




Early Praise for A Common-Sense Guide to Data Structures and Algorithms,
Second Edition

If you—like me—got into coding without the benefit of a “traditional” computer
science education, this book is a fantastic way to pick up the basics of how to
think about algorithms, as well as how to use and implement a range of common
data structures. All that, presented in plain language with a minimum of jargon,
and a fun, pleasant tone! A great read for folks looking to pick up foundational
programming knowledge.

➤ John Anderson
VP, Technology, Infinity Interactive

I’ve been coding for well over 30 years and one thing I’ve learned is to ALWAYS
return to basics. A Common-Sense Guide to Data Structures and Algorithms has
been a great way for me to re-assert all the assumptions I’ve made in the past,
and re-cement my understanding of the core skills I’ll use in the future. Don’t
buy this book if you think it’ll help you on whiteboarding tests. Those tests suck
anyway. Buy this book to continue a path to real algorithmic thinking. Whether
you’re early in your career or further along like me, you want a full toolbox of
data structures and the common (and not so common) algorithms that complement
them. Even better, you’ll learn how, when, and why to optimize your code. You’ll
make it work, make it fast, then make it elegant—and learn the trade-offs along
the way.

➤ Scott Hanselman
Microsoft Programmer, Professor, Blogger, Podcast



Despite being a software professional for fifteen years, I’ve learnt a great deal from
this updated edition. This is also the book I wish I’d had twenty years ago, when
learning these concepts as an undergraduate. It’s like I have a new superpower
tuning me in to the opportunities hash tables can provide to improve the Big O
of code. Forget what it looks like, forget what it feels like, forget what you think
it is, forget what habits you’ve accumulated: forget all that stuff; it won’t give you
the most efficient Big O!

➤ Nigel Lowry
Principal Consultant, Lemmata

The second edition of this book includes many worthy additions to an already
excellent resource for learning data structures and algorithms. Additional common-
sense explanations of topics like dynamic programming, and questions to check
your understanding at the end of each chapter, make this book invaluable to
developers with or without a computer science background.

➤ Jason Pike
Senior Software Engineer, KEYSYS Consulting

The perfect introduction to algorithms and structures for beginners. Highly
recommended!

➤ Brian Schau
Lead Developer, Schau Consulting
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Preface
Data structures and algorithms are more than abstract concepts. Mastering
them enables you to write code that is efficient, leading to software that runs
faster and consumes less memory. This is a big deal for today’s software
applications, which exist on increasingly mobile platforms and handle
increasingly greater amounts of data.

The problem with most resources on these subjects, though, is that they
are...well...obtuse. Most texts go heavy on the math jargon, and if you are
not a mathematician, it can be difficult to grasp what on Earth is going on.
Even books that claim to make algorithms “easy” seem to assume that the
reader has an advanced math degree. Because of this, too many people shy
away from these concepts, feeling that they are not “smart” enough to
understand them.

The truth, though, is that everything about data structures and algorithms boils
down to common sense. Mathematical notation itself is simply a particular
language, and everything in math can also be explained with common-sense
terminology. In this book, I use that common-sense language (plus a lot of
diagrams!) to explain these concepts in simple, and dare I say, enjoyable ways.

Once you understand these concepts, you will be equipped to write code that
is efficient, fast, and elegant. You will be able to weigh the pros and cons of
various code alternatives, and be able to make educated decisions as to which
code is best for the given situation.

In this book, I go out of my way to make these concepts real and practical
with ideas that you can make use of today. Sure, you’ll learn some really cool
computer science along the way. But this book is about taking that seemingly
abstract stuff and making it directly practical. You’ll be writing better code
and faster software by the time you’re done reading this book.
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Who Is This Book For?
This book is ideal for several audiences:

• You are a computer science student who wants a text that explains data
structures and algorithms in plain English. This book can serve as a
supplement to whatever “classic” textbook you happen to be using.

• You are a beginning developer who knows basic programming, but wants
to learn the fundamentals of computer science to write better code and
increase your programming knowledge and skills.

• You are a self-taught developer who has never studied formal computer
science (or a developer who did but forgot everything!) and wants to
leverage the power of data structures and algorithms to write more scalable
and elegant code.

Whoever you may be, I tried to write this book so it can be accessed and
enjoyed by people of all skill levels.

What’s New in the Second Edition
Why a second edition? In the few years since the original edition was pub-
lished, I’ve had the opportunity to teach these topics to various audiences.
Over time, I continued to refine my explanations as well as discover additional
topics that I thought were exciting and important. There was also quite a bit
of demand for hands-on exercises that would help people gain practice with
these concepts.

Accordingly, the second edition has the following new features:

1. Revised material. I’ve made significant revisions to the original chapters
for the sake of clarity. While I thought that the first edition did a pretty
good job in making these complex topics easy to understand, I found that
there was room to make certain areas even clearer.

Many sections of the original chapters have been entirely rewritten, and
I’ve added brand-new sections as well. I feel that these revisions alone
have enhanced the book to make it worthy of a new edition.

2. New chapters and topics. The second edition contains six new chapters
that cover topics I’m particularly excited about.

The book has always blended practice with theory, but I added even more
material that you can take straight to the bank. The chapters Big O in
Everyday Code and Techniques for Code Optimization focus exclusively
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on day-to-day code, and how knowledge of data structures and algorithms
can help you write more efficient software.

I went all out when it came to recursion. While the previous edition con-
tained a chapter on this topic, I devoted an entirely new chapter, Learning
to Write in Recursive, to teach you how to write recursive code, which can
be confusing for beginners. I haven’t seen this explained anywhere else,
and I think it’s a unique and valuable addition. I also added the chapter,
Dynamic Programming, which is a popular subject, and one critical to
making recursive code more efficient.

There are many data structures out there, and it’s difficult to select which
to include and which to leave out. However, there’s been increased demand
to learn about heaps and tries, and I’ve found them to be fascinating as
well. Hence the chapters, Keeping Your Priorities Straight with Heaps and
It Doesn't Hurt to Trie.

3. Exercises and solutions. Each chapter now has a number of exercises that
allow you to gain hands-on practice with each topic within the book. I
also added detailed solutions, which are available in an appendix at the
back of the book. This is a significant enhancement that transforms the
book into a more complete learning experience.

What’s in This Book?
As you may have guessed, this book talks quite a bit about data structures
and algorithms. More specifically, the book is laid out as follows:

In Why Data Structures Matter and Why Algorithms Matter, I explain what
data structures and algorithms are and explore the concept of time complex-
ity—which is used to determine how fast an algorithm is. In the process, I
also talk a great deal about arrays, sets, and binary search.

In O Yes! Big O Notation, I unveil Big O Notation and explain it in terms that
are easy to understand. We use this notation throughout the book, so this
chapter is pretty important.

In Speeding Up Your Code with Big O, Optimizing Code with and Without Big
O, and Optimizing for Optimistic Scenarios, we delve further into Big O Notation
and use it to make our day-to-day code faster. Along the way, I cover various
sorting algorithms, including Bubble Sort, Selection Sort, and Insertion Sort.

In Big O in Everyday Code, you apply all that you learned about Big O Notation
and analyze the efficiency of code from the real world.
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In Blazing Fast Lookup with Hash Tables and Crafting Elegant Code, I discuss
a few additional data structures, including hash tables, stacks, and queues.
I show how they impact the speed and elegance of our code and how we can
use them to solve real-world problems.

Recursively Recurse with Recursion introduces recursion, an anchor concept in
the world of computer science. We break it down in this chapter and see how
it can be a great tool for certain situations. Learning to Write in Recursive
teaches you how to write recursive code, which can otherwise be quite confusing.

Dynamic Programming shows you how to optimize recursive code and prevent
it from spiraling out of control. And Recursive Algorithms for Speed shows
you how to use recursion as the foundation for turbo-fast algorithms like
Quicksort and Quickselect, and takes your algorithm-development skills up
a few notches.

The following chapters, Node-Based Data Structures, Speeding Up All the
Things, Keeping Your Priorities Straight with Heaps, It Doesn't Hurt to Trie, and
Connecting Everything with Graphs, explore node-based data structures
including the linked list, the binary tree, the heap, the trie, and the graph,
and show how each is ideal for various applications.

Dealing with Space Constraints explores space complexity, which is important
when programming for devices with relatively small amounts of disk space,
or when dealing with big data.

The final chapter, Techniques for Code Optimization, walks you through various
practical techniques for optimizing the efficiency of code, and gives you new
ideas for improving the code you write every day.

How to Read This Book
You’ve got to read this book in order. There are books out there where you can
read each chapter independently and skip around a bit, but this isn’t one of
them. Each chapter assumes you’ve read the previous ones, and the book is
carefully constructed so you can ramp up your understanding as you proceed.

That being said, there are certain chapters in the latter half of the book that
don’t depend entirely on each other. The diagram on page xvii depicts which
chapters are prerequisites for other chapters.

For example, you could technically skip from Chapter 10 to Chapter 13 if you
wanted to. (Oh! And this diagram is based on a data structure called a tree.
You’re going to learn about it in Chapter 15.)
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Another important note: to make this book easy to understand, I don’t always
reveal everything about a particular concept when I first introduce it. Some-
times, the best way to break down a complex concept is to reveal a small piece
of it, and only reveal the next piece when the first piece has sunken in. If I
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define a particular term as such-and-such, don’t take that as the textbook
definition until you’ve completed the entire section on that topic.

It’s a trade-off: to make the book digestible, I’ve chosen to oversimplify certain
concepts at first and clarify them over time, rather than ensure that every
sentence is completely, academically, accurate. But don’t worry too much,
because by the end, you’ll see the entire accurate picture.

Code Examples
The concepts in this book aren’t specific to one particular programming lan-
guage. Because of this, I chose to use a variety of languages to demo the
examples in this book. The examples are written in Ruby, Python, and Java-
Script, so having a basic understanding of these languages would be helpful.

That being said, I’ve tried to write the examples in such a way that even if
you’re not familiar with the language of a given example, you should be able
to follow along. To help with this, I don’t always follow the popular idioms for
each language where I feel that an idiom may confuse someone new to that
particular language.

I understand that having the book switch languages frequently can come with
a certain mental switching cost. However, I felt that it was important to keep
the book language-agnostic. And again, I’ve tried to keep the code in all lan-
guages easy to read and straightforward.

There are some longer code snippets under the headings that read “Code
Implementation.” I certainly encourage you to study these code samples, but
you don’t necessarily have to understand every last line in order to proceed
to the next section of the book. If these long pieces of code are bogging you
down, just skip (or skim) them for now.

Finally, it’s important to note that not every code snippet is “production ready.”
My greatest focus has been to clarify the concept at hand, and while I did
also try to make the code generally complete, I may not have accounted for
every edge case. There’s certainly room for you to optimize the code further—so
feel free to go crazy with that!

Online Resources
This book has its own web page1 on which you can find more information
about the book and help improve it by reporting errata, including content
suggestions and typos.

1. https://pragprog.com/titles/jwdsal2
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CHAPTER 1

Why Data Structures Matter
When people first learn to code, their focus is—and should be—on getting
their code to run properly. Their code is measured using one simple metric:
does the code actually work?

As software engineers gain more experience, though, they begin to learn about
additional layers and nuances regarding the quality of their code. They learn
that there can be two snippets of code that both accomplish the same task,
but that one snippet is better than the other.

There are numerous measures of code quality. One important measure is
code maintainability. Maintainability of code involves aspects such as the
readability, organization, and modularity of one’s code.

However, there’s another aspect of high-quality code, and that is code efficien-
cy. For example, you can have two code snippets that both achieve the same
goal, but one runs faster than the other.

Take a look at these two functions, both of which print all the even numbers
from 2 to 100:

def print_numbers_version_one():
number = 2

while number <= 100:
# If number is even, print it:
if number % 2 == 0:
print(number)

number += 1
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def print_numbers_version_two():
number = 2

while number <= 100:
print(number)

# Increase number by 2, which, by definition,
# is the next even number:
number += 2

Which of these functions do you think runs faster?

If you said Version 2, you’re right. This is because Version 1 ends up looping
100 times, while Version 2 only loops 50 times. The first version then, takes
twice as many steps as the second version.

This book is about writing efficient code. Having the ability to write code that
runs quickly is an important aspect of becoming a better software developer.

The first step in writing fast code is to understand what data structures are
and how different data structures can affect the speed of our code. So, let’s
dive in.

Data Structures
Let’s talk about data.

Data is a broad term that refers to all types of information, down to the most
basic numbers and strings. In the simple but classic “Hello World!” program,
the string "Hello World!" is a piece of data. In fact, even the most complex pieces
of data usually break down into a bunch of numbers and strings.

Data structures refer to how data is organized. You’re going to learn how the
same data can be organized in a variety of ways.

Let’s look at the following code:

x = "Hello! "
y = "How are you "
z = "today?"

print x + y + z

This simple program deals with three pieces of data, outputting three strings
to make one coherent message. If we were to describe how the data is orga-
nized in this program, we’d say that we have three independent strings, each
contained within a single variable.

Chapter 1. Why Data Structures Matter • 2
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However, this same data can also be stored in an array:

array = ["Hello! ", "How are you ", "today?"]

print array[0] + array[1] + array[2]

You’re going to learn in this book that the organization of data doesn’t just
matter for organization’s sake, but can significantly impact how fast your code
runs. Depending on how you choose to organize your data, your program may
run faster or slower by orders of magnitude. And if you’re building a program
that needs to deal with lots of data, or a web app used by thousands of people
simultaneously, the data structures you select may affect whether your soft-
ware runs at all, or simply conks out because it can’t handle the load.

When you have a solid grasp on data structures’ performance implications
on the software you are creating, you will have the keys to write fast and
elegant code, and your expertise as a software engineer will be greatly
enhanced.

In this chapter, we’re going to begin our analysis of two data structures: arrays
and sets. While the two data structures may seem almost identical, you’re
going to learn the tools to analyze the performance implications of each choice.

The Array: The Foundational Data Structure
The array is one of the most basic data structures in computer science. I
assume you have worked with arrays before, so you are aware that an array
is a list of data elements. The array is versatile, and can serve as a useful tool
in many situations, but let’s take a look at one quick example.

If you are looking at the source code for an application that allows users to
create and use shopping lists for the grocery store, you might find code
like this:

array = ["apples", "bananas", "cucumbers", "dates", "elderberries"]

This array happens to contain five strings, each representing something that
I might buy at the supermarket. (You’ve got to try elderberries.)

Arrays come with their own technical jargon.

The size of an array is how many data elements the array holds. Our grocery
list array has a size of 5, since it contains five values.

The index of an array is the number that identifies where a piece of data lives
inside the array.
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In most programming languages, we begin counting the index at 0. So, for our
example array, "apples" is at index 0, and "elderberries" is at index 4, like this:

Data Structure Operations
To understand the performance of any data structure—such as the array—we
need to analyze the common ways our code might interact with that data
structure.

Many data structures are used in four basic ways, which we refer to as
operations. These operations are:

• Read: Reading refers to looking something up at a particular spot within
the data structure. With an array, this means looking up a value at a
particular index. For example, looking up which grocery item is located
at index 2 would be reading from the array.

• Search: Searching refers to looking for a particular value within a data
structure. With an array, this means looking to see if a particular value
exists within the array, and if so, at which index. For example, looking
up the index of "dates" in our grocery list would be searching the array.

• Insert: Insertion refers to adding a new value to our data structure. With
an array, this means adding a new value to an additional slot within the
array. If we were to add "figs" to our shopping list, we’d be inserting a new
value into the array.

• Delete: Deletion refers to removing a value from our data structure. With
an array, this means removing one of the values from the array. For
example, if we removed "bananas" from our grocery list, this value would
be deleted from the array.

In this chapter, we’ll analyze how fast each of these operations are when
applied to an array.

Measuring Speed
So, how do we measure the speed of an operation?

Chapter 1. Why Data Structures Matter • 4
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If you take away just one thing from this book, let it be this: when we measure
how “fast” an operation takes, we do not refer to how fast the operation takes
in terms of pure time, but instead in how many steps it takes.

We’ve actually seen this earlier in the context of printing the even numbers
from 2 to 100. The second version of that function was faster because it took
half as many steps as the first version did.

Why do we measure code’s speed in terms of steps?

We do this because we can never say definitively that any operation takes,
say, five seconds. While a piece of code may take five seconds on a particular
computer, that same piece of code may take longer on an older piece of
hardware. For that matter, that same code might run much faster on the
supercomputers of tomorrow. Measuring the speed of an operation in terms
of time is undependable, since the time will always change depending on the
hardware it is run on.

However, we can measure the speed of an operation in terms of how many
computational steps it takes. If Operation A takes 5 steps, and Operation B
takes 500 steps, we can assume that Operation A will always be faster than
Operation B on all pieces of hardware. Measuring the number of steps is,
therefore, the key to analyzing the speed of an operation.

Measuring the speed of an operation is also known as measuring its time
complexity. Throughout this book, I’ll use the terms speed, time complexity,
efficiency, performance, and runtime interchangeably. They all refer to the
number of steps a given operation takes.

Let’s jump into the four operations of an array and determine how many steps
each one takes.

Reading
The first operation we’ll look at is reading, which looks up what value is con-
tained at a particular index inside the array.

A computer can read from an array in just one step. This is because the
computer has the ability to jump to any particular index in the array and
peer inside. In our example of ["apples", "bananas", "cucumbers", "dates", "elderberries"],
if we looked up index 2, the computer would jump right to index 2 and report
that it contains the value "cucumbers".

How is the computer able to look up an array’s index in just one step? Let’s
see how.
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A computer’s memory can be viewed as a giant collection of cells. In the fol-
lowing diagram, you can see a grid of cells in which some are empty and some
contain bits of data:

While this visual is a simplification of how computer memory works under
the hood, it represents the essential idea.

When a program declares an array, it allocates a contiguous set of empty
cells for use in the program. So, if you were creating an array meant to hold
five elements, your computer would find a group of five empty cells in a row
and designate it to serve as your array:
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Now, every cell in a computer’s memory has a specific address. It’s sort of
like a street address (for example, 123 Main St.), except that it’s represented
with a number. Each cell’s memory address is one number greater than the
previous cell’s address. Here’s a visual that shows each cell’s memory address:

In the next diagram, you can see our shopping list array with its indexes and
memory addresses:

When the computer reads a value at a particular index of an array, it can
jump straight to that index because of the combination of the following facts
about computers:

1. A computer can jump to any memory address in one step. For example,
if you asked a computer to inspect whatever’s at memory address 1063,
it can access that without having to perform any search process. As an
analogy, if I ask you to raise your right pinky finger, you wouldn’t have
to search all your fingers to find which one is your right pinky. You’d be
able to identify it immediately.
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2. Whenever a computer allocates an array, it also makes note at which
memory address the array begins. So, if we asked the computer to find
the first element of the array, it would be able to instantly jump to the
appropriate memory address to find it.

Now, these facts explain how the computer can find the first value of an array
in a single step. However, a computer can also find the value at any index by
performing simple addition. If we asked the computer to find the value at
index 3, the computer would simply take the memory address at index 0 and
add 3. (Memory addresses are sequential, after all.)

Let’s apply this to our grocery list array. Our example array begins at memory
address 1010. So, if we told the computer to read the value at index 3, the
computer would go through the following thought process:

1. The array begins with index 0, which is at memory address 1010.
2. Index 3 will be exactly three slots past index 0.
3. By logical extension, index 3 would be located at memory address 1013,

since 1010 + 3 is 1013.

Once the computer knows that index 3 is at memory address 1013, it can
jump right there and see that it contains the value "dates".

Reading from an array is, therefore, an efficient operation, since the computer
can read any index by jumping to any memory address in one step. Although
I described the computer’s thought process by breaking it down into three
parts, we are currently focusing on the main step of the computer jumping
to a memory address. (In later chapters, we’ll explore how to know which
steps are the ones worth focusing on.)

Naturally, an operation that takes just one step is the fastest type of operation.
Besides being a foundational data structure, arrays are also a very powerful
data structure because we can read from them with such speed.

Now, what if instead of asking the computer what value is contained at index
3, we flipped the question around and asked at what index "dates" can be
found? That is the search operation, and we’ll explore that next.

Searching
As I stated previously, searching an array means looking to see whether a
particular value exists within an array and if so, at which index it’s located.

In a sense, it’s the inverse of reading. Reading means providing the computer
an index and asking it to return the value contained there. Searching, on the
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other hand, means providing the computer a value and asking it to return
the index of that value’s location.

While these two operations sound similar, there’s a world of difference between
them when it comes to efficiency. Reading from an index is fast, since a
computer can jump immediately to any index and discover the value contained
there. Searching, though, is tedious, since the computer has no way to jump
to a particular value.

This is an important fact about computers: a computer has immediate access
to all of its memory addresses, but it has no idea offhand what values are
contained at each memory address.

Let’s take our earlier array of fruits and veggies, for example. The computer
can’t immediately see the actual contents of each cell. To the computer, the
array looks something like this:

To search for a fruit within the array, the computer has no choice but to
inspect each cell one at a time.

The following diagrams demonstrate the process the computer would use to
search for "dates" within our array.

First, the computer checks index 0:

Since the value at index 0 is "apples", and not the "dates" we’re looking for, the
computer moves on to the next index as shown in the diagram on page 10.
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Since index 1 doesn’t contain the "dates" we’re looking for either, the computer
moves on to index 2:

Once again, we’re out of luck, so the computer moves to the next cell:

Aha! We’ve found the elusive "dates", and now know that the "dates" are found
at index 3. At this point, the computer does not need to move on to the next
cell of the array, since it already found what we’re looking for.

In this example, because the computer had to check four different cells until
it found the value we were searching for, we’d say that this particular operation
took a total of four steps.

In Why Algorithms Matter, you’ll learn about another way to search an array,
but this basic search operation—in which the computer checks each cell one
at a time—is known as linear search.

Now, what is the maximum number of steps a computer would need to perform
to conduct a linear search on an array?

If the value we’re seeking happens to be in the final cell in the array (like "elder-
berries"), then the computer would end up searching through every cell of the
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array until it finally finds the value it’s looking for. Also, if the value we’re looking
for doesn’t occur in the array at all, the computer likewise would have to search
every cell so that it can be sure the value doesn’t exist within the array.

So, it turns out that for an array of five cells, the maximum number of steps
linear search would take is five. For an array of 500 cells, the maximum
number of steps linear search would take is 500.

Another way of saying this is that for N cells in an array, linear search would
take a maximum of N steps. In this context, N is just a variable that can be
replaced by any number.

In any case, it’s clear that searching is less efficient than reading, since
searching can take many steps, while reading always takes just one step no
matter the size of the array.

Next, we’ll analyze the operation of insertion.

Insertion
The efficiency of inserting a new piece of data into an array depends on where
within the array you’re inserting it.

Let’s say we want to add "figs" to the end of our shopping list. Such an insertion
takes just one step.

This is true due to another fact about computers: when allocating an array,
the computer always keeps track of the array’s size.

When we couple this with the fact that the computer also knows at which
memory address the array begins, computing the memory address of the last
item of the array is a cinch: if the array begins at memory address 1010 and is
of size 5, that means its final memory address is 1014. So, to insert an item
beyond that would mean adding it to the next memory address, which is 1015.

Once the computer calculates which memory address to insert the new value
into, it can do so in one step.

This is what inserting "figs" at the end of the array looks like:
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But there’s one hitch. Because the computer initially allocated only five cells
in memory for the array, and now we’re adding a sixth element, the computer
may have to allocate additional cells toward this array. In many programming
languages, this is done under the hood automatically, but each language
handles this differently, so I won’t get into the details of it.

We’ve dealt with insertions at the end of an array, but inserting a new piece
of data at the beginning or in the middle of an array is a different story. In
these cases, we need to shift pieces of data to make room for what we’re
inserting, leading to additional steps.

For example, let’s say we want to add "figs" to index 2 within the array. Take
a look at the following diagram:

To do this, we need to move "cucumbers", "dates", and "elderberries" to the right to
make room for "figs". This takes multiple steps, since we need to first move
"elderberries" one cell to the right to make room to move "dates". We then need
to move "dates" to make room for "cucumbers". Let’s walk through this process.

Step 1: We move "elderberries" to the right:

Step 2: We now move "dates" to the right:
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Step 3: We now move "cucumbers" to the right:

Step 4: Finally, we can insert "figs" into index 2:

Notice that in the preceding example, insertion took four steps. Three of the
steps involved shifting data to the right, while one step involved the actual
insertion of the new value.

The worst-case scenario for insertion into an array—that is, the scenario in
which insertion takes the most steps—is when we insert data at the beginning
of the array. This is because when inserting at the beginning of the array, we
have to move all the other values one cell to the right.

We can say that insertion in a worst-case scenario can take N + 1 steps for
an array containing N elements. This is because we need to shift all N elements
over, and then finally execute the actual insertion step.

Now that we’ve covered insertion, we’re up to the array’s final operation:
deletion.

Deletion
Deletion from an array is the process of eliminating the value at a particular
index.

Let’s return to our original example array and delete the value at index 2. In
our example, this value is "cucumbers".
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Step 1: We delete "cucumbers" from the array:

While the actual deletion of "cucumbers" technically took just one step, we now
have a problem: we have an empty cell sitting smack in the middle of our
array. An array is not effective when there are gaps in the middle of it, so to
resolve this issue, we need to shift "dates" and "elderberries" to the left. This
means our deletion process requires additional steps.

Step 2: We shift "dates" to the left:

Step 3: We shift "elderberries" to the left:

It turns out that for this deletion, the entire operation took three steps. The
first step involved the actual deletion, and the other two steps involved data
shifts to close the gap.

Like insertion, the worst-case scenario of deleting an element is deleting the
very first element of the array. This is because index 0 would become empty,
and we’d have to shift all the remaining elements to the left to fill the gap.

For an array of five elements, we’d spend one step deleting the first element,
and four steps shifting the four remaining elements. For an array of 500 ele-
ments, we’d spend one step deleting the first element, and 499 steps shifting
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the remaining data. We can say then, that for an array containing N elements,
the maximum number of steps that deletion would take is N steps.

Congratulations! We’ve analyzed the time complexity of our first data structure.
Now that you’ve learned how to analyze a data structure’s efficiency, you can
now discover how different data structures have different efficiencies. This is
crucial, because choosing the correct data structure for your code can have
serious ramifications on your software’s performance.

The next data structure—the set—seems so similar to the array at first glance.
However, you’ll see that the operations performed on arrays and sets have
different efficiencies.

Sets: How a Single Rule Can Affect Efficiency
Let’s explore another data structure: the set. A set is a data structure that
does not allow duplicate values to be contained within it.

There are different types of sets, but for this discussion, I’ll talk about an
array-based set. This set is just like an array—it is a simple list of values.
The only difference between this set and a classic array is that the set never
allows duplicate values to be inserted into it.

For example, if you had the set ["a", "b", "c"] and tried to add another "b", the
computer just wouldn’t allow it, since a "b" already exists within the set.

Sets are useful when you need to ensure that you don’t have duplicate data.

For instance, if you’re creating an online phone book, you don’t want the
same phone number appearing twice. In fact, I’m currently suffering from
this with my local phone book: my home phone number is not just listed for
me, but also it is erroneously listed as the phone number for some family
named Zirkind. (Yes, this is a true story.) Let me tell you—it’s quite annoying
to receive phone calls and voicemail from people looking for the Zirkinds. For
that matter, I’m sure the Zirkinds are also wondering why no one ever calls
them. And when I call the Zirkinds to let them know about the error, my wife
picks up the phone because I’ve called my own number. (Okay, that last part
never happened.) If only the program that produced the phone book had used
a set…

In any case, an array-based set is an array with one additional constraint of
barring duplicates. While not allowing duplicates is a useful feature, this
simple constraint also causes the set to have a different efficiency for one of
the four primary operations.
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Let’s analyze the reading, searching, insertion, and deletion operations in the
context of an array-based set.

Reading from a set is exactly the same as reading from an array—it takes just
one step for the computer to look up what’s contained within a particular index.
As I described earlier, this is because the computer can jump to any index
within the set since it can easily calculate and jump to its memory address.

Searching a set also turns out to be no different than searching an array—it
takes up to N steps to search for a value within a set. And deletion is also
identical between a set and an array—it takes up to N steps to delete a value
and move data to the left to close the gap.

Insertion, however, is where arrays and sets diverge. Let’s first explore
inserting a value at the end of a set, which was a best-case scenario for an
array. We saw that with an array, the computer can insert a value at its end
in a single step.

With a set, however, the computer first needs to determine that this value
doesn’t already exist in this set—because that’s what sets do: they prevent
duplicate data from being inserted into them.

Now, how will the computer ensure that the new data isn’t already contained
in the set? Remember, a computer doesn’t know offhand what values are
contained within the cells of an array or set. Because of this, the computer
will first need to search the set to see whether the value we want to insert is
already there. Only if the set does not yet contain our new value will the
computer allow the insertion to take place.

So, every insertion into a set first requires a search.

Let’s see this in action with an example. Imagine our grocery list from earlier
was stored as a set—which would be a decent choice since we don’t want to
buy the same thing twice, after all. If our current set is ["apples", "bananas",
"cucumbers", "dates", "elderberries"], and we want to insert "figs" into the set, the
computer must execute the following steps, beginning with a search for "figs".

Step 1: Search index 0 for "figs":
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It’s not there, but it might be somewhere else in the set. We need to make
sure "figs" does not exist anywhere before we can insert it.

Step 2: Search index 1:

Step 3: Search index 2:

Step 4: Search index 3:

Step 5: Search index 4:

Now that we’ve searched the entire set, we know with certainty that it doesn’t
already contain "figs". At this point, it’s safe to complete the insertion. And
that brings us to our final step:
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Step 6: Insert "figs" at the end of the set:

Inserting a value at the end of a set is the best-case scenario, but we still had
to perform six steps for a set originally containing five elements. That is, we
had to search all five elements before performing the final insertion step.

Said another way: insertion into the end of a set will take up to N + 1 steps
for N elements. This is because there are N steps of search to ensure that the
value doesn’t already exist within the set, and then one step for the actual
insertion. Contrast this with the regular array, in which such an insertion
takes a grand total of one step.

In the worst-case scenario, where we’re inserting a value at the beginning of
a set, the computer needs to search N cells to ensure that the set doesn’t
already contain that value, another N steps to shift all the data to the right,
and another final step to insert the new value. That’s a total of 2N + 1 steps.
Contrast this to insertion into the beginning of a regular array, which only
takes N + 1 steps.

Now, does this mean you should avoid sets just because insertion is slower
for sets than regular arrays? Absolutely not. Sets are important when you
need to ensure that there is no duplicate data. (Hopefully, one day my phone
book will be fixed.) But when you don’t have such a need, an array may be
preferable, since insertions for arrays are more efficient than insertions for
sets. You must analyze the needs of your own application and decide which
data structure is a better fit.

Wrapping Up
Analyzing the number of steps an operation takes is the heart of understanding
the performance of data structures. Choosing the right data structure for
your program can spell the difference between bearing a heavy load versus
collapsing under it. In this chapter, you’ve learned to use this analysis to
weigh whether an array or a set might be the appropriate choice for a given
application.
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Now that you’ve begun to learn how to think about the time complexity of data
structures, we can use the same analysis to compare competing algorithms
(even within the same data structure) to ensure the ultimate speed and perfor-
mance of our code. And that’s exactly what the next chapter is about.

Exercises
The following exercises provide you with the opportunity to practice with
arrays. The solutions to these exercises are found in the section, Chapter 1,
on page 439.

1. For an array containing 100 elements, provide the number of steps the
following operations would take:
a. Reading
b. Searching for a value not contained within the array
c. Insertion at the beginning of the array
d. Insertion at the end of the array
e. Deletion at the beginning of the array
f. Deletion at the end of the array

2. For an array-based set containing 100 elements, provide the number of
steps the following operations would take:
a. Reading
b. Searching for a value not contained within the array
c. Insertion of a new value at the beginning of the set
d. Insertion of a new value at the end of the set
e. Deletion at the beginning of the set
f. Deletion at the end of the set

3. Normally the search operation in an array looks for the first instance of
a given value. But sometimes we may want to look for every instance of
a given value. For example, say we want to count how many times the
value “apple” is found inside an array. How many steps would it take to
find all the “apples”? Give your answer in terms of N.
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CHAPTER 2

Why Algorithms Matter
In the previous chapter, we took a look at our first data structures and saw
how choosing the right data structure can affect the performance of our code.
Even two data structures that seem so similar, such as the array and the set,
can have very different levels of efficiency.

In this chapter, we’re going to discover that even if we decide on a particular
data structure, another major factor can affect the efficiency of our code: the
proper selection of which algorithm to use.

Although the word algorithm sounds like something complex, it really isn’t.
An algorithm is simply a set of instructions for completing a specific task.

Even a process as simple as preparing a bowl of cereal is technically an
algorithm, as it involves following a defined set of steps to achieve the task
at hand. The cereal-preparation algorithm follows these four steps (for me,
at least):

1. Grab a bowl.
2. Pour cereal into the bowl.
3. Pour milk into the bowl.
4. Dip a spoon into the bowl.

By following these steps in this particular order, we can now enjoy our
breakfast.

When applied to computing, an algorithm refers to the set of instructions
given to a computer to achieve a particular task. When we write any code,
then, we’re creating algorithms for the computer to follow and execute.

We can also express algorithms using plain English to set out the details of the
instructions we plan on providing the computer. Throughout this book, I’ll use
both plain English as well as code to show how various algorithms work.
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Sometimes, it’s possible to have two different algorithms that accomplish the
same task. We saw an example of this at the beginning of Why Data Structures
Matter, where we had two different approaches for printing out even numbers.
In that case, one algorithm had twice as many steps as the other.

In this chapter, we’ll encounter another two algorithms that solve the same
problem. In this case, though, one algorithm will be faster than the other by
orders of magnitude.

To explore these new algorithms, we’ll need to take a look at a new data
structure.

Ordered Arrays
The ordered array is almost identical to the “classic” array we saw in the
previous chapter. The only difference is that ordered arrays require that the
values are always kept—you guessed it—in order. That is, every time a value
is added, it gets placed in the proper cell so that the values in the array remain
sorted.

For example, let’s take the array [3, 17, 80, 202]:

Assume we want to insert the value 75 into the array. If this array were a
classic array, we could insert the 75 at the end, as follows:

As we saw in the previous chapter, the computer can accomplish this in a
single step.

On the other hand, if this were an ordered array, we’d have no choice but to
insert the 75 in the proper spot so that the values remain in ascending order:
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Now, this is easier said than done. The computer cannot simply drop the 75
into the right slot in a single step because it first has to find the right place
to insert the 75, and then shift the other values to make room for it. Let’s
break down this process step by step.

Let’s start again with our original ordered array:

Step 1: We check the value at index 0 to determine whether the value we want
to insert—the 75—should go to its left or to its right:

Because 75 is greater than 3, we know that the 75 will be inserted somewhere
to its right. However, we don’t know yet exactly which cell it should be
inserted into, so we need to check the next cell.

We’ll call this type of step a comparison, where we compare the value we’re
inserting to a number already present in the ordered array.

Step 2: We inspect the value at the next cell:

75 is greater than 17, so we need to move on.

Step 3: We check the value at the next cell:

We’ve encountered the value 80, which is greater than the 75 we wish to
insert. Since we’ve reached the first value that is greater than 75, we can
conclude that the 75 must be placed immediately to the left of this 80 to
maintain the order of this ordered array. To do this, we need to shift data to
make room for the 75.
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Step 4: Move the final value to the right:

Step 5: Move the next-to-last value to the right:

Step 6: We can finally insert the 75 into its correct spot:

It emerges that when inserting into an ordered array, we need to always
conduct a search before the actual insertion to determine the correct spot for
the insertion. This is one difference in performance between a classic array
and an ordered array.

We can see in this example that there were initially four elements, and that
insertion took six steps. In terms of N, we’d say that for N elements in an
ordered array, the insertion took N + 2 steps in total.

Interestingly, the number of steps for insertion remains similar no matter
where in the ordered array our new value ends up. If our value ends up toward
the beginning of the ordered array, we have fewer comparisons and more
shifts. If our value ends up toward the end, we get more comparisons but
fewer shifts. The fewest steps occur when the new value winds up at the very
end, since no shifts are necessary. In this case, we take N steps to compare
the new value with all N existing values, plus one step for the insertion itself,
yielding a total of N + 1 steps.

While insertion is less efficient for an ordered array than for a classic array,
the ordered array has a secret superpower when it comes to searching.

Searching an Ordered Array
In the previous chapter, I described the process for searching for a particular
value within a classic array: we check each cell one at a time—from left to
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right—until we find the value we’re looking for. I noted that this process is
referred to as linear search.

Let’s see how linear search differs between a classic and an ordered array.

Say that we have a regular array of [17, 3, 75, 202, 80]. If we were to search for
the value 22—which happens to be nonexistent in this array—we would need
to search each and every element because the 22 could potentially be anywhere
in the array. The only time we could stop our search before we reach the
array’s end is if we happen to find the value we’re looking for before we reach
the end.

With an ordered array, however, we can stop a search early even if the value
isn’t contained within the array. Let’s say we’re searching for a 22 within an
ordered array of [3, 17, 75, 80, 202]. We can stop the search as soon as we reach
the 75, since it’s impossible for the 22 to be anywhere to the right of it.

Here’s a Ruby implementation of linear search on an ordered array:

def linear_search(array, search_value)

# We iterate through every element in the array:
array.each_with_index do |element, index|

# If we find the value we're looking for, we return its index:
if element == search_value
return index

# If we reach an element that is greater than the value
# we're looking for, we can exit the loop early:
elsif element > search_value
break

end
end

# We return nil if we do not find the value within the array:
return nil

end

This method accepts two arguments: array is the ordered array we’re searching,
and search_value is the value we’re searching for.

Here’s how to use this function to find the 22 in our example array:

p linear_search([3, 17, 75, 80, 202], 22)

As you can see, this linear_search method iterates over every element of the array,
looking for the search_value. The search stops as soon as the element it’s iterating
over is greater than the search_value, since we know that the search_value will not
be found further within the array.
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In this light, linear search can take fewer steps in an ordered array than in
a classic array in certain situations. That being said, if we’re searching for a
value that happens to be the final value or not within the array at all, we will
still end up searching each and every cell.

At first glance, then, standard arrays and ordered arrays don’t have
tremendous differences in efficiency, or at least not in worst-case scenarios.
For both kinds of arrays, if they contain N elements, linear search can take
up to N steps.

But we’re about to unleash an algorithm that is so powerful that it will leave
linear search in the dust.

We’ve been assuming until now that the only way to search for a value within
an ordered array is linear search. The truth, however, is that linear search
is only one possible algorithm for searching for a value. But it is not the only
algorithm we can use.

The big advantage of an ordered array over a classic array is that an ordered
array allows for an alternative searching algorithm. This algorithm is known
as binary search, and it is a much, much faster algorithm than linear search.

Binary Search
You’ve probably played this guessing game as a child: I’m thinking of a
number between 1 and 100. Keep guessing which number I’m thinking of,
and I’ll let you know whether you need to guess higher or lower.

You may know intuitively how to play this game. You wouldn’t begin by
guessing number 1. Instead, you’d probably start with 50, which is smack
in the middle. Why? Because by selecting 50, no matter whether I tell you to
guess higher or lower, you’ve automatically eliminated half the possible
numbers!

If you guess 50 and I tell you to guess higher, you’d then pick 75, to eliminate
half of the remaining numbers. If after guessing 75, I told you to guess lower,
you’d pick 62 or 63. You’d keep on choosing the halfway mark in order to
keep eliminating half of the remaining numbers.

Let’s visualize this process where we’re told to guess a number between 1
and 10 as shown in the image on page 27.

This, in a nutshell, is binary search.
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Let’s see how binary search is applied to an ordered array. Say we have an
ordered array containing nine elements. The computer doesn’t know offhand
what value each cell contains, so we will portray the array like this:

Say we’d like to search for the value 7 inside this ordered array. Here’s how
binary search would work:

Step 1: We begin our search from the central cell. We can immediately jump
to this cell, since we can calculate its index by taking the array’s length and
dividing it by 2. We check the value at this cell:

Because the value uncovered is a 9, we can conclude that the 7 is somewhere
to its left. We’ve just successfully eliminated half of the array’s cells—that is,
all the cells to the right of the 9 (and the 9 itself):

Step 2: Among the cells to the left of the 9, we inspect the middlemost value.
There are two middlemost values, so we arbitrarily choose the left one:

It’s a 4, so the 7 must be somewhere to its right. We can eliminate the 4 and
the cell to its left:

Step 3: There are two more cells where the 7 can be. We arbitrarily choose
the left one as shown in the image on page 29.
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Step 4: We inspect the final remaining cell. (If it’s not there, that means there
is no 7 within this ordered array.)

We found the 7 in four steps. While this is the same number of steps linear
search would have taken in this example, we’ll take a look at the power of
binary search shortly.

Note that binary search is only possible within an ordered array. With a
classic array, values can be in any order, and we’d never know whether to
look to the left or right of any given value. This is one of the advantages of
ordered arrays: we have the option of binary search.

Code Implementation: Binary Search
Here’s an implementation of binary search in Ruby:

def binary_search(array, search_value)

# First, we establish the lower and upper bounds of where the value
# we're searching for can be. To start, the lower bound is the first
# value in the array, while the upper bound is the last value:

lower_bound = 0
upper_bound = array.length - 1

# We begin a loop in which we keep inspecting the middlemost value
# between the upper and lower bounds:

while lower_bound <= upper_bound do

# We find the midpoint between the upper and lower bounds:
# (We don't have to worry about the result being a non-integer
# since in Ruby, the result of division of integers will always
# be rounded down to the nearest integer.)

midpoint = (upper_bound + lower_bound) / 2

# We inspect the value at the midpoint:

value_at_midpoint = array[midpoint]
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# If the value at the midpoint is the one we're looking for, we're done.
# If not, we change the lower or upper bound based on whether we need
# to guess higher or lower:

if search_value == value_at_midpoint
return midpoint

elsif search_value < value_at_midpoint
upper_bound = midpoint - 1

elsif search_value > value_at_midpoint
lower_bound = midpoint + 1

end
end

# If we've narrowed the bounds until they've reached each other, that
# means that the value we're searching for is not contained within
# this array:

return nil
end

Let’s break this down. As with the linear_search method, binary_search accepts the
array and the search_value as arguments.

Here’s an example of how to call this method:

p binary_search([3, 17, 75, 80, 202], 22)

The method first establishes the range of indexes in which the search_value
might be found. We do this with:

lower_bound = 0
upper_bound = array.length - 1

Because, when starting our search, the search_value might be found anywhere
within the entire array, we establish the lower_bound as the first index and the
upper_bound as the last index.

The essence of the search takes place within the while loop:

while lower_bound <= upper_bound do

This loop runs while we still have a range of elements in which the search_value
may lie. As we’ll see shortly, our algorithm will keep narrowing this range as
we go. The clause lower_bound <= upper_bound will be reached when there’s no
more range left, and we can conclude that the search_value is not present in
the array.

Within the loop, our code inspects the value at the midpoint of the range. This
is accomplished with:

midpoint = (upper_bound + lower_bound) / 2
value_at_midpoint = array[midpoint]
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The value_at_midpoint is the item found at the center of the range.

Now, if the value_at_midpoint is the search_value we’re looking for, we’ve struck
gold, and can return the index in which the search_value is found:

if search_value == value_at_midpoint
return midpoint

If the search_value is less than the value_at_midpoint, it means the search_value must
be found somewhere earlier in the array. We can then narrow the range of
our search by making the upper_bound the index to the left of the midpoint, since
the search_value cannot possibly be found anywhere further than that:

elsif search_value < value_at_midpoint
upper_bound = midpoint - 1

Conversely, if the search_value is greater than the value_at_midpoint, it means the
search_value can only be found somewhere to the right of the midpoint, so we
raise the lower_bound appropriately:

elsif search_value > value_at_midpoint
lower_bound = midpoint + 1

We return nil once the range has been narrowed down to 0 elements, and we
know with certainty that the search_value does not exist within the array.

Binary Search vs. Linear Search
With ordered arrays of a small size, the algorithm of binary search doesn’t
have much of an advantage over linear search. But let’s see what happens
with larger arrays.

With an array containing 100 values, here are the maximum number of steps
each type of search would take:

• Linear search: 100 steps
• Binary search: 7 steps

With linear search, if the value we’re searching for is in the final cell or is
greater than the value in the final cell, we have to inspect each and every
element. For an array of size 100, this would take 100 steps.

When we use binary search, however, each guess we make eliminates half of
the possible cells we’d have to search. In our very first guess, we get to elimi-
nate a whopping 50 cells.

Let’s look at this another way, and we’ll see a pattern emerge.

With an array of size 3, binary search would take a maximum of two steps.
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If we double the number of cells in the array (and add one more to keep the
number odd for simplicity’s sake), there are seven cells. For such an array,
the maximum number of steps to find something using binary search is three.

If we double it again (and add one) so that the ordered array contains 15
elements, the maximum number of steps for binary search is four.

The pattern that emerges is that for each time we double the size of the ordered
array, the number of steps needed for binary search increases by one. This
makes sense, as each lookup eliminates half of the elements from the search.

This pattern is unusually efficient: each time we double the data, the binary
search algorithm adds just one more step.

Contrast this with linear search. If you had 3 elements, you’d need up to
three steps. For 7 elements, you’d need a maximum of seven steps. For 100
values, you’d need up to 100 steps. With linear search, then, there are as
many steps as there are items. So for linear search, each time we double the
size of the array, we double the number of steps of our search. For binary
search, though, each time we double the size of the array, we only need to
add one more step.

Let’s see how this plays out for larger arrays. With an array of 10,000 ele-
ments, linear search can take up to 10,000 steps, while binary search takes
up to a maximum of just 13 steps. For an array of size one million, linear
search would take up to one million steps, while binary search would take
up to just 20 steps.

We can visualize the difference in performance between linear and binary
search with this graph:

We’ll be analyzing a bunch of graphs that look like this, so let’s take a moment
to digest what is going on. The x-axis represents the number of elements
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inside the array. That is, as we move from left to right, we are dealing with
an increasing amount of data.

The y-axis represents how many steps the algorithm takes. As we move up
the graph, we are looking at a greater number of steps.

If you look at the line representing linear search, you’ll see that as an array
has more elements, linear search takes a proportionally increasing number
of steps. Essentially, for each additional element in the array, linear search
takes one additional step. This produces a straight diagonal line.

With binary search, on the other hand, you’ll see that as the data increases,
the algorithm’s steps only increase marginally. This makes perfect sense with
what we know: you have to double the amount of data just to add one addi-
tional step to binary search.

Keep in mind that ordered arrays aren’t faster in every respect. As you’ve
seen, insertion in ordered arrays is slower than in standard arrays. But here’s
the trade-off: by using an ordered array, you have somewhat slower insertion,
but much faster search. Again, you must always analyze your application to
see which is a better fit. Will your software be doing many insertions? Will
searching be a significant feature of the app you are building?

Pop Quiz
I find the following pop quiz question really forces one to grasp the efficiency
of binary search. Cover the answer and see if you get it right.

The question: We said that for an ordered array with 100 elements, binary
search takes seven steps. How many steps would binary search take on an
ordered array containing 200 elements?

The answer: 8 steps.

The intuitive answer I often hear is 14 steps, but this is incorrect. The whole
beauty of binary search is that each inspection eliminates half of the
remaining elements. Therefore, each time we double the amount of data, we
add only one step. After all, this doubling of data gets totally eliminated with
the first inspection!

It’s worth noting that now that we’ve added binary search to our toolkit,
insertion within an ordered array can become faster as well. Insertion requires
a search before the actual insertion, but we can now upgrade that search
from a linear search to a binary search. However, insertion within an ordered
array still remains slower than within a regular array, as the regular array’s
insertion doesn’t require a search at all.
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Wrapping Up
Often there is more than one way to achieve a particular computing goal, and
the algorithm you choose can seriously affect the speed of your code.

It’s also important to realize that there usually isn’t a single data structure
or algorithm that is perfect for every situation. For example, just because
ordered arrays allow for binary search doesn’t mean you should always use
ordered arrays. In situations where you don’t anticipate the need to search
the data much, only adding data, standard arrays may be a better choice
because their insertion is faster.

As we’ve seen, the way to analyze competing algorithms is to count the
number of steps each one takes. In the next chapter, we’re going to look at a
formalized way of expressing the time complexity of competing data structures
and algorithms. Having this common language will give us clearer information
that will allow us to make better decisions about which algorithms we choose.

Exercises
The following exercises provide you with the opportunity to practice with
binary search. The solutions to these exercises are found in the section,
Chapter 2, on page 440.

1. How many steps would it take to perform a linear search for the number
8 in the ordered array, [2, 4, 6, 8, 10, 12, 13]?

2. How many steps would binary search take for the previous example?

3. What is the maximum number of steps it would take to perform a binary
search on an array of size 100,000?
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CHAPTER 3

O Yes! Big O Notation
We’ve seen in the preceding chapters that the primary factor in determining
an algorithm’s efficiency is the number of steps it takes.

However, we can’t simply label one algorithm a “22-step algorithm” and
another a “400-step algorithm.” This is because the number of steps an
algorithm takes cannot be pinned down to a single number. Let’s take linear
search, for example. The number of steps linear search takes varies, as it
takes as many steps as there are elements in the array. If the array contains
22 elements, linear search takes 22 steps. If the array contains 400 elements,
however, linear search takes 400 steps.

The more effective way, then, to quantify the efficiency of linear search is to
say that linear search takes N steps for N elements in the array. That is, if an
array has N elements, linear search takes N steps. Now, this is a pretty wordy
way of expressing this concept.

To help ease communication regarding time complexity, computer scientists
have borrowed a concept from the world of mathematics to describe a concise
and consistent language around the efficiency of data structures and algo-
rithms. Known as Big O Notation, this formalized expression of these concepts
allows us to easily categorize the efficiency of a given algorithm and convey
it to others.

Once you understand Big O Notation, you’ll have the tools to analyze each
algorithm going forward in a consistent and concise way—and it’s the way
the pros do it.

While Big O Notation comes from the math world, I’m going to leave out all
the mathematical jargon and explain it as it relates to computer science.
Additionally, I’m going to begin by explaining Big O Notation in simple terms
and then continue to refine it as we proceed through this and the next three
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chapters. It’s not a difficult concept, but it’ll be made even easier if I explain
it in chunks over multiple chapters.

Big O: How Many Steps Relative to N Elements?
Big O achieves consistency by focusing on the number of steps an algorithm
takes, but in a specific way. Let’s start off by applying Big O to the algorithm of
linear search.

In a worst-case scenario, linear search will take as many steps as there are
elements in the array. As we’ve previously phrased it: for N elements in the
array, linear search can take up to N steps. The appropriate way to express
this in Big O Notation is:

O(N)

Some pronounce this as “Big Oh of N.” Others call it “Order of N.” My personal
preference, however, is “Oh of N.”

Here’s what the notation means. It expresses the answer to what we’ll call
the “key question.” The key question is: if there are N data elements, how
many steps will the algorithm take? Go ahead and read that sentence again.
Then, emblazon it on your forehead, as this is the definition of Big O Notation
that we’ll be using throughout the rest of this book.

The answer to the key question lies within the parentheses of our Big O
expression. O(N) says that the answer to the key question is that the algorithm
will take N steps.

Let’s quickly review the thought process for expressing time complexity with
Big O Notation, again using the example of linear search. First, we ask the
key question: if there are N data elements in an array, how many steps will
linear search take? Because the answer to this question is that linear search
will take N steps, we express this as O(N). For the record, an algorithm that
is O(N) is also known as having linear time.

Let’s contrast this with how Big O would express the efficiency of reading
from a standard array. As you learned in Why Data Structures Matter, reading
from an array takes just one step, no matter how large the array is. To figure
out how to express this in Big O terms, we are going to again ask the key
question: if there are N data elements, how many steps will reading from an
array take? The answer is that reading takes just one step. So, we express
this as O(1), which I pronounce “Oh of 1.”
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O(1) is interesting, since although our key question revolves around N (“If
there are N data elements, how many steps will the algorithm take?”), the
answer has nothing to do with N. And that’s actually the whole point. That
is, no matter how many elements an array has, reading from the array always
takes one step.

And this is why O(1) is considered the “fastest” kind of algorithm. Even as
the data increases, an O(1) algorithm doesn’t take any additional steps. The
algorithm always takes a constant number of steps no matter what N is. In
fact, an O(1) algorithm can also be referred to as having constant time.

So, Where’s the Math?

As I mentioned earlier in this book, I’m taking an easy-to-understand approach to
the topic of Big O. That’s not the only way to do it; if you were to take a traditional
college course on algorithms, you’d probably be introduced to Big O from a mathe-
matical perspective. Big O is originally a concept from mathematics, and therefore,
it’s often described in mathematical terms. For example, one way of describing Big
O is that it describes the upper bound of the growth rate of a function, or that if a
function g(x) grows no faster than a function f(x), then g is said to be a member of
O(f). Depending on your mathematics background, that either makes sense or doesn’t
help very much. I’ve written this book so that you don’t need as much math to
understand the concept.

If you want to dig further into the math behind Big O, check out Introduction to
Algorithms by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein (MIT Press, 2009) for a full mathematical explanation. Justin Abrahms also
provides a pretty good definition in his article: https://justin.abrah.ms/computer-science/under-
standing-big-o-formal-definition.html.

The Soul of Big O
Now that we’ve encountered O(N) and O(1), we begin to see that Big O Notation
does more than simply describe the number of steps an algorithm takes, such
as with a hard number like 22 or 400. Rather, it’s an answer to that key
question on your forehead: if there are N data elements, how many steps will
the algorithm take?

While that key question is indeed the strict definition of Big O, there’s actually
more to Big O than meets the eye.

Let’s say we have an algorithm that always takes three steps no matter how
much data there is. That is, for N elements, the algorithm always takes three
steps. How would you express that in terms of Big O?
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Based on everything you’ve learned up to this point, you’d probably say that
it’s O(3).

However, it’s actually O(1). And that’s because of the next layer of understand-
ing Big O, which I will reveal now.

While Big O is an expression of the number of an algorithm’s steps relative
to N data elements, that alone misses the deeper why behind Big O, what I
dub the “soul of Big O.”

The soul of Big O is what Big O is truly concerned about: how will an algo-
rithm’s performance change as the data increases?

This is the soul of Big O. Big O doesn’t want to simply tell you how many
steps an algorithm takes. It wants to tell you the story of how the number of
steps increase as the data changes.

Viewed with this lens, we don’t care very much whether an algorithm is O(1) or
O(3). Because both algorithms are the type that aren’t affected by increased
data, as their number of steps remain constant, they’re essentially the same
kind of algorithm. They’re both algorithms whose steps remain constant irre-
spective of the data, and we don’t care to make a distinction between the two.

An algorithm that is O(N), on the other hand, is a different type of algorithm.
It’s an algorithm whose performance is affected as we increase the data. More
specifically, it’s the kind of algorithm whose steps increase in direct proportion
to the data as the data increases. This is the story O(N) tells. It tells you about
the proportional relationship between the data and the algorithm’s efficiency.
It describes exactly how the number of steps increase as the data increases.

Look at how these two types of algorithms are plotted on a graph:
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Notice that O(N) makes a perfect diagonal line. This is because for every
additional piece of data, the algorithm takes one additional step. Accordingly,
the more data, the more steps the algorithm will take.

Contrast this with O(1), which is a perfect horizontal line. No matter how
much data there is, the number of steps remain constant.

Deeper into the Soul of Big O
To see why the “soul of Big O” is so important, let’s go one level deeper. Say
we had an algorithm of constant time that always took 100 steps no matter
how much data there was. Would you consider that to be more or less perfor-
mant than an algorithm that is O(N)?

Take a look at the following graph:

As the graph depicts, for a data set that is fewer than 100 elements, an O(N)
algorithm takes fewer steps than the O(1) 100-step algorithm. At exactly 100
elements, the lines cross, meaning the two algorithms take the same number
of steps, namely 100. But here’s the key point: for all arrays greater than 100,
the O(N) algorithm takes more steps.

Because there will always be some amount of data at which the tides turn,
and O(N) takes more steps from that point until infinity, O(N) is considered
to be, on the whole, less efficient than O(1) no matter how many steps the
O(1) algorithm actually takes.

The same is true even for an O(1) algorithm that always takes one million
steps. As the data increases, there will inevitably reach a point at which O(N)
becomes less efficient than the O(1) algorithm, and will remain so up toward
an infinite amount of data.
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Same Algorithm, Different Scenarios
As you learned in the previous chapters, linear search isn’t always O(N). It’s
true that if the item we’re looking for is in the final cell of the array, it will
take N steps to find it. But when the item we’re searching for is found in the
first cell of the array, linear search will find the item in just one step. So, this
case of linear search would be described as O(1). If we were to describe the
efficiency of linear search in its totality, we’d say that linear search is O(1) in
a best-case scenario, and O(N) in a worst-case scenario.

While Big O effectively describes both the best- and worst-case scenarios of
a given algorithm, Big O Notation generally refers to the worst-case scenario
unless specified otherwise. This is why most references will describe linear
search as being O(N) even though it can be O(1) in a best-case scenario.

This is because a “pessimistic” approach can be a useful tool: knowing
exactly how inefficient an algorithm can get in a worst-case scenario prepares
us for the worst and may have a strong impact on our choices.

An Algorithm of the Third Kind
In the previous chapter, you learned that binary search on an ordered array
is much faster than linear search on the same array. Let’s now look at how
to describe binary search in terms of Big O Notation.

We can’t describe binary search as being O(1), because the number of steps
increases as the data increases. It also doesn’t fit into the category of O(N),
since the number of steps is much fewer than the N data elements. As we
have seen, binary search takes only seven steps for an array containing 100
elements.

Binary search, then, seems to fall somewhere in between O(1) and O(N). So
what is it?

In Big O terms, we describe binary search as having a time complexity of:

O(log N)

I pronounce this as “Oh of log N.” This type of algorithm is also known as
having a time complexity of log time.

Simply put, O(log N) is the Big O way of describing an algorithm that
increases one step each time the data is doubled. As you learned in the previous
chapter, binary search does just that. You’ll see momentarily why this is
expressed as O(log N), but let’s first summarize what you’ve learned so far.
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Of the three types of algorithms you’ve learned about so far, they can be
sorted from most efficient to least efficient as follows:

O(1)

O(log N)

O(N)

Let’s look at a graph that compares the three types:

Note how O(log N) curves ever so slightly upward, making it less efficient than
O(1), but much more efficient than O(N).

To understand why this algorithm is called “O(log N),” you need to first
understand what logarithms are. If you’re already familiar with this mathe-
matical concept, feel free to skip the next section.

Logarithms
Let’s examine why algorithms such as binary search are described as O(log
N). What is a log, anyway?

Log is shorthand for logarithm. The first thing to note is that logarithms have
nothing to do with algorithms, even though the two words look and sound so
similar.

Logarithms are the inverse of exponents. Here’s a quick refresher on what
exponents are:

23 is the equivalent of:

2 * 2 * 2

which just happens to be 8.
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Now, log2 8 is the converse. It means: how many times do you have to multiply
2 by itself to get a result of 8?

Because you have to multiply 2 by itself 3 times to get 8, log2 8 = 3.

Here’s another example:

26 translates to:

2 * 2 * 2 * 2 * 2 * 2 = 64

Because we had to multiply 2 by itself six times to get 64, therefore:

log2 64 = 6.

While the preceding explanation is the “textbook” definition of logarithms, I
like to use an alternative way of describing the same concept because many
people find that they can wrap their heads around it more easily, especially
when it comes to Big O Notation.

Another way of explaining log2 8 is: if we kept dividing 8 by 2 until we ended
up with 1, how many 2s would we have in our equation?

8 / 2 / 2 / 2 = 1

In other words, how many times do we need to halve 8 until we end up with
1? In this example, it takes us three times. Therefore,

log2 8 = 3.

Similarly, we could explain log2 64 as: how many times do we need to halve
64 until we end up with 1?

64 / 2 / 2 / 2 / 2 / 2 / 2 = 1

Since there are six 2s, log2 64 = 6.

Now that you understand what logarithms are, the meaning behind O(log N)
will become clear.

O(log N) Explained
Let’s bring this all back to Big O Notation. In computer science, whenever we
say O(log N), it’s actually shorthand for saying O(log2 N). We just omit that
small 2 for convenience.

Recall that Big O Notation resolves the key question: if there are N data ele-
ments, how many steps will the algorithm take?
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O(log N) means that for N data elements, the algorithm would take log2 N
steps. If there are 8 elements, the algorithm would take three steps, since
log2 8 = 3.

Said another way, if we keep dividing the 8 elements in half, it would take us
three steps until we end up with 1 element.

This is exactly what happens with binary search. As we search for a particular
item, we keep dividing the array’s cells in half until we narrow it down to the
correct number.

Said simply: O(log N) means the algorithm takes as many steps as it takes to
keep halving the data elements until we remain with 1.

The following table demonstrates a striking difference between the efficiencies
of O(N) and O(log N):

O(log N)O(N)N Elements

388

41616

53232

66464

7128128

8256256

9512512

1010241024

While the O(N) algorithm takes as many steps as there are data elements, the
O(log N) algorithm takes just one additional step each time the data is doubled.

In future chapters, you will encounter algorithms that fall under categories
of Big O Notation other than the three you’ve learned about so far. But in the
meantime, let’s apply these concepts to some examples of everyday code.

Practical Examples
Here’s some typical Python code that prints all the items from a list:

things = ['apples', 'baboons', 'cribs', 'dulcimers']

for thing in things:
print("Here's a thing: %s" % thing)

How would we describe the efficiency of this algorithm in Big O Notation?
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The first thing to realize is that this is an example of an algorithm. While it
may not be fancy, any code that does anything at all is technically an algo-
rithm—it’s a particular process for solving a problem. In this case, the problem
is that we want to print all the items from a list. The algorithm we use to solve
this problem is a for loop containing a print statement.

To break this down, we need to analyze how many steps this algorithm takes.
In this case, the main part of the algorithm—the for loop—takes four steps.
In this example, there are four things in the list, and we print each one out
a single time.

However, the number of steps isn’t constant. If the list contained 10 elements,
the for loop would take 10 steps. Since this for loop takes as many steps as
there are elements, we’d say that this algorithm has an efficiency of O(N).

The next example is a simple Python-based algorithm for determining whether
a number is prime:

def is_prime(number):
for i in range(2, number):

if number % i == 0:
return False

return True

The preceding code accepts a number as an argument and begins a for loop in
which we divide the number by every integer from 2 up to that number and see
if there’s a remainder. If there’s no remainder, we know that the number is
not prime and we immediately return False. If we make it all the way up to the
number and always find a remainder, then we know that the number is prime
and we return True.

In this case, the key question is slightly different than in the previous exam-
ples. In the previous examples, our key question asked how many steps the
algorithm would take if there were N data elements in an array. Here, we’re
not dealing with an array, but we are dealing with a number that we pass into
this function. Depending on the number we pass in, this will affect how many
times the function’s loop runs.

In this case, then, our key question will be: when passing in the number N,
how many steps will the algorithm take?

If we pass the number 7 into is_prime, the for loop runs about seven times. (It
technically runs five times, since it starts at 2 and ends right before the
actual number.) For the number 101, the loop runs about 101 times. Because
the number of steps increases in lockstep with the number passed into the
function, this is a classic example of O(N).
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Again, the key question here dealt with a different kind of N, since our primary
piece of data was a number rather than an array. We’ll get more practice in
identifying our Ns as we progress through the future chapters.

Wrapping Up
With Big O Notation, we have a consistent system that allows us to compare
any two algorithms. With it, we will be able to examine real-life scenarios and
choose between competing data structures and algorithms to make our code
faster and able to handle heavier loads.

In the next chapter, we’ll encounter a real-life example in which we use Big
O Notation to speed up our code significantly.

Exercises
The following exercises provide you with the opportunity to practice with Big
O Notation. The solutions to these exercises are found in the section, Chapter
3, on page 440.

1. Use Big O Notation to describe the time complexity of the following function
that determines whether a given year is a leap year:

function isLeapYear(year) {
return (year % 100 === 0) ? (year % 400 === 0) : (year % 4 === 0);

}

2. Use Big O Notation to describe the time complexity of the following function
that sums up all the numbers from a given array:

function arraySum(array) {
let sum = 0;

for(let i = 0; i < array.length; i++) {
sum += array[i];

}

return sum;
}

3. The following function is based on the age-old analogy used to describe
the power of compounding interest:

Imagine you have a chessboard and put a single grain of rice on one
square. On the second square, you put 2 grains of rice, since that is
double the amount of rice on the previous square. On the third square,
you put 4 grains. On the fourth square, you put 8 grains, and on the fifth
square, you put 16 grains, and so on.
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The following function calculates which square you’ll need to place a
certain number of rice grains. For example, for 16 grains, the function
will return 5, since you will place the 16 grains on the fifth square.

Use Big O Notation to describe the time complexity of this function, which
is below:

function chessboardSpace(numberOfGrains) {
let chessboardSpaces = 1;
let placedGrains = 1;

while (placedGrains < numberOfGrains) {
placedGrains *= 2;
chessboardSpaces += 1;

}

return chessboardSpaces;
}

4. The following function accepts an array of strings and returns a new array
that only contains the strings that start with the character "a". Use Big O
Notation to describe the time complexity of the function:

function selectAStrings(array) {
let newArray = [];

for(let i = 0; i < array.length; i++) {
if (array[i].startsWith("a")) {
newArray.push(array[i]);

}
}

return newArray;
}

5. The following function calculates the median from an ordered array.
Describe its time complexity in terms of Big O Notation:

function median(array) {
const middle = Math.floor(array.length / 2);

// If array has even amount of numbers:
if (array.length % 2 === 0) {

return (array[middle - 1] + array[middle]) / 2;
} else { // If array has odd amount of numbers:

return array[middle];
}

}
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CHAPTER 4

Speeding Up Your Code with Big O
Big O Notation is a great tool for expressing the efficiency of an algorithm.
We’ve already been able to use it to quantify the difference between binary
search vs. linear search, as binary search is O(log N)—a much faster algorithm
than linear search, which is O(N).

With Big O, you also have the opportunity to compare your algorithm to
general algorithms out there in the world, and you can say to yourself, “Is this
a fast or slow algorithm as far as algorithms generally go?”

If you find that Big O labels your algorithm as a “slow” one, you can now take
a step back and try to figure out if there’s a way to optimize it by trying to get
it to fall under a faster category of Big O. This may not always be possible, of
course, but it’s certainly worth thinking about.

In this chapter, we’ll write some code to solve a practical problem and then
measure our algorithm using Big O. We’ll then see if we might be able to modify
the algorithm in order to give it a nice efficiency bump. (Spoiler: we will.)

Bubble Sort
Before jumping into our practical problem, though, we need to first look at a
new category of algorithmic efficiency in the world of Big O. To demonstrate
it, we’ll get to use one of the classic algorithms of computer-science lore.

Sorting algorithms have been the subject of extensive research in computer
science, and tens of such algorithms have been developed over the years.
They all solve the following problem:

Given an array of unsorted values, how can we sort them so that they end up
in ascending order?
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In this and the following chapters, we’re going to encounter a number of these
sorting algorithms. Some of the first ones you’ll learn about are known as
“simple sorts,” in that they are easy to understand, but are not as efficient
as some of the faster sorting algorithms out there.

Bubble Sort is a basic sorting algorithm and follows these steps:

1. Point to two consecutive values in the array. (Initially, we start by pointing
to the array’s first two values.) Compare the first item with the second one:

2. If the two items are out of order (in other words, the left value is greater
than the right value), swap them (if they already happen to be in the cor-
rect order, do nothing for this step):

3. Move the “pointers” one cell to the right:

4. Repeat Steps 1 through 3 until we reach the end of the array, or if we
reach the values that have already been sorted. (This will make more
sense in the walk-through that follows.) At this point, we have completed
our first pass-through of the array. That is, we “passed through” the array
by pointing to each of its values until we reached the end.

5. We then move the two pointers back to the first two values of the array,
and execute another pass-through of the array by running Steps 1 through
4 again. We keep on executing these pass-throughs until we have a pass-
through in which we did not perform any swaps. When this happens, it
means our array is fully sorted and our work is done.

Bubble Sort in Action
Let’s walk through a complete example of Bubble Sort.

Assume we want to sort the array, [4, 2, 7, 1, 3]. It’s currently out of order, and we
want to produce an array that contains the same values in ascending order.
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Let’s begin the first pass-through:

This is our starting array:

Step 1: First, we compare the 4 and the 2:

Step 2: They’re out of order, so we swap them:

Step 3: Next, we compare the 4 and the 7:

They’re in the correct order, so we don’t need to perform a swap.

Step 4: We now compare the 7 and the 1:

Step 5: They’re out of order, so we swap them:

Step 6: We compare the 7 and the 3:

report erratum  •  discuss

Bubble Sort in Action • 49

http://pragprog.com/titles/jwdsal2/errata/add
http://forums.pragprog.com/forums/jwdsal2


Step 7: They’re out of order, so we swap them:

We now know for a fact that the 7 is in its correct position within the array,
because we kept moving it along to the right until it reached its proper place.
The previous diagram has little lines surrounding the 7 to indicate that the
7 is officially in its correct position.

This is actually the reason why this algorithm is called Bubble Sort: in each
pass-through, the highest unsorted value “bubbles” up to its correct position.

Because we made at least one swap during this pass-through, we need to
conduct another pass-through.

We begin the second pass-through:

Step 8: We compare the 2 and the 4:

They’re in the correct order, so we can move on.

Step 9: We compare the 4 and the 1:

Step 10: They’re out of order, so we swap them:

Step 11: We compare the 4 and the 3:
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Step 12: They’re out of order, so we swap them:

We don’t have to compare the 4 and the 7 because we know that the 7 is
already in its correct position from the previous pass-through. And now we
also know that the 4 has bubbled up to its correct position as well. This
concludes our second pass-through.

Because we made at least one swap during this pass-through, we need to
conduct another pass-through.

We begin the third pass-through:

Step 13: We compare the 2 and the 1:

Step 14: They’re out of order, so we swap them:

Step 15: We compare the 2 and the 3:

They’re in the correct order, so we don’t need to swap them.

We now know that the 3 has bubbled up to its correct spot:
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Since we made at least one swap during this pass-through, we need to perform
another one.

And so begins the fourth pass-through:

Step 16: We compare the 1 and the 2:

Because they’re in order, we don’t need to swap. We can end this pass-
through, since all the remaining values are already correctly sorted.

Now that we’ve made a pass-through that didn’t require any swaps, we know
that our array is completely sorted:

Code Implementation: Bubble Sort
Here’s an implementation of Bubble Sort in Python:

def bubble_sort(list):
unsorted_until_index = len(list) - 1
sorted = False

while not sorted:
sorted = True
for i in range(unsorted_until_index):

if list[i] > list[i+1]:
list[i], list[i+1] = list[i+1], list[i]
sorted = False

unsorted_until_index -= 1

return list

To use this function, we can pass an unsorted array to it, like so:

print(bubble_sort([65, 55, 45, 35, 25, 15, 10]))

This function will then return the sorted array.

Let’s break the function down line by line to see how it works. I’ll explain each
line by first providing the explanation, followed by the line of code itself.

The first thing we do is create a variable called unsorted_until_index. This keeps
track of the rightmost index of the array that has not yet been sorted. When
we first start the algorithm, the array is completely unsorted, so we initialize
this variable to be the final index in the array:
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unsorted_until_index = len(list) - 1

We also create a variable called sorted that will keep track of whether the array
is fully sorted. Of course, when our code first runs, it isn’t, so we set it to False:

sorted = False

We begin a while loop that continues to run as long as the array is not sorted.
Each round of this loop represents a pass-through of the array:

while not sorted:

Next, we preliminarily establish sorted to be True:

sorted = True

The approach here is that in each pass-through, we’ll assume the array is
sorted until we encounter a swap, in which case we’ll change the variable back
to False. If we get through an entire pass-through without having to make any
swaps, sorted will remain True, and we’ll know that the array is completely sorted.

Within the while loop, we begin a for loop in which we point to each pair of values
in the array. We use the variable i as our first pointer, and it starts from the
beginning of the array and goes until the index that has not yet been sorted:

for i in range(unsorted_until_index):

Within this loop, we compare each pair of adjacent values and swap those
values if they’re out of order. We also change sorted to False if we have to make
a swap:

if list[i] > list[i+1]:
list[i], list[i+1] = list[i+1], list[i]
sorted = False

At the end of each pass-through, we know that the value we bubbled up all
the way to the right is now in its correct position. Because of this, we decre-
ment the unsorted_until_index by 1, since the index it was already pointing to is
now sorted:

unsorted_until_index -= 1

The while loop ends once sorted is True, meaning the array is completely sorted.
Once this is the case, we return the sorted array:

return list

The Efficiency of Bubble Sort
The Bubble Sort algorithm contains two significant kinds of steps:
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• Comparisons: two numbers are compared with one another to determine
which is greater.

• Swaps: two numbers are swapped with one another in order to sort them.

Let’s start by determining how many comparisons take place in Bubble Sort.

Our example array has five elements. Looking back, you can see that in our
first pass-through, we had to make four comparisons between sets of two
numbers.

