER PRIMARY KEY,
 name TEXT,
 description TEXT,
 lastReturned TEXT, 1
 timesBorrowed INTEGER
);

CREATE TABLE checkedout (
 user_id INTEGER,
 tool_id INTEGER
);

INSERT INTO users (username) VALUES ('willkurt');

INSERT INTO tools (name,description,lastReturned,timesBorrowed)
VALUES ('hammer','hits stuff','2017-01-01',0);

INSERT INTO tools (name,description,lastReturned,timesBorrowed)
VALUES ('saw','cuts stuff','2017-01-01',0);

 	1 SQLite doesn’t support date types.

 To run SQLite, you have to call sqlite3 from the command line. You also need to pass in the database name, which is tools.db. Finally, you’ll pipe in the build.sql
 file you just saved. Here’s the command you need:

 $ sqlite3 tools.db < build_db.sql

 You can check out your database by using the sqlite3 command along with the path to your database file. Once there, you can run SQL queries to ensure that everything has been
 installed correctly. The sqlite> prompt indicates that you’re using your RDBMS interactively:

 $ sqlite3 tools.db
sqlite> select * from tools;
1|hammer|hits stuff|2017-01-01|0
2|saw|cuts stuff|2017-01-01|0

 Because your goal is to work with SQLite through Haskell, you won’t be directly using the sqlite command again. If you like, you can always use sqlite directly to double-check the results of the code you’ve run.

 41.2.1. Your Haskell data

 One of the challenges when working with Haskell and an RBDMS such as SQLite is that your types in Haskell are typically much
 richer and more expressive than those in the RBDMS. SQLite, for example, doesn’t support any types representing dates. This
 is a similar problem to what you have working with JSON data. Before diving into creating data in your database, let’s look
 at your data from the Haskell perspective. Here’s the definition of your Tool data type.

 Listing 41.5. The definition of Tool, which should live in app/Main.hs

 data Tool = Tool
 { toolId :: Int
 , name :: String
 , description :: String
 , lastReturned :: Day
 , timesBorrowed :: Int
 }

 There’s one type you haven’t seen before in this definition of Tool, which is the Day type. The Day type is part of the Data.Time module. Data.Time contains a variety of useful time-related functions. Here’s an example of getting the current time with getCurrentTime and transforming it into a Day type by using utctDay:

 GHCi> getCurrentTime
2017-02-26 07:05:12.218684 UTC
GHCi> utctDay <$> getCurrentTime
2017-02-26

 The other type you need to model is your User. The User type is much simpler than your Tool type, having values only for its id and userName.

 Listing 41.6. The User data type

 data User = User
 { userId :: Int
 , userName :: String
 }

 The User and Tool types enable you to perform computation on any data that comes from your database. The most common computation will be displaying
 data about the users and tools you query. You can make sure the results look as you prefer by making these types instances
 of Show.

 Listing 41.7. Making User and Tool instances of Show

 instance Show User where
 show user = mconcat [show $ userId user
 , ".) "
 , userName user]

instance Show Tool where
 show tool = mconcat [show $ toolId tool
 , ".) "
 , name tool
 , "\n description: "
 , description tool
 , "\n last returned: "
 , show $ lastReturned tool
 , "\n times borrowed: "
 , show $ timesBorrowed tool
 , "\n"]

 When you print your results, they should look like this:

 1.) willkurt
1.) hammer
 description: hits stuff
 last returned: 2017-01-01
 times borrowed: 0

 Now you’re ready to start interacting with your database!

 	

 Quick check 41.1

 Q1:
Why is mconcat preferred for combining your strings over ++?

 	Fewer characters to type

 	++ works only on lists, not text

 	mconcat makes your code easier to refactor with text types

 	

 	

 QC 41.1 answer

 1:

The answer is 3. Although you used String in this lesson, you often would prefer to use the Text type. mconcat works on all major string types: String, Text, and ByteString. This makes refactoring code to change types as easy as changing type signatures.

 	

 41.3. Creating data—inserting users and checking out tools

 Of the four operations covered under CRUD, the first is Create. You’ve just used raw SQL to create your tables and data; now
 you’re going to do this in Haskell. To insert data into your database, you need to connect to the database, create a SQL string,
 and then execute the SQL.

 41.3.1. Adding new users to your database

 At this point, you have only one user in your database. You need a command to add a user. You’ll start with a function that
 takes a userName and inserts it into your database. To do this, you’ll use the execute command, which allows you to insert users into your database. Your query string will contain a (?), which allows you to safely pass values into your string. Before you can insert the user, you also need to establish a connection
 to your database. This connection is then passed along with your query and query parameters to the execute action. Here’s your addUser action.

 Listing 41.8. addUser action connects to database and inserts a user

 addUser :: String -> IO ()
addUser userName = do
 conn <- open "tools.db" 1
 execute conn "INSERT INTO users (username) VALUES (?)" 2
 (Only userName) 3
 print "user added"
 close conn 4

 	1 First you have to open a connection to your database.

 	2 You execute a command by using the connection, a query, and query parameters.

 	3 The Only constructor is used for your single-element tuple of parameters.

 	4 It’s important to close the connection when you’re finished.

 The Only constructor is used to create single-element tuples. This is needed because execute expects you to pass in a tuple of a particular size for your values.

 This is a good start, but most of your code will have to access the database, so the bulk of this IO action will need to be repeated verbatim. You can abstract this out by creating a withConn action to automatically handle opening and closing your database.

 Listing 41.9. withConn lets you abstract out connecting to the database

 withConn :: String -> (Connection -> IO ()) -> IO ()
withConn dbName action = do
 conn <- open dbName
 action conn
 close conn

 This function takes a String, which is the name of the database, and an action that takes a connection as an argument. The end result is an action of
 type IO (). You’ve successfully made it possible to add users to the database from Haskell.

 	

 Quick check 41.2

 Q1:
Refactor addUser to use withConn.

 	

 	

 QC 41.2 answer

 1:

addUser :: String -> IO ()
addUser userName = withConn "tools.db" $
 \conn -> do
 execute conn "INSERT INTO users (username) VALUES (?)"
 (Only userName)
 print "user added"

 	

 41.3.2. Creating checkouts

 Another useful insert to perform is to create a checkout. A checkout requires both a userId and a toolId. The code for your checkout is similar to that of adding a user, but you need to pass in two values.

 Listing 41.10. Checking out by adding the toolId and userId to checkedout

 checkout :: Int -> Int -> IO ()
checkout userId toolId = withConn "tools.db" $
 \conn -> do
 execute conn
 "INSERT INTO checkedout
 (user_id,tool_id) VALUES (?,?)"
 (userId,toolId)

 Notice that (userId,toolId) is a plain tuple with no Only data constructor needed.

 With checkout and addUser, you have the basis for many of the key operations you want your application to perform. You can test these actions, but
 you have no way of seeing whether your results worked without opening SQLite to see if the database has changed. In the next
 section, you’ll look at reading data from your database and transforming it into your Haskell data types.

 41.4. Reading data from the database and FromRow

 The challenge when working with SQL data in Haskell is that you need an easy way to make instances of Haskell data types from
 raw data. To achieve this, the sqlite-simple library includes a type class called FromRow. Here’s the definition of FromRow, which contains only one method you need to implement, fromRow.

 Listing 41.11. The definition of the FromRow type class

 class FromRow a where
 fromRow :: RowParser a

 The fromRow method returns a RowParser of type a, where a is the same type as whatever type you’re making an instance of FromRow. You won’t directly use fromRow, but it will be used by functions to query your data. The result is that if you implement FromRow, you can easily transform queries into lists of your data types.

 41.4.1. Making your data an instance of FromRow

 Creating an instance of FromRow is similar to creating an instance of FromJSON in the previous lesson. You have to tell the RowParser how to construct your data types. The key part is a function from SQLite.Simple called field. The field function is used internally by SQLite.Simple to consume the data from a row and transform it into the values used by your type constructors. Here are the instances of
 FromRow for both User and Tool.

 Listing 41.12. Making User and Tool instances of FromRow

 instance FromRow User where
 fromRow = User <$> field
 <*> field

instance FromRow Tool where
 fromRow = Tool <$> field
 <*> field
 <*> field
 <*> field
 <*> field

 Now that User and Tool are both instances of FromRow, you can make queries against your database and translate them directly into lists of users and tools.

 41.4.2. Listing users and tools

 To query your data, you use two related functions: query and query_ (notice the underscore). Looking at their type signatures, you can see the difference:

 query :: (FromRow r, ToRow q) => Connection -> Query -> q -> IO [r]
query_ :: FromRow r => Connection -> Query -> IO [r]

 The type signatures of these two functions are the same, except the underscore version takes one less argument. The query function assumes that you’re passing in a query string and parameter for that query. The query_ function with an underscore is for queries that take queries with no parameters as arguments. Also notice that Query is its own type. You’ve been treating your queries as strings, but this is all thanks to the OverloadedStrings extension, which is automatically translating for you.

 	

 Quick check 41.3

 Q1:
Why do you need two functions, query and query_?

 	

 	

 QC 41.3 answer

 1:

Primarily because of the way Haskell handles types, Haskell doesn’t support variable arguments. An alternative to making two
 functions is to use a Sum type that represents both sets of arguments and use pattern matching.

 	

 You’ll use these queries to print your users and tools. Here’s a printUsers function; notice that you must specify the type you’re querying.

 Listing 41.13. Printing users from your database

 printUsers :: IO ()
printUsers = withConn "tools.db" $
 \conn -> do
 resp <- query_ conn "SELECT * FROM users;" :: IO [User]
 mapM_ print resp

 The printUsers action also takes advantage of the fact that User is an instance of Show, displaying the user data as you expect. Now that you can print users, you can also test adding users:

 GHCi> printUsers
1.) willkurt
GHCi> addUser "test user"
"user added"
GHCi> printUsers
1.) willkurt
2.) test user

 The next thing you want to do is print tools. The only added complication you have with tools is that you’d like to run several
 queries:

 	List all of your tools

 	List the checked-out tools

 	List the available tools

 To help you out, you’ll write a printToolQuery function that takes a query and prints out the tools returned by that query. Here’s the printTool query along with the code for the other queries’ lists.

 Listing 41.14. A generic way to run any queries of tools from your database

 printToolQuery :: Query -> IO ()
printToolQuery q = withConn "tools.db" $
 \conn -> do
 resp <- query_ conn q :: IO [Tool]
 mapM_ print resp

printTools :: IO ()
printTools = printToolQuery "SELECT * FROM tools;"

printAvailable :: IO ()
printAvailable = printToolQuery $ mconcat ["select * from tools "
 , "where id not in "
 , "(select tool_id from
 [image:]checkedout);"]

printCheckedout :: IO ()
printCheckedout = printToolQuery $
 mconcat ["select * from tools "
 , "where id in "
 , "(select tool_id from checkedout);"]

 In GHCi, you can test these actions as well as make sure that your checkout action from earlier works as expected:

 GHCi> printTools
1.) hammer
description: hits stuff
last returned: 2017-01-01
times borrowed: 0

2.) saw
description: cuts stuff
last returned: 2017-01-01
times borrowed: 0

GHCi> checkout 1 2
GHCi> printCheckedOut
2.) saw
description: cuts stuff
last returned: 2017-01-01
times borrowed: 0

 Two major steps are left until you can put together your project. You need to be able to check tools back in, and after those
 tools are back in, you need to update them. Because updating is next in your CRUD process, you’ll look at updating your data.

 41.5. Updating existing data

 When a tool is checked back in, you want to do two updates. First, you want to increment its existing timesBorrowed by 1; second, you want to update the lastReturned date to the current date. This requires you to update an existing row in your database, which is the most complex step in
 your process if you want to ensure that you avoid errors.

 The first thing you want to do is select a tool from your database by ID. Your selectTool function takes a connect and a toolId to look up the tool. It returns a rather complicated type: IO (Maybe Tool). The IO indicates that your database operations always occur in an IO context. The inner Maybe type is used because it’s possible to pass in an incorrect ID, resulting in an empty query. Here’s the code for selectTool, along with a helper function firstOrNothing.

 Listing 41.15. Safely selecting a Tool by ID

 selectTool :: Connection -> Int -> IO (Maybe Tool)
selectTool conn toolId = do
 resp <- query conn
 "SELECT * FROM tools WHERE id = (?)"
 (Only toolId) :: IO [Tool]
 return $ firstOrNothing resp

firstOrNothing :: [a] -> Maybe a
firstOrNothing [] = Nothing
firstOrNothing (x:_) = Just x

 The firstOrNothing function looks at the list of results returned by your query. If the list is empty, it returns Nothing; if you have results (presumably just one, because the ID is unique), it returns the first one.

 After you have your tool, you need to update it. Getting the current day requires an IO action, so you’ll assume that value is passed in to your function so you can keep your updateTool function pure. The updateTool function takes an existing tool and returns a new tool with an updated lastReturned date and timesBorrowed count, using record syntax (lesson 11).

 Listing 41.16. updateTool updates your tool

 updateTool :: Tool -> Day -> Tool
updateTool tool date = tool
 { lastReturned = date
 , timesBorrowed = 1 + timesBorrowed tool
 }

 Next you need a way to insert your update of a Maybe Tool. Because the tool is a Maybe Tool, you want your code to update your table only if the Maybe value isn’t Nothing. Your updateOrWarn action will tell you that the item isn’t found if the value is Nothing; otherwise, it’ll update the necessary fields in your database.

 Listing 41.17. Safely updating your database

 updateOrWarn :: Maybe Tool -> IO ()
updateOrWarn Nothing = print "id not found"
updateOrWarn (Just tool) = withConn "tools.db" $
 \conn -> do
 let q = mconcat ["UPDATE TOOLS SET "
 ,"lastReturned = ?,"
 ," timesBorrowed = ? "
 ,"WHERE ID = ?;"]

 execute conn q (lastReturned tool
 , timesBorrowed tool
 , toolId tool)
 print "tool updated"

 Finally, you need to tie all of these steps together. Your final action, updateToolTable, takes a toolId, fetches the current date, and then performs the necessary steps to update the tool in the table.

 Listing 41.18. updateToolTable combines all the steps for updating the tool table

 updateToolTable :: Int -> IO ()
updateToolTable toolId = withConn "tools.db" $
 \conn -> do
 tool <- selectTool conn toolId
 currentDay <- utctDay <$> getCurrentTime
 let updatedTool = updateTool <$> tool
 <*> pure currentDay
 updateOrWarn updatedTool

 The updateToolTable action allows you to safely update the tools table, and will inform you if an error occurs while updating the data. The final
 step you have to look at is checking an ite//m back in, which is the case of deleting a row from checkedout.

 	

 The ToRow type class

 You can also use the ToRow type class. But ToRow is much less useful, because it transforms your data types into a tuple of values. As you can see from our examples of creating
 and updating values, you either don’t have all the information you need (in the case of creating) or need only a specific
 subset. For reference, here’s how to make Tool an instance of ToRow (note that you need to import Data.Text as T):

 instance ToRow Tool where
 toRow tool = [SQLInteger $ fromIntegral $ toolId tool
 , SQLText $ T.pack $ name tool
 , SQLText $ T.pack $ description tool
 , SQLText $ T.pack $ show $ lastReturned tool
 , SQLInteger $ fromIntegral $ timesBorrowed tool]

 The SQLText and SQLInteger constructors transform Haskell Text and Integer types to SQL data. In practice, you’ll likely use ToRow much less often than FromRow. Still, it’s good to know it exists.

 	

 41.6. Deleting data from your database

 The final step of the CRUD process is deletion. Deleting your data is simple: you use the execute action just as you did when creating data. Your checkin action takes a toolID and deletes the row from the checkedout table. Because each tool can be checked out to only one person at time, the tool
 ID is all the information you need.

 Listing 41.19. Checking in a tool with checkin

 checkin :: Int -> IO ()
checkin toolId = withConn "tools.db" $
 \conn -> do
 execute conn
 "DELETE FROM checkedout WHERE tool_id = (?);"
 (Only toolId)

 As mentioned in the preceding section, you never want to check in a tool in isolation, but want to ensure that the tool’s
 information is updated. Your final database action will be checkinAndUpdate, which calls checkin and then updateToolTable.

 Listing 41.20. Making sure your tool is updated when it’s checked in

 checkinAndUpdate :: Int -> IO ()
checkinAndUpdate toolId = do
 checkin toolId
 updateToolTable toolId

 At this point, you’ve seen every part of the CRUD process for working with a database when using Haskell. With all these basic
 tools in place, you can put together the rest of your command-line interface and check it out!

 41.7. Putting it all together

 You’ve written all the code you need for your database interaction. All you need now is to wrap these actions into a usable
 interface. Most of your database updates require a prompt from the user requesting either a username or an ID. Here are some
 IO actions that capture this behavior.

 Listing 41.21. Organizing your database actions

 promptAndAddUser :: IO ()
promptAndAddUser = do
 print "Enter new user name"
 userName <- getLine
 addUser userName

promptAndCheckout :: IO ()
promptAndCheckout = do
 print "Enter the id of the user"
 userId <- pure read <*> getLine
 print "Enter the id of the tool"
 toolId <- pure read <*> getLine
 checkout userId toolId

promptAndCheckin :: IO ()
promptAndCheckin = do
 print "enter the id of tool"
 toolId <- pure read <*> getLine
 checkinAndUpdate toolId

 You can then bundle all of your actions, prompting the user into a single action that takes a command from the user and then
 performs that command. Notice that each of these commands, except quit, uses the >> operator (which performs an action, throws away the result, and performs the next) to call main. This allows your command-line interface to repeatedly prompt the user for more input until the user quits your program.

 Listing 41.22. performCommand organizes all the commands the user can enter

 performCommand :: String -> IO ()
performCommand command
 | command == "users" = printUsers >> main
 | command == "tools" = printTools >> main
 | command == "adduser" = promptAndAddUser >> main
 | command == "checkout" = promptAndCheckout >> main
 | command == "checkin" = promptAndCheckin >> main
 | command == "in" = printAvailable >> main
 | command == "out" = printCheckedout >> main
 | command == "quit" = print "bye!"
 | otherwise = print "Sorry command not found" >> main

 	

 Quick check 41.4

 Q1:
Why can’t you use >>= instead of >>?

 	You can; it works fine.

 	>>= implies that main accepts an argument, which it doesn’t.

 	>>= isn’t a valid Haskell operator.

 	

 	

 QC 41.4 answer

 1:

The answer is 2. When you use >>=, you’re passing an argument in a context; the >> operator is used when you want to chain together actions and disregard their output.

 	

 Finally, here’s your revised main. You’ve been able to factor out most of the code you need into separate parts so your main IO action is minimal.

 Listing 41.23. Your final main IO action

 main :: IO ()
main = do
 print "Enter a command"
 command <- getLine
 performCommand command

 The careful reader may notice that performCommand calls main, and main executes the performCommand action, leading to code that’s recursive. In most languages, this would be a receipt for a stack overflow, but Haskell is
 smart about handling this. Haskell will notice that each function calls the other last, and is able to optimize this safely.

 Now you can build your program and run it to test it out:

 $ stack exec db-lesson-exe
"Enter a command"
users
1.) willkurt
"Enter a command"
adduser
"Enter new user name"
test user
"user added"
"Enter a command"
tools
1.) hammer
 description: hits stuff
 last returned: 2017-01-01
 times borrowed: 0

2.) saw
 description: cuts stuff
 last returned: 2017-01-01
 times borrowed: 0

"Enter a command"
checkout
"Enter the id of the user"
1
"Enter the id of the tool"
2
"Enter a command"
out
2.) saw
 description: cuts stuff
 last returned: 2017-01-01
 times borrowed: 0

"Enter a command"
checkin
"enter the id of tool"
2
"tool updated"
"Enter a command"
in
1.) hammer
 description: hits stuff
 last returned: 2017-01-01
 times borrowed: 0

2.) saw
 description: cuts stuff
 last returned: 2017-02-26
 times borrowed: 1

"Enter a command"
quit
"bye!"

 You’ve successfully implemented all the CRUD operations in Haskell, and created a useful tool that your friend can use to
 manage the tool-lending library.

 Summary

 In this lesson, our objective was to teach you how to make a simple database-driven application using SQLite.Simple. You were able to use the FromRow instance to make it easy for users to transform data from your SQLite3 database into Haskell types. You learned how to create,
 read, update, and delete data from a database through Haskell. In the end, you developed a simple application that allows
 you to perform a range of tasks related to managing a tool library. Let’s see if you got this.

 Q41.1
Create an IO action named addTool, like addUser, to add a tool to the database.

 Q41.2
Add an addtool command that prompts the user for information and then adds the tool by using the addTool action from the preceding question.

