

Welcome to dune’s documentation!

	Overview
	Introduction

	Terminology

	Project layout

	Quickstart
	Building a hello world program

	Building a hello world program using Lwt

	Building a hello world program using Core and Jane Street PPXs

	Defining a library using Lwt and ocaml-re

	Building a hello world program in byte-code

	Setting the OCaml compilation flags globally

	Using cppo
	Using the .cppo.ml style like the ocamlbuild plugin

	Defining a library with C stubs

	Defining a library with C stubs using pkg-config

	Using a custom code generator

	Defining tests

	Building a custom toplevel

	Command-line interface
	Initializing components
	Initializing a project

	Initializing an executable

	Initializing a library

	Finding the root
	Current directory

	Forcing the root (for scripts)

	Interpretation of targets
	Resolution

	Aliases

	Default alias

	Built-in Aliases

	Variables for artifacts

	Finding external libraries

	Running tests

	Watch mode

	Launching the Toplevel (REPL)
	Requirements & Limitations

	Restricting the set of packages

	Distributing Projects

	dune subst

	Custom Build Directory

	Installing a package
	Via opam

	Manually

	Destination directory

	Relocation Mode

	Stanza reference
	dune-project
	name

	version

	implicit_transitive_deps

	wrapped_executables

	explicit_js_mode

	dialect

	formatting

	generate_opam_files

	package

	use_standard_c_and_cxx_flags

	dune
	jbuild_version

	library

	foreign_library

	deprecated_library_name

	executable

	executables

	rule

	ocamllex

	ocamlyacc

	menhir

	cinaps

	documentation

	alias

	install

	copy_files

	include

	tests

	test

	env

	dirs (since 1.6)

	data_only_dirs (since 1.6)

	ignored_subdirs (deprecated in 1.6)

	vendored_dirs (since 1.11)

	include_subdirs

	toplevel

	subdir

	external_variant

	coq.theory

	coq.pp

	coq.extraction

	mdx (since 2.4)

	plugin (since 2.8)

	generate_sites_module (since 2.8)

	dune-workspace
	profile

	env

	context

	General concepts
	Scopes

	Ordered set language

	Boolean language

	Predicate language

	Variables

	Library dependencies
	Alternative dependencies

	Re-exported dependencies

	Preprocessing specification
	Preprocessing with actions

	Preprocessing with ppx rewriters

	Per module preprocessing specification

	Future syntax

	Preprocessor dependencies

	Dependency specification
	Named Dependencies

	Glob

	OCaml flags

	User actions

	Sandboxing
	Per-action sandboxing configuration

	Global sandboxing configuration

	Locks

	Diffing and promotion
	Promotion

	Package specification
	Declaring a package

	Attaching elements to a package

	Sites of a package

	Foreign sources and archives
	Foreign stubs

	Foreign archives

	Flags

	Writing and running tests
	Running tests
	Running a single test

	Running tests in a directory

	Inline tests
	Inline expectation tests

	Running a subset of the test suite

	Running tests in bytecode or JavaScript

	Specifying inline test dependencies

	Passing special arguments to the test runner

	Passing special arguments to the test executable

	Using additional libraries in the test runner

	Defining your own inline test backend

	Custom tests
	Diffing the result

	Cram Tests
	File Tests

	Directory Tests

	Test Options

	Testing an OCaml Program

	Sandboxing

	Test Output Sanitation

	Instrumentation
	Specifying what to instrument

	Enabling/disabling instrumentation

	Declaring an instrumentation backend

	Dealing with foreign libraries
	Adding C/C++ stubs to an OCaml library
	Header files

	Installing header files

	Foreign build sandboxing
	Limitations

	Real example

	Generating documentation
	Prerequisites

	Writing documentation

	Building documentation
	Examples

	Passing options to Odoc

	JavaScript compilation
	Compiling to JS

	Separate compilation

	How to load additional files at runtime
	Sites
	Defining a site

	Adding files to a site

	Getting the locations of a site at runtime

	Tests

	Installation

	Implementation details

	Plugins and dynamic loading of packages
	Example

	OPAM integration
	Invocation from opam
	Tests

	<package>.opam files

	Generating opam files
	Opam template

	Odig conventions

	Virtual libraries & variants
	Virtual library

	Implementation

	Variants

	Default implementation

	Limitations

	Automatic formatting
	Configuring automatic formatting (dune 2.0)

	Formatting a project

	Enabling and configuring automatic formatting (dune 1.x)

	Version history
	(lang dune 2.0)

	(using fmt 1.2)

	(using fmt 1.1)

	(using fmt 1.0)

	Cross compilation
	How does it work?

	Dune libraries
	Configurator
	Usage

	Upgrading from the old Configurator

	build-info

	(Experimental) Dune action plugin

	Other topics
	META file generation

	Findlib integration

	Dynamic loading of packages with findlib

	Classical ppx

	Profiling dune

	Package version

	OCaml syntax
	Variables for artifacts

	Building an ad-hoc .cmxs

	Lexical conventions
	Comments

	Atoms

	Strings

	End of line strings

	Lists

	FAQ
	Why do many dune projects contain a Makefile?

	How to add a configure step to a dune project?

	Can I use topkg with dune?

	How do I publish my packages with dune?

	Where can I find some examples of projects using dune?

	What is Jenga?

	How to make warnings non-fatal?

	How to display the output of commands as they run?

	How can I generate an mli file from an ml file?

	Known Issues
	mli only modules

	parallel dune invocations on the same tree

	Migration
	Timeline
	July 2018: release of Dune 1.0.0

	January 2019: deprecation of Jbuilder

	July 2019: support for Jbuilder is dropped

	January 2020: the jbuilder binary goes away

	Distant future

	Check list
	New configuration files

	dune-project files

	dune files

	dune-workspace

	Variable syntax

	(files_recursively_in ..) is removed

	Escape sequences

	Comments syntax

	Renamed variables

	Removed variables

	# JBUILDER_GEN renamed

	jbuild-ignore (deprecated)

	Caching
	Configuration

	Daemon
	Starting the daemon

	Stopping the daemon

	Filesystem implementation
	Hardlink mode

	Copy mode

	On-disk size

	Reproducibility
	Reproducibility check

	Non-reproducible rules

	Daemon-less mode

	Toplevel integration

	Goal of Dune
	Have excellent backward compatibility properties

	Have a robust and scalable core

	Remain a no-brainer dependency

	Remain accessible

	Have very good support for the OCaml language

	Be extensible

	Working on the Dune codebase
	Writing tests
	Guidelines

	Adding Stanzas
	Versioning

	Experimental & Independent Extensions

	Dune Rules
	Creating Rules

	Loading Rules

Overview

Introduction

Dune is a build system for OCaml (with support for Reason and Coq).
It is not intended as a completely generic build system that is able
to build any given project in any language. On the contrary, it makes
lots of choices in order to encourage a consistent development style.

This scheme is inspired from the one used inside Jane Street and adapted
to the opam world. It has matured over a long time and is used daily by
hundreds of developers, which means that it is highly tested and
productive.

When using dune, you give very little and high-level information to
the build system, which in turn takes care of all the low-level
details, from the compilation of your libraries, executables and
documentation, to the installation, setting up of tests, setting up of
the development tools such as merlin, etc.

In addition to the normal features one would expect from a build system
for OCaml, dune provides a few additional ones that detach it from
the crowd:

	you never need to tell dune where things such as libraries are.
Dune will always discover them automatically. In particular, this
means that when you want to re-organize your project you need to do no
more than rename your directories, dune will do the rest

	things always work the same whether your dependencies are local or
installed on the system. In particular, this means that you can always
drop in the source for a dependency of your project in your working
copy and dune will start using it immediately. This makes dune a
great choice for multi-project development

	cross-platform: as long as your code is portable, dune will be
able to cross-compile it (note that dune is designed internally
to make this easy but the actual support is not implemented yet)

	release directly from any revision: dune needs no setup stage. To
release your project, you can simply point to a specific tag. You can
of course add some release steps if you want to, but it is not
necessary

The first section of this document defines some terms used in the rest
of this manual. The second section specifies the dune metadata
format and the third one describes how to use the dune command.

Terminology

	package: a package is a set of libraries, executables, … that
are built and installed as one by opam

	project: a project is a source tree, maybe containing one or more
packages

	root: the root is the directory from where dune can build
things. Dune knows how to build targets that are descendants of
the root. Anything outside of the tree starting from the root is
considered part of the installed world. How the root is
determined is explained in Finding the root.

	workspace: the workspace is the subtree starting from the root.
It can contain any number of projects that will be built
simultaneously by dune

	installed world: anything outside of the workspace, that dune
takes for granted and doesn’t know how to build

	installation: this is the action of copying build artifacts or
other files from the <root>/_build directory to the installed
world

	scope: a scope determines where private items are
visible. Private items include libraries or binaries that will not
be installed. In dune, scopes are sub-trees rooted where at
least one <package>.opam file is present. Moreover, scopes are
exclusive. Typically, every project defines a single scope. See
Scopes for more details

	build context: a build context is a subdirectory of the
<root>/_build directory. It contains all the build artifacts of
the workspace built against a specific configuration. Without
specific configuration from the user, there is always a default
build context, which corresponds to the environment in which dune
is executed. Build contexts can be specified by writing a
dune-workspace file

	build context root: the root of a build context named foo is
<root>/_build/<foo>

	alias: an alias is a build target that doesn’t produce any file and has
configurable dependencies. Aliases are per-directory. However, on the command
line, asking for an alias to be built in a given directory will trigger the
construction of the alias in all children directories recursively. Dune
defines several Built-in Aliases.

	environment: in dune, each directory has an environment
attached to it. The environment determines the default values of
various parameters, such as the compilation flags. Inside a scope,
each directory inherit the environment from its parent. At the root
of every scope, a default environment is used. At any point, the
environment can be altered using an env stanza.

	build profile: a global setting that influence various
defaults. It can be set from the command line using --profile
<profile> or from dune-workspace files. The following
profiles are standard:

	release which is the profile used for opam releases

	dev which is the default profile when none is set explicitly, it
has stricter warnings that the release one

Project layout

A typical dune project will have a dune-project and one or more
<package>.opam file at the root as well as dune files wherever
interesting things are: libraries, executables, tests, documents to install,
etc…

It is recommended to organize your project so that you have exactly one library
per directory. You can have several executables in the same directory, as long
as they share the same build configuration. If you’d like to have multiple
executables with different configurations in the same directory, you will have
to make an explicit module list for every executable using modules.

Quickstart

This document gives simple usage examples of dune. You can also look at
examples [https://github.com/ocaml/dune/tree/master/example] for complete
examples of projects using dune.