In our second pass-through, we only had to make three comparisons. This
is because we didn’t have to compare the final two numbers, since we knew
that the final number was in the correct spot due to the first pass-through.

In our third pass-through, we made two comparisons, and in our fourth pass-
through, we made just one comparison.

So, that’s:

4 + 3 + 2 + 1 = 10 comparisons.

To put it this in a way that would hold true for arrays of all sizes, we’d say
that for N elements, we make

(N - 1) + (N - 2) + (N - 3) … + 1 comparisons.

Now that we’ve analyzed the number of comparisons that take place in Bubble
Sort, let’s analyze the swaps.

In a worst-case scenario, where the array is sorted in descending order (the
exact opposite of what we want), we’d actually need a swap for each compar-
ison. So, we’d have 10 comparisons and 10 swaps in such a scenario for a
grand total of 20 steps.

Let’s look at the big picture. With an array containing five values in reverse
order, we make 4 + 3 + 2 + 1 = 10 comparisons. Along with the 10 compar-
isons, we also have 10 swaps, totaling 20 steps.

For such an array with 10 values, we get 9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1 = 45
comparisons, and another 45 swaps. That’s a total of 90 steps.

With an array containing 20 values, we’d have:

19 + 18 + 17 + 16 + 15 + 14 + 13 + 12 + 11 + 10 + 9 + 8 + 7 + 6 + 5 + 4 + 3 +
2 + 1 = 190 comparisons, and approximately 190 swaps, for a total of 380
steps.
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Notice the inefficiency here. As the number of elements increases, the number
of steps grows exponentially. We can see this clearly in the following table:

Max # of StepsN Data Elements

205

9010

38020

156040

632080

If you look at the growth of steps as N increases, you’ll see that it’s growing
by approximately N2. Take a look at the following table:

N2# of Bubble Sort StepsN Data Elements

25205

1009010

40038020

1600156040

6400632080

Let’s express the time complexity of Bubble Sort with Big O Notation.
Remember, Big O always answers the key question: if there are N data ele-
ments, how many steps will the algorithm take?

Because for N values, Bubble Sort takes N2 steps, in Big O, we say that
Bubble Sort has an efficiency of O(N2).

O(N2) is considered to be a relatively inefficient algorithm, since as the data
increases, the steps increase dramatically. Look at this graph, which compares
O(N2) against the faster O(N):
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Note how O(N2) curves sharply upward in terms of number of steps as the data
grows. Compare this with O(N), which plots along a simple, diagonal line.

One last note: O(N2) is also referred to as quadratic time.

A Quadratic Problem
Here’s a practical example of where we can replace a slow O(N2) algorithm
with a speedy O(N) one.

Let’s say you’re working on a JavaScript application that analyzes the ratings
people give to products, where users leave ratings from 1 to 10. Specifically,
you’re writing a function that checks whether an array of ratings contains
any duplicate numbers. This will be used in more complex calculations in
other parts of the software.

For example, the array [1, 5, 3, 9, 1, 4] has two instances of the number 1, so
we’d return true to indicate that the array has a case of duplicate numbers.

One of the first approaches that may come to mind is the use of nested loops,
as follows:

function hasDuplicateValue(array) {
for(let i = 0; i < array.length; i++) {

for(let j = 0; j < array.length; j++) {
if(i !== j && array[i] === array[j]) {

return true;
}

}
}
return false;

}

In this function, we iterate through each value of the array using the variable
i. As we focus on each value in i, we then run a second loop that looks through
all the values in the array—using j—and checks if the values at positions i
and j are the same. If they are, it means we’ve encountered duplicate values
and we return true. If we get through all of the looping and we haven’t
encountered any duplicates, we return false, since we know that there are no
duplicates in the array.

While this certainly works, is it efficient? Now that we know a bit about Big
O Notation, let’s take a step back and see what Big O would say about this
function.

Remember that Big O expresses how many steps the algorithm takes relative
to N data values. To apply this to our situation, we’d ask ourselves: for N
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values in the array provided to our hasDuplicateValue function, how many steps
would our algorithm take in a worst-case scenario?

To answer the preceding question, we need to analyze what steps our function
takes, as well as what the worst-case scenario would be.

The preceding function has one type of step, namely comparisons. It repeat-
edly compares array[i] and array[j] to see if they are equal and therefore represent
a duplicate pair. In a worst-case scenario, the array contains no duplicates,
which would force our code to complete all of the loops and exhaust every
possible comparison before returning false.

Based on this, we can conclude that for N values in the array, our function
would perform N2 comparisons. This is because we perform an outer loop
that must iterate N times to get through the entire array, and for each iteration,
we must iterate another N times with our inner loop. That’s N steps * N steps,
which is N2 steps, leaving us with an algorithm of O(N2).

We can actually prove that our function takes N2 steps by adding some code
to our function that tracks the algorithm’s number of steps:

function hasDuplicateValue(array) {
let steps = 0; // count of steps
for(let i = 0; i < array.length; i++) {

for(let j = 0; j < array.length; j++) {
steps++; // increment number of steps
if(i !== j && array[i] === array[j]) {

return true;
}

}
}
console.log(steps); // print number of steps if no duplicates
return false;

}

This added code will print the number of steps taken when there are no
duplicates. If we run hasDuplicateValue([1, 4, 5, 2, 9]), for example, we’ll see an
output of 25 in the JavaScript console, indicating that there were 25 compar-
isons for the 5 elements in the array. If we test this for other values, we’ll see
that the output is always the size of the array squared. This is classic O(N2).

Very often (but not always), when an algorithm nests one loop inside another,
the algorithm is O(N2). So, whenever you see a nested loop, O(N2) alarm bells
should go off in your head.

Now, the fact that our function is O(N2) should give us pause. This is because
O(N2) is considered a relatively slow algorithm. Whenever you encounter a
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slow algorithm, it’s worth spending some time to consider whether there are
any faster alternatives. There may not be any better alternatives, but let’s
first make sure.

A Linear Solution
Following is another implementation of the hasDuplicateValue function that doesn’t
rely on nested loops. It’s a bit clever, so let’s first look at how it works and
then we’ll see if it’s any more efficient than our first implementation.

function hasDuplicateValue(array) {
let existingNumbers = [];
for(let i = 0; i < array.length; i++) {

if(existingNumbers[array[i]] === 1) {
return true;

} else {
existingNumbers[array[i]] = 1;

}
}
return false;

}

Here’s what this function does. It creates an array called existingNumbers, which
starts out empty.

Then, we use a loop to check each number in the array. As it encounters each
number, it places an arbitrary value (we’ve chosen to use a 1) in the existingNum-
bers array at the index of the number we’re encountering.

For example, let’s say our array is [3, 5, 8]. When we encounter the 3, we place
a 1 at index 3 of existingNumbers. So, the existingNumbers array will now be the
rough equivalent of this:

[undefined, undefined, undefined, 1]

There’s now a 1 at index 3 of existingNumbers, to indicate and remember for the
future that we’ve already encountered a 3 in our given array.

When our loop then encounters the 5 from the given array, it adds a 1 to index
5 of existingNumbers:

[undefined, undefined, undefined, 1, undefined, 1]

Finally, when we reach the 8, existingNumbers will now look like this:

[undefined, undefined, undefined, 1, undefined, 1, undefined, undefined, 1]

Essentially, we’re using the indexes of existingNumbers to remember which
numbers from the array we’ve seen so far.
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Now, here’s the real trick. Before the code stores a 1 in the appropriate index,
it first checks to see whether that index already has a 1 as its value. If it does,
this means we’ve already encountered that number, meaning we found a
duplicate. If this is the case, we simply return true and cut the function short.
If we get to the end of the loop without having returned true, it means there
are no duplicates and we return false.

To determine the efficiency of this new algorithm in terms of Big O, we once
again need to determine the number of steps the algorithm takes in a worst-
case scenario.

Here, the significant type of step is looking at each number and checking
whether the value of its index in existingNumbers is a 1:

if(existingNumbers[array[i]] === 1)

(In addition to the comparisons, we also make insertions into the existingNumbers
array, but we’re considering that kind of step trivial in this analysis. More on
this in the next chapter.)

In terms of the worst-case scenario, such a scenario would occur when the
array contains no duplicates, in which case our function must complete the
entire loop.

This new algorithm appears to make N comparisons for N data elements. This
is because there’s only one loop, and it simply iterates for as many numbers
as there are in the array. We can test out this theory by tracking the steps
in the JavaScript console:

function hasDuplicateValue(array) {
let steps = 0;
let existingNumbers = [];
for(let i = 0; i < array.length; i++) {

steps++;
if(existingNumbers[array[i]] === 1) {

return true;
} else {

existingNumbers[array[i]] = 1;
}

}
console.log(steps);
return false;

}

If we run hasDuplicateValue([1, 4, 5, 2, 9]) now, we’ll see that the output in the
JavaScript console is 5, which is the same as the size of our array. We’d find
this to be true across arrays of all sizes. This algorithm, then, is O(N).
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We know that O(N) is much faster than O(N2), so by using this second
approach, we’ve optimized our hasDuplicateValue function significantly. This is
a huge speed boost.

(There is actually one disadvantage with this new implementation, namely
that this approach will consume more memory than the first approach. Don’t
worry about this for now; we’ll discuss this at length in Dealing with Space
Constraints.)

Wrapping Up
It’s clear that having a solid understanding of Big O Notation can enable you
to identify slow code and select the faster of two competing algorithms.

However, there are situations in which Big O Notation will have us believe
that two algorithms have the same speed, while one is actually faster. In the
next chapter, you’re going to learn how to evaluate the efficiencies of various
algorithms even when Big O isn’t nuanced enough to do so.

Exercises
The following exercises provide you with the opportunity to practice with
speeding up your code. The solutions to these exercises are found in the
section, Chapter 4, on page 441.

1. Replace the question marks in the following table to describe how many steps
occur for a given number of data elements across various types of Big O:

O(N2)O(log N)O(N)N Elements

??100100

???2000

2. If we have an O(N2) algorithm that processes an array and find that it
takes 256 steps, what is the size of the array?

3. Use Big O Notation to describe the time complexity of the following func-
tion. It finds the greatest product of any pair of two numbers within a
given array:

def greatestProduct(array):
greatestProductSoFar = array[0] * array[1]

for i, iVal in enumerate(array):
for j, jVal in enumerate(array):
if i != j and iVal * jVal > greatestProductSoFar:

greatestProductSoFar = iVal * jVal

return greatestProductSoFar
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4. The following function finds the greatest single number within an array,
but has an efficiency of O(N2). Rewrite the function so that it becomes a
speedy O(N):

def greatestNumber(array):
for i in array:

# Assume for now that i is the greatest:
isIValTheGreatest = True

for j in array:
# If we find another value that is greater than i,
# i is not the greatest:
if j > i:

isIValTheGreatest = False

# If, by the time we checked all the other numbers, i
# is still the greatest, it means that i is the greatest number:
if isIValTheGreatest:
return i
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CHAPTER 5

Optimizing Code with and Without Big O
We’ve seen that Big O Notation is a great tool for comparing algorithms and
determining which algorithm should be used for a given situation. However,
it’s certainly not the only tool. In fact, there may be times when two competing
algorithms are described in the same way using Big O, yet one algorithm is
faster than the other.

In this chapter, you’re going to learn how to discern between two algorithms
that seem to have the same efficiency, and how to select the faster of the two.

Selection Sort
In the previous chapter, we explored a sorting algorithm known as Bubble Sort,
which had an efficiency of O(N2). We’re now going to dig into another sorting
algorithm called Selection Sort, and see how it measures up to Bubble Sort.

The steps of Selection Sort are as follows:

1. We check each cell of the array from left to right to determine which value
is least. As we move from cell to cell, we keep track of the lowest value
we’ve encountered so far. (We’ll do this by storing its index in a variable.)
If we encounter a cell that contains a value that is even lower than the
one in our variable, we replace it so that the variable now points to the
new index. See the following diagram:
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2. Once we’ve determined which index contains
the lowest value, we swap its value with the
value we began the pass-through with. This
would be index 0 in the first pass-through,
index 1 in the second pass-through, and so
on. The diagram here illustrates making the
swap of the first pass-through.

3. Each pass-through consists of Steps 1 and 2.
We repeat the pass-throughs until we reach a pass-through that would
start at the end of the array. By this point, the array will have been fully
sorted.

Selection Sort in Action
Let’s walk through the steps of Selection Sort using the example array, [4, 2,
7, 1, 3].

We begin our first pass-through:

We set things up by inspecting the value at index 0. By definition, it’s the
lowest value in the array we’ve encountered so far (as it’s the only value we’ve
encountered so far), so we keep track of its index in a variable:

Step 1: We compare the 2 with the lowest value so far (which happens to be 4):

The 2 is even less than the 4, so it becomes the lowest value so far:
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Step 2: We compare the next value—the 7—with the lowest value so far. The
7 is greater than the 2, so 2 remains our lowest value:

Step 3: We compare the 1 with the lowest value so far:

Because the 1 is even less than the 2, 1 becomes our new lowest value:

Step 4: We compare the 3 to the lowest value so far, which is the 1. We’ve
reached the end of the array, and we’ve determined that 1 is the lowest value
out of the entire array:

Step 5: Because 1 is the lowest value, we swap it with whatever value is at
index 0—the index we began this pass-through with:
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Since we’ve moved the lowest value to the beginning of the array, that means
the lowest value is now in its correct spot:

We are now ready to begin our second pass-through.

Setup: The first cell—index 0—is already sorted, so this pass-through begins
at the next cell, which is index 1. The value at index 1 is the number 2, and
it is the lowest value we’ve encountered in this pass-through so far:

Step 6: We compare the 7 with the lowest value so far. The 2 is less than the
7, so 2 remains our lowest value:

Step 7: We compare the 4 with the lowest value so far. The 2 is less than the
4, so 2 remains our lowest value:

Step 8: We compare the 3 with the lowest value so far. The 2 is less than the
3, so 2 remains our lowest value:

Chapter 5. Optimizing Code with and Without Big O • 66

report erratum  •  discuss

http://pragprog.com/titles/jwdsal2/errata/add
http://forums.pragprog.com/forums/jwdsal2


We’ve reached the end of the array. Since the lowest value from this pass-
through was already in its correct spot, we don’t need to perform a swap. This
ends our second pass-through, leaving us with:

We now begin the third pass-through.

Setup: We begin at index 2, which contains the value 7. The 7 is the lowest
value we’ve encountered so far in this pass-through:

Step 9: We compare the 4 with the 7:

We note that 4 is our new lowest value:

Step 10: We encounter the 3, which is even lower than the 4:
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The 3 becomes our new lowest value:

Step 11: We’ve reached the end of the array, so we swap the 3 with the value
we started our pass-through with, which is the 7:

We now know that the 3 is in the correct place within the array:

While you and I can both see that the entire array is correctly sorted at this
point, the computer does not know this yet, so it must begin a fourth pass-
through.

Setup: We begin the pass-through with index 3. The 4 is the lowest value so far:

Step 12: We compare the 7 with the 4:

The 4 remains the lowest value we’ve encountered in this pass-through so
far, so we don’t need to swap it, since it’s already in the correct place.
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Because all the cells besides the last one are correctly sorted, that must mean
the last cell is also in the correct order, and our entire array is properly sorted:

Code Implementation: Selection Sort
Here’s a JavaScript implementation of Selection Sort:

function selectionSort(array) {
for(let i = 0; i < array.length - 1; i++) {

let lowestNumberIndex = i;
for(let j = i + 1; j < array.length; j++) {
if(array[j] < array[lowestNumberIndex]) {

lowestNumberIndex = j;
}

}

if(lowestNumberIndex != i) {
let temp = array[i];
array[i] = array[lowestNumberIndex];
array[lowestNumberIndex] = temp;

}
}
return array;

}

Let’s break this down line by line.

We begin a loop that represents each pass-through. It uses the variable i to
point to each value of the array, and goes up through the second-to-last value:

for(let i = 0; i < array.length - 1; i++) {

It doesn’t need to run for the last value itself, since the array will be fully
sorted by that point.

Next, begin keeping track of the index containing the lowest value we
encounter so far:

let lowestNumberIndex = i;

This lowestNumberIndex will be 0 at the beginning of the first pass-through, 1 at
the beginning of the second, and so on.

The reason we specifically keep track of the index is because we’ll need access
to both the lowest value and its index in the rest of our code, and we can
use the index to reference both. (We can check the lowest value by calling
array[lowestNumberIndex]).
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Within each pass-through, we check the remaining values of the array to see
if there might be a lower value than the current lowest value:

for(let j = i + 1; j < array.length; j++) {

Indeed, if we find a lower value, we store this new value’s index in lowestNum-
berIndex:

if(array[j] < array[lowestNumberIndex]) {
lowestNumberIndex = j;

}

By the end of the inner loop, we’ll have found the index of the lowest number
from this pass-through.

If the lowest value from this pass-through is already in its correct place (which
would happen when the lowest value is the first value we encounter in the pass-
through), we don’t need to do anything. But if the lowest value is not in its correct
place, we need to perform a swap. Specifically, we swap the lowest value with
the value at i, which was the index we started the pass-through with:

if(lowestNumberIndex != i) {
let temp = array[i];
array[i] = array[lowestNumberIndex];
array[lowestNumberIndex] = temp;

}

Finally, we return the sorted array:

return array;

The Efficiency of Selection Sort
Selection Sort contains two types of steps: comparisons and swaps. That is,
we compare each value with the lowest number we’ve encountered in each
pass-through, and we swap the lowest number into its correct position.

Looking back at our example array that contains five elements, we had to
make a total of 10 comparisons. Let’s break it down in the following table:

# of ComparisonsPass-Through #

4 comparisons1

3 comparisons2

2 comparisons3

1 comparison4

That’s a grand total of 4 + 3 + 2 + 1 = 10 comparisons.
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To put it in a way that works for arrays of all sizes, we’d say that for N ele-
ments, we make

(N - 1) + (N - 2) + (N - 3) … + 1 comparisons.

As for swaps, though, we only need to make a maximum of one swap per pass-
through. This is because in each pass-through, we make either one or zero
swaps, depending on whether the lowest number of that pass-through is
already in the correct position. Contrast this with Bubble Sort, where in a
worst-case scenario—an array in descending order—we have to make a swap
for each and every comparison.

Here’s a side-by-side comparison of Bubble Sort and Selection Sort:

Max # of Steps in Selection SortMax # of Steps in Bubble SortN Elements

14 (10 comparisons + 4 swaps)205

54 (45 comparisons + 9 swaps)9010

199 (180 comparisons + 19 swaps)38020

819 (780 comparisons + 39 swaps)156040

3239 (3160 comparisons + 79 swaps)632080

From this comparison, it’s clear Selection Sort takes about half the number
of steps Bubble Sort does, indicating that Selection Sort is twice as fast.

Ignoring Constants
But here’s the funny thing: in the world of Big O Notation, Selection Sort and
Bubble Sort are described in exactly the same way.

Again, Big O Notation answers the key question: if there are N data elements,
how many steps will the algorithm take? Because Selection Sort takes roughly
half of N2 steps, it would seem reasonable that we’d describe the efficiency of
Selection Sort as being O(N2 / 2). That is, for N data elements, there are N2 / 2
steps. The following table bears this out:

Max # of Steps in Selection SortN2 / 2N Elements

1452 / 2 = 12.55

54102 / 2 = 5010

199202 / 2 = 20020

819402 / 2 = 80040

3239802 / 2 = 320080
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In reality, however, Selection Sort is described in Big O as O(N2), just like
Bubble Sort. This is because of a major rule of Big O that I’m now introducing
for the first time:

Big O Notation ignores constants.

This is simply a mathematical way of saying that Big O Notation never includes
regular numbers that aren’t an exponent. We simply drop these regular
numbers from the expression.

In our case, then, even though the algorithm takes N2 / 2 steps, we drop the
“/ 2” because it’s a regular number, and express the efficiency as O(N2).

Here’s a few more examples:

For an algorithm that takes N / 2 steps, we’d call it O(N).

An algorithm that takes N2 + 10 steps would be expressed as O(N2), since we
drop the 10, which is a regular number.

With an algorithm that takes 2N steps (meaning N * 2), we drop the regular
number and call it O(N).

Even O(100N), which is 100 times slower than O(N), is also referred to as O(N).

Offhand, it would seem that this rule would render Big O Notation entirely
useless, as you can have two algorithms that are described in the same exact
way with Big O, and yet one can be 100 times faster than the other. And that’s
exactly what we’re seeing here with Selection Sort and Bubble Sort. Both are
described in Big O as O(N2), but Selection Sort is actually twice as fast as
Bubble Sort.

So, what gives?

Big O Categories
This leads us to the next concept within Big O: Big O Notation only concerns
itself with general categories of algorithm speeds.

As an analogy, let’s talk about physical buildings. There are, of course, many
different types of buildings. There are one-floor single-family homes, and two-
floor single-family homes, and three-floor single-family homes. There are high-
rise apartment buildings with varying numbers of floors. And there are
skyscrapers with various heights and shapes.

If we were to compare two buildings, one of which is a single-family home
and one of which is a skyscraper, it becomes almost moot to mention how
many floors each one has. Because the two buildings are so incredibly different
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in their sizes and functions, we don’t need to say, “This one is a two-story
home, while the other is a one-hundred-floor skyscraper.” We may as well
just call one a house and the other a skyscraper. Calling them by their general
categories is enough to signify their vast differences.

The same applies to algorithm efficiencies. If we compare, say, an O(N) algo-
rithm with an O(N2) algorithm, the two efficiencies are so different that it
doesn’t really matter whether the O(N) algorithm is actually O(2N), or O(N / 2)
or even O(100N).

Now, here’s why O(N) and O(N2) are considered two separate categories, while
O(N) and O(100N) are part of the same category.

Remember The Soul of Big O, on page 37. Big O Notation doesn’t care merely
about the number of steps an algorithm takes. It cares about the long-term
trajectory of the algorithm’s steps as the data increases. O(N) tells a story of
straight growth—that the steps increase in a straight line according to some
proportion of the data. This is true even when the steps are 100N. O(N2) tells
a different story—one of exponential growth.

Exponential growth is a completely different category compared to any form
of O(N). This point is really driven home when we consider that O(N2) will, at
some point in data growth, become slower than O(N) multiplied by any factor.

In the following graph, you can see how O(N2) becomes slower than various
factors of N:
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Therefore, when comparing two efficiencies that belong to two different cate-
gories of Big O, it’s enough to identify them by their general category. Talking
about O(2N) when compared to O(N2) is like talking about a two-story house
compared to a skyscraper. We may as well just say that O(2N) is part of the
general category of O(N).

All the types of Big O we’ve encountered, whether it’s O(1), O(log N), O(N), O(N2),
or the types we’ll encounter later in this book, are general categories of Big O
that are widely different from each other. Multiplying or dividing the number of
steps by a regular number doesn’t make them change to another category.

However, when two algorithms fall under the same classification of Big O, it
doesn’t necessarily mean that both algorithms have the same speed. After
all, Bubble Sort is twice as slow as Selection Sort even though both are O(N2).
So, while Big O is perfect for contrasting algorithms that fall under different
classifications of Big O, when two algorithms fall under the same classification,
further analysis is required to determine which algorithm is faster.

A Practical Example
Let’s return to the very first code example from Chapter 1, with minor changes:

def print_numbers_version_one(upperLimit):
number = 2

while number <= upperLimit:
# If number is even, print it:
if number % 2 == 0:
print(number)

number += 1

def print_numbers_version_two(upperLimit):
number = 2

while number <= upperLimit:
print(number)

# Increase number by 2, which, by definition,
# is the next even number:
number += 2

Here we have two algorithms for accomplishing the same task, namely
printing all even numbers starting from 2 to some upperLimit. (In Chapter 1,
the upper limit was fixed at 100, while here, we let the user pass in a number
as the upperLimit.)
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I noted in Chapter 1 that the first version takes twice as many steps as the
second version, but now let’s see how this plays out in terms of Big O.

Again, Big O expresses the answer to the key question: if there are N data
elements, how many steps will the algorithm take? In this case, though, N
isn’t the size of an array, but simply the number we pass into the function
to serve as the upperLimit.

The first version takes about N steps. That is, if the upperLimit is 100, the
function takes about 100 steps. (It really takes 99 steps, since it starts the
count at 2.) So, we can safely say that the first algorithm has a time complex-
ity of O(N).

The second version takes N / 2 steps. When the upperLimit is 100, the function
takes just 50 steps. While it would be tempting to call this O(N / 2), you’ve
now learned that we drop the constants and reduce the expression to O(N)
as well.

Now, the second version is twice as fast as the first one and would naturally
be the better choice. This is another great example of where two algorithms
can be expressed the same way using Big O Notation, but further analysis is
needed to figure out which algorithm is faster.

Significant Steps
Let’s apply one more level of analysis to the previous example. If we look again
at the first version, print_numbers_version_one, we said that it takes N steps. This
is because the loop runs N times, with N being the upperLimit.

But does the function really take just N steps?

If we really break things down, we can see that multiple steps occur in each
round of the loop.

First, we have the comparison step (if number % 2 == 0), which checks whether
the number is divisible by 2. This comparison happens in each round of
the loop.

Second, we have the print step (print(number)), which happens just for the even
numbers. This, then, occurs in every other round of the loop.

And third, we have number += 1, which runs in each round of the loop.
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In the previous chapters, I alluded to the fact that you’d learn how to deter-
mine which steps are significant enough to be counted when expressing the
Big O of an algorithm. In our case, then, which of these steps are considered
significant? Do we care about the comparisons, the printing, or the increment-
ing of number?

The answer is that all steps are significant. It’s just that when we express the
steps in Big O terms, we drop the constants and thereby simplify the ex-
pression.

Let’s apply this here. If we count all the steps, we have N comparisons, N in-
crementings, and N / 2 printings. This adds up to 2.5N steps. However,
because we eliminate the constant of 2.5, we express this as O(N). So, which
step was significant? They all were, but by dropping the constant, we effec-
tively focus more on the number of times the loop runs, rather than the exact
details of what happens within the loop.

Wrapping Up
We now have some powerful analysis tools at our disposal. We can use Big
O to broadly determine the efficiency of an algorithm, and we can also compare
two algorithms that fall within one classification of Big O.

However, another important factor must be taken into account when compar-
ing the efficiencies of two algorithms. Until now, we’ve focused on how fast
an algorithm is in a worst-case scenario. Now, worst-case scenarios, by defi-
nition, don’t happen all the time. On average, most scenarios that occur
are…well…average-case scenarios. In the next chapter, you’ll learn how to
take all scenarios into account.

Exercises
The following exercises provide you with the opportunity to practice analyzing
algorithms. The solutions to these exercises are found in the section, Chapter
5, on page 442.

1. Use Big O Notation to describe the time complexity of an algorithm that
takes 4N + 16 steps.

2. Use Big O Notation to describe the time complexity of an algorithm that
takes 2N2.

3. Use Big O Notation to describe the time complexity of the following func-
tion, which returns the sum of all numbers of an array after the numbers
have been doubled:
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def double_then_sum(array)
doubled_array = []

array.each do |number|
doubled_array << number *= 2

end

sum = 0

doubled_array.each do |number|
sum += number

end

return sum
end

4. Use Big O Notation to describe the time complexity of the following func-
tion, which accepts an array of strings and prints each string in multiple
cases:

def multiple_cases(array)
array.each do |string|

puts string.upcase
puts string.downcase
puts string.capitalize

end
end

5. The next function iterates over an array of numbers, and for each number
whose index is even, it prints the sum of that number plus every number
in the array. What is this function’s efficiency in terms of Big O Notation?

def every_other(array)
array.each_with_index do |number, index|

if index.even?
array.each do |other_number|

puts number + other_number
end

end
end

end

report erratum  •  discuss

Exercises • 77

http://pragprog.com/titles/jwdsal2/errata/add
http://forums.pragprog.com/forums/jwdsal2


CHAPTER 6

Optimizing for Optimistic Scenarios
Until this point, we’ve focused primarily on how many steps an algorithm
would take in a worst-case scenario. The rationale behind this is simple: if
you’re prepared for the worst, things will turn out okay.

However, you’ll discover in this chapter that the worst-case scenario isn’t the
only situation worth considering. Being able to consider all scenarios is an
important skill that can help you choose the appropriate algorithm for every
situation.

Insertion Sort
We’ve previously encountered two different sorting algorithms: Bubble Sort
and Selection Sort. Both have efficiencies of O(N2), but Selection Sort is
actually twice as fast. Now you’ll learn about a third sorting algorithm called
Insertion Sort that will reveal the power of analyzing scenarios beyond the
worst case.

Insertion Sort consists of the following steps:

1. In the first pass-through, we temporarily remove the value at index 1 (the
second cell) and store it in a temporary variable. This will leave a gap at
that index, since it contains no value:
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In subsequent pass-throughs, we remove the values at the subsequent
indexes.

2. We then begin a shifting phase, where we take each value to the left of
the gap and compare it to the value in the temporary variable:

If the value to the left of the gap is greater than the temporary variable,
we shift that value to the right:

As we shift values to the right, inherently the gap moves leftward. As soon
as we encounter a value that is lower than the temporarily removed value,
or we reach the left end of the array, this shifting phase is over.

3. We then insert the temporarily removed value into the current gap:

4. Steps 1 through 3 represent a single pass-through. We repeat these pass-
throughs until the pass-through begins at the final index of the array. By
then, the array will have been fully sorted.

Insertion Sort in Action
Let’s apply Insertion Sort to the array, [4, 2, 7, 1, 3].

We begin the first pass-through by inspecting the value at index 1. This
happens to contain the value 2:
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Step 1: We temporarily remove the 2 and keep it inside a variable called
temp_value. We represent this value by shifting it above the rest of the array:

Step 2: We compare the 4 to the temp_value, which is 2:

Step 3: Because 4 is greater than 2, we shift the 4 to the right:

There’s nothing left to shift, as the gap is now at the left end of the array.

Step 4: We insert the temp_value into the gap, completing our first pass-through:

Next, we begin the second pass-through:

Step 5: In our second pass-through, we temporarily remove the value at index
2. We’ll store this in temp_value. In this case, the temp_value is 7:

Step 6: We compare the 4 to the temp_value:
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The 4 is lower, so we won’t shift it. Since we reached a value that is less than
the temp_value, this shifting phase is over.

Step 7: We insert the temp_value back into the gap, ending the second pass-
through:

We now begin the third pass-through:

Step 8: We temporarily remove the 1 and store it in temp_value:

Step 9: We compare the 7 to the temp_value:

Step 10: The 7 is greater than 1, so we shift the 7 to the right:

Step 11: We compare the 4 to the temp_value:

Step 12: The 4 is greater than 1, so we shift it as well:
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Step 13: We compare the 2 to the temp_value:

Step 14: The 2 is greater, so we shift it:

Step 15: The gap has reached the left end of the array, so we insert the
temp_value into the gap, concluding this pass-through:

Now, we begin the fourth pass-through:

Step 16: We temporarily remove the value from index 4, making it our temp_value.
This is the value 3:

Step 17: We compare the 7 to the temp_value:

Step 18: The 7 is greater, so we shift the 7 to the right:
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Step 19: We compare the 4 to the temp_value:

Step 20: The 4 is greater than the 3, so we shift the 4:

Step 21: We compare the 2 to the temp_value. The 2 is less than 3, so our
shifting phase is complete:

Step 22: We insert the temp_value back into the gap:

Our array is now fully sorted:

Code Implementation: Insertion Sort
Here is a Python implementation of Insertion Sort:

def insertion_sort(array):
for index in range(1, len(array)):

temp_value = array[index]
position = index - 1

while position >= 0:
if array[position] > temp_value:

array[position + 1] = array[position]
position = position - 1
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else:
break

array[position + 1] = temp_value

return array

Let’s walk through this code step by step.

First, we start a loop beginning at index 1 that runs through the entire array.
Each round of this loop represents a pass-through:

for index in range(1, len(array)):

Within each pass-through, we save the value we’re “removing” in a variable
called temp_value:

temp_value = array[index]

Next, we create a variable called position, which will start immediately to the
left of the index of the temp_value. This position will represent each value we
compare against the temp_value:

position = index - 1

As we move through the pass-through, this position will keep moving leftward
as we compare each value to the temp_value.

We then begin an inner while loop, which runs as long as position is greater or
equal to 0:

while position >= 0:

We then perform our comparison. That is, we check whether the value at
position is greater than the temp_value:

if array[position] > temp_value:

If it is, we shift that left value to the right:

array[position + 1] = array[position]

We then decrement position by 1 to compare the next left value against the
temp_value in the next round of the while loop:

position = position - 1

If at any point we encounter a value at position that is greater or equal to the
temp_value, we can get ready to end our pass-through, since it’s time to move
the temp_value into the gap:

else:
break
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The final step of each pass-through is moving the temp_value into the gap:

array[position + 1] = temp_value

After all pass-throughs have been completed, we return the sorted array:

return array

The Efficiency of Insertion Sort
Four types of steps occur in Insertion Sort: removals, comparisons, shifts,
and insertions. To analyze the efficiency of Insertion Sort, we need to tally up
each of these steps.

First, let’s dig into comparisons. A comparison takes place each time we
compare a value to the left of the gap with the temp_value. In a worst-case sce-
nario, where the array is sorted in reverse order, we have to compare every
number to the left of temp_value with temp_value in each pass-through. This is
because each value to the left of temp_value will always be greater than
temp_value, so the pass-through will only end when the gap reaches the left
end of the array.

During the first pass-through, in which temp_value is the value at index 1, a
maximum of one comparison is made, since there is only one value to the left
of the temp_value. On the second pass-through, a maximum of two comparisons
are made, and so on. On the final pass-through, we need to compare the
temp_value with every single value in the array besides temp_value itself. In other
words, if there are N elements in the array, a maximum of N - 1 comparisons
are made in the final pass-through.

We can, therefore, formulate the total number of comparisons as:

1 + 2 + 3 + … + (N - 1) comparisons.

In our example array that contains five elements, that’s a maximum of:

1 + 2 + 3 + 4 = 10 comparisons.

For an array containing 10 elements, there would be:

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 45 comparisons.

For an array containing 20 elements, there would be a total of 190 compar-
isons, and so on.

When examining this pattern, it emerges that for an array containing N ele-
ments, there are approximately N2 / 2 comparisons. (102 / 2 is 50, and 202 / 2
is 200. We’ll look at this pattern more closely in the next chapter.)
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Let’s continue analyzing the other types of steps.

Shifts occur each time we move a value one cell to the right. When an array
is sorted in reverse order, there will be as many shifts as there are compar-
isons, since every comparison will force us to shift a value to the right.

Let’s add up comparisons and shifts for a worst-case scenario:

N2 / 2 comparisons

+ N2 / 2 shifts
_____________________________

N2 steps

Removing and inserting the temp_value from the array happens once per pass-
through. Since there are always N - 1 pass-throughs, we can conclude that
there are N - 1 removals and N - 1 insertions.

So, now we’ve got:

N2 comparisons and shifts combined

N - 1 removals

+ N - 1 insertions
_____________________________

N2 + 2N - 2 steps

You’ve already learned one major rule of Big O: that Big O ignores constants.
With this rule in mind, we’d—at first glance—simplify this to O(N2 + N).

However, there is another major rule of Big O that I’ll reveal now:

Big O Notation only takes into account the highest order of N when we have
multiple orders added together.

That is, if we have an algorithm that takes N4 + N3 + N2 + N steps, we only
consider N4 to be significant—and just call it O(N4). Why is this?

Look at the following table:

N4N3N2N

16842

625125255

10,0001,00010010

100,000,0001,000,00010,000100
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As N increases, N4 becomes so much more significant than any other order
of N that the smaller orders are considered trivial. For example, when looking
at the bottom row of the table, when we add N4 + N3 + N2 + N, we get a total
of 101,010,100. But we may as well round that down to 100,000,000, which
is accomplished by ignoring those lower orders of N.

We can apply this same concept to Insertion Sort. Even though we’ve already
simplified Insertion Sort down to N2 + N steps, we simplify the expression
further by throwing out the lower order, reducing it to O(N2).

It emerges that in a worst-case scenario, Insertion Sort has the same time
complexity as Bubble Sort and Selection Sort. They’re all O(N2).

I noted in the previous chapter that although Bubble Sort and Selection Sort
are both O(N2), Selection Sort is faster because Selection Sort has N2 / 2 steps
compared with Bubble Sort’s N2 steps. At first glance, then, we’d say that
Insertion Sort is as slow as Bubble Sort, since it too takes about N2 steps.

If I stop the book here, you’d walk away thinking that Selection Sort is the
best choice out of the three, since it’s twice as fast as either Bubble Sort or
Insertion Sort. But it’s actually not that simple.

The Average Case
Indeed, in a worst-case scenario, Selection Sort is faster than Insertion Sort.
However, it is critical we also take into account the average-case scenario.

Why?

By definition, the cases that occur most frequently are average scenarios.
Take a look at this simple bell curve:
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Best- and worst-case scenarios happen relatively infrequently. In the real
world, average scenarios are what occur most of the time.

Take a randomly sorted array, for example. What are the odds that the values
will occur in perfect ascending or descending order? It’s much more likely
that the values will be all over the place.

Let’s examine Insertion Sort, then, in the context of all scenarios.

We’ve looked at how Insertion Sort performs in a worst-case scenario—where
the array is sorted in descending order. In the worst case, we saw that in
each pass-through, we compare and shift every value we encounter. (We cal-
culated this to be a total of N2 comparisons and shifts.)

In the best-case scenario, where the data is already sorted in ascending order,
we end up making just one comparison per pass-through and not a single
shift, since each value is already in its correct place.

Where data is randomly sorted, however, we’ll have pass-throughs in which
we compare and shift all of the data, some of the data, or possibly none of
the data. If you look at the preceding walk-through example in Insertion Sort
in Action, on page 80, you’ll notice that in the first and third pass-throughs,
we compare and shift all the data we encounter. In the fourth pass-through,
we compare and shift just some of it, and in the second pass-through, we
make just one comparison and shift no data at all.

(This variance occurs because some pass-throughs compare all the data to
the left of the temp_value, while other pass-throughs end early, due to encoun-
tering a value that is less than the temp_value.)

So, in the worst-case scenario, we compare and shift all the data, and in the
best-case scenario, we shift none of the data (and just make one comparison
per pass-through). For the average scenario, we can say that in the aggregate,
we probably compare and shift about half the data. Thus, if Insertion Sort
takes N2 steps for the worst-case scenario, we’d say that it takes about N2 / 2
steps for the average scenario. (In terms of Big O, however, both scenarios
are O(N2).)

Let’s dive into some specific examples.

The array, [1, 2, 3, 4] is already presorted, which is the best case. The worst
case for the same data would be [4, 3, 2, 1], and an example of an average case
might be [1, 3, 4, 2].
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In the worst case ([4, 3, 2, 1]), there are six comparisons and six shifts, for a
total of 12 steps. In an average case of [1, 3, 4, 2], there are four comparisons
and two shifts, for a total of six steps. In the best case ([1, 2, 3, 4]), there are
three comparisons and zero shifts.

We can now see that the performance of Insertion Sort varies greatly based
on the scenario. In the worst-case scenario, Insertion Sort takes N2 steps. In
an average scenario, it takes N2 / 2 steps. And in the best-case scenario, it
takes about N steps.

You can see these three types of performance in the following graph:

Contrast this with Selection Sort. Selection Sort takes N2 / 2 steps in all
cases, from worst to average to best-case scenarios. This is because Selection
Sort doesn’t have any mechanism for ending a pass-through early at any
point. Each pass-through compares every value to the right of the chosen
index no matter what.

Here’s a table that compares Selection Sort and Insertion Sort:

Worst CaseAverage CaseBest Case

N2 / 2N2 / 2N2 / 2Selection Sort

N2N2 / 2NInsertion Sort

So, which is better: Selection Sort or Insertion Sort? The answer is: well, it
depends. In an average case—where an array is randomly sorted—they perform
similarly. If you have reason to assume you’ll be dealing with data that is
mostly sorted, Insertion Sort will be a better choice. If you have reason to
assume you’ll be dealing with data that is mostly sorted in reverse order,
Selection Sort will be faster. If you have no idea what the data will be like,
that’s essentially an average case, and both will be equal.
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A Practical Example
Suppose you are writing a JavaScript application, and somewhere in your
code you find that you need to get the intersection between two arrays. The
intersection is a list of all the values that occur in both of the arrays. For
example, if you have the arrays, [3, 1, 4, 2] and [4, 5, 3, 6], the intersection would
be a third array, [3, 4], since both of those values are common to the two arrays.

Here’s one possible implementation:

function intersection(firstArray, secondArray){
let result = [];

for (let i = 0; i < firstArray.length; i++) {
for (let j = 0; j < secondArray.length; j++) {

if (firstArray[i] == secondArray[j]) {
result.push(firstArray[i]);

}
}

}
return result;

}

Here, we are running nested loops. In the outer loop, we iterate over each
value in the first array. As we point to each value in the first array, we then
run an inner loop that checks each value of the second array to see if it can
find a match with the value being pointed to in the first array.

There are two types of steps taking place in this algorithm: comparisons and
insertions. We compare every value of the two arrays against each other, and
we insert matching values into the array result. Let’s start by seeing how many
comparisons there are.

If the two arrays are of equal size, and say that N is the size of either array,
the number of comparisons performed are N2. This is because we compare
each element of the first array to each element of the second array. Thus, if
we have two arrays that each contain five elements, we’d end up making 25
comparisons. So, this intersection algorithm has an efficiency of O(N2).

The insertions, at most, would take N steps (if the two arrays happened to be
identical). This is a lower order compared to N2, so we’d still consider the
algorithm to be O(N2). If the arrays are different sizes—say N and M—we’d
say that the efficiency of this function is O(N * M). (More on this in Big O in
Everyday Code.)

Is there any way we can improve this algorithm?
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This is where it’s important to consider scenarios beyond the worst case. In
the current implementation of the intersection function, we make N2 comparisons
in all scenarios, no matter whether the arrays are identical or the arrays do
not share a single common value.

However, where the two arrays share common values, we really shouldn’t
have to check every value of the second array against a value of the first array.
Let’s see why:

In this example, as soon as we find a common value (the 8), there’s really no
reason to complete the second loop. What are we checking for at this point?
We’ve already determined that the second array contains the same 8 that the
first array does, and can add it to result. We’re performing an unnecessary step.

To fix this, we can add a single word to our implementation:

function intersection(firstArray, secondArray){
let result = [];

for (let i = 0; i < firstArray.length; i++) {
for (let j = 0; j < secondArray.length; j++) {

if (firstArray[i] == secondArray[j]) {
result.push(firstArray[i]);
break;

}
}

}
return result;

}

With the addition of the break, we can cut the inner loop short and save steps
(and therefore time).
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It’s still true that in a worst-case scenario, where the two elements do not contain
a single shared value, we have no choice but to perform N2 comparisons. But
now, in the best-case scenario, where the two arrays are identical, we only
have to perform N comparisons. In an average case, where the two arrays are
different but share some values, the performance will be somewhere between
N and N2.

This is a significant optimization to our intersection function, since our first
implementation would make N2 comparisons in all cases.

Wrapping Up
Being able to discern between best-, average-, and worst-case scenarios is a
key skill in choosing the best algorithm for your needs, as well as taking
existing algorithms and optimizing them further to make them significantly
faster. Remember, while it’s good to be prepared for the worst case, average
cases are what happen most of the time.

Now that we’ve covered the important concepts related to Big O Notation, let’s
apply our knowledge to practical algorithms. In the next chapter, we’re going
to take a look at various everyday algorithms that may appear in real code-
bases, and identify the time complexity of each one in terms of Big O.

Exercises
The following exercises provide you with the opportunity to practice with
optimizing for best- and worst-case scenarios. The solutions to these exercises
are found in the section, Chapter 6, on page 442.

1. Use Big O Notation to describe the efficiency of an algorithm that takes
3N2 + 2N + 1 steps.

2. Use Big O Notation to describe the efficiency of an algorithm that takes
N + log N steps.

3. The following function checks whether an array of numbers contains a
pair of two numbers that add up to 10.

function twoSum(array) {
for (let i = 0; i < array.length; i++) {

for (let j = 0; j < array.length; j++) {
if (i !== j && array[i] + array[j] === 10) {

return true;
}

}
}
return false;
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}

What are the best-, average-, and worst-case scenarios? Then, express
the worst-case scenario in terms of Big O Notation.

4. The following function returns whether or not a capital “X” is present
within a string.

function containsX(string) {

foundX = false;

for(let i = 0; i < string.length; i++) {
if (string[i] === "X") {
foundX = true;

}
}

return foundX;

}

What is this function’s time complexity in terms of Big O Notation?

Then, modify the code to improve the algorithm’s efficiency for best- and
average-case scenarios.
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CHAPTER 7

Big O in Everyday Code
In the previous chapters, you learned how to use Big O notation to express
the time complexity of code. As you’ve seen, there are quite a few details that
go into Big O analysis. In this chapter, we’ll use everything you’ve learned so
far to analyze the efficiency of practical code samples that might be found in
real-world codebases.

Determining the efficiency of our code is the first step in optimizing it. After
all, if we don’t know how fast our code is, how would we know if our modifi-
cations would make it faster?

Additionally, once we know how our code is categorized in terms of Big O
Notation, we can make a judgment call as to whether it may need optimization
in the first place. For example, an algorithm that is O(N2) is generally consid-
ered to be a “slow” algorithm. So, if we’ve determined that our algorithm falls
into such a category, we should take pause and wonder if there are ways to
optimize it.

Of course, O(N2) may be the best we can do for a given problem. However,
knowing that our algorithm is considered slow can signal to us to dig deeper
and analyze whether faster alternatives are available.

In the future chapters of this book, you’re going to learn many techniques
for optimizing our code for speed. But the first step of optimization is being
able to determine how fast our code currently is.

So, let’s begin.

Mean Average of Even Numbers
The following Ruby method accepts an array of numbers and returns the
mean average of all its even numbers. How would we express its efficiency in
terms of Big O?
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def average_of_even_numbers(array)

# The mean average of even numbers will be defined as the sum of
# the even numbers divided by the count of even numbers, so we
# keep track of both the sum and the count:

sum = 0.0
count_of_even_numbers = 0

# We iterate through each number in the array, and if we encounter
# an even number, we modify the sum and the count:

array.each do |number|
if number.even?
sum += number
count_of_even_numbers += 1

end
end

# We return the mean average:

return sum / count_of_even_numbers
end

Here’s how to break the code down to determine its efficiency.

Remember that Big O is all about answering the key question: if there are N
data elements, how many steps will the algorithm take? Therefore, the first
thing we want to do is determine what the “N” data elements are.

In this case, the algorithm is processing the array of numbers passed into
this method. These, then, would be the “N” data elements, with N being the
size of the array.

Next, we have to determine how many steps the algorithm takes to process
these N values.

We can see that the guts of the algorithm is the loop that iterates over each
number inside the array, so we’ll want to analyze that first. Since the loop
iterates over each of the N elements, we know that the algorithm takes at
least N steps.

Looking inside the loop, though, we can see that a varying number of steps
occur within each round of the loop. For each and every number, we check
whether the number is even. Then, if the number is even, we perform two
more steps: we modify the sum variable, and we modify the count_of_even_numbers
variable. So, we execute three more steps for even numbers than we do for
odd numbers.

As you’ve learned, Big O focuses primarily on worst-case scenarios. In our
case, the worst case is when all the numbers are even, in which case we
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perform three steps during each round of the loop. Because of this, we can
say that for N data elements, our algorithm takes 3N steps. That is, for each
of the N numbers, our algorithm executes three steps.

Now, our method performs a few other steps outside of the loop as well. Before
the loop, we initialize the two variables and set them to 0. Technically, these
are two steps. After the loop, we perform another step: the division of sum /
count_of_even_numbers. Technically, then, our algorithm takes three extra steps
in addition to the 3N steps, so the total number of steps is 3N + 3.

However, you also learned that Big O notation ignores constant numbers, so
instead of calling our algorithm O(3N + 3), we simply call it O(N).

Word Builder
The next example is an algorithm that collects every combination of two-
character strings built from an array of single characters. For example, given
the array: ["a", "b", "c", "d"], we’d return a new array containing the following
string combinations:

[
'ab', 'ac', 'ad', 'ba', 'bc', 'bd',
'ca', 'cb', 'cd', 'da', 'db', 'dc'

]

Following is a JavaScript implementation of this algorithm. Let’s see if we can
figure out its Big O efficiency:

function wordBuilder(array) {
let collection = [];

for(let i = 0; i < array.length; i++) {
for(let j = 0; j < array.length; j++) {
if (i !== j) {

collection.push(array[i] + array[j]);
}

}
}

return collection;
}

Here we’re running one loop nested inside another. The outer loop iterates
over each character in the array, keeping track of the index i. For each index
i, we run an inner loop that iterates again over each character in the same
array using the index j. Within this inner loop, we concatenate the characters
at i and j, with the exception of when i and j are pointing to the same index.
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To determine the efficiency of our algorithm, we once again need to determine
what the N data elements are. In our case, as in the previous example, N is
the number of items inside the array passed to the function.

The next step is to determine the number of steps our algorithm takes relative
to the N data elements. In our case, the outer loop iterates over all N elements,
and for each element, the inner loop iterates again over all N elements, which
amounts to N steps multiplied by N steps. This is the classic case of O(N2),
and is often what nested-loop algorithms turn out to be.

Now, what would happen if we modified our algorithm to compute each
combination of three-character strings? That is, for our example array of ["a",
"b", "c", "d"], our function would return the array:

[
'abc', 'abd', 'acb',
'acd', 'adb', 'adc',
'bac', 'bad', 'bca',
'bcd', 'bda', 'bdc',
'cab', 'cad', 'cba',
'cbd', 'cda', 'cdb',
'dab', 'dac', 'dba',
'dbc', 'dca', 'dcb'

]

Here’s an implementation that uses three nested loops. What is its time
complexity?

function wordBuilder(array) {
let collection = [];

for(let i = 0; i < array.length; i++) {
for(let j = 0; j < array.length; j++) {
for(let k = 0; k < array.length; k++) {

if (i !== j && j !== k && i !== k) {
collection.push(array[i] + array[j] + array[k]);

}
}

}
}

return collection;
}

In this algorithm, for N data elements, we have N steps of the i loop multiplied
by the N steps of the j loop multiplied by the N steps of the k loop. This is N
* N * N, which is N3 steps, which is described as O(N3).

If we had four or five nested loops, we’d have algorithms that are O(N4) and
O(N5), respectively. Let’s see how these all appear on a graph on page 99.
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Optimizing code from a speed of O(N3) to O(N2) would be a big win, since the
code becomes exponentially faster.

Array Sample
In the next example, we create a function that takes a small sample of an
array. We expect to have very large arrays, so our sample is just the first,
middlemost, and last value from the array.

Here is a Python implementation of this function. See if you can identify its
efficiency in Big O:

def sample(array):
first = array[0]
middle = array[int(len(array) / 2)]
last = array[-1]

return [first, middle, last]

In this case again, the array passed into this function is the primary data, so
we can say that N is the number of elements in this array.

However, our function ends up taking the same number of steps no matter
what N is. Reading from the beginning, midpoint, and last indexes of an array
each takes one step no matter the size of the array. Similarly, finding the
array’s length and dividing it by 2 also takes one step.

Since the number of steps is constant—that is, it remains the same no matter
what N is—this algorithm is considered O(1).

report erratum  •  discuss

Array Sample • 99

http://pragprog.com/titles/jwdsal2/errata/add
http://forums.pragprog.com/forums/jwdsal2


Average Celsius Reading
Here’s another example that involves mean averages. Let’s say we’re building
weather-forecasting software. To determine the temperature of a city, we take
temperature readings from across many thermometers across the city, and
we calculate the mean average of those temperatures.

We’d also like to display the temperatures in both Fahrenheit and Celsius,
but our readings are initially only provided to us in Fahrenheit.

To get the average Celsius temperature, our algorithm does two things: first,
it converts all the readings from Fahrenheit to Celsius. Then, it calculates
the mean average of all the Celsius numbers.

Following is some Ruby code that accomplishes this. What is its Big O?

def average_celsius(fahrenheit_readings)

# Collect Celsius numbers here:
celsius_numbers = []

# Convert each reading to Celsius and add to array:
fahrenheit_readings.each do |fahrenheit_reading|

celsius_conversion = (fahrenheit_reading - 32) / 1.8
celsius_numbers.push(celsius_conversion)

end

# Get sum of all Celsius numbers:
sum = 0.0

celsius_numbers.each do |celsius_number|
sum += celsius_number

end

# Return mean average:
return sum / celsius_numbers.length

end

First, we can say that N is the number of fahrenheit_readings passed into our
method.

Inside the method, we run two loops. The first converts the readings to Celsius,
and the second sums all the Celsius numbers. Since we have two loops that
each iterate over all N elements, we have N + N, which is 2N (plus a few constant
steps). Because Big O Notation drops the constants, this gets reduced to O(N).

Don’t get thrown off by the fact that in the earlier Word Builder example, two
loops led to an efficiency of O(N2). There, the loops were nested, which led to
N steps multiplied by N steps. In our case, however, we simply have two loops,
one after the other. This is N steps plus N steps (2N), which is a mere O(N).
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Clothing Labels
Suppose we’re writing software for a clothing manufacturer. Our code accepts
an array of newly produced clothing items (stored as strings), and creates
text for every possible label we’ll need.

Specifically, our labels should contain the item name plus its size, ranging
from 1 to 5. For example, if we have the array, ["Purple Shirt", "Green Shirt"], we
want to produce label text for those shirts like this:

[
"Purple Shirt Size: 1",
"Purple Shirt Size: 2",
"Purple Shirt Size: 3",
"Purple Shirt Size: 4",
"Purple Shirt Size: 5",
"Green Shirt Size: 1",
"Green Shirt Size: 2",
"Green Shirt Size: 3",
"Green Shirt Size: 4",
"Green Shirt Size: 5"
]

Here is Python code that will create this text for an entire array of clothing
items:

def mark_inventory(clothing_items):
clothing_options = []

for item in clothing_items:
# For sizes 1 through 5 (Python ranges go UP TO second
# number, but do not include it):
for size in range(1, 6):
clothing_options.append(item + " Size: " + str(size))

return clothing_options

Let’s determine this algorithm’s efficiency. The clothing_items are the primary
data being processed, so N is the number of clothing_items.

This code contains nested loops, so it’s tempting to declare this algorithm to
be O(N2). However, we need to analyze this case a little more carefully. While
code containing nested loops often is O(N2), in this case, it’s not.

Nested loops that result in O(N2) occur when each loop revolves around N. In
our case, however, while our outer loop runs N times, our inner loop runs a
constant five times. That is, this inner loop will always run five times no
matter what N is.
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So, while our outer loop runs N times, the inner loop runs five times for each
of the N strings. While this means our algorithm runs 5N times, this is reduced
to O(N), since Big O notation ignores constants.

Count the Ones
Here’s another algorithm where the Big O is different from what it seems at
first glance. This function accepts an array of arrays, where the inner arrays
contain 1’s and 0’s. The function then returns how many 1’s there are.

So, for this example input:

[
[0, 1, 1, 1, 0],
[0, 1, 0, 1, 0, 1],
[1, 0]

]

our function will return 7, since there are seven 1’s. Here’s the function in
Python:

def count_ones(outer_array):
count = 0

for inner_array in outer_array:
for number in inner_array:
if number == 1:

count += 1

return count

What’s the Big O of this algorithm?

Again, it’s easy to notice the nested loops and jump to the conclusion that
it’s O(N2). However, the two loops are iterating over two completely different
things.

The outer loop is iterating over the inner arrays, and the inner loop is iterating
over the actual numbers. At the end of the day, our inner loop only runs for
as many numbers as there are in total.

Because of this, we can say that N represents how many numbers there are.
And since our algorithm simply processes each number, the function’s time
complexity is O(N).

Palindrome Checker
A palindrome is a word or phrase that reads the same both forward and
backward. Some examples include “racecar,” “kayak,” and “deified.”
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Here’s a JavaScript function that determines whether a string is a palindrome:

function isPalindrome(string) {

// Start the leftIndex at index 0:
let leftIndex = 0;
// Start rightIndex at last index of array:
let rightIndex = string.length - 1;

// Iterate until leftIndex reaches the middle of the array:
while (leftIndex < string.length / 2) {

// If the character on the left doesn't equal the character
// on the right, the string is not a palindrome:
if (string[leftIndex] !== string[rightIndex]) {
return false;

}

// Move leftIndex one to the right:
leftIndex++;
// Move rightIndex one to the left:
rightIndex--;

}

// If we got through the entire loop without finding any
// mismatches, the string must be a palindrome:
return true;

}

Let’s determine the Big O of this algorithm.

In this case, N is the size of the string passed to this function.

The guts of the algorithm takes place within the while loop. Now, this loop is
somewhat interesting because it only runs until it reaches the midpoint of
the string. That would mean that the loop runs N / 2 steps.

However, Big O ignores constants. Because of this, we drop the division by
2, and our algorithm is O(N).

Get All the Products
Our next example is an algorithm that accepts an array of numbers and
returns the product of every combination of two numbers.

For example, if we passed in the array, [1, 2, 3, 4, 5], the function returns:

[2, 3, 4, 5, 6, 8, 10, 12, 15, 20]

This is because we first multiply the 1 by the 2, 3, 4, and 5. Then we multiply
the 2 by the 3, 4, and 5. Next, we multiply the 3 by the 4 and the 5. And
finally, we multiply the 4 by the 5.
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Note something interesting: when we multiply, say, the 2 by the other num-
bers, we only have to multiply it by the numbers that are to the right of it.
We don’t have to go back and multiply 2 by the 1, because that was already
covered back when we multiplied by the 1 by the 2. So, each number only
needs to be multiplied by the remaining numbers to the right of it.

Here’s a JavaScript implementation of this algorithm:

function twoNumberProducts(array) {
let products = [];

// Outer array:
for(let i = 0; i < array.length - 1; i++) {

// Inner array, in which j always begins one index
// to the right of i:
for(let j = i + 1; j < array.length; j++) {
products.push(array[i] * array[j]);

}
}

return products;
}

Let’s break this down. N is the number of items in the array passed to this
function.

We run the outer loop N times. (We actually run it N - 1 times, but we’ll drop
that constant.) The inner loop, though, is different. Since j always begins one
index to the right of i, the inner loop’s number of steps decrease each time
that it’s launched by the outer loop.

Let’s see how many times the inner loop runs for our example array, which
contains five elements:

When i is 0, the inner loop runs while j is 1, 2, 3, and 4. When i is 1, the inner
loop runs while j is 2, 3, and 4. When i is 2, the inner loop runs while j is 3,
and 4. When i is 3, the inner loop runs while j is 4. When all is said and done,
the inner loop runs:

4 + 3 + 2 + 1 times.

To put this in terms of N, we can say that the inner loop runs approximately:

N + (N - 1) + (N - 2) + (N - 3) … + 1 times.

This formula always turns out to compute to about N2 / 2. We can visualize
this in the diagram on page 105. For the purposes of the diagram, we’ll say
that N is 8, so there are 82, or 64, squares.
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If you work your way from the top row to the bottom, you’ll see that the top
row has all N squares shaded gray. The next row has N - 1 squares shaded
gray, and the one after that has N - 2 gray squares. This pattern continues
until the bottom row, which has just one shaded square.

You can also see at a glance that half of the squares are shaded. This
demonstrates that the pattern of N + (N - 1) + (N - 2) + (N - 3)… + 1 is equiva-
lent to N2 / 2.

We’ve figured out, then, that the inner loop runs for N2 / 2 steps. But because
Big O ignores constants, we express this as O(N2).

Dealing with Multiple Datasets
Now, what happens if instead of computing the product of every two numbers
from a single array, we instead compute the product of every number from
one array by every number of a second array?

For example, if we had the array, [1, 2, 3] and the array, [10, 100, 1000], we’d
compute the products as:

[10, 100, 1000, 20, 200, 2000, 30, 300, 3000]

Our code would be similar to the previous snippet, with some slight modifications:

function twoNumberProducts(array1, array2) {
let products = [];

for(let i = 0; i < array1.length; i++) {
for(let j = 0; j < array2.length; j++) {
products.push(array1[i] * array2[j]);

}
}

return products;
}
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Let’s analyze the time complexity of this function.

First, what is N? This is the first hurdle, as we now have two datasets,
namely, the two arrays.

It’s tempting to lump everything together and say that N is the total number
of items of both arrays combined. However, this is problematic for the following
reason:

Here’s a tale of two scenarios. In Scenario 1, there are two arrays of size 5.
In Scenario 2, there’s one array of size 9, and another of size 1.

In both scenarios, we’d end up saying that N is 10, since 5 + 5 = 10 and 9 +
1 = 10. However, the efficiency of both scenarios is very different.

In Scenario 1, our code takes 25 (5 * 5) steps. Because N is 10, this is equiv-
alent to (N / 2)2 steps.

In Scenario 2, though, our code takes 9 (9 * 1) steps, which is close to about
N steps. This is dramatically faster than Scenario 1!

So, we don’t want to consider N to be the total number of integers from both
arrays, since we’d never be able to pin down the efficiency in terms of Big O
Notation, as it varies based on the different scenarios.

We’re in a bit of a bind here. We have no choice but to express the time
complexity as O(N * M), where N is the size of one array, and M is the size of
the other.

This is a new concept: whenever we have two distinct datasets that have to
interact with each other through multiplication, we have to identify both
sources separately when we describe the efficiency in terms of Big O.

While this is the correct way of expressing this algorithm in terms of Big O
Notation, it’s a little less useful than other expressions of Big O. Comparing
an O(N * M) algorithm to algorithms that only have an N (and not an M) is a
little like comparing apples to oranges.

However, we do know that there’s a specific range in which O(N * M) lies. That
is, if N and M are the same, it’s equivalent to O(N2). And if they’re not the
same, and we arbitrarily assign the smaller number to be M, even if M is as
low as 1, we end up with O(N). In a sense then, O(N * M) can be construed
as a range between O(N) and O(N2).

Is this great? No, but it’s the best we can do.
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Password Cracker
You’re a hacker (an ethical one, of course) who’s trying to figure out someone’s
password. You decide on a brute-force approach, and write some code that pro-
duces every possible string of a given length. Here’s the code you whipped up:

def every_password(n)
(("a" * n)..("z" * n)).each do |str|

puts str
end

end

The way this works is you pass in a number to the function, which becomes
the variable n.

If n is 3, for example, the code "a" * n produces the string "aaa". The code then
sets a loop between all possible strings within the range of "aaa" and "zzz".
Running this code will print:

aaa
aab
aac
aad
aae

...

zzx
zzy
zzz

If n is 4, your code will print all possible strings of length 4:

aaaa
aaab
aaac
aaad
aaae

...

zzzx
zzzy
zzzz

If you try running this code even for a mere length of 5, you may be waiting
quite some time for it to finish. This is a slow algorithm! But how do we express
it in terms of Big O?

Let’s break it down.
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If we simply print each letter from the alphabet once, it would take 26 steps.

When we print every two-character combination, we end up with 26 characters
multiplied by 26 characters.

When printing every three-character combination, we end up with 26 * 26 * 26
combinations.

Do you see the pattern?

CombinationsLength

261

2622

2633

2644

If we look at this in terms of N, it emerges that if N is the length of each string,
the number of combinations is 26N.

Therefore, in Big O Notation, we express this as O(26N). This is an utterly
glacial algorithm! The truth is that even an algorithm that is a “mere” O(2N)
is incredibly slow. Let’s see how it looks on a graph compared to some of the
other algorithms we’ve seen so far:

As you can see, O(2N) gets even slower than O(N3) at a point.

In a certain sense, O(2N) is the opposite of O(log N). With an algorithm of O(log
N) (like binary search), each time the data is doubled, the algorithm takes
one additional step. With an algorithm of O(2N), each time we add one element
of data, the algorithm doubles in steps!
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In our password cracker, each time we increase N by one, the number of steps
get multiplied by 26. This takes an incredible amount of time, which is why
brute force is such an inefficient way to crack a password.

Wrapping Up
Congratulations! You’re now a Big O pro. You can analyze all sorts of algo-
rithms and categorize their time complexities. Armed with this knowledge,
you’ll be able to methodically optimize your code for speed.

Speaking of which, in the next chapter, we’ll discover a new data structure
that is the one of the most useful and common tools for speeding up algo-
rithms. And I’m talking about some serious speed.

Exercises
The following exercises provide you with the opportunity to practice with
algorithms in practical situations. The solutions to these exercises are found
in the section, Chapter 7, on page 443.

1. Use Big O Notation to describe the time complexity of the following func-
tion. The function returns true if the array is a “100-Sum Array,” and
false if it is not.

A “100-Sum Array” meets the following criteria:

• Its first and last numbers add up to 100.
• Its second and second-to-last numbers add up to 100.
• Its third and third-to-last numbers add up to 100, and so on.

Here is the function:

def one_hundred_sum?(array)
left_index = 0
right_index = array.length - 1

while left_index < array.length / 2
if array[left_index] + array[right_index] != 100
return false

end

left_index += 1
right_index -= 1

end

return true
end

report erratum  •  discuss

Wrapping Up • 109

http://pragprog.com/titles/jwdsal2/errata/add
http://forums.pragprog.com/forums/jwdsal2


2. Use Big O Notation to describe the time complexity of the following func-
tion. It merges two sorted arrays together to create a new sorted array
containing all the values from both arrays:

def merge(array_1, array_2)
new_array = []
array_1_pointer = 0
array_2_pointer = 0

# Run the loop until we've reached end of both arrays:
while array_1_pointer < array_1.length ||

array_2_pointer < array_2.length

# If we already reached the end of the first array,
# add item from second array:
if !array_1[array_1_pointer]
new_array << array_2[array_2_pointer]
array_2_pointer += 1

# If we already reached the end of the second array,
# add item from first array:
elsif !array_2[array_2_pointer]
new_array << array_1[array_1_pointer]
array_1_pointer += 1

# If the current number in first array is less than current
# number in second array, add from first array:
elsif array_1[array_1_pointer] < array_2[array_2_pointer]
new_array << array_1[array_1_pointer]
array_1_pointer += 1

# If the current number in second array is less than or equal
# to current number in first array, add from second array:
else
new_array << array_2[array_2_pointer]
array_2_pointer += 1

end
end

return new_array
end

3. Use Big O Notation to describe the time complexity of the following func-
tion. This function solves a famous problem known as “finding a needle
in the haystack.”

Both the needle and haystack are strings. For example, if the needle is
"def" and the haystack is "abcdefghi", the needle is contained somewhere in
the haystack, as "def" is a substring of "abcdefghi". However, if the needle
is "dd", it cannot be found in the haystack of "abcdefghi".

This function returns true or false, depending on whether the needle can
be found in the haystack:
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def find_needle(needle, haystack)
needle_index = 0
haystack_index = 0

while haystack_index < haystack.length
if needle[needle_index] == haystack[haystack_index]
found_needle = true

while needle_index < needle.length
if needle[needle_index] != haystack[haystack_index + needle_index]
found_needle = false
break

end
needle_index += 1

end

return true if found_needle
needle_index = 0

end

haystack_index += 1
end

return false
end

4. Use Big O Notation to describe the time complexity of the following func-
tion. This function finds the greatest product of three numbers from a
given array:

def largest_product(array)
largest_product_so_far = array[0] * array[1] * array[2]
i = 0

while i < array.length
j = i + 1
while j < array.length
k = j + 1
while k < array.length

if array[i] * array[j] * array[k] > largest_product_so_far
largest_product_so_far = array[i] * array[j] * array[k]

end
k += 1

end
j += 1

end
i += 1

end

return largest_product_so_far

end
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5. I once saw a joke aimed at HR people: “Want to immediately eliminate
the unluckiest people from your hiring process? Just take half of the
resumes on your desk and throw them in the trash.”

If we were to write software that kept reducing a pile of resumes until we
had one left, it might take the approach of alternating between throwing
out the top half and the bottom half. That is, it will first eliminate the top
half of the pile, and then proceed to eliminate the bottom half of what
remains. It keeps alternating between eliminating the top and bottom
until one lucky resume remains, and that’s who we’ll hire!

Describe the efficiency of this function in terms of Big O:

def pick_resume(resumes)
eliminate = "top"

while resumes.length > 1
if eliminate == "top"
resumes = resumes[resumes.length / 2, resumes.length - 1]
eliminate = "bottom"

elsif eliminate == "bottom"
resumes = resumes[0, resumes.length / 2]
eliminate = "top"

end
end

return resumes[0]
end
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CHAPTER 8

Blazing Fast Lookup with Hash Tables
Imagine you’re writing a program that allows customers to order fast food
from a restaurant, and you’re implementing a menu of foods with their
respective prices. You could, technically, use an array:

menu = [ ["french fries", 0.75], ["hamburger", 2.5],
["hot dog", 1.5], ["soda", 0.6] ]

This array contains several subarrays, and each subarray contains two ele-
ments. The first element is a string representing the food on the menu, and
the second element represents the price of that food.

As you learned in Why Algorithms Matter, if this array were unordered,
searching for the price of a given food would take O(N) steps since the com-
puter would have to perform a linear search. If it’s an ordered array, the
computer could do a binary search, which would take O(log N).

While O(log N) isn’t bad, we can do better. In fact, we can do much better. By
the end of this chapter, you’ll learn how to use a special data structure called
a hash table, which can be used to look up data in just O(1) time. By knowing
how hash tables work under the hood and the right places to use them, you
can leverage their tremendous lookup speeds in many situations.

Hash Tables
Most programming languages include a data structure called a hash table,
and it has an amazing superpower: fast reading. Note that hash tables are
called by different names in various programming languages. Other names
include hashes, maps, hash maps, dictionaries, and associative arrays.

Here’s an example of the menu as implemented with a hash table using Ruby:

menu = { "french fries" => 0.75, "hamburger" => 2.5,
"hot dog" => 1.5, "soda" => 0.6 }
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A hash table is a list of paired values. The first item in each pair is called the
key, and the second item is called the value. In a hash table, the key and
value have some significant association with one another. In this example,
the string, "french fries" is the key, and 0.75 is the value. They are paired
together to indicate that french fries cost 75 cents.

In Ruby, you can look up a key’s value using this syntax:

menu["french fries"]

This would return the value 0.75.

Looking up a value in a hash table has an efficiency of O(1) on average, as it
usually takes just one step. Let’s see why.

Hashing with Hash Functions
Do you remember those secret codes you used as a kid to create and decipher
messages?

For example, here’s a simple way to map letters to numbers:

A = 1
B = 2
C = 3
D = 4
E = 5

and so on.

According to this code,

ACE converts to 135,
CAB converts to 312,
DAB converts to 412,

and

BAD converts to 214.

This process of taking characters and converting them to numbers is known
as hashing. And the code that is used to convert those letters into particular
numbers is called a hash function.

There are many other hash functions besides this one. Another example of a
hash function may be to take each letter’s corresponding number and return
the sum of all the numbers. If we did that, BAD would become the number 7
following a two-step process:
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Step 1: First, BAD converts to 214.

Step 2: We then take each of these digits and get their sum:

2 + 1 + 4 = 7

Another example of a hash function may be to return the product of all the
letters’ corresponding numbers. This would convert the word BAD into the
number 8:

Step 1: First, BAD converts to 214.

Step 2: We then take the product of these digits:

2 * 1 * 4 = 8

In our examples for the remainder of this chapter, we’re going to stick with
this last version of the hash function. Real-world hash functions are more
complex than this, but this “multiplication” hash function will keep our
examples clear and simple.

The truth is that a hash function needs to meet only one criterion to be valid:
a hash function must convert the same string to the same number every single
time it’s applied. If the hash function can return inconsistent results for a
given string, it’s not valid.

Examples of invalid hash functions include functions that use random
numbers or the current time as part of their calculation. With these functions,
BAD might convert to 12 one time, and 106 another time.

With our “multiplication” hash function, however, BAD will always convert
to 8. That’s because B is always 2, A is always 1, and D is always 4. And 2 *
1 * 4 is always 8. There’s no way around this.

Note that with this hash function, DAB will also convert into 8 just as BAD
will. This will actually cause some issues that I’ll address later.

Armed with the concept of hash functions, we can now understand how a
hash table actually works.

Building a Thesaurus for Fun and Profit, but Mainly Profit
On nights and weekends, you’re single-handedly working on a stealth startup
that will take over the world. It’s…a thesaurus app. But this isn’t any old
thesaurus app—this is Quickasaurus. And you know that it will totally disrupt
the billion-dollar thesaurus market. When a user looks up a word in Quick-
asaurus, it returns just one synonym, instead of every possible synonym as
old-fashioned thesaurus apps do.
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Since every word has an associated synonym, this is a great use case for a
hash table. After all, a hash table is a list of paired items. Let’s get started.

We can represent our thesaurus using a hash table:

thesaurus = {}

Under the hood, a hash table stores its data in a bunch of cells in a row,
similar to an array. Each cell has a corresponding number. For example:

(We left off index 0 since nothing would be stored there given our “multiplica-
tion” hash function.)

Let’s add our first entry into the hash table:

thesaurus["bad"] = "evil"

In code, our hash table now looks like this:

{"bad" => "evil"}

Let’s explore how the hash table stores this data.