Lesson 42. Efficient, stateful arrays in Haskell

 After reading lesson 42, you’ll be able to

 	Use the UArray type for efficient storage and retrieval

 	Perform stateful computation on arrays with STUArray

 	Treat properly encapsulated, stateful functions as pure functions

 After finishing this book on Haskell, you get a call from a recruiter at GooMicroBook asking if you’d like to interview. You
 say you’d love to, and the recruiter mentions that there will be a coding interview in the programming language of your choice.
 “Any language I want?” you eagerly ask. The recruiter confirms that, yes, you can use any language. With delight, you say
 you’d like to do the interview in Haskell.

 You get to your interview, and your interviewer walks in the room. She asks you to solve some algorithm questions on the whiteboard.
 After eating, breathing, and dreaming about Haskell for many months, you can hardly wait to show of your elite programming
 skills. She starts off with a common question: “Implement a linked list for me.” You run up to the board and write this:

 data MyList a = EmptyList | Cons a (MyList a)

 To your secret pleasure, the interviewer seems a bit surprised when you say, “Done!” You go into a long rant explaining the
 virtues of Haskell, how powerful types are, and the value of pure functions. After listening to you patiently and kindly refraining
 from mentioning her PhD work in type theory, she tells you that she’s impressed. “Okay then, since you’ve done such a good
 job on this one, I’ll give you an easy question next.” You’re ready to show off even more Haskell; maybe you’ll even use Monad! “All that I want you to do is implement a simple, boring, in-place bubble sort.” Suddenly you realize that maybe Haskell
 wasn’t the best choice for this interview.

 Writing a bubble sort with Haskell has a few large issues. The first is that you’ve relied heavily on lists as your primary
 data structure, but they’re not nearly as efficient as proper arrays for this type of problem. A much larger issue is the
 requirement that the sort be in place; You can’t create a copy of your array. Nearly all the code you’ve written in this book relies on changing the state of a
 data structure the functional way: creating a new version of the structure and discarding the original. For the majority of
 problems, this is both reasonably efficient and easy to do. Sorting an array is one case where you absolutely need to modify
 the state of a data structure for reasons of efficiency.

 Thankfully, if you read this lesson, you’ll be prepared for this scenario. You’re going to finish this book by tackling a
 problem that seems impossible in Haskell: efficient, in-place array algorithms. You’ll learn about Haskell’s strict (nonlazy)
 array type, UArray. Then you’ll see that there’s a context for performing mutation on an array by using the STUArray type. Finally, you’ll put it all together to implement a bubble sort algorithm. Even though a bubble sort algorithm itself
 is the least efficient sorting algorithm, your code will run much faster than if you had written it using a list.

 	

 Consider this

 In many cases, using stateful mutation can lead to bugs in your code. But stateful mutation is essential to nearly all efficient
 array-based algorithms. The reason Haskell avoids stateful programs is that this makes it trivial to violate the principle
 of referential transparency: given the same inputs, a function will always return the same outputs.

 But, even in object-oriented programming it’s desirable and sometimes possible to have perfect encapsulation. Even though
 an object may perform stateful changes internally, the programmer never notices this, and the rules of referential transparency
 can be maintained. If you can use types to ensure that your stateful code is perfectly encapsulated, can you somehow safely
 use stateful code in your Haskell programs?

 	

 42.1. Creating efficient arrays in Haskell with the UArray type

 You’re facing three efficiency problems in your bubble-storing challenge:

 	Lists are inherently slower than arrays for operations that involve looking up values.

 	Lazy evaluation can cause major performance problems in practice.

 	In-place sorting requires mutation (stateful programming).

 The first two of these efficiencies can be solved by using the UArray type. In the next section, you’ll go into detail about how the UArray type improves on these as well as learning basics of creating UArrays.

 42.1.1. The inefficiencies of lazy lists

 The first problem is that you need an array type. So far in this book, you’ve relied heavily on lists. But for problems such
 as sorting, lists are often extremely inefficient. One of the reasons for this inefficiency is that you can’t directly access
 elements of a list. In unit 1, you learned about the !! operator for looking up an element in a list. If you create a large list, you can see just how poorly this lookup performs
 in practice.

 Listing 42.1. An example of a reasonably large list of 10 million values

 aLargeList :: [Int]
aLargeList = [1 .. 10000000]

 You learned a while back that you can time functions in GHCi by using :set +s. By using this command, you can see how long it takes to look up the last element in your list:

 GHCi> :set +s
GHCi> aLargeList !! 9999999
10000000
(0.05 secs, 460,064 bytes)

 You can see that this took 0.05 seconds to look up, or 50 milliseconds. Although this isn’t incredibly slow compared to an
 HTTP request, it’s still a long time to look up an element.

 You’ll be using the type UArray on your arrays. For comparison, here’s the equivalent-sized UArray (we’ll explain building the array in the next section).

 Listing 42.2. Your UArray, also containing 10 million values

 aLargeArray :: UArray Int Int
aLargeArray = array (0,9999999) []

 When you perform the same test in GHCi, using the UArray lookup operator !, you find it’s essentially instantaneous:

 GHCi> aLargeArray ! 9999999
0
(0.00 secs, 456,024 bytes)

 The U in UArray stands for unboxed. Unboxed arrays don’t use lazy evaluation (they use strict evaluation). You’ve seen this come up before in unit 4 in regards to both Text and ByteString types. Lazy evaluation, although powerful, is another frequent cause of inefficiency.

 To explore the performance issues of lazy evaluation, let’s look at a modified version of your aLargeList, aLargeArrayList.

 Listing 42.3. Doubling the values in aLargeList impacts performance

 aLargeListDoubled :: [Int]
aLargeListDoubled = map (*2) aLargeList

 Now in GHCi (with :set +s), you can see what happens when you want to find the length of aLargeListDoubled:

 GHCi> length aLargeListDoubled
10000000
(1.58 secs, 1,680,461,376 bytes)

 Wow! It took 1.58 seconds to get the length of your list. Even more astonishing, it took 1.68 gigabytes of memory to perform
 this operation! The inherent inefficiencies in the list data structure don’t explain this amazing use of system resources.
 You can demonstrate this further by running this exact code a second time in GHCi (in the same session):

 GHCi> length aLargeListDoubled
10000000
(0.07 secs, 459,840 bytes)

 To understand what’s going on, you have to recall how lazy evaluation works. None of your computation on the list occurs until
 you absolutely need it. This includes generating the list in the first place. When you define aLargeList, Haskell stores the computations that you need to generate the list. When you multiply that list by 2 to create aLargeListDoubled, Haskell still hasn’t evaluated anything. Finally, when you print out the length of the list, Haskell goes through and starts
 building the list and remembering that it needs to multiply each value. All of these computations Haskell plans to perform
 (technically called thunks) are stored in memory. For small lists, this isn’t a notable hit to performance, but you can see how this affects performance
 on large lists. Given that 10 million characters isn’t a particularly large amount of text, this is why Data.Text is strongly preferred over String.

 The catch with using unboxed arrays is that they work only with primitive types: Int, Char, Bool, and Double. Haskell does offer a more general Array type that will work with any data the same way that List does, but Array is a lazy data structure. Our aim in this lesson is performance with classic computer science algorithms. For this purpose,
 UArray is definitely the data type to use. To use the UArray type, you’ll import Data.Array.Unboxed to the top of your module. Additionally, if using stack, you need to add array to the list of build-depends.

 42.1.2. Creating a UArray

 As in most programming languages, when you create an array in Haskell, you have to specify its size. Unlike with most languages,
 you get to choose what your indices are! UArrays take two type parameters; the first is for the type of the index, and the second is for the type of the value. You have
 some flexibility in the type you can use for the index. You can use types that are members of Enum and Bounded. This means your index could be Char or Int, but not Double (not an instance of Enum), and not Integer (not an instance of Bounded). You could even have the index be of type Bool, but that would always be a two-element array. For the most part, you want your indices’ Int types to be 0 to length –1. To create a UArray, you use the array function. The array function takes two arguments:

 	The first is a pair of values in a tuple representing your lower and upper bounds for your indices.

 	The second argument is a list of (index, value) pairs.

 If you’re missing an index in your pairs, Haskell will provide a default value. For Int types, this is 0; and for Bools, it’s False. Here’s an example of creating a zero-indexed array of Bools. You’re setting only a single value to True; the rest will default to False.

 Listing 42.4. Creating a zero index array of Bool

 zeroIndexArray :: UArray Int Bool
zeroIndexArray = array (0,9) [(3,True)]

 You can look up values in your UArray by using the ! operator (similar to the !! operator for lists). In GHCi, you can see that all of the values you didn’t specify in the list of pairs are False:

 GHCi> zeroIndexArray ! 5
False
GHCi> zeroIndexArray ! 3
True

 If you do much mathematical computing in languages such as R or Matlab, you’re used to using arrays indexed from 1. Most programming
 languages targeted toward mathematical computing use 1-indexed arrays, as this aligns more closely with conventions in mathematical
 notation. In Haskell, it’s trivial to change your array indexing system by passing in a different pair for your bounds. Here’s
 a 1-indexed array with all the Bools set to True. You’ll use your zip function combined with cycle to generate a list of value pairs that are all True.

 Listing 42.5. An array indexed starting with 1

 oneIndexArray :: UArray Int Bool
oneIndexArray = array (1,10) $ zip [1 .. 10] $ cycle [True]

 As you can see, in GHCi all the values are set to True and your UArray starts at 1 and goes to 10:

 GHCi> oneIndexArray ! 1
True
GHCi> oneIndexArray ! 10
True

 Just as with most other programming languages, if you try to access an element outside your index bounds, you’ll get an error:

 GHCi> oneIndexArray ! 0
*** Exception: Ix{Int}.index: Index (0) out of range ((1,10))

 	

 Quick check 42.1

 Q1:
Create an array with the following signature:

 qcArray :: UArray Int Bool

 The array contains five elements indexed at 0 and the 2, and three elements are set to True.

 	

 	

 QC 42.1 answer

 1:

qcArray :: UArray Int Bool
qcArray = array (0,4) [(1,True),(2,True)]

 	

 42.1.3. Updating your UArray

 Although accessing values in your UArray is great, you also need to be able to update it. The UArray can be updated like any functional data structure, by creating a copy of it with the appropriate value changes. Let’s suppose
 you have an array representing the number of beans in four buckets.

 Listing 42.6. A UArray representing beans in buckets

 beansInBuckets :: UArray Int Int
beansInBuckets = array (0,3) []

 Because you passed in an empty list of pairs for initial values, your UArray has been initialized to zeros:

 GHCi> beansInBuckets ! 0
0
GHCi> beansInBuckets ! 2
0

 	

 Quick check 42.2

 Q1:
Rather than assume your values will be initialized to zeros, make sure of it.

 	

 	

 QC 42.2 answer

 1:

beansInBuckets' :: UArray Int Int
beansInBuckets' = array (0,3) $ zip [0 .. 3] $ cycle [0]

 	

 Now suppose you want to add five beans to bucket 1 and six beans to bucket 3 (with bucket 0 being your first bucket). You
 can do this by using the (//) operator. The first argument to (//) is your UArray, and the second argument is a new list of pairs. The result is a new UArray with the updated values.

 Listing 42.7. Updating your UArray the functional way with //

 updatedBiB :: UArray Int Int
updatedBiB = beansInBuckets // [(1,5),(3,6)]

 You can see in GHCi that your values have been updated:

 GHCi> updatedBiB ! 1
5
GHCi> updatedBiB ! 2
0
GHCi> updatedBiB ! 3
6

 Next you want to add two beans to every bucket. It makes sense that you frequently want to update an existing value. To do
 this, you can use the accum function. This function takes a binary function, a UArray, and a list of values to apply the function to. Here’s an example of adding two beans to every bucket:

 GHCi> accum (+) updatedBiB $ zip [0 .. 3] $ cycle [2]
array (0,3) [(0,2),(1,7),(2,2),(3,8)]

 You’ve solved one of the major problems with using lists for your data. With UArray, you can get efficient lookups as well as a more efficient data structure. But one glaring issue is still present. Nearly
 all truly efficient array-based algorithms are in place. Even bubble sort, which is the least efficient of the sorting algorithms, doesn’t require you to use any new arrays. When
 you update an array in place, you don’t have to have a second copy of the array to perform the update. But this is only possible
 because of an inherent statefulness of the array. When you used UArray, you were able to replicate an artificial sense of mutable state. For many examples, this is preferable to making changes
 to your data structure. But when you’re using state specifically for efficiency reasons, this is a terrible solution.

 	

 Quick check 42.3

 Q1:
Try doubling the number of beans in each bucket.

 	

 	

 QC 42.3 answer

 1:

accum (*) updateBib $ zip [0 .. 3] $ cycle [3]

 	

 42.2. Mutating state with STUArray

 The vast majority of the time, Haskell forcing the programmer to remove statefulness from the code results in safer, more
 predictable code with roughly the same performance. This isn’t true for most array algorithms. If Haskell had no way to mutate
 state in these cases, a wide range of essential algorithms would be off-limits in Haskell.

 Haskell does have a solution to this problem. You’ll be using a special type of UArray called an STUArray. The STUArray uses a more general type called ST. ST allows for stateful, nonlazy programming. In this lesson, you’ll focus only on STUArray, but it’s important to recognize that the solutions you present here for working with arrays can be extended to a larger
 class of stateful programs.

 To use STUArray, you’ll add the following imports:

 import Data.Array.ST
import Control.Monad
import Control.Monad.ST

 STUArray is an instance of Monad. In unit 5, you spent a lot of time looking at the family of type classes that include Functor, Applicative, and Monad. The aim of all of these type classes is to allow you to perform arbitrary computation within a context. You’ve seen a variety
 of examples of this throughout the book:

 	Maybe types model the context of missing values.

 	List types can be used to represent the context of nondeterministic computing.

 	IO types allow you to separate stateful, error-prone I/O code from your pure functions.

 	Either types provide a more detailed way to handle errors over Maybe types.

 Like IO, STUArray allows you to perform computation normally forbidden in Haskell in a safe context. Just like IO actions, when working with STUArrays, you’ll use do-notation to treat types in the STUArray context, just as if they were regular data.

 The key power STUArray offers is the ability to change values in a UArray (see figure 42.1 for a visual explanation). This is the final efficiency gain you need in order to achieve efficiency on par with programming
 languages that allow state. By being able to change values in place, you can save tremendously on memory usage, and by not
 having to re-create a new copy of your data structure with each change, you can also save on time. This is the key to writing
 a bubble sort that’s as efficient as you’d find in an algorithms text book.

 Figure 42.1. The STUArray is a context that allows for stateful mutations.

 [image:]

 One important thing to understand about STUArrays and the ST type in general is that they aren’t a hack that allows you to disregard all the functional purity you’ve worked so hard for.
 STUArray exists to allow you to perform stateful programming only when that statefulness is indistinguishable from pure code for the
 users of your functions. The vast majority of changes in data structures can be done with both reasonable efficiency and great
 safety, using the functional data structures you’ve used throughout the book.

 You’ll learn how to use STUArray by writing a function, called listToSTUArray, that takes a list of Ints and transforms that into an STUArray. In your first draft of listToSTUArray, you’ll create an empty STUArray the size of your list. This is similar to initializing an empty array of a fixed size, only you’ll do it in a monad. The
 STUArray type uses the newArray function, which takes a pair representing the bounds of the array as well as a value for initializing the array.

 Listing 42.8. A first sketch of your listToSTUArray function

 listToSTUArray :: [Int] -> ST s (STUArray s Int Int)
listToSTUArray vals = do
 let end = length vals - 1 1
 stArray <- newArray (0,end) 0 2
 return stArray 3

 	1 The end is a normal variable so you assign it with let.

 	2 stArray is a mutable array in a context assigned with <-.

 	3 When you’re all done, you need to return your array back to its context.

 Next you want to add your loop, which you’ll run through your list, and update your stArray value. You’ll use forM_ from Control.Monad. The forM_ action takes your data and a function to apply to the data as arguments. This has the nice property of replicating a for in loop in languages such as Python.

 To demonstrate how this replicates using a typical for loop, you’ll use a list of indices and (!!) to look up values in your list. It’d be more efficient to zip these indices with the list values, but you want to replicate
 the feel of working in a more stateful language. The only thing left is for you to write the values from the list to your
 stArray value. For this, you’ll use the writeArray function, which takes an STUArray, an index, and your value. The writeArray function performs a stateful mutation of your underlying array and doesn’t create a copy of it.

 Listing 42.9. The full code for copying a list to an STUArray

 listToSTUArray :: [Int] -> ST s (STUArray s Int Int)
listToSTUArray vals = do
 let end = length vals - 1
 myArray <- newArray (0,end) 0
 forM_ [0 .. end] $ \i -> do 1
 let val = vals !! i 2
 writeArray myArray i val 3
 return myArray

 	1 This forM_ action replicates a for loop in most languages.

 	2 Looking up val from a list isn’t stateful, so it’s assigned with a let.

 	3 Your writeArray function rewrites the data in your array.

 With your forM_ loop, you’ve written code that’s similar to what you’d write in other stateful programming languages if you needed to.

 If you load this in GHCi, you’ll see that your code runs fine, except for one major problem:

 GHCi> listToSTUArray [1,2,3]
<<ST action>>

 Just as when you use the IO type, when using the ST type through STUArray, you end up with a program in a context. But unlike IO, there’s no obvious way for you to show this stateful code. Thankfully, unlike IO, there’s a way for you to take values out of a context when you’re using STUArray.

 42.3. Taking values out of the ST context

 When you first learned about the IO type, you saw that it enabled you to keep your relatively dangerous IO code trapped in a context. Although STUArray is similar to IO, you’re dealing with a much safer context. For starters, even though your code uses state, you’re still upholding referential
 transparency. Every time you run listToSTUArray on the same input, you’ll get exactly the same output. This brings up an important point about referential transparency and
 encapsulation in object-oriented programming languages. Encapsulation in OOP means that objects properly hide all of their
 implementation details from the user. Even in OOP, statefulness that breaks encapsulation is bad. The trouble is that OOP
 has no mechanism to enforce that state changes are property encapsulated. In your listToSTUArray code, because statefulness is contained in a context, you’re forced to make sure your stateful code obeys encapsulation.
 Because STUArray is enforcing encapsulation, you’re not constrained by the same limitations of IO. You can take values out of STUArray by using a function named runSTUArray (visualized in figure 42.2).

 Figure 42.2. Unlike IO, you can take values out of the STUArray context.

 [image:]

 The type signature of runSTUArray is as follows:

 runSTUArray :: ST s (STUArray s i e) -> UArray i e

 With runSTUArray, you can get the best of both worlds. You can keep your stateful code in a safe context, but still treat it as pure code.
 Here’s a new function, listToUArray, that uses stateful programming but appears to be a pure function.

 Listing 42.10. You can treat listToUArray as a pure function

 listToUArray :: [Int] -> UArray Int Int
listToUArray vals = runSTUArray $ listToSTUArray vals

 Now you can run the program in GHCi and get a meaningful result:

 GHCi> listToUArray [1,2,3]
array (0,2) [(0,1),(1,2),(2,3)]

 The important thing to realize is that using runSTUArray isn’t cheating or allowing you to slip dangerous stateful code into your pure programs. Because STUArray forces you to maintain perfect encapsulation, you can leave the context of the STUArray without violating any of the core rules of functions introduced in lesson 2. Your code remains safe and predictable.

 One thing worth noting is that it’s common in Haskell to avoid writing an intermediary function such as listToSTUArray. Instead, you’d typically write listToUArray like this.

 Listing 42.11. A common way of working with STUArrays and runSTUArray

 listToUArray :: [Int] -> UArray Int Int
listToUArray vals = runSTUArray $ do
 let end = length vals - 1
 myArray <- newArray (0,end) 0
 forM_ [0 .. end] $ \i -> do
 let val = vals !! i
 writeArray myArray i val
 return myArray

 This version of listToUArray combines both of your function definitions into one.

 	

 The ST type

 The ST type generalizes the behavior you see in STUArray. The STUArray type relies primarily on three actions: newArray, readArray, and writeArray. For the ST type, these are replaced with the more general functions: newSTRef, readSTRef, and writeSTRef. Likewise, instead of runSTUArray, you use runST. Here’s a simple example of a swapST function that statefully swaps the values of two variables in a 2-tuple:

 swapST :: (Int,Int) -> (Int,Int)
swapST (x,y) = runST $ do
 x' <- newSTRef x
 y' <- newSTRef y
 writeSTRef x' y
 writeSTRef y' x
 xfinal <- readSTRef x'
 yfinal <- readSTRef y'
 return (xfinal,yfinal)

 Just as with STUArray, the primary purpose of all ST types is to allow you to implement perfectly encapsulated, stateful computation.

 	

 42.4. Implementing a bubble sort

 You’re finally ready to write your own version of a bubble sort in Haskell! In case you’re not familiar with it, the bubble
 sort algorithm works as follows:

 1. Start at the beginning of the array and compare a value to the value next to it.

 2. If the original value is larger than the one next to it, swap them.

 3. Repeat this until the largest value has “bubbled” to the end of the array.

 4. Repeat this process with the n – 1 elements remaining in the array.

 Figure 42.3 illustrates the algorithm.