Building a hello world program

In a directory of your choice, write this dune file:

;; This declares the hello_world executable implemented by hello_world.ml
(executable
 (name hello_world))

This hello_world.ml file:

print_endline "Hello, world!"

And build it with:

dune build hello_world.exe

The executable will be built as _build/default/hello_world.exe. Note that
native code executables will have the .exe extension on all platforms
(including non-Windows systems). The executable can be built and run in a single
step with dune exec ./hello_world.exe.

Building a hello world program using Lwt

In a directory of your choice, write this dune file:

(executable
 (name hello_world)
 (libraries lwt.unix))

This hello_world.ml file:

Lwt_main.run (Lwt_io.printf "Hello, world!\n")

And build it with:

dune build hello_world.exe

The executable will be built as _build/default/hello_world.exe

Building a hello world program using Core and Jane Street PPXs

Write this dune file:

(executable
 (name hello_world)
 (libraries core)
 (preprocess (pps ppx_jane)))

This hello_world.ml file:

open Core

let () =
 Sexp.to_string_hum [%sexp ([3;4;5] : int list)]
 |> print_endline

And build it with:

dune build hello_world.exe

The executable will be built as _build/default/hello_world.exe

Defining a library using Lwt and ocaml-re

Write this dune file:

(library
 (name mylib)
 (public_name mylib)
 (libraries re lwt))

The library will be composed of all the modules in the same directory.
Outside of the library, module Foo will be accessible as
Mylib.Foo, unless you write an explicit mylib.ml file.

You can then use this library in any other directory by adding mylib
to the (libraries ...) field.

Building a hello world program in byte-code

In a directory of your choice, write this dune file:

;; This declares the hello_world executable implemented by hello_world.ml
;; to be build as native (.exe) or byte-code (.bc) version.
(executable
 (name hello_world)
 (modes byte exe))

This hello_world.ml file:

print_endline "Hello, world!"

And build it with:

dune build hello_world.bc

The executable will be built as _build/default/hello_world.bc.
The executable can be built and run in a single
step with dune exec ./hello_world.bc. This byte-code version allows the usage of
ocamldebug.

Setting the OCaml compilation flags globally

Write this dune file at the root of your project:

(env
 (dev
 (flags (:standard -w +42)))
 (release
 (flags (:standard -O3))))

dev and release correspond to build profiles. The build profile
can be selected from the command line with --profile foo or from a
dune-workspace file by writing:

(profile foo)

Using cppo

Add this field to your library or executable stanzas:

(preprocess (action (run %{bin:cppo} -V OCAML:%{ocaml_version} %{input-file})))

Additionally, if you want to include a config.h file, you need to
declare the dependency to this file via:

(preprocessor_deps config.h)

Using the .cppo.ml style like the ocamlbuild plugin

Write this in your dune file:

(rule
 (targets foo.ml)
 (deps (:first-dep foo.cppo.ml) <other files that foo.ml includes>)
 (action (run %{bin:cppo} %{first-dep} -o %{targets})))

Defining a library with C stubs

Assuming you have a file called mystubs.c, that you need to pass
-I/blah/include to compile it and -lblah at link time, write
this dune file:

(library
 (name mylib)
 (public_name mylib)
 (libraries re lwt)
 (foreign_stubs
 (language c)
 (names mystubs)
 (flags -I/blah/include))
 (c_library_flags (-lblah)))

Defining a library with C stubs using pkg-config

Same context as before, but using pkg-config to query the
compilation and link flags. Write this dune file:

(library
 (name mylib)
 (public_name mylib)
 (libraries re lwt)
 (foreign_stubs
 (language c)
 (names mystubs)
 (flags (:include c_flags.sexp)))
 (c_library_flags (:include c_library_flags.sexp)))

(rule
 (targets c_flags.sexp c_library_flags.sexp)
 (action (run ./config/discover.exe)))

Then create a config subdirectory and write this dune file:

(executable
 (name discover)
 (libraries dune-configurator))

as well as this discover.ml file:

module C = Configurator.V1

let () =
C.main ~name:"foo" (fun c ->
let default : C.Pkg_config.package_conf =
 { libs = ["-lgst-editing-services-1.0"]
 ; cflags = []
 }
in
let conf =
 match C.Pkg_config.get c with
 | None -> default
 | Some pc ->
 match (C.Pkg_config.query pc ~package:"gst-editing-services-1.0") with
 | None -> default
 | Some deps -> deps
in

C.Flags.write_sexp "c_flags.sexp" conf.cflags;
C.Flags.write_sexp "c_library_flags.sexp" conf.libs)

Using a custom code generator

To generate a file foo.ml using a program from another directory:

(rule
 (targets foo.ml)
 (deps (:gen ../generator/gen.exe))
 (action (run %{gen} -o %{targets})))

Defining tests

Write this in your dune file:

(test (name my_test_program))

And run the tests with:

dune runtest

It will run the test program (the main module is my_test_program.ml) and
error if it exits with a nonzero code.

In addition, if a my_test_program.expected file exists, it will be compared
to the standard output of the test program and the differences will be
displayed. It is possible to replace the .expected file with the last output
using:

dune promote

Building a custom toplevel

A toplevel is simply an executable calling Topmain.main () and linked with
the compiler libraries and -linkall. Moreover, currently toplevels can only
be built in bytecode.

As a result, write this in your dune file:

(executable
 (name mytoplevel)
 (libraries compiler-libs.toplevel mylib)
 (link_flags (-linkall))
 (modes byte))

And write this in mytoplevel.ml

let () = Topmain.main ()

Command-line interface

This section describe usage of dune from the shell.

Initializing components

NOTE: The dune init command is still under development and subject to
change.

Dune’s init subcommand provides limited support for generating dune file
stanzas and folder structures to define components. dune init can be used to
quickly add new projects, libraries, tests, or executables without having to
manually create dune files, or it can be composed to programmatically generate
parts of a multi-component project.

Initializing a project

To initialize a new dune project that uses the base and cmdliner
libraries and supports inline tests, you can run

$ dune init proj myproj --libs base,cmdliner --inline-tests --ppx ppx_inline_test

This will create a new directory called myproj including sub directories and
dune files for library, executable, and test components. Each component’s
dune file will also include the declarations required for the given
dependencies.

This is the quickest way to get a basic dune project up and building.

Initializing an executable

To add a new executable to a dune file in the current directory
(creating the file if necessary), run

$ dune init exe myexe --libs base,containers,notty --ppx ppx_deriving

This will add the following stanza to the dune file:

(executable
 (name main)
 (libraries base containers notty)
 (preprocess
 (pps ppx_deriving)))

Initializing a library

To create a new directory src, initialized as a library, you can run:

$ dune init lib mylib src --libs core --inline-tests --public

This will ensure the file ./src/dune contains the following stanza (creating
the file and directory, if needed):

(library
 (public_name mylib)
 (inline_tests)
 (name mylib)
 (libraries core)
 (preprocess
 (pps ppx_inline_tests)))

Consult the manual page dune init --help for more details.

Finding the root

The root of the current workspace is determined by looking up a
dune-workspace or dune-project file in the current directory
and parent directories.

dune prints out the root when starting if it is not the current
directory:

$ dune runtest
Entering directory '/home/jdimino/code/dune'
...

More precisely, it will choose the outermost ancestor directory containing a
dune-workspace file as root. For instance if you are in
/home/me/code/myproject/src, then dune will look for all these files in
order:

	/dune-workspace

	/home/dune-workspace

	/home/me/dune-workspace

	/home/me/code/dune-workspace

	/home/me/code/myproject/dune-workspace

	/home/me/code/myproject/src/dune-workspace

The first entry to match in this list will determine the root. In
practice this means that if you nest your workspaces, dune will
always use the outermost one.

In addition to determining the root, dune will read this file
to setup the configuration of the workspace unless the --workspace
command line option is used. See the section dune-workspace
for the syntax of this file.

The Entering directory message can be suppressed with the
--no-print-directory command line option (as in GNU make).

Current directory

If the previous rule doesn’t apply, i.e. no ancestor directory has a
file named dune-workspace, then the current directory will be used
as root.

Forcing the root (for scripts)

You can pass the --root option to dune to select the root
explicitly. This option is intended for scripts to disable the automatic lookup.

Note that when using the --root option, targets given on the command line
will be interpreted relative to the given root, not relative to the current
directory as this is normally the case.

Interpretation of targets

This section describes how dune interprets the targets given on
the command line. When no targets are specified, dune builds the
default alias, see Default alias for more details.

Resolution

All targets that dune knows how to build live in the _build directory.
Although, some are sometimes copied to the source tree for the need of external
tools. These includes <package>.install files when either -p or
--promote-install-files is passed on the command line.

As a result, if you want to ask dune to produce a particular .exe
file you would have to type:

$ dune build _build/default/bin/prog.exe

However, for convenience when a target on the command line doesn’t
start with _build, dune will expand it to the
corresponding target in all the build contexts where it knows how to
build it. When using --verbose, It prints out the actual set of
targets when starting:

$ dune build bin/prog.exe --verbose
...
Actual targets:
- _build/default/bin/prog.exe
- _build/4.03.0/bin/prog.exe
- _build/4.04.0/bin/prog.exe

Aliases

Targets starting with a @ are interpreted as aliases. For instance
@src/runtest means the alias runtest in all descendant of
src in all build contexts where it is defined. If you want to
refer to a target starting with a @, simply write: ./@foo.

To build and run the tests for a particular build context, use
@_build/default/runtest instead.

So for instance:

	dune build @_build/foo/runtest will run the tests only for
the foo build context

	dune build @runtest will run the tests for all build contexts

You can also build an alias non-recursively by using @@ instead of
@. For instance to run tests only from the current directory:

dune build @@runtest

Note that it’s currently not possible to build a target directly if that target
lives in a directory that starts with the @ character. In the rare cases
where you need to do that, you can declare an alias like so:

(alias
 (name foo)
 (deps @foo/some.exe))

@foo/some.exe can then be built with:

dune build @foo

Default alias

When no targets are given to dune build, it builds the special
default alias. Effectively dune build is equivalent to:

dune build @@default

When a directory doesn’t explicitly define what the default alias
means via an alias stanza, the following implicit
definition is assumed:

(alias
 (name default)
 (deps (alias_rec all)))

Which means that by default dune build will build everything that
is installable.