First, the computer applies the hash function to the key. Again, we’ll be using
the “multiplication” hash function described previously. So, this would com-
pute as:

BAD = 2 * 1 * 4 = 8

Since our key ("bad") hashes into 8, the computer places the value ("evil") into
cell 8:

Now, let’s add another key-value pair:

thesaurus["cab"] = "taxi"

Again, the computer hashes the key:

CAB = 3 * 1 * 2 = 6
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Since the resulting value is 6, the computer stores the value ("taxi") inside cell 6.

Let’s add one more key-value pair:

thesaurus["ace"] = "star"

To sum up what’s happening here: for every key-value pair, each value is
stored at the index of the key, after the key has been hashed.

ACE hashes into 15, since ACE = 1 * 3 * 5 = 15, so "star" gets placed into cell 15:

In code, our hash table currently looks like this:

{"bad" => "evil", "cab" => "taxi", "ace" => "star"}

Hash Table Lookups
When we look up items from a hash table, we use a key to find its associated
value. Let’s see how this works with our Quickasaurus example hash table.

Suppose we want to look up the value associated with the key "bad". In our
code, we’d say:

thesaurus["bad"]

To find the value associated with "bad", the computer executes two simple
steps:

1. The computer hashes the key we’re looking up: BAD = 2 * 1 * 4 = 8.
2. Since the result is 8, the computer looks inside cell 8 and returns the

value stored there. In this case, that is the string, "evil".

Let’s take a step back and look at the big picture here. In a hash table, the
placement of each value is determined by its key. That is, by hashing the key
itself, we compute the index number where the key’s associated value should
be placed.
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Because the key determines the placement of the value, we use this principle
to make lookups a cinch. When we have any key and want to find its value,
the key itself tells us where the value will be found. Just as we hashed the
key to insert the value in the appropriate cell, we can hash the key again to
find where we previously put that value.

It now becomes clear why looking up a value in a hash table is typically O(1):
it’s a process that takes a constant amount of time. The computer hashes
the key, turns it into a number, and jumps to the index with that number to
retrieve the value stored there.

We can now understand why a hash table would yield faster lookups for our
restaurant menu than an array. With an array, when we look up the price of
a menu item, we would have to search through each cell until we find it. For
an unordered array, this would take up to O(N), and for an ordered array,
this would take up to O(log N). Using a hash table, however, we can now use
the actual menu items as keys, allowing us to do a hash table lookup of O(1).
And that’s the beauty of a hash table.

One-Directional Lookups
It’s important to point out that the ability to find any value within the hash
table in a single step only works if we know the value’s key. If we tried to find
a particular value without knowing its key, we’d still have to resort to
searching each and every key-value pair within the hash table, which is O(N).

Similarly, we can only do O(1) lookups when using a key to find the value. If,
on the other hand, we want to use a value to find its associated key, we cannot
take advantage of the hash table’s fast lookup ability.

This is because the whole premise of the hash table is that the key determines
the value’s location. But this premise only works in one direction: we use the
key to find the value. The value does not determine the key’s location, so we
have no way to easily find any key without combing through all of them.

Come to think of it, where are the keys stored? In the previous diagrams, we
only saw how the values are stored in the hash table.

While this detail may vary from language to language, some languages store
the keys next to the values themselves. This is useful in case of collisions,
which I’ll discuss in the next section.

In any case, there’s another aspect of the hash table’s one-directional nature
that’s worth noting. Each key can exist only once in the hash table, but there
can be multiple instances of a value.
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If we think about the menu example from the beginning of this chapter, we
can’t have the hamburger listed twice (nor would we want to, as it only has
one price). However, we could have multiple foods that cost $2.50.

In many languages, if we try to store a key-value pair where the key already
exists, it simply overwrites the old value while keeping the same key.

Dealing with Collisions
Hash tables are awesome, but are not without complications.

Continuing our thesaurus example: what happens if we want to add the fol-
lowing entry into our thesaurus?

thesaurus["dab"] = "pat"

First, the computer would hash the key:

DAB = 4 * 1 * 2 = 8

Then, it would try to add "pat" to our hash table’s cell 8:

Uh-oh. Cell 8 is already filled with "evil"—literally!

Trying to add data to a cell that is already filled is known as a collision. For-
tunately, there are ways around it.

One classic approach for handling collisions is known as separate chaining.
When a collision occurs, instead of placing a single value in the cell, it places
in it a reference to an array.

Let’s look more carefully at a subsection of our hash table’s underlying data
storage:

In our example, the computer wants to add "pat" to cell 8, but it already con-
tains "evil". So, it replaces the contents of cell 8 with an array as shown on
page 120.
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This array contains subarrays where the first value is the word, and the second
value is its synonym.

Let’s walk through how a hash table lookup works in this case. If we look up:

thesaurus["dab"]

the computer takes the following steps:

1. It hashes the key: DAB = 4 * 1 * 2 = 8.

2. It looks up cell 8. The computer takes note that cell 8 contains an array
of arrays rather than a single value.

3. It searches through the array linearly, looking at index 0 of each subarray
until it finds our key ("dab"). It then returns the value at index 1 of the
correct subarray.

Let’s walk through these steps visually.

We hash DAB into 8, so the computer inspects that cell:
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Since cell 8 contains an array of subarrays, we begin a linear search through
each subarray, starting at the first one. We inspect index 0 of the first subarray:

It does not contain the key we are looking for ("dab"), so we move on to index
0 of the next subarray:

We found "dab", which would indicate that the value at index 1 of that subarray
("pat") is the value we’re looking for.

In a scenario where the computer hits upon a cell that references an array,
its search can take some extra steps, as it needs to conduct a linear search
within an array of multiple values. If somehow all of our data ended up
within a single cell of our hash table, our hash table would be no better than
an array. So, it actually turns out that the worst-case performance for a hash
table lookup is O(N).

Because of this, it is critical that a hash table is designed in such a way that
it will have few collisions, and therefore, typically perform lookups in O(1)
time rather than O(N) time.
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Luckily, most programming languages implement hash tables and handle
these details for us. However, by understanding how it all works under the
hood, we can appreciate how hash tables eke out O(1) performance.

Let’s see how hash tables can be set up to avoid frequent collisions.

Making an Efficient Hash Table
Ultimately, a hash table’s efficiency depends on three factors:

• How much data we’re storing in the hash table
• How many cells are available in the hash table
• Which hash function we’re using

It makes sense why the first two factors are important. If you have a lot of
data and only a few cells, there will be many collisions and the hash table
will lose its efficiency. Let’s explore, however, why the hash function itself is
important for efficiency.

Let’s say we’re using a hash function that always produces a value that falls
in the range from 1 to 9. An example of this is a hash function that converts
letters into their corresponding numbers and keeps adding the resulting
digits together until it ends up with a single digit.

For example:

PUT = 16 + 21 + 20 = 57

Because 57 contains more than one digit, the hash function breaks up the
57 into 5 + 7:

5 + 7 = 12

12 also contains more than one digit, so it breaks up the 12 into 1 + 2:

1 + 2 = 3

In the end, PUT hashes into 3.

This hash function by its very nature will always return a number 1 through 9.

Let’s return to our example hash table:

With this hash function, the computer would never even use cells 10 through
16 even though they exist. All data would be stuffed into cells 1 through 9.
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A good hash function, therefore, is one that distributes its data across all
available cells. The more we can spread out our data, the fewer collisions we
will have.

The Great Balancing Act
You learned that a hash table’s efficiency goes up as its number of collisions
goes down. In theory, then, the best way to avoid collisions would be to have
a hash table with a large number of cells. Imagine we want to store just five
items in our hash table. A hash table with 1,000 cells would seem to be
wonderful for our case, since odds are there would be no collisions.

However, while avoiding collisions is important, we have to balance that with
avoiding memory hogging as well.

Although a hash table with 1,000 cells for our five pieces of data is great for
avoiding collisions, we’d be using up 1,000 cells just to store just five pieces
of data, and that’s a poor use of memory.

This is the balancing act that a hash table must perform. A good hash table
strikes a balance of avoiding collisions while not consuming lots of memory.

To accomplish this, computer scientists have developed the following rule of
thumb: for every 7 data elements stored in a hash table, it should have 10 cells.

So, if you’re planning on storing 14 elements, you’d want to have 20 available
cells, and so on.

This ratio of data to cells is called the load factor. Using this terminology, we’d
say that the ideal load factor is 0.7 (7 elements / 10 cells).

If you initially stored 7 pieces of data in a hash table, the computer might
allocate a hash table with 10 cells. When you begin to add more data, though,
the computer will expand the hash table by adding more cells and changing
the hash function so that the new data will be distributed evenly across the
new cells.

Again, most of the internals of a hash table are managed by the computer
language you’re using. It decides how big the hash table needs to be, what
hash function to use, and when it’s time to expand the hash table. You have
the right to assume that your programming language has implemented its
hash table to allow for peak performance.

Now that we’ve seen how hashes work, it’s clear that they have a superior
lookup efficiency of O(1). We’re going to use this knowledge shortly to optimize
our code for speed.
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But first, let’s first take a quick tour of the many different use cases for hash
tables when it comes to simple data organization.

Hash Tables for Organization
Because hash tables keep data in pairs, they are useful in many scenarios
for organizing data.

Some data exists naturally in paired form. The fast-food menu and thesaurus
scenarios from this chapter are classic examples of this. The menu contains
each food item paired with its price. The thesaurus contains each word paired
with its synonym. In fact, in Python, hash tables are known as dictionaries
since a dictionary is a common form of paired data: it’s a list of words with
their respective definitions.

Other examples of naturally paired data can include tallies, such as political
candidates and the number of votes each received:

{"Candidate A" => 1402021, "Candidate B" => 2321443, "Candidate C" => 432}

An inventory tracking system, which keeps track of how much of each item
is in supply, is another tally example:

{"Yellow Shirt" => 1203, "Blue Jeans" => 598, "Green Felt Hat" => 65}

Hash tables are such a natural fit for paired data that we can even use them
to simplify conditional logic in certain instances.

Say we encounter a function that returns the meaning of common HTTP
status code numbers:

def status_code_meaning(number)
if number == 200

return "OK"
elsif number == 301

return "Moved Permanently"
elsif number == 401

return "Unauthorized"
elsif number == 404

return "Not Found"
elsif number == 500

return "Internal Server Error"
end

end

If we think about this code, we’ll realize that the conditional logic revolves
around paired data, namely, the status code numbers and their respective
meanings.
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By using a hash table, we can completely eliminate the conditional logic:

STATUS_CODES = {200 => "OK", 301 => "Moved Permanently",
401 => "Unauthorized", 404 => "Not Found",
500 => "Internal Server Error"}

def status_code_meaning(number)
return STATUS_CODES[number]

end

Another common use for hash tables is to represent objects that have various
attributes. For example, here’s a representation of a dog:

{"Name" => "Fido", "Breed" => "Pug", "Age" => 3, "Gender" => "Male"}

As you can see, attributes are a kind of paired data, since the attribute name
becomes the key, and the actual attribute becomes the value.

We can create an entire list of dogs if we place multiple hash tables inside an
array:

[
{"Name" => "Fido", "Breed" => "Pug", "Age" => 3, "Gender" => "Male"},
{"Name" => "Lady", "Breed" => "Poodle", "Age" => 6, "Gender" => "Female"},
{"Name" => "Spot", "Breed" => "Dalmatian", "Age" => 2, "Gender" => "Male"}

]

Hash Tables for Speed
While hash tables are a perfect fit for paired data, they can also be used to
make your code faster—even if your data doesn’t exist as pairs. And this is
where things really get exciting.

Here’s a simple array:

array = [61, 30, 91, 11, 54, 38, 72]

If you want to search for a number in this array, how many steps would
it take?

Because the array is unordered, you would have to perform a linear search,
which would take N steps. You learned this all the way back at the beginning
of the book.

However, what would happen if we ran some code that would convert these
numbers into a hash table that looked like this?

hash_table = {61 => true, 30 => true, 91 => true,
11 => true, 54 => true, 38 => true, 72 => true}
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Here, we’ve stored each number as a key and assigned the boolean true as the
associated value for each number.

Now, if I asked you to search this hash table for a certain number as a key,
how many steps would it take?

Well, with the simple code:

hash_table[72]

I could look up the number 72 in a single step.

That is, by doing a hash table lookup using 72 as the key, I can determine
in one step whether the 72 is present in the hash table. The reasoning is
straightforward: if 72 is a key in the hash table, I’d get back true, since the 7
has true as its value. On the other hand, if the 72 is not a key in the hash
table, I’d get back nil. (Various languages return different values when a key
is not present in a hash table. Ruby returns nil.)

Since doing a hash table lookup takes just one step, I can therefore find any
number in the hash table (as a key) in one step.

Can you see the magic?

By converting an array into a hash table in this way, we can go from O(N)
searches to O(1) searches.

Here’s what’s interesting about using a hash table in this way. Even though
hash tables are often used for naturally paired data, our data here is not
paired. We just care about a list of single numbers.

While we did assign a value to each key, it doesn’t really matter what the
value is. We used true as the value for each key, but any arbitrary value (that
is “truthy”) would achieve the same results.

The trick here is that by placing each number in the hash table as a key, we
can later look up each of those keys in one step. If our lookup returns any
value, it means the key itself must be in the hash table. If we get back nil,
then the key must not be in the hash table.

I refer to using a hash table in this way as “using it as an index.” (It’s my own
term.) An index at the back of a book tells you whether the topic can be found
in the book, instead of you having to flip through all the pages to find it. Here
as well, we created the hash table to serve as a kind of index; in our case, it’s
an index that tells us whether a specific item is contained within the original
array.

Let’s use this technique to boost the speed of a very practical algorithm.
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Array Subset
Let’s say we need to determine whether one array is a subset of another array.
Take these two arrays, for example:

["a", "b", "c", "d", "e", "f"]
["b", "d", "f"]

The second array, ["b", "d", "f"] is a subset of the first array, ["a", "b", "c", "d", "e",
"f"] because every value of the second array is contained within the first array.

However, if our arrays were:

["a", "b", "c", "d", "e", "f"]
["b", "d", "f", "h"]

the second array is not a subset of the first array, because the second array
contains the value "h", which does not exist within the first array.

How would we write a function that compares two arrays and lets us know
if one is a subset of the other?

One way we can do this is by using nested loops. Essentially, we’d iterate
through every element of the smaller array, and for each element in the
smaller array, we’d then begin a second loop that iterates through each ele-
ment of the larger array. If we ever find an element in the smaller array that
isn’t contained within the larger array, our function will return false. If the
code gets past the loops, it means it never encountered a value in the smaller
array that wasn’t contained within the larger array, so it returns true.

Here’s a JavaScript implementation of this approach:

function isSubset(array1, array2) {

let largerArray;
let smallerArray;

// Determine which array is smaller:
if(array1.length > array2.length) {

largerArray = array1;
smallerArray = array2;

} else {
largerArray = array2;
smallerArray = array1;

}

// Iterate through smaller array:
for(let i = 0; i < smallerArray.length; i++) {

// Assume temporarily that the current value from
// smaller array is not found in larger array:
let foundMatch = false;
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// For each value in smaller array, iterate through
// larger array:
for(let j = 0; j < largerArray.length; j++) {

// If the two values are equal, it means the current
// value in smaller array is present in the larger array:
if(smallerArray[i] === largerArray[j]) {

foundMatch = true;
break;

}
}

// If the current value in smaller array doesn't exist
// in larger array, return false:
if(foundMatch === false) { return false; }

}

// If we get to the end of the loops, it means that all
// values from smaller array are present in larger array:
return true;

}

When we analyze the efficiency of this algorithm, we find that it’s O(N * M),
since it runs for the number of items in the first array multiplied by the
number of items in the second array.

Now, let’s harness the power of a hash table to dramatically improve the effi-
ciency of our algorithm. Let’s ditch our original approach and start again from
scratch.

In our new approach, after we’ve determined which array is larger and which
is smaller, we’re going to run a single loop through the larger array, and store
each value inside of a hash table:

let hashTable = {};

for(const value of largerArray) {
hashTable[value] = true;

}

In this code snippet, we create an empty hash table inside the hashTable vari-
able. Then, we iterate through each value in the largerArray, and add the item
from the array to the hash table. We add the item itself as a key, and true as
the value.

For the earlier example, ["a", "b", "c", "d", "e", "f"], once we’ve run it through this
loop, we end up with a hash table that looks like this:

{"a": true, "b": true, "c": true, "d": true, "e": true, "f": true}
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This becomes our “index” that will allow us to conduct O(1) lookups of these
items later on.

Now, here’s the brilliant part. Once the first loop is complete and we now have
this hash table to work with, we can then begin a second (non-nested) loop
that iterates through the smaller array:

for(const value of smallerArray) {
if(!hashTable[value]) { return false; }

}

This loop looks at each item in the smallerArray and checks to see whether it
exists as a key inside the hashTable. Remember, the hashTable stores all the items
from largerArray as its keys. So, if we find an item in hashTable, it means the item
is also in largerArray. And if we don’t find an item in hashTable, it means it’s also
not inside the largerArray.

So, for each item in smallerArray, we check whether it’s a key in hashTable. If it’s not,
that means the item isn’t contained within the largerArray, and the smallerArray
is therefore not a subset of the larger array and we return false. (However, if
we get past this loop, it means the smaller array is a subset of the larger one.)

Let’s put this altogether in one complete function:

function isSubset(array1, array2) {
let largerArray;
let smallerArray;
let hashTable = {};

// Determine which array is smaller:
if(array1.length > array2.length) {

largerArray = array1;
smallerArray = array2;

} else {
largerArray = array2;
smallerArray = array1;

}

// Store all items from largerArray inside hashTable:
for(const value of largerArray) {

hashTable[value] = true;
}

// Iterate through each item in smallerArray and return false
// if we encounter an item not inside hashTable:
for(const value of smallerArray) {

if(!hashTable[value]) { return false; }
}
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// If we got this far in our code without returning false,
// it means that all the items in the smallerArray
// must be contained within largerArray:
return true;

}

Now, how many steps did this algorithm take? We iterated through each item
of the larger array once in order to build the hash table.

And we iterated through each item of the smaller array taking just one step
per item to look up the item in the hash table. Remember, a hash table lookup
takes just one step.

If we say that N is the total number of items of both arrays combined, our
algorithm is O(N), since we touched each item just once. That is, we spent
one step on each item from the larger array followed by one step on each item
from the smaller array.

That’s a huge win over our first algorithm, which was O(N * M).

This technique of using a hash table as an “index” comes up frequently in
algorithms that require multiple searches within an array. That is, if your
algorithm will need to keep searching for values inside an array, each search
would itself take up to N steps. By creating a hash table “index” of the array,
we reduce each search to only one step.

As I pointed out, what makes this technique particularly interesting is that
when using a hash table as an “index,” we aren’t even dealing with naturally
paired data. Instead, we just want to know whether the key itself is in the
hash table. When we use the key to perform a lookup in the hash table and
receive any value (no matter how arbitrary it is), it means the key must be
present in the hash table.

Wrapping Up
Hash tables are indispensable when it comes to building efficient software.
With their O(1) reads and insertions, it’s a difficult data structure to beat.

Until now, our analysis of various data structures revolved around their effi-
ciency and speed. But did you know that some data structures provide
advantages other than speed? In the next lesson, we’re going to explore two
data structures that can help improve code elegance and maintainability.
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Exercises
The following exercises provide you with the opportunity to practice with hash
tables. The solutions to these exercises are found in the section, Chapter 8,
on page 444.

1. Write a function that returns the intersection of two arrays. The intersec-
tion is a third array that contains all values contained within the first two
arrays. For example, the intersection of [1, 2, 3, 4, 5] and [0, 2, 4, 6, 8] is [2, 4].
Your function should have a complexity of O(N). (If your programming
language has a built-in way of doing this, don’t use it. The idea is to build
the algorithm yourself.)

2. Write a function that accepts an array of strings and returns the first
duplicate value it finds. For example, if the array is ["a", "b", "c", "d", "c", "e",
"f"], the function should return "c", since it’s duplicated within the array.
(You can assume that there’s one pair of duplicates within the array.)
Make sure the function has an efficiency of O(N).

3. Write a function that accepts a string that contains all the letters of the
alphabet except one and returns the missing letter. For example, the string,
"the quick brown box jumps over a lazy dog" contains all the letters of the alphabet
except the letter, "f". The function should have a time complexity of O(N).

4. Write a function that returns the first non-duplicated character in a string.
For example, the string, "minimum" has two characters that only exist
once—the "n" and the "u", so your function should return the "n", since it
occurs first. The function should have an efficiency of O(N).
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CHAPTER 9

Crafting Elegant Code
with Stacks and Queues

Until now, our discussion around data structures has focused primarily on
how they affect the performance of various operations. However, having a
variety of data structures in your programming arsenal also allows you to
create code that is simpler and easier to read.

In this chapter, you’re going to discover two new data structures: stacks and
queues. The truth is that these two structures are not entirely new. They’re
simply arrays with restrictions. Yet, these restrictions are exactly what make
them so elegant.

More specifically, stacks and queues are elegant tools for handling temporary
data. From operating system architecture to printing jobs to traversing data,
stacks and queues serve as temporary containers that can be used to form
beautiful algorithms.

Think of temporary data like the food orders in a diner. What each customer
orders is important until the meal is made and delivered; then you throw the
order slip away. You don’t need to keep that information around. Temporary
data is information that doesn’t have any meaning after it’s processed, so you
can throw it away once you’re done with it.

Stacks and queues handle this kind of temporary data, but have a special
focus on the order in which the data is handled, as you’ll now learn.

Stacks
A stack stores data in the same way arrays do—it’s simply a list of elements.
The one catch is that stacks have the following three constraints:
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• Data can be inserted only at the end of a stack.
• Data can be deleted only from the end of a stack.
• Only the last element of a stack can be read.

You can think of a stack as an actual stack of dishes; you can’t look at the
face of any dish other than the one at the top. Similarly, you can’t add any
dish except to the top of the stack, nor can you remove any dish besides the
one at the top. (At least, you shouldn’t.) In fact, most computer science liter-
ature refers to the end of the stack as its top, and the beginning of the stack
as its bottom.

Our diagrams will reflect this terminology by viewing stacks as vertical arrays,
like so:

As you can see, the first item in the array becomes the bottom of the stack,
while the last item becomes the stack’s top.

While the restrictions of a stack seem—well—restrictive, we’ll see shortly how
they are to our benefit.

To see a stack in action, let’s start with an empty stack.

Inserting a new value into a stack is also called pushing onto the stack. Think
of it as adding a dish onto the top of the dish stack.

Let’s push a 5 onto the stack:

Again, there’s nothing fancy going on here. All we’re really doing is just
inserting a data element into the end of an array.
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Now, let’s push a 3 onto the stack:

Next, let’s push a 0 onto the stack:

Note that we’re always adding data to the top (that is, the end) of the stack.
If we wanted to insert the 0 into the bottom or middle of the stack, we couldn’t,
because that is the nature of a stack: data can only be added to the top.

Removing elements from the top of the stack is called popping from the stack.
Because of a stack’s restrictions, we can only pop data from the top.

Let’s pop some elements from our example stack.

First, we pop the 0:

Our stack now contains only two elements: the 5 and the 3.

Next, we pop the 3:

Our stack now only contains the 5:
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A handy acronym used to describe stack operations is LIFO, which stands
for “Last In, First Out.” All this means is that the last item pushed onto a
stack is always the first item popped from it. It’s sort of like students who
slack off—they’re always the last to arrive to class, but the first to leave.

Abstract Data Types
Most programming languages don’t actually come with the stack as a built-
in data type or class. Instead, it’s up to you to implement it yourself. This is
a stark contrast with arrays, which are available in most languages.

To create a stack, then, you generally have to use one of the built-in data
structures to actually hold the data. Here is one way to implement a stack
using Ruby, which uses an array under the hood:

class Stack
def initialize

@data = []
end

def push(element)
@data << element

end

def pop
@data.pop

end

def read
@data.last

end
end

As you can see, our stack implementation stores the data in an array called
@data.

Whenever a stack is initiated, we automatically build an empty array with
@data = []. Our stack also contains methods that push new elements to the @data
array, pop elements from @data array, and read elements from the @data array.

However, by building the Stack class around the array, we have built an
interface that forces the user to interact with the array in limited ways. While
one can normally read from any index of an array, when using the array
through the stack interface, one can only read the last item. The same goes
for inserting and deleting data.

The stack data structure, then, isn’t the same kind of data structure that an
array is. The array is built into most programming languages and interacts
directly with the computer’s memory. The stack, on the other hand, is really
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a set of rules and processes around how we should interact with an array so
that we can achieve a particular result.

In fact, a stack doesn’t even care about what data structure is under the
hood. All it cares about is that there’s a list of data elements that act in a
LIFO way. Whether we accomplish this with an array or some other type of
built-in data structure doesn’t actually matter. Because of this, the stack is
an example of what is known as an abstract data type—it’s a kind of data
structure that is a set of theoretical rules that revolve around some other
built-in data structure.

The set that we encountered in Why Data Structures Matter is another example
of an abstract data type. Some implementations of sets use arrays under the
hood, while other implementations actually use hash tables. The set itself,
though, is simply a theoretical concept: it’s a list of non-duplicated data
elements.

Many of the data structures we’ll encounter in the remainder of this book are
abstract data types—they are pieces of code that are written on top of other
built-in data structures.

It should be noted that even a built-in data structure can be an abstract data
type. Even if a programming language does implement its own Stack class, it
doesn’t change the fact that the stack data structure is still a concept that
allows for various data structures to be used under the hood.

Stacks in Action
Although a stack is not typically used to store data on a long-term basis, it
can be a great tool to handle temporary data as part of various algorithms.
Here’s an example:

Let’s create the beginnings of a JavaScript linter—that is, a program that
inspects a programmer’s JavaScript code and ensures that each line is syn-
tactically correct. It can be very complicated to create a linter, as there are
many different aspects of syntax to inspect.

We’ll focus on just one specific aspect of the linter—opening and closing
braces. This includes parentheses, square brackets, and curly braces—all
common causes of frustrating syntax errors.

To solve this problem, let’s first analyze what type of syntax is incorrect when
it comes to braces. If we break it down, we’ll find that there are three situations
of erroneous syntax.
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The first is when there is an opening brace that doesn’t have a corresponding
closing brace, such as this:

(var x = 2;

We’ll call this Syntax Error Type #1.

The second is when there is a closing brace that was never preceded by a
corresponding opening brace:

var x = 2;)

We’ll call that Syntax Error Type #2.

The third, which we’ll refer to as Syntax Error Type #3, is when a closing
brace is not the same type of brace as the immediately preceding opening
brace, such as:

(var x = [1, 2, 3)];

In the preceding example, there is a matching set of parentheses, and a
matching pair of square brackets, but the closing parenthesis is in the wrong
place, as it doesn’t match the immediately preceding opening brace, which
is a square bracket.

How can we implement an algorithm that inspects a line of JavaScript code
and ensures that there are no brace-related syntax errors? This is where a
stack allows us to implement a beautiful linting algorithm, which works as
follows:

We prepare an empty stack, and then we read each character from left to
right following these rules:

1. If we find any character that isn’t a type of brace (parenthesis, square
bracket, or curly brace), we ignore it and move on.

2. If we find an opening brace, we push it onto the stack. Having it on the
stack means we’re waiting to close that particular brace.

3. If we find a closing brace, we pop the top element in the stack and inspect
it. We then analyze:

• If the item we popped (which is always an opening brace) does not
match the current closing brace, it means we’ve encountered Syntax
Error Type #3.

• If we couldn’t pop an element because the stack was empty, that
means the current closing brace doesn’t have a corresponding opening
brace beforehand. This is Syntax Error Type #2.
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• If the item we popped is a corresponding match for the current closing
brace, it means we’ve successfully closed that opening brace, and we
can continue parsing the line of JavaScript code.

4. If we make it to the end of the line and there’s still something left on the
stack, that means there’s an opening brace without a corresponding
closing brace, which is Syntax Error Type #1.

Let’s see this in action using the following example:

After we prepare an empty stack, we begin reading each character from left
to right.

Step 1: We begin with the first character, which happens to be an opening
parenthesis:

Step 2: Since it’s a type of opening brace, we push it onto the stack:

We then ignore all the characters, var x = , since they aren’t brace characters.

Step 3: We encounter our next opening brace:

Step 4: We push it onto the stack:

We then ignore the y:.

Step 5: We encounter the opening square bracket:

Step 6: We add that to the stack as well:
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We then ignore the 1, 2, 3.

Step 7: We encounter our first closing brace—a closing square bracket:

Step 8: We pop the element at the top of the stack, which happens to be an
opening square bracket:

Since our closing square bracket is a corresponding match to this top element
of the stack, it means we can continue with our algorithm without throwing
any errors.

Step 9: We move on, encountering a closing curly brace:

Step 10: We pop the top item from stack:

It’s an opening curly brace, so we’ve found a match with the current closing
brace.

Step 11: We encounter a closing parenthesis:

Step 12: We pop the last element in the stack. It’s a corresponding match, so
there are no errors so far.

Since we’ve made it through the entire line of code, and our stack is empty,
our linter can conclude that there are no syntactical errors on this line
(relating to opening and closing braces).

Code Implementation: Stack-Based Code Linter
Here’s a Ruby implementation of the preceding algorithm. Note that we are
using our earlier Ruby implementation of the Stack class:

class Linter

def initialize
# We use a simple array to serve as our stack:
@stack = Stack.new

end
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def lint(text)
# We start a loop which reads each character in our text:
text.each_char do |char|

# If the character is an opening brace:
if is_opening_brace?(char)

# We push it onto the stack:
@stack.push(char)

# If the character is a closing brace:
elsif is_closing_brace?(char)

# Pop from stack:
popped_opening_brace = @stack.pop

# If the stack was empty, so what we popped was nil,
# it means that an opening brace is missing:
if !popped_opening_brace

return "#{char} doesn't have opening brace"
end

# If the popped opening brace doesn't match the
# current closing brace, we produce an error:
if is_not_a_match(popped_opening_brace, char)

return "#{char} has mismatched opening brace"
end

end
end

# If we get to the end of line, and the stack isn't empty:
if @stack.read

# It means we have an opening brace without a
# corresponding closing brace, so we produce an error:
return "#{@stack.read} does not have closing brace"

end

# Return true if line has no errors:
return true

end

private

def is_opening_brace?(char)
["(", "[", "{"].include?(char)

end

def is_closing_brace?(char)
[")", "]", "}"].include?(char)

end

def is_not_a_match(opening_brace, closing_brace)
closing_brace != {"(" => ")", "[" => "]", "{" => "}"}[opening_brace]

end
end
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The lint method accepts a string containing JavaScript code and iterates over
each character with:

text.each_char do |char|

If we encounter an opening brace, we push it onto the stack:

if is_opening_brace?(char)
@stack.push(char)

Note that we’re using a helper method defined as follows called is_opening_brace?,
which checks whether the character is an opening brace:

["(", "[", "{"].include?(char)

When we encounter a closing brace, we pop the top of the stack and store it
in a variable called popped_opening_brace:

popped_opening_brace = @stack.pop

Our stack only stores opening braces, so whatever we popped will be some
sort of opening brace, assuming there was something on the stack to pop.

However, it’s possible the stack was empty, in which case the result of our pop
will be nil. If this is the case, it means we’ve encountered Syntax Error Type #2:

if !popped_opening_brace
return "#{char} doesn't have opening brace"

end

For simplicity’s sake, we return a basic string containing an error message
when we encounter any errors during our linting process.

Assuming that we did pop an opening brace off the stack, we then check it
to see whether it matches the current closing brace. If it doesn’t match, this
is Syntax Error Type #3:

if is_not_a_match(popped_opening_brace, char)
return "#{char} has mismatched opening brace"

end

(The is_not_a_match helper method is defined later in our code.)

Finally, when our code finishes parsing the line, we check whether there are
any opening braces left in the stack with @stack.read. If there are, it means we
have an opening brace that was never closed, and we produce an error mes-
sage. This is Syntax Error Type #1:

if @stack.read
return "#{@stack.read} does not have closing brace"

end
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Finally, we return true if the JavaScript contains no errors.

We can then use our Linter class as follows:

linter = Linter.new
puts linter.lint("( var x = { y: [1, 2, 3] } )")

In this example, the JavaScript code is correct, so we just get back true.

However, if we input a line that has an error, such as a missing opening
parenthesis:

"var x = { y: [1, 2, 3] })"

we’ll get the error message, ) doesn't have opening brace.

In this example, we used a stack to implement our linter with a really neat
algorithm. But if a stack actually uses an array under the hood, why bother
with a stack? Couldn’t we have accomplished the same task using an array?

The Importance of Constrained Data Structures
By definition, if a stack is just a constrained version of an array, that means
an array can do anything a stack can do. If so, what advantage does a stack
provide?

Constrained data structures like the stack (and the queue, which we’ll
encounter shortly) are important for several reasons.

First, when we work with a constrained data structure, we can prevent
potential bugs. The linting algorithm, for example, only works if we exclusively
remove items from the top of the stack. If a programmer inadvertently writes
code that removes items from the middle of the array, the algorithm will break
down. By using a stack, we’re forced into only removing items from the top,
as it’s impossible to get the stack to remove any other item.

Second, data structures like stacks give us a new mental model for tackling
problems. The stack, for example, gives us the whole idea of a Last-In-First-
Out process. We can then apply this LIFO mindset to solve all sorts of prob-
lems, such as the linter just described.

And once we’re familiar with the stack and its LIFO nature, the code we write
using the stack becomes familiar and elegant to other developers who read
our code. As soon as someone sees a stack being used within an algorithm,
they immediately know that the algorithm is working with a LIFO-based
process.
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Stack Wrap-Up
Stacks are ideal for processing any data that should be handled last in, first
out. The “undo” function in a word processor, for example, is a great use case
for a stack. As the user types, we keep track of each keystroke by pushing
the keystroke onto the stack. Then, when the user hits the “undo” key, we
pop the most recent keystroke from the stack and eliminate it from the docu-
ment. At this point, their next-to-most recent keystroke is now sitting at the
top of the stack, ready to be undone if need be.

Queues
A queue is another data structure designed to process temporary data. It’s
like a stack in many ways, except that it processes data in a different order.
Like a stack, a queue is also an abstract data type.

You can think of a queue as a line of people at the movie theater. The first
one in the line is the first one to leave the line and enter the theater. With
queues, the first item added to the queue is the first item to be removed.
That’s why computer scientists apply the acronym “FIFO” to queues: First
In, First Out.

As with a line of people, a queue is usually depicted horizontally. It’s also
common to refer to the beginning of the queue as its front, and the end of the
queue as its back.

Like stacks, queues are arrays with three restrictions (it’s just a different set
of restrictions):

• Data can be inserted only at the end of a queue. (This is identical behavior
to the stack.)

• Data can be deleted only from the front of a queue. (This is the opposite
behavior of the stack.)

• Only the element at the front of a queue can be read. (This, too, is the
opposite of behavior of the stack.)

Let’s see a queue in action, beginning with an empty queue.

First, we insert a 5 (a common term for inserting into a queue is enqueue,
but we’ll use the terms insert and enqueue interchangeably):
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Next, we insert a 9:

Next, we insert a 100:

As of now, the queue has functioned just like a stack. However, removing
data happens in the reverse, as we remove data from the front of the queue.
(Removing an element from a queue is also known as dequeuing.)

If we want to remove data, we must start with the 5, since it’s at the front of
the queue:

Next, we remove the 9:

Our queue now only contains one element, the 100.

Queue Implementation
I mentioned that the queue is an abstract data type. Like many other abstract
data types, it doesn’t come implemented in many programming languages.
Here is a Ruby implementation of a queue:

class Queue
def initialize

@data = []
end

def enqueue(element)
@data << element

end

def dequeue
# The Ruby shift method removes and returns the
# first element of an array:
@data.shift

end

def read
@data.first

end
end
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Again, our Queue class wraps the array with an interface that restricts our
interaction with the data, only allowing us to process the data in specific
ways. The enqueue method allows us to insert data at the end of the array,
while the dequeue removes the first item from the array. And the read method
allows us to peek at just the very first element of the array.

Queues in Action
Queues are common in many applications, ranging from printing jobs to
background workers in web applications.

Let’s say we were programming a simple Ruby interface for a printer that can
accept printing jobs from various computers across a network. We want to
make sure we print each document in the order in which they were received.

This code uses our Ruby implementation of the Queue class from earlier:

class PrintManager

def initialize
@queue = Queue.new

end

def queue_print_job(document)
@queue.enqueue(document)

end

def run
# Each time this loop runs, we read the document
# at the front of the queue:
while @queue.read
# We dequeue the document and print it:
print(@queue.dequeue)

end
end

private

def print(document)
# Code to run the actual printer goes here.
# For demo purposes, we'll print to the terminal:
puts document

end

end

We can then utilize this class as follows:

print_manager = PrintManager.new
print_manager.queue_print_job("First Document")
print_manager.queue_print_job("Second Document")
print_manager.queue_print_job("Third Document")
print_manager.run
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Each time we call queue_print_job, we add the “document” (represented by a
string, in this example) to the queue:

def queue_print_job(document)
@queue.enqueue(document)

end

When we call run, we print each document by processing them in the order in
which they were received:

def run
while @queue.read

print(@queue.dequeue)
end

end

Note how we dequeue each document as we print it.

When we run the previous code, the program will output the three documents
in the same order in which they were received:

First Document
Second Document
Third Document

While this example is simplified and abstracts away some of the nitty-gritty
details that a real live printing system may have to deal with, the fundamental
use of a queue for such an application is very real and serves as the foundation
for building such a system.

Queues are also the perfect tool for handling asynchronous requests—they
ensure that the requests are processed in the order in which they were
received. They are also commonly used to model real-world scenarios where
events need to occur in a certain order, such as airplanes waiting for takeoff
and patients waiting for their doctor.

Wrapping Up
As you’ve seen, stacks and queues are programmers’ tools for elegantly han-
dling all sorts of practical algorithms.

Now that you’ve learned about stacks and queues, you’ve unlocked a new
achievement: you can learn about recursion, which depends upon a stack.
Recursion also serves as the foundation for many of the more advanced and
super-efficient algorithms that I’ll cover in the rest of this book.
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Exercises
The following exercises provide you with the opportunity to practice with
stacks and queues. The solutions to these exercises are found in the section,
Chapter 9, on page 446.

1. If you were writing software for a call center that places callers on hold
and then assigns them to “the next available representative,” would you
use a stack or a queue?

2. If you pushed numbers onto a stack in the following order: 1, 2, 3, 4, 5, 6,
and then popped two items, which number would you be able to read
from the stack?

3. If you inserted numbers into a queue in the following order: 1, 2, 3, 4, 5, 6,
and then dequeued two items, which number would you be able to read
from the queue?

4. Write a function that uses a stack to reverse a string. (For example, "abcde"
would become "edcba".) You can work with our earlier implementation of
the Stack class.
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CHAPTER 10

Recursively Recurse with Recursion
Recursion is a key concept in computer science that will unlock the more
advanced algorithms we’re going to encounter in this book. When used cor-
rectly, recursion can be used to solve certain types of tricky problems in
surprisingly simple ways. Sometimes, it even seems like magic.

But before we dive in, a pop quiz!

What happens when the blah() function defined here is called?

function blah() {
blah();

}

As you probably guessed, it will call itself infinitely, since blah() calls itself,
which in turn calls itself, and so on.

Recursion is the term for a function calling itself. Indeed, infinite recursion,
as in the above example, is utterly useless. When harnessed correctly, though,
recursion can be a powerful tool.

Recurse Instead of Loop
Let’s say you work at NASA and need to program a countdown function for
launching spacecraft. The particular function that you’re asked to write should
accept a number—such as 10—and display the numbers from 10 down to 0.

Take a moment and implement this function in the language of your choice.
When you’re done, read on.

Odds are that you wrote a simple loop, along the lines of this JavaScript
implementation:
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function countdown(number) {
for(let i = number; i >= 0; i--) {

console.log(i);
}

}

countdown(10);

There’s nothing wrong with this implementation, but it may have never
occurred to you that you don’t have to use a loop.

How?

Let’s try recursion instead. Here’s a first attempt at using recursion to
implement our countdown function:

function countdown(number) {
console.log(number);

countdown(number - 1);
}

Let’s walk through this code step by step.

Step 1: We call countdown(10), so the argument variable number starts out as 10.

Step 2: We print number (which contains the value 10) to the console.

Step 3: Before the countdown function is complete, it calls countdown(9), since
number - 1 is 9.

Step 4: countdown(9) begins running. In it, we print number (which is currently
9) to the console.

Step 5: Before countdown(9) is complete, it calls countdown(8).

Step 6: countdown(8) begins running. We print 8 to the console.

Before we continue stepping through the code, note how we’re using recursion
to achieve our goal. We’re not using any loop constructs, but by simply having
the countdown function call itself, we are able to count down from 10 and print
each number to the console.

In almost any case in which you can use a loop, you can also use recursion.
Now, just because you can use recursion doesn’t mean that you should use
recursion. Recursion is a tool that allows for writing elegant code. In the
preceding example, the recursive approach is not necessarily any more
beautiful or efficient than using a classic for loop. However, we will soon
encounter examples in which recursion shines. In the meantime, let’s continue
exploring how recursion works.
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The Base Case
Let’s continue our walk-through of the countdown function. We’ll skip a few
steps for brevity…

Step 21: We call countdown(0).

Step 22: We print number (that is, 0) to the console.

Step 23: We call countdown(-1).

Step 24: We print number (that is, -1) to the console.

Uh-oh. As you can see, our solution is not perfect, as we’ll end up infinitely
printing negative numbers.

To perfect our solution, we need a way to end our countdown at 0 and prevent
the recursion from continuing on forever.

We can solve this problem by adding a conditional statement that ensures
that if number is currently 0, we don’t call countdown() again:

function countdown(number) {
console.log(number);
if(number === 0) {

return;
} else {

countdown(number - 1);
}

}

Now, when number is 0, our code will not call the countdown() function again,
but instead just return, thereby preventing another call of countdown().

In recursion terminology, the case in which our function will not recurse is
known as the base case. So, 0 is the base case for our countdown() function.
Again, every recursive function needs at least one base case to prevent it from
calling itself indefinitely.

Reading Recursive Code
It takes time and practice to get used to recursion, and you will ultimately
learn two sets of skills: reading recursive code, and writing recursive code.
Reading recursive code is somewhat easier, so let’s get some practice with
that first.

We’ll do this by looking at another example: calculating factorials.

A factorial is best illustrated with some examples.
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The factorial of 3 is:

3 * 2 * 1 = 6

The factorial of 5 is:

5 * 4 * 3 * 2 * 1 = 120

And so on and so forth. Here’s a recursive implementation that returns a
number’s factorial using Ruby:

def factorial(number)
if number == 1

return 1
else

return number * factorial(number - 1)
end

end

This code can look somewhat confusing at first glance. To walk through the
code to see what it does, here’s the process I recommend:

1. Identify the base case.

2. Walk through the function for the base case.

3. Identify the “next-to-last” case. This is the case just before the base case,
as I’ll demonstrate momentarily.

4. Walk through the function for the “next-to-last” case.

5. Repeat this process by identifying the case before the one you just ana-
lyzed, and walking though the function for that case.

Let’s apply this process to the preceding code. If we analyze the code, we’ll
quickly notice that there are two paths:

if number == 1
return 1

else
return number * factorial(number - 1)

end

We can see that the recursion happens here, as factorial calls itself:

else
return number * factorial(number - 1)

end

So, it must be that the following code refers to the base case, since this is the
case in which the function does not call itself:
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if number == 1
return 1

We can conclude, then, that number being 1 is the base case.

Next, let’s walk through the factorial method assuming it’s dealing with the base
case, which would be factorial(1). Again, the relevant code from our method is:

if number == 1
return 1

Well, that’s pretty simple—it’s the base case, so no recursion actually happens.
If we call factorial(1), the method simply returns 1. Okay, so grab a napkin and
write this fact down:

Next, let’s move up to the next case, which would be factorial(2). The relevant
line of code from our method is:

else
return number * factorial(number - 1)

end

So, calling factorial(2) will return 2 * factorial(1). To calculate 2 * factorial(1), we need
to know what factorial(1) returns. If you check your napkin, you’ll see that it
returns 1. So, 2 * factorial(1) will return 2 * 1, which just happens to be 2.

Add this fact to your napkin:

Now, what happens if we call factorial(3)? Again, the relevant line of code is:

else
return number * factorial(number - 1)

end

So, that would translate into return 3 * factorial(2). What does factorial(2) return?
You don’t have to figure that out all over again, since it’s on your napkin! It
returns 2. So, factorial(3) will return 6 (because 3 * 2 = 6). Go ahead and add
this wonderful factoid to your napkin:
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Take a moment and figure out for yourself what factorial(4) will return.

As you can see, starting the analysis from the base case and building up is
a great way to reason about recursive code.

Recursion in the Eyes of the Computer
To complete your understanding of recursion, we need to see how the com-
puter itself processes a recursive function. It’s one thing for humans to reason
about recursion using the earlier “napkin” method. However, the computer
has to do the tricky work of calling a function from within the function itself.
So, let’s break down the process of how the computer executes a recursive
function.

Say that we call factorial(3). Since 3 isn’t the base case, the computer reaches
the line:

return number * factorial(number - 1)

which launches the function factorial(2).

But there’s a catch. When the computer begins to run factorial(2), did the
computer yet complete running factorial(3)?

This is what makes recursion tricky for the computer. Until the computer
reaches the end keyword of factorial(3), it’s not done with factorial(3). So, we enter
into a weird situation. The computer did not yet complete executing factorial(3),
yet it’s starting to run factorial(2) while still in the middle of factorial(3).

And factorial(2) isn’t the end of the story, because factorial(2) triggers factorial(1).
So, it’s a pretty crazy thing: while still in the middle of running factorial(3), the
computer calls factorial(2). And while running factorial(2), the computer runs fac-
torial(1). It turns out then, that factorial(1) runs in the middle of both factorial(2)
and factorial(3).

How does the computer keep track of all of this? It needs some way to
remember that after it finishes factorial(1), it needs to go back and finish running
factorial(2). And then it needs to remember to complete factorial(3) once it com-
pleted factorial(2).

The Call Stack
Luckily, you recently learned about stacks in Crafting Elegant Code. The
computer uses a stack to keep track of which functions it’s in the middle of
calling. This stack is known, appropriately enough, as the call stack.

Here’s how the call stack works in the context of our factorial example.
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The computer begins by calling factorial(3). Before the method completes exe-
cuting, however, factorial(2) gets called. In order to track that the computer is
still in the middle of factorial(3), the computer pushes that information onto a
call stack:

This indicates that the computer is in the middle of factorial(3). (Really, the
computer also needs to save which line it’s in the middle of, and some other
things like variable values, but I’m keeping the diagrams simple.)

The computer then proceeds to execute factorial(2). Now, factorial(2), in turn, calls
factorial(1). Before the computer dives into factorial(1), though, the computer
needs to remember that it’s still in the middle of factorial(2), so it pushes that
onto the call stack as well:

The computer then executes factorial(1). Since 1 is the base case, factorial(1)
completes without calling the factorial method again.

After the computer completes factorial(1), it checks the call stack to see whether
it’s in the middle of any other functions. If there’s something in the call stack,
it means that the computer still has work to do, namely, wrap up some other
functions it was in the middle of.

If you recall, stacks are restricted in that we can only pop its top element.
This is ideal for recursion, since the top element will be the most recently
called function, which is what the computer needs to wrap up next. It’s a LIFO
situation: the function that was called last (that is, most recently), is the
function we need to complete first.

The next thing the computer does is pop the top element of the call stack,
which currently is factorial(2):

The computer then completes its execution of factorial(2).
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Now, the computer pops the next item from the stack. By this time, only fac-
torial(3) is left on the stack, so the computer pops it and therefore completes
running factorial(3).

At this point, the stack is empty, so the computer knows it’s done executing
all of the methods, and the recursion is complete.

Looking back at this example from a bird’s-eye view, you’ll see that the order
in which the computer calculates the factorial of 3 is as follows:

1. factorial(3) is called first. Before it’s done…
2. factorial(2) is called second. Before it’s done…
3. factorial(1) is called third.
4. factorial(1) is completed first.
5. factorial(2) is completed based on the result of factorial(1).
6. Finally, factorial(3) is completed based on the result of factorial(2).

The factorial function is a calculation made based on recursion. The calculation
is ultimately made by factorial(1) passing its result (which is 1) to factorial(2).
Then, factorial(2) multiplies this 1 by 2, yielding 2, and passes this result to
factorial(3). Finally, factorial(3) takes this result, and multiplies it by 3, computing
the result of 6.

Some refer to this idea as passing a value up through the call stack. That is,
each recursive function returns its computed value to its “parent” function.
Eventually, the function that was initially called first computes the final value.

Stack Overflow
Let’s take a look back at the infinite recursion example from the beginning
of the chapter. Recall that blah() called itself ad infinitum. What do you think
will happen to the call stack?

In the case of infinite recursion, the computer keeps pushing the same
function again and again onto the call stack. The call stack grows and grows
until, eventually, the computer reaches a point where there’s simply no more
room in its short-term memory to hold all this data. This causes an error
known as stack overflow—the computer just shuts down the recursion and
says, “I refuse to call the function again, because I’m running out of memory!”

Filesystem Traversal
Now that you’ve seen how recursion works, we can use it to solve certain
problems that would otherwise be uncrackable.
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One type of problem in which recursion is a natural fit is when we need to
delve into multiple layers of a problem without knowing how many layers
there are.

Take the example of traversing through a filesystem. Let’s say you have a
script that does something with all the contents inside a directory, such as
printing all the subdirectory names. However, you don’t want the script to
only handle the immediate subdirectories—you want it to act on all the sub-
directories within the subdirectories of the directory and all of their subdirec-
tories, and so on.

Let’s create a simple Ruby script that prints the names of all subdirectories
within a given directory:

def find_directories(directory)
# Inspect each file within the directory. Some of these "files" may
# actually be subdirectories.
Dir.foreach(directory) do |filename|

# If the current file is itself a subdirectory:
if File.directory?("#{directory}/#{filename}") &&
filename != "." && filename != ".."

# Print out the full path name:
puts "#{directory}/#{filename}"

end
end

end

We can call this function by passing in a directory name. If we want to call
it on the current directory, we could write:

find_directories(".")

In this script, we look through each file within the given directory. If the file is
itself a subdirectory (and isn’t a single or double period, which represent the
current and previous directories, respectively), we print the subdirectory name.

While this works well, it only prints the names of the subdirectories immedi-
ately within the current directory. It does not print the names of the subdirec-
tories within those subdirectories.

Let’s update our script so that it can search one level deeper:

def find_directories(directory)
# Loop through first-level directory:
Dir.foreach(directory) do |filename|

if File.directory?("#{directory}/#{filename}") &&
filename != "." && filename != ".."
puts "#{directory}/#{filename}"
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# Loop through second-level subdirectory:
Dir.foreach("#{directory}/#{filename}") do |inner_filename|

if File.directory?("#{directory}/#{filename}/#{inner_filename}") &&
inner_filename != "." && inner_filename != ".."

puts "#{directory}/#{filename}/#{inner_filename}"
end

end

end
end

end

Now, every time our script discovers a directory, it then conducts an identical
loop through the subdirectories of that directory and prints the names of the
subdirectories. But this script also has its limitations because it’s only
searching two levels deep. What if we want to search three, four, or five levels
deep? We would need five levels of nested loops.

And what if we want to search as deep as our subdirectories go? That would
seem to be impossible, as we don’t even know how many levels there are.

And this is where recursion really shines. With recursion, we can write a
script that goes arbitrarily deep—and is also simple!

def find_directories(directory)
Dir.foreach(directory) do |filename|

if File.directory?("#{directory}/#{filename}") &&
filename != "." && filename != ".."
puts "#{directory}/#{filename}"

# Recursively call this function on the subdirectory:
find_directories("#{directory}/#{filename}")

end
end

end

As this script encounters files that are themselves subdirectories, it calls the
find_directories method upon that very subdirectory. The script can therefore dig
as deep as it needs to, leaving no subdirectory unturned.

To visualize how this algorithm acts on an example filesystem, examine the
diagram on page 159, which specifies the order in which the script traverses
the subdirectories.

We’ll encounter this process again with a detailed visual walk-through in
Depth-First Search, on page 339.
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Wrapping Up
As you’ve seen with the filesystem example, recursion is often a great choice
for an algorithm in which the algorithm needs to dig into an arbitrary number
of levels deep into something.

You’ve now seen how recursion works and how incredibly useful it can be.
You’ve also learned how to walk through and read recursive code. However,
most people have a difficult time writing their own recursive functions when
they’re first starting out. In the next chapter, we’ll explore techniques to help
you learn to write recursively. Along the way, you’ll also discover other
important use cases where recursion can be an incredible tool.

Exercises
The following exercises provide you with the opportunity to practice with
recursion. The solutions to these exercises are found in the section, Chapter
10, on page 447.

1. The following function prints every other number from a low number to a
high number. For example, if low is 0 and high is 10, it would print:

0
2
4
6
8
10
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Identify the base case in the function:

def print_every_other(low, high)
return if low > high
puts low
print_every_other(low + 2, high)

end

2. My kid was playing with my computer and changed my factorial function
so that it computes factorial based on (n - 2) instead of (n - 1). Predict what
will happen when we run factorial(10) using this function:

def factorial(n)
return 1 if n == 1
return n * factorial(n - 2)

end

3. Following is a function in which we pass in two numbers called low and
high. The function returns the sum of all the numbers from low to high. For
example, if low is 1, and high is 10, the function will return the sum of all
numbers from 1 to 10, which is 55. However, our code is missing the base
case, and will run indefinitely! Fix the code by adding the correct base case:

def sum(low, high)
return high + sum(low, high - 1)

end

4. Here is an array containing both numbers as well as other arrays, which
in turn contain numbers and arrays:

array = [ 1,
2,
3,
[4, 5, 6],
7,
[8,
[9, 10, 11,

[12, 13, 14]
]

],
[15, 16, 17, 18, 19,
[20, 21, 22,

[23, 24, 25,
[26, 27, 29]

], 30, 31
], 32

], 33
]

Write a recursive function that prints all the numbers (and just numbers).
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CHAPTER 11

Learning to Write in Recursive
In the previous chapter, you learned what recursion is and how it works.
However, I found on my own learning journey that even once I understood
how recursion works, I still struggled to write my own recursive functions.

Through deliberate practice and taking note of various recursive patterns, I
discovered some techniques that helped me to learn to “write in recursive”
more easily, and I’d like to share them with you. Along the way, you’ll discover
additional areas where recursion shines.

Note that we will not be discussing the efficiency of recursion in this chapter.
Recursion can actually have a terribly negative impact on the time complexity
of an algorithm, but this is the subject of the next chapter. For now, we’re
just going to focus on developing the recursive mindset.

Recursive Category: Repeatedly Execute
Over the course of tackling various recursive problems, I began to find that
there are various “categories” of problems. Once I learned an effective tech-
nique for a certain category, when I found another problem that belonged to
the same category, I was able to apply the same technique to solve it.

The category that I found to be the easiest was one in which the goal of the
algorithm was to repeatedly execute a task.

The NASA spacecraft countdown algorithm from the previous chapter is a
great example of this. The code prints a number such as 10, and then 9, then
8, all the way down to 0. While the number the function prints is different
each time, we boil down the code’s essence to the fact that it is repeatedly
executing a task—namely, the printing of a number.
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Here was our JavaScript implementation of this algorithm:

function countdown(number) {
console.log(number);

if(number === 0) { // number being 0 is the base case
return;

} else {
countdown(number - 1);

}
}

I found that for problems of this category, the last line of code in the function
was a simple, single call to the function again. In the previous snippet, this
takes the form of countdown(number - 1). This line does one thing: it makes the
next recursive call.

The directory-printing algorithm from the previous chapter is another example
of this. This function repeatedly executes the task of printing directory names.

Our Ruby code looked like this:

def find_directories(directory)
Dir.foreach(directory) do |filename|

if File.directory?("#{directory}/#{filename}") &&
filename != "." && filename != ".."
puts "#{directory}/#{filename}"

# Recursively call this function on the subdirectory:
find_directories("#{directory}/#{filename}")

end
end

end

Here as well, the last line of code is find_directories("#{directory}/#{filename}"), which
is a simple call to the recursive function, triggering it again.

Recursive Trick: Passing Extra Parameters
Let’s try our hand at another problem of the “repeatedly execute” category.
We’re going to write an algorithm that takes an array of numbers and doubles
each of the numbers within the array. Note that we’re not going to produce
a new array; instead, we’re going to modify the array in place.

This algorithm, too, is one in which we repeatedly execute a task. Specifically,
we repeatedly double a number. We start with the first number and double
it. We move onto the second number and double it—and so on.
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In-Place Modifications

Let’s take a look at the concept of in-place modifications, just in case it’s not clear.

Generally speaking, there are two basic approaches to manipulating data. Let’s take
the example of doubling the values in an array. If I had the array, [1, 2, 3, 4, 5], and
wanted to “double” it to produce the array, [2, 4, 6, 8, 10], I could do one of two things.

The first option is to create a new array that contains the “doubled” data, but leave
the original array alone. Take the following code:

a = [1, 2, 3, 4, 5]
b = double_array(a)

Since the double_array function is creating and returning a brand-new array, if we were
to check the values of a and b, we’d get:

a # [1, 2, 3, 4, 5]
b # [2, 4, 6, 8, 10]

The original array a was unmodified, and b holds a brand-new array.

The second option is called in-place modification, meaning the function actually
changes the original array passed into function.

With in-place modification, if we now check a and b, we’d find:

a # [2, 4, 6, 8, 10]
b # [2, 4, 6, 8, 10]

The in-place function actually modifies a, and b is actually just pointing to the very
same array that a is.

Whether we choose to create a new array or modify the original one in place is up to
us and depends on the context of our project. We’re going to talk more about in-place
algorithms in Dealing with Space Constraints.

Let’s take a stab at writing this algorithm in Python, which we’ll call dou-
ble_array(). We know that our final line will be the recursive call, so let’s include
that line:

def double_array(array):
double_array(array)

Next, we need to add the code that will actually double the number. But which
number will we double? Let’s try to double the first number:

def double_array(array):
array[0] *= 2
double_array(array)
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Okay, so we’ve doubled the number at index 0, but how do we proceed to
double the number at index 1?

Now, if we were to use a loop instead of recursion, we would have used a
variable to keep track of the index and continuously increased it by 1, along
the lines of:

def double_array(array):
index = 0

while (index < len(array)):
array[index] *= 2
index += 1

In our recursive version, though, the only argument to our function is the
array. We need some way to keep track of and increment an index. How do
we pull this off?

And now for our next trick…

Let’s pass in extra parameters!

Let’s modify the beginning of our function so that it accepts two arguments:
the array itself, and an index to keep track of:

def double_array(array, index):

As things stand right now, when we call this function, we need to pass in the
array and the starting index, which will be 0:

double_array([1, 2, 3, 4, 5], 0)

Once we have the index as a function argument, we now have a way of
incrementing and tracking the index as we make each successive recursive
call. Here’s the code for this:

def double_array(array, index):
array[index] *= 2
double_array(array, index + 1)

In each successive call, we pass in the array again as the first argument, but
we also pass along an incremented index. This allows us to keep track of an
index just as we would in a classical loop.

Our code isn’t perfect just yet, though. Our function will throw an error once
the index goes past the end of the array and tries to multiply a nonexistent
number. To solve this, we need our base case:
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def double_array(array, index):
# Base case: when the index goes past the end of the array
if index >= len(array):

return

array[index] *= 2
double_array(array, index + 1)

We can test this function out with the following code:

array = [1, 2, 3, 4]
double_array(array, 0)
print(array)

Our recursive function is now complete. However, if your programming lan-
guage supports default arguments, we can make things even prettier.

Right now, we need to call the function as

double_array([1, 2, 3, 4, 5], 0)

Admittedly, passing in that 0 as a second parameter isn’t beautiful—it’s just
so we can achieve our trick of maintaining an index. After all, we always want
to start our index off at 0.

However, we can use default parameters to allow us to simply call the function
the original way:

double_array([1, 2, 3, 4, 5])

Here’s our updated code to make this work:

def double_array(array, index=0):
# Base case: when the index goes past the end of the array
if (index >= len(array)):

return

array[index] *= 2
double_array(array, index + 1)

All we updated here was setting a default argument of index=0. This way, the
first time we call the function, we don’t have to pass in the index parameter.
However, we still get to use the index parameter for all successive calls.

The “trick” of using extra function parameters is a common technique in
writing recursive functions, and a handy one.
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Recursive Category: Calculations
In the previous section, we discussed the first category of recursive func-
tions—those whose job it is to repeatedly execute a task. For the remainder
of this chapter, I’ll elaborate on a second general category: performing a cal-
culation based on a subproblem.

There are many functions whose goal it is to perform a calculation. A function
that returns the sum of two numbers, or a function that finds the greatest
value within an array, are examples of these. These functions receive some
sort of input, and return the result of calculations involving that input.

In Recursively Recurse with Recursion, we found that one area in which
recursion shines is where we need to act on a problem that has an arbitrary
number of levels of depth. A second area in which recursion shines is where
it is able to make a calculation based on a subproblem of the problem at hand.

Before I define what a subproblem is, let’s refer back to the factorial problem
of the previous chapter. As you learned, the factorial of 6 is:

6 * 5 * 4 * 3 * 2 * 1

To write a function that calculates the factorial of a number, we could use a
classic loop that starts with the 1 and builds up from there. That is, we’d
multiply the 2 by the 1, and then multiply 3 by the result, and then 4, and
so on until we reach 6.

Such a function may look like this in Ruby:

def factorial(n)
product = 1

(1..n).each do |num|
product *= num

end

return product
end

However, we could approach the problem differently, and that is to calculate
the factorial based on its subproblem.

A subproblem is a version of the very same problem applied to a smaller input.
Let’s apply this to our case.

If you think about it, factorial(6) will be 6 multiplied by whatever the result of
factorial(5) is.
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Since factorial(6) is:

6 * 5 * 4 * 3 * 2 * 1

and factorial(5) is:

5 * 4 * 3 * 2 * 1

we can conclude that factorial(6) is equivalent to:

6 * factorial(5).

That is, once we have the result of factorial(5), we can simply multiply that
result by 6 to get the answer to factorial(6).

Since factorial(5) is the smaller problem that can be used to compute the result
for the bigger problem, we call factorial(5) a subproblem of factorial(6).

Here’s the implementation of this from the last chapter:

def factorial(number)
if number == 1

return 1
else

return number * factorial(number - 1)
end

end

Again, the key line here is return number * factorial(number - 1), in which we compute
the result as number multiplied by our subproblem, which is factorial(number - 1).

Two Approaches to Calculations
We’ve seen that when writing a function that makes a calculation, there are
two potential approaches: we can try to build the solution from the “bottom
up,” or we can attack the problem going “top down” by making the calculation
based on the problem’s subproblem. Indeed, computer science literature
refers to the terms bottom up and top down in regard to recursion strategies.

The truth is that both approaches can be achieved through recursion. While
we previously saw the bottom-up approach using a classic loop, we can also
use recursion to implement the bottom-up strategy.

To do this, we need to use our trick of passing extra parameters, as follows:

def factorial(n, i=1, product=1)
return product if i > n
return factorial(n, i + 1, product * i)

end
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In this implementation, we have three parameters. n, as before, is the number
whose factorial we’re computing. i is a simple variable that starts at 1 and
increments by one in each successive call until it reaches n. Finally, product is
the variable in which we store the calculation as we keep multiplying each
successive number. We keep passing the product to the successive call so we
can keep track of it as we go.

While we can use recursion in this way to achieve the bottom-up approach,
it’s not particularly elegant and does not add much value over using a clas-
sic loop.

When going bottom up, we’re employing the same strategy for making the
calculation whether we’re using a loop or recursion. The computational
approach is the same.

But to go top down, we need recursion. And because recursion is the only
way to achieve a top-down strategy, it’s one of the key factors that makes
recursion a powerful tool.

Top-Down Recursion: A New Way of Thinking
This brings us to the central point of this chapter: recursion shines when
implementing a top-down approach because going top down offers a new
mental strategy for tackling a problem. That is, a recursive top-down approach
allows one to think about a problem in a completely different way.

Specifically, when we go top down, we get to mentally “kick the problem down
the road.” We can free our mind from some of the nitty-gritty details we nor-
mally have to think about when going bottom up.

To see what I mean, let’s take another look at the key line from our top-down
factorial implementation:

return number * factorial(number - 1)

This line of code makes its calculation based on factorial(number - 1). When we
write this line of code, do we have to understand how the factorial function it’s
calling works? Technically, we don’t. Whenever we write code that calls
another function, we assume that the function will return the correct value
without necessarily understanding how its internals work.

Here as well, when we calculate our answer based on calling the factorial
function, we don’t need to understand how the factorial function works; we can
just expect it to return the correct result. Of course, the weird part is that
we’re the ones writing the factorial function! This line of code exists within the
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factorial function itself. But that’s what is so great about top-down thinking: in
a way, we can solve the problem without even knowing how to solve the
problem.

When we write “in recursive” to implement a top-down strategy, we get to
relax our brains a little bit. We can even choose to ignore the details of how
the calculation actually works. We get to say, “Let’s just rely on the subproblem
to deal with the details.”

The Top-Down Thought Process
If you haven’t done a lot of top-down recursion before, it takes time and
practice to learn to think in this way. However, I found that when tackling a
top-down problem, it helps to think the following three thoughts:

1. Imagine the function you’re writing has already been implemented by
someone else.

2. Identify the subproblem of the problem.

3. See what happens when you call the function on the subproblem and go
from there.

While these steps sound vague at the moment, they’ll become more clear
through the following examples.

Array Sum
Say we have to write a function called sum that sums up all the numbers in
a given array. For example, if we pass the array, [1, 2, 3, 4, 5] into the function,
it’ll return 15, which is the sum of those numbers.

The first thing we’ll do is imagine that the sum function has already been
implemented. Admittedly, this takes a certain suspension of disbelief, since
we know that we’re in the middle of writing this function as we speak! But
let’s try to let go and pretend that the sum function already works.

Next, let’s identify the subproblem. This can be more of an art than a science,
but practice will help you get better at this. In our case, we can say that the
subproblem is the array, [2, 3, 4, 5]—that is, all the numbers from the array
save the first one.

Finally, let’s see what happens when we apply the sum function to our sub-
problem. If the sum function “already works,” and the subproblem is [2, 3, 4, 5],
what happens when we call sum([2, 3, 4, 5])? Well, we get the sum of 2 + 3 + 4
+ 5, which is 14.
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To solve our problem of finding the sum of [1, 2, 3, 4, 5] then, we can just add
the first number, 1, to the result of sum([2, 3, 4, 5]).

In pseudocode, we’d write something like this:

return array[0] + sum(the remainder of the array)

In Ruby, we can write this as:

return array[0] + sum(array[1, array.length - 1])

(In many languages, the syntax array[x, y] returns an array from index x through
index y.)

Now, believe it or not, we’re done! Save for the base case, which we’ll get to
in a moment, our sum function can be written as:

def sum(array)
return array[0] + sum(array[1, array.length - 1])

end

Note that we didn’t think about how we’re going to add all the numbers
together. All we did was imagine that someone else wrote the sum function for
us, which we applied to the subproblem. We kicked the problem down the
road, but in doing so, we solved the entire problem.

The last thing we need to do is handle the base case. That is, if each subprob-
lem recursively calls its own subproblem, we’ll eventually reach the subprob-
lem of sum([5]). This function will eventually try to add the 5 to the remainder
of the array, but there are no other elements in the array.

To deal with this, we can add the base case:

def sum(array)
# Base case: only one element in the array:
return array[0] if array.length == 1

return array[0] + sum(array[1, array.length - 1])
end

And we’re done.

String Reversal
Let’s try another example. We’re going to write a reverse function that reverses
a string. So, if the function accepts the argument "abcde", it’ll return "edcba".

First, let’s identify the subproblem. Again, this takes practice, but very often
the first thing to try is the next-to-smallest version of the problem at hand.
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So, for the string "abcde", let’s assume the subproblem is "bcde". This subprob-
lem is the same as the original string minus its first character.

Next, let’s imagine that someone did us the great favor of implementing the
reverse function for us. How nice of them!

Now, if the reverse function is available for our use and our subproblem is
"bcde", that means we can already call reverse("bcde"), which would return "edcb".

Once we can do that, dealing with the "a" is a piece of cake. We just need to
throw it onto the end of the string.

So, we can write:

def reverse(string)
return reverse(string[1, string.length - 1]) + string[0]

end

Our computation is simply the result of calling reverse on the subproblem,
and then adding the first character to the end.

Once again, save for the base case, we are done. I know, it’s crazy magical.

The base case occurs when the string has one character, so we can add the
following line of code to handle it:

def reverse(string)
# Base case: string with just one character
return string[0] if string.length == 1

return reverse(string[1, string.length - 1]) + string[0]
end

And we’re done.

Counting X
We’re on a roll, so let’s try another example. Let’s write a function called count_x
that returns the number of “x’s” in a given string. If our function is passed
the string, "axbxcxd", it’ll return 3, since there are three instances of the char-
acter “x.”

Let’s first identify the subproblem. As in the previous example, we’ll say the
subproblem is the original string minus its first character. So, for "axbxcxd",
the subproblem is "xbxcxd".

Next, let’s imagine count_x has already been implemented. If we call count_x on
our subproblem, by calling count_x("xbxcxd"), we get 3. To that, we just need to
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add 1 if our first character is also an “x.” (If our first character is not an “x,”
we don’t need to add anything to the result of our subproblem.)

So, we can write:

def count_x(string)
if string[0] == "x"

return 1 + count_x(string[1, string.length - 1])
else

return count_x(string[1, string.length - 1])
end

end

This conditional statement is straightforward. If the first character is an “x,”
we add 1 to the result of the subproblem. Otherwise, we return the result of
our subproblem as is.

Here too, we’re basically done. All we need to do is deal with the base case.

We can say that the base case here is when a string has only one character.
But this leads to some awkward code, since we really have two base cases,
as the single character may be an “x,” but may also not be an “x”:

def count_x(string)

# Base case:
if string.length == 1

if string[0] == "x"
return 1

else
return 0

end
end

if string[0] == "x"
return 1 + count_x(string[1, string.length - 1])

else
return count_x(string[1, string.length - 1])

end
end

Thankfully, we can simplify this using another simple trick. In many lan-
guages, calling string[1, 0] returns an empty string.

With this in mind, we can actually write our code more simply:

def count_x(string)

# Base case: an empty string
return 0 if string.length == 0
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if string[0] == "x"
return 1 + count_x(string[1, string.length - 1])

else
return count_x(string[1, string.length - 1])

end
end

In this new version, we say that the base case occurs when the string is
empty (string.length == 0). We return 0 because there will never be an “x” in an
empty string.

When the string has just one character, the function will add 1 or 0 to the
result of the next function call. This next function call is count_x(string[1, 0]),
since string.length - 1 is 0. Because string[1, 0] is an empty string, this final call is
the base case and returns 0.

And now we’re done.

For the record, calling array[1, 0] also returns an empty array in many lan-
guages, so we could have used the same trick in the previous two examples
as well.

The Staircase Problem
We’ve now learned to use a new mental strategy for solving certain computa-
tional problems using top-down recursion. However, you may still be skeptical
and ask, “Why do we need this new mental strategy anyway? I’ve been able
to solve these problems with loops just fine until now.”

Indeed, you may not need a new mental strategy for simpler computations.
However, when it comes to more complex functions, you may find that the
recursive mindset makes the writing of code much easier. It certainly does
for me!

Here’s one of my favorite examples. There’s a famous question—known as
the “Staircase Problem”—that goes like this:

Let’s say we have a staircase of N steps, and a person has the ability to climb
one, two, or three steps at a time. How many different possible “paths” can
someone take to reach the top? Write a function that will calculate this for N
steps.

The image on page 174 displays three possible paths of jumping up a five-step
staircase.
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These are just three of many possible paths.

Let’s first explore this problem with a bottom-up approach. That is, we’ll work
our way up from the simplest cases to the more complex ones.

Obviously, if there’s only one step, there’s only one possible path.

With two steps, there are two paths. The person can climb one step twice, or
the person can jump up two steps at once. I’ll write this as:

1, 1
2

With a staircase of three steps, someone could take one of four possible paths:

1, 1, 1
1, 2
2, 1
3
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With four steps, there are seven options:

1, 1, 1, 1
1, 1, 2
1, 2, 1
1, 3
2, 1, 1
2, 2
3, 1

Go ahead and try to draw up all the combinations for a five-step staircase.
It’s not that easy! And this is just five steps. Imagine how many combinations
there are for 11 steps.

Now, let’s get to the question at hand: how would we write the code to count
all the paths?

Without the recursive mindset, it can be difficult to wrap one’s mind around
the algorithm for making this calculation. However, with the top-down way
of thinking, the problem can become surprisingly easy.

For an 11-step staircase, the first subproblem that comes to mind is a 10-
step staircase. Let’s go with that for now. If we knew how many possible paths
there are to climb a 10-step staircase, can we use that as a base for calculating
the paths for an 11-step staircase?

For starters, we do know that climbing an 11-step staircase will take at least
as many steps as climbing a 10-step staircase. That is, we have all the paths
to get to stair number 10, and from there, one can climb one more step to
get to the top.