 Figure 42.3. The bubble sort algorithm

 [image:]

 You’ll start with a UArray that you want to sort. You’ll use the listArray function that’s similar to the listToUArry function you wrote, but also takes a pair of bounds as input.

 Listing 42.12. Sample data created using listArray

 myData :: UArray Int Int
myData = listArray (0,5) [7,6,4,8,10,2]

 	

 Quick check 42.4

 Q1:
Use your listToUArray function to define myData.

 	

 	

 QC 42.4 answer

 1:

myData' :: UArray Int Int
myData' = listToUArray [7,6,4,8,10,2]

 	

 To implement your bubbleSort, you need to introduce a few new functions. One thing you haven’t done yet is use an existing UArray in the context of an STUArray. Just because you’re in a context doesn’t mean that you can treat UArray as though it were stateful. To do this, you use a function called thaw, which will unfreeze your UArray so you can work with it. You’ll also use the bounds function, which gives you a pair representing the bounds of your array so you can figure out where it ends. STUArray has a function called readArray that reads a stateful value from an array. Finally, you’ll use an interesting function named when, which works like an if without a then in most programming languages. Here’s the implementation of bubbleSort.

 Listing 42.13. Your implementation of bubbleSort

 bubbleSort :: UArray Int Int -> UArray Int Int
bubbleSort myArray = runSTUArray $ do
 stArray <- thaw myArray 1
 let end = (snd . bounds) myArray 2
 forM_ [1 .. end] $ \i -> do
 forM_ [0 .. (end - i)] $ \j -> do
 val <- readArray stArray j 3
 nextVal <- readArray stArray (j + 1)
 let outOfOrder = val > nextVal
 when outOfOrder $ do 4
 writeArray stArray j nextVal
 writeArray stArray (j + 1) val
 return stArray

 	1 You need to thaw your UArray into an STUArray.

 	2 The end of the array is the second part of the bounds tuple.

 	3 Here you’re using readArray to look up your value from an STUArray.

 	4 The when function allows you to branch only if a condition is met.

 You can try out your bubbleSort function on your data:

 GHCi> bubbleSort myData
array (0,5) [(0,2),(1,4),(2,6),(3,7),(4,8),(5,10)]

 Now you have an imperative algorithm implemented in Haskell. The best part is that to do this, you didn’t have to give up
 on any of the features that you’ve grown to love about Haskell. You’ve written a program that’s efficient (well, for a bubble
 sort). At the same time, this code is predictable and obeys referential transparency.

 Summary

 In this lesson, our objective was to teach you how to write stateful, efficient algorithms in Haskell. You first learned about
 the UArray type, which allows for strictly evaluated arrays in Haskell. The downside of UArray is that you still have to treat state as you would for any other functional data structure. You then saw that STUArray allows you to perform stateful programming much the same way that IO types allow you to perform I/O programming. Because of the context of the STUArray, you’re forced to maintain proper encapsulation.
 In practice, perfect encapsulation is the same as referential transparency. Therefore, you can transform your STUArray back into a regular UArray. This ultimately allows you to treat your stateful code as a pure function because it behaves like one. Let’s see if you
 got this.

 Q42.1
One of the most important operations in the implementation of a genetic algorithm is combining two arrays of Booleans through
 an operation called crossover. Crossover takes as input a pair of equal-sized arrays. Then a cutoff point is chosen, and the top and bottom are swapped.
 The final value is this new pair of arrays. Here’s an illustration using lists and an example (using 1 for True and 0 for False):

 ([1,1,1,1,1],[0,0,0,0,0])

 If you perform crossover at index 3, your result should be

 [1,1,1,0,0]

 Implement crossover where the result is a UArray but the crossover itself is performed using STUArrays.

 Q42.2
Write a function that takes a UArray Int Int as an input. The input will have a mixture of zeros and other values. The function, replaceZeros, should return the array with all of the zeros replaced with the value –1.

Afterword. What’s next?

 Undoubtedly, the greatest challenge in writing a Haskell book is determining the scope. The most wonderful and simultaneously
 terrifying part of Haskell is its seemingly unlimited number of topics to learn. Unfortunately, it’s impossible to write a
 Haskell book without feeling that you’ve left out a great deal of interesting content.

 The goal of this book has always been to provide a foundation for a solid understanding of both Haskell and functional programming
 in general. The good news is that if you’ve reached this point in the book, you have many options for taking your journey
 further. Even if you stop here, I’m confident that your view of software, programming, and computation in general has been
 expanded quite a bit. If you’re interested in pursuing the topics in this book further, this afterword provides a few options
 of where to go next, depending on which direction interests you the most.

 A deeper dive into Haskell

 If you enjoyed unit 5 on Functor, Applicative, and Monad, the good news is that those topics are the tip of the Haskell iceberg. Many other type classes and topics in Haskell offer
 similar levels of interesting abstraction and new ways to think about programs. The best place to continue this is on the
 Typeclassopedia, which is part of the Haskell wiki (found at https://wiki.haskell.org/Typeclassopedia). One of the primary goals of this book is to equip you with a solid-enough understanding of Haskell’s more abstract type
 classes that you could explore them on your own. The Typeclassopedia starts with the interesting type classes discussed in
 this book and then moves on to increasingly more powerful and abstract type classes.

 One topic that we were unable to cover in this book is parallel and concurrent programming in Haskell. If you’ve done any
 work with parallel programming in a language such as C++, you know how tricky it can be to make sure state is maintained effectively
 when you have asynchronous computations being called. A major benefit of Haskell’s obsession with pure functional programming
 is that it’s much easier to parallelize Haskell code. A fantastic book by Simon Marlow, Parallel and Concurrent Programming in Haskell (O’Reilly Media, 2013), gives this topic the full coverage it deserves. Having completed this book, you should be able to
 easily jump in. Marlow’s book is free to read online: http://chimera.labs.oreilly.com/books/1230000000929/index.html.

 The biggest change in Haskell since I first learned the language is the amount of headway it has gained in becoming a “real”
 programming language. A growing number of software engineers are writing production code with Haskell. The stack build system,
 which is a relatively recent addition to Haskell, is evidence of this. A good place to start exploring packages and libraries
 for Haskell is on the Haskell-lang.org libraries page (https://haskell-lang.org/libraries). This page covers many of the essential packages and tools you can use for writing Haskell programs (and we’ve touched on
 many in this book).

 More powerful type systems than Haskell?

 If Haskell’s powerful type system is what intrigued you the most about Haskell, you’ll be happy to know that a few languages
 out there, based on Haskell, try to push the type envelope even further. Two interesting examples are Idris and Liquid Haskell.
 Both languages expand on Haskell’s types by allowing even more detailed and powerful constraints on the types used in a program.
 Imagine if the compiler was able to warn you that head was a partial function, or you were able to specify the size of a list in your types. Both of these checks are beyond the
 power of Haskell’s type system, but are possible in Liquid Haskell and Idris.

 Idris—programming with dependent types

 Idris is a programming language that allows for dependent types. Idris has first-class types in the same way Haskell has first-class
 functions, so types can be computed and manipulated in Idris the same way that you manipulate functions in Haskell. What sort of power does this provide? One of the
 problems in Haskell related to foldl is that although foldl is often more intuitive than foldr, foldl doesn’t work on infinite lists. This, incidentally, makes foldl a partial function because you can’t check whether a list is infinite, and infinite lists are a value the function is undefined
 on. You could solve this problem if you could guarantee that your lists were finite. This is beyond the power of Haskell’s
 type system, but Idris’s dependent types make it possible to specify that a list argument must be finite.

 You can learn more about Idris by visiting the language’s homepage (www.idris-lang.org/documentation/). Additionally, Manning has published a book on Idris by the creator of the language: Type-Driven Development with Idris by Edwin Brady (2017).

 Liquid Haskell—provable types

 Liquid Haskell expands on Haskell’s type system by allowing you to use logical predicates with your types to ensure proper
 program behavior. These types are called refinement types. Like Idris, Liquid Haskell’s type system works to eliminate partial functions through the type system. The constraints assumed
 on a program are checked at compile time. One example is that Liquid Haskell makes it possible to ensure that division by
 zero isn’t possible at the type level. The amazing thing about this is that division by zero errors can be caught when your code compiles. The best place to learn more about Liquid Haskell is on the project’s homepage (https://ucsd-progsys.github.io/liquidhaskell-blog/).

 Other functional programming languages

 Perhaps after reading through this book you’ve developed a love for functional programming but aren’t quite sure that Haskell
 is the best language for you. There are a wide variety of mature, powerful functional programming languages that you can explore.
 Haskell is certainly the purest of these languages, but that can sometimes be a downside.

 Functional programming languages broadly fall into two families: the Lisp family and the ML family. Haskell is a good representation
 of the ML type of functional programming languages, which usually use a similar type system (though each type system has its
 own unique features). The Lisp languages are generally dynamically typed and involve heavy use of parentheses and prefix operators.
 If you’re interested in functional programming, I strongly recommend mastering both a Lisp family language and an ML family
 language. Although they share many commonalities, they’re both different ways to think about programs.

 Recommended programming languages in the Lisp family

 The biggest shock to most newcomers to any Lisp language is the abundance of parentheses. Lisp represents all programs as
 trees of computation, and nested parentheses are a good way to represent these trees. The tree structure allows for sophisticated
 manipulation of programs as data. A hallmark of many Lisp languages is the idea of macros, which allows for the generation
 of code at compile type. This allows Lisp programmers to easily define their own syntax when necessary. Writing a custom domain-specific
 language (DSL) in a Lisp can often require just a few lines of code. The following are a couple of good options for exploring
 Lisp in greater depth.

 Racket

 The Racket programming language is the descendant of a long line of languages from the Scheme dialect of Lisp. It’s probably
 the purest contemporary representation of the Lisp family and has amazing community support. Like Haskell, Racket has a relatively
 small commercial community compared to those who use the language to explore programming language theory. Despite its academic
 tendencies, the Racket community has done a great job making it easy to get started and learn Racket. You can learn more at
 the Racket website: https://racket-lang.org/.

 Clojure

 The Clojure programming language is by far the most commercially viable Lisp. Clojure sits on top of the Java Virtual Machine
 (JVM) and therefore has access to all Java libraries. A large community of practically minded, working software developers
 are using Clojure. If Lisp sounds interesting to you, but your primary interest is shipping code and getting things done,
 you’ll be happy with the Clojure community. More information can be found on the Clojure page: https://clojure.org/.

 Common Lisp

 Although Common Lisp is unfortunately rather dated at this point, it’s one of the most powerful programming languages ever
 created. Common Lisp is a language obsessed with abstracting out code as much as possible and creating, in my opinion, the
 most expressive programming language to date. The major downside is that it’s difficult to use Common Lisp for practical applications
 today. If you study this language in depth, you’ll fall tragically in love with it. A great intro to the language is Peter
 Seibel’s Practical Common Lisp (Apress, 2005), which is available free online: www.gigamonkeys.com/book/.

 Recommended programming languages in the ML family

 Haskell belongs to the ML family of functional programming languages. The greatest defining features of ML languages are their
 powerful type systems. Haskell is arguably the most challenging of the ML family because of its combination of using lazy evaluation, enforcing pure functional programming,
 and relying heavily on abstract concepts such as monads. If you like most of what you learned in the book but feel that Haskell
 is just a bit too challenging to work with, you might find your new favorite language in this group. The ML family typically
 includes many languages that are as academic as Haskell, such as Miranda and Standard ML. I’ve excluded these in favor of
 the following more pragmatic alternatives.

 F#

 The F# programming language is an implementation of another ML variant (OCaml) for Microsoft’s .NET programming environment.
 F# is a multiparadigm programming language with strong support for functional programming, as well as for object-oriented
 programming. If you’re a .NET developer using a language such as C#, you’ll likely find F# to be a great way to combine many
 of the things you enjoy about Haskell with the .NET ecosystem. Supported by Microsoft, F# has great documentation and a large
 variety of existing libraries and tools that will allow you to get a lot of practical work done. More can be learned from
 the F# homepage: http://fsharp.org/.

 Scala

 Like F#, Scala combines strong types, functional programming, and object-oriented programming. Scala runs on top of the JVM,
 and like Clojure, can readily make use of the vast number of libraries supported by that environment. Scala is a remarkably
 flexible language that allows you to write everything, from a less verbose form of Java, to code using monads and functors.
 Scala has a great community of developers and is probably your best bet if you’d like to do functional programming for a living.
 The tools and resources available for Scala are on par with any other industrial-strength programming language. You can learn
 more at the Scala site: www.scala-lang.org.

 Elm and PureScript

 Elm (http://elm-lang.org/) and PureScript (www.purescript.org) are distinct programming languages that offer the same goal: creating a language resembling Haskell that can be compiled
 to JavaScript. The Elm programming language is focused on creating JavaScript user interfaces using functional programming.
 The Elm website has a wide variety of great examples to get you started. PureScript (not to be confused with TypeScript) is
 focused on making a Haskell-like language that compiles to JavaScript. PureScript is similar to Haskell in syntax and usage
 and should be fairly easy to get started with, now that you’ve completed this book.

Appendix. Answers to end-of-lesson exercises

 The beautiful thing about code is that there are no wrong answers as long as you get the right results. The answers to the
 exercises shown here should be viewed as simply one possible solution to the problem. Especially in Haskell, there are many
 paths to the correct solution; if you have an alternative answer that gives the correct results, that’s the correct solution.

 Unit 1

 Lesson 2

 Q2.1

inc x = x + 1
double x = x*2
square x = x^2

 Q2.2

ex3 n = if n 'mod' 2 == 0
 then n - 2
 else 3*n+1

 Q2.3

ifEven n = if even n
 then n - 2
 else 3 * n + 1

 Lesson 3

 Q3.1

simple = (\x -> x)
makeChange = (\owed given ->
 if given - owed > 0
 then given - owed
 else 0)

 Q3.2

inc = (\x -> x+1)
double = (\x -> x*2)
square = (\x -> x^2)

counter x = (\x -> x + 1)
 ((\x -> x + 1)
 ((\x -> x) x))

 Lesson 4

 Q4.1
Note—if the results are equal, you need to compare first names:

 compareLastNames name1 name2 = if result == EQ
 then compare (fst name1) (fst name2)
 else result
 where result = compare (snd name1) (snd name2)

 Q4.2
And the new DC office:

 dcOffice name = nameText ++ " PO Box 1337 - Washington DC, 20001"
 where nameText = (fst name) ++ " " ++ (snd name) ++ ", Esq."

getLocationFunction location = case location of
 "ny" -> nyOffice
 "sf" -> sfOffice
 "reno" -> renoOffice
 "dc" -> dcOffice
 _ -> (\name -> (fst name) ++ " " ++ (snd name))

 Lesson 5

 Q5.1

ifEven myFunction x = if even x
 then myFunction x
 else x

inc n = n + 1
double n = n*2
square n = n^2

ifEvenInc = ifEven inc
ifEvenDouble = ifEven double
ifEvenSquare = ifEven square

 Q5.2

binaryPartialApplication binaryFunc arg = (\x -> binaryFunc arg x)

 Here’s an example:

 takeFromFour = binaryPartialApplication (-) 4

 Lesson 6

 Q6.1

repeat n = cycle [n]

 Q6.2

subseq start end myList = take difference (drop start myList)
 where difference = end - start

 Q6.3

inFirstHalf val myList = val 'elem' firstHalf
 where midpoint = (length myList) 'div' 2
 firstHalf = take midpoint myList

 Lesson 7

 Q7.1

myTail [] = []
myTail (_:xs) = xs

 Q7.2

myGCD a 0 = a
myGCD a b = myGCD b (a 'mod' b)

 Lesson 8

 Q8.1

myReverse [] = []
myReverse (x:[]) = [x]
myReverse (x:xs) = (myReverse xs) ++ [x]

 Q8.2

fastFib _ _ 0 = 0
fastFib _ _ 1 = 1
fastFib _ _ 2 = 1
fastFib x y 3 = x + y
fastFib x y c = fastFib (x + y) x (c - 1)

 Note that you can use a function to hide the fact that you always start with 1 1:

 fib n = fastFib 1 1 n

 Lesson 9

 Q9.1

myElem val myList = (length filteredList) /= 0
 where filteredList = filter (== val) myList

 Q9.2

isPalindrome text = processedText == reverse processedText
 where noSpaces = filter (/= ' ') text
 processedText = map toLower noSpaces

 Q9.3

harmonic n = sum (take n seriesValues)
 where seriesPairs = zip (cycle [1.0]) [1.0,2.0 ..]
 seriesValues = map
 (\pair -> (fst pair)/(snd pair))
 seriesPairs

 Unit 2

 Lesson 11

 Q11.1

filter :: (a -> Bool) -> [a] -> [a]

 If you look at map, you can see there are two differences:

 map :: (a -> b) -> [a] -> [b]

 First is that the function passed into filter must return a Bool.

 Second is that map can transform the type of the list, whereas filter can’t.

 Q11.2
For tail, you can return the empty list if the list is empty:

 safeTail :: [a] -> [a]
safeTail [] = []
safeTail (x:xs) = xs

 You can’t do the same for head, because there’s no sane default value for an element. You can’t return an empty list, because an empty list is the same
 type as the elements of the list. See lesson 37 for a more detailed discussion of this topic.

 Q11.3

myFoldl :: (a -> b -> a) -> a -> [b] -> a
myFoldl f init [] = init
myFoldl f init (x:xs) = myFoldl f newInit xs
 where newInit = f init x

 Lesson 12

 Q12.1
You can make this much easier by reusing canDonateTo:

 donorFor :: Patient -> Patient -> Bool
donorFor p1 p2 = canDonateTo (bloodType p1) (bloodType p2)

 Q12.2
You add this helper function to display sex:

 showSex Male = "Male"
showSex Female = "Female"

patientSummary :: Patient -> String
patientSummary patient = "**************\n" ++
 "Sex: " ++ showSex (sex patient) ++ "\n" ++
 "Age: " ++ show (age patient) ++ "\n" ++
 "Height: " ++ show (height patient) ++ " in.\n" ++
 "Weight: " ++ show (weight patient) ++ " lbs.\n" ++
 "Blood Type: " ++ showBloodType (bloodType patient) ++
 "\n**************\n"

 Lesson 13

 Q13.1
If you look at the type classes that each belongs to, you get a good sense of your answer.

 For Word:

 instance Bounded Word
instance Enum Word
instance Eq Word
instance Integral Word
instance Num Word
instance Ord Word
instance Read Word
instance Real Word
instance Show Word

 For Int:

 instance Bounded Int
instance Enum Int
instance Eq Int
instance Integral Int
instance Num Int
instance Ord Int
instance Read Int
instance Real Int
instance Show Int

 You can see that they share identical type classes. The best guess would be that Word has different bounds than Int. If you look at maxBound, you can see that Word is larger than Int:

 GHCi> maxBound :: Word
18446744073709551615
GHCi> maxBound :: Int
9223372036854775807

 But Word also has minBound of 0, whereas Int is much lower:

 GHCi> minBound :: Word
0
GHCi> minBound :: Int
-9223372036854775808

 So as you might have guessed, Word is an Int that takes on only positive values—essentially an unsigned Int.

 Q13.2
You can see the difference if you try inc and succ on the maxBound of Int:

 GHCi> inc maxBound :: Int
-9223372036854775808
GHCi> succ maxBound :: Int
*** Exception: Prelude.Enum.succ{Int}: tried to take 'succ' of maxBound

 Because there’s no true successor to a Bounded type, succ throws an error. The inc function just rotates you back to the beginning.

 Q13.3

cycleSucc :: (Bounded a, Enum a, Eq a) => a -> a
cycleSucc n = if n == maxBound
 then minBound
 else succ n

 Lesson 14

 Q14.1
Suppose you have a type like this:

 data Number = One | Two | Three deriving Enum

 Now you can use fromEnum to convert this into an Int.