When using a directory as a target, it will be interpreted as building the
default target in the directory. The directory must exist in the source tree.

dune build dir

Is equivalent to:

dune build @@dir/default

Built-in Aliases

There’s a few aliases that dune automatically creates for the user

	default - this alias includes all the targets that dune will build if a
target isn’t specified, i.e. $ dune build. By default, this is set to the
all alias. Note that for dune 1.x, this was set to the install alias.

	runtest - this is the alias to run all the tests, building them if
necessary.

	install - build all public artifacts - those that will be installed.

	doc - build documentation for public libraries.

	doc-private - build documentation for all libraries - public & private.

	lint - run linting tools.

	all - build all available targets in a directory and installable artifacts
defined in that directory.

	check - This alias will build the minimal set of targets required for
tooling support. Essentially, this is .cmi, .cmt, .cmti, and
.merlin files.

Variables for artifacts

It is possible to build specific artifacts by using the corresponding variable
on the command line, e.g.:

dune build '%{cmi:foo}'

See Variables for artifacts for more information.

Finding external libraries

When a library is not available in the workspace, dune will look it
up in the installed world, and expect it to be already compiled.

It looks up external libraries using a specific list of search paths. A
list of search paths is specific to a given build context and is
determined as follows:

	if the ocamlfind is present in the PATH of the context, use each line
in the output of ocamlfind printconf path as a search path

	otherwise, if opam is present in the PATH, use the output of opam
config var lib

	otherwise, take the directory where ocamlc was found, and append
../lib to it. For instance if ocamlc is found in /usr/bin, use
/usr/lib

Running tests

There are two ways to run tests:

	dune build @runtest

	dune test (or the more explicit dune runtest)

The two commands are equivalent. They will run all the tests defined in the
current directory and its children recursively. You can also run the tests in a
specific sub-directory and its children by using:

	dune build @foo/bar/runtest

	dune test foo/bar (or dune runtest foo/bar)

Watch mode

The dune build and dune runtest commands support a -w (or
--watch) flag. When it is passed, dune will perform the action as usual, and
then wait for file changes and rebuild (or rerun the tests). This feature
requires inotifywait or fswatch to be installed.

Launching the Toplevel (REPL)

Dune supports launching a utop [https://github.com/diml/utop] instance
with locally defined libraries loaded.

$ dune utop <dir> -- <args>

Where <dir> is a directory under which dune will search (recursively) for
all libraries that will be loaded. <args> will be passed as arguments to the
utop command itself. For example, dune utop lib -- -implicit-bindings will
start utop with the libraries defined in lib and implicit bindings for
toplevel expressions.

Requirements & Limitations

	utop version >= 2.0 is required for this to work.

	This subcommand only supports loading libraries. Executables aren’t supported.

	Libraries that are dependencies of utop itself cannot be loaded. For example
Camomile [https://github.com/yoriyuki/Camomile].

	Loading libraries that are defined in different directories into one utop
instance isn’t possible.

Restricting the set of packages

You can restrict the set of packages from your workspace that dune can see with
the --only-packages option:

$ dune build --only-packages pkg1,pkg2,... @install

This option acts as if you went through all the dune files and
commented out the stanzas referring to a package that is not in the list
given to dune.

Distributing Projects

Dune provides support for building and installing your project. However it
doesn’t provide helpers for distributing it. It is recommended to use
dune-release [https://github.com/samoht/dune-release] for this purpose.

The common defaults are that your projects include the following files:

	README.md

	CHANGES.md

	LICENSE.md

And that if your project contains several packages, then all the package names
must be prefixed by the shortest one.

dune subst

One of the features dune-release provides is watermarking; it replaces
various strings of the form %%ID%% in all files of your project
before creating a release tarball or when the package is pinned by the
user using opam.

This is especially interesting for the VERSION watermark, which gets
replaced by the version obtained from the vcs. For instance if you are using
git, dune-release invokes this command to find out the version:

$ git describe --always --dirty
1.0+beta9-79-g29e9b37

Projects using dune usually only need dune-release for creating and
publishing releases. However they might still want to substitute the
watermarks when the package is pinned by the user. To help with this,
dune provides the subst sub-command.

dune subst performs the same substitution dune-release does
with the default configuration. i.e. calling dune subst at the
root of your project will rewrite in place all the files in your
project.

More precisely, it replaces all the following watermarks in source files:

	NAME, the name of the project

	VERSION, output of git describe --always --dirty

	VERSION_NUM, same as VERSION but with a potential leading
v or V dropped

	VCS_COMMIT_ID, commit hash from the vcs

	PKG_MAINTAINER, contents of the maintainer field from the
opam file

	PKG_AUTHORS, contents of the authors field from the opam file

	PKG_HOMEPAGE, contents of the homepage field from the opam file

	PKG_ISSUES, contents of the issues field from the opam file

	PKG_DOC, contents of the doc field from the opam file

	PKG_LICENSE, contents of the license field from the opam file

	PKG_REPO, contents of the repo field from the opam file

The name of the project is obtained by reading the dune-project
file in the directory where dune subst is called. The
dune-project file must exist and contain a valid (name ...)
field.

Note that dune subst is meant to be called from the opam file and
in particular behaves a bit different to other dune commands. In
particular it doesn’t try to detect the root of the workspace and must
be called from the root of the project.

Custom Build Directory

By default dune places all build artifacts in the _build directory relative
to the user’s workspace. However, one can customize this directory by using the
--build-dir flag or the DUNE_BUILD_DIR environment variable.

$ dune build --build-dir _build-foo

this is equivalent to:
$ DUNE_BUILD_DIR=_build-foo dune build

Absolute paths are also allowed
$ dune build --build-dir /tmp/build foo.exe

Installing a package

Via opam

When releasing a package using Dune in opam there is nothing special
to do. Dune generates a file called <package-name>.install at the
root of the project. This contains a list of files to install and
opam reads it in order to perform the installation.

Manually

When not using opam or when you want to manually install a package,
you can ask Dune to perform the installation via the install
command:

$ dune install [PACKAGE]...

This command takes a list of package names to install. If no packages
are specified, Dune will install all the packages available in the
workspace. When several build contexts are specified via a
dune-workspace file, the installation will be performed in all the
build contexts.

Destination directory

The <prefix> directory is determined as follows for a given build
context:

	if an explicit --prefix <path> argument is passed, use this path

	if opam is present in the PATH and is configured, use the
output of opam config var prefix

	otherwise, take the parent of the directory where ocamlc was found.

As an exception to this rule, library files might be copied to a
different location. The reason for this is that they often need to be
copied to a particular location for the various build system used in
OCaml projects to find them and this location might be different from
<prefix>/lib on some systems.

Historically, the location where to store OCaml library files was
configured through findlib [http://projects.camlcity.org/projects/findlib.html] and the
ocamlfind command line tool was used to both install these files
and locate them. Many Linux distributions or other packaging systems
are using this mechanism to setup where OCaml library files should be
copied.

As a result, if none of --libdir and --prefix is passed to dune
install and ocamlfind is present in the PATH, then library files will
be copied to the directory reported by ocamlfind printconf destdir. This
ensures that dune install can be used without opam. When using opam,
ocamlfind is configured to point to the opam directory, so this rule makes
no difference.

Note that --prefix and --libdir are only supported if a single build
context is in use.

Relocation Mode

The installation can be done in specific mode (--relocation) for creating a
directory that can be moved around. In that case the executables installed will
lookup the sites (cf How to load additional files at runtime) of the packages relatively to its location.
The –prefix directory should be used to specify the destination.

If you are using plugins that depends on installed libraries which are not
dependencies of the executables – so libraries that need to be loaded at
runtime – you must copy the libraries manually to the destination directory.

Stanza reference

dune-project

These files are used to mark the root of projects as well as define project-wide
parameters. The first line of dune-project must be a lang stanza with no
extra whitespace or comments. The lang stanza controls the names and
contents of all configuration files read by Dune and looks like:

(lang dune 2.8)

Additionally, they can contains the following stanzas.

name

Sets the name of the project. This is used by dune subst
and error messages.

(name <name>)

version

Sets the version of the project:

(version <version>)

implicit_transitive_deps

By default, dune allows transitive dependencies of dependencies to be used
directly when compiling OCaml. However, this setting can be controlled per
project:

(implicit_transitive_deps <bool>)

When set to false, all dependencies that are directly used by a library
or an executable must be directly added in the libraries field. We
recommend users to experiment with this mode and report any problems.

Note that you must use threads.posix instead of threads when using this
mode. This is not an important limitation as threads.vm are deprecated
anyways.

In some situations, it’s desirable to selectively preserve the
behavior of transitive dependencies being available to users of a
library. For example, if we define a library foo_more, that
extends foo, we might want users of foo_more to immediately
have foo available as well. To do this, we must define the
dependency on foo as re-exported:

(library
 (name foo_more)
 (libraries (re_export foo)))

wrapped_executables

Executables are made of compilation units whose names may collide with the
compilation units of libraries. To avoid this possibility, dune prefixes these
compilation unit names with Dune__exe__. This is entirely transparent to
users except for when such executables are debugged. In which case the mangled
names will be visible in the debugger.

Starting from dune 1.11, an option is available to turn on/off name mangling for
executables on a per project basis:

(wrapped_executables <bool>)

Starting from dune 2.0, dune mangles compilation units of executables by
default. However, this can still be turned off using (wrapped_executables
false)

explicit_js_mode

Traditionally, JavaScript targets were defined for every bytecode executable.
This was not very precise and did not interact well with the @all alias.

You can opt out of this behaviour by using:

(explicit_js_mode)

When this mode is enabled, an explicit js mode needs to be added to the
(modes ...) field of executables in order to trigger JavaScript
compilation. Explicit JS targets declared like this will be attached to the
@all alias.

Starting from dune 2.0 this behaviour is the default, and there is no way to
disable it.

dialect

A dialect is an alternative frontend to OCaml (such as ReasonML). It is
described by a pair of file extensions, one corresponding to interfaces and one
to implementations.

A dialect can use the standard OCaml syntax or it can specify an action to
convert from a custom syntax to a binary OCaml abstract syntax tree.

Similarly, a dialect can specify a custom formatter to implement the @fmt
alias, see Automatic formatting.

When not using a custom syntax or formatting action, a dialect is nothing but a
way to specify custom file extensions for OCaml code.

(dialect
 (name <name>)
 (implementation
 (extension <string>)
 <optional fields>)
 (interface
 (extension <string>)
 <optional fields>))

<name> is the name of the dialect being defined. It must be unique in a
given project.

(extension <string>) specifies the file extension used for this dialect, for
interfaces and implementations. The extension string must not contain any dots,
and be unique in a given project (so that a given extension can be mapped back
to a corresponding dialect).

<optional fields> are:

	(preprocess <action>) is the action to run to produce a valid OCaml
abstract syntax tree. It is expected to read the file given in the variable
named input-file and output a binary abstract syntax tree on its
standard output. See Preprocessing with actions for more information.