However, this can’t be the complete solution, since we know that someone
can also jump to the top from stair numbers 9 and 8 as well.

If we think about it further, we’ll realize that if you’re taking any path that
includes going from stair 10 to stair 11, you’re not taking any of the paths
that include jumping from stair 9 to stair 11. Conversely, if you jump from
stair 9 to stair 11, you’re not taking any of the paths that include stepping
on stair 10.

So, we know that the number of paths to the top will include at least the
number of paths to stair 10 plus the number of paths to stair 9.

And since it’s possible to also jump from stair 8 to stair 11, as one can jump
three steps at a time, we need to include the count of those paths as well.

We’ve determined, then, that the number of steps to the top is at least the
sum of all the paths to stairs 10, 9, and 8.

report erratum  •  discuss

The Staircase Problem • 175

http://pragprog.com/titles/jwdsal2/errata/add
http://forums.pragprog.com/forums/jwdsal2


However, in thinking about it even further, it’s evident there aren’t any other
possible paths to the top beyond these. After all, one cannot jump from stair
7 to stair 11. So, we can conclude that for N steps, the number of paths is:

number_of_paths(n - 1) + number_of_paths(n - 2) + number_of_paths(n - 3)

Other than the base case, this will be the code for our function!

def number_of_paths(n)
number_of_paths(n - 1) + number_of_paths(n - 2) + number_of_paths(n - 3)

end

It’s seems too good to be true that this is almost all the code we need. But it
is true. All that’s left to deal with is the base case.

Staircase Problem Base Case
Determining the base case for this problem is slightly tricky. That’s because
when this function gets to an n of 3, 2, or 1, the function will call itself on n
of 0 or below. For example, number_of_paths(2) calls itself for number_of_paths(1),
number_of_paths(0), and number_of_paths(-1).

One way we can deal with this is by “hardcoding” all the bottom cases:

def number_of_paths(n)
return 0 if n <= 0
return 1 if n == 1
return 2 if n == 2
return 4 if n == 3
return number_of_paths(n - 1) + number_of_paths(n - 2) +

number_of_paths(n - 3)
end

Another way to devise the base cases here is to cleverly “rig” the system by
using strange but effective base cases that just happen to compute the right
numbers. Let me show you what I mean.

We know that we definitely want the result of number_of_paths(1) to be 1, so we’ll
start with the base case of:

return 1 if n == 1

Now, we know that we want number_of_paths(2) to return 2, but we don’t have
to create that base case explicitly. Instead, we can take advantage of the fact
that number_of_paths(2) will compute as number_of_paths(1) + number_of_paths(0) +
number_of_paths(-1). Since number_of_paths(1) returns 1, if we made number_of_paths(0)
also return 1, and number_of_paths(-1) return 0, we’d end up with a sum of 2,
which is what we want.
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So, we can add the following base cases:

return 0 if n < 0
return 1 if n == 1 || n == 0

Let’s move onto number_of_paths(3), which will return the sum of number_of_paths(2)
+ number_of_paths(1) + number_of_paths(0). We know that we want the result to be
4, so let’s see if the math works out. We already rigged number_of_paths(2) to
return 2. number_of_paths(1) will return 1, and number_of_paths(0) will also return
1, so we end up getting the sum of 4, which is just what we need.

Our complete function can also be written as:

def number_of_paths(n)
return 0 if n < 0
return 1 if n == 1 || n == 0
return number_of_paths(n - 1) + number_of_paths(n - 2) +

number_of_paths(n - 3)
end

While this is less intuitive than our previous version, we cover all the base
cases with just two lines of code.

As you can see, the top-down recursive approach made solving this problem
much easier than it might have been otherwise.

Anagram Generation
To top off our conversation, let’s tackle our most complex recursive problem
yet. We’re going to use everything we’ve got in our recursion toolbox to make
this work.

We’re going to write a function that returns an array of all anagrams of a
given string. An anagram is a reordering of all the characters within a string.
For example, the anagrams of "abc" are:

["abc",
"acb",
"bac",
"bca",
"cab",
"cba"]

Now, let’s say we were to collect all the anagrams of the string "abcd". Let’s
apply our top-down mindset to this problem.

Presumably, we could say that the subproblem of "abcd" is "abc". The question
then, is: if we had a working anagrams function that returned all the anagrams
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of "abc", how can we use them to produce all the anagrams of "abcd"? Think
about this for a bit and see if you can come up with any approaches.

Here’s the approach that occurred to me. (There are others, though.)

If we had all six anagrams of "abc", we can come up with every permutation
of "abcd" if we stick the "d" in every possible spot within each anagram of "abc":

Here is a Ruby implementation of this algorithm. You’ll note that it’s certainly
more involved than the previous examples in this chapter:

def anagrams_of(string)
# Base case: if the string is only one character,
# return an array containing just a single-character string:
return [string[0]] if string.length == 1

# Create an array to hold all the anagrams:
collection = []

# Find all anagrams of the substring from the second character until
# the end. For example, if the string is "abcd", the substring is "bcd",
# so we'll find all anagrams of "bcd":
substring_anagrams = anagrams_of(string[1, string.length - 1])

# Iterate over each substring
substring_anagrams.each do |substring_anagram|

# Iterate over each index of the substring, from 0 until
# one index past the end of the string:
(0..substring_anagram.length).each do |index|

# Create a copy of the substring anagram:
copy = String.new(substring_anagram)
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# Insert the first character of our string into the
# substring anagram copy. Where it will go depends
# on the index we're up to within this loop.
# Then, take this new string and add it to our collection of anagrams:
collection << copy.insert(index, string[0])

end
end

# Return the entire collection of anagrams:
return collection

end

This code is not trivial, so let’s break it down. For now, we’ll skip over the
base case.

We start by creating an empty array in which we’ll collect the entire collection
of anagrams:

collection = []

This is the same array we’ll return at the end of our function.

Next, we grab the array of all anagrams from the substring of our string. This
substring is the subproblem string, namely, from the second character until
the end. For example, if the string is "hello", the substring is "ello":

substring_anagrams = anagrams_of(string[1, string.length - 1])

Note how we use the top-down mentality to assume that the anagrams_of func-
tion already works on the substring.

We then iterate over each of the substring_anagrams:

substring_anagrams.each do |substring_anagram|

Before moving on, it’s worth noting at this point that we are using a combina-
tion of loops and recursion together. Using recursion doesn’t mean that you
have to eliminate loops from your code altogether! We’re using each tool in
the way that most naturally helps us solve the problem at hand.

For each substring anagram, we iterate over all of its indexes, make a copy
of the substring anagram, and insert the first character of our string (the only
character not contained within the substring) into that index. Each time we
do this, we have created a new anagram, which we then add to our collection:

(0..substring_anagram.length).each do |index|
copy = String.new(substring_anagram)
collection << copy.insert(index, string[0])

end

When we’re done, we return the collection of anagrams.
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The base case is where the substring contains only one character, in which
case there’s only one anagram—the character itself!

The Efficiency of Anagram Generation
As an aside, let’s stop for a moment to analyze the efficiency of our anagram-
generating algorithm, since we’ll discover something interesting. In fact, the
time complexity of generating anagrams is a new category of Big O that we
haven’t encountered before.

If we think about how many anagrams we generate, we’ll notice an interesting
pattern.

For a string containing three characters, we create permutations that start
with each of the three characters. Each permutation then picks its middle
character from one of the two remaining characters, and its last character
from the last character that’s left. This is 3 * 2 * 1, which is six permutations.

Looking at this for other string lengths, we get:

4 characters: 4 * 3 * 2 * 1 anagrams
5 characters: 5 * 4 * 3 * 2 * 1 anagrams
6 characters: 6 * 5 * 4 * 3 * 2 * 1 anagrams

Do you recognize this pattern? It’s a factorial!

That is, if the string has six characters, the number of anagrams is whatever
the factorial of 6 is. This is 6 * 5 * 4 * 3 * 2 * 1, which computes to 720.

The mathematical symbol for factorial is the exclamation point. So, factorial
6 is expressed as 6!, and the factorial of 10 is expressed as 10!.

Remember that Big O expresses the answer to the key question: if there are
N data elements, how many steps will the algorithm take? In our case, N
would be the length of the string.

For a string of length N, we produce N! anagrams. In Big O Notation then,
this is expressed as O(N!). This is also known as factorial time.

O(N!) is the slowest category of Big O we’ll encounter in this book. Let’s see how
it looks compared to other "slow" Big O categories in the graph on page 181.

Although O(N!) is extremely slow, we don’t have a better option here, since
our task is to generate all the anagrams, and there simply are N! anagrams
for an N-character word.

In any case, recursion played a pivotal role in this algorithm, which is an
important example of how recursion can be used to solve a complex problem.
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Wrapping Up
Learning to write functions that use recursion certainly takes practice. But
you’re now armed with tricks and techniques that will make the learning
process easier for you.

We’re not done with our journey through recursion just yet, though. While
recursion is a great tool for solving a variety of problems, it can actually slow
your code down a lot if you’re not careful. In the next chapter, you’ll learn
how to wield recursion while still keeping your code nice and speedy.

Exercises
The following exercises provide you with the opportunity to practice with
recursion. The solutions to these exercises are found in the section, Chapter
11, on page 448.

1. Use recursion to write a function that accepts an array of strings and
returns the total number of characters across all the strings. For example,
if the input array is ["ab", "c", "def", "ghij"], the output should be 10 since there
are 10 characters in total.

2. Use recursion to write a function that accepts an array of numbers and
returns a new array containing just the even numbers.

3. There is a numerical sequence known as “Triangular Numbers.” The
pattern begins as 1, 3, 6, 10, 15, 21, and continues onward with the Nth
number in the pattern, which is N plus the previous number. For example,
the 7th number in the sequence is 28, since it’s 7 (which is N) plus 21
(the previous number in the sequence). Write a function that accepts a
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number for N and returns the correct number from the series. That is, if
the function was passed the number 7, the function would return 28.

4. Use recursion to write a function that accepts a string and returns the
first index that contains the character “x.” For example, the string,
"abcdefghijklmnopqrstuvwxyz" has an “x” at index 23. To keep things simple,
assume the string definitely has at least one “x.”

5. This problem is known as the “Unique Paths” problem: Let’s say you have
a grid of rows and columns. Write a function that accepts a number of rows
and a number of columns, and calculates the number of possible “shortest”
paths from the upper-leftmost square to the lower-rightmost square.

For example, here’s what the grid looks like with three rows and seven
columns. You want to get from the “S” (Start) to the “F” (Finish).

By “shortest” path, I mean that at every step, you’re moving either one
step to the right:

or one step downward:

Again, your function should calculate the number of shortest paths.
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CHAPTER 12

Dynamic Programming
In the previous chapter, you learned how to write recursively and how to use
recursion to solve some rather complex problems.

However, while recursion can certainly solve some problems, it can also create
new ones if not used properly. In fact, recursion is often the culprit behind
some of the slowest categories of Big O, such as O(2N).

The good news, though, is that many of these problems can be avoided. In
this chapter, you’ll learn how to identify some of the most common speed
traps found in recursive code and how to express such algorithms in terms
of Big O. More important, you’ll learn the techniques to fix these problems.

Here’s some more good news: the techniques found in this chapter are actu-
ally pretty simple. Let’s take a look at how to use these easy but effective
methods for turning our recursive nightmares into recursive bliss.

Unnecessary Recursive Calls
Here’s a recursive function that finds the greatest number from an array:

def max(array)

# Base case - if the array has only one element, it is
# by definition the greatest number:

return array[0] if array.length == 1

# Compare the first element with the greatest element
# from the remainder of the array. If the first element
# is greater, return it as the greatest number:
if array[0] > max(array[1, array.length - 1])

return array[0]

report erratum  •  discuss

http://pragprog.com/titles/jwdsal2/errata/add
http://forums.pragprog.com/forums/jwdsal2


# Otherwise, return the greatest number from the remainder of the array:
else

return max(array[1, array.length - 1])
end

end

The essence of each recursive call is the comparison of a single number
(array[0]) to the maximum number from the remainder of the array. (To calculate
the maximum number from the remainder of the array, we call the very max
function we’re in, which is what makes the function recursive.)

We achieve the comparison with a conditional statement. The first half of the
conditional statement is:

if array[0] > max(array[1, array.length - 1])
return array[0]

This snippet says that if the single number (array[0]) is greater than what has
already been determined to be the maximum number of the rest of the array
(max(array[1, array.length - 1])), then by definition, array[0] must be the greatest
number, so we return it.

The second half of the conditional statement is:

else
return max(array[1, array.length - 1])

This second snippet says that if array[0] is not greater than the greatest number
from the rest of the array, then the greatest number from the rest of the array
must be the greatest number overall, and we return it.

While this code works, it contains a hidden inefficiency. If you look carefully,
you’ll note that our code contains the phrase, max(array[1, array.length - 1]) twice,
once in each half of the conditional statement.

The problem with this is that each time we mention max(array[1, array.length - 1]),
we trigger an entire avalanche of recursive calls.

Let’s break this down for an example array of [1, 2, 3, 4].

We know that we’re going to start by comparing the 1 with the maximum
number of the remaining array, [2, 3, 4]. That, in turn, will compare the 2
against the max of the remaining [3, 4], which in turn will compare the 3
against the [4]. This, too, triggers one more recursive call on the [4] itself,
which is the base case.

However, to really see how our code plays out, we’re going to start by analyzing
the “bottom” call and working our way up the call chain.
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Let’s begin.

Max Recursive Walk-Through
When we call max([4]), the function simply returns the number 4. Again, this
is because our base case is when the array only contains one element, as
dictated by the following line of code:

return array[0] if array.length == 1

This is pretty straightforward—it’s a single function call:

Moving up the call chain, let’s see what happens when we call max([3, 4]). In
the first half of the conditional statement (if array[0] > max(array[1, array.length - 1])),
we compare the 3 to max([4]). But calling max([4]) is itself a recursive call. The
following diagram depicts max([3, 4]) calling max([4]):

Note that next to the arrow, we put the label “1st” to indicate that this
recursive call was triggered by the first half of the conditional statement
within max([3, 4]).

After this step has been completed, our code can now compare the 3 with the
result of max([4]). Since the 3 is not greater than that result (4), we trigger the
second half of the conditional. (This is the code, return max(array[1, array.length -
1]).) In this case, we return max([4]).

But when our code returns max([4]), it triggers the actual function call of
max([4]). This is now the second time we’ve triggered the max([4]) call:

As you can see, the function, max([3, 4]) ends up calling max([4]) twice. Of course,
we’d rather try to avoid doing this if we don’t have to. If we’ve already computed
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the result of max([4]) once, why should we call the same function again just
to get the same result?

However, this problem gets a lot worse when we move just one level up the
call chain.

Here’s what happens when we call max([2, 3, 4]).

During the first half of the conditional, we compare the 2 against max([3, 4]),
which we’ve already determined looks like this:

So, max([2, 3, 4]) calling max([3, 4]) then, would look like this:

But here’s the kicker. This is just for the first half of the conditional of max([2,
3, 4]). For the second half of the conditional, we end up calling max([3, 4]) again:

Yikes!

Let’s dare to move to the top of the call chain, calling max([1, 2, 3, 4]). When all
is said and done, after we call max for both halves of the conditional, we get
what is shown in the diagram on page 187.
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So, when we call max([1, 2, 3, 4]), we actually end up triggering the max function
15 times.

We can see this visually by adding the statement, puts "RECURSION" to the
beginning of our function:

def max(array)
puts "RECURSION"

# remaining code omitted for brevity

When we then run our code, we’ll see the word, RECURSION, printed to our
terminal 15 times.

Now, we do need some of those calls, but not all of them. We do need to cal-
culate max([4]), for example, but one such function call is enough to get the
computed result. But here, we call that function eight times.

The Little Fix for Big O
Thankfully, there’s an easy way to eliminate all these extra recursive calls.
We’ll call max only once within our code, and save the result to a variable:

def max(array)

return array[0] if array.length == 1

# Calculate the max of the remainder of the array
# and store it inside a variable:

max_of_remainder = max(array[1, array.length - 1])

# Comparison of first number against this variable:

if array[0] > max_of_remainder
return array[0]

else
return max_of_remainder

end
end
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By implementing this simple modification, we end up calling max a mere four
times. Try it out yourself by adding the puts "RECURSION" line and running
the code.

The trick here is that we’re making each necessary function call once, and
saving the result in a variable so that we don’t have to ever call that function
again.

The difference in efficiency between our initial function and our ever-so-
slightly modified function is quite stark.

The Efficiency of Recursion
In our second, improved version of the max function, the function recursively
calls itself as many times as there are values in the array. We’d call this O(N).

Up until this point, the cases of O(N) we’ve seen involved loops, with a loop
running N times. However, we can apply the same principles of Big O to
recursion as well.

As you’ll recall, Big O answers the key question: if there are N data elements,
how many steps will the algorithm take?

Since the improved max function runs N times for N values in the array, it has
a time complexity of O(N). Even if the function itself contains multiple steps,
such as five, its time complexity would be O(5N), which is reduced to O(N).

In the first version, though, the function called itself twice during each run
(save for the base case). Let’s see how this plays out for different array sizes.

The following table shows how many times max gets called on arrays of various
sizes:

Number of CallsN Elements

11

32

73

154

315

Can you see the pattern? When we increase the data by one, we roughly
double the number of steps the algorithm takes. As you learned by our dis-
cussion of the Password Cracker, on page 107, this is the pattern of O(2N). We
already know that this is an extremely slow algorithm.
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The improved version of the max function, however, only calls max for as many
elements as there are inside the array. This means that our second max
function has an efficiency of O(N).

This is a powerful lesson: avoiding extra recursive calls is key to keeping
recursion fast. What at first glance was a very small change to our code—the
mere storing of a computation in a variable—ended up changing the speed
of our function from O(2N) to O(N).

Overlapping Subproblems
The Fibonacci sequence is a mathematical sequence of numbers that goes
like this until infinity:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55…

This sequence begins with the numbers 0 and 1, and each subsequent
number is the sum of the previous two numbers of the sequence. For example,
the number 55 was computed because it is the sum of the previous two
numbers, which are 21 and 34.

The following Python function returns the Nth number in the Fibonacci
sequence. For example, if we pass the number 10 to the function, it will return
55, as 55 is the tenth number in the series. (The 0 is considered the 0th
number in the series.)

def fib(n):
# The base cases are the first two numbers in the series:
if n == 0 or n == 1:

return n

# Return the sum of the previous two Fibonacci numbers:
return fib(n - 2) + fib(n - 1)

The key line in this function is:

return fib(n - 2) + fib(n - 1)

which sums the previous two numbers in the Fibonacci series. It’s a beautiful
recursive function.

However, alarm bells should be going off in your head right now because our
function calls itself twice.

Let’s take the computation of the sixth Fibonacci number, for example. The
function fib(6) makes a call to both fib(4) and fib(5), as shown in the diagram
on page 190.
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As we’ve seen, a function calling itself twice can easily lead us down the road
to O(2N). Indeed, here are all the recursive calls made by fib(6):

You’ve got to admit, O(2N) can look pretty scary.

While one simple change worked to optimize the first example in this chapter,
optimizing our Fibonacci sequence isn’t as simple.

And that’s because there isn’t just one single piece of data we can save in a
variable. We need to calculate both fib(n - 2) and fib(n - 1) (as each Fibonacci
number is the sum of those two numbers), and storing the result of one won’t
alone give us the result for the other.

This is a case of what computer scientists call overlapping subproblems. Let’s
unpack that term.

When a problem is solved by solving smaller versions of the same problem,
the smaller problem is called a subproblem. This concept isn’t new—we’ve
been dealing with it frequently throughout our discussion of recursion. In
the case of the Fibonacci sequence, we compute each number by first com-
puting the smaller numbers in the sequence. The computation of these
smaller numbers are the subproblems.

What makes these subproblems overlapping, though, is the fact that fib(n - 2)
and fib(n - 1) end up calling many of the same functions as each other. That
is, fib(n - 1) ends up making some of the very same calculations previously
made by fib(n - 2). For example, you can see in the previous diagram that both
fib(4) and fib(5) call fib(3) (as well as many other duplicated calls).
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Well, it seems that we’re at a dead end. Our Fibonacci example requires us
to make many overlapping function calls, and our algorithm oozes along at
a pace of O(2N). There’s just nothing we can do.

Or is there?

Dynamic Programming through Memoization
Luckily, we do have options, and that is through something called dynamic
programming. Dynamic programming is the process of optimizing recursive
problems that have overlapping subproblems.

(Don’t pay too much attention to the word “dynamic.” There’s some debate
about how the term came about, and there’s nothing obviously dynamic about
the techniques I’m about to demonstrate.)

Optimizing an algorithm with dynamic programming is typically accomplished
with one of two techniques.

The first technique is something called memoization. And no, that’s not a typo.
Pronounced meh-moe-ih-ZAY-shun, memoization is a simple, but brilliant
technique for reducing recursive calls in cases of overlapping subproblems.

Essentially, memoization reduces recursive calls by remembering previously
computed functions. (In this respect, memoization really is like its similar-
sounding word memorization.)

In our Fibonacci example, the first time fib(3) is called, the function does its
computation and returns the number 2. However, before moving on, the
function stores this result inside a hash table. The hash table will look
something like this:

{3: 2}

This indicates that the result of fib(3) is the number 2.

Similarly, our code will memoize the results of all new computations it encoun-
ters. After encountering fib(4), fib(5), and fib(6), for example, our hash table will
look like this:

{
3: 2,
4: 3,
5: 5,
6: 8

}
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Now that we have this hash table, we can use it to prevent future recursive
calls. Here’s the way this works:

Without memoization, fib(4) would normally call fib(3) and fib(2), which in turn
make their own recursive calls. Now that we have this hash table, we can
approach things differently. Instead of fib(4) just blithely calling fib(3), for
example, it first checks the hash table to see if the result of fib(3) has already
been computed. Only if the 3 key is not in the hash table does the function
proceed to call fib(3).

Memoization goes for the jugular of overlapping subproblems. The whole issue
with overlapping subproblems is that we end up computing the same recursive
calls over and over again. With memoization, though, each time we make a
new calculation, we store it in the hash table for future use. This way, we
only make a calculation if it hadn’t ever been made before.

Okay, this all sounds good, but there’s one glaring problem. How does each
recursive function get access to this hash table?

The answer is: we pass the hash table as a second parameter to the function.

Because the hash table is a specific object in memory, we’re able to pass it
from one recursive call to the next, even though we’re modifying it as we go.
This is true even as we unwind the call stack. Even though the hash table
may have been empty when the original call was made, that same hash table
can be full of data by the time the original call has finished executing.

Implementing Memoization
To pass the hash table along, we modify our function to accept two arguments,
with the hash table as the second. We call this hash table, memo, as in mem-
oization:

def fib(n, memo):

When calling the function the first time, we pass in both the number and an
empty hash table:

fib(6, {})

Each time fib calls itself, it also passes along the hash table, which gets filled
up along the way.

Here’s the rest of the function:

def fib(n, memo):

if n == 0 or n == 1:
return n
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# Check the hash table (called memo) to see whether fib(n)
# was already computed or not:
if not memo.get(n):

# If n is NOT in memo, compute fib(n) with recursion
# and then store the result in the hash table:
memo[n] = fib(n - 2, memo) + fib(n - 1, memo)

# By now, fib(n)'s result is certainly in memo. (Perhaps
# it was there before, or perhaps we just stored it there
# in the previous line of code. But it's certainly there now.)
# So let's return it:
return memo[n]

Let’s analyze this line by line.

Again, our function now accepts two parameters, namely n and the memo hash
table:

def fib(n, memo):

We could also have memo set to a default value, so we don’t have to explicitly
pass in an empty hash table the first time we call it:

def fib(n, memo={}):

In any case, the base cases of 0 and 1 remain the same and are unaffected
by memoization.

Before making any recursive calls, our code first checks to see whether fib(n)
has already been calculated for the given n:

if not memo.get(n):

(If the calculation for n is already in the hash table, we simply return the
result with return memo[n].)

Only if the calculation for n has not yet been made do we proceed with the
calculation:

memo[n] = fib(n - 2, memo) + fib(n - 1, memo)

Here, we store the result of the calculation in the memo hash table so we
never have to calculate it again.

Also note how we pass memo along as an argument to the fib function each
time we call it. This is the key to sharing the memo hash table across all the
calls to the fib function.

As you can see, the guts of the algorithm remain the same. We are still using
recursion to solve our problem, as the computation of fib is still essentially
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fib(n - 2) + fib(n - 1). However, if the number we’re computing is new, we store
the result in a hash table, and if the number we’re computing was already
computed once before, we simply grab the result from the hash table instead
of computing it again.

When we map out the recursive calls in our memoized version, we get this:

In this diagram, each call that is surrounded by a box is one in which the
result was retrieved from the hash table.

So, what is the Big O of our function now? Let’s look at how many recursive
calls we make for different types of N:

Number of CallsN Elements

11

32

53

74

95

116

We can see that for N, we make (2N) - 1 calls. Since in Big O we drop the
constants, this is an O(N) algorithm.

This is an incredible improvement over O(2N). Go memoization!

Dynamic Programming through Going Bottom-Up
I mentioned earlier that dynamic programming can be achieved through one of
two techniques. We looked at one technique, memoization, which is quite nifty.

The second technique, known as going bottom-up, is a lot less fancy and may
not even seem like a technique at all. All going bottom-up means is to ditch
recursion and use some other approach (like a loop) to solve the same problem.
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The reason that going bottom-up is considered part of dynamic programming
is because dynamic programming means taking a problem that could be solved
recursively and ensure that it doesn’t make duplicate calls for overlapping
subproblems. Using iteration (that is, loops) instead of recursion is, technically,
a way to achieve this.

Going bottom-up becomes more of a “technique” when the problem is more
naturally solved with recursion. Generating Fibonacci numbers is one example
where recursion is a neat, elegant solution. Having to solve the same problem
with iteration may take more brainpower, as an iterative approach may be
less intuitive. (Imagine solving the Staircase Problem from the previous
chapter with a loop. Ugh.)

Let’s see how we might implement a bottom-up approach for our Fibonacci
function.

Bottom-Up Fibonacci
In the following bottom-up approach, we start with the first two Fibonacci
numbers: 0 and 1. We then use good ol’ iteration to build up the sequence:

def fib(n):

if n == 0:
return 0

# a and b start with the first two numbers in the
# series, respectively:
a = 0
b = 1

# Loop from 1 until n:
for i in range(1, n):

# a and b each move up to the next numbers in the series.
# Namely, b becomes the sum of b + a, and a becomes what b used to be.
# We utilize a temporary variable to make these changes:
temp = a
a = b
b = temp + a

return b

Here, we start variables a and b as 0 and 1, respectively, as those are the first
two numbers of the Fibonacci sequence.

We then start a loop so we can calculate each number of the sequence until
we reach n:

for i in range(1, n):
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To calculate the next number in the sequence, we need to add the two previous
numbers. We assign temp to the second most recent value, and a to the most
recent value:

temp = a
a = b

The new number in the sequence, which we’ll reassign to b, is the sum of
those previous two numbers:

b = temp + a

Because our code is a simple loop from 1 to N, our code takes N steps. Like
the memoization approach, it’s O(N).

Memoization vs. Bottom-Up
You’ve now seen the two primary techniques of dynamic programming:
memoization and going bottom-up. Is one technique better than the other?

Usually, it depends on the problem and why you’re using recursion in the
first place. If recursion presents an elegant and intuitive solution to a given
problem, you may want to stick with it and use memoization to deal with any
overlapping subproblems. However, if the iterative approach is equally intu-
itive, you may want to go with that.

It’s important to point out that even with memoization, recursion does carry
some extra overhead versus iteration. Specifically, with any recursion, the
computer needs to keep track of all the calls in a call stack, which consumes
memory. The memoization itself also requires the use of a hash table, which
will take up additional space on your computer as well. (More on this in
Dealing with Space Constraints.)

Generally speaking, going bottom-up is often the better choice unless the
recursive solution is more intuitive. Where recursion is more intuitive, you
can keep the recursion and keep it fast by using memoization.

Wrapping Up
Now that you’re able to write efficient recursive code, you’ve also unlocked a
superpower. You’re about to encounter some really efficient—yet advanced—
algorithms, and many of them rely on the principles of recursion.
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Exercises
The following exercises provide you with the opportunity to practice with
dynamic programming. The solutions to these exercises are found in the
section, Chapter 12, on page 450.

1. The following function accepts an array of numbers and returns the sum,
as long as a particular number doesn’t bring the sum above 100. If adding
a particular number will make the sum higher than 100, that number is
ignored. However, this function makes unnecessary recursive calls. Fix
the code to eliminate the unnecessary recursion:

def add_until_100(array)
return 0 if array.length == 0
if array[0] + add_until_100(array[1, array.length - 1]) > 100

return add_until_100(array[1, array.length - 1])
else

return array[0] + add_until_100(array[1, array.length - 1])
end

end

2. The following function uses recursion to calculate the Nth number from
a mathematical sequence known as the “Golomb sequence.” It’s terribly
inefficient, though! Use memoization to optimize it. (You don’t have to
actually understand how the Golomb sequence works to do this exercise.)

def golomb(n)
return 1 if n == 1
return 1 + golomb(n - golomb(golomb(n - 1)));

end

3. Here is a solution to the “Unique Paths” problem from an exercise in the
previous chapter. Use memoization to improve its efficiency:

def unique_paths(rows, columns)
return 1 if rows == 1 || columns == 1
return unique_paths(rows - 1, columns) + unique_paths(rows, columns - 1)

end
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CHAPTER 13

Recursive Algorithms for Speed
We’ve seen that understanding recursion unlocks all sorts of new algorithms,
such as traversing a filesystem or producing anagrams. In this chapter, you’re
going to learn that recursion is also the key to algorithms that can make our
code run much, much faster.

In previous chapters, we’ve encountered a number of sorting algorithms,
including Bubble Sort, Selection Sort, and Insertion Sort. In real life, however,
none of these methods are actually used to sort arrays. Most computer lan-
guages have built-in sorting functions for arrays that save us the time and
effort of implementing our own. And in many of these languages, the sorting
algorithm that is employed under the hood is Quicksort.

The reason we’re going to dig into Quicksort (even though it’s already built
into many computer languages) is because by studying how it works, you can
learn how to use recursion to greatly speed up an algorithm, and you can do
the same for other practical algorithms of the real world.

Quicksort is an extremely fast sorting algorithm that is particularly efficient
for average scenarios. While in worst-case scenarios (that is, inversely sorted
arrays), it performs similarly to Insertion Sort and Selection Sort, it is much
faster for average scenarios—which are what occur most of the time.

Quicksort relies on a concept called partitioning, so we’ll jump into that first.

Partitioning
To partition an array is to take a random value from the array—which is then
called the pivot—and make sure that every number that is less than the pivot
ends up to the left of the pivot, and that every number greater than the pivot
ends up to the right of the pivot. We accomplish partitioning through a simple
algorithm that will be described in the following example.
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Let’s say we have the following array:

For consistency’s sake, we’ll always select the rightmost value to be our pivot
(although we can technically choose other values). In this case, the number
3 is our pivot. We indicate this by circling it:

We then assign “pointers”—one to the left-most value of the array, and one
to the rightmost value of the array, excluding the pivot itself:

We’re now ready to begin the actual partition, which follows these steps. Don’t
worry—the steps will become clearer when we walk through our example
shortly.

1. The left pointer continuously moves one cell to the right until it reaches
a value that is greater than or equal to the pivot, and then stops.

2. Then, the right pointer continuously moves one cell to the left until it
reaches a value that is less than or equal to the pivot, and then stops.
The right pointer will also stop if it reaches the beginning of the array.

3. Once the right pointer has stopped, we reach a crossroads. If the left
pointer has reached (or gone beyond) the right pointer, we move on to
Step 4. Otherwise, we swap the values that the left and right pointers are
pointing to, and then go back to repeat Steps 1, 2, and 3 again.

4. Finally, we swap the pivot with the value that the left pointer is currently
pointing to.

When we’re done with a partition, we are now assured that all values to the
left of the pivot are less than the pivot, and all values to the right of the pivot
are greater than it. And that means the pivot itself is now in its correct place
within the array, although the other values are not yet necessarily completely
sorted.
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Let’s apply this to our example:

Step 1: Compare the left pointer (now pointing to 0) to our pivot (the value 3):

Since 0 is less than the pivot, the left pointer moves on in the next step.

Step 2: The left pointer moves on:

We compare the left pointer (the 5) to our pivot. Is the 5 lower than the pivot?
It’s not, so the left pointer stops, and we activate the right pointer in our
next step.

Step 3: Compare the right pointer (6) to our pivot. Is the value greater than
the pivot? It is, so our pointer will move on in the next step.

Step 4: The right pointer moves on:

We compare the right pointer (1) to our pivot. Is the value greater than the
pivot? It’s not, so our right pointer stops.

Step 5: Since both pointers have stopped, we swap the values of the two
pointers:
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We then activate our left pointer again in the next step.

Step 6: The left pointer moves on:

We compare the left pointer (2) to our pivot. Is the value less than the pivot?
It is, so the left pointer moves on.

Step 7: The left pointer moves on to the next cell. Note that at this point, both
the left and right pointers are pointing to the same value:

We compare the left pointer to our pivot. Because our left pointer is pointing
to a value that is greater than our pivot, it stops. At this point, since our left
pointer has reached our right pointer, we are done with moving pointers.

Step 8: For our final step of the partition, we swap the value that the left
pointer is pointing to with the pivot:

Although our array isn’t completely sorted, we have successfully completed a
partition. That is, since our pivot was the number 3, all numbers that are less
than 3 are to its left, while all numbers greater than 3 are to its right. This also
means, by definition, that the 3 is now in its correct place within the array.

Code Implementation: Partitioning
Following is an implementation of a SortableArray class in Ruby that includes
a partition! method that partitions the array as we’ve described:
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class SortableArray

attr_reader :array

def initialize(array)
@array = array

end

def partition!(left_pointer, right_pointer)

# We always choose the right-most element as the pivot.
# We keep the index of the pivot for later use:
pivot_index = right_pointer

# We grab the pivot value itself:
pivot = @array[pivot_index]

# We start the right pointer immediately to the left of the pivot
right_pointer -= 1

while true

# Move the left pointer to the right as long as it
# points to value that is less than the pivot:
while @array[left_pointer] < pivot do

left_pointer += 1
end

# Move the right pointer to the left as long as it
# points to a value that is greater than the pivot:
while @array[right_pointer] > pivot do

right_pointer -= 1
end

# We've now reached the point where we've stopped
# moving both the left and right pointers.

# We check whether the left pointer has reached
# or gone beyond the right pointer. If it has,
# we break out of the loop so we can swap the pivot later
# on in our code:
if left_pointer >= right_pointer

break

# If the left pointer is still to the left of the right
# pointer, we swap the values of the left and right pointers:
else

@array[left_pointer], @array[right_pointer] =
@array[right_pointer], @array[left_pointer]

# We move the left pointer over to the right, gearing up
# for the next round of left and right pointer movements:
left_pointer += 1

end

end
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# As the final step of the partition, we swap the value
# of the left pointer with the pivot:
@array[left_pointer], @array[pivot_index] =
@array[pivot_index], @array[left_pointer]

# We return the left_pointer for the sake of the quicksort method
# which will appear later in this chapter:
return left_pointer

end

end

Let’s break this code down a bit.

The partition! method accepts the starting points of the left and right pointers
as parameters:

def partition!(left_pointer, right_pointer)

When this method is first called on an array, these pointers will point to the
left and right ends of the array, respectively. However, we’ll see that Quicksort
will call this method on subsections of the array as well. Because of this, we
can’t always assume the left and right pointers are always the two extremities
of the array, so they need to become method arguments. This point will be
clearer when I explain the complete Quicksort algorithm.

Next, we select our pivot, which is always the rightmost element in the range
we’re dealing with:

pivot_index = right_pointer
pivot = @array[pivot_index]

Once our pivot has been identified, we move the right_pointer to the item
immediately left of the pivot:

right_pointer -= 1

We then begin a loop that will run until the left_pointer and right_pointer meet.
Within this loop, we use another loop to keep moving the left_pointer to the right
until it reaches an item that is greater or equal to the pivot:

while @array[left_pointer] < pivot do
left_pointer += 1

end

Similarly, we move the right_pointer to the left until it hits an item that is less
or equal to the pivot:

while @array[right_pointer] > pivot do
right_pointer -= 1

end
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Once the left_pointer and right_pointer have stopped moving, we check whether
the two pointers have met:

if left_pointer >= right_pointer
break

If they have, we exit the loop and get ready to swap the pivot, which we’ll get
to momentarily. However, if the two pointers have not yet met, we swap the
values at the two pointers:

@array[left_pointer], @array[right_pointer] =
@array[right_pointer], @array[left_pointer]

Finally, once the two pointers have met, we swap the pivot with the value at
the left_pointer:

@array[left_pointer], @array[pivot_index] =
@array[pivot_index], @array[left_pointer]

The method returns the left_pointer, as this will be needed by the Quicksort
algorithm (which I’ll explain shortly).

Quicksort
The Quicksort algorithm is a combination of partitions and recursion. It works
as follows:

1. Partition the array. The pivot is now in its proper place.

2. Treat the subarrays to the left and right of the pivot as their own arrays,
and recursively repeat Steps 1 and 2. That means we’ll partition each
subarray and end up with even smaller sub-subarrays to the left and
right of each subarray’s pivot. We then partition those sub-subarrays,
and so on and so forth.

3. When we have a subarray that has zero or one elements, that is our base
case and we do nothing.

Let’s return to our example. We began with the array of [0, 5, 2, 1, 6, 3] and ran
a single partition on the entire array. Since Quicksort begins with such a
partition, that means we’re already partly through the Quicksort process. We
left off with:
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As you can see, the value 3 was the original pivot. Now that the pivot is in
the correct place, we need to sort whatever is to the left and right of the pivot.
Note that in our example, it just so happens that the numbers to the left of
the pivot are already sorted, but the computer doesn’t know that yet.

The next step after the partition is to treat everything to the left of the pivot
as its own array and partition it.

We’ll obscure the rest of the array for now, as we’re not focusing on it at the
moment:

Now, of this [0, 1, 2] subarray, we’ll make the rightmost element the pivot. So,
that would be the number 2:

We’ll establish our left and right pointers:

And now we’re ready to partition this subarray. Let’s continue from after Step
8, where we left off previously.

Step 9: We compare the left pointer (0) to the pivot (2). Since the 0 is less than
the pivot, we continue moving the left pointer.

Step 10: We move the left pointer one cell to the right, and it now happens
to be pointing to the same value the right pointer is pointing to:

We compare the left pointer to the pivot. Since the value 1 is less than the
pivot, we move on.
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Step 11: We move the left pointer one cell to the right, which just happens to
be the pivot:

At this point, the left pointer is pointing to a value that is equal to the pivot
(since it is the pivot!), and so the left pointer stops.

Note how the left pointer managed to sneak past the right pointer. That’s
okay, though. The algorithm is designed to work even with such an occurrence.

Step 12: Now, we activate the right pointer. However, because the right
pointer’s value (1) is less than the pivot, it stays still.

Since our left pointer has passed our right pointer, we’re done moving pointers
altogether in this partition.

Step 13: Next, we swap the pivot with the left pointer’s value. Now, it just so
happens that the left pointer is pointing to the pivot itself, so we swap the
pivot with itself, which results in no change at all. At this point, the partition
is complete and the pivot (2) is now in its correct spot:

We now have a subarray of [0, 1] to the left of the pivot (the 2) and no subarray
to its right. The next step is to recursively partition the subarray to the pivot’s
left, which again, is [0, 1]. We don’t have to deal with any subarray to the right
of the pivot since no such subarray exists.

Because all we’ll focus on in the next step is the subarray [0, 1], we’ll block
out the rest of the array so it looks like this:

To partition the subarray, [0, 1], we’ll make the rightmost element (the 1) the
pivot. Where will we put the left and right pointers? Well, the left pointer will
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point to the 0, but the right pointer will also point to the 0, since we always
start the right pointer at one cell to the left of the pivot. This gives us this:

We’re now ready to begin the partition.

Step 14: We compare the left pointer (0) with the pivot (1):

It’s less than the pivot, so we move on.

Step 15: We shift the left pointer one cell to the right. It now points to the
pivot:

Since the left pointer’s value (1) is not lower than the pivot (since it is the
pivot), the left pointer stops moving.

Step 16: We compare the right pointer with the pivot. Since it’s pointing to a
value that is less than the pivot, we don’t move it anymore. And since the left
pointer has passed the right pointer, we’re done moving pointers for this
partition.

Step 17: We now swap the left pointer with the pivot. Again, in this case, the
left pointer is actually pointing to the pivot itself, so the swap doesn’t actually
change anything. The pivot is now in its proper place, and we’re done with
this partition.

That leaves us with this:
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Next up, we need to partition the subarray to the left of the most recent pivot.
In this case, that subarray is [0]—an array of just one element. An array of
zero or one elements is our base case, so we don’t do anything. The element
is just considered to be in its proper place automatically. So, now we’ve got:

We started out by treating 3 as our pivot, and recursively partitioned the
subarray to its left ([0, 1, 2]). As promised, we now need to come back to
recursively partitioning the subarray to the right of the 3, which is [6, 5].

We’ll obscure the [0, 1, 2, 3], since we’ve already sorted those, and now we’re
only focusing on the [6, 5]:

In the next partition, we’ll treat the rightmost element (the 5) as the pivot.
That gives us:

When setting up our next partition, our left and right pointers both end up
pointing to the 6:

Step 18: We compare the left pointer (6) with the pivot (5). Since 6 is greater
than the pivot, the left pointer doesn’t move further.

Step 19: The right pointer is pointing to the 6 as well, so we would theoreti-
cally move on to the next cell to the left. However, there are no more cells to
the left of the 6, so the right pointer stops moving. Since the left pointer has
reached the right pointer, we’re done moving pointers altogether for this
partition. That means we’re ready for the final step.
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Step 20: We swap the pivot with the value of the left pointer:

Our pivot (5) is now in its correct spot, leaving us with:

Next up, we technically need to recursively partition the subarray to the left
and right of the [5, 6] subarray. Since there is no subarray to its left, that
means we only need to partition the subarray to the right. Since the subarray
to the right of the 5 is a single element of [6], that’s our base case and we do
nothing—the 6 is automatically considered to be in its proper place:

And we’re done!

Code Implementation: Quicksort
Following is a quicksort! method we can add to the previous SortableArray class
that would successfully complete the Quicksort:

def quicksort!(left_index, right_index)
# Base case: the subarray has 0 or 1 elements:
if right_index - left_index <= 0

return
end

# Partition the range of elements and grab the index of the pivot:
pivot_index = partition!(left_index, right_index)

# Recursively call this quicksort! method on whatever
# is to the left of the pivot:
quicksort!(left_index, pivot_index - 1)

# Recursively call this quicksort! method on whatever
# is to the right of the pivot:
quicksort!(pivot_index + 1, right_index)

end
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The code here is surprisingly concise, but let’s look at each line. For now,
we’ll skip over the base case.

We begin by partitioning the range of elements between the left_index and
right_index:

pivot_index = partition!(left_index, right_index)

The first time we run quicksort!, we partition the entire array. In subsequent calls,
though, this line of code partitions whatever range of elements lie between
the left_index and right_index, which may be a subsection of the original array.

Note that we assign the return value of partition! to a variable called pivot_index.
If you’ll recall, this value was the left_pointer, which pointed to the pivot by the
time the partition! method was complete.

We then recursively call quicksort! on the subarrays to the left and right of the
pivot:

quicksort!(left_index, pivot_index - 1)
quicksort!(pivot_index + 1, right_index)

The recursion ends when we reach the base case, which is when the subarray
at hand contains no more than one element:

if right_index - left_index <= 0
return

end

We can take our Quicksort implementation for a test drive using the follow-
ing code:

array = [0, 5, 2, 1, 6, 3]
sortable_array = SortableArray.new(array)
sortable_array.quicksort!(0, array.length - 1)
p sortable_array.array

The Efficiency of Quicksort
To figure out the efficiency of Quicksort, let’s first determine the efficiency of
a single partition.

When we break down the steps of a partition, we’ll note that a partition
involves two primary types of steps:

• Comparisons: We compare each of the values at hand to the pivot.
• Swaps: When appropriate, we swap the values being pointed to by the

left and right pointers.
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Each partition has at least N comparisons—that is, we compare each element
of the array with the pivot. This is true because a partition always has the
left and right pointers move through each cell until the left and right pointers
reach each other.

The number of swaps, however, will depend upon how the data is sorted. A
single partition can have, at most, N / 2 swaps, as even if we’d swap values
at every opportunity, each swap takes care of two values. As you can see in
the following diagram, we partition six elements in just three swaps:

Now, in most cases, we’re not making a swap every step of the way. For ran-
domly sorted data, we generally swap about half of the values. On average,
then, we’re making about N / 4 swaps.

So, on average, we make about N comparisons and N / 4 swaps. We can say,
then, that there are about 1.25N steps for N data elements. In Big O Notation,
we ignore constants, so we’d say that a partition runs in O(N) time.

Now, that’s the efficiency of a single partition. But Quicksort involves many
partitions, so we need to conduct further analysis to determine the efficiency
of Quicksort.

Quicksort from a Bird’s-Eye View
To visualize this more easily, here’s a diagram on page 213 depicting a typical
Quicksort on an array of eight elements from a bird’s-eye view. In particular,
the diagram shows how many elements each partition acts upon. We’ve left
out the actual numbers from the array since the exact values don’t matter.
Note that in the diagram, the active subarray is the group of cells that is not
grayed out.

We can see that we have eight partitions, but each partition takes place on
subarrays of various sizes. We perform a partition on the original array of
eight elements, but also perform partitions on subarrays of sizes 4, 3, and 2,
and another four partitions on arrays of size 1.

Since Quicksort is essentially comprised of this series of partitions, and each
partition takes about N steps for N elements of each subarray, if we add the
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sizes of all the subarrays together, we’ll get the total number of steps
Quicksort takes:

8 elements

3 elements

1 element

1 element

4 elements

2 elements

1 element

+ 1 element
__________

Total = About 21 steps
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We see that where the original array has eight elements, Quicksort takes
about 21 steps. This assumes a best- or average-case scenario, where the
pivot ends up roughly in the middle of the subarray after each partition.

For an array of 16 elements, Quicksort takes about 64 steps, and for an array
of 32 elements, Quicksort takes about 160 steps. Take a look at this table:

Quicksort Steps (approx.)N

84

248

6416

16032

(While in our example earlier, the number of Quicksort steps for an array of
size 8 was 21, I put 24 in this table. The exact number can vary from case to
case, and 24 is also a reasonable approximation. I specifically made it 24 to
make the following explanation a little clearer.)

The Big O of Quicksort
How do we categorize Quicksort in terms of Big O Notation?

If we look at the pattern shown earlier, we’ll note that the number of Quicksort
steps for N elements in the array is about N multiplied by log N, as shown in
the following table:

Quicksort Steps (approx.)N * log Nlog NN

8824

242438

6464416

160160532

In fact, this is exactly how to express the efficiency of Quicksort. It’s an
algorithm of O(N log N). We’ve discovered a new category of Big O!

The graph on page 215 shows how O(N log N) looks beside other categories of
Big O.

Now, it’s not a coincidence that the number of steps in Quicksort just happens
to align with N * log N. If we think about Quicksort more broadly, we can see
why it is this way:

Each time we partition the array, we end up breaking it down into two subar-
rays. Assuming the pivot ends up somewhere in the middle of the array—which
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is what happens in the average case—these two subarrays are of roughly
equal sizes.

How many times can we break an array into halves until we’ve broken it
completely down to the point of where each subarray is of size 1? For an array
of size N, this will take us log N times. Take a look at the following diagram:

As you can see, for an array of size 8, it takes us three “halvings” until we’ve
reduced the array into eight individual elements. This is log N, and fits with
our definition of log N as being the number of times it takes to halve something
until we reach 1.
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So, this is why Quicksort takes N * log N steps. We have log N halvings, and
for each halving, we perform a partition on all the subarrays whose elements
add up to N. (They add up to N because all the subarrays are simply pieces
of the original array of N elements.)

This is illustrated in the previous diagram. At the top of the diagram, for
example, we partition the original array of eight elements, creating two sub-
arrays of size 4. We then partition both subarrays of size 4, which means that
we are again partitioning eight elements.

Bear in mind that O(N * log N) is just an approximation. In reality, we first
perform an extra O(N) partition on the original array as well. Additionally, an
array doesn’t cleanly break into two even halves, since the pivot is not part
of the “halving.”

Here’s what a more realistic example really looks like, where we ignore the
pivot after each partition:

Quicksort in the Worst-Case Scenario
For many other algorithms we’ve encountered, the best case was one where
the array was already sorted. When it comes to Quicksort, however, the best-
case scenario is one in which the pivot always ends up smack in the middle
of the subarray after the partition. Interestingly, this generally occurs when
the values in the array are mixed up pretty well.
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The worst-case scenario for Quicksort is one in which the pivot always ends
up on one side of the subarray instead of in the middle. This can happen
where the array is in perfect ascending or descending order. The visualization
for this process is shown here:

In this diagram you can see that the pivot always ends up on the left end of
each subarray.

While in this case each partition still involves only one swap, we lose out
because of the increased number of comparisons. In the first example, when
the pivot always ended up toward the middle, each partition after the first
one was conducted on relatively small subarrays (the largest subarray had a
size of 4). In this example, however, the first five partitions take place on
subarrays of size 4 or greater. And each of these partitions have as many
comparisons as there are elements in the subarray.
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So, in this worst-case scenario, we have partitions of 8 + 7 + 6 + 5 + 4 + 3 +
2 + 1 elements, which yields a total of 36 comparisons.

To put this a little more formulaically, we’d say that for N elements, there are
N + (N - 1) + (N - 2) + (N - 3) … + 1 steps. We saw in our discussion of Get All
the Products, on page 103 that this computes to N2 / 2 steps, which for the
purposes of Big O is O(N2).

So, in a worst-case scenario, Quicksort has an efficiency of O(N2).

Quicksort vs. Insertion Sort
Now that we’ve got Quicksort down, let’s compare it with one of the simpler
sorting algorithms, such as Insertion Sort:

Worst CaseAverage CaseBest Case

O(N2)O(N2)O(N)Insertion Sort

O(N2)O(N log N)O(N log N)Quicksort

We can see they have identical worst-case scenarios, and that Insertion Sort
is actually faster than Quicksort in a best-case scenario. However, the reason
Quicksort is superior to Insertion Sort is because of the average scenario—which,
again, is what happens most of the time. For average cases, Insertion Sort
takes a whopping O(N2), while Quicksort is much faster at O(N log N).

Because of Quicksort’s superiority in average circumstances, many program-
ming languages use Quicksort under the hood of their built-in sorting func-
tions. Because of this, it’s unlikely you’ll be implementing Quicksort yourself.
However, there is a very similar algorithm that can come in handy for practical
cases—and it’s called Quickselect.

Quickselect
Let’s say you have an array in random order, and you do not need to sort it,
but you do want to know the tenth-lowest value in the array, or the
fifth-highest. This can be useful if we had a lot of test grades and want to
know what the 25th percentile was, or if we want to find the median grade.

One way to solve this would be to sort the entire array and then jump to the
appropriate index.

However, even were we to use a fast sorting algorithm like Quicksort, this
algorithm would take at least O(N log N) for average cases. And while that
isn’t bad, we can do even better with a brilliant little algorithm known as
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Quickselect. Like Quicksort, Quickselect relies on partitioning, and can be
thought of as a hybrid of Quicksort and binary search.

As you’ve seen earlier in this chapter, after a partition, the pivot value ends
up in the appropriate spot in the array. Quickselect takes advantage of this
in the following way:

Let’s say we have an array of eight values, and we want to find the second-
to-lowest value within the array.

First, we partition the entire array:

After the partition, the pivot will hopefully end up somewhere toward the
middle of the array:

This pivot is now in its correct spot, and since it’s in the fifth cell, we now
know which value is the fifth-lowest value within the array.

Now, we’re looking for the second-lowest value, not the fifth-lowest. But we
do know that the second-lowest value is somewhere to the left of the pivot.
We can now ignore everything to the right of the pivot and focus on the left
subarray. It is in this respect that Quickselect is similar to binary search: we
keep dividing the array in half and focus on the half in which we know the
value we’re seeking for will be found.

Next, we partition the subarray to the left of the pivot:

Let’s say the new pivot of this subarray ends up the third cell:
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We now know that the value in the third cell is in its correct spot, meaning
it’s the third-to-lowest value in the array. By definition, then, the second-to-
lowest value will be somewhere to its left. We can now partition the subarray
to the left of the third cell:

After this next partition, the lowest and second-lowest values will end up in
their correct spots within the array:

We can then grab the value from the second cell and know with confidence
that it’s the second-lowest value in the entire array. One of the beautiful
things about Quickselect is that we can find the correct value without having
to sort the entire array.

With Quicksort, each time we halved the array, we needed to re-partition
every single element again (in their subarray form), giving us O(N log N). With
Quickselect, on the other hand, each time we cut the array in half, we only
had to partition the one half we cared about—the half in which we know our
value is to be found.

The Efficiency of Quickselect
When analyzing the efficiency of Quickselect, we’ll see that it’s O(N) for average
scenarios. Why is this?

In our earlier example of an array of eight elements, we executed three parti-
tions: one on an array of eight elements, one on a subarray of four elements,
and one on a subarray of two elements.

Recall that each partition takes about N steps for the subarray it’s run upon.
The total steps, then, for the three partitions is 8 + 4 + 2 = 14 steps. So, an
array of eight elements yields roughly 14 steps.

For an array of 64 elements, we run about 64 + 32 + 16 + 8 + 4 + 2 = 126
steps. For 128 elements, we would need about 254 steps. And for 256 ele-
ments, we would end up with 510 steps.

We can see that we need about 2N steps for N elements in the array.
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(Another way to formulate this is to say that for N elements, we would need
N + (N/2) + (N/4) + (N/8) + … 2 steps. This always turns out to be roughly
2N steps.)

Since Big O ignores constants, we drop the 2 from the 2N and say that
Quickselect has an efficiency of O(N).

Code Implementation: Quickselect
Following is an implementation of a quickselect! method that can be dropped
into the SortableArray class described earlier. You’ll note that it’s very similar
to the quicksort! method:

def quickselect!(kth_lowest_value, left_index, right_index)
# If we reach a base case - that is, that the subarray has one cell,
# we know we've found the value we're looking for:
if right_index - left_index <= 0

return @array[left_index]
end

# Partition the array and grab the index of the pivot:
pivot_index = partition!(left_index, right_index)

# If what we're looking for is to the left of the pivot:
if kth_lowest_value < pivot_index

# Recursively perform quickselect on the subarray to
# the left of the pivot:
quickselect!(kth_lowest_value, left_index, pivot_index - 1)

# If what we're looking for is to the right of the pivot:
elsif kth_lowest_value > pivot_index

# Recursively perform quickselect on the subarray to
# the right of the pivot:
quickselect!(kth_lowest_value, pivot_index + 1, right_index)

else # if kth_lowest_value == pivot_index
# if after the partition, the pivot position is in the same spot
# as the kth lowest value, we've found the value we're looking for
return @array[pivot_index]

end
end

If you want to find the second-to-lowest value of an unsorted array, you’d run
the following code:

array = [0, 50, 20, 10, 60, 30]
sortable_array = SortableArray.new(array)
p sortable_array.quickselect!(1, 0, array.length - 1)

The first argument of the quickselect! method accepts the position you’re looking
for, starting at index 0. We’ve put in a 1 to represent the second-to-lowest value.
The second and third values are the left and right indexes of the array, respectively.

report erratum  •  discuss

Quickselect • 221

http://pragprog.com/titles/jwdsal2/errata/add
http://forums.pragprog.com/forums/jwdsal2


Sorting as a Key to Other Algorithms
As of this writing, the fastest sorting algorithms we know of have speeds of O(N
log N). While Quicksort is one of the most popular among them, there are many
others as well. Mergesort is another well-known O(N log N) sorting algorithm,
and I recommend you look it up, as it is a beautiful recursive algorithm.

The fact that the fastest sorting algorithms are O(N log N) is quite important,
as this has implications for other algorithms as well. This is because there
are algorithms that use sorting as a component of a larger process.

For example, if you’ll recall from Speeding Up Your Code with Big O, we dealt
with the problem of checking whether there are duplicate values within an array.

The first solution we looked at involved nested loops and had an efficiency of
O(N2). While we found a solution that took O(N), I parenthetically hinted at a
disadvantage with that approach having to do with extra memory consumption.
(I’ll eventually discuss this at length in Dealing with Space Constraints.) So,
let’s assume that the O(N) approach is out. Are there any other ways we can
improve upon the quadratic O(N2) solution? Hint: the solution has something
to do with sorting!

We can actually build a beautiful algorithm if we presort the array.

Let’s say the original array was [5, 9, 3, 2, 4, 5, 6]. There are two instances of 5,
so we do have a case of duplicates.

Now, if we first sorted this array, it would become [2, 3, 4, 5, 5, 6, 9].

Next, we can use a single loop to iterate over each number. As we inspect
each number, we’d check whether it’s identical to the next number. If it is,
we’ve found a duplicate. If we get to the end of the loop without finding a
duplicate, then we know that we have no duplicates.

The trick here is that by presorting the numbers, we end up bunching
duplicate numbers together.

In our example, we’d start by looking at the first number, which is the 2. We’d
check whether it’s identical to the next number. The next number is 3, so
they’re not duplicates.

We’d then check the 3 against the following number, which happens to be a 4,
allowing us to move on. We’d check the 4 against the 5, and we’d move on again.

At this point, we’d inspect the first 5 and check it against the following number,
which is the second 5. Aha! We found a pair of duplicate numbers, and we
can return true.
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Here’s a JavaScript implementation of this:

function hasDuplicateValue(array) {
// Presort the array:
// (In JavaScript, the following usage of the sort function
// is required to ensure that the numbers are in numerical order,
// instead of "alphabetical" order.)
array.sort((a, b) => (a < b) ? -1 : 1);

// Iterate through the values in the array up until the last one:
for(let i = 0; i < array.length - 1; i++) {

// If the value is identical to the next value
// in the array, we found a duplicate:
if(array[i] == array[i + 1]) {
return true;

}
}

// If we get to the end of the array without having
// returned true, it means there are no duplicates:
return false;

}

Now, this is an algorithm that used sorting as one of its components. What
is the Big O of this algorithm?

We start out by sorting the array. We can assume that JavaScript’s sort()
function has an efficiency of O(N log N). Next, we spend up to N steps iterating
through the array. Our algorithm, then, takes (N log N) + N steps.

You learned that when we have multiple orders added together, Big O Notation
keeps only the highest order of N, because the lower orders are trivial beside
the higher orders. Here as well, N is trivial beside N log N, so we reduce the
expression to O(N log N).

So, that’s it! We’ve used sorting to develop an algorithm that is O(N log N),
which is a significant improvement over the original O(N2) algorithm.

Plenty of algorithms employ sorting as part of a larger process. We now know
that any time we do so, we have an algorithm that is at least O(N log N). Of
course, the algorithm may be slower than this if it has other things going on,
but we know that O(N log N) will always be the baseline.

Wrapping Up
The Quicksort and Quickselect algorithms are recursive algorithms that
present beautiful and efficient solutions to thorny problems. They’re great
examples of how a non-obvious but well-thought-out algorithm can boost
performance.
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Now that we’ve seen some more advanced algorithms, we’re now going to head
in a new direction and explore a trove of additional data structures. Some of
these data structures have operations that involve recursion, so we’ll be fully
prepared to tackle those now. Besides for being really interesting, we’ll see
that each data structure has a special power that can bring significant
advantages to a variety of applications.

Exercises
The following exercises provide you with the opportunity to practice with fast
sorting. The solutions to these exercises are found in the section, Chapter
13, on page 451.

1. Given an array of positive numbers, write a function that returns the
greatest product of any three numbers. The approach of using three
nested loops would clock in at O(N3), which is very slow. Use sorting to
implement the function in a way that it computes at O(N log N) speed.
(There are even faster implementations, but we’re focusing on using
sorting as a technique to make code faster.)

2. The following function finds the “missing number” from an array of inte-
gers. That is, the array is expected to have all integers from 0 up to the
array’s length, but one is missing. As examples, the array, [5, 2, 4, 1, 0] is
missing the number 3, and the array, [9, 3, 2, 5, 6, 7, 1, 0, 4] is missing the
number 8.

Here’s an implementation that is O(N2) (the includes method alone is already
O(N), since the computer needs to search the entire array to find n):

function findMissingNumber(array) {
for(let i = 0; i < array.length; i++) {

if(!array.includes(i)) {
return i;

}
}

// If all numbers are present:
return null;

}

Use sorting to write a new implementation of this function that only takes
O(N log N). (There are even faster implementations, but we’re focusing on
using sorting as a technique to make code faster.)

3. Write three different implementations of a function that finds the greatest
number within an array. Write one function that is O(N2), one that is O(N
log N), and one that is O(N).
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CHAPTER 14

Node-Based Data Structures
For the next several chapters, we’re going to explore a variety of data structures
that all build upon a single concept—the node. As you’ll see shortly, nodes
are pieces of data that may be dispersed throughout the computer’s memory.
Node-based data structures offer new ways to organize and access data that
provide a number of major performance advantages.

In this chapter, we will explore the linked list, which is the simplest node-based
data structure and the foundation for future chapters. You’ll also discover
linked lists seem almost identical to arrays, but come with their own set of trade-
offs in efficiency that can give us a performance boost for certain situations.

Linked Lists
Like an array, a linked list is a data structure that represents a list of items.
While on the surface, arrays and linked lists look and act quite similarly,
there are big differences under the hood.

As mentioned in Why Data Structures Matter, memory inside a computer can
be visualized as a giant set of cells in which bits of data are stored. You learned
that when creating an array, your code finds a contiguous group of empty
cells in memory and designates them to store data for your application as
shown on page 226.

You also saw that the computer has the ability to access any memory address
in one step, and can use that power to also immediately access any index
within the array. If you wrote code that said, “Look up the value at index 4,”
your computer could locate that cell in a single step. Again, this is because
your program knows which memory address the array starts at—say, memory
address 1000—and therefore knows that if it wants to look up index 4, it
should simply jump to memory address 1004.
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Linked lists, on the other hand, work quite differently. Instead of being a
contiguous block of memory, the data from linked lists can be scattered across
different cells throughout the computer’s memory.

Connected data that is dispersed throughout memory are known as nodes.
In a linked list, each node represents one item in the list. The big question,
then, is: if the nodes are not next to each other in memory, how does the
computer know which nodes are part of the same linked list?

This is the key to the linked list: each node also comes with a little extra
information, namely, the memory address of the next node in the list.

This extra piece of data—this pointer to the next node’s memory address—is
known as a link. Here is a visual depiction of a linked list:

In this example, we have a linked list that contains four pieces of data: "a",
"b", "c", and "d". However, it uses eight cells of memory to store this data,
because each node consists of two memory cells. The first cell holds the
actual data, while the second cell serves as a link that indicates where in
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memory the next node begins. The final node’s link contains null since the
linked list ends there.

(A linked list’s first node can also be referred to as its head, and its final node
as its tail.)

If the computer knows at which memory address the linked list begins, it has
all it needs to begin working with the list! Since each node contains a link to
the next node, all the computer needs to do is follow each link to string
together the entire list.

The fact that a linked list’s data can be spread throughout the computer’s
memory is a potential advantage it has over the array. An array, by contrast,
needs to find an entire block of contiguous cells to store its data, which can
get increasingly difficult as the array size grows. Now, these details are man-
aged by your programming language under the hood, so you may not have
to worry about them. However, you’ll see shortly that there are more tangible
differences between linked lists and arrays that we can sink our teeth into.

Implementing a Linked List
Some programming languages, such as Java, come with linked lists built into
the language. However, many languages do not, and it’s fairly simple to
implement them on our own.

Let’s create our own linked list using Ruby. We’ll use two classes to implement
this: Node and LinkedList. Let’s create the Node class first:

class Node

attr_accessor :data, :next_node

def initialize(data)
@data = data

end

end

The Node class has two attributes: data contains the node’s primary value (for
example, the string "a"), while next_node contains the link to the next node in
the list. We can use this class as follows:

node_1 = Node.new("once")
node_2 = Node.new("upon")
node_3 = Node.new("a")
node_4 = Node.new("time")

node_1.next_node = node_2
node_2.next_node = node_3
node_3.next_node = node_4
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With this code, we’ve created a list of four nodes that serve as a list containing
the strings "once", "upon", "a", and "time".

Note that in our implementation, the next_node refers to another Node instance
rather than an actual memory address number. The effect, however, is the
same—the nodes are likely dispersed throughout the computer’s memory,
and yet we can use the nodes’ links to string the list together.

Going forward, then, we’re simply going to discuss each link as pointing to
another node rather than to a specific memory address. Accordingly, we’re
going to use simplified diagrams to depict linked lists, such as this:

Each node in this diagram consists of two “cells.” The first cell contains the
node’s data, and the second cell points to the next node.

This reflects our Ruby implementation of the Node class. In it, the data method
returns the node’s data, while the next_node method returns the next node in
the list. In this context, the next_node method serves as the node’s link.

While we’ve been able to create this linked list with the Node class alone, we
need an easy way to tell our program where the linked list begins. To do this,
we’ll create a LinkedList class in addition to our previous Node class. Here’s the
LinkedList class in its basic form:

class LinkedList

attr_accessor :first_node

def initialize(first_node)
@first_node = first_node

end

end

At this point, all a LinkedList instance does is keep track of the first node of
the list.

Previously we created a chain of nodes containing node_1, node_2, node_3, and
node_4. We can now use our LinkedList class to reference this list by writing the
following code:

list = LinkedList.new(node_1)
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This list variable now acts as a handle on the linked list, as it is an instance
of LinkedList that has access to the list’s first node.

A really important point emerges: when dealing with a linked list, we only
have immediate access to its first node. This is going to have serious ramifica-
tions as we’ll see shortly.

At first glance, though, linked lists and arrays are pretty similar—they’re both
just lists of stuff. When we dig into the analysis, though, we’ll see some pretty
dramatic differences in these two data structures’ performances! Let’s jump into
the four classic operations: reading, searching, insertion, and deletion.

Reading
As you know, a computer can read from an array in O(1) time. But now let’s
figure out the efficiency of reading from a linked list.

If you want to read, say, the value of the third item of a linked list, the com-
puter cannot look it up in one step, because it wouldn’t immediately know
where to find it in the computer’s memory. After all, each node of a linked
list could be anywhere in memory! All our program knows immediately is the
memory address of the first node of the linked list. However, it doesn’t know
offhand where any of the other nodes are.

To read from the third node, then, the computer must go through a process.
First, it accesses the first node. It then follows the first node’s link to the
second node, and then the second node’s link to the third node.

To get to any node, then, we always need to start with the first node (the only
node we initially have access to), and follow the chain of nodes until we reach
the node we want.

It turns out, then, that if we were to read from the last node in the list, it
would take N steps for N nodes in the list. Linked lists having a worst-case
read of O(N) is a major disadvantage when compared with arrays that can
read any element in just O(1). But don’t fret, as linked lists will have their
moment to shine as we’ll see soon.

Code Implementation: Linked List Reading
Let’s go ahead and add a read method to our LinkedList class:

def read(index)
# We begin at the first node of the list:
current_node = first_node
current_index = 0
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while current_index < index do
# We keep following the links of each node until we get to the
# index we're looking for:
current_node = current_node.next_node
current_index += 1

# If we're past the end of the list, that means the
# value cannot be found in the list, so return nil:
return nil unless current_node

end

return current_node.data
end

If we want to read the fourth node from a list, for example, we’d call our
method by passing in the node’s index as follows:

list.read(3)

Let’s walk through how this method works.

First, we create a variable called current_node that refers to the node we’re currently
accessing. Since we’re going to start by accessing the first node, we say:

current_node = first_node

Recall that first_node is an attribute of the LinkedList class.

We also track the index of current_node so that we can know when we reach the
desired index. We do this with:

current_index = 0

as the first node’s index is 0.

We then launch a loop that runs while current_index is less than the index we’re
attempting to read:

while current_index < index do

In each pass-through of the loop, we access the next node in the list and
make it the new current_node:

current_node = current_node.next_node

We also bump up the current_index by 1:

current_index += 1

At the end of each pass-through, we check whether we’ve reached the end of
the list, and we return nil if the index we’re trying to read isn’t in our list:

return nil unless current_node
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This works because the final node of the list will actually have a next_node that
is nil, since the last node was never assigned a next_node of its own. This being
the case, when we call current_node = current_node.next_node on the last node, cur-
rent_node becomes nil.

Finally, if we do break out the loop, it’s because we reached the desired index.
We can then return the node’s value with:

return current_node.data

Searching
As you know, searching means looking for a value within the list and
returning its index. We’ve seen that linear search on an array has a speed of
O(N), since the computer needs to inspect each value one at a time.

Linked lists also have a search speed of O(N). To search for a value, we need
go through a similar process as we did with reading. That is, we begin with
the first node and follow the links of each node to the next one. Along the
way, we inspect each value until we find what we’re looking for.

Code Implementation: Linked List Search
Here’s how we can implement the search operation in Ruby. We’ll call this
method index_of, and pass in the value we’re searching for:

def index_of(value)
# We begin at the first node of the list:
current_node = first_node
current_index = 0

begin
# If we find the data we're looking for, we return it:
if current_node.data == value
return current_index

end

# Otherwise, we move on the next node:
current_node = current_node.next_node
current_index += 1

end while current_node

# If we get through the entire list without finding the
# data, we return nil:
return nil

end

We can then search for any value within the list using:

list.index_of("time")
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As you can see, the mechanics of searching are similar to reading. The main
difference is that the loop doesn’t stop at a particular index, but runs until
we either find the value or reach the end of the list.

Insertion
Admittedly, linked lists have yet to impress us from a performance standpoint.
They’re no better than arrays at search, and much worse at reading. But not
to worry—linked lists will have their moment. In fact, that moment is now.

Insertion is one operation in which linked lists have a distinct advantage over
arrays in certain situations.

Recall that the worst-case scenario for insertion into an array is when the
program inserts data into index 0, because it first has to shift the rest of the
data one cell to the right, which ends up yielding an efficiency of O(N). With
linked lists, however, insertion at the beginning of the list takes just one
step—which is O(1). Let’s see why.

Say we have the following linked list:

If we want to add "yellow" to the beginning of the list, all we have to do is create
a new node and have its link point to the node containing "blue":

(In our code, we’d also need to update the LinkedList instance so that its first_node
attribute now points to this "yellow" node.)

In contrast with an array, the linked list provides the flexibility of inserting
data to the front of the list without requiring the shifting of any data. How
sweet is that?

The truth is that, theoretically, inserting data anywhere within a linked list
takes just one step, but there’s one gotcha. Let’s continue with our example.
Here’s our linked list now:
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Say we now want to insert "purple" at index 2 (which would be between "blue"
and "green"). The actual insertion takes just one step. That is, we can create
the new purple node and simply change the blue node’s link to point to the
purple node as shown here:

However, for the computer to do this, it first needs to get to the node at index
1 ("blue") so that it can modify its link to point to the newly created node. As
we’ve seen, though, reading—which is accessing an item at a given index—from
a linked list already takes O(N). Let’s see this in action.

We know that we want to add a new node after index 1. So, the computer
needs to get to index 1 of the list. To do this, we must start at the beginning
of the list:

We then access the next node by following the first link:

Now that we’ve found index 1, we can finally add the new node:

In this case, adding "purple" took three steps. If we were to add it to the end of
our list, it would take five steps: four steps to access index 3, and one step
to insert the new node.
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Practically speaking, then, inserting into a linked list is O(N), as the worst-
case scenario of inserting at the end of the list will take N + 1 steps.

However, we’ve seen that in the best-case scenario of inserting at the beginning
of the list is only O(1).

Interestingly, our analysis shows that the best- and worst-case scenarios for
arrays and linked lists are the opposite of one another. The following table
breaks this all down:

Linked ListArrayScenario

Best caseWorst caseInsert at beginning

Average caseAverage caseInsert at middle

Worst caseBest caseInsert at end

As you can see, arrays favor insertions at the end, while linked lists favor
insertions at the beginning.

We’ve now found one thing that linked lists are great at—inserting things at
the beginning of the list. Later in this chapter, we’ll see a great practical
example of where we can take advantage of this.

Code Implementation: Linked List Insertion
Let’s add an insertion method to our LinkedList class. We’ll call it insert_at_index:

def insert_at_index(index, value)
# We create the new node with the provided value:
new_node = Node.new(value)

# If we are inserting at the beginning of the list:
if index == 0
# Have our new node link to what was the first node:
new_node.next_node = first_node
# Establish that our new node is now the list's first node:
self.first_node = new_node
return

end

# If we are inserting anywhere other than the beginning:

current_node = first_node
current_index = 0

# First, we access the node immediately before where the
# new node will go:
while current_index < (index - 1) do
current_node = current_node.next_node
current_index += 1

end
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# Have the new node link to the next node:
new_node.next_node = current_node.next_node

# Modify the link of the previous node to point to
# our new node:
current_node.next_node = new_node

end

To use the method, we pass in both the new value as well as the index of where
we want to insert it.