 This makes implementing Eq easy as well as Ord:

 instance Eq Number where
 (==) num1 num2 = (fromEnum num1) == (fromEnum num2)

instance Ord Number where
 compare num1 num2 = compare (fromEnum num1) (fromEnum num2)

 Q14.2

data FiveSidedDie = Side1 | Side2 | Side3 | Side4 |
[image:]Side5 deriving (Enum, Eq, Show)

class (Eq a, Enum a) => Die a where
 roll :: Int -> a

instance Die FiveSidedDie where
 roll n = toEnum (n 'mod' 5)

 Unit 3

 Lesson 16

 Q16.1

data Pamphlet = Pamphlet {
 pamphletTitle :: String,
 description :: String,
 contact :: String
 }

data StoreItem = BookItem Book
 | RecordItem VinylRecord
 | ToyItem CollectibleToy
 | PamphletItem Pamphlet

 Now you need to add another pattern for price:

 price :: StoreItem -> Double
price (BookItem book) = bookPrice book
price (RecordItem record) = recordPrice record
price (ToyItem toy) = toyPrice toy
price (PamphletItem _) = 0.0

 Q16.2

type Radius = Double
type Height = Double
type Width = Double

data Shape = Circle Radius
 | Square Height
 | Rectangle Height Width deriving Show

perimeter :: Shape -> Double
perimeter (Circle r) = 2*pi*r
perimeter (Square h) = 4*h
perimeter (Rectangle h w) = 2*h + 2*w

area :: Shape -> Double
area (Circle r) = pi*r^2
area (Square h) = h^2
area (Rectangle h w) = h*w

 Lesson 17

 Q17.1

data Color = Red |
 Yellow |
 Blue |
 Green |
 Purple |
 Orange |
 Brown |
 Clear deriving (Show,Eq)

instance Semigroup Color where
 (<>) Clear any = any
 (<>) any Clear = any
 (<>) Red Blue = Purple
 (<>) Blue Red = Purple
 (<>) Yellow Blue = Green
 (<>) Blue Yellow = Green
 (<>) Yellow Red = Orange
 (<>) Red Yellow = Orange
 (<>) a b | a == b = a
 | all ('elem' [Red,Blue,Purple]) [a,b] = Purple
 | all ('elem' [Blue,Yellow,Green]) [a,b] = Green
 | all ('elem' [Red,Yellow,Orange]) [a,b] = Orange
 | otherwise = Brown

instance Monoid Color where
 mempty = Clear
 mappend col1 col2 = col1 <> col2

 Q17.2

data Events = Events [String]
data Probs = Probs [Double]

combineEvents :: Events -> Events -> Events
combineEvents (Events e1) (Events e2) = Events (cartCombine combiner e1 e2)
 where combiner = (\x y -> mconcat [x,"-",y])

instance Semigroup Events where
 (<>) = combineEvents

instance Monoid Events where
 mappend = (<>)
 mempty = Events []

combineProbs :: Probs -> Probs -> Probs
combineProbs (Probs p1) (Probs p2) = Probs (cartCombine (*) p1 p2)

instance Semigroup Probs where
 (<>) = combineProbs

instance Monoid Probs where
 mappend = (<>)
 mempty = Probs []

 Lesson 18

 Q18.1

boxMap :: (a -> b) -> Box a -> Box b
boxMap func (Box val) = Box (func val)

tripleMap :: (a -> b) -> Triple a -> Triple b
tripleMap func (Triple v1 v2 v3) = Triple (func v1) (func v2) (func v3)

 Q18.2
The trick is that Organ needs to be of type Ord to be a key for a Map.

 You add enum to easily build a list of all organs:

 data Organ = Heart | Brain | Kidney | Spleen deriving (Show, Eq, Ord, Enum)

values :: [Organ]
values = map snd (Map.toList organCatalog)

 Now you have a list of all organs:

 allOrgans :: [Organ]
allOrgans = [Heart .. Spleen]

 Then count those organs:

 organCounts :: [Int]
organCounts = map countOrgan allOrgans
 where countOrgan = (\organ ->
 (length . filter (== organ)) values)

 Now build your organ inventory:

 organInventory :: Map.Map Organ Int
organInventory = Map.fromList (zip allOrgans organCounts)

 Lesson 19

 Q19.1

data Organ = Heart | Brain | Kidney | Spleen deriving (Show, Eq)

sampleResults :: [Maybe Organ]
sampleResults = [(Just Brain),Nothing,Nothing,(Just Spleen)]

emptyDrawers :: [Maybe Organ] -> Int
emptyDrawers contents = (length . filter isNothing) contents

 Q19.2

maybeMap :: (a -> b) -> Maybe a -> Maybe b
maybeMap func Nothing = Nothing
maybeMap func (Just val) = Just (func val)

 Unit 4

 Lesson 21

 Q21.1

helloPerson :: String -> String
helloPerson name = "Hello" ++ " " ++ name ++ "!"

sampleMap :: Map.Map Int String
sampleMap = Map.fromList [(1,"Will")]

mainMaybe :: Maybe String
mainMaybe = do
 name <- Map.lookup 1 sampleMap
 let statement = helloPerson name
 return statement

 Q21.2

fib 0 = 0
fib 1 = 1
fib 2 = 1
fib n = fib (n-1) + fib (n - 2)

main :: IO ()
main = do
 putStrLn "enter a number"
 number <- getLine
 let value = fib (read number)
 putStrLn (show value)

 Lesson 22

 Q22.1
Remember that lazy I/O lets you treat your input like a list:

 sampleInput :: [String]
sampleInput = ["21","+","123"]

 This function isn’t perfect, but the aim is just to get familiar with lazy I/O:

 calc :: [String] -> Int
calc (val1:"+":val2:rest) = read val1 + read val2
calc (val1:"*":val2:rest) = read val1 * read val2

main :: IO ()
main = do
 userInput <- getContents
 let values = lines userInput
 print (calc values)

 Q22.2

quotes :: [String]
quotes = ["quote 1"
 ,"quote 2"
 ,"quote 3"
 ,"quote 4"
 ,"quote 5"]

lookupQuote :: [String] -> [String]
lookupQuote [] = []
lookupQuote ("n":xs) = []
lookupQuote (x:xs) = quote : (lookupQuote xs)
 where quote = quotes !! (read x - 1)

main :: IO ()
main = do
 userInput <- getContents
 mapM_ putStrLn (lookupQuote (lines userInput))

 Lesson 23

 Q23.1

import qualified Data.Text as T
import qualified Data.Text.IO as TIO

helloPerson :: T.Text -> T.Text
helloPerson name = mconcat ["Hello "
 , name
 , "!"]

main :: IO ()
main = do
 TIO.putStrLn "Hello! What's your name?"
 name <- TIO.getLine
 let statement = helloPerson name
 TIO.putStrLn statement

 Q23.2

import qualified Data.Text.Lazy as T
import qualified Data.Text.Lazy.IO as TIO

toInts :: T.Text -> [Int]
toInts = map (read . T.unpack) . T.lines

main :: IO ()
main = do
 userInput <- TIO.getContents
 let numbers = toInts userInput
 TIO.putStrLn ((T.pack . show . sum) numbers)

 Lesson 24

 Q24.1

import System.IO
import System.Environment
import qualified Data.Text as T
import qualified Data.Text.IO as TI

main :: IO ()
main = do
 args <- getArgs
 let source = args !! 0
 let dest = args !! 1
 input <- TI.readFile source
 TI.writeFile dest input

 Q24.2

import System.IO
import System.Environment
import qualified Data.Text as T
import qualified Data.Text.IO as TI

main :: IO ()
main = do
 args <- getArgs
 let fileName = head args
 input <- TI.readFile fileName
 TI.writeFile fileName (T.toUpper input)

 Lesson 25

 Q25.1

import System.IO
import System.Environment
import qualified Data.Text as T
import qualified Data.ByteString as B
import qualified Data.Text.Encoding as E

main :: IO ()
main = do
 args <- getArgs
 let source = args !! 0
 input <- B.readFile source
 putStrLn "Bytes:"
 print (B.length input)
 putStrLn "Characters:"
 print ((T.length . E.decodeUtf8) input)

 Q25.2

reverseSection :: Int -> Int -> BC.ByteString -> BC.ByteString
reverseSection start size bytes = mconcat [before,changed,after]
 where (before,rest) = BC.splitAt start bytes
 (target,after) = BC.splitAt size rest
 changed = BC.reverse target

randomReverseBytes :: BC.ByteString -> IO BC.ByteString
randomReverseBytes bytes = do
 let sectionSize = 25
 let bytesLength = BC.length bytes
 start <- randomRIO (0,(bytesLength - sectionSize))
 return (reverseSection start sectionSize bytes)

 Unit 5

 Lesson 27

 QC27.1

data Box a = Box a deriving Show

instance Functor Box where
 fmap func (Box val) = Box (func val)

 QC27.2

myBox :: Box Int
myBox = Box 1

unwrap :: Box a -> a
unwrap (Box val) = val

 QC27.3

printCost :: Maybe Double -> IO()
printCost Nothing = putStrLn "item not found"
printCost (Just cost)= print cost

main :: IO ()
main = do
 putStrLn "enter a part number"
 partNo <- getLine
 let part = Map.lookup (read partNo) partsDB
 printCost (cost <$> part)

 Lesson 28

 Q28.1
Unlike haversineMaybe, you can’t use pattern matching to get your values, so you have to use familiar do-notation if you don’t use <*>:

 haversineIO :: IO LatLong -> IO LatLong -> IO Double
haversineIO ioVal1 ioVal2 = do
 val1 <- ioVal1
 val2 <- ioVal2
 let dist = haversine val1 val2
 return dist

 Q28.2

haversineIO :: IO LatLong -> IO LatLong -> IO Double
haversineIO ioVal1 ioVal2 = haversine <$> ioVal1 <*> ioVal2

 Q28.3

printCost :: Maybe Double -> IO()
printCost Nothing = putStrLn "missing item"
printCost (Just cost)= print cost

main :: IO ()
main = do
 putStrLn "enter a part number 1"
 partNo1 <- getLine
 putStrLn "enter a part number 2"
 partNo2 <- getLine
 let part1 = Map.lookup (read partNo1) partsDB
 let part2 = Map.lookup (read partNo2) partsDB
 let cheapest = min <$> (cost <$> part1) <*> (cost <$> part2)
 printCost cheapest

 Lesson 29

 Q29.1

allFmap :: Applicative f => (a -> b) -> f a -> f b
allFmap func app = (pure func) <*> app

 Q29.2

example :: Int
example = (*) ((+) 2 4) 6

exampleMaybe :: Maybe Int
exampleMaybe = pure (*) <*> (pure (+) <*> pure 2 <*> pure 4) <*> pure 6

 Q29.3

startingBeer :: [Int]
startingBeer = [6,12]

remainingBeer :: [Int]
remainingBeer = (\count -> count - 4) <$> startingBeer

guests :: [Int]
guests = [2,3]

totalPeople :: [Int]
totalPeople = (+ 2) <$> guests

beersPerGuest :: [Int]
beersPerGuest = [3,4]

totalBeersNeeded :: [Int]
totalBeersNeeded = (pure (*)) <*> beersPerGuest <*> totalPeople

beersToPurchase :: [Int]
beersToPurchase = (pure (-)) <*> totalBeersNeeded <*> remainingBeer

 Lesson30

 Q30.1

allFmapM :: Monad m => (a -> b) -> m a -> m b
allFmapM func val = val >>= (\x -> return (func x))

 Q30.2

allApp :: Monad m => m (a -> b) -> m a -> m b
allApp func val = func >>= (\f -> val >>= (\x -> return (f x)))

 Q30.3

bind :: Maybe a -> (a -> Maybe b) -> Maybe b
bind Nothing _ = Nothing
bind (Just val) func = func val

 Lesson 31

 Q31.1
Now that you’ve done this once, you’ll never again forget how useful do-notation is!

 main :: IO ()
main = putStrLn "What is the size of pizza 1" >>
 getLine >>=
 (\size1 ->
 putStrLn "What is the cost of pizza 1" >>
 getLine >>=
 (\cost1 ->
 putStrLn "What is the size of pizza 2" >>
 getLine >>=
 (\size2 ->
 putStrLn "What is the cost of pizza 2" >>
 getLine >>=
 (\cost2 ->
 (\pizza1 ->
 (\pizza2 ->
 (\betterPizza ->
 putStrLn (describePizza betterPizza):
) (comparePizzas pizza1 pizza2)
)(read size2,read cost2)
)(read size1, read cost1)
))))

 Q31.2

listMain :: [String]
listMain = do
 size1 <- [10,12,17]
 cost1 <- [12.0,15.0,20.0]
 size2 <- [10,11,18]
 cost2 <- [13.0,14.0,21.0]
 let pizza1 = (size1,cost1)
 let pizza2 = (size2,cost2)
 let betterPizza = comparePizzas pizza1 pizza2
 return (describePizza betterPizza)

 Q31.3

monadMain :: Monad m => m Double -> m Double
 -> m Double -> m Double -> m String
monadMain s1 c1 s2 c2 = do
 size1 <- s1
 cost1 <- c1
 size2 <- s2
 cost2 <- c2
 let pizza1 = (size1,cost1)
 let pizza2 = (size2,cost2)
 let betterPizza = comparePizzas pizza1 pizza2
 return (describePizza betterPizza)

 Lesson 32

 Q32.1

monthEnds :: [Int]
monthEnds = [31,28,31,30,31,30,31,31,30,31,30,31]

dates :: [Int] -> [Int]
dates ends = [date| end <- ends, date <- [1 ..end]]

 Q32.2

datesDo :: [Int] -> [Int]
datesDo ends = do
 end <- ends
 date <- [1 .. end]
 return date

datesMonad :: [Int] -> [Int]
datesMonad ends = ends >>=
 (\end ->
 [1 .. end] >>=
 (\date -> return date))

 Unit 6

 The exercises in unit 6 consist of refactoring code into multiple files. This takes up too much space for an appendix, and the exercises aren’t so
 much about being correct as about manually walking through the steps covered in each lesson.

 Unit 7

 Lesson 38

 Q38.1
Make a helper function here:

 allDigits :: String -> Bool
allDigits val = all (== True) (map isDigit val)

addStrInts :: String -> String -> Either Int String
addStrInts val1 val2 | allDigits val1 && allDigits val2 =
 Left (read val1 +
 read val2)
 | not (allDigits val1 || allDigits val2) =
 Right "both args invalid"
 | not (allDigits val1) = Right "first arg invalid"
 | otherwise = Right "second arg invalid"

 Q38.2

safeSucc :: (Enum a, Bounded a, Eq a) => a -> Maybe a
safeSucc n = if n == maxBound
 then Nothing
 else Just (succ n)

safeTail :: [a] -> [a]
safeTail [] = []
safeTail (x:xs) = xs

safeLast :: [a] -> Either a String
safeLast [] = Right "empty list"
safeLast xs = safeLast' 10000 xs

 You know that the empty list isn’t possible, because only safeLast will call this function, and it already checks for the empty list:

 safeLast' :: Int -> [a] -> Either a String
safeLast' 0 _ = Right "List exceeds safe bound"
safeLast' _ (x:[]) = Left x
safeLast' n (x:xs) = safeLast' (n - 1) xs

 Lesson 39

 Q39.1

buildRequestNOSSL :: BC.ByteString -> BC.ByteString
 -> BC.ByteString -> BC.ByteString -> Request
buildRequestNOSSL token host method path = setRequestMethod method
 $ setRequestHost host
 $ setRequestHeader "token" [token]
 $ setRequestSecure False
 $ setRequestPort 80
 $ setRequestPath path
 $ defaultRequest

 Q39.2
Note that you also need to add http-types to your project and import Network.HTTP .Types.Status:

 main :: IO ()
main = do
 response <- httpLBS request
 let status = getResponseStatusCode response
 if status == 200
 then do
 print "saving request to file"
 let jsonBody = getResponseBody response
 L.writeFile "data.json" jsonBody
 else print $ statusMessage $ getResponseStatus response

 Lesson 40

 QC40.1

instance ToJSON NOAAResult where
 toJSON (NOAAResult uid mindate maxdate name datacoverage resultId) =
 object ["uid" .= uid
 ,"mindate" .= mindate
 ,"maxdate" .= maxdate
 ,"name" .= name
 ,"datacoverage" .= datacoverage
 ,"id" .= resultId]

instance ToJSON Resultset

instance ToJSON Metadata

instance ToJSON NOAAResponse

 QC 40.2

data IntList = EmptyList | Cons Int IntList deriving (Show,Generic)

instance ToJSON IntList
instance FromJSON IntList

 Lesson 41

 Q41.1

addTool :: String -> String -> IO ()
addTool toolName toolDesc = withConn "tools.db" $
 \conn -> do
 execute conn (mconcat ["INSERT INTO tools
 ,"(name,description "
 ,",timesBorrowed)"
 ,"VALUES (?,?,?)"])
 (toolName,toolDesc,(0 :: Int))
 print "tool added"

 Q41.2

promptAndAddTool :: IO ()
promptAndAddTool = do
 print "Enter tool name"
 toolName <- getLine
 print "Enter tool description"
 toolDesc <- getLine
 addTool toolName toolDesc

performCommand :: String -> IO ()
performCommand command
 | command == "users" = printUsers >> main
 | command == "tools" = printTools >> main
 | command == "adduser" = promptAndAddUser >> main
 | command == "checkout" = promptAndCheckout >> main
 | command == "checkin" = promptAndCheckin >> main
 | command == "in" = printAvailable >> main
 | command == "out" = printCheckedout >> main
 | command == "quit" = print "bye!"
 | command == "addtool" = promptAndAddTool >> main
 | otherwise = print "Sorry command not found" >> main

 Lesson 42

 Q42.1

crossOver :: (UArray Int Int ,UArray Int Int) -> Int -> UArray Int Int
crossOver (a1,a2) crossOverPt = runSTUArray $ do
 st1 <- thaw a1
 let end = (snd . bounds) a1
 forM_ [crossOverPt .. end] $ \i -> do
 writeArray st1 i $ a2 ! i
 return st1

 Q42.2

replaceZeros :: UArray Int Int -> UArray Int Int
replaceZeros array = runSTUArray $ do
 starray <- thaw array
 let end = (snd . bounds) array
 let count = 0
 forM_ [0 .. end] $ \i -> do
 val <- readArray starray i
 when (val == 0) $ do
 writeArray starray i (-1)
 return starray

Index

 [SYMBOL][A][B][C][D][E][F][G][H][I][J][K][L][M][N][O][P][Q][R][S][T][U][V][W][X][Z]

 SYMBOL

 _ (underscore) character

: (infix operator)

! operator

!! operator, 2nd

' (single quotes)

(//) operator

(+) operator

* operator, 2nd

/ operator

/= function

` (back-quotes)

+ operator

++ operator, 2nd

<*> operator
 overview of
 multi-argument function in IO using <$> and
 creating user in context of Maybe

<> operator

 tag

 tag

== function

-> character

>> operator

>>= (bind) operator, 2nd

$ operator

200 OK status code

301 Moved Permanently status code

404 Not Found status code

 A

 accessors, adding to objects

accum function

Ackermann function

add3ByAll function

addAnA function

addAThe function

addressLetter function, 2nd

addThenDouble function

addUser action

Aeson library
 making data types instances of FromJSON and ToJSON
 overview of
 setting up
 stack

aLargeArrayList

aLargeList

aLargeListDoubled

algebraic data types

aList parameter

amazonExtractor function

and operator, combining types with

anonymous function

app directory

append function

appendFile function

Applicative type class
 operator
 creating user in context of Maybe
 multi-argument function in IO using <$> and
 overview of
 containers versus contexts
 limitations of
 lists as context
 generating first prime numbers
 lists as containers versus
 quickly generating large amounts of test data
 overview of
 pure method

Arbitrary class

arguments, function types with multiple

array function

arrays
 bubble sort
 creating efficient
 creating type
 inefficiencies of lazy lists
 updating type
 mutating state
 taking values out of context
 unboxed

assert IO action

assessCandidate function

assessCandidateIO function, 2nd

assessCandidateList function

assignToGroups function

associativity, Color type

Author class

autogenerated files

 B

 back-quotes

base record

BC.readFile

BC.splitAt

bgText function

Bhavagad Gita

bibliographic data

binary data
 ByteString type, 2nd
 Char8 tool
 glitching JPEGs
 chaining together IO actions with foldM
 inserting random bytes
 sorting random bytes
 MARC records
 checking leader and iterating through records
 getting Author and Title information from field
 getting data
 processing directory entries and looking up fields
 reading directory
 structure of
 using directory to look up fields
 Unicode

BinarySearchTree

Bits type synonym

book data
 MARC records
 checking leader and iterating through records
 getting Author and Title information from field
 getting data
 processing directory entries and looking up fields
 reading directory
 structure of
 using directory to look up fields
 overview of

booksToHtml function

bookToHtml function

Bounded class

bubble sort

ByteString type, 2nd

 C

 .cabal file

calcChange function

candidateDB

canDonateTo

cartCombine function

Char value

Char8 tool

charToBits

checkin action

Church-Turing thesis

Cipher class

cleanText function

Clojure programming language

CLOS (Common Lisp Object System)

closures
 generating URLs for an API
 overview of
 partial application

code
 using in different contexts
 IO context
 List context
 Maybe context
 working with
 writing