If the field is not present, it is assumed that the corresponding source code
is already valid OCaml code and can be passed to the OCaml compiler as-is.

	(format <action>) is the action to run to format source code for this
dialect. The action is expected to read the file given in the variable named
input-file and output the formatted source code on its standard
output. For more information. See Automatic formatting for more information.

If the field is not present, then if (preprocess <action>) is not present
(so that the dialect consists of valid OCaml code), then by default the
dialect will be formatted as any other OCaml code. Otherwise no special
formatting will be done.

formatting

Starting in dune 2.0, Automatic formatting is automatically enabled. This can be
controlled by using

(formatting <setting>)

where <setting> is one of:

	disabled, meaning that automatic formatting is disabled

	(enabled_for <languages>) can be used to restrict the languages that are
considered for formatting.

generate_opam_files

Dune is able to use metadata specified in the dune-project file to generate
.opam files, see Generating opam files. To enable this integration, add the
following field to the dune-project file:

(generate_opam_files true)

Dune uses the following global fields to set the metadata for all packages
defined in the project:

	(license <name>) - Specifies the license of the project, ideally as an
identifier from the SPDX License List [https://spdx.org/licenses/]

	(authors <authors>) - A list of authors

	(maintainers <maintainers>) - A list of maintainers

	(source <source>) - where the source is specified two ways:
(github <user/repo>) or (uri <uri>)

	(bug_reports <url>) - Where to report bugs. This defaults to the GitHub
issue tracker if the source is specified as a GitHub repository

	(homepage <url>) - The homepage of the project

	(documentation <url>) - Where the documentation is hosted

With this fields in, every time dune is called to execute some rules (either via
dune build, dune runtest or something else), the opam files get
generated.

Some or all of these fields may be overridden for each package of the project, see
package.

package

Package specific information is specified in the (package <package>) stanza.
It contains the following fields:

	(name <string>) is the name of the package. This must be specified.

	(synopsis <string>) is a short package description

	(description <string>) is a longer package description

	(depends <dep-specification>) are package dependencies

	(conflicts <dep-specification) are package conflicts

	(depopts <dep-specification) are optional package dependencies

	(tags <tags>) are the list of tags for the package

	(deprecated_package_names <name list>) is a list of names that can be used
with the deprecated_library_name stanza to migrate legacy libraries
from other build systems which do not follow Dune’s convention of prefixing
the public name of the library with the package name.

	(license <name>), (authors <authors>), (maintainers
<maintainers>), (source <source>), (bug_reports <url>), (homepage
<url>), (documentation <url>) are the same (and take precedence over)
the corresponding global fields. These fields are available since Dune 2.0.

	(sites (<section> <name>) ...) define a site named <name> in the
section <section>.

Adding libraries to different packages is done via public_name field. See
library section for details.

The list of dependencies <dep-specification> is modeled after opam’s own
language: The syntax is as a list of the following elements:

op := '=' | '<' | '>' | '<>' | '>=' | '<='

stage := :with-test | :build | :dev

constr := (<op> <version>)

logop := or | and

dep := (name <stage>)
 | (name <constr>)
 | (name (<logop> (<stage> | <constr>)*))

dep-specification = dep+

use_standard_c_and_cxx_flags

Since Dune 2.8, it is possible to deactivate the systematic prepending of flags
coming from ocamlc -config to the C compiler command line. This is done
adding the following field to the dune-project file:

(use_standard_c_and_cxx_flags true)

In this mode, dune will populate the :standard set of C flags with the
content of ocamlc_cflags and ocamlc_cppflags. These flags can be
completed or overridden using the Ordered set language.

dune

dune files are the main part of dune. They are used to describe libraries,
executables, tests, and everything dune needs to know about.

The syntax of dune files is described in Lexical conventions section.

dune files are composed of stanzas. For instance a typical
dune looks like:

(library
 (name mylib)
 (libraries base lwt))

(rule
 (target foo.ml)
 (deps generator/gen.exe)
 (action (run %{deps} -o %{target})))

The following sections describe the available stanzas and their meaning.

jbuild_version

Deprecated. This stanza is no longer used and will be removed in the
future.

library

The library stanza must be used to describe OCaml libraries. The
format of library stanzas is as follows:

(library
 (name <library-name>)
 <optional-fields>)

<library-name> is the real name of the library. It determines the
names of the archive files generated for the library as well as the
module name under which the library will be available, unless
(wrapped false) is used (see below). It must be a valid OCaml
module name but doesn’t need to start with a uppercase letter.

For instance, the modules of a library named foo will be
available as Foo.XXX outside of foo itself. It is however
allowed to write an explicit Foo module, in which case this will
be the interface of the library and you are free to expose only the
modules you want.

Note that by default libraries and other things that consume
OCaml/Reason modules only consume modules from the directory where the
stanza appear. In order to declare a multi-directory library, you need
to use the include_subdirs stanza.

<optional-fields> are:

	(public_name <name>) this is the name under which the library can be
referred to as a dependency when it is not part of the current workspace,
i.e. when it is installed. Without a (public_name ...) field, the library
will not be installed by dune. The public name must start by the package
name it is part of and optionally followed by a dot and anything else you
want. The package name must be one of the packages that dune knows about,
as determined by the <package>.opam files

	(package <package>) Install private library under the specified package.
Such a library is now usable by public libraries defined in the same project.
The findlib name for this library will be <package>.__private__.<name>,
however the library’s interface will be hidden from consumers outside the
project.

	(synopsis <string>) should give a one-line description of the library.
This is used by tools that list installed libraries

	(modules <modules>) specifies what modules are part of the library. By
default dune will use all the .ml/.re files in the same directory as the
dune file. This include ones that are present in the file system as well
as ones generated by user rules. You can restrict this list by using a
(modules <modules>) field. <modules> uses the Ordered set language
where elements are module names and don’t need to start with a uppercase
letter. For instance to exclude module Foo: (modules (:standard \
foo))

	(libraries <library-dependencies>) is used to specify the dependencies
of the library. See the section about Library dependencies for more details

	(wrapped <boolean>) specifies whether the modules of the library should be
available only through the top-level library module, or should all be exposed
at the top level. The default is true and it is highly recommended to keep
it this way. Because OCaml top-level modules must all be unique when linking
an executables, polluting the top-level namespace will make your library
unusable with other libraries if there is a module name clash. This option is
only intended for libraries that manually prefix all their modules by the
library name and to ease porting of existing projects to dune

	(wrapped (transition <message>)) Is the same as (wrapped true) except
that it will also generate unwrapped (not prefixed by the library name)
modules to preserve compatibility. This is useful for libraries that would
like to transition from (wrapped false) to (wrapped true) without
breaking compatibility for users. The <message> will be included in the
deprecation notice for the unwrapped modules.

	(preprocess <preprocess-spec>) specifies how to preprocess files if
needed. The default is no_preprocessing. Other options are described in the
Preprocessing specification section

	(preprocessor_deps (<deps-conf list>)) specifies extra dependencies of the
preprocessor, for instance if the preprocessor reads a generated file. The
specification of dependencies is described in the Dependency specification
section

	(optional), if present it indicates that the library should only be built
and installed if all the dependencies are available, either in the workspace
or in the installed world. You can use this to provide extra features without
adding hard dependencies to your project

	(foreign_stubs <foreign-stubs-spec>) specifies foreign source files, e.g.
C or C++ stubs, to be compiled and packaged together with the library. See
the section Foreign sources and archives for more details. This field
replaces the now deleted fields c_names, c_flags, cxx_names
and cxx_flags.

	(foreign_archives <foreign-archives-list>) specifies archives of foreign
object files to be packaged with the library. See the section
Foreign archives for more details. This field replaces the now
deleted field self_build_stubs_archive.

	(install_c_headers (<names>)), if your library has public C header files
that must be installed, you must list them in this field, without the .h
extension

	(modes <modes>) modes which should be built by default. The
most common use for this feature is to disable native compilation
when writing libraries for the OCaml toplevel. The following modes
are available: byte, native and best. best is
native or byte when native compilation is not available

	(no_dynlink) is to disable dynamic linking of the library. This is for
advanced use only, by default you shouldn’t set this option

	(kind <kind>) is the kind of the library. The default is normal, other
available choices are ppx_rewriter and ppx_deriver and must be set
when the library is intended to be used as a ppx rewriter or a [@@deriving
...] plugin. The reason why ppx_rewriter and ppx_deriver are split
is historical and hopefully we won’t need two options soon. Both ppx kinds
support an optional field (cookies <cookies>) where <cookies> is a
list of pairs (<name> <value>) with <name> being the cookie name and
<value> is a string that supports Variables evaluated
by each invocation of the preprocessor (note: libraries that share
cookies with the same name should agree on their expanded value)

	(ppx_runtime_libraries (<library-names>)) is for when the library is a ppx
rewriter or a [@@deriving ...] plugin and has runtime dependencies. You
need to specify these runtime dependencies here

	(virtual_deps (<opam-packages>). Sometimes opam packages enable a specific
feature only if another package is installed. This is for instance the case of
ctypes which will only install ctypes.foreign if the dummy
ctypes-foreign package is installed. You can specify such virtual
dependencies here. You don’t need to do so unless you use dune to
synthesize the depends and depopts sections of your opam file

	js_of_ocaml sets options for JavaScript compilation, see js_of_ocaml

	flags, ocamlc_flags and ocamlopt_flags. See the section about
OCaml flags

	(library_flags (<flags>)) is a list of flags that are passed as it to
ocamlc and ocamlopt when building the library archive files. You can
use this to specify -linkall for instance. <flags> is a list of
strings supporting Variables

	(c_library_flags <flags>) specifies the flags to pass to the C compiler
when constructing the library archive file for the C stubs. <flags> uses
the Ordered set language and supports (:include ...) forms. When you
are writing bindings for a C library named bar, you should typically write
-lbar here, or whatever flags are necessary to link against this
library

	(modules_without_implementation <modules>) specifies a list of
modules that have only a .mli or .rei but no .ml or
.re file. Such modules are usually referred as mli only
modules. They are not officially supported by the OCaml compiler,
however they are commonly used. Such modules must only define
types. Since it is not reasonably possible for dune to check
that this is the case, dune requires the user to explicitly list
such modules to avoid surprises. Note that the
modules_without_implementation field is not merged in modules, which
represents the total set of modules in a library. If a directory has more
than one stanza and thus a modules field must be specified, <modules>
still need to be added in modules.

	(private_modules <modules>) specifies a list of modules that will be
marked as private. Private modules are inaccessible from outside the libraries
they are defined in. Note that the private_modules field is not merged in
modules, which represents the total set of modules in a library. If a
directory has more than one stanza and thus a modules field must be
specified, <modules> still need to be added in modules.