For example, to insert "purple" at index 3, we’d say:

list.insert_at_index(3, "purple")

Let’s break this insert_at_index method down.

First, we create a new Node instance with the value provided to our method:

new_node = Node.new(value)

Next, we deal with the case where we’re inserting into index 0, that is, at the
beginning of our list. The algorithm for this case is different than if we insert
elsewhere into the list, so we deal with this case separately.

To insert at the beginning of the list, we simply have our new_node link to the
first node of the list and declare our new_node to be the first node going forward:

if index == 0
new_node.next_node = first_node
self.first_node = new_node
return

end

The return keyword ends the method early, as there’s nothing left to do.

The rest of the code deals with a case in which we’re inserting anywhere
other than at the beginning.

As with reading and searching, we start off by accessing the first node of
the list:

current_node = first_node
current_index = 0

We then use a while loop to access the node just before the spot where we want
to insert our new_node:

while current_index < (index - 1) do
current_node = current_node.next_node
current_index += 1

end
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At this point, the current_node is the node that’ll immediately precede our new_node.

Next, we set the link of our new_node to point the node after the current_node:

new_node.next_node = current_node.next_node

Finally, we change the link of the current_node (which, again, is to be the node
that precedes our new_node) to point to our new_node:

current_node.next_node = new_node

And we’re done!

Deletion
Linked lists shine when it comes to deletion as well, especially when deleting
from the beginning of the list.

To delete a node from the beginning of a linked list, all we need to do is perform
one step: we change the first_node of the linked list to now point to the second node.

Let’s return to our example of the linked list containing the values "once",
"upon", "a", and "time". If we want to delete the value "once", we could simply
change the linked list to begin at "upon":

list.first_node = node_2

Contrast this with an array in which deleting the first element means shifting
all remaining data one cell to the left, which takes O(N) time.

When it comes to deleting the final node of a linked list, the actual deletion takes
one step—we just take the second-to-last node and make its link null. However,
it takes N steps to even access the second-to-last node in the first place, since we
need to start at the beginning of the list and follow the links until we reach it.

The following table contrasts the various scenarios of deletion for both arrays
and linked lists. Note how it’s identical to insertion:

Linked ListArraySituation

Best caseWorst caseDelete at beginning

Average caseAverage caseDelete at middle

Worst caseBest caseDelete at end

While deleting from the beginning or end of a linked list is straightforward,
deleting from anywhere in the middle is slightly more involved.

Say we want to delete the value at index 2 ("purple") from our example linked
list of colors as shown in the diagram on page 237.
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To accomplish this, we need to first access the node immediately preceding
the one we’re deleting ("blue”). Then, we change its link to point to the node
that is immediately after the node we’re deleting ("green").

The following visualization demonstrates us changing the link of the "blue"
node from "purple" to "green":

It’s interesting to note that whenever we delete a node from our linked list,
the node still exists in memory somewhere. We’re just removing the node from
our list by ensuring that no other node from the list links to it. This has the
effect of deleting the node from our list, even if the node still exists in memory.

(Different programming languages handle these deleted nodes in various
ways. Some will automatically detect that they’re not being used and will
“garbage collect” them, freeing up memory.)

Code Implementation: Linked List Deletion
Here’s what the delete operation might look like in our LinkedList class. It’s
called delete_at_index, and we pass in the index we’re going to delete:

def delete_at_index(index)
# If we are deleting the first node:
if index == 0

# Simply set the first node to be what is currently the second node:
self.first_node = first_node.next_node
return

end

current_node = first_node
current_index = 0

# First, we find the node immediately before the one we
# want to delete and call it current_node:
while current_index < (index - 1) do

current_node = current_node.next_node
current_index += 1

end
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# We find the node that comes after the one we're deleting:
node_after_deleted_node = current_node.next_node.next_node

# We change the link of the current_node to point to the
# node_after_deleted_node, leaving the node we want
# to delete out of the list:
current_node.next_node = node_after_deleted_node

end

This method is pretty similar to the insert_at_index method we saw earlier. Let’s
highlight some of the novel points.

The method first deals with a case in which index is 0, meaning we intend to
delete the first node of the list. The code for this is ridiculously simple:

self.first_node = first_node.next_node

All we do is change our list’s first_node to be the second node and we’re done!

The rest of the method handles deletions anywhere else from the list. To do
this, we use a while loop to access the node immediately preceding the one we
want to delete. This becomes our current_node.

We then grab the node that comes immediately after the node we’re going to
delete and store it in a variable called node_after_deleted_node:

node_after_deleted_node = current_node.next_node.next_node

Notice our little trick in accessing that node. It’s simply the node that comes
two nodes after the current_node!

Then, we modify the link of the current_node to point to the node_after_deleted_node:

current_node.next_node = node_after_deleted_node

Efficiency of Linked List Operations
After our analysis, it emerges that the comparison of linked lists and arrays
breaks down as follows:

Linked listArrayOperation

O(N)O(1)Reading

O(N)O(N)Search

O(N) (O(1) at beginning)O(N) (O(1) at end)Insertion

O(N) (O(1) at beginning)O(N) (O(1) at end)Deletion

In the grand scheme of things, linked lists seem to be lackluster when it
comes to time complexity. They perform similarly to arrays for search,
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insertion, and deletion, and are much slower when it comes to reading. If so,
why would one ever want to use a linked list?

The key to unlocking the linked list’s power is in the fact that the actual
insertion and deletion steps are just O(1).

But isn’t that only relevant when inserting or deleting at the beginning of the
list? We saw that to insert or delete elsewhere, it takes up to N steps just to
access the node we want to delete or insert after!

Well, it just so happens that there are scenarios in which we may already
have accessed the right node for some other purpose. The next example is a
case in point.

Linked Lists in Action
One case where linked lists shine is when we examine a single list and delete
many elements from it. Let’s say, for example, we’re building an application
that combs through existing lists of email addresses and removes any email
address that has an invalid format.

No matter whether the list is an array or a linked list, we need to comb through
the entire list one element at a time to inspect each email address. This,
naturally, takes N steps. However, let’s examine what happens when we
actually delete each email address.

With an array, each time we delete an email address, we need another O(N)
steps to shift the remaining data to the left to close the gap. All this shifting
will happen before we can even inspect the next email address.

Let’s assume that 1 in 10 email addresses are invalid. If we had a list of 1,000
email addresses, we’d have about 100 invalid ones. Our algorithm, then,
would take 1,000 steps to read all 1,000 email addresses. On top of that,
though, it might take up to an additional 100,000 steps for deletion, as for
each of the 100 deleted addresses, we might shift up to 1,000 other elements.

With a linked list, however, as we comb through the list, each deletion takes
just one step, as we can simply change a node’s link to point to the appropriate
node and move on. For our 1,000 emails, then, our algorithm would take just
1,100 steps, as there are 1,000 reading steps, and 100 deletion steps.

It turns out, then, that linked lists are an amazing data structure for moving
through an entire list while making insertions or deletions, as we never have
to worry about shifting other data as we make an insertion or deletion.
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Doubly Linked Lists
Linked lists actually come in a number of different flavors. The linked list
we’ve discussed until this point is the “classic” linked list, but with some
slight modifications, we can grant linked lists additional superpowers.

One variant form of the linked list is the doubly linked list.

A doubly linked list is like a linked list except that each node has two
links—one that points to the next node, and another that points to the previous
node. In addition, the doubly linked list always keeps track of both the first
and last nodes, instead of just the first node.

Here’s what a doubly linked list looks like:

We can implement the core of a doubly linked list in Ruby like this:

class Node

attr_accessor :data, :next_node, :previous_node

def initialize(data)
@data = data

end

end

class DoublyLinkedList

attr_accessor :first_node, :last_node

def initialize(first_node=nil, last_node=nil)
@first_node = first_node
@last_node = last_node

end

end

Since a doubly linked list always knows where both its first and last nodes
are, we can access each of them in a single step, or O(1). So, just as we can
read, insert, or delete from the beginning of the list in O(1), we can do the
same from the end of the list in O(1) as well.
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Here’s a depiction of inserting at the end of a doubly linked list:

As you can see, we create a new node ("Sue") and have its previous_node point to
what used to be the last_node ("Greg") of the linked list. Then, we change the
next_node of the last_node ("Greg") to point to this new node ("Sue"). Finally, we
declare the new node ("Sue") to be the last_node of the linked list.

Code Implementation: Doubly Linked List Insertion
Here’s the implementation of a new insert_at_end method that we can add to
our DoublyLinkedList class:

def insert_at_end(value)
new_node = Node.new(value)

# If there are no elements yet in the linked list:
if !first_node

@first_node = new_node
@last_node = new_node

else # If the linked list already has at least one node:
new_node.previous_node = @last_node
@last_node.next_node = new_node
@last_node = new_node

end
end

Let’s highlight the most important parts of this method.

First, we create the new node:

new_node = Node.new(value)

Then, we set the previous_node link of the new_node to point to what until this
point was the last node:

new_node.previous_node = @last_node

Then, we change the last node’s link (which was nil until this point) and have
it point to our new_node:

@last_node.next_node = new_node

Last, we tell our instance of the DoublyLinkedList that its last node is our new_node:

@last_node = new_node
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Moving Forward and Backward
With a “classic” linked list, we can only move forward through the list. That
is, we can access the first node and follow the links to find all the other nodes
of the list. But we’re not able to move backward, as no node is aware of what
the previous node is.

A doubly linked list allows for a lot more flexibility, as we can move both for-
ward and backward through the list. In fact, we can even start with the last
node and work our way backward to the first node.

Queues as Doubly Linked Lists
Because doubly linked lists have immediate access to both the front and end
of the list, they can insert data on either side at O(1) as well as delete data
on either side at O(1).

Because doubly linked lists can insert data at the end in O(1) time and delete
data from the front in O(1) time, they make the perfect underlying data structure
for a queue.

We looked at Queues, on page 144, and you’ll recall that they are lists of items
in which data can only be inserted at the end and removed from the beginning.
You learned there that queues are an example of an abstract data type, and
that we were able to use an array to implement them under the hood.

Now, since queues insert at the end and delete from the beginning, arrays
are only so good as the underlying data structure. While arrays are O(1) for
insertions at the end, they’re O(N) for deleting from the beginning.

A doubly linked list, on the other hand, is O(1) for both inserting at the end
and for deleting from the beginning. That’s what makes it a perfect fit for
serving as the queue’s underlying data structure.

Code Implementation: Queue Built Upon a Doubly Linked List
Here’s a complete example of a queue that is built upon a doubly linked list:

class Node

attr_accessor :data, :next_node, :previous_node

def initialize(data)
@data = data

end

end

Chapter 14. Node-Based Data Structures • 242

report erratum  •  discuss

http://pragprog.com/titles/jwdsal2/errata/add
http://forums.pragprog.com/forums/jwdsal2


class DoublyLinkedList

attr_accessor :first_node, :last_node

def initialize(first_node=nil, last_node=nil)
@first_node = first_node
@last_node = last_node

end

def insert_at_end(value)
new_node = Node.new(value)

# If there are no elements yet in the linked list:
if !first_node
@first_node = new_node
@last_node = new_node

else # If the linked list already has at least one node:
new_node.previous_node = @last_node
@last_node.next_node = new_node
@last_node = new_node

end
end

def remove_from_front
removed_node = @first_node
@first_node = @first_node.next_node
return removed_node

end

end

class Queue
attr_accessor :queue

def initialize
@data = DoublyLinkedList.new

end

def enqueue(element)
@data.insert_at_end(element)

end

def dequeue
removed_node = @data.remove_from_front
return removed_node.data

end

def read
return nil unless @data.first_node
return @data.first_node.data

end
end
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To make this work, we added a remove_from_front method to the DoublyLinkedList
class that looks like this:

def remove_from_front
removed_node = @first_node
@first_node = @first_node.next_node
return removed_node

end

As you can see, we effectively delete the first node by changing the list’s @first_node
to be what is currently the second node. We then return the deleted node.

The Queue class implements its methods on top of our DoublyLinkedList. The
enqueue method relies on the insert_at_end method of our DoublyLinkedList:

def enqueue(element)
@data.insert_at_end(element)

end

Similarly, the dequeue method takes advantage of the linked list’s ability to
delete from the front of the list:

def dequeue
removed_node = @data.remove_from_front
return removed_node.data

end

By implementing our queue with a doubly linked list, we can now both insert
and delete from the queue at a speedy O(1). And that’s doubly awesome.

Wrapping Up
As we’ve seen, the subtle differences between arrays and linked lists unlock
new ways to make our code faster than ever.

By looking at linked lists, you’ve also learned the concept of nodes. However,
the linked list is only the simplest of node-based data structures. In the next
chapters, you’ll learn about node-based structures that are both more complex
and more interesting—and will reveal new worlds about how nodes can yield
tremendous power and efficiency.

Exercises
The following exercises provide you with the opportunity to practice with
linked lists. The solutions to these exercises are found in the section, Chapter
14, on page 453.

1. Add a method to the classic LinkedList class that prints all the elements of
the list.
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2. Add a method to the DoublyLinkedList class that prints all the elements of
the list in reverse order.

3. Add a method to the classic LinkedList class that returns the last element
from the list. Assume you don’t know how many elements are in the list.

4. Here’s a tricky one. Add a method to the classic LinkedList class that
reverses the list. That is, if the original list is A -> B -> C, all of the list’s
links should change so that C -> B -> A.

5. Here’s a brilliant little linked list puzzle for you. Let’s say you have access
to a node from somewhere in the middle of a classic linked list, but not
the linked list itself. That is, you have a variable that points to an instance
of Node, but you don’t have access to the LinkedList instance. In this situation,
if you follow this node’s link, you can find all the items from this middle
node until the end, but you have no way to find the nodes that precede
this node in the list.

Write code that will effectively delete this node from the list. The entire
remaining list should remain complete, with only this node removed.
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CHAPTER 15

Speeding Up All the Things
with Binary Search Trees

Sometimes, we may want to arrange our data in a specific order. For example,
we may want an alphabetized list of names, or a list of products in order of
lowest price to highest.

While we can use a sorting algorithm such as Quicksort to arrange our data
into perfect ascending order, there’s a cost to this. As we’ve seen, even the
fastest algorithms take O(N log N) time. So, if we are going to want our data
sorted often, it would be sensible to always keep our data in sorted order in
the first place so that we never need to resort it.

An ordered array is a simple but effective tool for keeping data in order. It’s
also fast for certain operations, as it has O(1) reads and O(log N) search (when
using binary search).

However, there is a drawback to ordered arrays.

When it comes to insertions and deletions, ordered arrays are relatively slow.
Whenever a value is inserted into an ordered array, we first shift all greater
values one cell to the right. And when a value is deleted from an ordered
array, we shift all greater values one cell to the left. This takes N steps in a
worst-case scenario (inserting into or deleting from the first cell of the array),
and N / 2 steps on average. Either way, it’s O(N), and O(N) is relatively slow
for a simple insertion or deletion.

Now, if we were looking for a data structure that delivers all-around amazing
speed, a hash table is a great choice. They are O(1) for search, insertion, and
deletion. However, they do not maintain order, and order is what we need for
our alphabetized-list application.
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So, what do we do if we want a data structure that maintains order yet also
has fast search, insertion, and deletion? Neither an ordered array nor a hash
table is ideal.

Enter the binary search tree.

Trees
You were introduced to node-based data structures in the previous chapter
with linked lists. In a classic linked list, each node contains a link that con-
nects the node to a single other node. A tree is also a node-based data struc-
ture, but within a tree, each node can have links to multiple nodes.

Here is a visualization of a simple tree:

In this example, each node has links that lead to two other nodes. For the
sake of simplicity, we can represent this tree visually without showing all the
memory addresses:

Trees come with their own unique nomenclature:

• The uppermost node (in our example, the “j”) is called the root. Yes, in
our picture the root is at the top of the tree; it’s how trees are typically
depicted.
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• In our example, we’d say that the “j” is a parent to “m” and “b.” Conversely,
“m” and “b” are children of “j.” Similarly, the “m” is a parent of “q” and
“z,” and “q” and “z” are children of “m.”

• As in a family tree, a node can have descendants and ancestors. A node’s
descendants are all the nodes that stem from a node, while a node’s
ancestors are all the nodes that it stems from. In our example, the “j” is
the ancestor of all the other nodes in the tree, and all the other nodes
are, therefore, the descendants of the “j.”

• Trees are said to have levels. Each level is a row within the tree. Our
example tree has three levels:

• One property of a tree is how balanced it is. A tree is balanced when its
nodes’ subtrees have the same number of nodes in it.

For instance, the above tree is said to be perfectly balanced. If you look at
each node, its two subtrees have the same number of nodes. The root node
(“j”) has two subtrees, which each contain three nodes. You’ll see that the
same is true for every node in the tree as well. For example, the “m” node also
has two subtrees where the two subtrees each contain one node.

The following tree, on the other hand, is imbalanced:

As you can see, the root’s right subtree contains more nodes than its left
subtree, causing an imbalance.
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Binary Search Trees
There are many different kinds of tree-based data structures, but in this
chapter, we’ll focus on a particular tree known as a binary search tree.

Note that there are two adjectives here: binary and search.

A binary tree is a tree in which each node has zero, one, or two children.

A binary search tree is a binary tree that also abides by the following rules:

• Each node can have at most one “left” child and one “right” child.
• A node’s “left” descendants can only contain values that are less than the

node itself. Likewise, a node’s “right” descendants can only contain values
that are greater than the node itself.

Here’s an example of a binary search tree, in which the values are numbers:

Note that each node has one child with a lesser value than itself, which is
depicted using a left arrow, and one child with a greater value than itself,
which is depicted using a right arrow.

Additionally, notice that all of the 50’s left descendants are less than it. At
the same time, all of the 50’s right descendants are greater than it. The same
pattern goes for each and every node.

While the following example is a binary tree, it is not a binary search tree:

It’s a binary tree because each node has zero, one, or two children. But it’s
not a binary search tree because the root node has two “left” children. That
is, it has two children than are less than it. For a binary search tree to be
valid, it can have at most one left (lesser) child and one right (greater) child.
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The implementation of a tree node in Python might look something like this:

class TreeNode:
def __init__(self,val,left=None,right=None):

self.value = val
self.leftChild = left
self.rightChild = right

We can then build a simple tree like this:

node1 = TreeNode(25)
node2 = TreeNode(75)
root = TreeNode(50, node1, node2)

Because of the unique structure of a binary search tree, we can search for
any value within it very quickly, as we’ll now see.

Searching
Here, again, is a binary search tree:

The algorithm for searching within a binary search tree is as follows:

1. Designate a node to be the “current node.” (At the beginning of the algo-
rithm, the root node is the first “current node.”)

2. Inspect the value at the current node.

3. If we’ve found the value we’re looking for, great!

4. If the value we’re looking for is less than the current node, search for it
in its left subtree.

5. If the value we’re looking for is greater than the current node, search for
it in its right subtree.

6. Repeat Steps 1 through 5 until we find the value we’re searching for, or
until we hit the bottom of the tree, in which case our value must not be
in the tree.
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Say we want to search for the 61. Let’s see how many steps it would take by
walking through this visually.

When searching through a tree, we must always begin at the root:

Next, the computer asks itself: is the number we’re searching for (61) greater
or less than the value of this node? If the number we’re looking for is less
than the current node, look for it in the left child. If it’s greater than the cur-
rent node, look for it in the right child.

In this example, because 61 is greater than 50, we know it must be somewhere
to the right, so we search the right child. In the following picture, we’ve
shaded out all the nodes we’ve eliminated from our search, since we know
that the 61 cannot possibly be there:

“Are you my mother?” asks the algorithm. Since the 75 is not the 61 we’re
looking for, we need to move down to the next level. And because 61 is less
than 75, we’ll check the left child, since the 61 could only be in that subtree
as shown in the diagram on page 253.
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The 56 is not the 61 we’re looking for, so we continue our search. Since 61
is greater than 56, we search for the 61 in the right child of the 56:

We found it! In this example, it took us four steps to find our desired value.

The Efficiency of Searching a Binary Search Tree
If you take another look at the steps we just walked through, you’ll notice
that each step eliminates half of the remaining nodes from our search. For
example, when we begin our search, we start at the root node, and our desired
value may be found among any of the root’s descendants. However, when we
then decide to continue the search with, say, the root’s right child, we elimi-
nate the left child and all of its descendants from the search.

We’d say, then, that searching in a binary search tree is O(log N), which is
the apt description for any algorithm that eliminates half of the remaining
values with each step. (We’ll see soon, though, that this is only for a perfectly
balanced binary search tree, which is a best-case scenario.)
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Log(N) Levels
Here’s yet another way of describing why search in a binary search tree is
O(log N), which will reveal another property about binary trees in general: if
there are N nodes in a balanced binary tree, there will be about log N levels
(that is, rows).

To understand this, let’s assume each row in the tree is completely filled with
nodes, and that there aren’t any empty positions. If you think about it, each
time we add a new full level to the tree, we end up roughly doubling the
number of nodes that the tree has. (Really, we’re doubling the nodes and
adding one.)

For example, a binary tree with four complete levels has 15 nodes. (Go ahead,
count them.) If we add a fifth complete level, that means we add two children
to each of the eight nodes in the fourth level. This means we add 16 new
nodes, roughly doubling the size of the tree.

It emerges that each new level doubles the size of the tree. Accordingly, a tree
containing N nodes will require log(N) levels to hold all the nodes.

In the context of binary search, we noted that the pattern of log(N) is that
with each step of the search, we can eliminate half of the remaining data. The
number of levels needed in a binary tree follows this pattern as well.

Let’s take a binary tree that needs to hold 31 nodes. With our fifth level, we
can hold 16 of those nodes. This took care of roughly half of the data, leaving
us with just 15 nodes that we still need to find room for. With the fourth level,
we take care of eight of those nodes, leaving us with seven unaccounted for.
With the third level, we take care of four of those nodes, and so on.

Indeed, log 31 is (approximately) 5. So, we’ve now concluded that a balanced
tree with N nodes will have log(N) levels.

Since this is the case, it makes a lot of sense as to why searching a binary
search tree takes up to log(N) steps: because each step of the search causes
us to move down a level, we take up to as many steps as there are levels in
the tree.

However you prefer to think about it, searching a binary search tree takes
O(log N).

Now, while search in a binary search tree is O(log N), so is binary search
within an ordered array, in which each number we select also eliminates half
of the remaining possible values. In this regard, then, searching a binary
search tree has the same efficiency as binary search within an ordered array.
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Where binary search trees really shine over ordered arrays, though, is with
insertion. We’ll get to that soon.

Code Implementation: Searching a Binary Search Tree
To implement the search operation, as well as the other binary search tree
operations, we’re going to make heavy use of recursion. You learned back in
Recursively Recurse with Recursion that recursion is key when dealing with
data structures that have an arbitrary number of levels of depth. A tree is
such a data structure, as it can have an infinite number of levels.

Here’s how we can use recursion to implement search with Python:

def search(searchValue, node):
# Base case: If the node is nonexistent
# or we've found the value we're looking for:
if node is None or node.value == searchValue:

return node

# If the value is less than the current node, perform
# search on the left child:
elif searchValue < node.value:

return search(searchValue, node.leftChild)

# If the value is greater than the current node, perform
# search on the right child:
else: # searchValue > node.value

return search(searchValue, node.rightChild)

This search function accepts the searchValue we’re searching for and a node that
we’ll use as the base for our search. The first time we call search, the node will
be the root node. However, in the subsequent recursive calls, the node may
be another node within the tree.

Our function deals with four possible cases, two of which are the base cases:

if node is None or node.value == searchValue:
return node

One base case is when the node contains the searchValue we’re looking for, in
which case we can return the node and not make any recursive calls.

The other base case is when node is None. This will make more sense after we’ve
examined the other cases, so let’s come back to this shortly.

The next case is when the searchValue is less than the value of the current node:

elif searchValue < node.value:
return search(searchValue, node.leftChild)
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In this case, we know that if it exists in the tree, the searchValue will have to
be found somewhere among this node’s left descendants. So, we recursively
call the search function on this node’s left child.

The next case is the inverse; it’s when the searchValue is greater than the cur-
rent node:

else: # searchValue > node.value
return search(searchValue, node.rightChild)

In this case, we recursively call search on the current node’s right child.

Now, when we make these recursive calls on the current node’s children, note
that we didn’t check whether the current node even has any children. That’s
where the first base case comes in:

if node is None

That is to say, if it turns out that we called search on a child node that doesn’t
actually exist, we end up returning None (since the node will actually contain
None). This case will happen if the searchValue does not exist within our tree, as
we’ll try to access the node where the searchValue should be found, but our
search hits a dead end. In this case, it’s appropriate that we return None,
indicating that the searchValue is not within the tree.

Insertion
As I mentioned earlier, binary search trees are at their best when it comes to
insertion. Now we’ll see why.

Say we want to insert the number 45 into our example tree. The first thing
we’d have to do is find the correct node to attach the 45 to. To begin our
search, we start at the root:
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Since 45 is less than 50, we drill down to the left child:

Since 45 is greater than 25, we must inspect the right child:

Since 45 is greater than 33, we check the 33’s right child:

At this point, we’ve reached a node that has no children, so we have nowhere
to go. This means we’re ready to perform our insertion.
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Since 45 is greater than 40, we insert it as a right child of the 40:

In this example, insertion took five steps, consisting of four search steps plus
one insertion step. Insertion always takes just one extra step beyond a search,
which means insertion takes (log N) + 1 steps. In Big O Notation, which ignores
constants, this is O(log N).

In an ordered array, by contrast, insertion takes O(N), because in addition to
search, we must shift a lot of data to the right to make room for the value
we’re inserting.

This is what makes binary search trees so efficient. While ordered arrays have
O(log N) search and O(N) insertion, binary search trees have O(log N) search
and O(log N) insertion. This becomes critical in an application in which you
anticipate a lot of changes to your data.

Code Implementation: Binary Search Tree Insertion
Here’s a Python implementation of inserting a new value into a binary search
tree. Like the search function, it is recursive:

def insert(value, node):
if value < node.value:

# If the left child does not exist, we want to insert
# the value as the left child:
if node.leftChild is None:

node.leftChild = TreeNode(value)
else:

insert(value, node.leftChild)
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elif value > node.value:

# If the right child does not exist, we want to insert
# the value as the right child:
if node.rightChild is None:

node.rightChild = TreeNode(value)
else:

insert(value, node.rightChild)

The insert function accepts a value that we’re going to insert, and a node that
serves as the ancestor node for which our value will become a descendant.

First, we check whether the value is less than the value of the current node:

if value < node.value:

If the value is less than the node, we know that we need to insert the value
somewhere among the left descendants of the node.

We then check to see whether the current node has a left child. If the node
doesn’t have a left child, we make the value into the left child, since that’s
exactly where the value belongs:

if node.leftChild is None:
node.leftChild = TreeNode(value)

This is the base case, since we don’t need to make any recursive calls.

However, if the node already has a left child, we can’t place the value there.
Instead, we recursively call insert on the left child so that we continue to search
for the spot in which we’ll place the value:

else:
insert(value, node.leftChild)

Eventually, we’ll hit a descendant node that doesn’t have its own child, and
that’s where the value is going to go.

The rest of the function is the exact inverse; it handles cases where the value
is greater than the current node.

The Order of Insertion
It is important to note that only when creating a tree out of randomly sorted
data do trees usually wind up being well-balanced. However, if we insert sorted
data into a tree, it can become imbalanced and less efficient. For example, if we
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were to insert the following data in this order—1, 2, 3, 4, 5—we’d end up with
a tree that looks like this:

This tree is completely linear, so searching for the 5 within this tree would
take O(N).

However, if we inserted the same data in the following order—3, 2, 4, 1, 5—the
tree would be evenly balanced:

Only with a balanced tree does search take O(log N).

Because of this, if you ever want to convert an ordered array into a binary
search tree, you’d better first randomize the order of the data.

It emerges that in a worst-case scenario, when a tree is completely imbalanced,
search is O(N). In a best-case scenario, when it is perfectly balanced, search
is O(log N). In the typical scenario, in which data is inserted in random order,
a tree will be pretty well balanced and search will take about O(log N).

Deletion
Deletion is the least straightforward operation within a binary search tree
and requires some careful maneuvering.
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Let’s say we want to delete the 4 from this binary search tree:

First, we perform a search to find the 4. We won’t visualize this search again,
since you’ve already got that down.

Once we find the 4, we can delete it one step:

Well, that was simple. But let’s see what happens when we try to delete the 10:

We end up with an 11 that isn’t connected to the tree anymore. And we can’t
have that, because we’d lose the 11 forever.
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However, there’s a solution to this problem: we can plug the 11 into where
the 10 used to be:

So far, our deletion algorithm follows these rules:

• If the node being deleted has no children, simply delete it.
• If the node being deleted has one child, delete the node and plug the child

into the spot where the deleted node was.

Deleting a Node with Two Children
Deleting a node that has two children is the most complex scenario. Let’s say
we want to delete the 56 in this tree:

What are we going to do with its former children, 52 and 61? We cannot move
both of them to where the 56 was. This is where the next rule of the deletion
algorithm comes into play:

• When deleting a node with two children, replace the deleted node with
the successor node. The successor node is the child node whose value is
the least of all values that are greater than the deleted node.

That was a tricky sentence. To put in other words: if we were to put the
deleted node and all of its descendants in ascending order, the successor
node would be the next number after the one we just deleted.
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In this case, it’s easy to figure out which node is the successor, since the
deleted node had only two descendants. If we put the numbers 52-56-61 in
ascending order, the next number after 56 is 61.

Once we find the successor node, we plug it into where the deleted node was.
So, we replace the 56 with the 61:

Finding the Successor Node
How does the computer find the successor node? This can be tricky when we
delete a node high up in the tree.

Here’s the algorithm for finding the successor node:

• Visit the right child of the deleted value, and then keep on visiting the left
child of each subsequent child until there are no more left children. The
bottom value is the successor node.

Let’s see this again in action in a more complex example. Let’s delete the
root node:

We now need to plug the successor node into where the 50 was, and turn it
into the root node. So, let’s find the successor node.
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To do this, we first visit the right child of the deleted node, and then keep
descending leftward until we reach a node that doesn’t have a left child:

It turns out that the 52 is the successor node.

Now that we’ve found the successor node, we plug it into the node we deleted:

And we’re done!

Successor Node with a Right Child
However, there is one case we haven’t accounted for yet, and that’s where the
successor node has a right child of its own. Let’s recreate the preceding tree,
but add a right child to the 52 as shown in the diagram on page 265.
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In this case, we can’t simply plug the successor node—the 52—into the root,
since we’d leave its child of 55 hanging. Because of this, there’s one more
rule to our deletion algorithm:

• If the successor node has a right child, after plugging the successor node
into the spot of the deleted node, take the former right child of the suc-
cessor node and turn it into the left child of the former parent of the suc-
cessor node.

That was another tricky sentence, so let’s walk through the steps.

First, we plug the successor node (52) into the root. This leaves the 55 dangling
without a parent:
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Next, we turn the 55 into the left child of the former parent of the successor
node. In this case, 61 used to be the parent of the successor node, so we
make the 55 the left child of the 61:

And now we’re really done.

The Complete Deletion Algorithm
Putting all the steps together, the algorithm for deletion from a binary search
tree is:

• If the node being deleted has no children, simply delete it.

• If the node being deleted has one child, delete the node and plug the child
into the spot where the deleted node was.

• When deleting a node with two children, replace the deleted node with
the successor node. The successor node is the child node whose value is
the least of all values that are greater than the deleted node.

• To find the successor node: visit the right child of the deleted value, and
then keep on visiting the left child of each subsequent child until there
are no more left children. The bottom value is the successor node.

• If the successor node has a right child, after plugging the successor node
into the spot of the deleted node, take the former right child of the suc-
cessor node and turn it into the left child of the former parent of the suc-
cessor node.

Code Implementation: Binary Search Tree Deletion
Here’s a recursive Python implementation of deletion from a binary search
tree:
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def delete(valueToDelete, node):

# The base case is when we've hit the bottom of the tree,
# and the parent node has no children:
if node is None:

return None

# If the value we're deleting is less or greater than the current node,
# we set the left or right child respectively to be
# the return value of a recursive call of this
# very method on the current
# node's left or right subtree.
elif valueToDelete < node.value:

node.leftChild = delete(valueToDelete, node.leftChild)

# We return the current node (and its subtree if existent) to
# be used as the new value of its parent's left or right child:
return node

elif valueToDelete > node.value:
node.rightChild = delete(valueToDelete, node.rightChild)
return node

# If the current node is the one we want to delete:
elif valueToDelete == node.value:

# If the current node has no left child, we delete it by
# returning its right child (and its subtree if existent)
# to be its parent's new subtree:
if node.leftChild is None:

return node.rightChild

# (If the current node has no left OR right child, this ends up
# being None as per the first line of code in this function.)

elif node.rightChild is None:
return node.leftChild

# If the current node has two children, we delete the current node
# by calling the lift function (below),
# which changes the current node's
# value to the value of its successor node:
else:

node.rightChild = lift(node.rightChild, node)
return node

def lift(node, nodeToDelete):

# If the current node of this function has a left child,
# we recursively call this function to continue down
# the left subtree to find the successor node.
if node.leftChild:

node.leftChild = lift(node.leftChild, nodeToDelete)
return node
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# If the current node has no left child, that means the current node
# of this function is the successor node, and we take its value
# and make it the new value of the node that we're deleting:
else:

nodeToDelete.value = node.value
# We return the successor node's right child to be now used
# as its parent's left child:
return node.rightChild

Admittedly, this code is a bit involved, so let’s break it down a bit.

The function accepts two arguments:

def delete(valueToDelete, node):

The valueToDelete is the value we’re deleting from the tree, and the node is the
root of the tree. When we first call this function, the node will be the actual
root node, but as this function calls itself recursively, the node may be lower
down in the tree and simply be the root of a smaller subtree. In any case, the
node is the root of either the whole tree or one of its subtrees.

The base case is when the node does not actually exist:

if node is None:
return None

This will happen when a recursive call to this function tries to access a child
node that does not exist. In this case, we return None.

Next, we check whether the valueToDelete is less than or greater than the value
of the current node:

elif valueToDelete < node.value:
node.leftChild = delete(valueToDelete, node.leftChild)
return node

elif valueToDelete > node.value:
node.rightChild = delete(valueToDelete, node.rightChild)
return node

This snippet may not be immediately intuitive, but here’s how it works. If the
valueToDelete is less than the value of the current node, we know that if the val-
ueToDelete is to be found somewhere in the tree, it’ll be found among the current
node’s left descendants.

Here’s the clever part: we then overwrite the current node’s left child to be the
result of recursively calling the delete function on the current node’s left child.
The delete function itself eventually returns a node, so we take this result and
make it the current node’s left child.
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Often, however, this “overwrite” doesn’t actually change the left child, because
calling delete on the left child may return that same left child. To make sense
of this, imagine we’re trying to delete the 4 from this example tree:

Originally, node is the root node, which has the value of 50. Since 4 (the value-
ToDelete) is less than 50, we say that the 50’s left child should now be the
result of calling delete on the 50’s current left child, which is 25.

So, what will the 50’s left child be? Let’s see.

When we recursively call delete on 25, we again determine that 4 is less than 25
(the current node), so we continue the recursion with the 25’s left child, which
is the 10. However, no matter what the 25’s left child will end up being, since
we say return node, we return the 25 node at the end of the current function call.

This means that back when I said that the 50’s left child should be the result
of calling delete on the 25, we ended getting back the 25 itself, so the 50’s left
child actually remains unchanged.

The current node’s left or right child will change, however, if the result of the
next recursive call involves an actual deletion.

Let’s examine that bit of code next:

elif valueToDelete == node.value:

This is to say, the current node is the one we want to delete. In order to delete
it properly, we first need to determine whether the current node has any
children, as this will affect the deletion algorithm.

We begin by checking whether the node we’re going to delete has any left
children:

if node.leftChild is None:
return node.rightChild
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If the current node has no left children, we can return the current node’s right
child as a result of this function. Remember, whichever node we return will
become either the left or right child of the previous node in the call stack. So,
let’s imagine that the current node has a right child. In this case, by returning
the right child, we make it a child node of the previous node in the call stack,
effectively deleting the current node from the tree.

Now, if the current node happens to not have a right child, that’s okay too,
since we’ll end up passing None as a result of this function, and that will also
effectively remove the current node from the tree.

Moving on in our code, if the current node does have a left child but doesn’t
have a right child, we can still easily delete the current node:

elif node.rightChild is None:
return node.leftChild

In this case, we delete the current node by returning its left child to become
the child node of the previous node in the call stack.

Finally, we encounter the most complex case, which is when the node we’re
deleting has two children:

else:
node.rightChild = lift(node.rightChild, node)
return node

In this case, we call the lift function, take its result, and make it the current
node’s right child.

What does the lift function do?

When we call it, we pass in the current node’s right child in addition to the
node itself. The lift function accomplishes four things:

1. It finds the successor node.

2. It overwrites the value of the nodeToDelete and makes it the value of the
successor node. This is how we get the successor node into the correct
spot. Note that we don’t move the actual successor node object anywhere;
we simply copy its value into the node we’re “deleting.”

3. To eliminate the original successor node object, the function then turns
the original successor node’s right child into its parent’s left child.

4. After all the recursion is said and done, it finally returns either the original
rightChild passed into it in the first place, or None if the original rightChild
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ended up serving as the successor node (which would happen if it had
no left children of its own).

We then take return value of lift and make it the current node’s right child.
This would either leave the right child alone, or change it to None if the right
child was used as the successor node.

It’s not just you; the delete function is one of the most complex pieces of code
in the book. It may take careful study to follow the entire process, even after
this walk-through.

The Efficiency of Binary Search Tree Deletion
Like search and insertion, deleting from trees is also typically O(log N). This
is because deletion requires a search plus a few extra steps to deal with any
hanging children. Contrast this with deleting a value from an ordered array,
which is O(N) due to shifting elements to the left to close the gap of the
deleted value.

Binary Search Trees in Action
We’ve seen that binary search trees boast efficiencies of O(log N) for search,
insertion, and deletion, making it an efficient choice for scenarios in which
we need to store and manipulate ordered data. This is particularly true if we
will be modifying the data often, because while ordered arrays are just as fast
as binary search trees when searching data, binary search trees are signifi-
cantly faster when it comes to inserting and deleting data.

For example, let’s say we’re creating an application that maintains a list of
book titles. We’d want our application to have the following functionality:

• Our program should be able to print the list of book titles in alphabetical
order.

• Our program should allow for constant changes to the list.

• Our program should allow the user to search for a title within the list.

If we didn’t anticipate that our book list would be changing that often, an
ordered array would be a suitable data structure to contain our data. However,
we’re building an app that should be able to handle many changes in real
time. If our list had millions of titles, a binary search tree may be a better
choice.
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Such a tree might look something like this:

Here, the titles are positioned based on their alphabetical order. A title that
comes earlier in the alphabet is considered a “lower” value, while titles that
come later are “greater” values.

Binary Search Tree Traversal
Now, we’ve already seen how to search, insert, and delete data from a binary
search tree. I mentioned, though, that we also want to be able to print the
entire list of book titles in alphabetical order. How can we do that?

First, we need the ability to visit every single node in the tree. Visiting nodes
is just another term for accessing them. The process of visiting every node in
a data structure is known as traversing the data structure.

Second, we need to make sure we traverse the tree in alphabetically ascending
order so that we can print the list in that order. There are multiple ways to
traverse a tree, but for this application, we will perform what is known as
inorder traversal, so that we can print each title in alphabetical order.

Recursion is a great tool for performing traversal. We’ll create a recursive
function called traverse that can be called on a particular node. The function
then performs the following steps:

1. Call itself (traverse) recursively on the node’s left child. The function will
keep getting called until we hit a node that does not have a left child.

2. “Visit” the node. (For our book title app, we print the value of the node at
this step.)

3. Call itself (traverse) recursively on the node’s right child. The function will
keep getting called until we hit a node that does not have a right child.

For this recursive algorithm, the base case is when we call traverse on a child
that does not actually exist, in which case we return without doing anything
further.

Chapter 15. Speeding Up All the Things with Binary Search Trees • 272

report erratum  •  discuss

http://pragprog.com/titles/jwdsal2/errata/add
http://forums.pragprog.com/forums/jwdsal2


Here’s a Python traverse_and_print function that works for our list of book titles.
Note how concise it is:

def traverse_and_print(node):
if node is None:

return
traverse_and_print(node.leftChild)
print(node.value)
traverse_and_print(node.rightChild)

Let’s walk through the inorder traversal step by step.

We first call traverse_and_print on Moby Dick. This, in turn, calls traverse_and_print
on the left child of Moby Dick, which is Great Expectations:

traverse_and_print(node.leftChild)

Before we move on to that, though, we’re going to add to the call stack the
fact that we’re in the middle of the function in Moby Dick, and the fact that
we’re in the middle of traversing its left child:

We then proceed with traverse_and_print("Great Expectations"), which calls traverse_
and_print on the left child of Great Expectations, which is Alice in Wonderland.

Let’s add traverse_and_print("Great Expectations") to the call stack before moving on:

The traverse_and_print("Alice in Wonderland") calls traverse_and_print on the left child of
Alice in Wonderland. However, there isn’t any left child (the base case), so
nothing happens. The next of line of traverse_and_print is:

print(node.value)

which prints "Alice in Wonderland".
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Next, the function attempts to traverse_and_print the right child of Alice in Won-
derland:

traverse_and_print(node.rightChild)

However, there is no right child (the base case), so the function returns
without doing anything further.

Since we’ve completed the function traverse_and_print("Alice inWonderland"), we check
the call stack to see where we’re up to in this recursive soup:

Ah, that’s right. We were in the middle of traverse_and_print("Great Expectations"),
and we had just completed calling traverse_and_print on its left child. Let’s pop
this from the call stack:

And let’s continue. The function next prints "Great Expectations" and then calls
traverse_and_print on the right child, which is Lord of the Flies. Before moving on
to that, though, let’s hold our place within this function in the call stack:

We now execute traverse_and_print("Lord of the Flies"). First, we call traverse_and_print
on its left child, but it doesn’t have one. Next, we print Lord of the Flies.
Finally, we call traverse_and_print on its right child, but that doesn’t exist either,
so the function is now done.

We look at our call stack and see that we were in the process of executing
traverse_and_print on the right child of Great Expectations. We can pop that from
the stack and continue as shown in the diagram on page 275.
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Now, it just so happens that we’ve also now completed everything we have to
do in traverse_and_print("Great Expectations"), so we can go back to the call stack to
see what to do next:

We can see that we were in the middle of traverse_and_print of the left child of
Moby Dick. We can pop that from the call stack (which leaves the stack empty
for now), and continue with the next step within traverse_and_print("Moby Dick"),
which is to print Moby Dick.

Then, we call traverse_and_print on the right child of Moby Dick. We’ll add this to
the call stack:

For the sake of brevity (although it’s probably too late for that), I’ll let you
walk through the rest of traverse_and_print function from here.

By the time our function has finished executing, we’ll have printed the nodes
in this order:
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And that’s how we achieve our goal of printing the book titles in alphabetical
order. Note that tree traversal is O(N), since by definition, traversal visits all
N nodes of the tree.

Wrapping Up
The binary search tree is a powerful node-based data structure that provides
order maintenance, while also offering fast search, insertion, and deletion.
It’s more complex than its linked list cousin, but it offers tremendous value.

However, the binary search tree is just one type of tree. There are many dif-
ferent kinds of trees, and each brings unique advantages to specialized situ-
ations. In the next chapter, we’re going to discover another tree that will bring
unique speed advantages to a specific, but common scenario.

Exercises
The following exercises provide you with the opportunity to practice with
binary search trees. The solutions to these exercises are found in the section,
Chapter 15, on page 456.

1. Imagine you were to take an empty binary search tree and insert the fol-
lowing sequence of numbers in this order: [1, 5, 9, 2, 4, 10, 6, 3, 8].

Draw a diagram showing what the binary search tree would look like.
Remember, the numbers are being inserted in the order presented here.

2. If a well-balanced binary search tree contains 1,000 values, what is the
maximum number of steps it would take to search for a value within it?

3. Write an algorithm that finds the greatest value within a binary search tree.

4. In the text I demonstrated how to use inorder traversal to print a list of
all the book titles. Another way to traverse a tree is known as preorder
traversal. Here is the code for it as applied to our book app:

def traverse_and_print(node):
if node is None:

return
print(node.value)
traverse_and_print(node.leftChild)
traverse_and_print(node.rightChild)

For the example tree in the text (the one with Moby Dick and the other
book titles), write out the order in which the book titles are printed with
preorder traversal. As a reminder, here is the example tree as shown in
the diagram on page 277.
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5. There is yet another form of traversal called postorder traversal. Here is
the code as applied to our book app:

def traverse_and_print(node):
if node is None:

return
traverse_and_print(node.leftChild)
traverse_and_print(node.rightChild)
print(node.value)

For the example tree in the text (which also appears in the previous
exercise), write out the order in which the book titles are printed with
postorder traversal.
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CHAPTER 16

Keeping Your Priorities Straight with Heaps
Now that we’ve discovered the tree, we’ve unlocked many new data structures.
In the previous chapter, we focused specifically on the binary search tree,
but there are many other types of trees as well. Like all data structures, each
type of tree comes with its own benefits and drawbacks, and the trick is
knowing which one to harness in a specific situation.

In this chapter, we’ll explore the heap, a type of tree data structure that has
special powers that can be leveraged for specific scenarios, in particular when
we want to constantly keep tabs on the greatest or least data element in a
dataset.

To appreciate what a heap can do, let’s take a look at a completely different
data structure: the priority queue.

Priority Queues
You learned about Queues, on page 144, and discovered that the queue is a
list in which items are processed First In, First Out (FIFO). Essentially, this
means that data is inserted only at the end of the queue, and data is accessed
and removed only from the front of the queue. In accessing the queue’s data,
we give precedence to the order in which the data was inserted.

A priority queue is a list whose deletions and access are just like a classic
queue, but whose insertions are like an ordered array. That is, we only delete
and access data from the front of the priority queue, but when we insert data,
we always make sure the data remains sorted in a specific order.

One classic example of where a priority queue is helpful is an application that
manages the triage system for a hospital emergency room. In the ER, we don’t
treat people strictly in the order in which they arrived. Instead, we treat people
in the order of the severity of their symptoms. If someone suddenly arrives
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with a life-threatening injury, that patient will be placed at the front of the
queue, even if the person with the flu had arrived hours earlier.

Let’s say our triage system ranked the severity of a patient’s condition on a
scale of 1 to 10, with 10 being the most critical. Our priority queue may look
like this:

In determining the next patient to treat, we will always select the patient at
the front of the priority queue, since that person’s need is the most urgent.
In this case, the next patient we’d treat is Patient C.

If a new patient now arrives with a condition severity of 3, we’ll initially place
this patient at the appropriate spot within the priority queue. We’ll call this
person Patient E:

The priority queue is an example of an abstract data type. That is, it can be
implemented using other, more fundamental data structures. One straight-
forward way we can implement a priority queue is by using an ordered array.
That is, we use an array and apply the following constraints:

• When we insert data, we ensure we always maintain proper order.
• Data can only be removed from the end of the array. (This will represent

the front of the priority queue.)

While this approach is straightforward, let’s analyze its efficiency.

The priority queue has two primary operations: deletions and insertions.

We’ve seen in Why Data Structures Matter that deleting from the front of an
array is O(N), since we have to shift all the data over to fill the gap created at
index 0. However, we’ve cleverly tweaked our implementation so that we
consider the end of array to be the front of the priority queue. This way, we’re
always deleting from the end of the array, which is O(1).
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With O(1) deletions, our priority queue is in good shape so far. But what about
insertions?

You learned that inserting into an ordered array is O(N), since we have to
inspect up to all N elements of the array to determine where our new data
should go. (And even if we find the correct spot early, we need to then shift
all the remaining data over to the right.)

Our array-based priority queue, then, has deletions that are O(1) and inser-
tions that are O(N). If we expect there to be many items in our priority queue,
the O(N) insertions may cause some real unwanted drag in our application.

Because of this, computer scientists discovered another data structure that
serves as a more efficient foundation for the priority queue. And this data
structure is the heap.

Heaps
There are several different types of heaps, but we’re going to focus on the
binary heap.

The binary heap is a specific kind of binary tree. As a reminder, a binary tree
is a tree where each node has a maximum of two child nodes. (The binary
search tree from the last chapter was one specific type of binary tree.)

Now, even binary heaps come in two flavors: the max-heap and the min-heap.
We’re going to work with the max-heap for now, but as you’ll see later, the
difference between the two is trivial.

Going forward, I’m going to refer to this data structure simply as a heap, even
though we’re specifically working with a binary max-heap.

The heap is a binary tree that maintains the following conditions:

• The value of each node must be greater than each of its descendant nodes.
This rule is known as the heap condition.

• The tree must be complete. (I’ll explain the meaning of this shortly.)

Let’s break down both of these conditions, starting with the heap condition.

The Heap Condition
The heap condition says that each node’s value must be greater than each
and every one of its descendants.

For example, the following tree meets the heap condition since each node is
greater than any of its descendants as shown in the diagram on page 282.
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In this example, the root node of 100 has no descendant that is greater than
it. Similarly, the 88 is greater than both of its children, and so is the 25.

The following tree isn’t a valid heap, because it doesn’t meet the heap condition:

As you can see, the 92 is greater than its parent of 88. This violates the heap
condition.

Note how the heap is structured very differently than the binary search tree.
In a binary search tree, each node’s right child is greater than it. In a heap,
however, a node never has any descendant that is greater than it. As they
say, “A binary search tree doth not a heap make.” (Or something like that.)

We can also construct a heap that has the opposite heap condition, which is
each node must contain a smaller value than any of its descendants. Such a
heap is known as the min-heap, which I mentioned earlier. We’re going to con-
tinue to focus on the max-heap, where each node must be greater than all of
its descendants. Ultimately, whether a heap is a max-heap or a min-heap is
pretty trivial, as everything else about both heaps is identical; they only have
reversed heap conditions. Otherwise, the fundamental idea is the same.

Complete Trees
Now, let’s get to the second rule of heaps—that the tree needs to be complete.

A complete tree is a tree that is completely filled with nodes; no nodes are
missing. So, if you read each level of the tree from left to right, all of the nodes
are there. However, the bottom row can have empty positions, as long as there
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aren’t any nodes to the right of these empty positions. This is best demonstrat-
ed with examples.

The following tree is complete, since each level (meaning, each row) of the
tree is completely filled in with nodes:

The following tree is not complete, since it’s missing a node on the third level:

Now, the next tree is actually considered complete, since its empty positions
are limited to the bottom row, and there aren’t any nodes found to the right
of the empty positions:

A heap, then, is a tree that meets the heap condition and is also complete.
Here is just one more example of a heap:

This is a valid heap since each node is greater than any of its descendants,
and the tree is also complete. While it does have some gaps in the bottom
row, these gaps are limited to the very right of the tree.
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Heap Properties
Now that you know what a heap is, let’s examine some of its interesting
properties.

While the heap condition dictates that the heap be ordered a certain way, this
ordering is still useless when it comes to searching for a value within the heap.

For example, let’s say that in the above heap, we want to search for the value
3. If we start at the root node of 100, should we search among its left or right
descendants? In a binary search tree, we’d know that the 3 must be among the
100’s left descendants. In a heap, however, all we know is that the 3 has to be
a descendant of the 100, and can’t be its ancestor. But we’d have no idea as to
which child node to search next. Indeed, the 3 happens to be among the 100’s
right descendants, but it could have also easily been among its left descendants.

Because of this, heaps are said to be weakly ordered as compared to binary
search trees. While heaps have some order, as descendants cannot be greater
than their ancestors, this isn’t enough order to make heaps worth searching
through.

There’s another property of heaps that may be obvious by now, but is worth
calling attention to: in a heap, the root node will always have the greatest
value. (In a min-heap, the root will contain the smallest value.) This will be
the key as to why the heap is a great tool for implementing priority queues.
In the priority queue, we always want to access the value with the greatest
priority. With a heap, we always know that we can find this in the root node.
Thus, the root node will represent the item with the highest priority.

The heap has two primary operations: inserting and deleting. As we noted,
searching within a heap would require us to inspect each node, so search is
not an operation usually implemented in the context of heaps. (A heap can
also have an optional “read” operation, which would simply look at the value
of the root node.)

Before we move on to how the heap’s primary operations work, let me define
one more term, since it’ll be used heavily in the upcoming algorithms.

The heap has something called a last node. A heap’s last node is the rightmost
node in its bottom level.

Take a look at the heap on page 285.

In this heap, the 3 is the last node, since it’s the rightmost node in the bottom row.

Next, let’s get into the heap’s primary operations.
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Heap Insertion
To insert a new value into the heap, we perform the following algorithm:

1. We create a node containing the new value and insert it at the next
available rightmost spot in the bottom level. Thus, this value becomes
the heap’s last node.

2. Next, we compare this new node with its parent node.

3. If the new node is greater than its parent node, we swap the new node
with the parent node.

4. We repeat Step 3, effectively moving the new node up through the heap,
until it has a parent whose value is greater than it.

Let’s see this algorithm in action. Here’s what would happen if we were to
insert a 40 into the heap:

Step 1: We add the 40 as the heap’s last node:
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Note that doing the following would have been incorrect:

Placing the 40 as a child of the 12 node makes the tree incomplete, since we’d
now have a node to the right of an empty position. In order for a heap to
remain a heap, it must always be complete.

Step 2: We compare the 40 with its parent node, which happens to be the 8.
Since the 40 is greater than the 8, we swap the two nodes:

Step 3: We compare the 40 with its new parent, the 25. Since the 40 is greater
than the 25, we swap them:

Chapter 16. Keeping Your Priorities Straight with Heaps • 286

report erratum  •  discuss

http://pragprog.com/titles/jwdsal2/errata/add
http://forums.pragprog.com/forums/jwdsal2


Step 4: We compare the 40 to its parent, which is the 100. Since the 40 is
smaller than the 100, we’re done!

This process of moving the new node up the heap, is called trickling the node
up through the heap. Sometimes it moves up to the right, and sometimes it
moves up to the left, but it always moves up until it settles into the correct
position.

The efficiency of inserting into a heap is O(log N). As you saw in the previous
chapter, for N nodes in any binary tree, the tree is organized into about log(N)
rows. Since at most we’d have to trickle the new value up to the top row, this
will take log(N) steps at most.

Looking for the Last Node
While the insertion algorithm seems pretty straightforward, there’s one little
snag. The first step has us place the new value as the heap’s last node. But
this begs the question: how do we find the spot that will be the last node?

Let’s take a look again at the heap before we inserted the 40:

We know by looking at the diagram that to make the 40 into the last node,
we’d make it the right child of the 8, as that’s the next available spot in the
bottom row.

However, a computer doesn’t have eyeballs, and doesn’t see the heap as a
bunch of rows. All it sees is the root node, and can follow links to child nodes.
So, how do we create an algorithm for the computer to find the spot for the
new value?
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Take our example heap. When we start at the root node of 100, do we tell the
computer to look among the 100’s right descendants to find the next available
spot for the new last node?

While it’s true that in our example heap the next available spot is among the
100’s right descendants, take a look at the following alternative heap:

In this heap, the next available spot for the new last node would be the 88’s
right child, which is among the 100’s left descendants.

Essentially, then, just as it’s impossible to search through a heap, it’s
impossible to efficiently find the heap’s last node (or next available spot to
hold a new last node) without having to inspect each and every node.

So, how do we find the next available node? I’ll explain this later on, but for
now, let’s call this issue the Problem of the Last Node. I promise we’ll come
back to it.

In the meantime, let’s explore the heap’s other primary operation, which is
deletion.

Heap Deletion
The first thing to know about deleting a value from a heap is that we only
ever delete the root node. This is right in line with the way a priority queue
works, in that we only access and remove the highest-priority item.

The algorithm for deleting the root node of a heap is as follows:

1. Move the last node into where the root node was, effectively removing the
original root node.

2. Trickle the root node down into its proper place. I’ll explain how trickling
down works shortly.

Let’s say we’re going to remove the root node from the heap on page 289.

Chapter 16. Keeping Your Priorities Straight with Heaps • 288

report erratum  •  discuss

http://pragprog.com/titles/jwdsal2/errata/add
http://forums.pragprog.com/forums/jwdsal2


In this example, the root node is the 100. To delete it, we overwrite the root
by placing the last node there instead. In this case, the last node is the 3. So,
we move the 3 and place it where the 100 was:

Now, we can’t leave the heap as is, since the heap condition has been violated
and since the 3 is currently less than some (actually, most) of its descendants.
To make things right again, we need to trickle the 3 down until its heap con-
dition has been restored.

Trickling down is a tad more complex than trickling up, since each time we
trickle a node down, we have two possible directions as to where we will
trickle it down. That is, we can either swap it with its left child or its right
child. (When trickling up, on the other hand, each node has only one parent
to swap with.)

Here’s the algorithm for trickling down. For the sake of clarity, we’re going to
call the node we’re trickling the “trickle node.” (Sounds gross, I know.)
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1. We check both children of the trickle node and see which one is larger.

2. If the trickle node is smaller than the larger of the two child nodes, we
swap the trickle node with that larger child.

3. We repeat Steps 1 and 2 until the trickle node has no children who are
greater than it.

Let’s see this in action.

Step 1: The 3, which is the trickle node, currently has two children, the 88
and the 25. The 88 is larger of the two, and since the 3 is smaller than the
88, we swap the trickle node with the 88:

Step 2: The trickle node now has two new children, the 87 and the 16. The
87 is the larger one, and it is greater than the trickle node. So, we swap the
trickle node with the 87:
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Step 3: The trickle node’s children are currently the 86 and the 50. The 86
is the larger of the two, and it is also greater than the trickle node, so we swap
the 86 with the trickle node:

At this point, the trickle node has no children that are greater than it. (In
fact, it has no children at all.) So, we’re done, as the heap condition has been
restored.

The reason why we always swap the trickle node with the greater of its two
children is because if we swap it the with the smaller one, we’d end up violat-
ing the heap condition immediately. Watch what happens when we try to
swap the trickle node with smaller child.

Let’s start again with the trickle node of 3 as our root:
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Let’s swap the 3 with the 25, which is the smaller child:

We’ve now placed the 25 in a situation where it is a parent of the 88. Since
the 88 is greater than its parent, the heap condition has been broken.

Like insertion, the time complexity of deletion from a heap is O(log N), as we
have to trickle a node from the root down through all log(N) levels of the heap.

Heaps vs. Ordered Arrays
Now that you know the efficiency of heaps, let’s see why it’s a great choice
for implementing priority queues.

Here’s a side-by-side comparison of ordered arrays versus heaps:

HeapOrdered Array

O(log N)O(N)Insertion

O(log N)O(1)Deletion

At first glance, it seems that it’s a wash. Ordered arrays are slower than heaps
when it comes to insertion, but faster than heaps for deletion.

However, heaps are considered to be the better choice, and here’s why.

While O(1) is extremely fast, O(log N) is still very fast. And O(N), by comparison,
is slow. With this in mind, we can rewrite the earlier table this way:

HeapOrdered Array

Very fastSlowInsertion

Very fastExtremely fastDeletion
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In this light, it becomes clearer as to why the heap is considered the better
choice. We’d rather use a data structure that is consistently very fast than a
data structure that is sometimes extremely fast and sometimes slow.

It’s worth pointing out that priority queues generally perform insertions and
deletions in about equal proportion. Think about the emergency room example,
where we expect to treat everyone who comes in. So, we want both our
insertions and deletions to be fast. If either operation is slow, our priority
queue will be inefficient.

With a heap, then, we ensure that both of the priority queue’s primary oper-
ations—insertion and deletion—perform at a very fast clip.

The Problem of the Last Node…Again
While the heap deletion algorithm seems straightforward, it once again raises
the Problem of the Last Node.

I explained that the first step of deletion requires us to move the last node
and turn it into the root node. But, how do we find the last node in the first
place?

Before we solve the Problem of the Last Node, let’s first explore why insertion
and deletion are so dependent on the last node anyway. Why couldn’t we
insert new values elsewhere in the heap? And why, when deleting, can’t we
replace the root node with some other node other than the last node?

Now, if you think about it, you’ll realize that if we were to use other nodes,
the heap would become incomplete. But this begs the next question: why is
completeness important for the heap?

The reason why completeness is important is because we want to ensure our
heap remains well-balanced.

To see this clearly, let’s take another look at insertion. Let’s say we have the
following heap:
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If we want to insert a 5 into this heap, the only way to keep the heap well-
balanced is by making the 5 the last node, in this case, making it a child of
the 10:

Any alternative to this algorithm would cause imbalance. Say, in an alternative
universe, the algorithm was to insert the new node into the bottom leftmost
node, which we could easily find by traversing the left children until we hit
the bottom. This would make the 5 a child of the 15:

Our heap is now somewhat imbalanced, and it’s easy to see how much more
imbalanced it would become if we kept inserting new nodes at the bottom
leftmost spot.

Similarly, when deleting from a heap, we always turn the last node into the
root because, otherwise, the heap can become imbalanced. Take again our
example heap:
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If in our alternative universe we always moved the bottom rightmost node
into the root position, the 10 would become the root node, and we’d end up
with an imbalanced heap with a bunch of left descendants and zero right
descendants.

Now, the reason why this balance is so important is because it’s what allows
us to achieve O(log N) operations. In a severely imbalanced tree like the fol-
lowing one, traversing it could take O(N) steps instead:

But this brings us back to the Problem of the Last Node. What algorithm
would allow us to consistently find the last node of any heap? (Again, without
having to traverse all N nodes.)

And this is where our plot takes a sudden twist.

Arrays as Heaps
Because finding the last node is so critical to the heap’s operations, and we
want to make sure that finding the last node is efficient, heaps are usually
implemented using arrays.

While until now we always assumed that every tree consists of independent
nodes connected to each other with links (just like a linked list), you will now
see that we can also use an array to implement a heap. That is, the heap
itself can be an abstract data type that really uses an array under the hood.

The diagram on page 296 shows how an array is used to store the values of
a heap.
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The way this works is that we assign each node to an index within the array.
In the previous diagram, the index of each node is found in a square below
the node. If you look carefully, you’ll see that we assign the index of each
node according to a specific pattern.

The root node is always stored at index 0. We then move down a level and go
from left to right, assigning each node to the next available index in the array.
So, on the second level, the left node (88) becomes index 1, and the right node
(25) becomes index 2. When we reach the end of a level, we move down to the
next level and repeat this pattern.

Now, the reason why we’re using an array to implement the heap is because
it solves the Problem of the Last Node. How?

When we implement the heap in this fashion, the last node will always be the
final element of the array. Since we move top down and left to right when
assigning each value to the array, the last node will always be the final value
in the array. In the previous example, you can see that the 3, which is the
last node, is the last value in the array.

Because the last node will always be found at the end of the array, it becomes
trivial to find the last node: we just need to access the final element. Addition-
ally, when we insert a new node into the heap, we do so at the end of the
array in order to make it the last node.
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Before we get into the other details of how an array-based heap works, we
can already begin to code its basic structure. Here is the beginning of our
heap implementation in Ruby:

class Heap
def initialize

@data = []
end

def root_node
return @data.first

end

def last_node
return @data.last

end
end

As you can see, we initialize the heap as an empty array. We have a root_node
method, which returns the first item of this array, and we also have a last_node
method that returns the last value of this array.

Traversing an Array-Based Heap
As you’ve seen, the heap’s insertion and deletion algorithms require us to be
able to trickle our way through the heap. Trickling, in turn, requires us to be
able to traverse the heap by accessing a node’s parent or children. But how
do we move from node to node when all the values are merely stored in an
array? Traversing a heap would have been straightforward if we could have
simply followed each node’s links. But now that the heap is an array under
the hood, how do we know which nodes are connected to each other?

There’s an interesting solution to this. It turns out that when we assign the
indexes of the heap’s nodes according to the pattern described earlier, the
following traits of a heap are always true:

• To find the left child of any node, we can use the formula, (index * 2) + 1
• To find the right child of any node, we can use the formula, (index * 2) + 2

Take another look at the previous diagram and focus on the 16, which is at
index 4. To find its left child, we multiply its index (4) by 2 and add 1, which
yields 9. This means that index 9 is the left child of the node at index 4.

Similarly, to find the right child of index 4, we multiply the 4 by 2 and add
2, which yields 10. This means that index 10 is the right child of index 4.

Because these formulas always work, we’re able to treat our array as a tree.
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Let’s add these two methods to our Heap class:

def left_child_index(index)
return (index * 2) + 1

end

def right_child_index(index)
return (index * 2) + 2

end

Each of these methods accept an index within the array and return the left
or right child index, respectively.

Here’s another important trait of array-based heaps:

• To find a node’s parent, we can use the formula, (index - 1) / 2

Note that this formula uses integer division, meaning we throw away any
numbers beyond the decimal point. For example, 3 / 2 is considered 1, rather
than the more accurate 1.5.

Again, in our example heap, focus on index 4. If we take that index, subtract
1, and then divide by 2, we get 1. And as you can see in the diagram, the
parent of the node at index 4 is found at index 1.

So, now we can add another method to our Heap class:

def parent_index(index)
return (index - 1) / 2

end

This method accepts an index and calculates the index of its parent node.

Code Implementation: Heap Insertion
Now that we have the essential elements of our Heap in place, let’s implement
the insertion algorithm:

def insert(value)
# Turn value into last node by inserting it at the end of the array:
@data << value

# Keep track of the index of the newly inserted node:
new_node_index = @data.length - 1

# The following loop executes the "trickle up" algorithm.

# If the new node is not in the root position,
# and it's greater than its parent node:
while new_node_index > 0 &&
@data[new_node_index] > @data[parent_index(new_node_index)]
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# Swap the new node with the parent node:
@data[parent_index(new_node_index)], @data[new_node_index] =
@data[new_node_index], @data[parent_index(new_node_index)]

# Update the index of the new node:
new_node_index = parent_index(new_node_index)

end
end

As usual, let’s break this thing down.

Our insert method accepts the value we’re inserting into our heap. The first
thing we do is make this new value the last node by adding it to the very end
of the array:

@data << value

Next, we keep track of the index of the new node, as we’ll need it later. Right
now, the index is the last index in the array:

new_node_index = @data.length - 1

Next, we trickle up the new node to its proper place using a while loop:

while new_node_index > 0 &&
@data[new_node_index] > @data[parent_index(new_node_index)]

This loop runs as long as two conditions are met. The main condition is that
the new node is greater than its parent node. We also make a condition that
the new node must have an index greater than 0, as funny things can happen
if we try to compare the root node with its nonexistent parent.

Each time this loop runs, we swap the new node with its parent node, since
the new node is currently greater than the parent:

@data[parent_index(new_node_index)], @data[new_node_index] =
@data[new_node_index], @data[parent_index(new_node_index)]

We also then update the index of the new node appropriately:

new_node_index = parent_index(new_node_index)

Since this loop only runs while the new node is greater than its parent, the
loop ends once the new node is in its proper place.

Code Implementation: Heap Deletion
Here is a Ruby implementation of deleting an item from a heap. The main
method is the delete method, but to make the code simpler, we’ve created two
helper methods, has_greater_child and calculate_larger_child_index:
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def delete
# We only ever delete the root node from a heap, so we
# pop the last node from the array and make it the root node:
@data[0] = @data.pop
# Track the current index of the "trickle node":
trickle_node_index = 0

# The following loop executes the "trickle down" algorithm:

# We run the loop as long as the trickle node has a child
# that is greater than it:
while has_greater_child(trickle_node_index)

# Save larger child index in variable:
larger_child_index = calculate_larger_child_index(trickle_node_index)

# Swap the trickle node with its larger child:
@data[trickle_node_index], @data[larger_child_index] =
@data[larger_child_index], @data[trickle_node_index]

# Update trickle node's new index:
trickle_node_index = larger_child_index

end
end

def has_greater_child(index)
# We check whether the node at index has left and right
# children and if either of those children are greater
# than the node at index:
(@data[left_child_index(index)] &&
@data[left_child_index(index)] > @data[index]) ||

(@data[right_child_index(index)] &&
@data[right_child_index(index)] > @data[index])

end

def calculate_larger_child_index(index)
# If there is no right child:
if !@data[right_child_index(index)]

# Return left child index:
return left_child_index(index)

end

# If right child value is greater than left child value:
if @data[right_child_index(index)] > @data[left_child_index(index)]

# Return right child index:
return right_child_index(index)

else # If the left child value is greater or equal to right child:
# Return the left child index:
return left_child_index(index)

end

Let’s first dive into the delete method.

The delete method doesn’t accept any arguments, since we only ever delete
the root node. Here’s how the method works.
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First, we remove the last value from the array and make it the first value:

@data[0] = @data.pop

This simple line effectively deletes the original root node, as we are overwriting
the root node’s value with the last node’s value.

Next, we need to trickle the new root node down to its proper place. We called
this the “trickle node” earlier, and our code reflects this as well.

Before we start the actual trickling, we keep track of the trickle node’s index,
as we’ll need it later. Currently, the trickle node is at index 0:

trickle_node_index = 0

We then use a while loop to execute the trickle-down algorithm. The loop runs
as long as the trickle node has any children that are greater than it:

while has_greater_child(trickle_node_index)

This line uses the has_greater_child method, which returns whether a given node
has any children who are greater than that node.

Within this loop, we first find the index of the greater of the trickle node’s
children:

larger_child_index = calculate_larger_child_index(trickle_node_index)

This line uses the method calculate_larger_child_index, which returns the index of
the trickle node’s greater child. We store this index in a variable called larg-
er_child_index.

Next, we swap the trickle node with its greater child:

@data[trickle_node_index], @data[larger_child_index] =
@data[larger_child_index], @data[trickle_node_index]

Finally, we update the index of the trickle node, which will be the index it
was just swapped with:

trickle_node_index = larger_child_index

Alternate Heap Implementations
Our heap implementation is now complete. It’s worth noting that while we
did use an array to implement the heap under the hood, it is possible to
implement a heap using linked nodes as well. (This alternative implementation
uses a different trick to solve the Problem of the Last Node, one that involves
binary numbers.)
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However, the array implementation is the more common approach, so that
is what I presented here. It’s also really interesting to see how an array can
be used to implement a tree.

Indeed, it’s possible to use an array to implement any sort of binary tree,
such as the binary search tree from the previous chapter. However, the heap
is the first case of a binary tree where an array implementation provided an
advantage, as it helps us find the last node easily.

Heaps as Priority Queues
Now that you understand how heaps work, we can circle back to our old
friend, the priority queue.

Again, the primary function of a priority queue is to allow us immediate access
to the highest-priority item in the queue. In our emergency room example,
we want to first address the person with the most serious problem.

It’s for this reason that a heap is a natural fit for priority queue implementa-
tions. The heap gives us immediate access to the highest-priority item, which
can always be found at the root node. Each time we take care of the highest-
priority item (and then remove it from the heap), the next-highest item floats
to the top of the heap and is on deck to be addressed next. And the heap
accomplishes this while maintaining very fast insertions and deletions, both
of which are O(log N).

Contrast this to the ordered array, which requires much slower insertions of
O(N) in order to ensure that each new value is in its proper place.

It turns out that the heap’s weak ordering is its very advantage. The fact that
it doesn’t have to be perfectly ordered allows us to insert new values in O(log
N) time. At the same time, the heap is ordered just enough so that we can
always access the one item we need at any given time—the heap’s greatest
value.

Wrapping Up
So far, we’ve seen how different types of trees can optimize different types of
problems. Binary search trees kept search fast while minimizing the cost of
insertions, and heaps were the perfect tool for building priority queues.

In the next chapter, we’ll explore another tree that is used to power some of
the most common text-based operations you use on a day-to-day basis.
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Exercises
The following exercises provide you with the opportunity to practice with
heaps. The solutions to these exercises are found in the section, Chapter 16,
on page 458.

1. Draw what the following heap would look like after we insert the value
11 into it:

2. Draw what the previous heap would look like after we delete the root node.

3. Imagine you’ve built a brand-new heap by inserting the following numbers
into the heap in this particular order: 55, 22, 34, 10, 2, 99, 68. If you
then pop them from the heap one at a time and insert the numbers into
a new array, in what order would the numbers now appear?
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CHAPTER 17

It Doesn’t Hurt to Trie
Did you ever wonder how your smartphone’s autocomplete feature works?
Autocomplete is the feature you see when you start typing “catn” and your
phone suggests that the word you’re about to type is either “catnip” or “cat-
nap.” (Yes, I text my friends about catnip all the time.)

For this to work, your phone has access to an entire dictionary of words. But
what data structure are these words stored in?

Let’s imagine, for a moment, that all the words in the English language are
stored within an array. If the array were unsorted, we’d have to search every
word in the dictionary to find all words that start with “catn.” This is O(N),
and a very slow operation considering that N is a pretty large number in this
case, as it’s the number all of the words in the dictionary.

A hash table wouldn’t help us either, as it hashes the entire word to determine
where in memory the value should be stored. As the hash table wouldn’t have
a “catn” key, we’d have no easy way to locate “catnip” or “catnap” within the
hash table.