Collatz conjecture

Color type
 associativity
 overview

combineEvent function

combineTS function

command history, GHCi

command line
 interacting with
 interacting with lazy I/O

Common Lisp programming language

compare method

compareLastNames function

compareTS function

composability
 combining functions
 Monoid type class
 building probability tables
 combining multiple
 laws for
 Semigroup type class
 adding colors
 guards
 making color associative

concat function

concatAll function

consing

constructors, creating

Control.Monad function, 2nd, 3rd

countsText function

createTS function, 2nd

CRUD (Create, Read, Update, Delete)

cryptography
 Cipher class
 ROT13 ciphers
 encoding strings
 implementing
 problem with
 rotN algorithm
 XOR operator
 Bits type synonym
 one-time pads

cycle function
 overview
 recursion on lists

 D

 damage function

data constructor

Data.Array.Unboxed

Data.ByteString, 2nd

Data.ByteString.Lazy

Data.Char module

Data.List functions

Data.List module, 2nd

Data.List.Split module, 2nd

Data.Maybe module

Data.Text module
 OverloadedStrings extension
 utilities
 intercalate function
 Monoid type class operations
 splitON function
 unwords and unlines function
 words function

Data.Text.Encoding

Data.Text.Lazy

Data.Time module

databases
 adding new users to
 creating checkouts
 deleting data from
 reading data from
 listing users and tools
 making data instance of FromRow
 setting up database
 setting up project
 updating existing data

db-lesson project

decode function

default implementations

defaultRequest function

dependent types
 programming with Idris

DeriveGeneric extension, 2nd

deriving keyword

Describable class

deserialization

Devanagari script

dictionaries

Dictionary type

diffPair function

diffTS function

DirectoryEntries

displayResult function

div function

do-notation
 in Maybe type
 overview of
 to reuse same code in different contexts
 IO context
 List context
 Maybe context

double function

double quotes

drop function

DuplicateRecordFields

dynamic typing

 E

 echo function

Either type
 building prime check with
 overview, 2nd

eitherDecode function, 2nd

elem function

Elm programming language

empty function

empty list

encrypted text

Enum type

Eq type class, 2nd, 3rd

Equals method

error function, 2nd, 3rd

errorCode field

ErrorMessage type

errors
 Either type
 partial functions
 handling with Maybe type class
 head function and

evenSquares

exampleUrlBuilder function

execute command

exercises, answers to

exposed-modules value, 2nd

 F

 F# programming language

failedRequest value

field function

FieldMetadata, 2nd

FieldText

fileCounts function

fileCounts.hs program

files
 lazy I/O and
 opening and closing
 simple I/O tools for
 strict I/O and

filter function

first-class functions
 custom sorting
 function types for
 lambda functions as arguments
 returning functions

firstOrNothing function

flipBinaryArgs function

fmap function, 2nd

foldl and foldr functions, folding lists

foldM

for loops

forM_ function

fourthWord

fractions

fromEnum method, 2nd

fromIntegral function

FromJSON type class

fromList function

FromRow type class

fst function

function types
 for converting to and from strings
 for first-class functions
 with multiple arguments

functional object-oriented programming
 complex objects
 single property objects
 adding accessors
 creating constructors
 stateless programming
 types

functional programming
 functions and
 general discussion, 2nd
 value of
 variables

functions
 combining
 overview of

Functor type class, 2nd, 3rd, 4th
 computing in Maybe type class
 converting list of data types to list of HTML
 converting Map of data types to HTML
 converting Maybe data type to Maybe HTML
 limitations of, 2nd
 transforming IO data types into IO HTML
 using functions in context with

 G

 GCD (greatest common divisor)

genApiRequestBuilder function

genHostRequestBuilder function

genIfEven function

GET request

getArgs function

getContents function, 2nd

getCurrentTime function

getFieldMetadata

getLine function, 2nd, 3rd, 4th, 5th

getLocationFunction

getOz message

getPrice function, 2nd

getRequestURL function

getResponseBody function

getResponseHeader function

getResponseStatusCode function

GHC (Glasgow Haskell Compiler)

GHCi interactive interface
 calling from stack
 command history
 interacting with

ghc-options value

glitcher.hs file

glitching JPEGs
 chaining together IO actions with foldM
 inserting random bytes
 sorting random bytes

global variable

guard function

guards

 H

 Hackage, 2nd

halve function

Handle type

hash tables

Haskell 1
 more powerful type systems than
 Idris
 Liquid Haskell

Haversine formula

hClose (handle close)

head function
 errors and
 partial functions and

helloName IO action

helloPerson function, 2nd

hGetContents function

hGetLine function

higher-order functions
 filter function, filtering lists
 foldl and foldr functions, folding lists
 map function

highlight function

Hoogle

hPutStrLn function

hs-source-dirs

HTTP requests
 HTTP.Simple module
 making
 starter code
 starting project

HTTP.Simple module

httpLBS function

http-lesson project

http-lesson.cabal file

 I

 I/O
 files
 lazy I/O and
 simple I/O tools for
 strict I/O and
 IO types
 do-notation
 IO actions
 keeping values in context of IO
 pizza cost calculator example
 lazy I/O
 interacting with command line nonlazy way
 interacting with command line with lazy I/O
 overview
 text and

identity elements

idInUse function

Idris programming language
 programming with dependent types

ifEvenCube function

ifEvenDouble function, 2nd

ifEvenInc function

ifEvenNegate function

ifEvenSquare function, 2nd

ifEvenX function

IIFE (immediately invoked function expression)

inc function

incEven function

incEvenInc function

incMaybe function

infix operator

:info command, 2nd

inheritance

init value

insertMaybePair function

insertSnippet

Int argument, 2nd

Integer type

intercalate function, 2nd

intToBits function

intToChar function

IO type class
 do-notation to reuse same code in different contexts
 multi-argument function in using <$> and <*>
 transforming IO data types into IO HTML
 writing echo IO action

IO types, 2nd
 do-notation
 IO actions
 keeping values in context of IO
 pizza cost calculator example

isJust function, 2nd

isNothing function

isPalindrome function, 2nd, 3rd

isPrime function, 2nd, 3rd, 4th

isPunctuation function

 J

 JPEGs, glitching
 chaining together IO actions with foldM
 inserting random bytes
 sorting random bytes

JSON data
 Aeson library
 making data types instances of FromJSON and ToJSON
 setting up
 stack

json-lesson.cabal file

 K

 kinds

 L

 L.writeFile

lambda calculus

lambda functions
 as arguments
 let expressions
 lexical scope
 overview of
 writing where clause from scratch

language extensions

LANGUAGE pragma, 2nd

language pragmas, getting rid of

lastReturned function

lazy evaluation

lazy I/O
 files and
 interacting with
 interacting with command line nonlazy way
 strict versus

lazy lists, inefficiencies of

LC.writeFile

length function
 overview, 2nd, 3rd
 recursion on lists

let expressions

let keyword

lexical scope, 2nd

Lib module, 2nd, 3rd, 4th

Lib.hs file

libraries, prime-number
 adding code to factor numbers
 modifying default files
 starting new project
 writing core library functions
 defining isPrime function
 defining primes
 writing tests for code
 defining properties for isPrime function
 fixing bugs
 running tests
 testing that nonprimes are composite
 testing that primes are, in fact, prime

libraryAdd function

LICENSE file

linear congruential generator

Liquid Haskell type system
 provable types

Lisp programming language family
 recommended programming languages in
 Clojure
 Common Lisp
 Racket

list comprehensions

List type

listArray function

lists, 2nd
 anatomy of
 as context
 generating first prime numbers
 lists as containers versus
 quickly generating large amounts of test data
 building with list monad
 common functions on
 !! operator
 cycle
 drop
 elem
 length
 reverse
 take
 zip
 converting list of data types to list of HTML
 filtering
 folding
 in context
 lazy
 lazy evaluation
 list comprehensions
 recursion on
 cycle function
 length function
 take function

listToSTUArray, 2nd

listToUArray function, 2nd

literal numbers

locationDB

lookupFieldMetadata

lookupSubfield

lookupValue function, 2nd

 M

 main function

main IO action, 2nd

Main.head function

Main.hs file, 2nd, 3rd

Main.isPalindrome

main-is value

makeAddress function, 2nd

makeTriple function

makeTSCompare function

map function

Map type class
 combining two lookups
 converting Map of data types to HTML
 overview

mapM function, 2nd, 3rd

maps

MARC (Machine-Readable Cataloging) records
 checking leader and iterating through records
 getting Author and Title information from field
 getting data
 processing directory entries and looking up fields
 reading directory
 structure of
 using directory to look up fields

MarcDirectoryEntries

MarcDirectoryEntryRaw

MarcDirectoryRaw

MarcLeader

MarcRecord

MarcRecordRaw, 2nd

marc_to_html.hs file

maxBound value, 2nd

maxBounds value

Maybe Organ type

Maybe type class
 computing in
 computing with, more-complex computation with
 converting Maybe data type to Maybe HTML
 creating user in context of
 do-notation to reuse same code in different contexts
 handling partial functions with
 null values
 overview of
 running SQL-like queries

Maybe types

maybeInc function

maybeMain function

mconcat method, 2nd

mean function

meanTS function

mempty element

messages, sending between objects

methods

minBound value

minOfThree function

ML programming language family recommended programming languages in
 Elm
 F#
 PureScript
 Scala

modules, building multifile program with
 creating Main module
 putting code in own module
 using created module in Main module

Monad type class, 2nd
 >>= (bind) operator
 building Hello program
 combining two Map lookups
 do-notation
 in Maybe
 overview of
 to reuse same code in different contexts
 limitations of Applicative and Functor
 list monad
 writing echo IO action

Monoid type class
 building probability tables
 combining multiple
 laws for
 text and
 time-series data

moving average

movingAverageTS function

mul3ByAll function

multifile programs, building with modules
 creating Main module
 putting code in own module
 using created module in Main module

multiple constructors

myAdd function

myAny function

myGCD function

myList

myProduct function

myReverse function

mystery functions, 2nd

mystery1 method

mystery2 method

myTake function

myTakeSafer function

 N

 NA (not available)

Name class

Network.HTTP.Simple library, 2nd, 3rd, 4th

newArray function, 2nd

newList

newSTRef function

newtype keyword

NOAAResponse data type

NoImplicitPrelude

nondeterministic computation

nondeterministically computing

Not Equals method

null pointer exception

null values

Num class

 O

 one-time pads

OOP (object-oriented programming)
 complex objects
 single property objects
 adding accessors
 creating constructors
 stateless programming
 types

openFile function

operator precedence

or operator, combining types with

Ord type class
 implementing
 overview

Organ type

organCatalog function

organizing code, with modules
 multifile programs
 writing functions with same name as one in Prelude

OverloadedStrings extension, 2nd, 3rd, 4th, 5th, 6th, 7th

overwrite function

 P

 Palindrome module

palindrome-checker.cabal, 2nd

parameterized types
 IO types
 do-notation
 IO actions
 keeping values in context of IO
 pizza cost calculator example
 kinds
 List type
 Map type
 Maybe type
 computing with, 2nd
 null values
 overview of
 Triple type
 tuples

partial application, 2nd, 3rd

partial functions
 handling with Maybe type class
 head function and

patientInfo function

pattern matching, 2nd, 3rd

performCommand action

pizza cost calculator program, IO types

polymorphic numbers

polymorphism, type classes and

powersOfTwo function

powersOfTwoAndThree function

Prelude module, 2nd

preprocess function, 2nd

prime-number library
 adding code to factor numbers
 modifying default files
 starting new project
 writing core library functions
 defining isPrime function
 defining primes
 writing tests for code
 defining properties for isPrime function
 fixing bugs
 running tests
 testing that nonprimes are composite
 testing that primes are, in fact, prime

Primes module

primes.cabal file, 2nd

print function

printDistance

printDouble function

printResults IO action

printToolQuery function

printUsers function

probability tables

process function

processRecords function

processRequest function

product types
 hierarchical design and
 overview

prop_allFactorsPrime property

property testing
 QuickCheck
 overview of
 using with more types and installing packages
 starting new projects
 types of testing
 writing unit tests and using stack test

prop_factorsMakeOriginal property

prop_primesArePrime

prop_punctuationInvariant function

prop_reverseInvariant property

prop_validPrimesOnly, 2nd

prototype-based OOP

provable types with Liquid Haskell

PTable function

pure code

pure function, 2nd

PureScript programming language

putStrLn function, 2nd, 3rd

putStrln function

 Q

 queries, SQL-like
 building interface and example queries
 joining data types
 making type for queries
 running queries
 joining multiple lists
 using with Maybe types
 select clause and where clause
 implementing _select function
 implementing _where function

query function

QuickCheck, 2nd
 overview of
 using with more types and installing packages

quickCheck function

quickcheck-instances

quickCheckWith function

 R

 Racket programming language

randomReplaceByte, 2nd

randomRIO function, 2nd

randomSortSection

rawToInt function

RDBMS (relational database management system)

readArray action

readFile function

readInt function

readSTRef function

Real class

realToFrac function

record syntax, creating types using

recordLength

records, MARC
 checking leader and iterating through records
 getting Author and Title information from field
 getting data
 processing directory entries and looking up fields
 reading directory
 structure of
 using directory to look up fields

recursion
 abstracting away with map function
 greatest common divisor
 overview of
 rules for
 determining what happens when goal is reached
 determining your repetition
 ensuring that each alterative moves toward goal
 identifying end goal(s)
 listing all alternate possibilities
 rules of

recursive functions
 Ackermann function
 Collatz conjecture
 lists
 cycle function
 length function
 take function

referentia

renderHtml

REPL (Read-Eval-Print Loop)

replaceByte function

replicateM function

report function, 2nd

reset function

respond function

Resultset type

return function

reverse function, 2nd

Roman Numerals library

ROT13 ciphers
 encoding strings
 implementing
 problem with
 rotN algorithm

rotDecoder

rotEncoder

rotN function

rotNdecoder

RowParser function

runSTUArray function

 S

 sayAmount function

Scala programming language

select clause

_select function, 2nd

selectTool function

Semigroup type class
 adding colors
 making color associative and using guards
 time-series data

serialization

Setup.hs file

setValue function

Show type class

side effects

sieve of Eratosthenes

simple function, 2nd, 3rd

simple pad

single quotes

SixSidedDie type

smoothing

snd function

someFunc function, 2nd

sortBy function, 2nd

sorting, using first-class functions

sortSection function

splitOn function, 2nd

SQLite

sqlite command

sqlite3 function

sqlite-simple library, 2nd

SQL-like queries
 building interface and example queries
 joining data types
 making type for queries
 running queries
 joining multiple lists
 using with Maybe types
 select clause and where clause
 implementing _select function
 implementing _where function

squareAll function

src directory

ST type

stack build tool
 building and running projects
 calling GHCi from stack
 project structure
 app, src, and test directories
 autogenerated files
 .cabal file
 property testing
 starting new projects
 writing code

stack ghci command

stack install command

stack new command

stack.yaml file, 2nd

_select function, 2nd

stateless programming

static typing

status codes

StreamCipher type

strict I/O
 files and
 lazy versus

String function

String type, Text type versus

strings, function types for converting to and from

stripPunctuation function

stripWhiteSpace function

STUArray type, mutating state with

subtract2 function

successfulRequest value

sum types

sum.hs program

summary statistic

sumOfSquares function

sumSquareOrSquareSum function

swapST function

syntactic sugar

... (syntactic sugar) notation

System.Environment

 T

take function
 overview
 recursion on lists

TDD (test-driven development)

TemplateHaskell

test directory

Test.QuickCheck

testing properties
 QuickCheck
 overview of
 using with more types and installing packages
 starting new projects
 types of testing
 writing unit tests and using stack test

text editors

Text type
 Data.Text module
 OverloadedStrings extension
 utilities
 IO type
 String type versus
 Unicode and

tick function

time-series analysis
 building basic type for
 combining
 performing calculations
 stitching data together with Semigroup and Monoid type classes
 transforming time series

TIO.putStrLn

toEnum method

toInts function

ToJSON type class

toList function

toLowerCase function

Tool type

ToRow class

toString method, 2nd

transformations

Triple type

tuple argument

Tuple type

tuples

Turing machine

TwoSidedDie type

type classes
 benefits of
 common
 Bounded type class
 Eq type class
 Ord type class
 Show type class
 default implementation
 defining
 deriving, 2nd
 for more-complex types
 minimum complete definitions
 Ord type class, implementing
 overview of
 polymorphism and
 roadmap of
 Show type class

:type command

type constructor

type inference, 2nd

type keyword

type synonyms

type variables

types, 2nd, 3rd
 combining like
 creating
 defining new types
 using record syntax
 using type synonyms
 with newtype
 function types
 for converting to and from strings
 for first-class functions
 with multiple arguments
 overview of
 parameterized
 computing with, 2nd
 kinds
 List type
 Map type
 null values
 overview of
 Triple type
 tuples
 product types
 programming in
 sum types
 type variables

types in context
 Applicative type class
 operator
 containers versus contexts
 lists as context
 overview of
 pure method
 Functor type class
 computing in Maybe type class
 converting list of data types to list of HTML
 converting Map of data types to HTML
 converting Maybe data type to Maybe HTML
 transforming IO data types into IO HTML
 using functions in context with
 lists
 building with list monad
 list comprehensions
 Monad type class
 >>= (bind) operator
 building Hello program
 combining two Map lookups
 do-notation
 limitations of Applicative and Functor
 writing echo IO action

 U

UArray type
 creating
 inefficiencies of lazy lists
 updating

unboxed arrays

uncrackable text

underscore character

Unicode
 Text type and
 using with ByteString type and Char8

unlines function

until loops

unwords function

update command

updateOrWarn action

updateTool function

URLs, generating for an API

User type

utilities
 intercalate function
 Monoid type class operations
 splitON function
 unwords and unlines function
 words function

 V

 variables
 reassigning
 type

ViewPatterns

von Neumann architecture

 W

 -Wall flag

where clause, 2nd
 implementing _where function
 writing from scratch

_where function

while loops

wildcard

withConn action

words function

wreq package

writeArray function, 2nd

writeFile function

writeSTRef function

writing code

 X

 -X flag

XOR (exclusive or) operator, cryptography
 Bits type synonym
 one-time pads

xor function, 2nd

xorBool function

xorPair function

xs variable

 Z

 zero elements

zip function, 2nd

zipWith function, 2nd

List of Figures

 Lesson 2. Functions and functional programming

 Figure 2.1. Defining a simple function

 Lesson 3. Lambda functions and lexical scope

 Figure 3.1. The simple function rewritten as a lambda function

 Figure 3.2. How sumSquareOrSquareSum works using a lambda function

 Figure 3.3. The sumSquareOrSquareSum function rewritten to use a let expression

 Figure 3.4. Lexical scope with add1, add2, and add3

 Lesson 5. Closures and partial application

 Figure 5.1. The genIfEven function lets you build ifEvenX functions simply.

 Figure 5.2. ifEvenInc with closure

 Figure 5.3. Parts of a URL

 Figure 5.4. Capturing the host value in a closure

 Figure 5.5. Visualizing partial application

 Figure 5.6. The flipBinaryArgs function

 Lesson 6. Lists

 Figure 6.1. A list is made up of the head element and the tail list.

 Lesson 7. Rules for recursion and pattern matching

 Figure 7.1. Visualizing pattern-matching internals for myHead

 Lesson 8. Writing recursive functions

 Figure 8.1. Visualizing collatz path lengths

 Lesson 9. Higher-order functions

 Figure 9.1. Visualizing foldl (+)

 Figure 9.2. Visualizing foldl rcons

 Lesson 10. Capstone: Functional object-oriented programming with robots!

 Figure 10.1. Method-calling approach to OOP

 Figure 10.2. Message-passing approach to OOP (commonly used in functional programming languages)

 Lesson 11. Type basics

 Figure 11.1. Type signature for a variable

 Figure 11.2. Defining the double function by using a type signature

 Figure 11.3. Type signature for multi-argument functions and definition makeAddress

 Figure 11.4. Desugaring the multi-argument makeAddress into a sequence of single-argument functions

 Figure 11.5. Visualizing type variables taking on actual values

 Lesson 12. Creating your own types

 Figure 12.1. Defining the Sex type

 Figure 12.2. Combining ABOType and RhType to create BloodType

 Lesson 13. Type classes

 Figure 13.1. Structure of a type class definition

 Lesson 14. Using type classes

 Figure 14.1. Visualizing polymorphism for read

 Figure 14.2. Type class road map

 Lesson 15. Capstone: Secret messages!

 Figure 15.1. The best way to visualize ROT13 is as a decoder ring.