	(allow_overlapping_dependencies) allows external dependencies to
overlap with libraries that are present in the workspace

	(enabled_if <blang expression>) conditionally disables
a library. A disabled library cannot be built and will not be
installed. The condition is specified using the Boolean language, and the
field allows for the %{os_type} variable, which is expanded to
the type of OS being targeted by the current build. Its value is
the same as the value of the os_type parameter in the output of
ocamlc -config

	(inline_tests) enables inline tests for this library. They can be
configured through options using (inline_tests <options>). See
Inline tests for a reference of corresponding options.

	(root_module <module>) this field instructs dune to generate a module that
will contain module aliases for every library specified in dependencies. This
is useful whenever a library is shadowed by a local module. The library may
then still be accessible via this root module

Note that when binding C libraries, dune doesn’t provide special support for
tools such as pkg-config, however it integrates easily with
Configurator by
using (c_flags (:include ...)) and (c_library_flags (:include ...)).

foreign_library

The foreign_library stanza describes archives of separately compiled
foreign object files that can be packaged with an OCaml library or linked
into an OCaml executable. See Foreign sources and archives for
further details and examples.

js_of_ocaml

In library and executables stanzas, you can specify js_of_ocaml
options using (js_of_ocaml (<js_of_ocaml-options>)).

<js_of_ocaml-options> are all optional:

	(flags <flags>) to specify flags passed to js_of_ocaml. This field
supports (:include ...) forms

	(javascript_files (<files-list>)) to specify js_of_ocaml JavaScript
runtime files.

<flags> is specified in the Ordered set language.

The default value for (flags ...) depends on the selected build profile. The
build profile dev (the default) will enable sourcemap and the pretty
JavaScript output.

See JavaScript compilation for more information.

deprecated_library_name

The deprecated_library_name stanza enables redirecting an old
deprecated name after a library has been renamed. It’s syntax is as
follows:

(deprecated_library_name
 (old_public_name <name>)
 (new_public_name <name>))

When a developer uses the old public name in a list of library
dependencies, it will be transparently replaced by the new name. Note
that it is not necessary for the new name to exist at definition time
as it is only resolved at the point where the old name is used.

The old_public_name can also be one of the names declared in the
deprecated_package_names field of the package declaration in
dune-project file. In this case, the “old” library is understood to be a
library whose name is not prefixed by the package name. Such a library cannot be
defined in Dune, but other build systems allow it and this feature is meant to
help migration from those systems.

executable

The executable stanza must be used to describe an executable. The
format of executable stanzas is as follows:

(executable
 (name <name>)
 <optional-fields>)

<name> is a module name that contains the main entry point of the
executable. There can be additional modules in the current directory,
you only need to specify the entry point. Given an executable
stanza with (name <name>), dune will know how to build
<name>.exe. If requested, it will also know how to build
<name>.bc and <name>.bc.js (dune 2.0 and up also need specific
configuration, see the modes optional field below). <name>.exe
is a native code executable, <name>.bc is a bytecode executable
which requires ocamlrun to run and <name>.bc.js is a JavaScript
generated using js_of_ocaml.

Note that in case native compilation is not available, <name>.exe
will in fact be a custom byte-code executable. Custom in the sense of
ocamlc -custom, meaning that it is a native executable that embeds
the ocamlrun virtual machine as well as the byte code. As such you
can always rely on <name>.exe being available. Moreover, it is
usually preferable to use <name>.exe in custom rules or when
calling the executable by hand. This is because running a byte-code
executable often requires loading shared libraries that are locally
built, and so requires additional setup such as setting specific
environment variables and dune doesn’t do at the moment.

Native compilation is considered not available when there is no ocamlopt
binary at the same place as where ocamlc was found.

Executables can also be linked as object or shared object files. See
linking modes for more information.

<optional-fields> are:

	(public_name <public-name>) specifies that the executable should be
installed under that name. It is the same as adding the following stanza to
your dune file:

(install
 (section bin)
 (files (<name>.exe as <public-name>)))

	(package <package>) if there is a (public_name ...) field, this
specifies the package the executables are part of

	(libraries <library-dependencies>) specifies the library dependencies.
See the section about Library dependencies for more details

	(link_flags <flags>) specifies additional flags to pass to the linker.
This field supports (:include ...) forms

	(link_deps (<deps-conf list>)) specifies the dependencies used only by the
linker, for example when using a version script. See the Dependency specification
section for more details.

	(modules <modules>) specifies which modules in the current directory
dune should consider when building this executable. Modules not listed
here will be ignored and cannot be used inside the executable described by
the current stanza. It is interpreted in the same way as the (modules
...) field of library

	(root_module <module>) specifies a root_module that collects all
dependencies specified in libraries. See the documentation for
root_module in the library stanza.

	(modes (<modes>)) sets the linking modes. The default is
(exe). Before 2.0, it used to be (byte exe).

	(preprocess <preprocess-spec>) is the same as the (preprocess ...)
field of library

	(preprocessor_deps (<deps-conf list>)) is the same as the
(preprocessor_deps ...) field of library

	js_of_ocaml. See the section about js_of_ocaml

	flags, ocamlc_flags and ocamlopt_flags. See the section about
specifying OCaml flags

	(modules_without_implementation <modules>) is the same as the
corresponding field of library

	(allow_overlapping_dependencies) is the same as the
corresponding field of library

	(optional) is the same as the corresponding field of library

	(enabled_if <blang expression>) is the same as the corresponding field of library

	(promote <options>) allows promoting the linked executables to
the source tree. The options are the same as for the rule
promote mode. Adding (promote (until-clean)) to an
executable stanza will cause Dune to copy the .exe files to
the source tree and dune clean to delete them

	(foreign_stubs <foreign-stubs-spec>) specifies foreign source
files, e.g. C or C++ stubs, to be linked into the executable. See the
section Foreign sources and archives for more details.

	(foreign_archives <foreign-archives-list>) specifies archives of
foreign object files to be linked into the executable. See the section
Foreign archives for more details.

	(forbidden_libraries <libraries>) ensures that the given
libraries are not linked in the resulting executable. If they end up
being pulled in, either through a direct or transitive dependency,
Dune fails with an error message explaining how the library was
pulled in. This field is available since the 2.0 version of the dune
language.

	(embed_in_plugin_libraries <library-list>) specifies a list of libraries
to link statically when using plugin linking mode. By default, no
libraries are linked in. Note that you may need to also use the -linkall
flag if some of the libraries listed here are not referenced from any of the
plugin modules.

Linking modes

The modes field allows selecting what linking modes should be used
to link executables. Each mode is a pair (<compilation-mode>
<binary-kind>) where <compilation-mode> describes whether the
byte code or native code backend of the OCaml compiler should be used
and <binary-kind> describes what kind of file should be produced.

<compilation-mode> must be byte, native or best, where
best is native with a fallback to byte-code when native
compilation is not available.

<binary-kind> is one of:

	c for producing OCaml bytecode embedded in a C file

	exe for normal executables

	object for producing static object files that can be manually
linked into C applications

	shared_object for producing object files that can be dynamically
loaded into an application. This mode can be used to write a plugin
in OCaml for a non-OCaml application.

	js for producing JavaScript from bytecode executables, see
explicit_js_mode.

	plugin for producing a plugin (.cmxs if native or .cma
if bytecode).

For instance the following executables stanza will produce byte
code executables and native shared objects:

(executables
 (names a b c)
 (modes (byte exe) (native shared_object)))

Additionally, you can use the following short-hands:

	c for (byte c)

	exe for (best exe)

	object for (best object)

	shared_object for (best shared_object)

	byte for (byte exe)

	native for (native exe)

	js for (byte js)

	plugin for (best plugin)

For instance the following modes fields are all equivalent:

(modes (exe object shared_object))
(modes ((best exe)
 (best object)
 (best shared_object)))

And finally, you can use the special mode byte_complete for
building a bytecode executable as a native self-contained
executable. I.e. an executable that does not require the ocamlrun
program to run and does not requires the C stubs to be installed as
shared object files.

The extensions for the various linking modes are chosen as follows:

	linking mode

	extensions

	byte

	.bc

	native/best

	.exe

	byte_complete

	.bc.exe

	(byte object)

	.bc%{ext_obj}

	(native/best object)

	.exe%{ext_obj}

	(byte shared_object)

	.bc%{ext_dll}

	(native/best shared_object)

	%{ext_dll}

	c

	.bc.c

	js

	.bc.js

	(best plugin)

	%{ext_plugin}

	(byte plugin)

	.cma

	(native plugin)

	.cmxs

Where %{ext_obj} and %{ext_dll} are the extensions for object
and shared object files. Their value depends on the OS, for instance
on Unix %{ext_obj} is usually .o and %{ext_dll} is usually
.so while on Windows %{ext_obj} is .obj and %{ext_dll}
is .dll.

Up to version 3.0 of the dune language, when byte is specified but
none of native, exe or byte_complete are specified Dune
implicitly adds a linking mode that is the same as byte_complete
but using the extension .exe. .bc files require additional
files at runtime that are not currently tracked by Dune, so you should
not run .bc files during the build. Run the .bc.exe or
.exe ones instead as these are self-contained.

Lastly, note that .bc executables cannot contain C stubs. If your
executable contains C stubs you may want to use (modes exe).

executables

The executables stanza is the same as the executable stanza, except that
it is used to describe several executables sharing the same configuration.

It shares the same fields as the executable stanza, except that instead of
(name ...) and (public_name ...) you must use:

	(names <names>) where <names> is a list of entry point names. As for
executable you only need to specify the modules containing the entry point
of each executable

	(public_names <names>) describes under what name each executable should
be installed. The list of names must be of the same length as the list in the
(names ...) field. Moreover you can use - for executables that
shouldn’t be installed

rule

The rule stanza is used to create custom user rules. It tells dune how
to generate a specific set of files from a specific set of dependencies.

The syntax is as follows:

(rule
 (target[s] <filenames>)
 (action <action>)
 <optional-fields>)

<filenames> is a list of file names (if defined with targets)
or exactly one file name (if defined with target). Note that
currently dune only supports user rules with targets in the current
directory.

<action> is the action to run to produce the targets from the dependencies.
See the User actions section for more details.

<optional-fields> are:

	(deps <deps-conf list>) to specify the dependencies of the
rule. See the Dependency specification section for more details.

	(mode <mode>) to specify how to handle the targets, see modes
for details

	(fallback) is deprecated and is the same as (mode fallback)

	(locks (<lock-names>)) specify that the action must be run while
holding the following locks. See the Locks section for more details.

	(alias <alias-name>) specify the alias this rule belongs to. Building this
alias means building the targets of this rule.