Things improve greatly if we store the words inside an ordered array. That is,
if the array contained all the words in alphabetical order, we could use binary
search to find a word beginning with “catn” in O(log N) time. And while O(log
N) isn’t bad, we can do even better. In fact, if we use a special tree-based data
structure, we can approach O(1) speeds in finding our desired words.

The examples in this chapter show how tries can be used for applications
dealing with text, as tries allow for important features such as autocomplete
and autocorrect. However, tries have other uses as well, including applications
involving IP addresses or phone numbers.
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Tries
The trie is a kind of tree that is ideal for text-based features such as autocom-
plete. Before we get into how the trie works, though, let’s first address its
pronunciation.

In my (unasked for) opinion, the trie is one of the most unfortunately-named
data structures out there. The word trie is actually derived from the word
retrieval. So technically, it should be pronounced “tree.” But since that would
be confused with the word tree, which is the general term for all tree-based
data structures, most people pronounce trie as “try.” Some resources refer
to this same data structure as the prefix tree or the digital tree, but trie,
amazingly, remains the most popular name. So, there you have it.

Here’s one last comment before we dive into the details. The trie is not as well
documented as the other data structures in this book, and many different
resources implement the trie in slightly different ways. I’ve chosen a particular
implementation that I find to be the most straightforward and understandable,
but you’ll find other implementations out there. In any case, the general ideas
behind most of the implementations remain the same.

The Trie Node
Like most other trees, the trie is a collection of nodes that point to other nodes.
However, the trie is not a binary tree. Whereas a binary tree doesn’t allow any
node to have more than two child nodes, a trie node can have any number of
child nodes.

In our implementation, each trie node contains a hash table, where the keys
are English characters and the values are other nodes of the trie. Take a look
at the following diagram:

Here, the root node contains a hash table with the keys "a", "b", and "c". The
values are other trie nodes, which are the children of this node. These children
also contain hash tables, which will in turn point to their children. (For now,
we left the children’s hash tables empty, but they’ll contain data in future
diagrams.)
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The implementation of the actual trie node itself is very simple. Here is our
Python version of the TrieNode class:

class TrieNode:

def __init__(self):
self.children = {}

As you can see, the TrieNode just contains a hash table.

If we print (to the console) the data from our root node in the previous
example, we’d get something like this:

{'a': <__main__.TrieNode instance at 0x108635638>,
'b': <__main__.TrieNode instance at 0x108635878>,
'c': <__main__.TrieNode instance at 0x108635ab8>}

Again, in this hash table, the keys are individual character strings, and the
values are instances of other TrieNodes.

The Trie Class
To fully create our trie, we will also need a separate Trie class, which will keep
track of the root node:

class Trie:

def __init__(self):
self.root = TrieNode()

This class keeps track of a self.root variable that points to the root node. In
this implementation, when we create a new Trie, it begins with an empty
TrieNode as its root.

As we progress through this chapter, we’re going to add our trie operation
methods to this Trie class as well.

Storing Words
Now, the point of our trie is to store words. Let’s see how the following trie
stores the words, “ace,” “bad,” and “cat” as shown in the diagram on page 308.

This trie stores the three words by turning each character of each word into
its own trie node. If you start with the root node and follow its "a" key, for
example, it points to a child node containing a key of "c". The "c" key, in turn,
points to a node that contains a key of "e". When we string these three char-
acters together, we get the word "ace".

With this pattern, you can see how the trie also stores the words "bad" and "cat".
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You’ll note that the final characters in these words actually have children
nodes of their own. If you look at the "e" node from the word "ace", for example,
you can see that the "e" points to a child node that contains a hash table with
a key of "*", an asterisk. (The value doesn’t actually matter, so it can simply
be null.) This indicates we’ve reached the end of a word, and that "ace",
therefore, is a complete word. The need for this "*" key will become more
apparent shortly.

Now, here’s where tries become even more interesting. Let’s say we want to
also store the word "act". To do this, we keep the existing "a" and "c" keys that
already exist, but we add one new node containing the key of "t". Look at the
following diagram:
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As you can see, the bolded node’s hash table now contains two children nodes,
an "e" and a "t". By doing this, we indicate that both "ace" and "act" are valid
dictionary words.

To make things easier to visualize going forward, we are going to represent
our tries using a simpler diagram. Here is the same trie using this new format:

In this diagram style, we place each hash table key next to an arrow pointing
to its child node.

The Need for the Asterisk
Let’s say we want to store the words “bat” and “batter” in a trie. This is an
interesting case, since the word “batter” actually contains the word “bat.”
Here’s how we handle this:
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The first "t" points to a node that has two keys. One key is a "*" key (with a
null value), while the other is a "t" whose value points to another node. This
indicates that "bat" is itself a word, even though it’s also a prefix of the longer
word, "batter".

Note that in this diagram, we’re not using classic hash table syntax anymore,
but a condensed syntax so as to save space. We’ve used curly braces to indi-
cate that the node contains a hash table. However, the {*, "t"} is not a key-
value pair, but simply two keys. The "*" key has a null value, and the "t" key
has the next node as its value.

This is why those "*" are critical. We need them to indicate when parts of a
word are also words themselves.

Let’s bring this all together with a more complex example. Here is a trie that
contains the words “ace,” “act,” “bad,” “bake,” “bat,” “batter,” “cab,” “cat,”
“catnap,” and “catnip”:

Tries used in real applications may contain thousands of words. If they don’t
contain the entire English language, they at least contain the most common
words.
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In order to build our autocomplete feature, let’s first analyze the basic trie
operations.

Trie Search
The most classic trie operation is search, namely, determining whether a
string is found in the trie. There are two flavors of search: we can search to
see whether the string is a complete word, or we can search to see whether
the string is at least a word prefix (that is, the beginning of a word). These
two versions are similar, but we’ll implement the latter one, where our search
will look for prefixes. This search will end up finding complete words as well,
since a complete word is at least as good as a prefix.

The algorithm for prefix search performs the following steps (they’ll become
clearer when we walk though an example that follows):

1. We establish a variable called currentNode. At the beginning of our algorithm,
this points to the root node.

2. We iterate over each character of our search string.

3. As we point to each character of our search string, we look to see if the
currentNode has a child with that character as a key.

4. If it does not, we return None, as it means our search string does not exist
in the trie.

5. If the currentNode does have a child with the current character as the key,
we update the currentNode to become that child. We then go back to Step
2, continuing to iterate over each character in our search string.

6. If we get to the end of our search string, it means we’ve found our search
string.

Let’s see this in action by searching for the string "cat" in our trie from earlier.

Setup: We set the currentNode to be the root node. (The currentNode is indicated in
bold in the diagrams on the following pages.) We also point to the first character
of our string, which is the "c" as shown in the top diagram on page 312.

Step 1: Since the root node has "c" as a child key, we update the currentNode
to become that key’s value. We also continue iterating through the characters
in our search string, so we point to the next character, which is the "a" as
shown in the bottom diagram on page 312.
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Step 2: We inspect the currentNode for a child with the key of "a". It has one, so
we make that child the new currentNode. We then proceed to search for the next
character in our string, which is the "t":

Step 3: We’re now pointing to the "t" of our search string. Since the currentNode
has a "t" child, we follow it as shown in the diagram on page 314.

Since we’ve reached the end of our search string, it means we’ve found "cat"
in our trie.

Code Implementation: Trie Search
Let’s implement trie search by adding a search method to our Trie class:

def search(self, word):
currentNode = self.root

for char in word:
# If the current node has child key with current character:
if currentNode.children.get(char):
# Follow the child node:
currentNode = currentNode.children[char]

else:
# If the current character isn't found among
# the current node's children, our search word
# must not be in the trie:
return None

return currentNode
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Our search method accepts a string that represents the word (or prefix) we’re
searching for.

First, we establish the root node as our currentNode:

currentNode = self.root

Then, we iterate over each character of our search word:

for char in word:

Within each round of the loop we check whether the current node has any
children with the current character as the key. If there is such a child, we
update the current node to be the child node:

if currentNode.children.get(char):
currentNode = currentNode.children[char]

If there is no such child, we return None, as it means we’ve hit a dead end,
and our search word is not contained in the trie.

If we get past the end of the loop, it means we’ve found the entire word in our
trie. In this case, we return the currentNode. The reason we return the current
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node, as opposed to just returning True, is to help us with the autocomplete
feature, as I’ll explain when we get there.

The Efficiency of Trie Search
The great thing about trie search is that it’s incredibly efficient.

Let’s analyze the number of steps it takes.

In our algorithm, we focus on each character of our search string one at a
time. As we do so, we use each node’s hash table to find the appropriate child
node in one step. As you know, a hash table lookup takes just O(1) time. It
turns out, then, that our algorithm takes as many steps as there are characters
in our search string.

This can be much faster than using binary search on an ordered array.
Binary search is O(log N), with N being the number of words in our dictio-
nary. Trie search, on the other hand, takes only as many steps as the
number of characters in our search term. For a word like “cat,” that’s just
three steps.

Expressing trie search in terms of Big O is slightly tricky. We can’t quite call
it O(1), since the number of steps isn’t constant, as it all depends on the
search string’s length. And O(N) can be misleading, since N normally refers
to the amount of data in the data structure. This would be the number of
nodes in our trie, which is a much greater number than the number of
characters in our search string.

Most references have decided to call this O(K), where K is the number of
characters in our search string. Any letter other than N would have worked
here, but K it is.

Even though O(K) isn’t constant, as the size of the search string can vary,
O(K) is similar to constant time in one important sense. Most non-constant
algorithms are tied to the amount of data at hand. That is, as N data increases,
the algorithm slows down. With an O(K) algorithm, though, our trie can grow
tremendously, but that will have no affect on the speed of our search. An O(K)
algorithm on a string of three characters will always take three steps, no
matter how large the trie is. The only factor that affects our algorithm’s speed
is the size of our input, rather than all the available data. This makes our
O(K) algorithm extremely efficient.
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While search is the most common type of operation performed on tries, it’s
difficult to test drive it without populating our trie with data, so let’s tackle
insertion next.

Trie Insertion
Inserting a new word into a trie is similar to searching for an existing word.

Here’s how the algorithm goes:

1. We establish a variable called currentNode. At the beginning of our algorithm,
this points to the root node.

2. We iterate over each character of our search string.

3. As we point to each character of our search string, we look to see if the
currentNode has a child with that character as a key.

4. If it does, we update the currentNode to become that child node and we go
back to Step 2, moving on to the next character of our search string.

5. If the currentNode does not have a child node that matches the current
character, we create such a child node and update the currentNode to be
this new node. We then go back to Step 2, moving on to the next character
of our search string.

6. After we insert the final character of our new word, we add a "*" child to
the last node to indicate the word is complete.

Let’s see this in action by inserting the word “can” into our earlier exam-
ple trie.

Setup: We set the currentNode to be the root node. We also point to the first
character of our string, which is the "c" as shown in the top diagram on
page 317.

Step 1: The root node has a "c" child key, so we turn that key’s value into the
currentNode. We also point to the next character of our new word, the "a" as
shown in the bottom diagram on page 317.

Step 2: We inspect the currentNode for a child with the key of "a". There is one,
so we make that the currentNode and point to the next character of our string,
which is the "n" as shown in the top diagram on page 318.

Step 3: The currentNode does not have an "n", so we need to create that child as
shown in the bottom diagram on page 318.
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Step 4: We’re done inserting "can" into our trie, so we cap it off with a child of "*":

And we’re done!

Code Implementation: Trie Insertion
Here is the insert method for our Trie class. You’ll note that most of it looks the
same as the earlier search method:

def insert(self, word):
currentNode = self.root

for char in word:
# If the current node has child key with current character:
if currentNode.children.get(char):
# Follow the child node:
currentNode = currentNode.children[char]

else:
# If the current character isn't found among
# the current node's children, we add
# the character as a new child node:
newNode = TrieNode()
currentNode.children[char] = newNode

# Follow this new node:
currentNode = newNode

# After inserting the entire word into the trie,
# we add a * key at the end:
currentNode.children["*"] = None
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The first part of this method is the same as search. It diverges when the current-
Node doesn’t have the child that matches the current character. When this is
the case, we add a new key-value pair to the currentNode’s hash table, with the
key being the current character, and the value being a new TrieNode:

newNode = TrieNode()
currentNode.children[char] = newNode

We then update the currentNode to be this new node:

currentNode = newNode

We then repeat the loop until we’re done inserting our new word. Once we’re
done, we add a "*" key to the final node’s hash table, with the value as None:

currentNode.children["*"] = None

Like search, trie insertion takes about O(K) steps. If we count the adding of
the "*" at the end, it’s technically K + 1 steps, but because we drop the con-
stants, we express the speed as O(K).

Building Autocomplete
We’re just about ready to build a real autocomplete feature. To make this a
tad easier, let’s first build a slightly simpler function that we’ll use to help us
with this feature.

Collecting All the Words
The next method we’re going to add to our Trie class is a method that returns
an array of all the words in the trie. Now, it’s rare that we’d actually want to
list the entire dictionary. However, we’re going to allow this method to accept
any node of the trie as an argument so that it can list all the words that start
from that node.

The following method, called collectAllWords, collects a list of all the trie’s words
starting from a particular node:

def collectAllWords(self, node=None, word="", words=[]):
# This method accepts three arguments. The first is the
# node whose descendants we're collecting words from.
# The second argument, word, begins as an empty string,
# and we add characters to it as we move through the trie.
# The third argument, words, begins as an empty array,
# and by the end of the function will contain all the words
# from the trie.
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# The current node is the node passed in as the first parameter,
# or the root node if none is provided:
currentNode = node or self.root

# We iterate through all the current node's children:
for key, childNode in currentNode.children.items():

# If the current key is *, it means we hit the end of a
# complete word, so we can add it to our words array:
if key == "*":

words.append(word)
else: # If we're still in the middle of a word:

# We recursively call this function on the child node.
self.collectAllWords(childNode, word + key, words)

return words

This method relies heavily on recursion, so let’s break it down carefully.

The method accepts three primary arguments: node, word, and words. The node
argument allows us to specify which node in the trie to start collecting the
words from. If we don’t pass in this argument, our method will start from the
root node, collecting every word in the entire trie.

The word and words arguments are used as part of the method’s recursion, so
we aren’t expected to specify them at the outset. By default, the words argument
is an empty array. As we discover complete words in our trie, we add those
strings to this array, which is what we return at the end of our function.

The word argument defaults to an empty string. As we move through the trie,
we add characters to this word. When we reach a "*", the word is considered
complete and we add it to the words array.

Let’s now break down each line of code.

The first thing we do is set the currentNode:

currentNode = node or self.root

By default, the currentNode will be the root node, unless we passed in some
other node as the method’s first parameter. Let’s assume for now that the
currentNode is indeed the root node.

Next, we begin a loop that iterates over all the key-value pairs in the currentNode’s
children hash table:

for key, childNode in currentNode.children.items():
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In each iteration of the loop, the key is always a single-character string, and
the value, childNode, is another instance of TrieNode.

Let’s skip to the else clause, as this is where the magic happens:

self.collectAllWords(childNode, word + key, words)

This line recursively calls the collectAllWords function, with the childNode passed
in as the first argument. This is our way of traversing the trie and collecting
the words as we go.

The second argument we pass in is word + key, making it so that as we move
through each node of the trie, we add the key to the current word, building
up the word as we go.

The third argument is the words array. By passing this array along in each
recursive call, we’re able to collect the complete words into it and build this
list as we traverse the trie.

The base case is when we reach a "*" key, indicating we’ve completed a word.
At this point, we can add the word to the words array:

if key == "*":
words.append(word)

At the end of the function, we return the words array. If we called this function
without passing in a specific node, this will return the complete list of words
in the trie.

Recursion Walk-Through
Let’s run through a quick visual example of this using a simple trie. This trie
holds two words, “can” and “cat”:
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Call 1: In the very first call of collectAllWords, the currentNode starts out at the
root, word is an empty string, and the words array is empty:

We iterate over the root node’s children. The root node happens to only have
one child key, the "c", which points to a child node. Before we recursively call
collectAllWords on this child node, we need to add the current call to the call
stack.

We then recursively call collectAllWords on the "c" child node. We also pass in
word + key as the word argument. word + key is the string "c", since word was
empty, and the key is "c". And we also pass in the words array, which is still
empty. The next image shows where we are once we make this recursive call:

Call 2: We iterate over the current node’s children. It has just one child key,
the "a". Before recursively calling collectAllWords on the respective child node,
we will add the current call to the call stack. In the diagram that follows, we
call this current node the "a" node, meaning it’s the node that has "a" as a
child.
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We then recursively call collectAllWords. We pass in the child node, "ca" (which
is word + key), and the still-empty words array:

Call 3: We iterate over the current node’s children, which are "n" and "t". We’ll
start with the "n" first. Before making any recursive calls, though, we need to
first add the current call to our call stack. In the diagram that follows, we call
this current node the "n/t" node, meaning it’s the node that has both "n" and
"t" as children.

When we then call collectAllWords on the "n" child, and we also pass in "can" as
the word argument, as well as the empty words array:

Call 4: We iterate over the current node’s children. In this case, it has only
one child, which is the "*". This is our base case. We add the current word,
which is "can", to the words array:
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Call 5: We now pop the top call from our call stack, which was the call of col-
lectAllWords on the node with the children keys of "n" and "t", and where word
was "ca". This means we now return to that call (as we return to whatever call
we pop from the call stack):

There’s a subtle but important point to make here. In the current call, word
is back to "ca", since that was the word argument when we first initiated this
call. However, the words array now contains the word "can", even though the
array was empty when we originally made this call.

Here’s the reason why this works. In many programming languages, an array
can be passed up and down a call stack because the array remains the same
object in memory even when we add new values to it. (The same concept applies
to hash tables as well, which was how we were able to pass it along as part of
the memoization technique you learned about in Dynamic Programming).

When a string is modified, on the other hand, the computer actually creates
a new string instead of truly modifying the original string object. Therefore,
when we updated word by changing it from "ca" to "can", the previous call still
only has access to the original string, "ca". (In some languages, this may work
slightly differently. For our purposes, though, this is the general idea.)

In any case, we’re in the middle of a call where words contains the word "can",
and word is "ca".

Call 6: At this point, we’ve already iterated over the "n" key, so the loop is now
up to the "t" key. Before recursively calling collectAllWords on the "t" child node,
we need to add the current call to the call stack again. (This actually will be
the second time we add this call to the call stack. We previously popped it
off, but now we’re going to add it again.)
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When we call collectAllWords on the "t" child, we pass in "cat" as the word argument
(since that is word + key) , and the words array:

Call 7: We iterate over the current node’s children. The only child here is "*",
so we add the current word of "cat" to our words array:

At this point, we can unwind the call stack, popping off each call and complet-
ing their execution, which all end by returning the words array. The final call
we complete—which was the first call to kick this all off— returns words as
well. Because this contains the strings "can" and "cat", we’ve successfully
returned the trie’s entire word list.

Completing Autocomplete
We’re finally ready to implement our autocomplete feature. In fact, we’ve
pretty much done all the legwork already. All we need to do is put the pieces
together.

Here is a basic autocomplete method that we can drop into our Trie class:

def autocomplete(self, prefix):
currentNode = self.search(prefix)
if not currentNode:

return None
return self.collectAllWords(currentNode)

Yes, that’s it. By using our search method and collectAllWords method together,
we can autocomplete any prefix. Here’s how this works.
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The autocomplete method accepts the prefix parameter, which is the string of
characters the user begins typing in.

First, we search the trie for the existence of the prefix. If the search method
doesn’t find the prefix in the trie, it returns None. However, if the prefix is
found in the trie, the method returns the node in the trie that represents the
final character in the prefix.

We noted earlier that we could have simply had the search method return True
once it finds the word. The reason why we had it return the final node was
so that we could use the search method to help us with the autocomplete
feature.

Our autocomplete method continues by calling the collectAllWords method on the
node returned by the search method. This finds and collects all words that
stem from that final node, which represent all the complete words that can
be appended to the original prefix to form a word.

Our method finally returns an array of all possible endings to the user’s prefix,
which we could then display to the user as possible autocomplete options.

Tries with Values: A Better Autocomplete
If we think about it, a good autocomplete feature isn’t necessarily going to
display every possible word the user might be intending to type. Showing,
say, sixteen options would be overwhelming to the user, so we’d rather show
just the most popular words from the available list.

For example, if the user starts typing “bal,” the user might be intending to
type “ball,” “bald,” or “balance.” Now, it’s also possible that the user is typing
the obscure word “balter” (which means to dance clumsily, if you wanted to
know). However, odds are that “balter” is not the intended word, since it’s not
a common word.

In order to display the most popular word options, we somehow need to store
the word popularity data in our trie as well. And we’re in luck, since we only
need to make a slight modification to our trie to accomplish this.

In our current trie implementation, every time we’ve set a "*" key, we’ve made
its value null. This is because we’ve only ever paid attention to the "*" key;
the value carried no significance.

However, we can take advantage of these values to store additional data about
the words themselves, such as how popular they are. To keep things simple,
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let’s work with a simple range of 1 to 10, with 1 being the rarest kind of word,
and 10 being an extremely popular word.

Let’s say “ball” is a very popular word and has a popularity score of 10. The
word “balance” may be slightly less popular, and have a score of 9. The word
“bald” is used even less often, and has a score of 7. And since “balter” is a
hardly-known word, we’ll give it a score of 1. We can store these scores in the
trie this way:

By using a number as the value of each "*" key, we can effectively store each
word’s popularity score. When we now collect all the words of the trie, we can
collect their scores along with them and then sort the words in order of their
popularity. We can then choose to only display the most popular word options.

Wrapping Up
We’ve now covered three types of trees: binary search trees, heaps, and tries.
There are many other types of trees as well, such as AVL trees, Red-Black
trees, 2-3-4 trees, and plenty of others. Each tree has unique traits and
behaviors that can be leveraged for specific situations. I encourage you to
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learn more about these various trees, but in any case, you now have a taste
for how different trees can solve different problems.

It’s now time for the final data structure of the book. Everything you’ve learned
about trees will help you understand graphs. Graphs are helpful in so many
different situations, and that’s why they’re so popular. So, let’s dive in.

Exercises
The following exercises provide you with the opportunity to practice with tries.
The solutions to these exercises are found in the section, Chapter 17, on
page 459.

1. List all the words stored in the following trie:

2. Draw a trie that stores the following words: “get,” “go,” “got,” “gotten,”
“hall,” “ham,” “hammer,” “hill,” and “zebra.”

3. Write a function that traverses each node of a trie and prints each key,
including all "*" keys.

4. Write an autocorrect function that attempts to replace a user’s typo with
a correct word. The function should accept a string that represents text
a user typed in. If the user’s string is not in the trie, the function should
return an alternative word that shares the longest possible prefix with
the user’s string.

For example, let’s say our trie contained the words “cat,” “catnap,” and
“catnip.” If the user accidentally types in “catnar,” our function should
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return “catnap,” since that’s the word from the trie that shares the longest
prefix with “catnar.” This is because both “catnar” and “catnap” share a
prefix of “catna,” which is five characters long. The word “catnip” isn’t as
good, since it only shares the shorter, four-character prefix of “catn” with
“catnar.”

One more example: if the user types in “caxasfdij,” the function could
return any of the words “cat,” “catnap,” and “catnip,” since they all share
the same prefix of “ca” with the user’s typo.

If the user’s string is found in the trie, the function should just return
the word itself. This should be true even if the user’s text is not a complete
word, as we’re only trying to correct typos, not suggest endings to the
user’s prefix.
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CHAPTER 18

Connecting Everything with Graphs
Let’s say we’re building a social network that allows people to be friends with
one another. These friendships are mutual, so if Alice is friends with Bob,
then Bob is also friends with Alice.

How can we best organize this data?

One basic approach might be to use a two-dimensional array that stores the
list of friendships:

friendships = [
["Alice", "Bob"],
["Bob", "Cynthia"],
["Alice", "Diana"],
["Bob", "Diana"],
["Elise", "Fred"],
["Diana", "Fred"],
["Fred", "Alice"]

]

Here, each subarray containing a pair of names represents a “friendship”
between two people.

Unfortunately, with this approach, there’s no quick way to see who Alice’s
friends are. If we look carefully, we can see that that Alice is friends with Bob,
Diana, and Fred. But for the computer to determine this, it would have to
comb through all the relationships in the list, since Alice can be present in
any of them. This is O(N), which is very slow.

Thankfully, we can do much, much better than this. With a data structure
known as a graph, we can find Alice’s friends in just O(1) time.
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Graphs
A graph is a data structure that specializes in relationships, as it easily conveys
how data is connected.

Here is a visualization of our social network, displayed as a graph:

Each person is represented by a node, and each line indicates a friendship
with another person. If you look at Alice, for example, you can see that she
is friends with Bob, Diana, and Fred, since her node has lines that connect
to their nodes.

Graphs vs. Trees
You might have noticed that graphs look similar to trees, which we’ve dealt
with in the past few chapters. Indeed, trees are a type of graph. Both data
structures consist of nodes connected to each other.

So, what’s the difference between a graph and a tree?

Here’s the deal: while all trees are graphs, not all graphs are trees.

Specifically, for a graph to be considered a tree, it cannot have cycles, and
all nodes must be connected. Let’s see what that means.

A graph may have nodes that form what is known as a cycle, that is, nodes
that reference each other circularly. In the previous example, Alice is friends
with Diana, and Diana is connected to Bob, and Bob is connected…to Alice.
These three nodes form a cycle.

Trees, on the other hand, are not “allowed” to have cycles. If a graph has a
cycle, then it’s not a tree.
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Another characteristic specific to trees is that every node is somehow connect-
ed to every other node, even if the connections are indirect. However, it’s
possible for a graph to not be fully connected.

See the following graph:

In this social network, we have two pairs of friends. However, no one from
either pair are friends with anyone from the other pair. Additionally, we can
see that Vicky has no friends yet, as perhaps she signed up for this social
network just minutes ago. With trees, however, there’s never a node that’s
disconnected from the rest of the tree.

Graph Jargon
Graphs have a bit of their own technical jargon. We’re used to calling each
piece of data a node, but in “graph speak,” each node is called a vertex. The
lines between nodes, um—vertices, have their own name as well, and are
called edges. And vertices that are connected by an edge are said to be adja-
cent to each other. Some also refer to adjacent vertices as neighbors.

In our first graph, then, the vertices of “Alice” and “Bob” are adjacent to each
other, since they share an edge.

I mentioned earlier that it’s possible for a graph to have a vertex that isn’t
connected at all to other vertices. However, a graph where all the vertices are
connected in some way is said to be a connected graph.

The Bare-Bones Graph Implementation
For the sake of code organization, we’re going to use object-oriented classes
to represent our graphs, but it’s worth noting that we can also use a basic
hash table (see Blazing Fast Lookup with Hash Tables) to represent a rudimen-
tary graph. Here’s a bare-bones Ruby implementation of our social network
using a hash table:
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friends = {
"Alice" => ["Bob", "Diana", "Fred"],
"Bob" => ["Alice", "Cynthia", "Diana"],
"Cynthia" => ["Bob"],
"Diana" => ["Alice", "Bob", "Fred"],
"Elise" => ["Fred"],
"Fred" => ["Alice", "Diana", "Elise"]

}

With a graph, we can look up Alice’s friends in O(1), because we can look up
the value of any key in the hash table with one step:

friends["Alice"]

This immediately returns the array containing all of Alice’s friends.

Directed Graphs
In some social networks, relationships are not mutual. For example, a social
network may allow Alice to “follow” Bob, but Bob doesn’t have to follow Alice
back. Let’s construct a new graph that demonstrates who follows whom:

This is known as a directed graph. In this example, the arrows indicate the
direction of the relationship. Alice follows both Bob and Cynthia, but no one
follows Alice. We can also see that Bob and Cynthia follow each other.

We can still use our simple hash-table implementation to store this data:

followees = {
"Alice" => ["Bob", "Cynthia"],
"Bob" => ["Cynthia"],
"Cynthia" => ["Bob"]

}

The only difference here is that we are using the arrays to represent the people
each person follows.

Object-Oriented Graph Implementation
I demonstrated how a hash table can be used to implement a graph, but going
forward, we’ll work with an object-oriented approach.
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Here’s the beginning of an object-oriented graph implementation, using Ruby:

class Vertex
attr_accessor :value, :adjacent_vertices

def initialize(value)
@value = value
@adjacent_vertices = []

end

def add_adjacent_vertex(vertex)
@adjacent_vertices << vertex

end
end

The Vertex class has two primary attributes, the value and an array of adjacent_ver-
tices. In our social network example, each vertex represents a person, and the
value might be a string containing the person’s name. With a more complex
application, we’d probably want to store multiple pieces of data inside a vertex,
such as the person’s additional profile information.

The adjacent_vertices array contains all the vertices this vertex connects to. We
can add a new adjacent vertex to a given vertex using the add_adjacent_vertex
method.

Here’s how we can use this class to build a directed graph representing who
follows whom in this image:

alice = Vertex.new("alice")
bob = Vertex.new("bob")
cynthia = Vertex.new("cynthia")

alice.add_adjacent_vertex(bob)
alice.add_adjacent_vertex(cynthia)
bob.add_adjacent_vertex(cynthia)
cynthia.add_adjacent_vertex(bob)

Now, if we were building an undirected graph for the social network (where
all friendships are mutual), it would make sense if we add Bob to Alice’s list
of friends, we should automatically add Alice to Bob’s list of friends as well.
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To do this, we can modify our add_adjacent_vertex method as follows:

def add_adjacent_vertex(vertex)
return if adjacent_vertices.include?(vertex)
@adjacent_vertices << vertex
vertex.add_adjacent_vertex(self)

end

Let’s say we’re calling this method on Alice, and adding Bob to her list of
friends. As with the previous version, we use @adjacent_vertices << vertex to add
Bob to Alice’s list of @adjacent_vertices. However, we then call this very method
on Bob’s vertex, with vertex.add_adjacent_vertex(self). This adds Alice to Bob’s list
of friends as well.

Now, this would end up in an infinite loop, since Alice and Bob would continue
to call add_adjacent_vertex on each other forever. Because of this, we added the
line, return if adjacent_vertices.include?(vertex), which cuts the method short if, say,
Alice already has Bob in her list of friends.

To keep things simple going forward, we’re going to work with graphs that are
connected (again, meaning all vertices are connected to each other in some
way). With such graphs, we can use this one Vertex class to achieve all the algo-
rithms going forward. The general idea is if we have access to just one vertex,
we can find all other vertices from there, since all the vertices are connected.

However, it’s important to point out that if we are dealing with a disconnected
graph, it may be impossible to discover all the vertices just from one vertex. In
this case, we may need to store all the graph vertices in some additional data
structure, such as an array, so that we have access to all of them. (It’s common
to see graph implementations use a separate Graph class to contain this array.)

Adjacency List vs. Adjacency Matrix

Our implementation of the graph uses a simple list (in the form of an array) to store a
vertex’s adjacent vertices. This approach is known as the adjacency list implementation.

However, it’s good to know that there is another implementation that uses two-
dimensional arrays instead of lists. This alternative approach is known as the adja-
cency matrix, and it can provide advantages in specific situations.

Both approaches are popular, and I’ve decided to stick with the adjacency list because
I find it to be more intuitive. However, I recommend you research the adjacency matrix
as well, as it can be useful and is particularly interesting.
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Graph Search
One of the most common graph operations is searching for a particular vertex.

Now, when dealing with graphs, the term “search” can have several connota-
tions. In the simplest sense, to “search” a graph means to find a particular
vertex somewhere within the graph. This would be similar to searching for a
value within an array or a key-value pair inside a hash table.

However, when applied to graphs, the term search usually has a more specific
connotation, and that is: if we have access to one vertex in the graph, we must
find another particular vertex that is somehow connected to this vertex.

For example, take a look at this example social network:

Let’s say we currently have access to Alice’s vertex. If we said that we will
search for Irena, it would mean that we are trying to find our way from Alice
to Irena.

Interestingly, you can see that there are two different paths we can take to
get from Alice to Irena.

The shorter path is pretty obvious as shown in the graph on page 338.
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That is, we can get from Alice to Irena in this sequence:

Alice -> Derek -> Gina -> Irena

However, we can take a slightly longer path to get to Irena as well:

This longer path is:

Alice -> Elaine -> Derek -> Gina -> Irena

The term path is an official graph term, and it means the specific sequence
of edges to get from one vertex to another.

Now, searching a graph (which you now know means getting from one vertex
to another) can be useful for a variety of use cases.

Perhaps the most obvious application for graph search is searching for a
particular vertex within a connected graph. When this is the case, search can
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be used to find any vertex within the entire graph even if we have access to
just one random vertex.

Another use for graph search is to discover whether two vertices are connected.
For example, we may want to know whether Alice and Irena are somehow
connected to each other in this network. A search would give us the answer.

Search can also be used even if we aren’t looking for one particular vertex.
That is, we can use graph search to merely traverse a graph, which can be
useful if we want to perform an operation on every vertex in the graph. You’ll
see shortly how this works.

Depth-First Search
There are two well-known approaches for graph search: depth-first search
and breadth-first search. Both approaches can get the job done, but each
provide unique advantages in particular situations. We’re going to start with
depth-first search, also referred to as DFS, because it’s actually quite similar
to the algorithm for binary tree traversal that we discussed back in Binary
Search Tree Traversal, on page 272. In fact, it’s also the same essential algo-
rithm that we saw in Filesystem Traversal, on page 156.

As mentioned earlier, graph search can be used to either find a particular
vertex, or it can be used to simply traverse the graph. We’re going to begin
by using depth-first search to traverse the graph, since that algorithm is
slightly simpler.

The key to any graph search algorithm is keeping track of which vertices we’ve
visited so far. If we don’t do this, we can end up in an infinite cycle. Take the
following graph, for example:

Here, Mohammed is friends with Felicia. And Felicia also happens to be friends
with Zeina. But Zeina is friends with Mohammed. So, our code would end up
going in circles unless we keep track of which vertices we’ve already traversed.

This problem didn’t occur when we dealt with trees (or filesystem traversal),
since trees can’t have cycles. But since a graph can have a cycle, we need to
address this issue now.
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One way to keep track of our visited vertices is by using a hash table. As we
visit each vertex, we add the vertex (or its value) as a key in the hash table
and assign it an arbitrary value, such as the boolean true. If a vertex is present
in the hash table, it means we’ve already visited it.

With this in mind, the depth-first search algorithm works as follows.

1. Start at any random vertex within the graph.

2. Add the current vertex to the hash table to mark it as having been visited.

3. Iterate through the current vertex’s adjacent vertices.

4. For each adjacent vertex, if the adjacent vertex has already been visited,
ignore it.

5. If the adjacent vertex has not yet been visited, recursively perform depth-
first search on that vertex.

Depth-First Search Walk-Through
Let’s see this in action.

In this walk-through, we’re going to start with Alice. In the following diagrams,
the vertex with lines around it is the current vertex. A check mark means
we’ve officially marked the vertex as having been visited (and added it to the
hash table).

Step 1: We start with Alice and give her a check mark to indicate that we’ve
officially visited her vertex:

Next up, we’ll iterate over Alice’s neighbors using a loop. These will be Bob,
Candy, Derek, and Elaine.
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The order of which neighbor to visit first doesn’t matter, so let’s just start
with Bob. He seems nice.

Step 2: We now perform depth-first search on Bob. Note this is making a
recursive call, as we’re already in the middle of a depth-first search of Alice.

As with all recursion, the computer needs to remember which function calls
it’s still in the middle of, so it first adds Alice to the call stack:

We can now begin the depth-first search on Bob, which makes Bob the current
vertex. We mark him as visited:

We then iterate over Bob’s adjacent vertices. These are Alice and Fred.

Step 3: Alice has already been visited, so we can ignore her.

Step 4: The only other neighbor, then, is Fred. We call the depth-first search
function on Fred’s vertex. The computer first adds Bob to the call stack to
remember that it’s actually still in the middle of searching Bob:

We now perform depth-first search on Fred. He is now the current vertex, so
we mark him as visited as shown in the graph on page 342.
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Next, we iterate over Fred’s adjacent vertices, which are Bob and Helen.

Step 5: Bob has already been visited, so we ignore him.

Step 6: The only remaining adjacent vertex is Helen. We recursively perform
depth-search first on Helen, so the computer first adds Fred to the call stack:

We now begin depth-first search on Helen. She’s the current vertex, so we
mark her as visited:
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Helen has two adjacent vertices: Fred and Candy.

Step 7: We’ve already visited Fred, so we can ignore him.

Step 8: Candy has not yet been visited, so we recursively perform depth-search
on Candy. First, though, Helen gets added to the call stack:

We perform depth-first search on Candy. She is now the current vertex, and
we mark her as visited:

Candy has two adjacent vertices: Alice and Helen.

Step 9: We’ve already visited Alice, so we can ignore her.

Step 10: We’ve already visited Helen, so we can ignore her as well.

Since Candy has no other neighbors, we’re done performing depth-first search
on Candy. At this point, then, the computer begins to unwind the call stack.

First, it pops off Helen from the call stack. We’ve already iterated over all her
neighbors, so the depth-first search on Helen is complete.

The computer pops off Fred. We’ve iterated over all his neighbors too, so we’re
done searching him as well.

The computer pops off Bob, but we’re done with him as well.
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The computer then pops Alice off the call stack. Within our search of Alice,
we were in the middle of looping through all of Alice’s neighbors. Now, this
loop already iterated over Bob. (This was Step 2.) This leaves Candy, Derek,
and Elaine.

Step 11: Candy has already been visited, so there’s no need to perform search
on her.

However, we have not yet visited Derek or Elaine.

Step 12: Let’s proceed by recursively performing depth-first search on Derek.
The computer adds Alice to the call stack once again:

The depth-first search of Derek now begins. Derek is the current vertex, so
we mark him as visited:

Derek has three adjacent vertices: Alice, Elaine, and Gina.

Step 13: Alice has already been visited, so we don’t need to perform another
search on her.

Step 14: Let’s visit Elaine next, by recursively performing depth-first search
on her vertex. Before we do, the computer adds Derek to the call stack:
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We now perform depth-first search on Elaine. We mark Elaine as visited:

Elaine has two adjacent vertices: Alice and Derek.

Step 15: Alice has already been visited, so there’s no need to perform another
search on her.

Step 16: Derek, too, has already been visited.

Since we iterated over all Elaine’s neighbors, we’re done searching Elaine.
The computer now pops Derek from the call stack and loops over his
remaining adjacent vertices. In this case, Gina is the final neighbor to visit.

Step 17: We never visited Gina before, so we recursively perform depth-first
search on her vertex. First, though, the computer adds Derek to the call stack
again:

We begin our depth-first search of Gina, and mark her as visited as shown
in the graph on page 346.

Gina has two neighbors: Derek and Gina.

Step 18: Derek has already been visited.
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Step 19: Gina has one unvisited adjacent vertex, namely, Irena. Gina gets
added to the call stack so that we can recursively perform depth-first search
on Irena:

We begin search on Irena, and mark her as visited:

We iterate over Irena’s neighbors. Irena has only one neighbor: Gina.

Step 20: Gina has already been visited.
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The computer then unwinds the call stack, popping off each vertex one by
one. However, since each vertex on the call stack has already iterated over
all of its neighbors, there’s nothing more for the computer to do with each
vertex.

This means we’re done!

Code Implementation: Depth-First Search
Here is an implementation of depth-first traversal:

def dfs_traverse(vertex, visited_vertices={})
# Mark vertex as visited by adding it to the hash table:
visited_vertices[vertex.value] = true

# Print the vertex's value, so we can make sure our traversal really works:
puts vertex.value

# Iterate through the current vertex's adjacent vertices:
vertex.adjacent_vertices.each do |adjacent_vertex|

# Ignore an adjacent vertex if we've already visited it:
next if visited_vertices[adjacent_vertex.value]

# Recursively call this method on the adjacent vertex:
dfs_traverse(adjacent_vertex, visited_vertices)

end
end

Our dfs_traverse method accepts a single vertex and optionally can accept the
visited_vertices hash table. The first time we call this function, the visited_vertices
starts out as empty. As we visit vertices, though, we populate this hash table
with the vertices we’ve visited, and pass the hash table with each recursive call.

The first thing we do within the function is mark the current vertex as visited.
We do this by adding the vertex’s value to the hash:

visited_vertices[vertex.value] = true

We then optionally print the vertex’s value just to get feedback that we’ve
truly traversed it:

puts vertex.value

Next, we iterate over all the adjacent vertices of the current vertex:

vertex.adjacent_vertices.each do |adjacent_vertex|

If the adjacent vertex we’re iterating over has already been visited, we just
skip to the next round of the loop:

next if visited_vertices[adjacent_vertex.value]
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Otherwise, we recursively call dfs_traversal on the adjacent vertex:

dfs_traverse(adjacent_vertex, visited_vertices)

Again, we also pass in the visited_vertices hash table so the ensuing call has
access to it.

If we want to use depth-first search to actually search for a particular vertex,
we can use a modified version of the previous function:

def dfs(vertex, search_value, visited_vertices={})
# Return the original vertex if it happens to
# be the one we're searching for:
return vertex if vertex.value == search_value

visited_vertices[vertex.value] = true

vertex.adjacent_vertices.each do |adjacent_vertex|
next if visited_vertices[adjacent_vertex.value]

# If the adjacent vertex is the vertex we're searching for, just return
# that vertex:
return adjacent_vertex if adjacent_vertex.value == search_value

# Attempt to find the vertex we're searching for by recursively calling
# this method on the adjacent vertex:
vertex_were_searching_for =
dfs(adjacent_vertex, search_value, visited_vertices)

# If we were able to find the correct vertex using the above recursion,
# return the correct vertex:
return vertex_were_searching_for if vertex_were_searching_for

end

# If we haven't found the vertex we're searching for:
return nil

end

This implementation also recursively calls itself for each vertex, but returns
the vertex_were_searching_for if it finds the correct vertex.

Breadth-First Search
Breadth-first search, often abbreviated BFS, is another way to search a graph.
Unlike depth-first search, breadth-first search does not use recursion. Instead,
the algorithm revolves around our old friend, the queue. As you’ll recall, the
queue is a FIFO data structure, and whatever goes in first, comes out first.

Here is the algorithm for breadth-first search. As with our walkthrough of
depth-first search, we’re going to focus on graph traversal using breadth-first
search. That is, we’re going to visit each vertex from our example social
network.
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Here is the algorithm for breadth-first traversal:

1. Start at any vertex within the graph. We’ll call this the “starting vertex.”

2. Add the starting vertex to the hash table to mark it as having been visited.

3. Add the starting vertex to a queue.

4. Start a loop that runs while the queue isn’t empty.

5. Within this loop, remove the first vertex from the queue. We’ll call this
the “current vertex.”

6. Iterate over all the adjacent vertices of current vertex.

7. If the adjacent vertex was already visited, ignore it.

8. If the adjacent vertex has not yet been visited, mark it as visited by adding
it to a hash table, and add it to the queue.

9. Repeat this loop (starting from Step 4) until the queue is empty.

Breadth-First Search Walk-Through
This isn’t as complex as it seems. Let’s walk through the traversal step by step.

To set things up, let’s work with Alice as our starting vertex. We’ll mark her
as visited and add her to the queue:

We now begin the core algorithm.

Step 1: We remove the first vertex from the queue and it make it the current
vertex. This would be Alice, as she’s currently the only item in the queue. So,
at this point, the queue is actually empty.
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Since Alice is the current vertex, we proceed to iterate over Alice’s adjacent
vertices.

Step 2: We’ll start with Bob. We’ll mark him as visited, and add him to the
queue:

Note that Alice is still the current vertex, as indicated by the lines around her.
However, we’ve still marked Bob as visited and added him to the queue.

Step 3: We move on to Alice’s other adjacent vertices. Let’s choose Candy, so
we’ll mark her as visited and add her to the queue:
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Step 4: We then mark Derek as visited and add him to the queue:

Step 5: We do the same with Elaine:

Step 6: Now that we’ve iterated through all the neighbors of the current vertex
(Alice), we remove the first item from the queue and make it the current vertex.
In our case, Bob is at the front of the queue, so we dequeue him and make
him the current vertex as shown in the graph on page 352.
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Since Bob is the current vertex, we iterate over all of his adjacent vertices.

Step 7: Alice has already been visited, so we ignore her.

Step 8: Fred has not yet been visited, so we mark him as visited and add him
to the queue:
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Step 9: Bob has no more adjacent vertices. This means we pull the first item
out of the queue and make it the current vertex. This would be Candy:

We iterate over Candy’s adjacent vertices.

Step 10: Alice has already been visited, so we ignore her again.

Step 11: Helen, on the other hand, has not yet been visited. We mark Helen
as visited and add her to the queue:
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Step 12: We’re done iterating over Candy’s adjacent vertices, so we pull the
first item from the queue (Derek), and make it the current vertex:

Derek has three adjacent vertices, so we iterate over them.

Step 13: Alice has already been visited, so we ignore her.

Step 14: The same goes for Elaine.

Step 15: This leaves Gina, so we mark her as visited and add her to the queue:
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Step 16: We’ve visited all of Derek’s immediate friends, so we take Elaine off
the queue and designate her as the current vertex:

Step 17: We iterate over Elaine’s adjacent vertices, starting with Alice. She’s
already been visited, though.

Step 18: We’ve already visited Derek, too.

Step 19: We pull the next person off the queue (Fred), and turn him into the
current vertex:
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Step 20: We iterate over Fred’s neighbors. Bob has already been visited.

Step 21: Helen also has already been visited.

Step 22: Since Helen is at the front of the queue, we dequeue Helen and make
her the current vertex:

Step 23: Helen has two adjacent vertices. We’ve already visited Fred.

Step 24: We’ve also already visited Candy.

Step 25: We remove Gina from the queue and make her the current vertex:
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Step 26: We iterate over Gina’s neighbors. Derek has already been visited.

Step 27: Gina has one unvisited adjacent friend, Irena, so we visit Irena and
add her to the queue:

We’re now done iterating over Gina’s neighbors.

Step 28: We remove the first (and only) person from the queue, which is Irena.
She becomes the current vertex:
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Step 29: Irena has just one adjacent vertex, Gina, but Gina has already been
visited.

We should now remove the next item from the queue, but the queue is empty!
This means our traversal is complete.

Code Implementation: Breadth-First Search
Here is our code for breadth-first traversal:

def bfs_traverse(starting_vertex)
queue = Queue.new

visited_vertices = {}
visited_vertices[starting_vertex.value] = true
queue.enqueue(starting_vertex)

# While the queue is not empty:
while queue.read

# Remove the first vertex off the queue and make it the current vertex:
current_vertex = queue.dequeue

# Print the current vertex's value:
puts current_vertex.value

# Iterate over current vertex's adjacent vertices:
current_vertex.adjacent_vertices.each do |adjacent_vertex|

# If we have not yet visited the adjacent vertex:
if !visited_vertices[adjacent_vertex.value]

# Mark the adjacent vertex as visited:
visited_vertices[adjacent_vertex.value] = true

# Add the adjacent vertex to the queue:
queue.enqueue(adjacent_vertex)

end
end

end
end

The bfs_traverse method accepts a starting_vertex, which is the vertex we begin
our search from.

We start by creating the queue that fuels our algorithm:

queue = Queue.new

We also create the visited_vertices hash table in which we keep track of which
vertices we’ve already visited:

visited_vertices = {}
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We then mark the starting_vertex as visited and add it to the queue:

visited_vertices[starting_vertex.value] = true
queue.enqueue(starting_vertex)

We begin a loop that runs as long as the queue isn’t empty:

while queue.read

We remove the first item from the queue and make it the current vertex:

current_vertex = queue.dequeue

Next, we print the vertex’s value just to see in our console that our traversal
is working correctly:

puts current_vertex.value

We then iterate over all the adjacent vertices of our current vertex:

current_vertex.adjacent_vertices.each do |adjacent_vertex|

For each adjacent vertex that hasn’t been visited, we add it to the hash table
to mark it as visited and then add it to the queue:

if !visited_vertices[adjacent_vertex.value]
visited_vertices[adjacent_vertex.value] = true
queue.enqueue(adjacent_vertex)

end

And that’s the gist of it.

DFS vs. BFS
If you look carefully at the order of breadth-first search, you’ll notice that we
first traverse all of Alice’s immediate connections. We then spiral outward
and gradually move farther and farther from Alice. With depth-first search,
though, we immediately move as far away from Alice as we possibly can until
we’re forced to return to her.

So, we have two methods of searching a graph: depth-first and breadth-first.
Is one approach better than the other?

As you’ve probably caught on by now, it depends on your situation. In some
scenarios, depth-first may be faster, while in others, breadth-first might be
the better choice.

Usually, one of the main factors in determining which algorithm to use is the
nature of the graph you’re searching and what you’re searching for. The key
here, as mentioned earlier, is that breadth-first search traverses all the vertices
closest to the starting vertex before moving farther away. Depth-first search,
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on the other hand, immediately moves as far away from the starting vertex
as it can. Only when the search hits a dead end does it return back to the
starting vertex.

So, let’s say we want to find all the direct connections of a person in a social
network. For example, we may want to find all of Alice’s actual friends in our
earlier example graph. We’re not interested in who her friends’ friends are—we
only want a list of her direct connections.

If you look at the breadth-first approach, you’ll see that we immediately find
all of Alice’s direct friends (Bob, Candy, Derek, and Elaine) before moving on
to her “second-degree” connections.

However, when we traversed the graph with the depth-first algorithm, we
ended up touching Fred and Helen (two people who aren’t Alice’s friends)
before finding Alice’s other friends. In a larger graph, we could waste even
more time traversing many unnecessary vertices.

But, let’s take a different scenario. Say our graph represents a family tree,
which may look as follows:

This family tree shows all the descendants of Great-Grandma Ruby, the proud
matriarch of a wonderful family. Let’s say we know that Ruth is a great-
grandchild of Ruby, and we want to find Ruth in the graph.

Now, here’s the thing. If we used breadth-first search, we’d end up traversing
all of Ruby’s children and grandchildren before reaching even the first great-
grandchild.

However, if we use depth-first search, we’d move down the graph right away,
reaching the first great-grandchild in just a few steps. While it’s possible that
we’d have to traverse the entire graph before finding Ruth, we at least have
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a shot at finding her quickly. With breadth-first search, though, we have no
choice but to traverse all the non–great-grandchildren before we can start
inspecting the great-grandchildren.

The question to always ask, then, is whether we want to stay close to the
starting vertex during our search, or do we specifically want to move far away.
Breadth-first search is good for staying close, and depth-first search is ideal
for moving far away quickly.

The Efficiency of Graph Search
Let’s analyze the time complexity of graph search using Big O Notation.

In both depth-first search and breadth-first search, we traverse all the vertices
in a worst-case scenario. The worst-case scenario may be that we’re intending
to do a full-graph traversal, or we may be searching for a vertex that doesn’t
exist in the graph. Or, the vertex we’re searching for may just happen to be
the last vertex in the graph that we check.

In any case, we touch all vertices in the graph. At first glance, this would
seem to be O(N), with N being the number of vertices.

However, in both search algorithms, for each vertex we traverse, we also
iterate over all of its adjacent vertices. We may ignore an adjacent vertex if it
has already been visited, but we still spend a step checking that vertex to see
whether we’ve visited it.

So, for each vertex we visit, we also spend steps checking each of the vertex’s
adjacent neighbors. This would seem tough to peg down using Big O Notation,
since each vertex may have a different number of adjacent vertices.

Let’s analyze a simple graph to make this clear:

Here, Vertex A has four neighbors. By contrast, B, C, D, and E each have
three neighbors. Let’s count the number of steps it takes to search this graph.

At the very least, we have to visit each of the five vertices. This alone takes
five steps.

Then, for each vertex, we iterate over each of its neighbors.
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This would add the following steps:

A: 4 steps to iterate over 4 neighbors
B: 3 steps to iterate over 3 neighbors
C: 3 steps to iterate over 3 neighbors
D: 3 steps to iterate over 3 neighbors
E: 3 steps to iterate over 3 neighbors

This yields 16 iterations.

So, we have the visiting of the five vertices, plus 16 iterations over adjacent
neighbors. That’s a total of 21 steps.

But, here’s another graph with five vertices:

This graph has five vertices, but the count of iterations over adjacent neighbors
is as follows:

V: 4 steps to iterate over 4 neighbors
W: 1 step to iterate over 1 neighbor
X: 1 step to iterate over 1 neighbor
Y: 1 step to iterate over 1 neighbor
Z: 1 step to iterate over 1 neighbor

This is a total of eight iterations.

We have the five vertices, plus eight iterations over adjacent neighbors. This
is a total of 13 steps.

So, we have two graphs, each containing five vertices. However, searching
one takes 21 steps, while searching the other takes 13 steps.

It emerges that we can’t just count how many vertices are in the graph. Instead,
we also need to consider how many adjacent neighbors each vertex has.

To effectively describe the efficiency of graph search, then, we’re going to need to
use two variables. We need one to represent the number of vertices in the graph,
and another to be the total number of adjacent neighbors each vertex has.

O(V + E)
Interestingly enough, Big O Notation doesn’t use the variable N to describe
either of these things. Instead, it uses the variables V and E.
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The V is the easier one. V stands for vertex, and represents the number of
vertices in the graph.

E, interestingly, stands for edge, meaning the number of edges in the graph.

Now, computer scientists describe the efficiency of graph search as O(V + E).
This means that the number of steps is the number vertices in the graph plus
the number of edges in the graph. Let’s see why this is the efficiency of graph
search, as it’s not immediately intuitive.

Specifically, if you look at our two earlier examples, you’ll notice that V + E
doesn’t seem to be accurate.

In the A-B-C-D-E graph, there are five vertices and eight edges. This would
be a total of 13 steps. However, we noted that there is actually a total of 21
steps.

And in the V-W-X-Y-Z graph, there are five vertices and four edges. O(V + E)
says that graph search would have nine steps. But we saw that there are
actually 13.

The reason for this discrepancy is that while O(V + E) only counts the number
of edges once, in reality, graph search touches each edge more than once.

In the V-W-X-Y-Z graph, for example, there are only four edges. However, the
edge between V and W is used twice. That is, when V is the current vertex,
we find its adjacent neighbor W using that edge. But when W is the current
vertex, we find its adjacent vertex V using that same edge.

With this in mind, the most accurate way to describe the efficiency of graph
search in the V-W-X-Y-Z graph would be to count the five vertices, plus:

2 * edge between V and W
2 * edge between V and X
2 * edge between V and Y
2 * edge between V and Z

So, this comes out to be V + 2E, since V is 5, and each edge is used twice.

The answer, though, to why we just call this O(V + E), is because Big O drops
the constants. While in reality the number of steps is V + 2E, we reduce this
to O(V + E).

So, while O(V + E) is ultimately just an approximation, it’s good enough, as
are all expressions of Big O.

What is definitely clear, though, is that increasing the number of edges will
increase the number of steps. After all, both the A-B-C-D-E and V-W-X-Y-Z
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graphs have five vertices, but because the A-B-C-D-E graph has more edges,
it takes considerably more steps.

At the end of the day, graph search is O(V + E) in a worst-case scenario, where
the vertex we’re searching for is the last one we find (or isn’t present in the
graph at all). And this is true for both breadth-first search as well as depth-
first search.

However, we saw earlier that depending on the shape of the graph and the
data we’re searching for, our choice of breadth-first versus depth-first can
optimize our search where we’d hope to find our vertex at some point before
having to traverse the entire graph. That is, the right method of search can
help us increase the odds that we won’t end up in a worst-case scenario, and
that we’ll find the vertex early.

In the next section, you’re going to learn about a specific type of graph that
comes with its own set of search methods that can be used to solve some
really complex but useful problems.

Graph Databases

Because graphs are so efficient at working with data involving relationships (such as
friends in a social network), special graph databases are often used to store this kind
of data in real-world software applications. These databases use the concepts you’re
learning about in this chapter, as well as other elements of graph theory, to optimize
efficiency of operations around this kind of data. Indeed, many social networking
applications are powered by graph databases under the hood.

Some examples of graph databases include Neo4j,a ArangoDB,b and Apache Giraph.c

These websites are a good place to start if you’re interested in learning more about
how graph databases work.

a. http://neo4j.com
b. https://www.arangodb.com
c. http://giraph.apache.org

Weighted Graphs
We’ve already seen that graphs can come in a number of different flavors.
Another useful type of graph, known as a weighted graph, adds additional
information to the edges of the graph.
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Here’s a weighted graph that represents a basic map of several major cities
in the United States:

In this graph, each edge is accompanied by a number that represents the
distance in miles between the cities the edge connects. For example, there
are 714 miles between Chicago and New York City.

It’s also possible to have weighted graphs that are also directional. In the
following example, we can see that although a flight from Dallas to Toronto
is $138, a flight from Toronto back to Dallas is $216:
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Weighted Graphs in Code
We need to make a slight modification to our code if we want to add weights
to our graph. One way to do this is to use a hash table to represent the
adjacent vertices rather than an array:

class WeightedGraphVertex
attr_accessor :value, :adjacent_vertices

def initialize(value)
@value = value
@adjacent_vertices = {}

end

def add_adjacent_vertex(vertex, weight)
@adjacent_vertices[vertex] = weight

end
end

As you can see, @adjacent_vertices is now a hash table instead of an array. The
hash table will contain key-value pairs where in each pair, the adjacent vertex
is the key and the weight (of the edge from this vertex to the adjacent vertex)
is the value.

When we use the add_adjacent_vertex method to add an adjacent vertex, we now
pass in both the adjacent vertex as well as the weight.

So, if we want to create the Dallas–Toronto flight price graph from earlier, we
can run the following code:

dallas = City.new("Dallas")
toronto = City.new("Toronto")

dallas.add_adjacent_vertex(toronto, 138)
toronto.add_adjacent_vertex(dallas, 216)

The Shortest Path Problem
Weighted graphs can be very useful in modeling all sorts of datasets, and
they also come with some powerful algorithms that help us make the most
out of that data.

Let’s harness one of these algorithms to save us a bit of money.

The graph on page 367 demonstrates the costs of available flights between five
different cities.

Now, say I’m in Atlanta and want to fly to El Paso. Unfortunately, we can see
in this graph that there’s no direct route from Atlanta to El Paso at this time.
However, I can get there if I’m willing to stop over in other cities along the
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way. For example, I can fly from Atlanta to Denver, and then from Denver to
El Paso. But there are other paths as well, and each path has a different price.
The Atlanta–Denver–El Paso path will set me back $300, but the Atlanta–Den-
ver–Chicago–El Paso path only costs $280.

The puzzle, now, is this: how do we create an algorithm that finds the
cheapest price I’d have to shell out to get to my destination? Let’s assume we
don’t care about how many stops we have to make; we’re just out to get the
cheapest fare.

This kind of puzzle is known as the shortest path problem. This problem can
take other forms as well. For example, if the graph showed us distances
between cities, we might want to find the path that has the shortest distance.
But here, the shortest path we’re looking for is the cheapest one, since the
weights represent flight prices.

Dijkstra’s Algorithm
Numerous algorithms can solve the shortest path problem, and one of the
most famous is one discovered by Edsger Dijkstra (pronounced “dike’ struh”)
in 1959. Unsurprisingly, this algorithm is known as Dijkstra’s algorithm.

In the following section, we’re going to use Dijkstra’s algorithm to find the
cheapest path in our city flights example.
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Dijkstra’s Algorithm Setup
The first thing to note is that Dijkstra’s algorithm comes with a free bonus.
By the time we’re done, we’re not just going to find the cheapest price from
Atlanta to El Paso, but also we’re going to find the cheapest prices from Atlanta
to all known cities. As you’ll see, the algorithm simply works this way; we end
up gathering all of this data. So, we’ll know the cheapest price from Atlanta
to Chicago, and the cheapest price from Atlanta to Denver, and so on.

To set things up, we’ll create a way to store the cheapest known prices from
our starting city to all other known destinations. In our code that follows,
we’ll use a hash table for this. For our example walk-through, though, we’ll
use a visual table that looks like this:

Etc.City #3City #2City #1From Atlanta To:

????

The algorithm will begin at the Atlanta vertex, as it’s the only city we’re cur-
rently aware of. As we discover new cities, we’ll add them to our table and
record the cheapest price from Atlanta to each of these cities.

By the time the algorithm is complete, the table will look like this:

El PasoDenverChicagoBostonCheapest Price from Atlanta To:

$280$160$200$100

In code, this will be represented with a hash table that looks like this:

{"Atlanta" => 0, "Boston" => 100, "Chicago" => 200,
"Denver" => 160, "El Paso" => 280}

(Note that Atlanta is in the hash table as well with a value of 0. We’ll need
this to get the algorithm to work, but it also makes sense, as it costs nothing
to get to Atlanta from Atlanta, since you’re already there!)

In our code and going forward, we will call this table the cheapest_prices_table, as
it stores all the cheapest prices from the starting city to all other destinations.

Now, if all we wanted to do is figure out the cheapest price to get to a partic-
ular destination, the cheapest_prices_table would contain all the data we need.
But we probably also want to know the actual path that would get us the
cheapest price. That is, if we want to get from Atlanta to El Paso, we don’t
want to just know the cheapest price is $280; we also want to know that to get
this price, we need to fly the specific path of Atlanta–Denver–Chicago–El Paso.

To achieve this, we’ll also need another table, which we’ll call the cheapest_pre-
vious_stopover_city_table. The purpose of this table will only become clear once we
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jump into the algorithm, so I’ll hold off on the explanation until then. For
now, though, it’ll suffice to show what it’ll look like by the end of the algorithm.

El PasoDenverChicagoBostonCheapest Previous Stopover City from Atlanta:

ChicagoAtlantaDenverAtlanta

(Note that this table, too, will be implemented using a hash table.)

Dijkstra’s Algorithm Steps
Now that everything is set up, here are the steps for Dijkstra’s algorithm. For
clarity, I’m going to describe the algorithm in terms of cities, but you can
replace the word “city” with “vertex” to make it work for any weighted graph.
Also note that these steps will become clearer when we walk through an
example, but here we go:

1. We visit the starting city, making it our “current city.”

2. We check the prices from the current city to each of its adjacent cities.

3. If the price to an adjacent city from the starting city is cheaper than the
price currently in cheapest_prices_table (or the adjacent city isn’t yet in the
cheapest_prices_table at all):

a. We update the cheapest_prices_table to reflect this cheaper price.

b. We update the cheapest_previous_stopover_city_table, making the adjacent city
the key and the current city the value.

4. We then visit whichever unvisited city has the cheapest price from the
starting city, making it the current city.

5. We repeat the Steps 2 through 4 until we’ve visited every known city.

Again, this will all make more sense when we walk through an example.

Dijkstra’s Algorithm Walk-Through
Let’s walk through Dijkstra’s algorithm step by step.

To start, our cheapest_prices_table only contains Atlanta:

From Atlanta To:

$0

At the start of the algorithm, Atlanta is the only city we have access to; we
have not yet “discovered” the other cities.

Step 1: We officially visit Atlanta and make it the current_city.
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To indicate that it’s the current_city, we’ll surround it with lines. And to add to
the record that we’ve visited it, we’ll add a check mark:

In the next steps, we’ll proceed to inspect each of the current_city’s adjacent
cities. This is how we “discover” new cities; if a city we have access to has
adjacent cities we weren’t aware of before, we can add them to our map.

Step 2: One city adjacent to Atlanta is Boston. As we can see, the price from
Atlanta to Boston is $100. We then check the cheapest_prices_table to see whether
this is the cheapest known price from Atlanta to Boston, but it turns out we
haven’t recorded any prices from Atlanta to Boston yet. That means this is
the cheapest known flight from Atlanta to Boston (as of now), so we add that
to the cheapest_prices_table:

BostonFrom Atlanta To:

$100$0

Since we’ve made a change to the cheapest_prices_table, we now also need to
modify the cheapest_previous_stopover_city_table, making the adjacent city (Boston)
the key and the current_city the value:

BostonCheapest Previous Stopover City from Atlanta:

Atlanta

Adding this data to this table means that to earn the cheapest known price
from Atlanta to Boston ($100), the city we need to visit immediately before
Boston is Atlanta. At this point, this is obvious, since Atlanta is the only way
to get to Boston that we know of. However, as we proceed, we’ll see why this
second table becomes useful.
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Step 3: We’ve checked out Boston, but Atlanta has another adjacent city,
Denver. We check whether the price ($160) is the cheapest known route from
Atlanta to Denver, but Denver isn’t the cheapest_prices_table at all yet, so we add
it as the cheapest known flight:

DenverBostonFrom Atlanta To:

$160$100$0

We then also add Denver and Atlanta as a key-value pair to the cheapest_previ-
ous_stopover_city_table:

DenverBostonCheapest Previous Stopover City from Atlanta:

AtlantaAtlanta

Step 4: By this point, we’ve inspected all of Atlanta’s adjacent cities, so it’s
time to visit our next city. But we need to figure out which city to visit next.

Now, as stated in the algorithm steps earlier, we only proceed to visit cities
we haven’t yet visited so far. Furthermore, among the unvisited cities, we
always choose to first visit the city that has the cheapest known route from
the starting city. We can get this data from the cheapest_prices_table.

In our example, the only cities we know about that we haven’t visited yet are
Boston or Denver. By looking at the cheapest_prices_table, we can see that it’s
cheaper to get from Atlanta to Boston than it is to get from Atlanta to Denver,
so we’re going to visit Boston next.

Step 5: We visit Boston and designate it as the current_city:

Next, we’re going to inspect Boston’s adjacent cities.
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Step 6: Boston has two adjacent cities, Chicago and Denver. (Atlanta is not
considered adjacent, since we can’t fly from Boston to Atlanta.)

Which city should we visit first—Chicago or Denver? Again, we want to first
visit the city whose price is cheapest if we were flying to it from Atlanta. So,
let’s do the math.

The price from Boston to Chicago alone is $120. When looking at the cheap-
est_prices_table, we can see that the cheapest route from Atlanta to Boston is
$100. So, this means that the cheapest flight from Atlanta to Chicago with
Boston as the previous stopover city would be $220.

Since at this point, this is the only known price from Atlanta to Chicago, we’ll
add it to the cheapest_prices_table. We’ll insert it in the middle of the table to keep
the cities alphabetized:

DenverChicagoBostonFrom Atlanta To:

$160$220$100$0

Again, because we made a change to that table, we’ll also modify the cheap-
est_previous_stopover_city_table. The adjacent city always becomes the key, and the
current_city always becomes the value, so the table becomes:

DenverChicagoBostonCheapest Previous Stopover City from Atlanta:

AtlantaBostonAtlanta

In our quest to find the city to visit next, we analyzed Chicago. We will inspect
Denver next.

Step 7: Let’s now look at the edge between Boston and Denver. We can see
that the price is $180. Since the cheapest flight from Atlanta to Boston, again,
is $100, that would mean the cheapest flight from Atlanta to Denver through
Boston as the previous stopover city is $280.

This gets a little interesting, because when we inspect our cheapest_prices_table,
we can see that the cheapest route from Atlanta to Denver is $160, which is
cheaper than the Atlanta–Boston–Denver route. Accordingly, we do not modify
either of our tables. That is, we want to leave $160 as the cheapest known
route from Atlanta to Denver.

We’re done with this step, and since we’ve looked at all of Boston’s adjacent
cities, we can now visit our next city.

Step 8: The current known unvisited cities are Chicago and Denver. Again,
the one we visit next—and pay careful attention to this—is the city with the
cheapest known path from our starting city (Atlanta).
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Looking at our cheapest_prices_table, we can see that it’s cheaper to go from
Atlanta to Denver ($160) than it is to go to from Atlanta to Chicago ($220),
so that means that we visit Denver next:

Next up, we’ll look at Denver’s adjacent cities.

Step 9: Denver has two adjacent cities, Chicago and El Paso. Which of these
cities will we visit next? To find out, we need to analyze the prices to each
city. Let’s start with Chicago.

It costs just $40 to go from Denver to Chicago (a good deal!), which means the
cheapest flight from Atlanta to Chicago through Denver as the previous stopover
city would be $200, since the cheapest route from Atlanta to Denver is $160.

When looking at the cheapest_prices_table, we can see that the current cheapest
price from Atlanta to Chicago is $220. That means this new route we just
found to Chicago through Denver is even cheaper, so we can update the
cheapest_prices_table accordingly:

DenverChicagoBostonFrom Atlanta To:

$160$200$100$0

Whenever we update the cheapest_prices_table, we also have to update the cheap-
est_previous_stopover_city_table. We set the adjacent city (Chicago) as the key, and
the current_city (Denver) as the value. Now, in this case, Chicago already exists
as a key. This means we’ll be overwriting its value from Boston to Denver:

DenverChicagoBostonCheapest Previous Stopover City from Atlanta:

AtlantaDenverAtlanta
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What this means is that to nab the cheapest flight path from Atlanta to
Chicago, we need to stop over at Denver as the city immediately prior to
Chicago. That is, Denver should be our second-to-last stop before we proceed
to Chicago. Only then will we save the most money.

This information will be useful in determining the cheapest path from Atlanta
to our destination city, as you’ll see in a little bit. Hang on, we’re almost there!

Step 10: Denver has another adjacent city, El Paso. The price from Denver to
El Paso is $140. We can now construct our first known price from Atlanta to El
Paso. The cheapest_prices_table tells us the cheapest price from Atlanta to Denver
is $160. This means if we then go from Denver to El Paso, we incur another
$140, making the total price from Atlanta to El Paso $300. We can add this to
the cheapest_prices_table:

El PasoDenverChicagoBostonFrom Atlanta To:

$300$160$200$100$0

We must then also add the key-value pair of El Paso-Denver to our cheapest_pre-
vious_stopover_city_table:

El PasoDenverChicagoBostonCheapest Previous Stopover City from Atlanta:

DenverAtlantaDenverAtlanta

Again, this means that to save the most money when flying from Atlanta to
El Paso, our second-to-last stop should be Denver.

We’ve seen all our current_city’s adjacent cities, so it’s time to visit our next city.

Step 11: We have two known unvisited cities, Chicago and El Paso. Since it’s
cheaper to get from Atlanta to Chicago ($200) than it is to get from Atlanta
to El Paso ($300), we visit Chicago next as shown in the graph on page 375.

Step 12: Chicago has only one adjacent city, El Paso. The price from Chicago
to El Paso is $80 (not bad). With this information, we can now calculate the
cheapest price from Atlanta to El Paso when assuming that Chicago is our
second-to-last stop.

The cheapest_prices_table shows us that the cheapest path from Atlanta to
Chicago is $200. Adding the $80 to this means the cheapest price from Atlanta
to El Paso with Chicago as the second-to-last stop would cost $280.

Wait! This is cheaper than the currently known cheapest path from Atlanta
to El Paso. In our cheapest_prices_table, we see that the cheapest known price is
$300. But when we fly through Chicago, the price is $280, which is cheaper.
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Accordingly, we need to update the cheapest_prices_table to indicate our newly-
found cheapest path to El Paso:

El PasoDenverChicagoBostonFrom Atlanta To:

$280$160$200$100$0

We also need to update the cheapest_previous_stopover_city_table, with El Paso as
the key and Chicago as the value:

El PasoDenverChicagoBostonCheapest Previous Stopover City from Atlanta:

ChicagoAtlantaDenverAtlanta

Chicago has no more adjacent cities, so we can now visit our next city.

Step 13: El Paso is the only known unvisited city, so let’s make it our current_city
as shown in the graph on page 376.

Step 14: El Paso has only one outbound flight, which is to Boston. That flight
costs $100. Now, the cheapest_prices_table reveals that the cheapest price from
Atlanta to El Paso is $280. So, if we travel from Atlanta to Boston with El Paso
as the second-to-last stop, our grand total will be $380. This is more expensive
than the cheapest-known price from Atlanta to Boston ($100), so we don’t
update any of our tables.

Since we’ve visited every known city, we now have all the information we need
to find the cheapest path from Atlanta to El Paso.
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Finding the Shortest Path
If we just want to know the cheapest price from Atlanta to El Paso, we can
look in our cheapest_prices_table and see that it’s $280. But if we want to figure
out the exact path to fly to snag that low price, we have one last thing to do.

Remember the cheapest_previous_stopover_city_table? It’s now time to actually use
that data.

Currently, the cheapest_previous_stopover_city_table looks like this:

El PasoDenverChicagoBostonCheapest Previous Stopover City from Atlanta:

ChicagoAtlantaDenverAtlanta

We can use this table to draw the shortest path from Atlanta to El Paso—if
we go backward.

Let’s look at El Paso. Its corresponding city is Chicago. This means the
cheapest route from Atlanta to El Paso involves stopping over in Chicago as
the immediate step before flying to El Paso. Let’s write this down:

Chicago -> El Paso

Now, if we look up Chicago in the cheapest_previous_stopover_city_table, we can see
that its corresponding value is Denver. This means the cheapest route from
Atlanta to Chicago involves stopping in Denver right before Chicago. Let’s add
this to our figure:

Denver -> Chicago -> El Paso
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If we then look up Denver in the cheapest_previous_stopover_city_table, we can see
that the cheapest flight to get from Atlanta to Denver is to fly directly from
Atlanta to Denver:

Atlanta -> Denver -> Chicago -> El Paso

Now, Atlanta happens to be our starting city, so this route is the exact path
we’d take from Atlanta to El Paso to get the cheapest price.

Let’s review the logic we’re using to chain together the cheapest path.