 Figure 15.2. The symmetric nature of XOR

 Figure 15.3. Comparing rotN encoding to XOR on an image

 Lesson 17. Design by composition—Semigroups and Monoids

 Figure 17.1. Using guards in howMuch

 Lesson 18. Parameterized types

 Figure 18.1. Definition of the Box parameterized type

 Figure 18.2. The definition of a List

 Figure 18.3. Using a qualified import

 Figure 18.4. The fromList function for building a Map

 Lesson 20. Capstone: Time series

 Figure 20.1. An example of time-series data for sales

 Figure 20.2. Combining two time series

 Figure 20.3. Visualizing the diff function

 Figure 20.4. Sales time series with diff applied

 Figure 20.5. Sales time-series with a moving average of 12 applied

 Lesson 21. Hello World!—introducing IO types

 Figure 21.1. Treating an IO String like a regular String using do-notation

 Lesson 24. Working with files

 Figure 24.1. The problem with closing a file before we use it when using lazy evaluation

 Lesson 25. Working with binary data

 Figure 25.1. A scene from Michael Betancourt’s glitch art video “Kodak Moment” (2013)

 Figure 25.2. The target of your glitching is the lovecraft.jpg image.

 Figure 25.3. The underwhelming effect of changing a single byte

 Figure 25.4. A much more interesting result, achieved with randomSortSection

 Figure 25.5. Now your beloved author looks more like a resident of Innsmouth!

 Lesson 26. Capstone: Processing binary files and book data

 Figure 26.1. Your book data rendered as HTML

 Figure 26.2. The content of a raw MARC record

 Figure 26.3. Annotated version of the MARC record

 Figure 26.4. The leader in your record highlighted

 Figure 26.5. An example title subfield a. Notice that a is the first character of the title text you receive.

 Lesson 27. The Functor type class

 Figure 27.1. The type signature for the fmap function

 Figure 27.2. Visualizing how fmap, also <$>, works as an adapter, allowing you to work with types in a context.

 Lesson 28. A peek at the Applicative type class: using functions in a context

 Figure 28.1. The signature of the function you need to connect your locationsDB with printDistance

 Figure 28.2. Annotated type signature for Functor’s only method, fmap

 Figure 28.3. You need a new type of adapter for connecting types in a context with functions in a context.

 Figure 28.4. Annotated type signature for the <*> operator

 Figure 28.5. Combining <$> with <*> to compute haversine in a Maybe context

 Lesson 29. Lists as context: a deeper look at the Applicative type class

 Figure 29.1. Functor is the superclass of applicative. Figure 29.2 provides the definition of Applicative with its two required
 methods.

 Figure 29.2. Type class definition for Applicative

 Figure 29.3. The pure method means you always have a way to take an ordinary type and put it in a context.

 Figure 29.4. Thinking of lists as nondeterministic computing is hard because you normally think deterministically.

 Figure 29.5. Nondeterministic computing computes on all possible paths, rather than just one.

 Lesson 30. Introducing the Monad type class

 Figure 30.1. A visualization of the mismatch between function and context that Functor solves

 Figure 30.2. Applicative's <*> solves the problem of functions themselves being in a context.

 Figure 30.3. Applicative’s pure method means you can always put a result into a context.

 Figure 30.4. This is the only pattern you need a solution for; the Monad type class provides an answer.

 Figure 30.5. Functor is a superclass of Applicative, which is a superclass of Monad.

 Figure 30.6. The >> operator has a strange type signature but is useful for Monads with side effects.

 Figure 30.7. Using a lambda expression with return to transform a type a -> a into a -> m a

 Lesson 31. Making Monads easier with do-notation

 Figure 31.1. Mapping Monad methods to do-notation

 Figure 31.2. Desugaring do-notation

 Lesson 32. The list monad and list comprehensions

 Figure 32.1. Generating lists by thinking of List as a Monad

 Figure 32.2. List comprehensions simplify do-notation even further for generating lists.

 Lesson 33. Capstone: SQL-like queries in Haskell

 Figure 33.1. The relationships among the basic data you’ll be working with

 Figure 33.2. The type signature of your select function

 Figure 33.3. The type signature for your where function

 Figure 33.4. Reading the type signature for _join

 Figure 33.5. The _join function joins two data sets on matching properties.

 Figure 33.6. Understanding the HINQ data type

 Lesson 37. Capstone: Building a prime-number library

 Figure 37.1. The files created by stack

 Lesson 38. Errors in Haskell and the Either type

 Figure 38.1. How can you solve the case of calling head on an empty list?

 Lesson 40. Working with JSON data by using Aeson

 Figure 40.1. An example of JSON data from the Google Analytics API

 Lesson 41. Using databases in Haskell

 Figure 41.1. The setup of your database

 Lesson 42. Efficient, stateful arrays in Haskell

 Figure 42.1. The STUArray is a context that allows for stateful mutations.

 Figure 42.2. Unlike IO, you can take values out of the STUArray context.

 Figure 42.3. The bubble sort algorithm

List of Tables

 Lesson 15. Capstone: Secret messages!

 Table 15.1. XOR Booleans

 Lesson 17. Design by composition—Semigroups and Monoids

 Table 17.1. Probability of heads or tails

 Lesson 22. Interacting with the command line and lazy I/O

 Table 22.1. Functions for iterating in an IO context

List of Listings

 Lesson 1. Getting started with Haskell

 Listing 1.1. hello.hs a Hello World program

 Listing 1.2. A messy version of first_prog.hs

 Listing 1.3. Corrected toPart function

 Listing 1.4. Defining the bodyPart and fromPart functions

 Listing 1.5. Defining the createEmail function

 Listing 1.6. Improved first_prog.hs with a cleaned-up main

 Lesson 2. Functions and functional programming

 Listing 2.1. Hidden state in function calls

 Listing 2.2. Confusing behavior in standard libraries

 Listing 2.3. Defining your first variable

 Listing 2.4. Variables aren’t variable!

 Listing 2.5. calcChange v.1

 Listing 2.6. calcChange v.2

 Lesson 3. Lambda functions and lexical scope

 Listing 3.1. sumSquareOrSquareSum v.1

 Listing 3.2. The overwrite function

 Lesson 4. First-class functions

 Listing 4.1. ifEvenInc

 Listing 4.2. ifEvenDouble and ifEvenSquare

 Listing 4.3. ifEven

 Listing 4.4. names

 Listing 4.5. compareLastNames

 Listing 4.6. addressLetter v.1

 Listing 4.7. sfOffice, nyOffice, renoOffice

 Listing 4.8. getLocationFunction

 Listing 4.9. addressLetter v.2

 Lesson 5. Closures and partial application

 Listing 5.1. ifEvenInc, ifEvenDouble, ifEvenSquare

 Listing 5.2. getRequestUrl

 Listing 5.3. exampleUrlBuilder v.1

 Listing 5.4. genApiRequestBuilder

 Listing 5.5. myExampleUrlBuilder v.1

 Listing 5.6. exampleUrlBuilder v.2 and myExampleUrlBuilder v.2

 Listing 5.7. addressLetterV2

 Lesson 6. Lists

 Listing 6.1. Consing characters and strings

 Listing 6.2. isPalindrome

 Listing 6.3. respond

 Listing 6.4. takeLast

 Listing 6.5. ones

 Listing 6.6. assignToGroups

 Lesson 7. Rules for recursion and pattern matching

 Listing 7.1. myGCD

 Listing 7.2. sayAmount v.1

 Listing 7.3. sayAmount v.2

 Listing 7.4. myHead

 Lesson 8. Writing recursive functions

 Listing 8.1. myLength

 Listing 8.2. myTake

 Listing 8.3. myCycle

 Listing 8.4. collatz

 Lesson 9. Higher-order functions

 Listing 9.1. JavaScript map example

 Listing 9.2. myMap

 Listing 9.3. myFilter

 Listing 9.4. myReverse

 Listing 9.5. myFoldl

 Listing 9.6. myFoldr

 Lesson 10. Capstone: Functional object-oriented programming with robots!

 Listing 10.1. Constructor for a basic cup object

 Listing 10.2. coffeeCup

 Listing 10.3. getOz message

 Listing 10.4. Defining a drink message that updates state

 Listing 10.5. Improving the drink definition

 Listing 10.6. Defining isEmpty

 Listing 10.7. Using foldl to model taking many sips

 Listing 10.8. A robot constructor

 Listing 10.9. name, attack, and hp helper functions

 Listing 10.10. getName, getAttack, and getHP accessors

 Listing 10.11. setName, setAttack, and setHP accessors

 Listing 10.12. Defining a printRobot message

 Listing 10.13. Completing the damage function

 Listing 10.14. The definition of fight

 Listing 10.15. Three-round robot fight with simultaneous attacks

 Listing 10.16. Changing the priority of attacks

 Listing 10.17. Order has no importance in execution of Haskell code

 Lesson 11. Type basics

 Listing 11.1. Integer type

 Listing 11.2. Common types Char, Double, and Bool

 Listing 11.3. List types

 Listing 11.4. Tuple types

 Listing 11.5. Converting from one type to another with half

 Listing 11.6. Example of reading values from strings: anotherNumber

 Listing 11.7. Type signatures for first-class functions: ifEven

 Listing 11.8. simpleInt and

 Listing 11.9. Using type variables: simple

 Listing 11.10. Multiple type variables: makeTriple

 Lesson 12. Creating your own types

 Listing 12.1. Defining the patientInfo function

 Listing 12.2. Type synonyms: FirstName, LastName, Age, and Height

 Listing 12.3. Type synonym: PatientName

 Listing 12.4. Accessing PatientName values: firstName and lastName

 Listing 12.5. Defining the sexInitial function

 Listing 12.6. Defining the type RhType

 Listing 12.7. Defining the type ABOType

 Listing 12.8. Displaying your types: showRh, showABO, showBloodType

 Listing 12.9. Defining the canDonateTo function

 Listing 12.10. Support different names: MiddleName and Name

 Listing 12.11. Displaying multiple constructors: showName

 Listing 12.12. Patient v.1

 Listing 12.13. getName, getAge, getBloodType

 Listing 12.14. Patient v.2 (with record syntax)

 Listing 12.15. Updating jackieSmith by using record syntax

 Lesson 13. Type classes

 Listing 13.1. Num type class definition

 Listing 13.2. Using type classes: addThenDouble

 Listing 13.3. Defining your own type class: Describable

 Listing 13.4. Ord type class requires Eq type class

 Listing 13.5. Eq type class generalizes the idea of equality

 Listing 13.6. Bounded type class requires values but no functions

 Listing 13.7. Show type class definition

 Listing 13.8. Defining the Icecream type

 Listing 13.9. The Icecream type deriving the Show type class

 Lesson 14. Using type classes

 Listing 14.1. Defining the SixSidedDie data type

 Listing 14.2. The SixSidedDie type deriving Show

 Listing 14.3. Creating an instance of Show for SixSidedDie

 Listing 14.4. Incorrect attempt to implement show for SixSidedDie

 Listing 14.5. Demonstrating the need for polymorphism defining show for TwoSidedDie

 Listing 14.6. Implementing an instance of Eq for SixSidedDie

 Listing 14.7. Partial definition of compare for SixSidedDie

 Listing 14.8. How deriving Ord is determined

 Listing 14.9. Implementing Enum for SixSidedDie (errors with implementation)

 Listing 14.10. Using a type synonym for Name

 Listing 14.11. Attempt to implement Ord for a type synonym

 Listing 14.12. Defining a new type Name using data

 Listing 14.13. Correct implementation of Ord for Name type

 Lesson 15. Capstone: Secret messages!

 Listing 15.1. Defining a four-letter alphabet

 Listing 15.2. A generic rotN function to work on any alphabet

 Listing 15.3. Getting the number representing the largest Char

 Listing 15.4. Rotating a single Char

 Listing 15.5. A message in your four-letter alphabet

 Listing 15.6. Defining a fourLetterEncoder with map

 Listing 15.7. A three-letter alphabet, message, and encoder

 Listing 15.8. A rotNdecoder that works with odd-numbered alphabets

 Listing 15.9. A working decoder for ThreeLetterAlphabet

 Listing 15.10. Rotating strings with rotEncoder and rotDecoder

 Listing 15.11. xorBool, a foundation for xor

 Listing 15.12. xorPair to xor pairs of Bools

 Listing 15.13. Finally, your completed xor function

 Listing 15.14. Bits type synonym

 Listing 15.15. intToBits' starting to convert an Int type to Bits

 Listing 15.16. maxBits and your final intToBits function

 Listing 15.17. charToBits to convert Chars into Bits

 Listing 15.18. bitsToInt to go backward from Bits to an Int type

 Listing 15.19. Completing the transformation by going back from bitsToChar

 Listing 15.20. A simple pad

 Listing 15.21. Your plain text

 Listing 15.22. applyOTP' for converting a string to bits with a one-time pad

 Listing 15.23. Finally, applyOTP to encode strings using a one-time pad

 Listing 15.24. Partial application to create an encoderDecoder

 Listing 15.25. A Cipher class to generalize your cipher operations

 Listing 15.26. The Rot data type

 Listing 15.27. Making Rot an instance of Cipher

 Listing 15.28. The OneTimePad data type

 Listing 15.29. Making OneTimePad an instance of Cipher

 Listing 15.30. Using lazy evaluation to create a limitless pad

 Listing 15.31. A linear congruential PRNG

 Listing 15.32. examplePRNG

 Lesson 16. Creating types with “and” and “or”

 Listing 16.1. C structs are product types—an example with a book and author

 Listing 16.2. C’s author_name and book structs translated to Haskell

 Listing 16.3. Using record syntax for Book to show the similarity to a C struct

 Listing 16.4. A first pass at defining a Book class in Java

 Listing 16.5. Expanding your selection by adding a Java class for VinylRecord

 Listing 16.6. Creating a StoreItem superclass of Book and VinylRecord in Java

 Listing 16.7. A CollectibleToy class in Java

 Listing 16.8. A common sum type: Bool

 Listing 16.9. Using a sum type to model names with and without middle names

 Listing 16.10. A Creator type that’s either an Author or an Artist

 Listing 16.11. Defining the Author type by using your existing Name type

 Listing 16.12. An artist can be either a Person or a Band

 Listing 16.13. Expanding your Name type to work with H.P. Lovecraft

 Listing 16.14. Making a Creator type for H.P. Lovecraft

 Listing 16.15. Easily expanding Name to work with Andrew W.K.

 Listing 16.16. The Book type using Creator

 Listing 16.17. The VinylRecord type

 Listing 16.18. A StoreItem type is either a Book or a VinylRecord

 Listing 16.19. Adding a CollectibleToy type

 Listing 16.20. Easily refactoring StoreItem to include CollectibleToy

 Listing 16.21. An example of using the StoreItem type with a price function

 Lesson 17. Design by composition—Semigroups and Monoids

 Listing 17.1. Examples of using function composition to create functions

 Listing 17.2. Semigroup for Integer

 Listing 17.3. Defining the Color type

 Listing 17.4. Implementing Semigroup for Color v1

 Listing 17.5. Reimplementing Semigroup for Color to support associativity

 Listing 17.6. The rational definition of Monoid

 Listing 17.7. The actual definition of Monoid

 Listing 17.8. Type synonyms for Events and Probs

 Listing 17.9. PTable data type

 Listing 17.10. createPTable makes a PTable ensuring all probabilities sum to 1

 Listing 17.11. showPair creates a String for a single event-probability pair

 Listing 17.12. Making PTable an instance of Show

 Listing 17.13. The cartCombine function for the Cartesian product of lists

 Listing 17.14. combineEvents and combineProbs

 Listing 17.15. Making PTable an instance of Semigroup

 Listing 17.16. Making PTable an instance of Monoid

 Listing 17.17. Example PTables coin and spinner

 Lesson 18. Parameterized types

 Listing 18.1. Defining the wrap and unwrap functions for Box

 Listing 18.2. Defining the Triple type

 Listing 18.3. Defining a 3D point in space as a Triple

 Listing 18.4. Using a Triple to define a name data type

 Listing 18.5. Using a Triple to define Initials

 Listing 18.6. Assessors for the Triple type

 Listing 18.7. Defining a toList function on Triple

 Listing 18.8. A function to transform Triples

 Listing 18.9. Defining your own list

 Listing 18.10. Comparing your List to the built-in list

 Listing 18.11. Defining ourMap for your list

 Listing 18.12. Definition of a tuple

 Listing 18.13. Exploring the types of tuples

 Listing 18.14. Creating an item inventory

 Listing 18.15. The Organ data type

 Listing 18.16. An example list of organs

 Listing 18.17. A List of IDs to represent the locations of various organs

 Listing 18.18. Pairs of organs and IDs v1

 Listing 18.19. organPairs created using zip

 Listing 18.20. Creating your organCatalog

 Listing 18.21. The type signature for Map.lookup

 Lesson 19. The Maybe type: dealing with missing values

 Listing 19.1. Definition of Maybe

 Listing 19.2. List of possibleDrawers in your organCatalog

 Listing 19.3. Definition of getDrawers

 Listing 19.4. A list of availableOrgans that can contain missing values

 Listing 19.5. countOrgan function counts instances of an Organ

 Listing 19.6. Definition of isSomething

 Listing 19.7. Using isSomething with filter to clean [Maybe Organ]

 Listing 19.8. Definition of showOrgan

 Listing 19.9. Using showOrgan with map

 Listing 19.10. Defining key functions and data types for mad scientist request

 Listing 19.11. The core functions process and report

 Listing 19.12. Ideal definition of processRequest (won’t compile)

 Listing 19.13. processAndReport to handle the Maybe Organ data

 Listing 19.14. processRequest with support for Maybe Organ

 Lesson 20. Capstone: Time series

 Listing 20.1. Imports for time_series.hs

 Listing 20.2. Your data

 Listing 20.3. The definition of the TS data type

 Listing 20.4. createTS to make an easier interface for creating TS types

 Listing 20.5. fileToTS to easily convert your file data into TS types

 Listing 20.6. showTVPair to render time/value pairs readable

 Listing 20.7. Making TS an instance of Show by using zipWith and showTVPair

 Listing 20.8. Converting all your data files into TS types

 Listing 20.9. insertMaybePair, a helper function for inserting (k, Maybe v) pairs

 Listing 20.10. combineTS

 Listing 20.11. Making TS an instance of Semigroup

 Listing 20.12. Making TS an instance of Monoid

 Listing 20.13. tsAll easily created using mconcat

 Listing 20.14. mean to average a list of most number types

 Listing 20.15. makeTSCompare and useful type synonyms

 Listing 20.16. compareTS, a generic means of applying comparison functions to TS

 Listing 20.17. Trivially creating minTS and maxTS using compareTS

 Listing 20.18. Type signature of diffPair

 Listing 20.19. Definition of diffPair

 Listing 20.20. diffTS to take the diff of a TS

 Listing 20.21. meanMaybe, which takes the mean of a list of Maybe a values

 Listing 20.22. movingAvg calculates the moving average of a Maybe a list

 Listing 20.23. maTS for calculating the moving average of a TS with centering

 Lesson 21. Hello World!—introducing IO types

 Listing 21.1. A simple Hello World program

 Listing 21.2. roll.hs program for simulating the roll of a die

 Listing 21.3. Understanding do-notation in your Hello World program

 Listing 21.4. Calculating the area of a pizza given its diameter

 Listing 21.5. Pizza type synonym

 Listing 21.6. Calculating cost per inch

 Listing 21.7. Comparing two pizzas

 Listing 21.8. Describing a pizza

 Listing 21.9. Putting all of your code together in main

 Listing 21.10. costData Map containing pizza cost info

 Listing 21.11. sizeData Map containing pizza size info

 Listing 21.12. maybeMain: a version of your previous main using Maybe instead of IO

 Lesson 22. Interacting with the command line and lazy I/O

 Listing 22.1. Getting command-line arguments by using getArgs

 Listing 22.2. Proposed solution to print your args (note: won’t compile)

 Listing 22.3. Next improvement: using mapM (still won’t compile)

 Listing 22.4. Using a command-line argument to determine how many lines to read

 Listing 22.5. Reading a number of lines equal to the user’s argument

 Listing 22.6. The full content of your sum.hs program

 Listing 22.7. A simple main to explore lazy I/O

 Listing 22.8. Sample data representing a string of input characters

 Listing 22.9. Defining myLines with splitOn from Data.List.Split

 Listing 22.10. toInts function to convert your Char list into a list of Ints

 Listing 22.11. Your lazy solution to processing your numbers

 Lesson 23. Working with text and Unicode

 Listing 23.1. Converting back and forth between String and Text types

 Listing 23.2. The problem with using literal strings to define Text

 Listing 23.3. The same numeric literal used in three types

 Listing 23.4. Using OverloadedStrings to easily assign Text using a literal

 Listing 23.5. sampleInput of type Text

 Listing 23.6. someText as a sample input for words

 Listing 23.7. Code for splitOn example

 Listing 23.8. A Unicode text variable for dharma written in Devanagari script

 Listing 23.9. Your search text from the Bhavagad Gita

 Listing 23.10. The highlight function for highlighting text segments

 Listing 23.11. Full file for your program

 Lesson 24. Working with files

 Listing 24.1. hello.txt sample file

 Listing 24.2. main, which opens and closes a file

 Listing 24.3. Reading from a file and writing to stdout and another file

 Listing 24.4. Checking whether helloFile is empty before printing the first line

 Listing 24.5. Sample contents of stats.dat file for your fileCounts.hs program

 Listing 24.6. getCounts collects character, word, and line count info into a tuple