	(package <package>) specify the package this rule belongs to. This rule
will be unavailable when installing other packages in release mode.

	(enabled_if <blang expression>) specifies the boolean condition that must
be true for the rule to be considered. The condition is specified using the Boolean language, and
the field allows for Variables to appear in the expressions.

Note that contrary to makefiles or other build systems, user rules currently
don’t support patterns, such as a rule to produce %.y from %.x for any
given %. This might be supported in the future.

modes

By default, the target of a rule must not exist in the source tree and
dune will error out when this is the case.

However, it is possible to change this behavior using the mode
field. The following modes are available:

	standard, this is the standard mode

	fallback, in this mode, when the targets are already present in
the source tree, dune will ignore the rule. It is an error if
only a subset of the targets are present in the tree. The common use
of fallback rules is to generate default configuration files that
may be generated by a configure script.

	promote or (promote <options>), in this mode, the files
in the source tree will be ignored. Once the rule has been executed,
the targets will be copied back to the source tree
The following options are available:

	(until-clean) means that dune clean will remove the promoted files
from the source tree.

	(into <dir>) means that the files are promoted in <dir> instead of
the current directory. This feature is available since Dune 1.8.

	(only <predicate>) means that only a subset of the targets should be
promoted. The argument is similar to the argument of (dirs …), specified using the Predicate language. This feature is
available since dune 1.10.

	promote-until-clean is the same as (promote (until-clean))

	(promote-into <dir>) is the same as (promote (into <dir>))

	(promote-until-clean-into <dir>) is the same as (promote
(until-clean) (into <dir>))

The (promote <options>) form is only available since Dune
1.10. Before Dune 1.10, you need to use one of the promote-...
forms. The promote-... forms should disappear in Dune 2.0, so
using the more generic (promote <options>) form should be preferred
in new projects.

There are two use cases for promote rules. The first one is when the
generated code is easier to review than the generator, so it’s easier
to commit the generated code and review it. The second is to cut down
dependencies during releases: by passing --ignore-promoted-rules
to dune, rules with (mode promote) will be ignored and the source
files will be used instead. The -p/--for-release-of-packages flag
implies --ignore-promote-rules. However, rules that promotes only
a subset of their targets via (only ...) are never ignored.

inferred rules

When using the action DSL (see User actions), it is most of the
time obvious what are the dependencies and targets.

For instance:

(rule
 (target b)
 (deps a)
 (action (copy %{deps} %{target})))

In this example it is obvious by inspecting the action what the
dependencies and targets are. When this is the case you can use the
following shorter syntax, where dune infers dependencies and
targets for you:

(rule <action>)

For instance:

(rule (copy a b))

Note that in dune, targets must always be known
statically. For instance, this (rule ...)
stanza is rejected by dune:

(rule (copy a b.%{read:file}))

ocamllex

(ocamllex <names>) is essentially a shorthand for:

(rule
 (target <name>.ml)
 (deps <name>.mll)
 (action (chdir %{workspace_root}
 (run %{bin:ocamllex} -q -o %{target} %{deps}))))

To use a different rule mode, use the long form:

(ocamllex
 (modules <names>)
 (mode <mode>))

ocamlyacc

(ocamlyacc <names>) is essentially a shorthand for:

(rule
 (targets <name>.ml <name>.mli)
 (deps <name>.mly)
 (action (chdir %{workspace_root}
 (run %{bin:ocamlyacc} %{deps}))))

To use a different rule mode, use the long form:

(ocamlyacc
 (modules <names>)
 (mode <mode>))

menhir

A menhir stanza is available to support the menhir parser generator.

To use menhir in a dune project, the language version should be selected in the
dune-project file. For example:

(using menhir 2.0)

This will enable support for menhir stanzas in the current project. If the
language version is absent, dune will automatically add this line with the
latest menhir version to the project file once a menhir stanza is used anywhere.

The basic form for defining menhir-git [https://gitlab.inria.fr/fpottier/menhir] parsers (analogous to ocamlyacc) is:

(menhir
 (modules <parser1> <parser2> ...)
 <optional-fields>)

<optional-fields> are:

	(merge_into <base_name>) is used to define modular parsers. This
correspond to the --base command line option of menhir. With this
option, a single parser named base_name is generated.

	(flags <option1> <option2> ...) can be used to pass extra flags can be
passed to menhir.

	(infer <bool>) can be used to enable using menhir with type
inference. This option is enabled by default with Menhir language 2.0.

Menhir supports writing the grammar and automaton to .cmly file. Therefore,
if this is flag is passed to menhir, dune will know to introduce a .cmly
target for the module.

cinaps

A cinaps stanza is available to support the cinaps tool. See
the cinaps website [https://github.com/janestreet/cinaps] for more
details.

documentation

Additional manual pages may be attached to packages using the documentation
stanza. These .mld files must contain text in the same syntax as ocamldoc
comments.

(documentation (<optional-fields>))

Where <optional-fields> are:

	(package <name>) the package this documentation should be attached to. If
this absent, dune will try to infer it based on the location of the
stanza.

	(mld_files <arg>) where <arg> field follows the
Ordered set language. This is a set of extension-less, mld file base
names that are attached to the package. Where :standard refers to all the
.mld files in the stanza’s directory.

The index.mld file (specified as index in mld_files) is treated
specially by dune. This will be the file used to generate the entry page for the
package. This is the page that will be linked from the main package listing. If
you omit writing an index.mld, dune will generate one with the entry modules
for your package. But this generated will not be installed.

All mld files attached to a package will be included in the generated
.install file for that package, and hence will be installed by opam.

alias

The alias stanza lets you add dependencies to an alias, or specify an action
to run to construct the alias.

The syntax is as follows:

(alias
 (name <alias-name>)
 (deps <deps-conf list>)
 <optional-fields>)

<name> is an alias name such as runtest.

<deps-conf list> specifies the dependencies of the alias. See the
Dependency specification section for more details.

<optional-fields> are:

	<action>, an action to run when constructing the alias. See the
User actions section for more details. Note that this is removed in the
2.0 version of the dune language. Users should port their code to use the
rule stanza with the alias field instead.

	(package <name>) indicates that this alias stanza is part of package
<name> and should be filtered out if <name> is filtered out from the
command line, either with --only-packages <pkgs> or -p <pkgs>

	(locks (<lock-names>)) specify that the action must be run while
holding the following locks. See the Locks section for more details.

	(enabled_if <blang expression>) specifies the boolean condition that must
be true for the tests to run. The condition is specified using the Boolean language, and
the field allows for Variables to appear in the expressions.

The typical use of the alias stanza is to define tests:

(rule
 (alias runtest)
 (action (run %{exe:my-test-program.exe} blah)))

See the section about Running tests for details.

Note that if your project contains several packages and you run the tests
from the opam file using a build-test field, then all your runtest alias
stanzas should have a (package ...) field in order to partition the set of
tests.

install

Dune supports installing packages on the system, i.e. copying freshly built
artifacts from the workspace to the system. The install stanza takes three
pieces of information:

	the list of files to install

	the package to attach these files to. This field is optional if your
project contains a single package

	the section in which the files will be installed

For instance:

(install
 (files hello.txt)
 (section share)
 (package mypackage))

Indicate that the file hello.txt in the current directory is to be
installed in <prefix>/share/mypackage.

The following sections are available:

	lib installs to <prefix>/lib/<pkgname>/

	lib_root installs to <prefix>/lib/

	libexec installs to <prefix>/lib/<pkgname>/ with the
executable bit set

	libexec_root installs to <prefix>/lib/ with the executable
bit set

	bin installs to <prefix>/bin/ with the executable bit set

	sbin installs to <prefix>/sbin/ with the executable bit set

	toplevel installs to <prefix>/lib/toplevel/

	share installs to <prefix>/share/<pkgname>/

	share_root installs to <prefix>/share/

	etc installs to <prefix>/etc/<pkgname>/

	doc installs to <prefix>/doc/<pkgname>/

	stublibs installs to <prefix>/lib/stublibs/ with the
executable bit set

	man installs relative to <prefix>/man with the destination
directory extracted from the extension of the source file (so that
installing foo.1 is equivalent to a destination of
man1/foo.1)

	misc requires files to specify an absolute destination, and the
user will be prompted before the installation when it is done via
opam. Only use this for advanced cases.

	(site (<package> <site>)) install in the <site> directory of
<package>. If the prefix is not the same than the one used when installing
<package>, <package> will not find the files.

Normally, Dune uses the basename of the file to install to determine
the name of the file once installed. However, you can change that
fact by using the form (<filename> as <destination>) in the
files field. For instance, to install a file mylib.el as
<prefix>/emacs/site-lisp/mylib.el you must write the following:

(install
 (section share_root)
 (files (mylib.el as emacs/site-lisp/mylib.el)))

Handling of the .exe extension on Windows

Under Microsoft Windows, executables must be suffixed with
.exe. Dune tries to make sure that executables are always
installed with this extension on Windows.

More precisely, when installing a file via an (install ...)
stanza, if the source file has extension .exe or .bc, then
dune implicitly adds the .exe extension to the destination, if
not already present.

copy_files

The copy_files and copy_files# stanzas allow to specify that
files from another directory could be copied if needed to the current
directory.

The syntax is as follows:

(copy_files
 <optional-fields>
 (files <glob>))

<glob> represents the set of files to copy, see the glob for details.

<optional-fields> are:

	(alias <alias-name>) to specify an alias to which to attach the targets.

	(mode <mode>) to specify how to handle the targets, see modes
for details.

	(enabled_if <blang expression>) conditionally disables this stanza. The
condition is specified using the Boolean language.

The short form

(copy_files <glob>)

is equivalent to

(copy_files (files <glob>))

The difference between copy_files and copy_files# is the same
as the difference between the copy and copy# action. See the
User actions section for more details.

include

The include stanza allows including the contents of another file in the
current dune file. Currently, the included file cannot be generated and must be
present in the source tree. This feature is intended to be used in conjunction
with promotion, when parts of a dune file are to be generated.

For instance:

(include dune.inc)

(rule (with-stdout-to dune.inc.gen (run ./gen-dune.exe)))

(rule
 (alias runtest)
 (action (diff dune.inc dune.inc.gen)))

With this dune file, running dune as follows will replace the
dune.inc file in the source tree by the generated one:

$ dune build @runtest --auto-promote

tests

The tests stanza allows one to easily define multiple tests. For example we
can define two tests at once with:

(tests
 (names mytest expect_test)
 <optional fields>)

This will define an executable named mytest.exe that will be executed as
part of the runtest alias. If the directory also contains an
expect_test.expected file, then expect_test will be used to define an
expect test. That is, the test will be executed and its output will be compared
to expect_test.expected.