Remember, the cheapest_previous_stopover_city_table contains, for each destination,
the second-to-last stop before that destination to earn the cheapest price if
you’re flying from Atlanta.

So, from the cheapest_previous_stopover_city_table, we can see that the cheapest
price from Atlanta to El Paso means…

• …we need to fly directly from Chicago to El Paso, and…
• …we need to fly directly from Denver to Chicago, and…
• …we need to fly directly from Atlanta to Denver…

which means our cheapest path is:

Atlanta -> Denver -> Chicago -> El Paso

And…that’s it. Whew!

Code Implementation: Dijkstra’s Algorithm
Before we implement the actual algorithm in Ruby, we’ll first implement a
City class, which is similar to our WeightedGraphVertex class from earlier, but uses
terms like routes and price. This will make the code that follows (somewhat)
easier to understand:

class City
attr_accessor :name, :routes

def initialize(name)
@name = name
@routes = {}

end

def add_route(city, price)
@routes[city] = price

end
end
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To set up our example from earlier, you can run this code:

atlanta = City.new("Atlanta")
boston = City.new("Boston")
chicago = City.new("Chicago")
denver = City.new("Denver")
el_paso = City.new("El Paso")

atlanta.add_route(boston, 100)
atlanta.add_route(denver, 160)
boston.add_route(chicago, 120)
boston.add_route(denver, 180)
chicago.add_route(el_paso, 80)
denver.add_route(chicago, 40)
denver.add_route(el_paso, 140)

Finally, here’s the code for Dijkstra’s algorithm. It doesn’t make for light
reading, and it’s probably the most complex piece of code in this book. How-
ever, if you’re ready to study it carefully, read on.

In our implementation here, this method does not live inside the City class,
but outside it. The method accepts two City instances, and returns the shortest
path between them:

def dijkstra_shortest_path(starting_city, final_destination)
cheapest_prices_table = {}
cheapest_previous_stopover_city_table = {}

# To keep our code simple, we'll use a basic array to keep track of
# the known cities we haven't yet visited:
unvisited_cities = []

# We keep track of the cities we've visited using a hash table.
# We could have used an array, but since we'll be doing lookups,
# a hash table is more efficient:
visited_cities = {}

# We add the starting city's name as the first key inside the
# cheapest_prices_table. It has a value of 0, since it costs nothing
# to get there:
cheapest_prices_table[starting_city.name] = 0

current_city = starting_city

# This loop is the core of the algorithm. It runs as long as we can
# visit a city that we haven't visited yet:
while current_city

# We add the current_city's name to the visited_cities hash to record
# that we've officially visited it. We also remove it from the list
# of unvisited cities:
visited_cities[current_city.name] = true
unvisited_cities.delete(current_city)
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# We iterate over each of the current_city's adjacent cities:
current_city.routes.each do |adjacent_city, price|

# If we've discovered a new city,
# we add it to the list of unvisited_cities:
unvisited_cities <<

adjacent_city unless visited_cities[adjacent_city.name]

# We calculate the price of getting from the STARTING city to the
# ADJACENT city using the CURRENT city as the second-to-last stop:
price_through_current_city =

cheapest_prices_table[current_city.name] + price

# If the price from the STARTING city to the ADJACENT city is
# the cheapest one we've found so far...
if !cheapest_prices_table[adjacent_city.name] ||
price_through_current_city <

cheapest_prices_table[adjacent_city.name]

# ... we update our two tables:
cheapest_prices_table[adjacent_city.name] =

price_through_current_city
cheapest_previous_stopover_city_table[adjacent_city.name] =

current_city.name
end

end

# We visit our next unvisited city. We choose the one that is cheapest
# to get to from the STARTING city:
current_city = unvisited_cities.min do |city|
cheapest_prices_table[city.name]

end
end

# We have completed the core algorithm. At this point, the
# cheapest_prices_table contains all the cheapest prices to get to each
# city from the starting city. However, to calculate the precise path
# to take from our starting city to our final destination,
# we need to move on.

# We'll build the shortest path using a simple array:
shortest_path = []

# To construct the shortest path, we need to work backwards from our
# final destination. So, we begin with the final destination as our
# current_city_name:
current_city_name = final_destination.name

# We loop until we reach our starting city:
while current_city_name != starting_city.name

# We add each current_city_name we encounter to the shortest path array:
shortest_path << current_city_name
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# We use the cheapest_previous_stopover_city_table to follow each city
# to its previous stopover city:
current_city_name =
cheapest_previous_stopover_city_table[current_city_name]

end

# We cap things off by adding the starting city to the shortest path:
shortest_path << starting_city.name

# We reverse the output so we can see the path from beginning to end:
return shortest_path.reverse

end

There’s a decent amount of code here, so let’s break it down.

The dijkstra_shortest_path function accepts two vertices, representing the starting_city
and final_destination.

Eventually, our function will return an array of strings that represent the
cheapest path. For our example, this function would return:

["Atlanta", "Denver", "Chicago", "El Paso"]

The first thing our function does is set up the two primary tables that fuel
the entire algorithm:

cheapest_prices_table = {}
cheapest_previous_stopover_city_table = {}

We then set up ways to track which cities we’ve visited and the ones we have
yet to visit:

unvisited_cities = []
visited_cities = {}

It may seem odd that unvisited_cities is an array, while visited_cities is a hash table.
The reason we’ve made visited_cities a hash table is because in the remainder
of our code, we only use it for lookups, for which a hash table is an ideal
choice in terms time complexity.

The choice of the best data structure for the unvisited_cities is less simple. In
our code that follows, the next city we visit is always the cheapest unvisited
city to reach from the starting city. Ideally, then, we always want immediate
access to the cheapest option from among the unvisited cities. It’s a bit easier
to get this access with an array than with a hash table.

In truth, a priority queue would be a perfect fit for this, as its whole function
is to provide ready access to the least (or greatest) value from a collection of
items. As you learned in Keeping Your Priorities Straight with Heaps, a heap
is generally the best data structure for implementing a priority queue.
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However, I’ve instead chosen to use a simple array for this implementation
only to keep the code as simple and as small as possible, as Dijkstra’s algo-
rithm is complex enough on its own. However, I encourage you to try replacing
the array with a priority queue.

Next, we add the first key-value pair to the cheapest_prices_table with the starting_city
as the key and 0 as the value. Again, this makes sense because it costs
nothing to get to the starting_city as we’re already there:

cheapest_prices_table[starting_city.name] = 0

As the last bit of setup, we designate the starting_city to be our current_city:

current_city = starting_city

We now begin the core of the algorithm, which takes the form of a loop that
runs as long as we can access a current_city. Within this loop, we mark the cur-
rent_city as having been visited by adding its name to the visited_cities hash table.
And in case the current_city is currently in the list of unvisited_cities, we delete it
from there as well:

while current_city
visited_cities[current_city.name] = true
unvisited_cities.delete(current_city)

Next, within the while loop we begin another loop, iterating over all of the
adjacent cities of the current_city:

current_city.routes.each do |adjacent_city, price|

Within this inner loop, we first add each adjacent city to the array of unvisit-
ed_cities if it’s a city we’ve never visited before:

unvisited_cities << adjacent_city unless visited_cities[adjacent_city.name]

In this particular implementation, it’s possible for a city to exist multiple times
within the unvisited_cities array, and that’s okay, as we delete all those instances
with the line, unvisited_cities.delete(current_city). We could, alternatively, also make
sure the current_city doesn’t already exist within the unvisited_cities before adding it.

Next, we calculate the cheapest possible price to get from the starting city to
the adjacent city, assuming that the current_city is the second-to-last stop. We
do this by using the cheapest_prices_table to look up the cheapest known route
to the current_city and then adding that to the price of the route from the cur-
rent_city to the adjacent city. This calculation then gets stored in a variable
called price_through_current_city:

price_through_current_city = cheapest_prices_table[current_city.name] + price
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Then, we look within the cheapest_prices_table to see whether this price_through_
current_city is now the cheapest known flight from the starting city to the adja-
cent city. If the adjacent city isn’t yet in the cheapest_prices_table, this price is,
by definition, the cheapest known price:

if !cheapest_prices_table[adjacent_city.name] ||
price_through_current_city < cheapest_prices_table[adjacent_city.name]

If the price_through_current_city is now the cheapest route from the starting city
to the adjacent city, we update the two main tables. That is, we store the new
price for the adjacent city in the cheapest_prices_table. And we also update the
cheapest_previous_stopover_city_table with the adjacent city’s name as the key and
the current_city’s name as the value:

cheapest_prices_table[adjacent_city.name] = price_through_current_city
cheapest_previous_stopover_city_table[adjacent_city.name] = current_city.name

After iterating over all the adjacent cities of the current_city, it’s time to visit the
next city. We visit the cheapest unvisited city we can reach from the starting
city by making it the new current_city:

current_city = unvisited_cities.min do |city|
cheapest_prices_table[city.name]

end

If there are no more known unvisited cities, the current_city will become nil and
the while loop will end.

At this point, the two tables have been fully populated with all the data we
need. If we so chose, we could at this point simply return the cheapest_prices_table
and see all the cheapest prices to all known cities from the starting_city.

Instead, though, we proceed to find the precise cheapest path to get to our
final_destination.

To set things up for this, we create an array called shortest_path, which is what
we’ll return at the end of the function:

shortest_path = []

We also create a variable called current_city_name, which starts out as the name
of the final_destination:

current_city_name = final_destination.name

We then begin a while loop that populates the shortest_path. This loop works
backward from the final_destination until we reach the starting_city:

while current_city_name != starting_city.name
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Within the loop, we add the current_city_name to the shortest_path array and then
use the cheapest_previous_stopover_city_table to find the city that should be the stop
immediately preceding the current_city_name. This previous city now becomes
the new current_city_name:

shortest_path << current_city_name
current_city_name = cheapest_previous_stopover_city_table[current_city_name]

For code readability, we had the loop end as soon as it hit the starting_city, so
we now manually add the starting_city’s name to the end of the shortest_path:

shortest_path << starting_city.name

The shortest_path now contains the backward path from the final_destination to the
starting_city. So, we return the reversed version of this array to provide the
shortest path from the starting_city to the final_destination:

return shortest_path.reverse

Although our implementation deals with cities and prices, all the variable
names can be changed to handle the shortest path for any weighted graph.

The Efficiency of Dijkstra’s Algorithm
Dijkstra’s algorithm is a general description of the approach for finding the
shortest path within a weighted graph, but it doesn’t specify the precise code
implementation. In fact, there are a number of variations out there in how
this algorithm can be written.

In our code walk-through, for example, we used a simple array for the unvisit-
ed_cities data structure, but I noted that a priority queue could be used instead.

It turns out that the precise implementation has a considerable effect on the
algorithm’s time complexity. But let’s at least analyze our implementation.

When we use a simple array for keeping track of the cities we haven’t visited
yet (unvisited_cities), our algorithm can take up to O(V2) steps. This is because
the worst-case scenario for Dijkstra’s algorithm is when each vertex has an
edge leading to every other vertex within the graph. In this case, for every
vertex we visit, we check the weight of the path from that vertex to every
other vertex. This is V vertices multiplied by V vertices, which is O(V2).

Other implementations, such as using a priority queue instead of an array, lead
to faster speeds. Again, there are several variations of Dijkstra’s algorithm, and
each variation needs its own analysis to determine its precise time complexity.

Whatever implementation of the algorithm you choose, though, is a big win
over the alternative, which would be to find every possible path through the
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graph and then select the fastest one. Dijkstra’s algorithm gives a sure way
to proceed thoughtfully through the graph, and zero in on the shortest path.

Wrapping Up
We’re almost at the end of our journey, as this chapter represents the last sig-
nificant data structure you’ll encounter in this book. You’ve seen graphs are
extremely powerful tools for dealing with data involving relationships, and in
addition to making our code fast, they can also help solve tricky problems.

In truth, I could fill a book just discussing graphs. There are so many inter-
esting and useful algorithms surrounding this data structure, such as the
minimum spanning tree, topological sort, bidirectional search, the Floyd–War-
shall algorithm, the Bellman–Ford algorithm, and graph coloring, just to name
a few. However, this chapter should serve as the foundation for you to explore
these additional topics.

Along our travels, our primary focus has been on how fast our code will run.
That is, we’ve been measuring how efficient our code performs in terms of
time, and we’ve been measuring that in terms of counting the number of steps
our algorithms take.

However, efficiency can be measured in other ways than speed alone. In
particular, we might care about how much memory a data structure or algo-
rithm might consume. In the next chapter, you’ll learn how to analyze the
efficiency of our code in terms of space.

Exercises
The following exercises provide you with the opportunity to practice with
graphs. The solutions to these exercises are found in the section, Chapter
18, on page 461.

1. The first graph on page 385 powers an e-commerce store’s recommendation
engine. Each vertex represents a product available on the store’s website.
The edges connect each product to other “similar” products the site will
recommend to the user when browsing a particular item.

If the user is browsing “nails,” what other products will be recommended
to the user?

2. If we perform depth-first search on the second graph on page 385 starting
with the “A” vertex, what is the order in which we’ll traverse all the ver-
tices? Assume that when given the choice to visit multiple adjacent ver-
tices, we’ll first visit the node that is earliest in the alphabet.
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3. If we perform breadth-first search on the previous graph starting with the
“A” vertex, what is the order in which we’ll traverse all the vertices?
Assume that when given the choice to visit multiple adjacent vertices,
we’ll first visit the node that is earliest in the alphabet.

4. In this chapter, I only provided the code for breadth-first traversal, as
discussed in Breadth-First Search, on page 348. That is, the code simply
printed the value of each vertex. Modify the code so that it performs an
actual search for a vertex value provided to the function. (We did this for
depth-first search.) That is, if the function finds the vertex it’s searching
for, it should return that vertex’s value. Otherwise, it should return null.

report erratum  •  discuss

Exercises • 385

http://pragprog.com/titles/jwdsal2/errata/add
http://forums.pragprog.com/forums/jwdsal2


5. In Dijkstra’s Algorithm, on page 367, we saw how Dijkstra’s algorithm
helped us find the shortest path within a weighted graph. However, the
concept of a shortest path exists within an unweighted graph as well.
How?

The shortest path in a classic (unweighted) graph is the path that takes
the fewest number of vertices to get from one vertex to another.

This can be especially useful in social networking applications. Take the
example network that follows:

If we want to know how Idris is to connected Lina, we’d see that she’s
connected to her from two different directions. That is, Idris is a second-
degree connection to Lina through Kamil, but she is also a fifth-degree
connection through Talia. Now, we’re probably interested in how closely
Idris is connected to Lina, so the fact that she’s a fifth-degree connection
is unimportant given that they’re also second-degree connections.

Write a function that accepts two vertices from a graph and returns the
shortest path between them. The function should return an array contain-
ing the precise path, such as ["Idris", "Kamil", "Lina"].

Hint: The algorithm may contain elements of both breadth-first search
and Dijkstra’s algorithm.
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CHAPTER 19

Dealing with Space Constraints
When analyzing the efficiency of various algorithms throughout this book,
we’ve focused exclusively on how fast they run—that is, their time complexity.
However, another measure of efficiency can be useful as well, which is how
much memory an algorithm consumes. This measure is known as space
complexity.

Space complexity becomes an important factor when memory is limited. If
you have an enormous amount of data, or are programming for a small device
with limited memory, space complexity can matter a lot.

In a perfect world, we’d always use algorithms that are both fast and memory-
efficient. However, there are times where we can’t have both, and we need to
choose between the two. Each situation requires a careful analysis to know
when we need to prioritize speed over memory, and memory over speed.

Big O of Space Complexity
Interestingly, computer scientists use Big O Notation to describe space com-
plexity just as they do for time complexity.

Back when I introduced Big O Notation in O Yes! Big O Notation, I described
Big O in terms of what I called the “key question.” For time complexity, the
key question was: if there are N data elements, how many steps will the algo-
rithm take?

To use Big O for space complexity, we just need to reframe the key question.
When it comes to memory consumption, the key question is: if there are N
data elements, how many units of memory will the algorithm consume?
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Here’s a simple example.

Let’s say we’re writing a JavaScript function that accepts an array of strings
and returns an array of those strings in ALL CAPS. For example, the function
would accept an array like ["tuvi", "leah", "shaya", "rami"] and return ["TUVI", "LEAH",
"SHAYA", "RAMI"]. Here’s one way we can write this function:

function makeUppercase(array) {
let newArray = [];
for(let i = 0; i < array.length; i++) {

newArray[i] = array[i].toUpperCase();
}
return newArray;

}

In this makeUpperCase() function, we accept an array. We then create a brand-
new array called newArray and fill it with uppercase versions of each string
from the original array.

By the time this function is complete, we will have two arrays floating around
in our computer’s memory. We have the original array, which contains ["tuvi", "leah",
"shaya", "rami"], and we have newArray, which contains ["TUVI", "LEAH", "SHAYA", "RAMI"].

When we analyze this function in terms of space complexity, we can see that
this function creates a brand-new array that contains N elements. This is in
addition to the original array which also held N elements.

So, let’s return to our key question: if there are N data elements, how many
units of memory will the algorithm consume?

Because our function generated an additional N data elements (in the form
of newArray), we’d say that this function has a space efficiency of O(N).

The way this appears on the following graph should look quite familiar:
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Note that this graph is identical to the way we’ve depicted O(N) in graphs in
previous chapters, with the exception that the vertical axis now represents
memory consumed rather than time.

Now, let’s present an alternative makeUppercase() function that is more memory-
efficient:

function makeUppercase(array) {
for(let i = 0; i < array.length; i++) {

array[i] = array[i].toUpperCase();
}
return array;

}

In this second version, we do not create any new arrays. Instead, we modify
each string within the original array in place, transforming them into uppercase
one at a time. We then return the modified array.

This is a drastic improvement in terms of memory consumption, since our
new function doesn’t consume any additional memory at all.

How do we describe this in terms of Big O Notation?

Recall that with time complexity, an O(1) algorithm was one whose speed
remained constant no matter how large the data. Similarly, with space com-
plexity, O(1) means that the memory consumed by an algorithm is constant
no matter how large the data.

Our revised makeUppercase function consumes a constant amount of additional
space (zero!) no matter whether the original array contains four elements or
one hundred. Because of this, this function is said to have a space efficiency
of O(1).

It’s worth emphasizing that when using Big O to describe space complexity,
we’re only counting the new data the algorithm is generating. Even our second
makeUppercase function deals with N elements of data in the form of the array
passed into the function. However, we’re not factoring those N elements into
our Big O description, since the original array exists in any case, and we’re
only focused on the extra space the algorithm consumes. This extra space is
more formally known as auxiliary space.

However, it’s good to know that there are some references that include the
original input when calculating the space complexity, and that’s fine. We’re
not including it, and whenever you see space complexity described in another
resource, you need to determine whether it’s including the original input.
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Let’s now compare the two versions of makeUppercase() in both time and space
complexity:

Space ComplexityTime ComplexityVersion

O(N)O(N)Version #1

O(1)O(N)Version #2

Both versions are O(N) in time complexity, since they take N steps for N data
elements. However, the second version is more memory-efficient, as it is O(1)
in space complexity compared to the first version’s O(N).

It turns out that Version #2 is more efficient than Version #1 in terms of
space while not sacrificing any speed, which is a nice win.

Trade-Offs Between Time and Space

Here’s a function that accepts an array and returns whether it contains any
duplicate values (you may recognize this function from Speeding Up Your
Code with Big O):

function hasDuplicateValue(array) {
for(let i = 0; i < array.length; i++) {

for(let j = 0; j < array.length; j++) {
if(i !== j && array[i] === array[j]) {

return true;
}

}
}
return false;

}

This algorithm uses nested loops and has a time complexity of O(N2). We’ll
call this implementation Version #1.

Here’s a second implementation, Version #2, that employs a hash table and
just a single loop:

function hasDuplicateValue(array) {
let existingValues = {};
for(let i = 0; i < array.length; i++) {

if(!existingValues[array[i]]) {
existingValues[array[i]] = true;

} else {
return true;

}
}
return false;

}
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Version #2 starts out with an empty hash table called existingValues. We then
iterate over each item from the array, and as we encounter each new item,
we store it as a key in the existingValues hash table. (We set the value arbitrarily
to true.) If, however, we encounter an item that is already a key the hash table,
we return true, as it means we found a duplicate value.

Now, which of these two algorithms is more efficient? Well, it all matters
whether you consider time or space. As far as time is concerned, Version #2
is much more efficient, as it’s only O(N), compared with Version #1’s O(N2).

However, when it comes to space, Version #1 is actually more efficient than
Version #2. Version #2 consumes up to O(N) space, as it creates a hash table
that may end up containing all N values from the array passed to the function.
Version #1, however, does not consume any additional memory beyond the
original array, and therefore has a space complexity of O(1).

Let’s look at the complete contrast between the two versions of hasDuplicateValue():

Space ComplexityTime ComplexityVersion

O(1)O(N2)Version #1

O(N)O(N)Version #2

We can see that Version #1 more efficient when it comes to memory, but
Version #2 is faster in terms of raw speed. So, how do we decide which algo-
rithm to choose?

The answer, of course, is that it depends on the situation. If we need our appli-
cation to be blazing fast and we have enough memory to handle it, then Version
#2 might be preferable. If, on the other hand, we’re dealing with a hardware/data
combination where we need to consume memory sparingly and speed isn’t our
biggest need, then Version #1 might be the right choice. Like all technology
decisions, when there are trade-offs, we need to look at the big picture.

Let’s look at a third version of this same function, and see where it falls
compared to the first two versions:

function hasDuplicateValue(array) {
array.sort((a, b) => (a < b) ? -1 : 1);

for(let i = 0; i < array.length - 1; i++) {
if (array[i] === array[i + 1]) {

return true;
}

}
return false;

}
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This implementation, which we’ll call Version #3, begins by sorting the array.
It then iterates over each value within the array and checks to see whether
it’s the same as the next value. If it is, we’ve found a duplicate value. However,
if we get to the end of the array and there are no two consecutive values that
are the same, we know that the array contains no duplicates.

Let’s analyze the time and space efficiency of Version #3.

In terms of time complexity, this algorithm is O(N log N). We can assume that
JavaScript’s sorting algorithm is one that takes O(N log N), as the fastest
known sorting algorithms are known to do. The additional N steps of iterating
over the array are trivial beside the sorting steps, so O(N log N) is the grand
total when it comes to speed.

Space is a slightly more complex matter, as various sorting algorithms con-
sume varying amounts of memory. Some of the earliest algorithms we’ve
encountered in the book, like Bubble Sort and Selection Sort, consume no
extra space because all the sorting happens in place. Interestingly, though,
the faster sorts do take up some space for reasons you’ll see shortly. Most
implementations of Quicksort actually take up O(log N) space.

So, let’s see where Version #3 lands in comparison with the previous two
versions:

Space ComplexityTime ComplexityVersion

O(1)O(N2)Version #1

O(N)O(N)Version #2

O(log N)O(N log N)Version #3

It turns out Version #3 strikes an interesting balance between time and space.
In terms of time, Version #3 is faster than Version #1, but slower than Version
#2. When it comes to space, it’s more efficient than Version #2, but less effi-
cient than Version #1.

So, when may we want to use Version #3? Well, if we’re concerned about both
time and space, this might be our fix.

Ultimately, in each given situation, we need to know what our minimum
acceptable speeds and bounds of memory are. Once we understand our con-
straints, we can then pick and choose from various algorithms so that we
can eke out acceptable efficiency for our speed and memory needs.

Up until this point, you’ve seen how our algorithms can consume extra space
when they create additional pieces of data, such as new arrays or hash tables.
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However, it’s possible for an algorithm to consume space even if it’s not doing
any of those things. And this can come to bite us if we’re not expecting it.

The Hidden Cost of Recursion
We’ve dealt quite a bit with recursive algorithms in this book. Let’s look at a
simple recursive function:

function recurse(n) {
if (n < 0) { return; }

console.log(n);
recurse(n - 1);

}

This function accepts a number n and counts down to 0, printing each
decrementing number along the way.

It’s a pretty straightforward bit of recursion, and seems pretty harmless. Its
speed is O(N), as the function will run as many times as the argument n. And
it doesn’t create any new data structures, so it doesn’t seem to take up any
additional space.

Or does it?

I explained how recursion works under the hood back in Recursively Recurse
with Recursion. You learned that each time a function recursively calls itself,
an item is added to the call stack so that the computer can come back to the
outer function once the inner function is complete.

If we pass the number 100 into our recurse function, it would add recurse(100)
before proceeding to execute recurse(99). And it would then add recurse(99) to
the call stack before executing recurse(98).

The call stack would be at its peak when recurse(-1) is called, and there would
be 101 items in the call stack, from recurse(100) down to recurse(0).

Now, even though the call stack will eventually get unwound, we do need
enough memory to store these 100 items in our call stack in the first place.
It emerges, then, that our recursive function takes up O(N) space. In this case,
N is the number passed into the function; if we pass in the number 100, we
need to temporarily store 100 function calls in the call stack.

An important principle emerges from all of this: A recursive function takes up
a unit of space for each recursive call it makes. This is the sneaky way recursion
can gobble up memory; even if our function does not explicitly create new
data, the recursion itself adds data to the call stack.
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To properly calculate how much space a recursive function takes, we always
need to figure out how big the call stack would be at its peak.

For our recurse function, the call stack will be about as large as whatever
number n is.

At first, this may seem a bit trivial. After all, our modern computers can
handle a few items on the call stack, right? Well, let’s see.

When I pass in the number 20,000 into the recurse function on my sleek, up-
to-date laptop, my computer cannot process it. Now, 20,000 doesn’t seem like
a very large number. But this is what happens when I run recurse(20000):

My computer prints the numbers from 20000 until 5387 and then terminates
with the message:

RangeError: Maximum call stack size exceeded

Because the recursion lasted from 20000 until about 5000 (I’m rounding 5387
down), we can figure out that the call stack reached a size of about 15,000
when the computer ran out of memory. It turns out my computer will not
tolerate a call stack that contains more than 15,000 items.

This is a huge limitation on recursion, as I can’t use my beautiful recurse
function on a number much greater than 15,000!

Let’s contrast this to a simple loop approach:

function loop(n) {
while (n >= 0) {

console.log(n);
n--;

}
}

This function accomplishes the same goal using a basic loop instead of
recursion.

Because this function does not use recursion, and does not take up any
additional memory, it can run with huge number without ever causing the
computer to run out of space. The function may take some time on huge
numbers, but it’ll get the job done without giving up prematurely as the
recursive function did.

With this in mind, we can now understand why Quicksort is said to take up
O(log N) space. Quicksort makes O(log N) recursive calls, so at its peak, has
a call stack that is the size of log(N).
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When we can implement a function using recursion, then, we need to weigh
recursion’s benefits against its drawbacks. Recursion allows us to use the
“magical” top-down mindset, as you learned about in Learning to Write in
Recursive, but we also need our function to get the job done. And if we’re
processing a lot of data, or even just a number like 20,000, recursion may
not cut it.

Again, this isn’t to discredit recursion. It just means we need to weigh all the
pros and cons of each algorithm in every situation.

Wrapping Up
You’ve now learned how to measure the efficiency of our algorithms from all
angles, including time and space. You are now armed with the analytical
abilities to weigh each algorithm against the next and make informed decisions
on which approach to use for our own applications.

As you are now able to make your own decisions, it’s time to move on to the
final chapter of our journey. In it, I am going to provide a few last pieces of
advice on how to optimize your own code, while taking you through some
realistic scenarios that we’ll optimize together.

Exercises
The following exercises provide you with the opportunity to practice with
space constraints. The solutions to these exercises are found in the section,
Chapter 19, on page 464.

1. Following is the “Word Builder” algorithm we encountered in Word Builder,
on page 97. Describe its space complexity in terms of Big O:

function wordBuilder(array) {
let collection = [];

for(let i = 0; i < array.length; i++) {
for(let j = 0; j < array.length; j++) {
if (i !== j) {

collection.push(array[i] + array[j]);
}

}
}

return collection;
}
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2. Following is a function that reverses an array. Describe its space complex-
ity in terms of Big O:

function reverse(array) {
let newArray = [];

for (let i = array.length - 1; i >= 0; i--) {
newArray.push(array[i]);

}

return newArray;
}

3. Create a new function to reverse an array that takes up just O(1) extra space.

4. Following are three different implementations of a function that accepts an
array of numbers and returns an array containing those numbers multiplied
by 2. For example, if the input is [5, 4, 3, 2, 1], the output will be [10, 8, 6, 4, 2].

function doubleArray1(array) {
let newArray = [];

for(let i = 0; i < array.length; i++) {
newArray.push(array[i] * 2);

}

return newArray;
}

function doubleArray2(array) {
for(let i = 0; i < array.length; i++) {

array[i] *= 2;
}

return array;
}

function doubleArray3(array, index=0) {
if (index >= array.length) { return; }

array[index] *= 2;
doubleArray3(array, index + 1);

return array;
}

Fill in the table that follows to describe the efficiency of these three ver-
sions in terms of both time and space:

Space ComplexityTime ComplexityVersion

??Version #1

??Version #2

??Version #3
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CHAPTER 20

Techniques for Code Optimization
We’ve come quite a long way. You now have the tools to analyze the time and
space complexity of algorithms across a wide variety of data structures. With
these concepts, you’re now able to write code that is fast, memory-efficient,
and beautiful.

In this final chapter of our journey, I’d like to leave you with some additional
techniques for optimizing code. Sometimes it’s difficult to see how an algorithm
can be improved. Over the years, I’ve found the following mental strategies
help me see how I can make my code more efficient. I hope they will be helpful
to you as well.

Prerequisite: Determine Your Current Big O
Before we get into the optimization techniques, though, it’s important to stress
that there is something you need to do before you start optimizing your
algorithm.

The prerequisite to optimization is determining the efficiency of your current
code. After all, it’s impossible to make an algorithm faster if you don’t know
how fast it is now.

By now, you have a thorough understanding of Big O Notation and the various
categories of Big O. Once you know what category of Big O your algorithm
belongs to, you can begin optimizing.

Throughout the rest of this chapter, I’ll refer to this step of determining your
current algorithm’s Big O as the “prereq.”

Start Here: The Best-Imaginable Big O
While all the techniques in this chapter are useful, you’ll find that some come
in handy for certain scenarios, while others are effective for other scenarios.
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However, this first technique applies to all algorithms, and should be the first
step of your optimization process.

And here it is.

Once you’ve determined the efficiency of your current algorithm (the prereq),
come up with what you believe to be what I call the “best-imaginable Big O.”
(I’ve seen others refer to this as the “best-conceivable runtime” when applied
to speed.)

Essentially, the best-imaginable Big O is the absolute best Big O you could
dream of for the problem at hand. This is the Big O you know is absolutely
impossible to beat.

For example, if we were to write a function that prints every item from an
array, we’d probably say that the best-imaginable Big O for this task is O(N).
Given that we have to print each of the N items in the array, we have no choice
but to process each of the N items. There’s just no way around this fact, as
we need to “touch” each item in order to print it. Because of this, O(N) is the
best-imaginable Big O we could imagine for this scenario.

When optimizing an algorithm, then, we need to determine two Big Os. We
need to know the Big O our algorithm currently takes (the prereq), and we
need to come up with the best-imaginable Big O the task could possibly take.

If these two Big Os are not the same, it means we have something to optimize.
If, say, my current algorithm has a runtime of O(N2), but the best-imaginable
Big O is O(N), we now have an improvement to strive for. The gap between the
two Big Os shows us the potential gains we can make through optimization.

Let’s summarize these steps:

1. Determine the Big O category of your current algorithm. (This is the prereq.)

2. Determine the best-imaginable Big O you could dream of for the problem
at hand.

3. If the best-imaginable Big O is faster than your current Big O, you can
now try to optimize your code, with the goal of bringing your algorithm
as close to the best-imaginable Big O as possible.

It’s important to stress that it’s not always possible to achieve the best-imag-
inable Big O. After all, just because you can dream of something doesn’t mean
it can become reality.
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In fact, it might turn out that your current implementation cannot be opti-
mized further at all. However, the best-imaginable Big O is still a tool for giving
us a goal to shoot for with our optimization.

Often, I find that I can successfully optimize an algorithm to a speed that is
in between my current Big O and the best-imaginable Big O.

For example, if my current implementation is O(N2), and my best-imaginable
Big O is O(log N), I will aim to optimize my algorithm to become O(log N). If, in
the end, my optimizations speed up my code to “just” O(N), that’s still a great
success, and the best-imaginable Big O will have served a useful purpose.

Stretching the Imagination
As you’ve seen, the benefit of coming up with the best-imaginable Big O is
that it gives us an optimization goal to shoot for. To really make the most of
this, it’s worth stretching the imagination a bit to come up with a best-imag-
inable Big O that is amazing. In fact, I recommend making your best-imagin-
able Big O the fastest Big O you can think of that isn’t outright impossible.

Here’s another mental trick I use for stoking my imagination. I pick a really
fast Big O for the problem at hand—let’s call it “Amazing Big O.” I then ask
myself, “If someone told me that they know how to pull off the Amazing Big
O for this problem, would I believe them?” If I’d believe someone who said
that they figured out how to solve this problem with the efficiency of Amazing
Big O, I then make the Amazing Big O my best-imaginable Big O.

Once we know the Big O of our current algorithm and the best-imaginable
Big O that we’re aiming for, we are now primed for optimization.

In the remainder of this chapter, we are going to explore additional optimiza-
tion techniques and mental strategies that can help us boost the efficiency
of our code.

Magical Lookups
One of my favorite go-to optimization techniques is to ask myself, “If I could
magically find a desired piece of information in O(1) time, can I make my
algorithm faster?” If the answer to this is yes, I then use a data structure
(often a hash table) to make that magic happen. I call this technique “magical
lookups.”

Let me clarify this technique with an example.
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Magically Looking Up Authors
Let’s say we’re writing library software and we have data about books and
their authors contained in two separate arrays.

Specifically, the array of authors looks like this:

authors = [
{"author_id" => 1, "name" => "Virginia Woolf"},
{"author_id" => 2, "name" => "Leo Tolstoy"},
{"author_id" => 3, "name" => "Dr. Seuss"},
{"author_id" => 4, "name" => "J. K. Rowling"},
{"author_id" => 5, "name" => "Mark Twain"}

]

As you can see, it’s an array of hash tables, with each hash table containing
an author’s name and ID.

We also have a separate array containing data about books:

books = [
{"author_id" => 3, "title" => "Hop on Pop"},
{"author_id" => 1, "title" => "Mrs. Dalloway"},
{"author_id" => 4, "title" => "Harry Potter and the Sorcerer's Stone"},
{"author_id" => 1, "title" => "To the Lighthouse"},
{"author_id" => 2, "title" => "Anna Karenina"},
{"author_id" => 5, "title" => "The Adventures of Tom Sawyer"},
{"author_id" => 3, "title" => "The Cat in the Hat"},
{"author_id" => 2, "title" => "War and Peace"},
{"author_id" => 3, "title" => "Green Eggs and Ham"},
{"author_id" => 5, "title" => "The Adventures of Huckleberry Finn"}

]

Like the authors array, the books array contains a number of hash tables. Each
hash table contains a book’s title and the author_id, which can allow us to
determine the book’s author using the data from the authors array. “Hop on
Pop,” for example, has the author_id of 3. This means the author of “Hop on
Pop” is Dr. Seuss, since he is the author whose ID is 3, as indicated in the
authors array.

Now, let’s say we want to write code that combined this information together
to create an array in the following format:

books_with_authors = [
{"title" => "Hop on Pop", "author" => "Dr. Seuss"}
{"title" => "Mrs. Dalloway", "author" => "Virginia Woolf"}
{"title" => "Harry Potter and the Sorcerer's Stone",

"author" => "J. K. Rowling"}
{"title" => "To the Lighthouse", "author" => "Virginia Woolf"}
{"title" => "Anna Karenina", "author" => "Leo Tolstoy"}
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{"title" => "The Adventures of Tom Sawyer", "author" => "Mark Twain"}
{"title" => "The Cat in the Hat", "author" => "Dr. Seuss"}
{"title" => "War and Peace", "author" => "Leo Tolstoy"}
{"title" => "Green Eggs and Ham", "author" => "Dr. Seuss"}
{"title" => "The Adventures of Huckleberry Finn", "author" => "Mark Twain"}

]

To do this, we’d probably need to iterate through the array of books and connect
each book to its respective author. How would we go about this specifically?

One solution may be to use nested loops. The outer loop would iterate over
each book, and for each book, we’d run an inner loop that would check each
author until it found the one with the connecting ID. Here’s a Ruby implemen-
tation of this approach:

def connect_books_with_authors(books, authors)
books_with_authors = []

books.each do |book|
authors.each do |author|
if book["author_id"] == author["author_id"]

books_with_authors <<
{title: book["title"],
author: author["name"]}

end
end

end

return books_with_authors
end

Before we can optimize our code, we need to fulfill our prereq and determine
our current algorithm’s Big O.

This algorithm has a time complexity of O(N * M), since for each of the N
books, we need to loop through M authors to find the book’s author.

Now, let’s see if we can do better.

Again, the first thing we need to do is come up with the best-imaginable Big
O. In this case, we definitely need to iterate over all N books, so it would seem
impossible to beat O(N). Since O(N) is the fastest speed I can think of that
isn’t downright impossible, we’ll say that O(N) is our best-imaginable Big O.

We’re now ready to use the new “magical lookups” technique. To do this, I’ll
ask myself the question mentioned at the start of this section: “If I could
magically find a desired piece of information in O(1) time, can I make my
algorithm faster?”
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Let’s apply this to our scenario. We currently run an outer loop that iterates
over all the books. Currently, for each book, we run an inner loop that tries
to find the book’s author_id in the authors array.

But what if we had the magical ability to find an author in just O(1) time? That
is, what if we didn’t have to loop through all the authors each time we wanted
to look one up, and we could instead find the author immediately? That would
bring a huge speed boost to our algorithm, as we could potentially eliminate
our inner loop and bring our code’s speed up to the vaunted O(N).

Now that we’ve determined that this magical finding ability could help us,
the next step is to try to make this magic come alive.

Bringing in the Extra Data Structure
One of the easiest ways we can achieve this magical lookup ability is to bring
an additional data structure into our code. We’ll use this data structure to
specifically store data in such a way that allows us to look that data up
quickly. In many cases, the hash table is the perfect data structure for this,
since it has O(1) lookups, as you learned in Blazing Fast Lookup with Hash
Tables.

Right now, because the author hash tables are stored in an array, it will always
take us O(M) steps (M being the number of authors) to find any given author_id
within that array. But if we store that same information in a hash table, we’d
now gain our “magical” ability to find each author in just O(1) time.

Here’s one possibility of what this hash table could look like:

author_hash_table =
{1 => "Virginia Woolf", 2 => "Leo Tolstoy", 3 => "Dr. Seuss",
4 => "J. K. Rowling", 5 => "Mark Twain"}

In this hash table, each key is the author’s ID, and the value of each key is
the author’s name.

So, let’s optimize our algorithm by first moving the authors data into this hash
table, and only then run our loop through the books:

def connect_books_with_authors(books, authors)
books_with_authors = []
author_hash_table = {}

# Convert author data into author hash table:
authors.each do |author|

author_hash_table[author["author_id"]] = author["name"]
end
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books.each do |book|
books_with_authors <<
{"title" => book["title"],

"author" => author_hash_table[book["author_id"]]}
end

return books_with_authors
end

In this version, we first iterate through the authors array and use that data to
create the author_hash_table. This takes M steps, with M being the number of
authors.

We then iterate through the list of books and use the author_hash_table to
“magically” find each author in a single step. This loop takes N steps, with N
being the number of books.

This optimized algorithm takes a grand total of O(N + M) steps, since we run
a single loop through the N books, and a single loop through the M authors.
This is drastically faster than our original algorithm, which took O(N * M).

It’s worth noting that by creating the extra hash table, we’re using up an
additional O(M) space, whereas our initial algorithm didn’t take up any extra
space at all. However, this is great optimization if we’re willing to sacrifice the
memory for the sake of speed.

We made this magic happen by first dreaming what magical O(1) lookups
could do for us, and we then granted ourselves our own wish by using a hash
table to store our data in an easy-to-find way.

The fact that we can look up hash table data in O(1) time isn’t new, as we looked
at this back in Blazing Fast Lookup with Hash Tables. The specific tip I’m sharing
here, though, is to constantly imagine that you can perform O(1) lookups on
any kind of data and notice whether that would speed up your code. Once
you have the vision of how O(1) lookups would help you, you can then try to
use a hash table or other data structure to turn that dream into reality.

The Two-Sum Problem
Let’s look at another scenario in which we can benefit from magical lookups.
This is one my favorite optimization examples.

The Two-Sum Problem is a well-known coding exercise. The task is to write
a function that accepts an array of numbers and return true or false depending
on whether there are any two numbers in the array that add up to 10 (or
another given number). For simplicity, let’s assume there will never be
duplicate numbers in the array.
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Let’s say our array is:

[2, 0, 4, 1, 7, 9]

Our function would return true, since the 1 and 9 add up to 10.

If the array was:

[2, 0, 4, 5, 3, 9]

we’d return false. Even though the three numbers 2, 5, and 3 add up to 10, we
specifically need two numbers to add up to 10.

The first solution that comes to mind is to use nested loops to compare each
number to every other number and see if they add up to 10. Here is a Java-
Script implementation:

function twoSum(array) {
for(let i = 0; i < array.length; i++) {

for(let j = 0; j < array.length; j++) {
if(i !== j && array[i] + array[j] === 10) {

return true;
}

}
}
return false;

}

As always, before attempting an optimization, we need to satisfy our prereq
and figure out the current Big O of our code.

As is typical in a nested-loop algorithm, this function has a runtime of O(N2).

Next, to see if our algorithm is worth optimizing, we need to see if the best-
imaginable Big O would be any better.

In this case, it would seem that we absolutely have to visit each number in
the array at least once. So, we couldn’t beat O(N). And if someone told me
that there’s an O(N) solution to this problem, I suppose I’d believe them. So,
let’s make O(N) our best-imaginable Big O.

Now, let’s ask ourselves the magical-lookup question: “If I could magically
find a desired piece of information in O(1) time, can I make my algorithm
faster?”

Sometimes it helps to begin walking through our current implementation
while asking this question along the way, so let’s do that.

Let’s mentally walk through our outer loop with the example array of [2, 0, 4,
1, 7, 9]. This loop begins with the first number, which is the number 2.
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Now, what piece of information might we desire to look up while we’re looking
at the 2? Again, we want to know if this 2 could be added to another number
in the array to provide a sum of 10.

Thinking about it further, while looking at the 2, I’d want to know whether
there’s an 8 somewhere in this array. If we could, magically, do an O(1) lookup
and know that there’s an 8 in the array, we could immediately return true.
Let’s call the 8 the 2’s counterpart, since the two numbers add up to 10.

Similarly, when we move on to the 0, we’d want to do an O(1) lookup to find
its counterpart—a 10—in the array, and so on.

With this approach, we can iterate through the array just once and do magical
O(1) lookups along the way to see whether each number’s counterpart exists
in the array. As soon as we find any number’s counterpart, we return true,
but if we get to the end of the array without finding any numerical counter-
parts, we return false.

Now that we’ve determined we’d benefit from these magical O(1) lookups, let’s
try to pull off our magic trick by bringing in an extra data structure. Again,
the hash table is usually the default option for magical lookups because of
its O(1) reads. (It’s uncanny how often hash tables can be used to speed up
algorithms.)

Since we want to be able to look up any number from the array in O(1) time,
we’ll store those numbers as keys in a hash table. The hash table may look
like this:

{2: true, 0: true, 4: true, 1: true, 7: true, 9: true}

We can use any arbitrary item to serve as the values; let’s decide to use true.

Now that we can look up any number in O(1) time, how do we look up a
number’s counterpart? Well, we noticed that when we iterated over the 2, we
knew that the counterpart should be 8. We knew this because we know
intuitively that 2 + 8 = 10.

Essentially, then, we can calculate any number’s counterpart by subtracting
it from 10. Because 10 - 2 = 8, that means 8 is the 2’s counterpart.

We now have all the ingredients to create a really fast algorithm:

function twoSum(array) {
let hashTable = {};
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for(let i = 0; i < array.length; i++) {
// Check if the hash table contains a key which, when added
// to the current number, would add up to 10:
if(hashTable[10 - array[i]]) {
return true;

}

// Store each number as a key in the hash table:
hashTable[array[i]] = true;

}

// Return false if we get to the end of the array without
// finding any number's counterpart:
return false;

}

This algorithm iterates once through each number in the array.

As we visit each number, we check whether the hash table contains a key that
is the counterpart of the current number. We calculate this is as 10 - array[i]. (For
example, if array[i] is 3, the counterpart would be 7, since 10 - 3 = 7.)

If we find any number’s counterpart, we immediately return true, as that means
we’ve found two numbers that add up to 10.

Additionally, as we iterate over each number, we insert the number as a key
into the hash table. This is how we populate the hash table with the numbers
as we proceed through the array.

With this approach, we drastically increased the algorithm’s speed to O(N).
We pulled this off by storing all of the data elements in a hash table for the
express purpose of being able to perform O(1) lookups throughout the loop.

Consider the hash table your magical wand, and become the programming
wizard you were destined to be. (Okay, enough of that.)

Recognizing Patterns
One of the most helpful strategies for both code optimization and algorithm
development in general is to find patterns within the problem at hand. Often,
the discovery of a pattern can help you cut through all the complexity of a
problem and develop an algorithm that is actually quite simple.

The Coin Game
Here’s a great example. There’s a game I call “the coin game” in which two
players compete in the following way. They start with a pile of coins, and each
player has the choice of removing either one or two coins from the pile. The
player who removes the last coin loses. Fun, right?
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It turns out that this isn’t a game of random chance, and with the right
strategy, you can force your opponent to take the last coin and lose the game.
To make this clear, let’s start with some really small coin piles and see how
the game plays out.

If there’s just one coin in the pile, the player whose turn it is loses, since they
have no choice but to take the last coin.

If there are two coins left, the player whose turn it is can force a win. This is
because they can take just one coin, and thereby force their opponent to take
the final coin.

When there are three coins remaining, the player whose turn it is can also
force a win, since they can remove two coins, forcing their opponent to take
the final coin.

Now, when there are four coins left, the current player is in trouble. If they
remove one coin, the opponent is given a pile of three coins, which we estab-
lished earlier can allow that player to force a win. Similarly, if the current
player removes two coins, the opponent is left with two coins, which can also
allow the opponent to force a win.

If we were to write a function that calculated whether you can win the game
when presented with a coin pile of a given size, what approach should we
take? If we think about this carefully, we may realize that we can use sub-
problems to help calculate an accurate result for any number of coins. This
would make top-down recursion a natural fit for solving this problem.

Here’s a Ruby implementation of a recursive approach:

def game_winner(number_of_coins, current_player="you")
if number_of_coins <= 0

return current_player
end

if current_player == "you"
next_player = "them"

elsif current_player == "them"
next_player = "you"

end

if game_winner(number_of_coins - 1, next_player) == current_player ||
game_winner(number_of_coins - 2, next_player) == current_player
return current_player

else
return next_player

end
end
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This game_winner function is given a number of coins and the player whose
turn it is (either "you" or "them"). The function then returns either "you" or "them"
as the winner of the game. When the function is first called, the current_player
is "you".

We define our base case as when the current_player is dealt 0 or fewer coins.
This means the other player took the last coin and the current player, by
default, won the game.

We then define a next_player variable, which keeps track of which player will
go next.

Then, we do our recursion. We recursively call our game_winner function on
piles of coins that are both one and two coins smaller than the current pile,
and see if the next player would win or lose in those scenarios. If the
next_player loses in both scenarios, that means the current_player will win.

This isn’t an easy algorithm, but we pulled it off. Now, let’s see if we can
optimize it.

To satisfy our prereq, we first need to figure out our algorithm’s current speed.

You may have noticed that this function makes multiple recursive calls. If
alarm bells are going off in your head, that’s for good reason. The time com-
plexity of this function is a whopping O(2N), which can be unbearably slow.

Now, we can improve this by using the memoization technique you learned
about in Dynamic Programming, which could bring the speed up to O(N), with
N being the number of coins in the starting pile. That’s a huge improvement.

But let’s see if we can push our algorithm’s speed even further.

To determine whether we can optimize our algorithm further, we need to ask
ourselves what we think the best-imaginable Big O is.

Because N is just a single number, I could conceive that we can make an
algorithm that takes just O(1) time. Since we don’t actually have to touch N
items in an array or anything like that, if someone told me they figured out
an algorithm for the coin game that was just O(1), I’d believe them. So, let’s
strive for O(1).

But how do we get there? This is where finding a pattern can help.

Generating Examples
While each problem has a unique pattern, I found a technique for finding
patterns that helps across all problems. And that is to generate numerous

Chapter 20. Techniques for Code Optimization • 408

report erratum  •  discuss

http://pragprog.com/titles/jwdsal2/errata/add
http://forums.pragprog.com/forums/jwdsal2


examples. This means we should take a whole bunch of example inputs, cal-
culate their respective outputs, and see if we can detect a pattern.

Let’s apply this to our case.

If we map out who wins for coin piles of size 1 through 10, we get this table:

WinnerNumber of Coins

Them1

You2

You3

Them4

You5

You6

Them7

You8

You9

Them10

The pattern becomes clear when we lay it out this way. Basically, starting
with 1 coin, every third number gives victory to the opponent. Otherwise, you
are the winner.

So, if we take the number of coins and subtract 1, each "them" ends up at a
number that is divisible by 3. At this point, then, we can determine who will
win based on a single division calculation:

def game_winner(number_of_coins)
if (number_of_coins - 1) % 3 == 0

return "them"
else

return "you"
end

end

This code is saying that if after subtracting 1, the number_of_coins is divisible
by 3, the winner is "them". Otherwise, "you" are the winner.

Because this algorithm consists of a single mathematical operation, it’s O(1)
in both time and space. It’s also a lot simpler! This is a real win-win-win.

By generating many examples of coin piles (as inputs) and seeing who’d win
the game (as outputs), we were able to identify a pattern in how the coin game
works. We were then able to use this pattern to cut to the heart of the problem
and turn a slow algorithm into an instantaneous one.
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The Sum Swap Problem
Here’s an example where we can use both pattern recognition and magical
lookups together to optimize an algorithm.

The next problem, known as the “sum swap” problem, goes like this:

We want to write a function that accepts two arrays of integers. As an example,
let’s say our arrays are:

Currently, the numbers in array_1 add up to 20, while the numbers in array_2
add up to 18.

Our function needs to find one number from each array that can be swapped
to cause the two array sums to be equal.

In this example, if we swapped the 2 from array_1 and the 1 from array_2, we’d get:

And both arrays would now have the same sum, namely 19.

To keep things simple, our function won’t actually perform the swap, but will
return the two indexes that we’d have to swap. We can do this as an array
containing the two indexes. So, in this case, we swapped index 2 of array_1
with index 0 of array_2, so we’ll return an array of [2, 0]. In a case where there
is no possible swap that makes the two arrays equal, we’ll return nil.

One way we can write this algorithm is to use nested loops. That is, as our
outer loop points to each number from array_1, an inner loop can iterate over
each number from array_2 and test the sums of each array if we were to swap
the two numbers.

To begin optimizing this, we must first satisfy our prereq of knowing the Big
O of our current algorithm.

Because our nested-loops approach visits M numbers from the second array
for each of the N numbers of the first array, this algorithm is O(N * M). (I’m
discussing N and M because the arrays may be two different sizes.)
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Can we do better? To find out, let’s determine what we think the best-imagin-
able Big O may be.

It would seem that we absolutely have to visit each number from the two
arrays at least once, since we need to be aware of what all the numbers are.
But it’s possible that this may be all we need to do. If so, this would be O(N
+ M). Let’s make this our best-imaginable Big O and aim for that.

Next, we need to try to dig up any patterns hidden within the problem. Again,
the best technique to dig up patterns is to come up with numerous examples
and look for patterns among them.

So, let’s look at a number of different examples where swapping numbers will
cause the two arrays to have equal sums:

In looking at these examples, a few patterns begin to emerge. Some of these
patterns may seem obvious, but let’s look at them anyway.

One pattern is that to achieve equal sums, the larger array needs to trade a
larger number with a smaller number from the smaller array.

A second pattern is that with a single swap, each array’s sum changes by the
same amount. For example, when we swap a 7 with a 4, one array’s sum
decreases by 3, while the other array’s sum increases by 3.

A third interesting pattern is that the swaps always cause the two array sums
to fall out exactly in the middle of where the two array sums began.
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In the first case, for example, array_1 was 18 and array_2 was 12. When making
a correct swap, the two arrays land at 15, which is exactly in the middle
between 18 and 12.

When we think about it further, this third pattern is a logical outgrowth of the
other patterns. Since a swap causes the two arrays to shift their sums by the
same amount, the only way to make their sums equal is to meet in the middle.

Based on this, if we know the sums of the two arrays, we should be able to
look at any number in one of the arrays and calculate what number it should
be swapped with.

Let’s take this example again:

We know that for a swap to work successfully, we’ll need the two arrays’ sums
to land in the middle. The exact middle between 18 and 12 is 15.

Let’s look at different numbers from array_1 and figure out what number we’d
want to swap it with. We can call this other number its “counterpart.” Let’s
start with the first number from array_1, which is the number 5.

What number would we want to swap the 5 with? Well, we know that we want
array_1 to decrease by 3, and array_2 to increase by 3, so we’d need to swap the
5 with a number 2. It just so happens that array_2 doesn’t contain a 2, so the
5 cannot be successfully swapped with any number from array_2.

If we look at the next number from array_1, it’s a 3. We’d have to swap this with
a 0 from array_2 to get the two sums to be equal. Alas, a 0 doesn’t exist in array_2.

The last number from array_1, though, is a 7. We can calculate that we’d want
to swap the 7 with a 4 to make the sums both land at 15. Luckily, array_2 does
contain a 4, so we can make a successful swap.

So, how do we express this pattern in code?

Well, we can first determine how much an array sum needs to shift using
this calculation:

shift_amount = (sum_1 - sum_2) / 2

Here, sum_1 is the sum of array_1, and sum_2 is the sum of array_2. If sum_1 is 18
and sum_2 is 12, we end up with a difference of 6. We then divide that by 2 to
determine how much each array needs to shift. This is the shift_amount.
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In this case, the shift_amount is 3, indicating that array_2 needs to increase by 3
in order to hit the target sum. (Likewise, array_1 needs to decrease by 3.)

So, we can start building our algorithm by first calculating the sums of the
two arrays. We can then loop through all the numbers in one of the arrays
and look for the counterpart in the other.

If we were to iterate over each number in array_2, for example, we know that
the current number would have to be swapped with its counterpart, which
would be the current number plus the shift_amount. For example, if the current
number is 4, to find its counterpart, we add the shift_amount to it (3) and get 7.
This means we need to find a 7 in array_1 to swap with our current number.

So, we’ve figured out that we can look at any number in either array and
know exactly what its counterpart from the other array should be. But how
does this help? Don’t we still need to use nested loops and have an algorithm
that is O(N * M)? That is, for each number in one array, we have to search
the entire other array for the counterpart.

This is where we can invoke magical lookups and ask ourselves, “If I could
magically find a desired piece of information in O(1) time, can I make my
algorithm faster?”

Indeed, if we could find a number’s counterpart from the other array in just
O(1) time, our algorithm would be much faster. And we can achieve those
quick lookups by following the usual technique of bringing in our good ol’
hash table.

If we first store the numbers from one array in a hash table, we can then
immediately find any number from it in O(1) time as we iterate through the
other array.

Here’s the complete code:

def sum_swap(array_1, array_2)
# Hash table to store values of first array:
hash_table = {}
sum_1 = 0
sum_2 = 0

# Get sum of first array, while storing its values
# in a hash table, together with an index
array_1.each_with_index do |num, index|

sum_1 += num
hash_table[num] = index

end
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# Get sum of second array:
array_2.each do |num|

sum_2 += num
end

# Calculate how much a number in the second array needs
# to shift by:
shift_amount = (sum_1 - sum_2) / 2

# Iterate over each number in second array:
array_2.each_with_index do |num, index|

# Check hash table for the number's counterpart in the
# first array, which is calculated as the current number
# plus the amount it has to shift by:
if hash_table[num + shift_amount]
return [hash_table[num + shift_amount], index]

end
end

return nil
end

This approach is much faster than our original O(N * M) one. If we consider
array_1 to be N and array_2 to be M, we could say that this algorithm runs in
O(N + M) time. While we do iterate over array_2 twice and is technically 2M, it
becomes M since we drop the constants.

This approach takes up an extra O(N) space, since we copy all N numbers
from array_1 into the hash table. Again, we’re sacrificing space to gain time,
but this is a big win if speed is our primary concern.

In any case, this is another example of where discovering patterns allows us
to cut to the heart of the problem and develop a simple and fast solution.

Greedy Algorithms
This next tactic can speed up some of the most stubborn algorithms. It doesn’t
work in every situation, but when it does, it can be a game changer.

Let’s talk about writing greedy algorithms.

This may sound like a strange term, but here’s what it means. A greedy
algorithm is one that, in each step, chooses what appears to be the best option
at that moment in time. This will make sense with a basic example.

Array Max
Let’s write an algorithm that finds the greatest number in an array. One way
we can do this is to use nested loops and check each number against every
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other number in the array. When we find the number that is greater than
every other number, it means we’ve found the greatest number in the array.

As is typical for such algorithms, this approach takes O(N2) time.

Another approach would be to sort the array in ascending order and return
the final value from the array. If we use a fast sorting algorithm like Quicksort,
this would take O(N log N) time.

There’s a third option, which is the greedy algorithm. Here it is:

def max(array)
greatest_number = array[0]

array.each do |number|
if number > greatest_number
greatest_number = number

end
end

return greatest_number
end

As you can see, the first line of our function assumes the first number in the
array is the greatest_number. Now, this is a “greedy” assumption. That is, we’re
declaring the first number to be the greatest_number because it’s the greatest
number we’ve encountered so far. Of course, it’s also the only number we’ve
encountered so far! But that’s what a greedy algorithm does—it chooses what
appears to be the best option based on the information available at that
moment in time.

Next, we iterate over all the numbers in the array. As we find any number
that is greater than the greatest_number, we make this new number the great-
est_number. Here too, we’re being greedy; each step selects the best option based
on what we know at that moment in time.

We’re basically like a child in a candy shop grabbing the first candy we see,
but as soon as we see a bigger candy, we drop the first one and grab the
bigger one.

Yet, this seemingly naive greediness actually works. By the time we’re done
with the function, our greatest_number will indeed be the greatest number in
the entire array.

And while being greedy isn’t a virtue in a societal context, it can do wonders
for algorithm speed. This algorithm takes just O(N) time, as we touch each
number in the array just once.
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Largest Subsection Sum
Let’s see another example of how greed pays off.

We’re going to write a function that accepts an array of numbers and returns
the largest sum that could be computed from any “subsection” of the array.

Here’s what I mean. Let’s take the following array:

[3, -4, 4, -3, 5, -9]

If we computed the sum of all the numbers in this array, we’d get -4.

But we can also compute the sum of subsections of the array:

When I refer to subsections, I mean contiguous subsections. That is, a subsec-
tion is a section of the array that contains a series of numbers in a row.

The following is not a contiguous subsection, since the numbers are not in
a row:

Our job is to find the largest sum that can be computed from any subsection
within the array. In our example, the largest sum is 6, derived from the fol-
lowing subsection:

To make the discussion simpler, let’s assume the array contains at least one
positive number.

Now, how can we write the code to calculate the largest subsection sum?
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One approach would be to calculate the sum of every subsection within the
array and pick out the greatest one. However, there are about N2 / 2 subsec-
tions for N items in an array, so the mere generation of the different subsec-
tions would take O(N2) time.

Again, let’s start by dreaming up the best-imaginable Big O. We definitely
need to inspect each number at least once, so we can’t beat O(N). So, let’s
make O(N) our goal.

At first glance, O(N) seems beyond our reach. How can we add up multiple
subsections by iterating over the array a single time?

Let’s see what happens if we get a little greedy…

A greedy algorithm in this context would attempt to “grab” the greatest sum
at each step as we iterate over the array. Here’s what this might look like as
we iterate over the earlier example array.

Starting at the front of the array, we encounter a 3. In perfect greedy fashion,
we’ll say that our greatest sum is 3:

Next, we reach the -4. When we add this to the previous number of 3, we get
a current sum -1. So, 3 is still our greatest sum:

We then hit the 4. If we add this to our current sum, we get 3:

As of now, 3 is still the greatest sum.
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The next number we reach is a -3. This puts our current sum at 0:

Again, while 0 is our current sum, 3 is still our greatest sum.

Next, we reach the 5. This makes our current sum 5. In our greed, we’ll declare
this to be the greatest sum, as it’s the greatest sum we’ve encountered so far:

We then reach the last number, which is -9. This deflates our current number
to -4:

By the time we get to the end of the array, our greatest sum is 5. So, if we
follow this pure-greed approach, it would appear that our algorithm should
return 5.

However, 5 is actually not the greatest subsection sum. There’s a subsection
in the array that yields a sum of 6:

The problem with our algorithm is that we only calculated the largest sum
based on subsections that always begin with the first number in the array.
But there are other subsections that begin with numbers later on in the array
as well. And we haven’t accounted for those.

Our greedy algorithm, then, didn’t pan out as we’d hoped.

But we shouldn’t give up yet! Often, we need to tweak greedy algorithms a
bit to get them to work.
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Let’s see if finding a pattern may help. (It usually does.) As we’ve seen before,
the best way to find a pattern is to generate lots of examples. So, let’s come
up with some examples of arrays with their largest subsection sums and see
if we discover anything interesting:

When analyzing these cases, an interesting question emerges: why is it that
in some cases, the greatest sum comes from a subsection that starts at the
beginning of the array, and in other cases it doesn’t?

In looking at these cases, we can see that when the greatest subsection doesn’t
start at the beginning, it’s because a negative number broke the streak:

That is, the greatest subsection would’ve been derived from the beginning of
the array, but a negative number killed the streak, and the greatest subsection
has to start later on in the array.

But wait a second. In some cases, the greatest subsection includes a negative
number, and the negative number didn’t break the streak:

So, what’s the difference?

The pattern is: if the negative number causes the preceding subsection’s sum
to sink to a negative number, the streak is broken. But if the negative number
simply lowers the current subsection’s sum, and the sum remains a positive
number, the streak isn’t broken.

If we think about it, this makes sense. If as we’re iterating through the array,
our current subsection’s sum becomes less than 0, we’re best off just resetting
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the current sum to 0. Otherwise, the current negative sum will just detract
from the greatest sum we’re trying to find.

So, let’s use this insight to tweak our greedy algorithm.

Again, let’s start with the 3. The greatest sum is currently 3:

Next, we encounter the -4. This would make our current sum -1:

Since we’re trying to find the subsection with the greatest sum, and our cur-
rent sum is a negative number, we need to reset the current sum to 0 before
continuing on to the next number:

We’ll also start a brand-new subsection beginning with the next number.

Again, the reasoning is that if the next number is positive, we may as well
just start the next subsection from there, without letting the current negative
number drag down the sum. Instead, we’re going to perform a reset by setting
the current sum to 0 and considering the next number to be the beginning
of a new subsection.

So, let’s continue.

We now reach a 4. Again, this is the beginning of a new subsection, so the
current sum is 4, which also becomes the greatest sum we’ve seen yet:
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Next, we encounter the -3. The current sum is now 1:

We next come upon a 5. This makes the current sum 6, which is the greatest
sum as well:

Finally, we reach the -9. This would make the current sum -4, in which case
we’d reset it to 0. However, we’ve also reached the end of the array, and we
can conclude the greatest sum is 6. And, indeed, that is the correct result.

Here is the code for this approach:

def max_sum(array)
current_sum = 0
greatest_sum = 0

array.each do |num|
# If current sum is a negative number, reset current sum to zero:
if current_sum + num < 0
current_sum = 0

else
current_sum += num

# Greedily assume the current sum is the greatest sum
# if it's the greatest sum we've encountered so far:
greatest_sum = current_sum if current_sum > greatest_sum

end
end

return greatest_sum
end

Using this greedy algorithm, we were able to solve this thorny problem in just
O(N) time, as we loop through the array of numbers just once. That’s a great
improvement over our initial O(N2) approach. In terms of space, this algorithm
is O(1), as we don’t generate any extra data.
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While the discovery of a pattern helped us discover the precise solution, by
adopting the greedy mindset, we knew what kind of pattern we were looking
for in the first place.

Greedy Stock Predictions
Let’s look at one more greedy algorithm.

Say we’re writing financial software that makes stock predictions. The partic-
ular algorithm we’re working on now looks for a positive trend for a given
stock.

Specifically, we’re writing a function that accepts an array of stock prices and
determines whether there are any three prices that create an upward trend.

For example, take this array of stock prices that represents the price of a
given stock over time:

[22, 25, 21, 18, 19.6, 17, 16, 20.5]

Although it may be difficult to spot at first, there are three prices that form
an upward trend:

That is, as we go from left to right, there are three prices where a “right hand”
price is greater than a “middle” price, which in turn is greater than a “left
hand” price.

The following array, on the other hand, does not contain a three-point upward
trend:

[50, 51.25, 48.4, 49, 47.2, 48, 46.9]

Our function should return true if the array contains an upward trend of three
prices, and false if it does not.

So, how do we go about this?

One way we can do this is with three nested loops. That is, as one loop iterates
over each stock price, a second loop iterates over all the stock prices that
follow. And for each round of the second loop, a third nested loop checks all
the prices that follow the second price. As we point to each set of three stock
prices, we check whether they are in ascending order. As soon as we find
such a set, we return true. But if we complete the loops without finding any
such trend, we return false.
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The time complexity of this algorithm is O(N3). That’s pretty slow! Is there any
way we can optimize this?

Let’s first think about the best-imaginable Big O. We definitely need to inspect
each stock price to find a trend, so we know that our algorithm cannot be
faster than O(N). Let’s see if we can optimize for such a speed.

Once again, it’s time to get greedy.

To apply the greedy mentality to our case, we’d want to somehow keep
“grabbing” what we think is the lowest point of our three-price upward trend.
It would also be cool if we can use the same greedy approach to constantly
“grab” what we think are the middle and highest points of that trend.

Here’s what we’ll do:

We’ll assume the first price from the array is the lowest point in the three-
price upward trend.

As far as the middle price, we’ll initialize it to a number that is guaranteed
to be greater than even the highest stock price in the array. To do this, we’ll
set it to infinity. (Many programming languages support the concept of infin-
ity.) This particular step might be the least intuitive at first glance, but you’ll
see shortly why we need to do this.

We’ll then make a single pass through the entire array, according to the fol-
lowing steps:

1. If the current price is lower than the lowest price we’ve encountered so
far, this price becomes the new lowest price.

2. If the current price is higher than the lowest price, but lower than the
middle price, we update the middle price to be the current price.

3. If the current price is higher than the lowest and middle price, it means
we’ve found a three-price upward trend!

Let’s see this in action. First, we’ll start with a simple example, working with
this array of stock prices:

We begin iterating through the array, starting with the 5. We start out of the
gates with pure greed, and assume that this 5 is the smallest price in the
three-point trend as shown in the array on page 424.
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Next, we proceed to the 2. Because the 2 is lower than the 5, we get even
greedier and assume that the 2 is now the lowest price in the trend:

We arrive at the next number in the array, which is 8. This is higher than
our lowest point, so we keep the lowest point at 2. However, it’s less than the
current middle price, which is infinity, so we now greedily assign the 8 to be
our middle point in the three-point trend:

Next up, we reach the 4. This is higher than the 2, so we continue to assume
that the 2 is the lowest point in our trend. However, because the 4 is less
than the 8, we make the 4 our middle point instead of the 8. This, too, is out
of greed, as by making our middle point lower, we increase our chances of
finding a higher price later on, forming the trend that we’re seeking. So, the
4 is our new middle point:

The next number in the array is the 3. We’ll leave our lowest price at 2, since
the 3 is greater than it. But we will make it our new middle point, since it’s
less than the 4:
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Finally, we reach the 7, which is the last value in the array. Because the 7 is
greater than our middle price (which is 3), this means the array contains an
upward three-point trend, and our function can return true:

Note that two such trends exist in the array. There’s 2-3-7, but there’s also
2-4-7. Ultimately, though, this doesn’t matter to us, since we’re just trying
to determine whether this array contains any upward trend, so finding a
single instance is enough to return true.

Here’s an implementation of this algorithm:

def increasing_triplet?(array)
lowest_price = array[0]
middle_price = Float::INFINITY

array.each do |price|
if price <= lowest_price
lowest_price = price

# if current price is higher than lowest price
# but lower than middle price:
elsif price <= middle_price
middle_price = price

# if the current price is higher than the middle price:
else
return true

end
end

return false
end

One counterintuitive aspect of this algorithm is worth pointing out. Specifically,
in some scenarios, it would appear this algorithm wouldn’t work, yet it does.

Let’s take a look at this scenario:

Let’s see what happens when we apply our algorithm to this array.
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At first, the 8 becomes our lowest point:

Then, the 9 becomes our middle point:

Next, we reach the 7. Because this is lower than our lowest point, we update
the lowest point to be 7:

We then reach the 10:

Because the 10 is greater than the current middle point (9) our function
returns true. Now, this is the correct response, since our array indeed contains
the trend of 8-9-10. However, by the time our function is done, our lowest
point variable is actually the pointing to the 7. But the 7 is not part of the
upward trend!

Despite this being the case, our function still returned the correct response.
And this is because all our function needs to do is reach a number that is
higher than the middle point. Because the middle point was only established
once we already found a lower point before it, as soon as we reach a number
higher than the middle point, it still means an upward trend is present in the
array. This is true even though we ended up overwriting the lower point to
be some other number later on.

In any case, our greedy approach paid off, as we only iterated over our array
a single time. This is an astounding improvement, as we turned an algorithm
that ran at O(N3) into one of O(N).
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Of course, a greedy approach doesn’t always work. But it’s another tool you
can try out when optimizing your algorithms.

Change the Data Structure
Another helpful optimization technique is to imagine what would happen if
we stored our given data in an alternative data structure.

For example, we may be working on a problem where the data is given to us
in the form of an array. However, reimagining that same data stored as a
hash table, tree, or other data structure can sometimes reveal clever optimiza-
tion opportunities.

Our using of a hash table for the magical lookup technique earlier is a specific
example of this. However, we’re about to see that changing the data structure
can be useful for other scenarios as well.

The Anagram Checker
Here’s one example. Let’s say we’re writing a function that determines whether
two given strings are anagrams of one another. We encountered an anagram
function before in Anagram Generation, on page 177, but there we dealt with
a function that produced every anagram of a string. Here, we’re just going to
compare two strings side by side. We’ll return true if they’re anagrams of each
other, and false if they’re not.

Now, we could actually use the anagram-generating function to solve this
problem. That is, we can produce all the anagrams of the first string and see
if the second string matches any of those anagrams. However, since for N
characters in the string there will always be N! anagrams, our algorithm will
take at least O(N!) time. This is disastrously slow.

You know the drill. Before we proceed to optimize our code, we need to come
up with our best imaginable-Big O.

Now, we certainly need to visit each character from both strings at least once.
And since the strings may be of different sizes, touching each character just
once would be O(N + M). As I couldn’t imagine a faster speed for the task at
hand, this is what we’ll aim for.

Let’s work our way there.

A second possible approach to our problem is to run nested loops to compare
the two strings. Specifically, as an outer loop iterates over each character
from the first string, we compare that character to every character of the
second string. Each time we find a match, we delete a character from the
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second string. The idea here is that if every character from the first string is
also present in the second string, we’d end up deleting every character from
the second string by the time we complete our outer loop.

So, if by the time we finish looping, there are still characters remaining from
the second string, it means the strings aren’t anagrams. Also, if we’re still
iterating over the first word, but we’ve already deleted the entire second string,
it also means the strings weren’t anagrams. But if we make it to end of the
loop and the second string has been completely deleted, we can conclude that
the two strings are indeed anagrams.

Here’s a Python implementation of this:

def areAnagrams(firstString, secondString):
# Convert secondString into an array so we can delete characters from it,
# as strings are immutable in Python:
secondStringArray = list(secondString)

for i in range(0, len(firstString)):

# If we're still iterating through the firstString, but the
# secondStringArray is already empty:
if len(secondStringArray) == 0:
return False

for j in range(0, len(secondStringArray)):

# If we find the same character in both the firstString
# and secondStringArray:
if firstString[i] == secondStringArray[j]:

# Delete the character from the second array and
# go back to the outer loop:
del secondStringArray[j]
break

# The two strings are only anagrams if the secondStringArray
# has no characters remaining by the time we're done
# iterating over the firstString:
return len(secondStringArray) == 0

Now, it just so happens that deleting items from an array while you’re looping
through it can be error prone; if you don’t do it right, it’s like sawing off the
tree branch you’re sitting on. But even though we’ve handled that correctly,
our algorithm runs at O(N * M). This is way faster than O(N!), but much
slower than the O(N + M) we’re shooting for.

An even faster approach would be to sort the two strings. If after sorting the
two strings they’re exactly the same, it means they’re anagrams; otherwise,
they’re not.
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This approach will take O(N log N) for each string using a fast sorting algorithm
like Quicksort. Since we may have two strings of different sizes, this adds up
to be O(N log N + M log M). This is a nice improvement over O(N * M), but let’s
not stop now—we’re aiming for O(N + M), remember?