 Listing 24.7. countsText renders count data in a human-readable form

 Listing 24.8. Putting your code together into main

 Listing 24.9. Revised main with the readFile function expanded out

 Listing 24.10. main with the evaluation bugs fixed

 Lesson 25. Working with binary data

 Listing 25.1. ByteString defined by using the OverloadedStrings extension

 Listing 25.2. Trying to unpack a ByteString into a String causes an error

 Listing 25.3. Basic layout for your glitcher.hs file

 Listing 25.4. intToChar creates a valid byte from an Int

 Listing 25.5. intToBC takes an Int and gives you a single-character ByteString

 Listing 25.6. replaceByte removes a byte and replaces it with a new one

 Listing 25.7. randomReplaceByte applies random numbers to replaceByte

 Listing 25.8. sortSection sorts a section of bytes in your file

 Listing 25.9. Randomizing your sortSection by using an IO action

 Listing 25.10. Your main revised to use randomSortSection to glitch your file

 Listing 25.11. A cumbersome approach to applying multiple actions

 Listing 25.12. An improved way to use multiple actions with foldM

 Listing 25.13. Creating a Unicode BC.ByteString

 Listing 25.14. Same Unicode example, properly represented as Text

 Listing 25.15. Attempting to transform Text into a ByteString

 Listing 25.16. Converting between Text and ByteString with de/encodeUtf8

 Lesson 26. Capstone: Processing binary files and book data

 Listing 26.1. The necessary imports for marc_to_html.hs

 Listing 26.2. Type synonyms for Author and Title

 Listing 26.3. Create a Book type

 Listing 26.4. Html type synonym

 Listing 26.5. bookToHtml creates an individual snippet of HTML from a book

 Listing 26.6. A collection of sample books

 Listing 26.7. Turning a list of books into an HTML document with booksToHtml

 Listing 26.8. Temporary main to write your books list to HTML

 Listing 26.9. Type synonyms for MarcRecordRaw and MarcLeaderRaw

 Listing 26.10. Declaring the length of the leader to be 24

 Listing 26.11. getLeader grabs the first 24 bytes of the record

 Listing 26.12. rawToInt and getRecordLength

 Listing 26.13. nextAndRest breaks a stream of records into a head and tail

 Listing 26.14. Converting a stream of raw data into a list of records

 Listing 26.15. Type synonym for MarcDirectoryRaw

 Listing 26.16. Getting the base address to determine the size of the directory

 Listing 26.17. Calculating the length of the directory with getDirectoryLength

 Listing 26.18. Putting everything together to getDirectory

 Listing 26.19. MarcDirectoryRaw type synonym and dirEntryLength

 Listing 26.20. splitDirectory breaks down the directory into its entries

 Listing 26.21. FieldMetadata type

 Listing 26.22. Converting a raw directory entry into a FieldMetadata type

 Listing 26.23. Mapping makeFieldMetadata to [FieldMetadata]

 Listing 26.24. Type synonym for FieldText

 Listing 26.25. Getting the FieldText

 Listing 26.26. Getting the field delimiter

 Listing 26.27. Tags and subfield codes for title and author

 Listing 26.28. Safely looking up FieldMetadata from the directory

 Listing 26.29. Safely looking up a potentially missing subfield

 Listing 26.30. General lookupValue function for looking up tag-subfield code pairs

 Listing 26.31. Specific cases of looking up Title and Author

 Listing 26.32. Raw MARC records to Maybe Title, Maybe Author pairs

 Listing 26.33. Convert Maybe values into Books

 Listing 26.34. Putting it all together in processRecords

 Lesson 27. The Functor type class

 Listing 27.1. Possibly null values: successfulRequest and failedRequest

 Listing 27.2. Defining incMaybe to increment Maybe Int values

 Listing 27.3. Making Maybe an instance of Functor

 Listing 27.4. Examples of using fmaps from one type to another

 Listing 27.5. RobotPart defined using record syntax

 Listing 27.6. Example robot parts: leftArm, rightArm, and robotHead

 Listing 27.7. Rendering a RobotPart as HTML

 Listing 27.8. Your RobotPart “database”

 Listing 27.9. partVal: a Maybe RobotPart value

 Listing 27.10. Using <$> to transform RobotPart to HTML, remaining in Maybe

 Listing 27.11. A list of RobotParts

 Listing 27.12. Transforming a list of RobotParts to HTML with <$> instead of map

 Listing 27.13. The traditional way of transforming a list by using map

 Listing 27.14. Turning your partsDB into a Map of HTML rather than RobotParts

 Listing 27.15. Simulating a RobotPart coming from an IO context

 Listing 27.16. Transforming

 Lesson 28. A peek at the Applicative type class: using functions in a context

 Listing 28.1. Using a Map as your database of city coordinates

 Listing 28.2. Computing the distance between two points with haversine

 Listing 28.3. An IO action to handle printing your potentially missing distance

 Listing 28.4. One solution to working in a Maybe is to create wrapper functions

 Listing 28.5. Using Functor’s <$> operator for partial application in a context

 Listing 28.6. The main for dist.hs

 Listing 28.7. minOfThree function takes three arguments and returns the smallest

 Listing 28.8. A simple readInt IO action made using <$>

 Listing 28.9. minOfInts shows using multiple arguments with <*>

 Listing 28.10. Your main for min3.hs

 Listing 28.11. User data for a game

 Listing 28.12. Maybe types for the necessary information to create a user

 Listing 28.13. Using Applicative to create a user from IO types

 Lesson 29. Lists as context: a deeper look at the Applicative type class

 Listing 29.1. A poorly named 2-tuple is still the same thing

 Listing 29.2. The trivial Box type doesn’t seem much different from IO

 Listing 29.3. A type representing if there are enough resources to continue

 Listing 29.4. Nondeterministic possibilities for door values

 Listing 29.5. Nondeterministic possibilities for box prizes

 Listing 29.6. Deterministic door prize can represent only a single path

 Listing 29.7. primesToN, a simple but inefficient primer algorithm

 Listing 29.8. Some testNames for your data

 Listing 29.9. testIds with different values

 Listing 29.10. Sample testScores for testing

 Listing 29.11. Same pattern used for IO and Maybe to generate many test users

 Lesson 30. Introducing the Monad type class

 Listing 30.1. A quick reminder of do-notation

 Listing 30.2. Basic setup for the problem of combining two Map lookups

 Listing 30.3. Type signature of your goal function, creditsFromId

 Listing 30.4. The functions to combine: lookupUserName and lookupCredits

 Listing 30.5. altLookupCredits, a solution without using Functor or Applicative

 Listing 30.6. Going straight from GamerId -> Maybe PlayerCredits

 Listing 30.7. creditsFromId rewritten to use bind instead of pattern matching

 Listing 30.8. Adding yet another Map to lookup in order to get a user’s credit

 Listing 30.9. You can chain together arbitrarily many lookups with >>=

 Listing 30.10. Using >>= to create your echo function

 Listing 30.11. Showing the benefit of >> with a verbose version of echo

 Listing 30.12. askForName IO action

 Listing 30.13. nameStatement works on normal String rather than IO String

 Listing 30.14. Your Hello Name program using Monad methods

 Lesson 31. Making Monads easier with do-notation

 Listing 31.1. helloName

 Listing 31.2. Rewriting helloName using do-notation

 Listing 31.3. A program illustrating do-notation

 Listing 31.4. A trivial IO action in which >>= makes more sense than do

 Listing 31.5. The Grade data type code review and culture fit

 Listing 31.6. The Degree data type for highest level of education

 Listing 31.7. The Candidate data type representing performance on an interview

 Listing 31.8. The viable function checks how well your Candidate did

 Listing 31.9. Useful IO actions for building your Candidate

 Listing 31.10. A single function to read your candidate in from the command line

 Listing 31.11. An IO action that lets you know if candidate passed/failed

 Listing 31.12. Example candidates

 Listing 31.13. Putting your example candidates in a Data.Map

 Listing 31.14. Similarity between assessCandidateMaybe and assessCandidateIO

 Listing 31.15. A list of possible candidates

 Listing 31.16. Assessing a list of candidates using List as a Monad

 Listing 31.17. A list-specific way to assess candidates

 Listing 31.18. The monadic assessCandidate works on IO, Maybe, and List

 Lesson 32. The list monad and list comprehensions

 Listing 32.1. The assessCandidateList function from the previous lesson

 Listing 32.2. Making a list of pairs by using do-notation

 Listing 32.3. evenPowersOfTwo emulates Python’s list comprehensions

 Lesson 33. Capstone: SQL-like queries in Haskell

 Listing 33.1. A simple Name data type with its Show instance

 Listing 33.2. GradeLevel represents the student’s grade

 Listing 33.3. The Student data type

 Listing 33.4. A list of example students that you can query

 Listing 33.5. The _select function is just fmap

 Listing 33.6. _where allows you to filter your queries

 Listing 33.7. Check whether a String starts with a particular character using startsWith

 Listing 33.8. A Teacher data type

 Listing 33.9. A list of example teachers

 Listing 33.10. Course data type references a Teacher by ID

 Listing 33.11. A list of example courses

 Listing 33.12. You need a way to pleasantly combine _join, _select , and _where

 Listing 33.13. _hinq function allows you to restructure your query

 Listing 33.14. Using _hinq allows you to approximate SQL syntax in Haskell

 Listing 33.15. One possible solution to a missing _where

 Listing 33.16. _select, _where, and _join functions can work for all monads

 Listing 33.17. runHINQ function allows you to execute HINQ queries

 Listing 33.18. Because it’s written for monads you can query Maybe types

 Listing 33.19. An example of a Maybe query

 Listing 33.20. You can join Maybe data and easily handle the case of missing data

 Listing 33.21. Enrollment relates a Student to a Course

 Listing 33.22. A list of example enrollments

 Listing 33.23. Queries students and the course they’re enrolled in

 Listing 33.24. Running a query for studentEnrollments

 Listing 33.25. Joining studentEnrollments with courses

 Listing 33.26. Running the englishStudentsQ query to list English students

 Listing 33.27. getEnrollments queries your data for enrollments

 Lesson 34. Organizing Haskell code with modules

 Listing 34.1. The definition in Prelude of head

 Listing 34.2. The definition of the Monoid type class

 Listing 34.3. Oops, you accidentally created a function that already has a name!

 Listing 34.4. An example list that’s a list of values that are an instance of Monoid

 Listing 34.5. Explicitly defining a module for your code

 Listing 34.6. A first draft of your Main module

 Listing 34.7. The Palindrome.hs file

 Listing 34.8. Importing only a specific subset of functions from Data.Char

 Listing 34.9. The code in your module for properly detecting palindromes

 Listing 34.10. Performing a qualified import of your Palindrome module

 Listing 34.11. Using the qualified Palindrome.isPalindrome function

 Listing 34.12. Your Main.hs file that uses your Palindrome.hs file

 Lesson 35. Building projects with stack

 Listing 35.1. The default Main module generated by stack

 Listing 35.2. The default Lib module generated by stack

 Listing 35.3. Rewriting Palindrome from the preceding lesson to work with Text

 Listing 35.4. Writing the Main.hs file for your palindrome checker

 Lesson 36. Property testing with QuickCheck

 Listing 36.1. Small refactor to Main.hs file so you can focus on your Lib.hs file

 Listing 36.2. A minimal definition of isPalindrome

 Listing 36.3. Iteratively testing and fixing isPalindrome

 Listing 36.4. The contents of Spec.hs generated by stack

 Listing 36.5. A minimal function for unit testing

 Listing 36.6. Your Spec.hs file with a few simple unit tests

 Listing 36.7. Adding another test to your main IO action

 Listing 36.8. Another minimal fix for the issues in your isPalindrome function

 Listing 36.9. Your code is starting to get a bit cleaner

 Listing 36.10. Expressing the property you want to test in a function

 Listing 36.11. Modified palindrome-testing.cabal file

 Listing 36.12. Using the quickCheck function in your Spec.hs file

 Listing 36.13. Refactoring preprocess based on feedback from QuickCheck

 Listing 36.14. Fixing the issue with punctuation the correct way

 Listing 36.15. You can tell QuickCheck to run as many tests as you’d like

 Listing 36.16. Refactoring your Lib module to use Data.Text instead of String

 Listing 36.17. Refactoring Spec.hs to work with Data.Text

 Lesson 37. Capstone: Building a prime-number library

 Listing 37.1. Your modified Main module in app/Main.hs

 Listing 37.2. Changing src/Lib.hs to src/Primes.hs

 Listing 37.3. Modifying primes.cabal to reflect the change of your library module

 Listing 37.4. Recursive implementation of the sieve of Eratosthenes

 Listing 37.5. Creating a list of all possible primes

 Listing 37.6. Using sieve to generate a reasonable list of primes

 Listing 37.7. A more robust version of isPrime

 Listing 37.8. Changing test-suite in primes.cabal to include QuickCheck

 Listing 37.9. Adding necessary imports to test/Spec.hs

 Listing 37.10. prop_validPrimesOnly tests that you get Nothing and Just values

 Listing 37.11. Adding prop_validPrimesOnly to your main

 Listing 37.12. Testing that numbers your function thinks are prime, are prime

 Listing 37.13. Testing that the nonprimes are composite numbers

 Listing 37.14. Modifying your main to test your additional properties

 Listing 37.15. Fixing the bug in isPrime

 Listing 37.16. Updating your prop_validPrimesOnly after updated isPrime

 Listing 37.17. An unsafe version of your prime factorization algorithm

 Listing 37.18. Wrapping unsafePrimeFactors to make it safe

 Listing 37.19. Making sure the product of your factors is the original value

 Listing 37.20. Ensuring that all your factors are prime

 Listing 37.21. Your final main in src/Spec.hs to run all your property tests

 Lesson 38. Errors in Haskell and the Either type

 Listing 38.1. A function that easily causes an error when used but compiles fine

 Listing 38.2. An identical function to myTake, which throws a compiler warning

 Listing 38.3. myHead, an example of throwing an error

 Listing 38.4. Using Maybe to make head a complete function

 Listing 38.5. A safer version of myTake using maybeHead instead of head

 Listing 38.6. A safer version of head written using Either

 Listing 38.7. isPrime refactors to use multiple messages when a number is invalid

 Listing 38.8. The PrimeError types for representing your errors as types

 Listing 38.9. Making PrimeError an instance of Show

 Listing 38.10. Refactoring isPrime to use PrimeError

 Listing 38.11. Translating your isPrime result to be human-readable

 Listing 38.12. The main to check for primes from user input

 Lesson 39. Making HTTP requests in Haskell

 Listing 39.1. The imports for your app/Main.hs file

 Listing 39.2. Modifying your project’s .cabal file

 Listing 39.3. Variables that will be helpful in making your HTTP requests

 Listing 39.4. Placeholder code for your main action

 Listing 39.5. The code for building an HTTPS request for the API

 Listing 39.6. buildRequest rewritten with the state saved as variables

 Listing 39.7. Your final main for writing your request to a JSON file

 Lesson 40. Working with JSON data by using Aeson

 Listing 40.1. Your Main.hs file

 Listing 40.2. Adding your build depends on language extensions

 Listing 40.3. A straightforward Book type

 Listing 40.4. Adding deriving Generic to your Book type

 Listing 40.5. Making your Book type an instance of both FromJSON and ToJSON

 Listing 40.6. Taking a Book type and converting it to JSON

 Listing 40.7. Taking a JSON representation of your book and converting it to a Book

 Listing 40.8. Parsing JSON that doesn’t match your type

 Listing 40.9. An example of JSON you don’t have control over

 Listing 40.10. Unfortunately, you can’t model this JSON by using Haskell

 Listing 40.11. Haskell code that works but doesn’t match the original JSON

 Listing 40.12. Making ErrorMessage an instance of FromJSON

 Listing 40.13. Values for constructing an ErrorMessage in a Maybe context

 Listing 40.14. With your custom FromJSON, you can now parse your JSON

 Listing 40.15. Creating an error message to test your instance of ToJSON

 Listing 40.16. The JSON from the NOAA has a nested structure

 Listing 40.17. Use NOAAResult type to print the names of the data sets

 Listing 40.18. Making NOAAResult an instance of FromJSON

 Listing 40.19. Using Generic to derive the FromJSON instance for Resultset

 Listing 40.20. Making the Metadata type

 Listing 40.21. Putting all your types together into a NOAAResponse type

 Listing 40.22. Printing the results

 Listing 40.23. Putting everything together into your main

 Lesson 41. Using databases in Haskell

 Listing 41.1. The app/Main.hs file starter code

 Listing 41.2. The changes to build-depends in db-lesson.cabal

 Listing 41.3. Use the OverloadedStrings extension in db-lesson.cabal

 Listing 41.4. The code for building your database

 Listing 41.5. The definition of Tool, which should live in app/Main.hs

 Listing 41.6. The User data type

 Listing 41.7. Making User and Tool instances of Show

 Listing 41.8. addUser action connects to database and inserts a user

 Listing 41.9. withConn lets you abstract out connecting to the database

 Listing 41.10. Checking out by adding the toolId and userId to checkedout

 Listing 41.11. The definition of the FromRow type class

 Listing 41.12. Making User and Tool instances of FromRow

 Listing 41.13. Printing users from your database

 Listing 41.14. A generic way to run any queries of tools from your database

 Listing 41.15. Safely selecting a Tool by ID

 Listing 41.16. updateTool updates your tool

 Listing 41.17. Safely updating your database

 Listing 41.18. updateToolTable combines all the steps for updating the tool table

 Listing 41.19. Checking in a tool with checkin

 Listing 41.20. Making sure your tool is updated when it’s checked in

 Listing 41.21. Organizing your database actions

 Listing 41.22. performCommand organizes all the commands the user can enter

 Listing 41.23. Your final main IO action

 Lesson 42. Efficient, stateful arrays in Haskell

 Listing 42.1. An example of a reasonably large list of 10 million values

 Listing 42.2. Your UArray, also containing 10 million values

 Listing 42.3. Doubling the values in aLargeList impacts performance

 Listing 42.4. Creating a zero index array of Bool

 Listing 42.5. An array indexed starting with 1

 Listing 42.6. A UArray representing beans in buckets

 Listing 42.7. Updating your UArray the functional way with //

 Listing 42.8. A first sketch of your listToSTUArray function

 Listing 42.9. The full code for copying a list to an STUArray

 Listing 42.10. You can treat listToUArray as a pure function

 Listing 42.11. A common way of working with STUArrays and runSTUArray

 Listing 42.12. Sample data created using listArray

 Listing 42.13. Your implementation of bubbleSort

03fig02_alt.jpg
into the lambda function. \

sumSquareOrSquareSum x y = (\sumSquare squareSum ->
if sumSquare > squareSum
then sumSquare
else squareSum) (xA2 + yA2) ((x+y)A2)

‘Body of the lambda function /

03fig03_alt.jpg
sumSquareQrSquareSum x y = let sumSquare

squareSum
_in
snmaums/. if sunSquare > squareSum Body of et
Single space then sumSquare expression
indent. else squareSum

(XA2 + yA2) N yoriabies
(x+y)A2 defined first

02fig01.jpg
Function All functions take at
name least one argument.

simple x = x

All functions in The function’s behavior is

Haskell start with defined here. In this case

a lowercase letter. you're just returning
your argument.

03fig01.jpg
I'he forward-slash (\J

is meant to remind you Function
of a Greek lamda m.\ / argument(s)
\x -> x

Body of the lambda function:
can be as long and complex
as any other Haskell function.

common01.jpg

xivfig01.jpg

common02.jpg

280fig02.jpg

24fig01_alt.jpg
Because hisetUontents Is lazy, the value
stored in input isn't used until it's needed.

At this point, you can think of input as i i ’ -
/" subsiuts for "BetContenta fle”. in tevme, of Iy aveltion, helose
has nothing to wait for and executes
: immediately. At this point in the
i program, the file is closed but input
maLn 204 Rasn'e been evaluated yet.
main = do \

\

args <- getArgs |

let fileName = head args

file <- openFile fileName ReadMode

input <- hGetContents file

hClose file

let summary = (countsText . getCounts) input
/append}‘ile "stats.dat" (mconcat

[fileName, " ", summary, "\n"])
/ putStrln summary }

N\ Wren you define summary, you're . Finally, you call appendFile which, like hClose,
using input, but you still don's has something to do. At this point, summary
need to evaluate it. The input is evaluated and because of this input is as
will be evaluated only when well. But now the file s closed, and the 0S

ol g b Sy gl s il |

281fig01.jpg

03fig04_alt.jpg
Looks 4
X =4 /7 definion |
|

addly =y + x
Uses argument —__—%__7
add2 y = (\x -> y +x) 3

Finds
this first

Ignores the argument
in add3 and uses the

add3y = (\y*> - lemda srgumonnstest
D >y +x)1)2

295fig01.jpg

25fig01.jpg

enter.jpg

20fig05_alt.jpg
‘12-month moving average

260

250

240

230

220

210

200

Box and Jenkins (1976) sales data (moving average)

50

Time

T
100

T
150

cover.jpg
GET PROGRAMMING

HASKELL
EE

. I -

20fig04_alt.jpg
Change from previous aay

Box and Jenkins (1976) sales data (diff)

T
50 100
Time

T
150

279fig01.jpg

21fig01.jpg
This returns a -..but helloPerson takes a
type IO string... String type, not a I0 String,

name <- getline
let statement = helloPerson name

2

Because you assigned name
by using <-, you can treat it
like a normal String.