The optional fields that are supported are a subset of the alias and executables
fields. In particular, all fields except for public_names are supported from
the executables stanza. Alias fields apart from
name are allowed.

By default the test binaries are run without options. The action field can
be used to override the test binary invocation, for example if you’re using
alcotest and wish to see all the test failures on the standard output when
running dune runtest you can use the following stanza:

(tests
 (names mytest)
 (libraries alcotest mylib)
 (action (run %{test} -e)))

test

The test stanza is the singular form of tests. The only difference is
that it’s of the form:

(test
 (name foo)
 <optional fields>)

where the name field is singular. The same optional fields are supported.

env

The env stanza allows one to modify the environment. The syntax is as
follow:

(env
 (<profile1> <settings1>)
 (<profile2> <settings2>)
 ...
 (<profilen> <settingsn>))

The first form (<profile> <settings>) that correspond to the
selected build profile will be used to modify the environment in this
directory. You can use _ to match any build profile.

Fields supported in <settings> are:

	any OCaml flags field, see OCaml flags for more details.

	(c_flags <flags>) and (cxx_flags <flags>)
to specify compilation flags for C and C++ stubs, respectively.
See library for more details.

	(env-vars (<var1> <val1>) .. (<varN> <valN>)). This will add the
corresponding variables to the environment in which the build commands are
executed, and under which dune exec runs.

	(menhir_flags <flags>)) to specify flags for menhir stanzas.

	(binaries <binaries>) where <binaries> is a list of entries
of the form (<filepath> as <name>). (<filepath> as <name>)
makes the binary <filepath> available in the command search as
just <name>. For instance in a (run <name> ...) action
<name> will resolve to this file path. You can also write just
the file path, in which case the name will be inferred from the
basename of <filepath> by dropping the .exe suffix if it
exists. For instance (binaries bin/foo.exe (bin/main.exe as
bar)) would add the commands foo and bar to the search
path.

	(inline_tests <state>) where state is either enabled, disabled or
ignored. This field is available since Dune 1.11. It controls the value
of the variable %{inline_tests} that is read by the inline test framework.
The default value is disabled for the release profile and enabled
otherwise.

	(odoc <fields>). This allows to pass options to Odoc, see
Passing options to Odoc for more details.

	(coq (flags <flags>)). This allows to pass options to Coq, see
coq.theory for more details.

	(formatting <settings>). This allows to set auto-formatting in the current
directory subtree, see formatting.

dirs (since 1.6)

The dirs stanza allows specifying the sub-directories dune will
include in a build. The syntax is based on dune’s Predicate language and allows
the user the following operations:

	The special value :standard which refers to the default set of used
directories. These are the directories that don’t start with . or _.

	Set operations. Differences are expressed with backslash: * \ bar, unions
are done by listing multiple items.

	Sets can be defined using globs.

Examples:

(dirs *) ;; include all directories
(dirs :standard \ ocaml) ;; include all directories except ocaml
(dirs :standard \ test* foo*) ;; exclude all directories that start with test or foo

A directory that is not included by this stanza will not be eagerly scanned by
Dune. Any dune or other special files in it won’t be interpreted either and
will be treated as raw data. It is however possible to depend on files inside
ignored sub-directories.

data_only_dirs (since 1.6)

Dune allows the user to treat directories as data only. Dune files in these
directories will not be evaluated for their rules, but the contents of these
directories will still be usable as dependencies for other rules.

The syntax is the same as for the dirs stanza except that :standard
is by default empty.

Example:

;; dune files in fixtures_* dirs are ignored
(data_only_dirs fixtures_*)

ignored_subdirs (deprecated in 1.6)

One may also specify data only directories using the ignored_subdirs
stanza. The meaning is the same as data_only_dirs but the syntax isn’t as
flexible and only accepts a list of directory names. It is advised to switch to
the new data_only_dirs stanza.

Example:

(ignored_subdirs (<sub-dir1> <sub-dir2> ...))

All of the specified <sub-dirn> will be ignored by dune. Note that users
should rely on the dirs stanza along with the appropriate set operations
instead of this stanza. For example:

(dirs :standard \ <sub-dir1> <sub-dir2> ...)

vendored_dirs (since 1.11)

Dune supports vendoring of other dune-based projects natively since simply
copying a project into a subdirectory of your own project will work. Simply
doing that has a few limitations though. You can workaround those by explicitly
marking such directories as containing vendored code.

Example:

(vendored_dirs vendor)

Dune will not resolve aliases in vendored directories meaning by default it will
not build all installable targets, run the test, format or lint the code located
in such a directory while still building the parts your project depend upon.
Libraries and executable in vendored directories will also be built with a -w
-a flag to suppress all warnings and prevent pollution of your build output.

include_subdirs

The include_subdirs stanza is used to control how dune considers
sub-directories of the current directory. The syntax is as follows:

(include_subdirs <mode>)

Where <mode> maybe be one of:

	no, the default

	unqualified

When the include_subdirs stanza is not present or <mode> is
no, dune considers sub-directories as independent. When <mode>
is unqualified, dune will assume that the sub-directories of the
current directory are part of the same group of directories. In
particular, dune will scan all these directories at once when looking
for OCaml/Reason files. This allows you to split a library between
several directories. unqualified means that modules in
sub-directories are seen as if they were all in the same directory. In
particular, you cannot have two modules with the same name in two
different directories. It is planned to add a qualified mode in
the future.

Note that sub-directories are included recursively, however the
recursion will stop when encountering a sub-directory that contains
another include_subdirs stanza. Additionally, it is not allowed
for a sub-directory of a directory with (include_subdirs <x>)
where <x> is not no to contain one of the following stanzas:

	library

	executable(s)

	test(s)

toplevel

The toplevel stanza allows one to define custom toplevels. Custom toplevels
automatically load a set of specified libraries and are runnable like normal
executables. Example:

(toplevel
 (name tt)
 (libraries str))

This will create a toplevel with the str library loaded. We may build and
run this toplevel with:

$ dune exec ./tt.exe

(preprocess (pps ...)) is the same as the (preprocess (pps ...)) field
of library. Currently, action and future_syntax are not supported
in the toplevel.

subdir

The subdir stanza can be used to evaluate stanzas in sub directories. This is
useful for generated files or to override stanzas in vendored directories
without editing vendored dune files.

In this example, a bar target is created in the foo directory, and a bar
target will be created in a/b/bar:

(subdir foo (rule (with-stdout-to bar (echo baz))))
(subdir a/b (rule (with-stdout-to bar (echo baz))))

external_variant

This stanza was experimental and removed in dune 2.6. see Variants

coq.theory

Dune is also able to build Coq developments. A Coq project is a mix of
Coq .v files and (optionally) OCaml libraries linking to the Coq
API (in which case we say the project is a Coq plugin). To enable
Coq support in a dune project, the language version should be selected
in the dune-project file. For example:

(using coq 0.2)

This will enable support for the coq.theory stanza in the current project. If the
language version is absent, dune will automatically add this line with the
latest Coq version to the project file once a (coq.theory ...) stanza is used anywhere.

The supported Coq language versions are:
- 0.1: basic Coq theory support,
- 0.2: support for the theories field, and composition of theories in the same scope,
- 0.3: support for (mode native).

Guarantees with respect to stability are not provided yet,
however, as implementation of features progresses, we hope to reach
1.0 soon. The 1.0 version will commit to a stable set of
functionality; all the features below are expected to reach 1.0
unchanged or minimally modified.

The basic form for defining Coq libraries is very similar to the OCaml form:

(coq.theory
 (name <module_prefix>)
 (package <package>)
 (synopsis <text>)
 (modules <ordered_set_lang>)
 (libraries <ocaml_libraries>)
 (flags <coq_flags>)
 (mode <coq_native_mode>)
 (theories <coq_theories>))

The stanza will build all .v files on the given directory. The semantics of fields is:

	<module_prefix> is a dot-separated list of valid Coq module
names and determines the module scope under which the theory is
compiled [-R option]. For example, if <module_prefix> is
foo.Bar, the theory modules will be named as
foo.Bar.module1, foo.Bar.module2, etc… Note that modules
in the same theory don’t see the foo.Bar prefix, in the same
way that OCaml wrapped libraries do. For compatibility reasons,
the 1.0 version of the Coq language installs a theory named
foo.Bar under foo/Bar. Also note that Coq supports composing
a module path from different theories, thus you can name a theory
foo.Bar and a second one foo.Baz and things will work
properly,

	the modules field enables constraining the set of modules
included in the theory, similarly to its OCaml counterpart. Modules
are specified in Coq notation, that is to say A/b.v is written
A.b in this field,

	if package is present, Dune will generate install rules for the
.vo files on the theory. pkg_name must be a valid package
name. Note that the 1.0 version of the language uses the Coq legacy
install setup, where all packages share a common root namespace and
install directory, lib/coq/user-contrib/<module_prefix>, as
customary in the make-based Coq package ecosystem. For
compatibility, we also install under the user-contrib prefix the
.cmxs files appearing in <ocaml_libraries>,

	<coq_flags> will be passed to coqc as command-line
options. :standard is taken from the value set in the (coq (flags <flags>))
field in env profile. See env for more information.

	the path to installed locations of <ocaml_libraries> will be passed to
coqdep and coqc using Coq’s -I flag; this allows for a Coq
theory to depend on a ML plugin,

	your Coq theory can depend on other theories by specifying them in
the <coq_theories> field. Dune will then pass to Coq the
corresponding flags for everything to compile correctly [-Q
]. As of today, we only support composition with libraries defined
in the same scope (that is to say, under the same dune-project
domain). We will lift this restriction in the future. Note that
composition with the Coq’s standard library is supported, but in
this case the Coq prefix will be made available in a qualified
way. Since Coq’s lang version 0.2.

	you can enable the production of Coq’s native compiler object files
by setting <coq_native_mode> to native, this will pass
-native-compiler on to Coq and install the corresponding object
files under .coq-native when in release profile. The regular
dev profile will skip native compilation to make the build
faster. Since Coq’s lang version 0.3. Note that the support for
native compute is experimental, and requires Coq >= 8.12.1;
moreover, depending libraries must be built with (mode native)
too for this to work; also Coq must be configured to support native
compilation. Note that Dune will explicitly disable output of native
compilation objects when (mode vo) even if the default Coq’s
configure flag enabled it. This will be improved in the future.

Recursive qualification of modules

If you add:

(include_subdirs qualified)

to a dune file, Dune will consider all the modules in the
directory and its sub-directories, adding a prefix to the module name in the usual
Coq style for sub-directories. For example, file A/b/C.v will be module
A.b.C.