This is where using an alternative data structure can be extremely helpful.
We’re dealing with strings, but let’s imagine that we’d store the string data
in other types of data structures.

We could store a string as an array of single characters. However, this doesn’t
help us any.

Let’s next imagine the string as a hash table. What would that even look like?

One possibility is to create a hash table where each character is a key, and
the value is the number of occurrences of that character within the word. For
example, the string "balloon" would become:

{"b" => 1, "a" => 1, "l" => 2, "o" => 2, "n" => 1}

This hash table indicates that the string has one "b", one "a", two "l"s, two "o"s,
and one "n".

Now, this doesn’t tell us everything about the string. Namely, we couldn’t tell
from the hash table the order of characters within the string. So, there’s a bit
of data loss in this regard.

However, that data loss is exactly what we need to help us determine whether
the two strings are anagrams. That is, two strings turn out to be anagrams
if they have the same number of each character, no matter what the order is.

Take the words “rattles,” “startle,” and “starlet.” They all have two "t"s, one
"a", one "l", one "e", and one "s"—and that’s what allows them to be anagrams
and easily reordered to become each other.

We can now write an algorithm that converts each string into a hash table
that tallies the count of each type of character. Once we’ve converted the two
strings into two hash tables, all that’s left is to compare the two hash tables.
If they’re identical, it means the two strings are anagrams.

Here’s an implementation of this:

def areAnagrams(firstString, secondString):
firstWordHashTable = {}
secondWordHashTable = {}
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# Create hash table out of first string:
for char in firstString:

if firstWordHashTable.get(char):
firstWordHashTable[char] += 1

else:
firstWordHashTable[char] = 1

# Create hash table out of second string:
for char in secondString:

if secondWordHashTable.get(char):
secondWordHashTable[char] += 1

else:
secondWordHashTable[char] = 1

# The two strings are anagrams only if the two hash tables are identical:
return firstWordHashTable == secondWordHashTable

In this algorithm, we iterate over each character from both strings just once,
which is N + M steps.

Checking whether the hash tables are equal may take up to another N + M
steps. This is especially true in a language like JavaScript, in which we can
only check for hash table equality by manually iterating over each key-value
pair of the two hash tables. However, this is still just 2(N + M) steps, which
reduces to O(N + M). This is much faster than any of our previous approaches.

To be fair, we’re taking up some extra space with the creation of these hash
tables. Our previous suggestion of sorting the two strings and comparing
them would take up no extra space if we did the sorting in place. But if speed
is what we’re after, we can’t beat the hash table approach, as we touch each
character from the strings just once.

By converting the strings into another data structure (in this case, hash
tables), we were able to access the original data in such a way that allowed
our algorithm to become blazing fast.

It’s not always obvious what new data structure to use, so it’s good to imagine
how the current data may look if it were converted into a variety of formats
and see if that reveals any optimizations. That being said, hash tables turn
out very often to be a great choice, so that’s a good place to start.

Group Sorting
Here’s another example of how changing the data structure can allow us to
optimize our code. Let’s say we have an array containing several different
values and we want to reorder the data so that the same values are grouped
together. However, we don’t necessarily care what order the groups are in.
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For example, let’s say we have the following array:

["a", "c", "d", "b", "b", "c", "a", "d", "c", "b", "a", "d"]

Our goal is to sort this into groups, such as:

["c", "c", "c", "a", "a", "a", "d", "d", "d", "b", "b", "b"]

Again, we don’t care about the order of the groups, so these results would
also be acceptable:

["d", "d", "d", "c", "c", "c", "a", "a", "a", "b", "b", "b"]
["b", "b", "b", "c", "c", "c", "a", "a", "a", "d", "d", "d"]

Now, any classic sorting algorithm would accomplish our task, since we’d
end up with this:

["a", "a", "a", "b", "b", "b", "c", "c", "c", "d", "d", "d"]

As you know, the fastest sorting algorithms clock in at O(N log N). But can
we do better?

Let’s begin by coming up with the best-imaginable Big O. Since we know that
there aren’t sorting algorithms faster than O(N log N), it may be difficult to
imagine how we can sort something in a faster time.

However, since we’re not doing a precise sort, if someone told me that our task
can be done in O(N) time, I suppose I’d believe them. We certainly can’t beat
O(N), since we need to visit each value at least once. So, let’s aim for O(N).

Let’s employ the technique we’ve been discussing and imagine our data in
the form of another data structure.

We may as well start with a hash table. What would our array of strings look
like if it were a hash table?

If we took a similar approach as we did with the anagrams, we could represent
our array in the following way:

{"a" => 3, "c" => 3, "d" => 3, "b" => 3}

As with our previous example, there’s some data loss. That is, we couldn’t
convert this hash table back into our original array, as we wouldn’t know the
original order of all the strings.

However, for our purposes of grouping, this data loss doesn’t matter. In fact,
the hash table contains all the data we need to create the grouped array we’re
looking for.
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Specifically, we can iterate over each key-value pair within the hash table
and use that data to populate an array with the correct number of each string.
Here’s the code for this:

def group_array(array)
hash_table = {}
new_array = []

# Store the tallies of each string in a hash table:
array.each do |value|

if hash_table[value]
hash_table[value] += 1

else
hash_table[value] = 1

end
end

# Iterate over the hash table and populate a new array
# with the correct number of each string:
hash_table.each do |key, count|

count.times do
new_array << key

end
end

return new_array
end

Our group_array function accepts an array and then begins by creating an empty
hash_table and an empty new_array.

We first collect the tallies of each string and store them in the hash table:

array.each do |value|
if hash_table[value]

hash_table[value] += 1
else

hash_table[value] = 1
end

end

This creates the hash table that looks like this:

{"a" => 3, "c" => 3, "d" => 3, "b" => 3}

Then, we proceed to iterate over each key-value pair and use this data to
populate the new_array:

hash_table.each do |key, count|
count.times do

new_array << key
end

end
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That is, when we reach the pair, "a" => 3, we add three "a"s to the new_array.
And when we reach “c” => 3, we add three “c”s to the new_array, and so on. By the time we're
done, our new_array‘ will contain all the strings organized in groups.

This algorithm takes just O(N) time, which is a significant optimization over
the O(N log N) that sorting would have taken. We do use up O(N) space with
the extra hash table and new_array, although we could choose to overwrite the
original array to save additional memory. That being said, the space taken
up by the hash table would still be O(N) in the worst case, where each string
in the array is different.

But again, if speed is our goal, we achieved our best-imaginable Big O, which
is a fantastic win.

Wrapping Up
The techniques presented here can be useful in optimizing your code. Again,
you’ll always want to start by determining your current Big O and the best-
imaginable Big O. After that, you have all the other techniques at your disposal.

You’ll find that some techniques work better in certain situations than others,
but they’re all worth thinking about in a given situation to see if they may be
the right tool for the job.

With experience, you’ll hone your optimization sense and probably develop
additional techniques of your own!

Parting Thoughts
You’ve learned a lot in this journey.

You’ve learned that the right choices in algorithm design and data structures
can dramatically affect the performance of our code.

You’ve learned how to determine how efficient our code is.

And you’ve learned how to optimize our code to make it faster, more memory-
efficient, and more elegant.

What you can take away from this book is a framework for making educated
technology decisions. Creating great software involves evaluating the trade-
offs of the available options, and you are now armed with the ability to see
the pros and cons of each option and make the best choice for the task at
hand. And you also have the ability to think of new options that may not have
been immediately obvious at first glance.
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It’s important to note that it’s always best to test your optimizations with
benchmarking tools. Using these tools that test the actual speed of your code
is a great sanity check to ensure your optimizations are indeed helpful. There
are many excellent software applications out there that can measure the
speed and memory consumption of your code. The knowledge in this book,
though, will point you in the right direction, and the benchmarking tools can
confirm whether you’ve made the right choice.

I hope you also take away from this book the knowledge that topics like
these—which seem so complex and esoteric—are just a combination of simpler,
easier concepts that are within your grasp. Don’t be intimidated by resources
that make a concept seem difficult simply because they don’t explain it well—a
concept can always be broken down in a way so that it can be understood.

The topic of data structures and algorithms is broad and deep, and we’ve only
just scratched the surface. With the foundation we’ve built, you are now able
to explore and master new concepts of computer science, and I hope that you
go out there and continue to learn new things and grow in your technical
proficiency.

Good luck!

Exercises
The following exercises provide you with the opportunity to practice with
optimizing your code. The solutions to these exercises are found in the section,
Chapter 20, on page 465.

1. You’re working on software that analyzes sports players. Following are
two arrays of players of different sports:

basketball_players = [
{first_name: "Jill", last_name: "Huang", team: "Gators"},
{first_name: "Janko", last_name: "Barton", team: "Sharks"},
{first_name: "Wanda", last_name: "Vakulskas", team: "Sharks"},
{first_name: "Jill", last_name: "Moloney", team: "Gators"},
{first_name: "Luuk", last_name: "Watkins", team: "Gators"}

]

football_players = [
{first_name: "Hanzla", last_name: "Radosti", team: "32ers"},
{first_name: "Tina", last_name: "Watkins", team: "Barleycorns"},
{first_name: "Alex", last_name: "Patel", team: "32ers"},
{first_name: "Jill", last_name: "Huang", team: "Barleycorns"},
{first_name: "Wanda", last_name: "Vakulskas", team: "Barleycorns"}

]
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If you look carefully, you’ll see that there are some players who participate
in more than one kind of sport. Jill Huang and Wanda Vakulskas play
both basketball and football.

You are to write a function that accepts two arrays of players and returns
an array of the players who play in both sports. In this case, that would be:

["Jill Huang", "Wanda Vakulskas"]

While there are players who share first names and players who share last
names, we can assume there’s only one person who has a particular full
name (meaning first and last name).

We can use a nested-loops approach, comparing each player from one
array against each player from the other array, but this would have a
runtime of O(N * M). Your job is to optimize the function so that it can
run in just O(N + M).

2. You’re writing a function that accepts an array of distinct integers from
0, 1, 2, 3…up to N. However, the array will be missing one integer, and
your function is to return the missing one.

For example, this array has all the integers from 0 to 6, but is missing
the 4:

[2, 3, 0, 6, 1, 5]

Therefore, the function should return 4.

The next example has all the integers from 0 to 9, but is missing the 1:

[8, 2, 3, 9, 4, 7, 5, 0, 6]

In this case, the function should return the 1.

Using a nested-loops approach would take up to O(N2). Your job is to
optimize the code so that it has a runtime of O(N).

3. You’re working on some more stock-prediction software. The function
you’re writing accepts an array of predicted prices for a particular stock
over the course of time.

For example, this array of seven prices:

[10, 7, 5, 8, 11, 2, 6]

predicts that a given stock will have these prices over the next seven days.
(On Day 1, the stock will close at $10; on Day 2, the stock will close at
$7; and so on.)
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Your function should calculate the greatest profit that could be made
from a single “buy” transaction followed by a single “sell” transaction.

In the previous example, the most money could be made if we bought the
stock when it was worth $5 and sold it when it was worth $11. This yields
a profit of $6 per share.

Note that we could make even more money if we buy and sell multiple
times, but for now, this function focuses on the most profit that could be
made from just one purchase followed by one sale.

Now, we could use nested loops to find the profit of every possible buy-
and-sell combination. However, this would be O(N2) and too slow for our
hotshot trading platform. Your job is to optimize the code so that the
function clocks in at just O(N).

4. You’re writing a function that accepts an array of numbers and computes
the highest product of any two numbers in the array. At first glance, this
is easy, as we can just find the two greatest numbers and multiply them.
However, our array can contain negative numbers and look like this:

[5, -10, -6, 9, 4]

In this case, it’s actually the product of the two lowest numbers, -10 and
-6 that yield the highest product of 60.

We could use nested loops to multiply every possible pair of numbers,
but this would take O(N2) time. Your job is to optimize the function so
that it’s a speedy O(N).

5. You’re creating software that analyzes the data of body temperature
readings taken from hundreds of human patients. These readings are
taken from healthy people and range from 97.0 degrees Fahrenheit to
99.0 degrees Fahrenheit. An important point: within this application, the
decimal point never goes beyond the tenths place.

Here’s a sample array of temperature readings:

[98.6, 98.0, 97.1, 99.0, 98.9, 97.8, 98.5, 98.2, 98.0, 97.1]

You are to write a function that sorts these readings from lowest to highest.

If you used a classic sorting algorithm such as Quicksort, this would take
O(N log N). However, in this case, it’s actually possible to write a faster
sorting algorithm.

Yes, that’s right. Even though you’ve learned that the fastest sorts are
O(N log N), this case is different. Why? In this case, there’s a limited
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number of possibilities of what the readings will be. In such a case, we
can sort these values in O(N). It may be N multiplied by a constant, but
that’s still considered O(N).

6. You’re writing a function that accepts an array of unsorted integers and
returns the length of the longest consecutive sequence among them. The
sequence is formed by integers that increase by 1. For example, in the
array:

[10, 5, 12, 3, 55, 30, 4, 11, 2]

the longest consecutive sequence is 2-3-4-5. These four integers form an
increasing sequence because each integer is one greater than the previous
one. While there’s also a sequence of 10-11-12, it’s only a sequence of
three integers. In this case, the function should return 4, since that’s the
length of the longest consecutive sequence that can be formed from this
array.

One more example:

[19, 13, 15, 12, 18, 14, 17, 11]

This array’s longest sequence is 11-12-13-14-15, so the function would
return 5.

If we sorted the array, we can then traverse the array just once to find
the longest consecutive sequence. However, the sorting itself would take
O(N log N). Your job is to optimize the function so that it takes O(N) time.
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APPENDIX 1

Exercise Solutions
Chapter 1
These are the solutions to the exercises found in the section, Exercises, on
page 19.

1. Let’s break down each of the cases:

a. Reading from an array always takes just one step.

b. Searching for a nonexistent element within an array of size 100 will
take 100 steps, as the computer needs to inspect each element of the
array before determining the element cannot be found.

c. The insertion will take 101 steps: 100 shifts of each element to the
right, and one step to insert the new element at the front of the array.

d. Insertion at the end of an array always takes one step.

e. The deletion will take 100 steps: first the computer deletes the first
element and then shifts the remaining 99 elements to the left, one at
a time.

f. Deletion at the end of an array always takes one step.

2. Let’s break down each of the cases:

a. Like the array, reading from the array-based set will take just one
step.

b. Like the array, searching the array-based set will take 100 steps, as
we inspect each element before concluding that the element isn’t there.

c. To insert into the set, we first need to conduct a full search to make
sure the value doesn’t already exist within the set. This search will
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take 100 steps. Then, we need to shift all 100 elements to the right
to make room for the new value. Finally, we drop the new value at the
beginning of the set. This is a total of 201 steps.

d. This insertion takes 101 steps. Again, we need to conduct a full search
before inserting, which takes 100 steps. We then conclude with the
final step of inserting the new value at the end of the set.

e. The deletion will take 100 steps, just like a classic array.

f. The deletion will take one step, just like a classic array.

3. If the array contains N elements, searching for all instances of the string
“apple” in an array will take N steps. When searching for just one instance,
we can cut our search short as soon as we find it. But if we need to find
all instances, we have no choice but inspect each element of the entire
array.

Chapter 2
These are the solutions to the exercises found in the section, Exercises, on
page 34.

1. Linear search on this array would take four steps. We start at the begin-
ning of the array and check each element from left to right. Because the
8 is the fourth number, we’ll find it in four steps.

2. Binary search would take just one step in this case. We start the binary
search at the middlemost element, and the 8 just happens to be the
middlemost element!

3. To solve this, we need to count how many times we halve 100,000 until
we get down to 1. If we keep dividing 100,000 by 2, we see that it takes
us 16 times until we get down to about 1.53.

This means a worst-case scenario would take about 16 times.

Chapter 3
These are the solutions to the exercises found in the section, Exercises, on
page 45.

1. This is O(1). We can consider N to be the year passed into the function.
But no matter what the year is, the algorithm doesn’t vary in how many
steps it takes.
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2. This is O(N). For N elements in the array, the loop will run N times.

3. This is O(log N). In this case, N is the number numberOfGrains, which is
passed into the function. The loop runs as long as placedGrains < numberOf-
Grains, but placedGrains starts at 1 and doubles each time the loop runs. If,
for example, numberOfGrains was 256, we’d keep doubling the placedGrains
nine times until we reach 256, meaning that our loop would run nine
times for an N of 256. If numberOfGrains was 512, our loop would run 10
times, and if numberOfGrains was 1024, the loop would run 11 times.
Because our loop runs only one more time each time N is doubled, this
is O(log N).

4. This is O(N). N is the number of strings within the array, and the loop will
take N steps.

5. This is O(1). We can consider N to be the size of the array, but the algo-
rithm takes a fixed number of steps no matter what N is. The algorithm
does account for whether N is even or odd, but in either case, it takes the
same number of steps.

Chapter 4
These are the solutions to the exercises found in the section, Exercises, on
page 60. The solutions provided here are in Python, but you can find the
solutions in JavaScript and Ruby in the code download.1

1. Here is the completed table:

O(N2)O(log N)O(N)N Elements

10,000About 7100100

4,000,000About 1120002000

2. The array would have 16 elements, since 162 is 256. (Another way of
saying this is that the square root of 256 is 16.)

3. The algorithm has a time complexity of O(N2). N, in this case, is the size
of the array. We have an outer loop that iterates over the array N times,
and for each of those times, an inner loop iterates over the same array N
times. This results in N2 steps.

1. https://pragprog.com/titles/jwdsal2/source_code
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4. The following version is O(N), as we only iterate through the array once:

def greatestNumber(array):
greatestNumberSoFar = array[0]

for i in array:
if i > greatestNumberSoFar:
greatestNumberSoFar = i

return greatestNumberSoFar

Chapter 5
These are the solutions to the exercises found in the section, Exercises, on
page 76.

1. After dropping the constants, we can reduce the expression to O(N).

2. After dropping the constant, we can reduce the expression to O(N2).

3. This algorithm is one of O(N), with N being the size of the array. While
there are two distinct loops that process the N elements, this is simply
2N, which is reduced to O(N) after dropping the constants.

4. This algorithm is one of O(N), with N being the size of the array. Within
the loop, we run three steps, which means our algorithm takes 3N steps.
However, this is reduced to O(N) when we eliminate the constants.

5. This algorithm is one of O(N2), with N being the size of the array. While
we only run the inner loop half of the time, this simply means that the
algorithm runs for N2 / 2 steps. However, the division by 2 is a constant,
so we express this simply as O(N2).

Chapter 6
These are the solutions to the exercises found in the section, Exercises, on
page 93. The solutions provided here are in JavaScript, but you can find the
solutions in Python and Ruby in the code download.2

1. In Big O Notation, 2N2 + 2N + 1 gets reduced to O(N2). After getting rid of
all the constants, we’re left with N2 + N, but we also drop the N since it’s
a lower order than N2.

2. log N is a lower order than N, so it’s simply reduced to O(N).

2. https://pragprog.com/titles/jwdsal2/source_code
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3. The important thing to note here is that the function ends as soon as we
find a pair that sums to 10. The best-case scenario, then, is when the
first two numbers add up to 10, since we can end the function before the
loops even get underway. An average-case scenario may be when the two
numbers are somewhere in the middle of the array. The worst-case sce-
narios are when there aren’t any two numbers that add up to 10, in which
case we must exhaust both loops completely. This worst-case scenario is
O(N2), where N is the size of the array.

4. This algorithm has an efficiency of O(N), as the size of the array is N, and
the loop iterates through all N elements.

This algorithm continues the loop even if it finds an "X" before the end of
the array. We can make the code more efficient if we return true as soon
as we find an "X":

function containsX(string) {

for(let i = 0; i < string.length; i++) {
if (string[i] === "X") {
return true;

}
}

return false;
}

Chapter 7
These are the solutions to the exercises found in the section, Exercises, on
page 109.

1. Here, N is the size of the array. Our loop runs for N / 2 times, as it pro-
cesses two values each round of the loop. However, this is expressed as
O(N) because we drop the constant.

2. It’s slightly tricky to define N in this case, since we are dealing with two
distinct arrays. However, the algorithm only processes each value once,
so we could decide to call N the total number of values between both
arrays, and the time complexity would be O(N). If we want to be more lit-
eral, and call one array N and the other M, we could alternatively express
the efficiency as O(N + M). However, because we’re simply adding N and
M together, it’s simpler to just use N to refer to the total number of data
elements across both arrays and call it O(N).
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3. In a worst-case scenario, this algorithm runs for the number of characters
in the “needle” multiplied by the number of characters in the “haystack.”
Since the needle and haystack may have different numbers of characters,
this is O(N * M).

4. N is the size of the array, and the time complexity is O(N3), as it’s processed
through triply-nested loops. Really, the middle loop runs N / 2 times, and
the innermost loop runs N / 4 times, so this is N * (N / 2) * (N / 4), which
is N3 / 8 steps. But we drop the constant, leaving us with O(N3).

5. N is the size of the resumes array. Since in each round of the loop we
eliminate half of the resumes, we have an algorithm of O(log N).

Chapter 8
These are the solutions to the exercises found in the section, Exercises, on
page 131. The solutions provided here are in JavaScript, but you can find the
solutions in Python and Ruby in the code download.3

1. The following implementation first stores the values of the first array in
a hash table and then checks each value of the second array against that
hash table:

function getIntersection(array1, array2) {
let intersection = [];
let hashTable = {};

for(let i = 0; i < array1.length; i++) {
hashTable[array1[i]] = true;

}

for(let j = 0; j < array2.length; j++) {
if(hashTable[array2[j]]) {
intersection.push(array2[j]);

}
}

return intersection;
}

This algorithm has an efficiency of O(N).

2. The following implementation checks each string in the array. If the string
isn’t yet in the hash table, the string gets added. If the string is in the
hash table, that means it’s been added before, which means it’s a dupli-
cate! This algorithm has a time complexity of O(N):

3. https://pragprog.com/titles/jwdsal2/source_code

Appendix 1. Exercise Solutions • 444

report erratum  •  discuss

https://pragprog.com/titles/jwdsal2/source_code
http://pragprog.com/titles/jwdsal2/errata/add
http://forums.pragprog.com/forums/jwdsal2


function findDuplicate(array) {
let hashTable = {};

for(let i = 0; i < array.length; i++) {
if(hashTable[array[i]]) {
return array[i];

} else {
hashTable[array[i]] = true;

}
}

}

3. The following implementation begins by creating a hash table out of all
the characters we encounter in the string. Next, we iterate over each
character of the alphabet and check to see whether the character is con-
tained within our hash table. If it isn’t, it means the character is missing
from the string, so we return it:

function findMissingLetter(string) {
// Store all encountered letters in hash table:
let hashTable = {};
for(let i = 0; i < string.length; i++) {

hashTable[string[i]] = true;
}

// Report first unseen letter:
let alphabet = "abcdefghijklmnopqrstuvwxyz";
for(let i = 0; i < alphabet.length; i++) {

if(!hashTable[alphabet[i]]) {
return alphabet[i];

}
}

}

4. The following implementation begins by iterating over each character in
the string. If the character does not yet exist in the hash table, the char-
acter is added to the hash table as a key with the value of 1, indicating
the character has been found once so far. If the character is already in
the hash table, we simply increment the value by 1. So, if the character
"e" has the value of 3, it means the "e" exists three times within the string.

Then, we iterate over the characters again and return the first character
that only exists once within the string. This algorithm is O(N):

function firstNonDuplicate(string) {
let hashTable = {};

for(let i = 0; i < string.length; i++) {
if(hashTable[string[i]]) {
hashTable[string[i]]++;
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} else {
hashTable[string[i]] = 1;

}
}

for(let j = 0; j < string.length; j++) {
if(hashTable[string[j]] == 1) {
return string[j];

}
}

}

Chapter 9
These are the solutions to the exercises found in the section, Exercises, on
page 148. The solutions provided here are in Ruby, but you can find the solu-
tions in JavaScript and Python in the code download.4

1. Presumably, we’d want to be nice to the callers and answer their phone
calls in the order in which they were received. For this, we’d use a queue,
which processes data FIFO (First In, First Out).

2. We’d be able to read the 4, which is now the top element in the stack.
This is because we’ll have popped the 6 and the 5, which were previously
sitting on top of the 4.

3. We’d be able to read the 3, which is now at the front of the queue, after
having dequeued the 1 and the 2.

4. We can take advantage of the stack because of the fact that we pop each
item in the reverse order of which they were pushed onto the stack. So,
we’ll first push each character of the string onto the stack. Then, we’ll
pop each one off while adding them to the end of a new string:

def reverse(string)
stack = Stack.new

string.each_char do |char|
stack.push(char)

end

new_string = ""

while stack.read
new_string += stack.pop

end

return new_string
end

4. https://pragprog.com/titles/jwdsal2/source_code
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Chapter 10
These are the solutions to the exercises found in the section, Exercises, on
page 159. The solutions provided here are in Python, but you can find the
solutions in JavaScript and Ruby in the code download.5

1. The base case is if low > high—that is, we want to stop the recursion once
low has exceeded high. Otherwise, we’d end up printing numbers even
greater than the high number, and onto infinity.

2. We’d have infinite recursion! factorial(10) calls factorial(8), which calls factorial(6),
which calls factorial(4), which calls factorial(2), which calls factorial(0). Since
our base case is if n == 1, we never end up with n ever being 1, so the
recursion continues. factorial(0) calls factorial(-2), and so on.

3. Let’s say low is 1 and high is 10. When we call sum(1, 10), that in turn returns
10 + sum(1, 9). That is, we return the sum of 10 plus whatever the sum of 1
through 9 is. sum(1, 9) ends up calling sum(1, 8), which in turn calls sum(1,
7), and so on.

We want the last call to be sum(1, 1), in which we simply want to return
the number 1. This becomes our base case:

def sum(low, high):
# Base case:
if high == low:

return low

return high + sum(low, high - 1)

4. This approach is similar to the file directory example from the text:

def print_all_items(array):
for value in array:

# if the current item is a "list", i.e. array:
if isinstance(value, list):
print_all_items(value)

else:
print(value)

We iterate over each item within the outer array. If the value is itself
another array, we recursively call the function on that subarray. Otherwise,
it’s the base case where we simply print the value to the screen.

5. https://pragprog.com/titles/jwdsal2/source_code
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Chapter 11
These are the solutions to the exercises found in the section, Exercises, on
page 181. The solutions provided here are in Ruby, but you can find the solu-
tions in JavaScript and Python in the code download.6

1. Let’s call our function character_count. The first step is to pretend that the
character_count function has already been implemented.

Next, we need to identify the subproblem. If our problem is the array,
["ab", "c", "def", "ghij"], then our subproblem can be the same array missing
one string. Let’s specifically say that our subproblem is the array minus
the first string, which would be ["c", "def", "ghij"].

Now, let’s see what happens when we apply the “already implemented”
function on the subproblem. If we were to call character_count(["c", "def", "ghij"]),
we’d get a return value of 8, since there are eight characters in total.

So, to solve our original problem, all we have to do is add the length of
the first string ("ab") to the result of calling the character_count function on
the subproblem.

Here’s one possible implementation:

def character_count(array)
# Alternative base case:
# return array[0].length if array.length == 1

# Base case: when the array is empty:
return 0 if array.length == 0

return array[0].length + character_count(array[1, array.length - 1])
end

Note that we made our base case to be when the array is empty, in which
case there are zero string characters. We mention an alternative and
equally viable base case in the comments, which is when the array con-
tains one string. In that case, we return the length of that single string.

2. First, let’s pretend the select_even function already works. Next, let’s iden-
tify the subproblem. If we try to select all the even numbers in the example
array, [1, 2, 3, 4, 5], we could say that the subproblem is all the numbers
in the array beside the first one. So, let’s imagine select_even([2, 3, 4, 5])
already works and returns [2, 4].

6. https://pragprog.com/titles/jwdsal2/source_code
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Since the first number in the array is 1, we actually don’t want to do
anything other than return the [2, 4]. However, if the first number in the
array was a 0, we’d want to return the [2, 4] with the 0 added to it.

The base case can be when the array is empty.

Here’s one possible implementation:

def select_even(array)
return [] if array.empty?

if array[0].even?
return [array[0]] + select_even(array[1, array.length - 1])

else
return select_even(array[1, array.length - 1])

end
end

3. The definition of a triangular number was given as n plus the previous
number from the pattern. If the name of our function is triangle, we can
express this simply as n + triangle(n - 1). The base case is when n is 1.

def triangle(n)
return 1 if n == 1
return n + triangle(n - 1)

end

4. Let’s pretend our function, index_of_x, has already been implemented. Next,
let’s say the subproblem is our string minus its first character. For
example, if our input string is "hex", the subproblem is "ex".

Now, index_of_x("ex") would return 1. To calculate the index of the "x" for the
original string, we would add 1 to this since the additional "h" at the front
of the string moves the "x" down one index.

def index_of_x(string)
return 0 if string[0] == 'x'
return index_of_x(string[1, string.length - 1]) + 1

end

5. This exercise is similar to the “Staircase Problem.” Let’s break this down:

From the starting position, we have only two choices of movement. We
can either move one space to the right or one space downward.

What this means is that the total number of unique shortest paths will
be the umber of paths from space to the right of S + the number of paths
from space below S.
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The number of paths from the space to the right of S is the same as cal-
culating the paths in a grid of six columns and three rows, as you can
see here:

The number of paths from the space below the S is the equivalent of the
paths in a grid of seven columns and two rows:

Recursion allows us to express this beautifully:

return unique_paths(rows - 1, columns) + unique_paths(rows, columns - 1)

All we need to do now is add the base case. Possible base cases include
when we have just one row or one column, since in such cases, there’s
only one path available to us.

Here’s the complete function:

def unique_paths(rows, columns)
return 1 if rows == 1 || columns == 1
return unique_paths(rows - 1, columns) + unique_paths(rows, columns - 1)

end

Chapter 12
These are the solutions to the exercises found in the section, Exercises, on
page 197. The solutions provided here are in Ruby, but you can find the solu-
tions in JavaScript and Python in the code download.7

7. https://pragprog.com/titles/jwdsal2/source_code
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1. The problem here is that we have two recursive calls to the function
within itself. We can easily reduce it to one:

def add_until_100(array)
return 0 if array.length == 0
sum_of_remaining_numbers = add_until_100(array[1, array.length - 1])
if array[0] + sum_of_remaining_numbers > 100

return sum_of_remaining_numbers
else

return array[0] + sum_of_remaining_numbers
end

end

2. Here is the memoized version:

def golomb(n, memo={})
return 1 if n == 1

if !memo[n]
memo[n] = 1 + golomb(n - golomb(golomb(n - 1, memo), memo), memo)

end

return memo[n]
end

3. To accomplish memoization here, we need to make a key out of both the
number of rows and number of columns. We can make our key a simple
array of [rows, columns]:

def unique_paths(rows, columns, memo={})
return 1 if rows == 1 || columns == 1
if !memo[[rows, columns]]

memo[[rows, columns]] = unique_paths(rows - 1, columns, memo) +
unique_paths(rows, columns - 1, memo)

end
return memo[[rows, columns]]

end

Chapter 13
These are the solutions to the exercises found in the section, Exercises, on
page 224. The solutions provided here are in JavaScript, but you can find the
solutions in Ruby and Python in the code download.8

1. If we sort the numbers, we know that the three greatest numbers will be
at the end of the array, and we can just multiply them together. The
sorting will take O(N log N):

8. https://pragprog.com/titles/jwdsal2/source_code
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function greatestProductOf3(array) {
array.sort((a, b) => (a < b) ? -1 : 1);

return array[array.length - 1] * array[array.length - 2] *
array[array.length - 3];

}

(This code takes for granted that there are at least three values in the
array. You can add code to handle arrays where this is not the case.)

2. If we presort the array, we can then expect each number to be at its own
index. That is, the 0 should be at index 0, the 1 should be at index 1, and
so on. We can then iterate through the array looking for a number that
doesn’t equal the index. Once we find it, we know that we just skipped
over the missing number:

function findMissingNumber(array) {
array.sort((a, b) => (a < b) ? -1 : 1);

for(let i = 0; i < array.length; i++) {
if(array[i] !== i) {
return i;

}
}

return null;
}

The sorting takes N log N steps, and the loop afterward takes N steps.
However, we reduce the expression (N log N) + N to O(N log N) since the
added N is a lower order compared to N log N.

3. This implementation uses nested loops and is O(N2):

function max(array) {
for(let i = 0; i < array.length; i++) {

iIsGreatestNumber = true;

for(let j = 0; j < array.length; j++) {
if(array[j] > array[i]) {

iIsGreatestNumber = false;
}

}

if(iIsGreatestNumber) {
return array[i];

}
}

}

This implementation simply sorts the array and returns the last number.
The sorting is O(N log N):
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function max(array) {
array.sort((a, b) => (a < b) ? -1 : 1);

return array[array.length - 1];
}

This implementation is O(N) as we loop once through the array:

function max(array) {
let greatestNumberSoFar = array[0];

for(let i = 0; i < array.length; i++) {
if(array[i] > greatestNumberSoFar) {
greatestNumberSoFar = array[i];

}
}

return greatestNumberSoFar;
}

Chapter 14
These are the solutions to the exercises found in the section, Exercises, on
page 244. The solutions provided here are in Ruby, but you can find the solu-
tions in JavaScript and Python in the code download.9

1. One way we can do this is with a simple while loop:

def print
current_node = first_node

while current_node
puts current_node.data
current_node = current_node.next_node

end
end

2. With a doubly linked list, we have immediate access to the last nodes and
can follow their “previous node” links to access the previous nodes. This
code is simply the inverse of the previous exercise:

def print_in_reverse
current_node = last_node

while current_node
puts current_node.data
current_node = current_node.previous_node

end
end

9. https://pragprog.com/titles/jwdsal2/source_code
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3. Here, we use a while loop to move through each node. However, before
we move forward, we check ahead using the node’s link to ensure that
there is a next node:

def last
current_node = first_node

while current_node.next_node
current_node = current_node.next_node

end

return current_node.data
end

4. One way to reverse a classic linked list is to iterate through the list while
keeping track of three variables.

The primary variable is the current_node, which is the primary node we’re
iterating over. We also keep track of the next_node, which is the node
immediately after the current_node. And we also keep track of the previous_node,
which is the node immediately before the current_node. See the following
diagram:

Note that when we first begin and the current_node is the first node, the
previous_node points to null; there are no nodes before the first node.

Once we have our three variables set up, we proceed with our algorithm,
which begins a loop.

Inside the loop, we first change the current_node’s link to point to the previ-
ous_node:
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Then, we shift all our variables to the right:

We begin the loop again, repeating this process of changing the current_node’s
link to the point to the previous_node, until we reach the end of the list. Once
we reach the end, the list will have been fully reversed.

Here is the actual implementation for this algorithm:

def reverse!
previous_node = nil
current_node = first_node

while current_node
next_node = current_node.next_node

current_node.next_node = previous_node

previous_node = current_node
current_node = next_node

end

self.first_node = previous_node
end

5. Believe it or not, we can delete a middle node without having access to
any of the nodes that precede it.

Following is a diagram of an example situation. There are four nodes, but
we only have access to node "b". This means we don’t have access to node
"a", since links only point forward in a classic linked list. We’ve indicated
this using a dashed line—that is, we don’t have access to any node to the
left of the dashed line:
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Now, here’s how we can delete node "b" (even though we don’t have access
to node "a"). For the sake of clarity, we’re going to call this node the “access
node,” since it’s the first node we have access to.

First, we take next node beyond the access node and copy its data into
the access node, overwriting the access node’s data. In our example, this
means copying the string "c" into our access node:

We then change the link of the access node and have it point to the node
that is two nodes to the right of it. This effectively deletes the original
"c" node:

The actual code for this is short and sweet:

def delete_middle_node(node)
node.data = node.next_node.data
node.next_node = node.next_node.next_node

end

Chapter 15
These are the solutions to the exercises found in the section, Exercises, on
page 276. The solutions provided here are in Python, but you can find the
solutions in JavaScript and Ruby in the code download.10

10. https://pragprog.com/titles/jwdsal2/source_code
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1. The tree should look like this. Note that it’s not well balanced, as the root
node only has a right subtree and no left one:

2. Search within a balanced binary search tree takes a maximum of about
log(N) steps. So, if N is 1,000, search should take a maximum of about
10 steps.

3. The greatest value within a binary search tree will always be the bottom
rightmost node. We can find it by recursively following each node’s right
child until we hit the bottom:

def max(node):
if node.rightChild:

return max(node.rightChild)
else:

return node.value

4. Here is the order for preorder traversal:
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5. Here is the order for postorder traversal:

Chapter 16
These are the solutions to the exercises found in the section, Exercises, on
page 303.

1. After inserting an 11, the heap would look like this:

2. After deleting the root node, the heap would look like this:

3. The numbers would be in perfect descending order. (This is for a max-
heap. For a min-heap, they’d be in ascending order.)

Appendix 1. Exercise Solutions • 458

report erratum  •  discuss

http://pragprog.com/titles/jwdsal2/errata/add
http://forums.pragprog.com/forums/jwdsal2


Do you realize what this means? It means you’ve just discovered another
sorting algorithm!

Heapsort is a sorting algorithm that inserts all the values into a heap,
and then pops each one. As you can see from this exercise, the values
always end up in sorted order.

Like Quicksort, Heapsort is O(N log N). This is because we need to insert
N values into the heap, and each insertion takes log N steps.

While there are fancier versions of Heapsort that try to maximize its effi-
ciency, this is the basic idea.

Chapter 17
These are the solutions to the exercises found in the section, Exercises, on
page 329. The solutions provided here are in Python, but you can find the
solutions in JavaScript and Ruby in the code download.11

1. This trie stores the words: “tag,” “tan,” “tank,” “tap,” “today,” “total,” “we,”
“well,” and “went.”

2. Here is a trie that stores the words “get,” “go,” “got,” “gotten,” “hall,” “ham,”
“hammer,” “hill,” and “zebra”:

11. https://pragprog.com/titles/jwdsal2/source_code
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3. The following code starts at the trie’s node and iterates over each of its
children. For each child, it prints the key and then recursively calls itself
on the child node:

def traverse(self, node=None):
currentNode = node or self.root

for key, childNode in currentNode.children.items():
print(key)
if key != "*":
self.traverse(childNode)

4. Our autocorrect implementation is a combination of the search and collectAll-
Words functions:

def autocorrect(self, word):
currentNode = self.root
# Keep track of how much of the user's word we've found
# in the trie so far. We'll need to concatenate this with
# the best suffix we can find in the trie.
wordFoundSoFar = ""

for char in word:
# If the current node has child key with current character:
if currentNode.children.get(char):
wordFoundSoFar += char
# Follow the child node:
currentNode = currentNode.children.get(char)

else:
# If the current character isn't found among
# the current node's children, collect all the suffixes that
# descend from the current node and get the first one.
# We concatenate the suffix with the prefix we've found so
# far to suggest the word the user meant to type in:
return wordFoundSoFar + self.collectAllWords(currentNode)[0]

# If the user's word is found in the trie:
return word

The basic approach is that we first search the trie to find as much of the
prefix as we can. When we hit a dead end, instead of just returning None
(as the search function does), we call collectAllWords on the current node to
collect all the suffixes that stem from that node. We then use the first
suffix of the array and concatenate it with the prefix to suggest a new
word to the user.

Appendix 1. Exercise Solutions • 460

report erratum  •  discuss

http://pragprog.com/titles/jwdsal2/errata/add
http://forums.pragprog.com/forums/jwdsal2


Chapter 18
These are the solutions to the exercises found in the section, Exercises, on
page 384. The solutions provided here are in Ruby, but you can find the solu-
tions in JavaScript and Python in the code download.12

1. If a user is browsing “nails,” the website will recommend “nail polish,”
“needles,” “pins,” and “hammer.”

2. The order of depth-first search would be A-B-E-J-F-O-C-G-K-D-H-L-M-I-
N-P, as seen in the following image:

3. The order of breadth-first search would be A-B-C-D-E-F-G-H-I-J-K-L-M-
N-O-P, as seen in the following image:

12. https://pragprog.com/titles/jwdsal2/source_code
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4. Following is an implementation of breadth-first search:

def bfs(starting_vertex, search_value, visited_vertices={})
queue = Queue.new

visited_vertices[starting_vertex.value] = true
queue.enqueue(starting_vertex)

while queue.read
current_vertex = queue.dequeue

return current_vertex if current_vertex.value == search_value

current_vertex.adjacent_vertices.each do |adjacent_vertex|
if !visited_vertices[adjacent_vertex.value]

visited_vertices[adjacent_vertex.value] = true
queue.enqueue(adjacent_vertex)

end
end

end

return nil
end

5. To find the shortest path in an unweighted graph, we are going to use
breadth-first search. The main feature of breadth-first search is that it
stays as close to the starting vertex as long as possible. This feature will
serve as the key to finding the shortest path.

Let’s apply this to our social-networking example. Because breadth-first
search stays close to Idris as long as possible, we’ll end up finding Lina
first through the shortest possible path. Only later on in the search would
we end up finding Lina through longer paths. In fact, we can even stop
the search as soon we as find Lina. (Our implementation that follows
doesn’t end early, but you can modify it to do so.)

As we visit each vertex for the first time, then, we know that the current
vertex is always part of the shortest path from the starting vertex to the
vertex we’re visiting. (Remember, in BFS, the current vertex and the vertex
we’re visiting aren’t necessarily the same.)

For example, when we visit Lina for the first time, Kamil will be the current
vertex. This is because in BFS, we’ll get to Lisa first through Kamil before
we get to her through Sasha. When we do visit Lina (through Kamil), we
can store in a table that the shortest path from Idris to Lina will be through
Kamil. This table is similar to the cheapest_previous_stopover_city_table from
Dijkstra’s algorithm.

Appendix 1. Exercise Solutions • 462

report erratum  •  discuss

http://pragprog.com/titles/jwdsal2/errata/add
http://forums.pragprog.com/forums/jwdsal2


In fact, whenever we visit any vertex, the shortest path from Idris to that
vertex will be through the current vertex. We’ll store all of this data in the
table called previous_vertex_table.

Finally, we can then use this data to work backward from Lina to Idris
to build the precise shortest path between the two of them.

Here is our implementation:

def find_shortest_path(first_vertex, second_vertex, visited_vertices={})
queue = Queue.new

# As in Dijkstra's algorithm, we keep track in a table of each vertex
# immediately preceding vertex.
previous_vertex_table = {}

# We employ breadth-first search:
visited_vertices[first_vertex.value] = true
queue.enqueue(first_vertex)

while queue.read
current_vertex = queue.dequeue
current_vertex.adjacent_vertices.each do |adjacent_vertex|
if !visited_vertices[adjacent_vertex.value]

visited_vertices[adjacent_vertex.value] = true
queue.enqueue(adjacent_vertex)

# We store in the previous_vertex table the adjacent_vertex
# as the key, and the current_vertex as the value. This
# indicates that the current_vertex is the immediately
# preceding vertex that leads to the adjacent_vertex.
previous_vertex_table[adjacent_vertex.value] =
current_vertex.value

end
end

end

# As in Dijkstra's algorithm, we work backwards through the
# previous_vertex_table to build the shortest path;
shortest_path = []
current_vertex_value = second_vertex.value

while current_vertex_value != first_vertex.value
shortest_path << current_vertex_value
current_vertex_value = previous_vertex_table[current_vertex_value]

end
shortest_path << first_vertex.value
return shortest_path.reverse

end
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Chapter 19
These are the solutions to the exercises found in the section, Exercises, on
page 395. The solutions provided here are in JavaScript, but you can find the
solutions in Python and Ruby in the code download.13

1. The space complexity is O(N2). This is because the function creates the
array called collection, which will end up holding N2 strings.

2. This implementation takes up O(N) space, as we create a newArray contain-
ing N items.

3. The following implementation uses this algorithm: we swap the first item
with the last item in place. Then, we swap the second item with the sec-
ond-to-last item in place. We then proceed to swap the third item with
the third-to-last item in place, and so on. Since everything is done in place
and we don’t create any new data, this has a space complexity of O(1).

function reverse(array) {
for (let i = 0; i < array.length / 2; i++) {

// Newer JS way to swap values in an array:
[array[i], array[(array.length - 1) - i]] =
[array[(array.length - 1) - i], array[i]];

// Alternate, old-fashioned way of swapping:

// let temp = array[(array.length - 1) - i];
// array[(array.length - 1)- i] = array[i];
// array[i] = temp;

}

return array;
}

(While we may create a temporary variable to accomplish each swap, we
never have more than that one piece of data at any given time throughout
the algorithm.)

4. Here is the completed table:

Space ComplexityTime ComplexityVersion

O(N)O(N)Version #1

O(1)O(N)Version #2

O(N)O(N)Version #3

All three versions run for as many steps as there are numbers in the
array, so the time complexity is O(N) for all of them.

13. https://pragprog.com/titles/jwdsal2/source_code
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Version #1 creates a brand-new array to store the doubled numbers. This
array will have the same length as the original array, so takes up O(N)
space.

Version #2 modifies the original array in place, so takes up zero extra
space. This is expressed as O(1).

Version #3 also modifies the original array in place. However, since the
function is recursive, the call stack at its peak will have N calls on it,
taking up O(N) space.

Chapter 20
These are the solutions to the exercises found in the section, Exercises, on
page 434. The solutions provided here are in Ruby, but you can find the solu-
tions in JavaScript and Python in the code download.14

1. We can optimize this algorithm if we ask ourselves, “If I could magically
find a desired piece of information in O(1) time, can I make my algorithm
faster?”

Specifically, as we iterate over one array, we’d want to “magically” look
up that athlete from the other array in O(1) time. To accomplish this, we
can first transform one of the arrays into a hash table. We’ll use the full
name (that is, the first and last name) as the key, and true (or any arbitrary
item) as the value.

Once we’ve turned one array into this hash table, we then iterate over the
other array. As we encounter each athlete, we do an O(1) lookup in the
hash table to see if that athlete already plays the other sport. If they do,
we add that athlete to our multisport_athletes array, which we return at the
end of the function.

Here is the code for this approach:

def find_multisport_athletes(array_1, array_2)
hash_table = {}
multisport_athletes = []

array_1.each do |athlete|
hash_table[athlete[:first_name] + " " + athlete[:last_name]] = true

end

14. https://pragprog.com/titles/jwdsal2/source_code
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array_2.each do |athlete|
if hash_table[athlete[:first_name] + " " + athlete[:last_name]]
multisport_athletes << athlete[:first_name] +

" " + athlete[:last_name]
end

end

return multisport_athletes
end

This algorithm is O(N + M) since we iterate through each set of players
just once.

2. For this algorithm, generating examples to find a pattern will be
immensely helpful.

Let’s take an array that has six integers and see what would happen if
we removed a different integer each time:

[1, 2, 3, 4, 5, 6] : missing 0: sum = 21
[0, 2, 3, 4, 5, 6] : missing 1: sum = 20
[0, 1, 3, 4, 5, 6] : missing 2: sum = 19
[0, 1, 2, 4, 5, 6] : missing 3: sum = 18
[0, 1, 2, 3, 5, 6] : missing 4: sum = 17
[0, 1, 2, 3, 4, 6] : missing 5: sum = 16

Hmm. When we remove the 0, the sum is 21. When we remove the 1, the
sum is 20. And when we remove the 2, the sum is 19, and so on. This
definitely seems like a pattern!

Before we go further, let’s call the 21 in this case the “full sum.” This is
the sum of the array when it’s just missing the 0.

If we analyze these cases carefully, we’ll see that the sum of any array is
less than the “full sum” by the amount of the missing number. For example,
when we’re missing the 4, the sum is 17, which is four less than 21. And
when we’re missing the 1, the sum is 20, which is one less than 21.

So, we can begin our algorithm by calculating what the full sum is. We
can then subtract the actual sum from the full sum, and that will be our
missing number.

Here is the code for this:

def find_missing_number(array)
# Calculate the full sum (which is the sum if only the 0 were missing):
full_sum = 0
(1..array.length).each do |n|

full_sum += n
end
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# Calculate the CURRENT sum:
current_sum = 0

array.each do |n|
current_sum += n

end
# The difference between the two sums will be the missing number:
return full_sum - current_sum

end

This algorithm is O(N). It takes N steps to calculate the full sum, and then
another N steps to calculate the actual sum. This is 2N steps, which
reduces to O(N).

3. We can make this function much faster if we use a greedy algorithm.
(Perhaps this shouldn’t be a surprise given that our code is trying to make
the greatest possible profit on stocks.)

To make the most profit, we want to buy as low as possible and sell as
high as possible. Our greedy algorithm begins by assigning the very first
price to be the buy_price. We then iterate over all the prices, and as soon
as we find a lower price, we make it the new buy_price.

Similarly, as we iterate over the prices, we check how much profit we’d
make if we sold at that price. This is calculated by subtracting the buy_price
from the current price. In good greedy fashion, we save this profit in a
variable called greatest_profit. As we iterate through all the prices, whenever
we find a greater profit, we turn that into the greatest_profit.

By the time we’re done looping through the prices, the greatest_profit will
hold the greatest possible profit we can make by buying and selling the
stock one time.

Here’s the code for our algorithm:

def find_greatest_profit(array)
buy_price = array[0]
greatest_profit = 0

array.each do |price|
potential_profit = price - buy_price

if price < buy_price
buy_price = price

elsif potential_profit > greatest_profit
greatest_profit = potential_profit

end
end

return greatest_profit
end
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Because we iterate over the N prices just once, our function takes O(N)
time. Not just did we make a lot of money, but we made it fast.

4. This is another algorithm where generating examples to find a pattern
will be the key to optimizing it.

As stated in the exercise, it’s possible for the greatest product to be a
result of negative numbers. Let’s look at various examples of arrays and
their greatest products formed by two numbers:

[-5, -4, -3, 0, 3, 4] -> Greatest product: 20 (-5 * -4)
[-9, -2, -1, 2, 3, 7] -> Greatest product: 21 (3 * 7)
[-7, -4, -3, 0, 4, 6] -> Greatest product: 28 (-7 * -4)
[-6, -5, -1, 2, 3, 9] -> Greatest product: 30 (-6 * -5)
[-9, -4, -3, 0, 6, 7] -> Greatest product: 42 (6 * 7)

Seeing all these cases may help us realize that the greatest product can
only be formed by either the greatest two numbers or the lowest two
(negative) numbers.

With this in mind, we should design our algorithm to keep track of these
four numbers:

• The greatest number
• The second-to-greatest number
• The lowest number
• The second-to-lowest number

We can then compare the product of the two greatest numbers versus
the product of the two lowest numbers. And whichever product is greater
is the greatest product in the array.

Now, how do we find the greatest two numbers and the lowest two num-
bers? If we sorted the array, that would be easy. But that’s still O(N log N),
and the instructions say that we can achieve O(N).

In fact, we can find all four numbers in a single pass through the array.
It’s time to get greedy again.

Here is the code, followed by its explanation:

def greatest_product(array)
greatest_number = -Float::INFINITY
second_to_greatest_number = -Float::INFINITY

lowest_number = Float::INFINITY
second_to_lowest_number = Float::INFINITY
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array.each do |number|
if number >= greatest_number
second_to_greatest_number = greatest_number
greatest_number = number

elsif number > second_to_greatest_number
second_to_greatest_number = number

end

if number <= lowest_number
second_to_lowest_number = lowest_number
lowest_number = number

elsif number > lowest_number &&
number < second_to_lowest_number
second_to_lowest_number = number

end
end

greatest_product_from_two_highest =
greatest_number * second_to_greatest_number

greatest_product_from_two_lowest =
lowest_number * second_to_lowest_number

if greatest_product_from_two_highest > greatest_product_from_two_lowest
return greatest_product_from_two_highest

else
return greatest_product_from_two_lowest

end
end

Before we begin our loop, we set the greatest_number and second_to_greatest_num-
ber to be negative infinity. This ensures they start out lower than any
number currently in the array.

We then iterate over each number. If the current number is greater than
the greatest_number, we greedily turn the current number into the new
greatest_number. If we’ve already found a second_to_greatest_number, we reassign
the second_to_greatest_number to be whatever the greatest_number was before we
reached the current number. This ensures the second_to_greatest_number will
indeed be the second-to-greatest number.

If the current number we’re iterating over is less than the greatest_number
but greater than then second_to_greatest_number, we update the second_to_great-
est_number to be the current number.

We follow this very same process to find the lowest_number and the sec-
ond_to_lowest_number.

report erratum  •  discuss

Chapter 20 • 469

http://pragprog.com/titles/jwdsal2/errata/add
http://forums.pragprog.com/forums/jwdsal2


Once we’ve found all four numbers, we compute the products from the
two highest numbers and the products of the two lowest numbers and
return whichever product is greater.

5. The key to optimizing this algorithm is the fact that we’re sorting a finite
number of values. Specifically, there are only 21 types of temperature
readings that we may find in this array, from:

97.0, 97.1, 97.2, 97.3 ... 98.7, 98.8, 98.9, 99.0

Let’s return to the example array mentioned in the exercise instructions:

[98.6, 98.0, 97.1, 99.0, 98.9, 97.8, 98.5, 98.2, 98.0, 97.1]

If were to imagine our array of temperatures as a hash table, we can store
each temperature as a key and the number of occurrences as the value.
This would look like something like this:

{98.6 => 1, 98.0 => 2, 97.1 => 2, 99.0 => 1,
98.9 => 1, 97.8 => 1, 98.5 => 1, 98.2 => 1}

With this in mind, we can run a loop that runs from 97.0 up to 99.0 and
checks the hash table for how many occurrences of that temperature there
are. Each of these lookups take just O(1) time.

Then, we use that number of occurrences to populate a new array. Because
our loop is set to go up from 97.0 to 99.0, our array will end up in perfect
ascending order.

Here’s the code for this:

def sort_temperatures(array)
hash_table = {}

# Populate hash table with occurrences of temperatures:
array.each do |temperature|

if hash_table[temperature]
hash_table[temperature] += 1

else
hash_table[temperature] = 1

end
end

sorted_array = []

# We multiply the temperature by 10 on the outset
# so that we can increment the temperature by a whole number
# during the loop, and avoid floating-point math errors:
temperature = 970

# Run loop from 970 up to 990
while temperature <= 990
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# If the hash table contains our the current temperature:
if hash_table[temperature / 10.0]

# Populate the sorted_array with as many occurences
# of the current temperature that there are:
hash_table[temperature / 10.0].times do

sorted_array << temperature / 10.0
end

end

temperature += 1
end

return sorted_array
end

You’ll note that for the loop, we deal with the temperatures multiplied by
10. That’s only to avoid floating arithmetic issues, because incrementing
a variable by 0.1 in a loop causes weird things to happen, and the code
doesn’t work correctly.

Let’s now analyze the efficiency of this algorithm. We take N steps to create
the hash table. We then run a loop 21 times for all possible temperatures
from 97.0 up to 99.0.

In each round of this loop, we run a nested loop to populate the sorted_array
with the temperatures. However, this inner loop will never end up running
more times than the N temperatures. This is because the inner loop only
runs one time for each temperature in the original array.

Thus, we have N steps to create the hash table, 21 steps for the outer
loop, and N steps for the inner loop. This is 2N + 21, which is reduced to
a beautiful O(N).

6. This optimization employs the most brilliant use of magical lookups that
I’ve ever seen.

Imagine we’re iterating over the array of numbers and we encounter a 5.
Let’s ask ourselves the magical lookup question: “If I could magically find
a desired piece of information in O(1) time, can I make my algorithm
faster?”

Well, to determine whether the 5 is part of the longest consecutive
sequence, we’d want to know whether there’s a 6 in the array. We’d also
want to know if there’s a 7, and an 8, and so on.

Now, we can actually achieve each of those lookups in O(1) time if we first
store all the numbers from our array in a hash table. That is, the array,
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[10, 5, 12, 3, 55, 30, 4, 11, 2] could look like this if we moved the data to a hash
table:

{10 => true, 5 => true, 12 => true, 3 => true, 55 => true,
30 => true, 4 => true, 11 => true, 2 => true}

In this case, if we were to encounter the 2, we can then run a loop that
keeps checking for the next number in the hash table. If it finds it, we
increase the length of the current sequence by one. The loop repeats this
process until it can’t find the next number in the sequence. Each of these
lookups take just one step.

However, you may ask the following question: how does this help? Imagine
our array is [6, 5, 4, 3, 2, 1]. When we iterate over the 6, we’ll find that there
isn’t a sequence that builds up from there. When we reach the 5, we’ll
find the sequence 5-6. When we reach the 4, we’ll find the sequence 4-5-
6. When we reach the 3, we’ll find the sequence 3-4-5-6, and so on. We’ll
still end up going through about N2 / 2 steps finding all those sequences.

The answer to this is: we’ll only start building a sequence if the current
number is the bottom number of the sequence. So, we won’t build 4-5-6
when there’s a 3 in the array.

But how do we know if the current number is the bottom of a sequence?
By doing a magical lookup!

How? Before running a loop to find a sequence, we’ll do an O(1) lookup
of the hash table to check whether there’s a number that’s 1 less than
current number. So, if the current number is 4, we’ll first check to see
whether there’s a 3 in the array. If there is, we won’t bother to build a
sequence. We only want to build a sequence starting from the bottom
number of that sequence; otherwise we have redundant steps.

Here’s the code for this:

def longest_sequence_length(array)
hash_table = {}
greatest_sequence_length = 0

# Populate hash table with the numbers as keys:
array.each do |number|

hash_table[number] = true
end

# Iterate over each number in the array:
array.each do |number|
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# If the current number is the first in the sequence,
# (that is, there isn't a number one lower than it):
if !hash_table[number - 1]

# We start counting the length of the current sequence,
# starting with the current number. Since this is the
# first number of the sequence, the length of the sequence
# is currently 1:
current_sequence_length = 1

# We establish a current_number for use in the
# upcoming while loop:
current_number = number

# Run a while loop as long as there is
# a next number in the sequence:
while hash_table[current_number + 1]

# Move on to the next number in the sequence:
current_number += 1

# Increase the length of the sequence by 1:
current_sequence_length += 1

# Greedily keep track of the greatest sequence length:
if current_sequence_length > greatest_sequence_length

greatest_sequence_length = current_sequence_length
end

end
end

end

return greatest_sequence_length
end

In this algorithm, we take N steps to build the hash table. We take another
N steps to iterate through the array. And we take about another N steps
looking up numbers in the hash table to build the different sequences. All in
all, this is about 3N, which is reduced to O(N).
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linear search, 8–11, 25–26
of arrays, 8–11
compared to binary

search, 31–33
of ordered arrays, 25–26
of sets, 16
time complexity, 36, 40

linear time, O(N), 36–40, 43–
45, 58–60

linked lists, 225–244
code implementation,

227–232, 234–238, 
240–241

compared to ordered ar-
rays, 238–239

definition, 225–227
deleting from, 236–239
doubly linked lists, 240–

244
head of, 227
heaps implemented us-

ing, 301
inserting into, 232–236, 

241
link in each node, 226
nodes in, 226
reading from, 229–231, 

242
searching, 231–232

tail of, 227
time complexity of, 238–

239
uses of, 239

linter example, for JavaScript,
137–143

load factor, for hash tables,
123

log time, O(log N), 40–43

logarithms, 41–42

lookups, see hash tables;
read operation

loops, recursion as alternative
to, 149–150, 161–165

M
magical lookups technique,

399–406, 410–414

maintainability of code, 1

maps, see hash tables

mathematical notation
Big O Notation, 35–45
used in this book, xiii, 37

max-heaps, 281–282, 284

mean average
Celsius readings, 100
of even numbers, 95–97

memoization, 191–194, 196

memory address, 7–8

memory consumed, see space
complexity

Mergesort, 222

min-heaps, 281–282, 284

multiplication hash function,
115

N
neighbors (adjacent vertices),

in graphs, 333

node-based data structures,
see binary search trees;
graphs; heaps; linked lists;
tries

non-directed graphs, 334

O
O() notation, see Big O Nota-

tion

O(1), constant time, 37–40

O(K), for trie searches and in-
sertions, 315, 320

O(log N), log time, 40–43

O(N log N), for Quicksort,
214–218
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O(N!), factorial time, 180

O(N), linear time, 36–40, 43–
45, 58–60

O(N2), quadratic time, 55–58

O(V + E), for graph searches,
362–364

online resources
Big O Notation, 37
graph databases, 364
for this book, xviii

operations, 4, see also algo-
rithms; delete operation;
insert operation; read oper-
ation; search operation;
traversal operation

optimization techniques, 397–
433, see also Big O Nota-
tion; space complexity; time
complexity

best possible efficiency,
determining, 397–399

data structures, chang-
ing, 427–433

efficiency of current code,
determining, 397

greedy algorithms for,
414–427

magical lookups for, 399–
406

recognizing patterns,
406–414

“Order of” notation, see Big O
Notation

ordered arrays, 22–33, see
also arrays

binary search with, 26–
33

compared to binary
search trees, 254, 258

compared to heaps, 292–
293

compared to linked lists,
238–239

definition, 22–24
inserting into, 22–24
linear search with, 24–

26, 31–33
time complexity of, 247

overlapping subproblems,
189–192

P
palindrome checker example,

102–103

parent, in tree, 249

partitioning, 199–205
Quicksort using, 205–210
time complexity of, 211–

212

password cracker example,
107–109

paths, in graphs, 337–338

patterns, recognizing, 406–
414

performance, see time com-
plexity

pivot, in partitioning, 199

prime number example, 44–
45

printer manager example,
146–147

priority queues
definition, 279–281
heaps used for, 284, 292–

293, 302

Q
quadratic time, O(N2), 55–58

quality of code, efficiency, 1–
2

queues, 144–147
adding items to, 144
code implementation,

145–146, 242–244
definition, 144–145
doubly linked lists used

for, 242–244
FIFO operations for, 144
printer manager example

using, 146–147
priority queues, 279–

281, 292–293, 302
removing items from, 145

Quickselect, 218–221
code implementation, 221
time complexity of, 220–

221

Quicksort, 199–218
code implementation,

210–211
compared to Insertion

Sort, 218
definition, 205–210
partitioning used by,

199–205
time complexity of, 211–

218
worst-case scenario for,

216–218

R
read operation, 4

arrays, 4–8, 36
doubly linked lists, 242
linked lists, 229–231
optimizing, 399–406, 

410–414
sets, 16

recursion, xv, 149–156, 161–
180

anagram generation exam-
ple using, 177–180

for arbitrary number of
levels, 166–167

array sum example us-
ing, 169–170

autocomplete example
using, 321–326

base case for, 151
binary search trees us-

ing, 255–256
bottom-up approach, 167
for calculations, 166–167
call stack for, 154–156
computer’s processing of,

154–156
countdown example us-

ing, 149–150, 161
counting occurrences of

values using, 171–173
default parameters with,

165
definition, 149
depth-first search using,

341, 347–348
dynamic programming

with, 191–194, 196
extra parameters with,

162–165
factorials example using,

151–156, 166–167
Fibonacci sequence us-

ing, 189–196
filesystem traversal exam-

ple using, 157–159
partitioning with, 199–

205
Quickselect using, 218–

221
Quicksort using, 205–210
reading code using, 151–

154
for repeated execution,

149–150, 161–165
saving intermediate re-

sults of, 187–188
space complexity of, 393
stack overflow from, 156
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staircase problem using,
173–177

string reversal example
using, 170–171

subproblems with, 166–
169, 189–192

time complexity of, 188–
189

top-down approach, 167–
173

unnecessary calls, elimi-
nating, 183–188

walking through, 185–
187

repeated execution, see loops;
recursion

resources, see books; online
resources

revised information in this
edition, xiv–xv

root, of tree, 248

runtime, see time complexity

S
search operation, 4

arrays, 4, 8–11
binary search, 26–33
binary search trees, 251–

256
graphs, breadth-first

(BFS), 348–361
graphs, depth-first (DFS),

339–348, 359–361
linear search, 8–11, 16, 

25–26, 31–33
linked lists, 231–232
ordered arrays, 24–33
sets, 16
tries, 311–316

Selection Sort, 63–72
code implementation, 69–

70
compared to Bubble Sort,

71–72, 88
compared to Insertion

Sort, 88–90
definition, 63–69
time complexity, 70–72

sets, 15–18
definition, 15
deleting from, 16
inserting into, 16–18
reading, 16
searching, 16

shortest path example, 366–
384

size, of arrays, 3

social network examples,
331–364

sorting algorithms
Bubble Sort, 47–56
Insertion Sort, 79–90
Mergesort, 222
other applications of,

222–223
Quicksort, 199–218
Selection Sort, 63–72

space complexity, 387–393
auxiliary space, 389
Big O Notation for, 387–

390
determining, 397–399
of recursion, 393
trade-offs with time com-

plexity, 390–393

speed, see time complexity

stack overflow, from recur-
sion, 156

stacks, 133–144
call stack, for recursion,

154–156
code implementation,

136–137, 140–143
definition, 133–136
JavaScript linter example

using, 137–143
LIFO operations for, 136
popping items from, 135
pushing items onto, 134

staircase problem example,
173–177

standard arrays, see arrays

steps, see also time complexi-
ty

as efficiency measure-
ment, 4–5, 36

significance of, 75

stock predictions example,
422–427

string reversal example, 170–
171

subproblems
definition, 166–169
overlapping, 189–192

sum swap problem example,
410–414

T
temporary data, handling,

see queues; stacks

thesaurus example, 115–122

time complexity (speed)
arrays, deleting from, 14

arrays, inserting into, 13
arrays, linear search, 11
arrays, reading, 8
arrays, reading from, 36
arrays, searching, 26
average-case scenario,

88–90
best possible, determin-

ing, 397–399
Big O Notation for, 35–45
binary compared to linear

searches, 31–33
binary search, 31–33, 40
binary search tree, dele-

tions, 271
binary search tree, inser-

tions, 258
binary search tree,

searches, 253–255, 260
binary search tree,

traversal, 276
Bubble Sort, 53–56
determining, 43, 397–399
Dijkstra’s algorithm, 383
graphs, lookups, 334
graphs, searches, 361–

364
hash tables, lookups,

121–130
heaps, deletions, 292
heaps, insertions, 287
Insertion Sort, 86–90
linear search, 31–33, 36, 

40
measuring in steps, 4–5, 

36
ordered arrays, inserting

into, 24
ordered compared to

standard arrays, 33
Quickselect, 220–221
Quicksort, 211–218
recursive functions, 188–

189
Selection Sort, 70–72
sets, deleting from, 16
sets, inserting into, 18
sets, reading from, 16
sets, searching, 16
trade-offs with space

complexity, 390–393
tries, insertions, 320
tries, searches, 315–316
worst-case scenario, 40

top-down approach, recur-
sion, 167–173

traversal operation
binary search trees, 272–

276
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filesystem, 157–159, 162
graphs, 339

trees, 248–249, see also bina-
ry search trees; heaps; tries

ancestors and descen-
dants in, 249

balanced or imbalanced,
249

binary trees, 250, 281
compared to graphs,

332–333
levels of, 249

parents and children in,
249

root of, 248

tries, 305–328
code implementation,

307, 313–315, 319–320
definition, 305–306
inserting into, 316–320
searching, 311–316
storing words, 307–311
time complexity, 315–

316, 320

two-sum problem example,
403–406

U
undirected graphs, 335

V
vertices, in graphs, 332–333

W
website resources, see online

resources

weighted graphs, 364–367

word builder example, 97–99

worst-case scenario, in Big O
Notation, 40
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Build Location-Based Projects for iOS
Coding is awesome. So is being outside. With location-
based iOS apps, you can combine the two for an en-
hanced outdoor experience. Use Swift to create your
own apps that use GPS data, read sensor data from
your iPhone, draw on maps, automate with geofences,
and store augmented reality world maps. You’ll have
a great time without even noticing that you’re learning.
And even better, each of the projects is designed to be
extended and eventually submitted to the App Store.
Explore, share, and have fun.

Dominik Hauser
(154 pages) ISBN: 9781680507812. $26.95
https://pragprog.com/book/dhios

iOS Unit Testing by Example
Fearlessly change the design of your iOS code with
solid unit tests. Use Xcode’s built-in test framework
XCTest and Swift to get rapid feedback on all your code
— including legacy code. Learn the tricks and tech-
niques of testing all iOS code, especially view con-
trollers (UIViewControllers), which are critical to iOS
apps. Learn to isolate and replace dependencies in
legacy code written without tests. Practice safe refac-
toring that makes these tests possible, and watch all
your changes get verified quickly and automatically.
Make even the boldest code changes with complete
confidence.

Jon Reid
(300 pages) ISBN: 9781680506815. $47.95
https://pragprog.com/book/jrlegios
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Become an Effective Software Engineering Manager
Software startups make global headlines every day. As
technology companies succeed and grow, so do their
engineering departments. In your career, you’ll may
suddenly get the opportunity to lead teams: to become
a manager. But this is often uncharted territory. How
do you decide whether this career move is right for
you? And if you do, what do you need to learn to suc-
ceed? Where do you start? How do you know that
you’re doing it right? What does “it” even mean? And
isn’t management a dirty word? This book will share
the secrets you need to know to manage engineers
successfully.

James Stanier
(396 pages) ISBN: 9781680507249. $45.95
https://pragprog.com/book/jsengman

Build Websites with Hugo
Rediscover how fun web development can be with
Hugo, the static site generator and web framework that
lets you build content sites quickly, using the skills
you already have. Design layouts with HTML and share
common components across pages. Create Markdown
templates that let you create new content quickly.
Consume and generate JSON, enhance layouts with
logic, and generate a site that works on any platform
with no runtime dependencies or database. Hugo gives
you everything you need to build your next content
site and have fun doing it.

Brian P. Hogan
(154 pages) ISBN: 9781680507263. $26.95
https://pragprog.com/book/bhhugo

https://pragprog.com/book/jsengman
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Practical Microservices
MVC and CRUD make software easier to write, but
harder to change. Microservice-based architectures
can help even the smallest of projects remain agile in
the long term, but most tutorials meander in theory
or completely miss the point of what it means to be
microservice based. Roll up your sleeves with real
projects and learn the most important concepts of
evented architectures. You’ll have your own deployable,
testable project and a direction for where to go next.

Ethan Garofolo
(290 pages) ISBN: 9781680506457. $45.95
https://pragprog.com/book/egmicro

Real-Time Phoenix
Give users the real-time experience they expect, by
using Elixir and Phoenix Channels to build applications
that instantly react to changes and reflect the applica-
tion’s true state. Learn how Elixir and Phoenix make
it easy and enjoyable to create real-time applications
that scale to a large number of users. Apply system
design and development best practices to create appli-
cations that are easy to maintain. Gain confidence by
learning how to break your applications before your
users do. Deploy applications with minimized resource
use and maximized performance.

Stephen Bussey
(326 pages) ISBN: 9781680507195. $45.95
https://pragprog.com/book/sbsockets
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Programming Machine Learning
You’ve decided to tackle machine learning — because
you’re job hunting, embarking on a new project, or
just think self-driving cars are cool. But where to start?
It’s easy to be intimidated, even as a software develop-
er. The good news is that it doesn’t have to be that
hard. Master machine learning by writing code one
line at a time, from simple learning programs all the
way to a true deep learning system. Tackle the hard
topics by breaking them down so they’re easier to un-
derstand, and build your confidence by getting your
hands dirty.

Paolo Perrotta
(340 pages) ISBN: 9781680506600. $47.95
https://pragprog.com/book/pplearn

Competing with Unicorns
Today’s tech unicorns develop software differently.
They’ve developed a way of working that lets them scale
like an enterprise while working like a startup. These
techniques can be learned. This book takes you behind
the scenes and shows you how companies like Google,
Facebook, and Spotify do it. Leverage their insights,
so your teams can work better together, ship higher-
quality product faster, innovate more quickly, and
compete with the unicorns.

Jonathan Rasmusson
(138 pages) ISBN: 9781680507232. $26.95
https://pragprog.com/book/jragile
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Programming Flutter
Develop your next app with Flutter and deliver native
look, feel, and performance on both iOS and Android
from a single code base. Bring along your favorite li-
braries and existing code from Java, Kotlin, Objective-
C, and Swift, so you don’t have to start over from
scratch. Write your next app in one language, and
build it for both Android and iOS. Deliver the native
look, feel, and performance you and your users expect
from an app written with each platform’s own tools
and languages. Deliver apps fast, doing half the work
you were doing before and exploiting powerful new
features to speed up development. Write once, run
anywhere.

Carmine Zaccagnino
(368 pages) ISBN: 9781680506952. $47.95
https://pragprog.com/book/czflutr

Agile Web Development with Rails 6
Learn Rails the way the Rails core team recommends
it, along with the tens of thousands of developers who
have used this broad, far-reaching tutorial and refer-
ence. If you’re new to Rails, you’ll get step-by-step
guidance. If you’re an experienced developer, get the
comprehensive, insider information you need for the
latest version of Ruby on Rails. The new edition of this
award-winning classic is completely updated for Rails
6 and Ruby 2.6, with information on processing email
with Action Mailbox and managing rich text with Action
Text.

Sam Ruby and David Bryant Copeland
(494 pages) ISBN: 9781680506709. $57.95
https://pragprog.com/book/rails6
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