280fig01.jpg

279fig02.jpg

307fig01.jpg

306fig02.jpg

26fig02_alt.jpg
01292cam 2200337
4500p01000300000003000600003005001700009008004100026010001600067019001
2000830290021000950350029001160400030001450430012001750490009001870500
0170019608200100021310000460022324502590026926000590052830000320058744
0007500619504003200694650005100726650003600777650003300813700003800846
7000042008849940012009269450016009382 0C0LC20060313170419. 069041051963
laua b 000 0 eng a 63022268 a97725971 aNLGGCb861755170
a(0CoLC)22(0C0LC)9772597 aDLCCDLCAOCLCQITSEAOCL an-us-la
a0CLCO0aGBA75. L6bMG 4a589.31 aMorgan, James P.q(James
Plunmer),d1919-10aMudlunps at the mouth of South Pass, Mississippi
River;bsedimentology, paleontology, structure, origin, and relation to
deltaic processes,cby James P. Morgan, James M. Coleman [and] Sherwood
M. Gagliano. Including appendices by R.D. Adams ... [et al.]. aBaton
Rouge,blouisiana State University Press,c1963. axvi, 190 p.billus.c28
cn. Galouisiana State University studies.pCoastal studies series ;vno.
10. aBibliography: p. [183]-198. @aMud lumpszLouisianazMississippi
River Delta. @aSediments (Geology)zLouisiana. 7aSciencesxPhilosophie.
2ram.1 aColeman, James M.,ejoint author.l aGagliano, Sherwood
M.,ejoint author. a@2bOCL aGB475.L6 M6

26fig01.jpg
The Conspiracy Against the Human Race Ligotti, Thomas
A Short History of Decay Cioran, Emil

The Tears of Eros Bataille, Georges

26fig04_alt.jpg
01292cam 2200337
4500001000300000003000600003005001700009008004100026010001600
6701900120008302900210009503500290011604000300014504300120017

0490009001870500017001960820010002131000046002232450259002692
e e e e o O b

26fig03_alt.jpg
The leader of a record is the —
irst 24 bytes.

The directory tells you where —
t0 find information in the

record.

Base of the record contains —
information that can be

navigated only with the

aid of the directory.

01292cam 2200337 4500

00100030000000300060000300500170000900800410
00260100016000670190012000830290021000950350
02900116040003000145043001200175049000900187
05000170019608200100021310000460022324502590
02692600050005283000032005874400075006195040
03200694650005100726650003600777650003300813
70000380084670000420088499400120092694500160
09382

0C0LC20060313170419. 069041051963 laua
b 000 0 eng a 63022268 a97725971
aNLGGCb861755170 _a(0CoLC) 22(0C0LC) 9772597
aDLCCDLCAOCLCQATSEAOCL an-us-la
20CLCOBGBAT5. LGLMG 42589.31 aMorgan, James
P.q(James Plunmer),d1919-10aMudlumps at the
mouth of South Pass, Mississippi
River;bsedimentology, paleontology,
structure, origin, and relation to deltaic

25fig03.jpg

25fig02.jpg

25fig05.jpg

25fig04.jpg

306fig01.jpg

p05fig04.jpg

p05fig06.jpg

p05fig05.jpg

p05fig08.jpg

p05fig07.jpg

p05fig10.jpg

p05fig09.jpg

33fig03.jpg
This is a test function
for your where.

(a -> Bool) -> [a] -> [a]

(e

Your return type is the same
as your list because you're
effectively filtering the list.

p05fig01.jpg

26fig05_alt.jpg
aMudlumps at the mouth of South Pass, Mississippi River

33fig02_alt.jpg
Your list 1s of type a.

g

This function selects the property —_ (3 _5) _5 [a] -> [b]

you want to extract from your list.

Your property is of type b.

33fig01_alt.jpg
Student

Teacher

studentId :: Int
gradelLevel GradeLevel
studentName :: Name

teacherId :: Int
teacherName :: Name

Enroliment

Course

> student
course ::

: Int
Int

courseld :: Int
courseTitle :: String
teacher :: Int =

p05fig03.jpg

p05fig02.jpg

37fig01.jpg
> [app
LICENSE
primes.cabal
o Setup.hs
> [src

W stack.yaml

> [test

33fig06_alt.jpg
vour HiNG type takes The HING data constructor
three type parameters: takes three functions:

The type of Monad —
The type of the data A

The type of the result
_select _join (or plaindata) _where

il | \ g

data HINO m a b = HINQ (ma ->mb) (ma) (ma->ma)
| HINQ. (ma ->mb) (ma) 4

\

‘The HING_ data constructor
‘omite the _where e slanature.

33fig05_alt.jpg
SEND SR YOl TR BN
of data as though
it were as single value.

_join datal data2 propl prop2 = do
d1 <- datal
d2 <- data2

_» let dpalrs = (d1,d2)

~quard ((propl (fst dparis)) == (prop2 (snd dpairs)))
(return dpal[s

You then create
pairs of these two g

oo, Romomber,
e notaion shis The guard means You finally return

oot the"® you acceptonly the fitered set of
e e parsinwhichthe pairs, containing
bl pos O propertios you only matches.
ey passed in match,

33fig04_alt.jpg
-TIGR: you v o

You take two accessor functions that
lists of possibly return the same type of
different types. value from each list.

= ey

->¢) -> (b ->¢) -> [(a,b)]

N
These accessor functions need Finally, you end up
to be an instance of Eq so that with a list, of pairs of

you can check whether the

types from each list.
oy ipiery

41fig01.jpg
Users

Tools

id
username

id

name
description
lastReturned
timesBorrowed

Checkedout

user_id
tool_id =

40fig01_alt.jpg
{

/

JSON objects: /

are enclosed
n brackets.

SR KNS . B
callections of fields and values.

/

"reportRequests”: [

Wi, s ymimmate
“dateRanges”: [
{
“startDate":"2015-06-15", +~__ i eea ke
“endDate": "2015-06-30" s
1, resorting to a String
"metrics”: [fopresencaton
{
“expression”: "ga:sessions”
H.
“dimensions”: [
d “name”: "ga:browser"
H
H

38fig01.jpg
fhis case 18 €88Y: ~» head [1, 2, 3]
v

You just take the <
first element. ~ 1

head []

What answer can
55 you give here?

28fig03.jpg
You need a new adapter to connect this
function in a context with your other values.

4
OISIC

28fig02_alt.jpg
The f type variable can
be confusing. It means.
any parameterized type,
belonging to Functor.

T
Functor £ => (a ->b) ->fa->fb

=7 ‘\ R

o Ty
is is just a function from Your first argument Your result remains
type a to type b. Don't forget, is in a functor, such in the same Functor
it's okay for a and b to be the as Maybe. as your argument.
'same type. Different variables But now the function

mean only that the values can
be different, not that they
R

has been applied
inside the context.

28fig05_alt.jpg
‘This first part uses partial application,
which leaves you with a function of

type Maybe (LatLong -> Double)
waiting for a missing argument.

—

haversine <$> startingCity <*> destcity

s ﬂ—/
The <*> operator takes a function
in a context, in this case |
— Maybe (LatLong -> Double) /
and an argument in the same context Maybe LatLong

and applies the function to that argument, returning
a type still in the context, here a Maybe Double.

28fig04_alt.jpg
This £ maans any type that's
an instance of Applicative.
For example, Maybe.

//7\\

(<*>) :: Applicative f = f (a ->b) ->fa -> f b

VAR

You have a function You take an Finally, you get your
in an Applicative argument in result in the same
from a-> b. For the context of applicative context
example, Maybe an Applicative. you started with.
(int > Double). For example, In this case, a

Maybe Int. Maybe Double.

29fig02_alt.jpg
TN RPN MO TN T S
variable f means that Functor is
a superclass of Applicative. So all
Applicatives are also Functors.

™~

class Functor £ => Applicative f where
(<) i f(a->b) >fa->fb

pure ::a > £ a

| N
You've just seen how (<*>) The pure function is the ‘These are the two
worke, i takes a functon n onl othar methed redured foauirod meihods
o Fancior and a ualuo nthe of Applicetiv. I okes o normal o the Appicad
Sam Functor, and apples. type and puts It n the context e

et omeg Snkuy ey i =iat oy

29fig01_alt.jpg
fmap ::
(<$>) ::

Functor £ ::
Functor f ::

Applicative

fmap ::
(<$>) ::
(<*>) =:
pure ::

Functor £ ::
Functor £ ::

Applicative f ::

Applicative f

(a

(a

b) ->
b) ->
b) ->
b) ->
(a ->
->fa

fa->fb
fa->fb

29fig04.jpg
Deterministic computing means following a single path to
a single answer. Follow the solid line to the bold answer.

$500

$20,000

~[1500
121000
~ 2500
~ 22000
~ 3500
~,23000]

Nondeterministic computing means following all possible
paths at once to all possible answers. Lists as context

represent nondeterministic computing.

29fig03.jpg
The pure method provides an adapter
for when you simply need to put a
regular type into a context.

27fig02.jpg
fmap allows you to connect these
and get your square in a context.

e—&

27fig01_alt.jpg
‘This 7 is confusing because you

often associate f with function. This is a Functor of This is the transformed
Here it is a type class type a. For example, Functor of type b. For
constraint for a Functor. Maybe Int. example, Maybe Double

~ Ny

Functor f => (@ ->b) >fa ->fb

E

This is a function from
type a to type b.

fmap

28fig01_alt.jpg
You don’t want your result to

; leave the context of the Maybe.
come from using Map.lookup You'll let printDistance handle

on your locationsDB. the case of missing cities.

e &

Maybe LatLong -> Maybe LatLong -> Maybe Double

These Maybe LatLong values

logo.jpg
/I MANNING PUBLICATIONS

30fig02.jpg

30fig04.jpg

30fig03.jpg

30fig06.jpg
The >> operator takes two arguments
but ends up throwing the first away.

(>>) ma->mb->mb

30fig05_alt.jpg
fmap :: Functor f :: (a -> b)
(<$>) :: Functor f :: (a -> b)
fmap :: Functor f :: (a -> b)
(<$>) Functor £ :: (a -> b)
(<*>) Applicative £ :: £ (a
pure :: Applicative f :: a ->
fmap :: Functor f :: (a -> b)
(<$>) Functor f :: (a -> b)
(<*>) :: Applicative f :: f (a
pure Applicative f :: a ->
(>>= Monad m :: ma -> (a
(>>) :: Monadm :: ma->mb
return :: Monad m :: a ->ma

fail Monad m ::

String ->

fa->fb
fa->fb

fa->fb
fa->fb

->b) ->fa->fb
fa

>fa->fb
>fa->fb

->b) ->fa->fb
fa

->mb) ->mb
-=>mb

31fig01_alt.jpg
PHNNING PRETOISG: NG 00 0PN
written as single-ine statements.

helloName 10 ()
helloNameDo = do
helloName :: 10 () askForName
helloName = askForName >> name <- getlLine
getline >>= putStrln nameStatement
(\name ->
return (nameStatement name)) >>=
putStrln

The < abstracts out creating a lambda function and
connecting with >>=. Notice that the assigned variable
e P S EN e BReRE Tt Bl Welsieionn.

30fig07.jpg
nameStatement Is
a regular function of
type String > String.

N

(\name -> return (nameStatement name))

7

Using a lambda and return
transforms nameStatement
into the type String -> 10 String.

05fig01.jpg
Ihe argument T Is You're returning
the function you want this entire lambda
to use in ifEven. function.

genIfEven £ = (\x -> ifEven f x)

AR

The f argument is captured Your new function is sl
in the lambda function. waiting for an argument.

32fig01_alt.jpg
powersOfTwo :: Int -> [Int]
powersOfTwo n = do
value <- [1 :: n]

When you assign values by return (2 value)
using <-, you can pretend that

values aren't in its context.

In this case, the context is

Int], treat . .
g 0 et Even though you're working with a

list of values, you can raise 2 to the
power of value as if it were a single
value. The magic of the Monad class
i that you can pretend that types in
‘context are just plain types.

31fig02_alt.jpg
You Esart by sxpanceg the <- mko
>>= and a lambda expression. Again,
the variable assigned with <- becomes

the argument of the lambda. \

name <- getline
let statement = helloPerson name
putStrln statement

“This let creates another lambda
in which the variable is the argument

main :: 10 () Notico that becauss this s 8 normal
main = getLine >>= “’;'::'fm"‘“ ign it by passing it
(\name ->
(\statement -> N

putStrln statement) (helloPerson name))

30fig01.jpg

29fig05_alt.jpg
totall
total

/

totalPrize is all possit
prizes you can get fr
the nondeterministic
view of your game.

VOUPa Ihinking W conkas now. Thie
[int] doesn't represent a sequence of
Ints but rather a nondeterministic Int.
That's an Int that can take on a range boxPrize is all

of values. \ possible box prizes.

Prize :: [Int]
Prize = (pure +) <*> doorPrize <*> boxPrize

N &

ible Using pure means you're doorPrize is all
om putting your typically possible door prizes.
deterministic + in the
nondeterministic
stz ey

10fig01.jpg
Instance Method
of object being called

N

car.start()

09fig02.jpg
foldl rcons [] [1,2,3]
k]

foldl rcons [1] [2,3]
21

foldl rcons [2,1] [3]

|

32

i—‘

foldl rcons [3,2,1] [] = [3,2,1]

1]

05fig03.jpg
Host /m\ APl key

http://example.com/book/1234?token=1337hAsk3l|

Resource

05fig02.jpg
1rtvenlnc = genlftven 1nc

v

(\x -> ifEven f x)

'
(\x -> ifEven inc x)

A
i fEvenInc = (\x -> ifEven inc x)

32fig02_alt.jpg
powersOfTwo :: Int -> [Int]

Powers0tTug ni=do Al the rest of the steps in

value <- [1 .. n your donoton go here.
[] —~ If there’s more than one

return (2"value) Step in the process, they're
a el

Int -> [Int] \
One of the best features of - E
knm;m::r‘rmﬂm j [value~2 | value <- [1 .. n]]

jou see your final result in the /'
peginning. This often makes e

for more-readable code.

powers0fTuo
powersOfTuo n

The | separates your final result.
orahe ahens weed o Soliess Sliak:

42fig03.jpg
Compare these two values. If the first
is greater than the second, swap them.

Repeat until you reach
the end of the array.

25 4 3 i

After you reach the end of the array, you know
that the largest value has "bubbled” to the top.

2 4 3 1<4>5

L T

Now you just have to repeat
this process for the remaining
-1 elements left in the array.

05fig05_alt.jpg
 YOUF TIBW ITHIG FUrIGRIOnN Wis
be waiting for three arguments:

apikey f “

—x X1/

exanpleUrlBuilder = getRequestUrl "http://exanple.con” ? ? 2

| | \
myExampleUrlBuilder = exampleUrlBuilder "1337hAsk31l" ? ?

Now you supply
]—‘ !—‘ the apiKey.
/. myExampleUr1Builder resource id

Finally you end up with a function
s i sahponicis iy

42fig02_alt.jpg
ATOAY EEN,

Urray
s|2]4]s

Even though there's stateful

mutation, because it's perfectly

encapsulated, you can treat it

as a pure function. UArray
1]2]a]4

runSTUArray allows
you to take STUArray
g e ey

05fig04_alt.jpg
RN FIE SUNCEN SEASME S
be waiting for throe arguments.

genHostRequestBuilder host = (\apiKey resource id ->
getRequestUrl host apikey resource id)

You're capturing the host
eraanens I e el Nanition:

42fig01_alt.jpg
In this context,
you can perform
pretrdiy el e

STUAmay context

y
H
H

06fig01.jpg
Element (head) —<

Another list (tail)

05fig06_alt.jpg
Lambda function usad to
Function as argument create returning function

v/ /—%

flipBinaryArgs binaryFunction = (\x y -> binaryFunction y x)

/

Closure created with
T et

08fig01_alt.jpg
Collaiz conjecture: Length of path before reaching 1

300

po- e

100,000

75,000

50000

25000

07fig01.jpg
myHead [1,2,3]

You can rewrite
myHead as...

myHead (1:[2,3])

|

myHead (x:xs) =
_’f_l

a2

09fig01.jpg
foldl (+) 0 [1,2,3,4]
—
0+1=1
foldl (+) 1 [2,3,4]
142=3
foldl (+) 3 [3,4]
‘_1
3+3=6
foldl (+) 6 [4]
6+4=10

foldl (+) 10 [] = 10

13fig01_alt.jpg
Name of the
type class

5

‘Type variabie as &
placeholder for the
specific type that will
implement this class.

7

class TypeName a where

funl ::

Names of all the fun2
required functions fun3

a -> String
a -> a -> Bool

->a

Type signatures of the
required functions

14fig02_alt.jpg
unt3

--E

nit2

T..-

14fig01.jpg
You want a function that solves f you specity you want an

the problem of turning a String Int, read returns an Int.
into whatever type you expect. /\
— :Int —— 10
read "10" —
— ::Double ——=10.0

S

Polymorphism means that read If you're expecting a Double
behaves as you expect, given the type, read returns a Double
type that you tell it you want back.

11fig01.jpg
Variable name Variable type

Type signature

Ve <l T~ x :: Int
% =2

TN .

10fig02.jpg
Message Instance of object
being sent receiving message

start car

11fig03_alt.jpg
Bkl bmd TGN R N
argument argument argument. return value

s LAl g s wiy

— makeAddress :: Int -> String -> String -> (Int, String, String)
makeAddress number street town = (number,street, town)

el

11fig02.jpg
Argument type of Int

Tipe sianstre: =3 ‘double Int -> Int
double n = n*2
Function defirition —

Return type of Int

11fig05_alt.jpg
¥ you define simple by using a type vanable,
you can imagine that variable being substituted
for an actual type when you use that function
with various types of arguments.

\\.simple iia->a

simple x = x

simple 'a

simple
When you pass a Char to simple,
it behaves as though this was

its type signature.

Char -> Char

simple "dog"

7 simple String -> String
Likewise, when you pass a string

to simple, it behaves as though it —— "

has a different type signature.

11fig04_alt.jpg
You can rewrite @
muli-argument function
a5 a sequence of nested
jambda functions.

makeAddress number street town = (number, street, town)
L i L)

S
makeAddressLanbda = (\number

(\street -3,
(\town -> (number, street, town)))

12fig02.jpg
Bloodlype is made by
combining an ABOType
Data constructor and an RhType.

AN

data BloodType = BloodType ABOType RhType

12fig01.jpg
The Sex type is an
The type instance of either of
constructor these data constructors.

data Sex = Male | Female

Y

The data constructors
can be used just like values
(for example, True and False).

20fig01_alt.jpg
Sales

260

240

220

200

Box and Jenkins (1976) sales data

T
50 100
Time

T
150

18fig04_alt.jpg
Your Map takes two type
parameters: the type of the
keys, k, and of the values, a.

The type variable for the key
is restricted to the class Ord.

fromList :: Ord k => [(k,a)] -> Map k a

)

The input to the function
is a list of key/value tuples.

20fig03.jpg
NA 1 2] -1

20fig02.jpg
Time series 1 lime series 2

17

L—— 1015|256 [17 [=——

112(3]4

Time series 1 and 2 combined

15fig02.jpg
Xor Xor
00111 10110
10001 00111

15fig01.jpg

17fig01_alt.jpg
howMuch Int -> 5tring

howMuch n | n > 10 = "a whole bunch"

| n>0 = "not much"

| fotherwise ="we're in debt!"

)

otherwise is
the default
case.

Guards separate
conditions.

The argument is checked
first, and then the function
is defined much as in
el mataleng,

15fig03.jpg

18fig02.jpg
A unique, built-in type and
data constructor for list

data [] a =[] | a:[a]

The cons operator is
a data constructor!

18fig01.jpg
Declaration of Type variable
a type variable being used

data Box a = Box a deriving Show

/‘

Type constructor Data constructor

18fig03_alt.jpg
The qualified statement lets you

give the module you're importing This i the nickname you'll use
a name so it doesn't conflict to preface all types and functions
with existing functions. from the Data.Map module.

import qualified Data.Map as Map