Limitations

	.v files always depend on the native version of Coq / plugins,

	a foo.mlpack file must the present in directories of locally
defined plugins for things to work, this is a limitation of
coqdep, see the template at
<https://github.com/ejgallego/coq-plugin-template>

coq.pp

Coq plugin writers usually need to write .mlg files to extend Coq
grammar. Such files are pre-processed with coqpp; to help plugin
writers avoid boilerplate we provide a (coqpp …) stanza:

(coq.pp (modules <mlg_list>))

which for each g_mod in <mlg_list> is equivalent to:

(rule
 (targets g_mod.ml)
 (deps (:mlg-file g_mod.mlg))
 (action (run coqpp %{mlg-file})))

coq.extraction

Coq may be instructed to extract OCaml sources as part of the compilation
process. This is done using the coq.extraction stanza:

(coq.extraction
 (prelude <name>)
 (extracted_modules <names>)
 <optional-fields>)

	(prelude <name>) refers to the Coq source that contains the extraction
commands.

	(extracted_modules <names>) is an exhaustive list of OCaml modules
extracted.

	<optional-fields> are flags, theories, and libraries. All of
these fields have the same meaning as in the coq.theory stanza.

The extracted sources can then be used in executable or library stanzas
as any other sources.

Note that the sources are extracted to the directory where the
prelude file is; thus the common placement for the OCaml
stanzas is in the same dune file. warning using Coq’s Cd
command to workaround problems with the output directory is not
allowed when using extraction from Dune; moreover the Cd command
will be deprecated in Coq 8.12.

mdx (since 2.4)

MDX is a tool that helps you keep your markdown documentation up to date by
checking that the code examples it contains are correct. When setting an MDX
stanza, the checks carried out by MDX are automatically attached to the
runtest alias of the stanza’s directory.

See MDX’s repository [https://github.com/realworldocaml/mdx] for more details.

You can define an MDX stanza to specify which files you want checked.

Note that this feature is still experimental and needs to be enabled in your
dune-project with the following using stanza:

(using mdx 0.1)

The syntax is as follows:

(mdx <optional-fields>)

Where <optional-fields> are:

	(files <globs>) are the files that you want MDX to check, described as a
list of globs (see the Glob language specification).
It defaults to *.md.

	(packages <packages>) are the local dune packages that your documentation
code blocks depend on. I.e. if your documentation examples depend on a public
executable or library defined from a local package, it has to be specified in
the stanza.

	(preludes <files>) are the prelude files you want to pass to MDX.
See MDX’s documentation [https://github.com/realworldocaml/mdx] for more
details on preludes.

plugin (since 2.8)

Plugins are a way to load ocaml libraries at runtime. The plugin stanza
allows to declare the name of the plugin, in which How to load additional files at runtime it should be
present, and which libraries it will load.

(plugin
 (name <name>)
 (libraries <libaries>)
 (site (<package> <site name>))
 (<optional-fields>))

<optional-fields> are:

	(package <package>) if there is more than one package defined in the
current scope, this specifies during the installation of which package the
plugin will be installed. A plugin can be installed by one package in the site
of another package.

	(optional) will not declare the plugin if the libraries are not available

The loading of the plugin is done using the facilities generated by
generate_sites_module (since 2.8)

generate_sites_module (since 2.8)

Dune proposes some facilities for dealing with How to load additional files at runtime in a program. The
generate_sites_module stanza will generate code for looking up the correct locations
of the sites directories and for loading plugins. It works after installation
with or without the relocation mode, inside dune rules, when using dune exec.
For promotion it works only if the generated modules are only in the executable (or
library statically linked) promoted; generated modules in plugins will not work.

(generate_sites_module
 (module <name>)
 <facilities>)

The code of the module is generated in the directory with the given name. The
code is populated according to the requested facilities.

The available <facilities> are:

	sourceroot : adds in the generated module a value val sourceroot: string option
which contains the value of %{workspace_root} if the code have been built
locally. It could be used to keep configuration file of the tool locally when
executed with dune exec or after promotion. The value is None once it has been installed.

	relocatable : adds in the generated module a value val relocatable: bool
which indicates if the binary has been installed in the relocatable mode

	(sites <package>) : adds in the sub-module Sites of the generated module a value
val <site>: string list for each <site> of <package>. The
identifier <site> is uncapitalized.

	(plugins (<package> <site>) ...): adds in the sub-module Plugins of the
generated module a sub-module <site> with the following signature S. The
identifier <site> is capitalized.

module type S = sig
 val paths: string list
 (** return the locations of the directory containing the plugins *)

 val list: unit -> string list
 (** return the list of available plugins *)

 val load_all: unit -> unit
 (** load all the plugins and their dependencies *)

 val load: string -> unit
 (** load the specified plugin and its dependencies *)
end

The generated module as a dependency on the library dune-site,
and if the facilities (plugins ...) is used, it as a dependency on the library
dune-site.plugins. Those dependencies are not automatically added
to the library or executable which use the module (cf. Plugins and dynamic loading of packages).

dune-workspace

By default, a workspace has only one build context named default which
correspond to the environment in which dune is run. You can define more
contexts by writing a dune-workspace file.

You can point dune to an explicit dune-workspace file with the
--workspace option. For instance it is good practice to write a
dune-workspace.dev in your project with all the version of OCaml your
projects support. This way developers can tests that the code builds with all
version of OCaml by simply running:

$ dune build --workspace dune-workspace.dev @all @runtest

The dune-workspace file uses the S-expression syntax. This is what
a typical dune-workspace file looks like:

(lang dune 2.8)
(context (opam (switch 4.07.1)))
(context (opam (switch 4.08.1)))
(context (opam (switch 4.11.1)))

The rest of this section describe the stanzas available.

Note that an empty dune-workspace file is interpreted the same as one
containing exactly:

(lang dune 2.8)
(context default)

This allows you to use an empty dune-workspace file to mark the root of your
project.

profile

The build profile can be selected in the dune-workspace file by write a
(profile ...) stanza. For instance:

(profile release)

Note that the command line option --profile has precedence over this stanza.

env

The env stanza can be used to set the base environment for all contexts in
this workspace. This environment has the lowest precedence of all other env
stanzas. The syntax for this stanza is the same dune’s env stanza.

context

The (context ...) stanza declares a build context. The argument
can be either default or (default) for the default build
context or can be the description of an opam switch, as follows:

(context (opam (switch <opam-switch-name>)
 <optional-fields>))

<optional-fields> are:

	(name <name>) is the name of the subdirectory of _build
where the artifacts for this build context will be stored.

	(root <opam-root>) is the opam root. By default it will take
the opam root defined by the environment in which dune is
run which is usually ~/.opam.

	(merlin) instructs dune to use this build context for
merlin.

	(profile <profile>) to set a different profile for a build
context. This has precedence over the command line option
--profile.

	(env <env>) to set the environment for a particular context. This is of
higher precedence than the root env stanza in the workspace file. This
field the same options as the env stanza.

	(toolchain <findlib_toolchain>) set findlib toolchain for the context.

	(host <host_context>) choose a different context to build binaries that
are meant to be executed on the host machine, such as preprocessors.

	(paths (<var1> <val1>) .. (<varN> <valN>)) allows setting the value of any
PATH-like variables in this context. If PATH itself is modified in
this way, its value will be used to resolve binaries in the workspace,
including finding the compiler and related tools. These variables will also be
passed as part of the environment to any program launched by dune. For
each variable, the value is specified using the Ordered set language.
Relative paths are interpreted with respect to the workspace root, see
Finding the root.

	(fdo <target_exe>) build this context with feedback-direct
optimizations. Requires OCamlFDO [https://github.com/gretay-js/ocamlfdo]. <target_exe> is a
path interpreted relative to the workspace root, see
Finding the root. <target_exe> specifies which executable to
optimize. Users should define a different context for each target
executable built with FDO. The name of the context is derived
automatically from the default name and <target-exe>, unless
explicitly specified using (name ...) field. For example, if
<target_exe> is src/foo.exe in a default context, then the
name of the context is default-fdo-foo and the name of the file
that contains execution counters is src/fdo.exe.fdo-profile. This
feature is experimental and no backwards compatibility is
implied.

	By default Dune builds and installs dynamically linked foreign
archives (usually named dll*.so). It is possible to disable
this by setting
(disable_dynamically_linked_foreign_archives true) in the
workspace file, in which case bytecode executables will be built
with all foreign archives statically linked into the runtime system.

Both (default ...) and (opam ...) accept a targets field in order to
setup cross compilation. See Cross compilation for more
information.

Merlin reads compilation artifacts and it can only read the compilation
artifacts of a single context. Usually, you should use the artifacts from the
default context, and if you have the (context default) stanza in your
dune-workspace file, that is the one dune will use.

For rare cases where this is not what you want, you can force dune to use a
different build contexts for merlin by adding the field (merlin) to this
context.

General concepts

Scopes

Any directory containing at least one <package>.opam file defines
a scope. This scope is the sub-tree starting from this directory,
excluding any other scopes rooted in sub-directories.

Typically, any given project will define a single scope. Libraries and
executables that are not meant to be installed will be visible inside
this scope only.

Because scopes are exclusive, if you wish to include the dependencies
of the project you are currently working on into your workspace, you
may copy them in a vendor directory, or any other name of your
choice. Dune will look for them there rather than in the installed
world and there will be no overlap between the various scopes.

Ordered set language

A few fields take as argument an ordered set and can be specified using a small
DSL.

This DSL is interpreted by dune into an ordered set of strings using the
following rules:

	:standard denotes the standard value of the field when it is absent

	an atom not starting with a : is a singleton containing only this atom

	a list of sets is the concatenation of its inner sets

	(<sets1> \ <sets2>) is the set composed of elements of <sets1> that do
not appear in <sets2>

In addition, some fields support the inclusion of an external file using the
syntax (:include <filename>). This is useful for instance when you need to
run a script to figure out some compilation flags. <filename> is expected to
contain a single S-expression and cannot contain (:include ...) forms.

Note that inside an ordered set, the first element of a list cannot be
an atom except if it starts with - or :. The reason for this is
that we are planning to add simple programmatic features in the
futures so that one may write:

(flags (if (>= %{ocaml_version} 4.06) ...))

This restriction will allow to add this feature without introducing a
breaking changes. If you want to write a list where the first element
doesn’t start by -, you can simply quote it: ("x" y z).

Most fields using the ordered set language also support Variables.
Variables are expanded after the set language is interpreted.

Boolean language

The boolean language allows the user to define simple boolean expressions that
dune can evaluate. Here’s a semi formal specification of the language:

op := '=' | '<' | '>' | '<>' | '>=' | '<='

expr := (and <expr>+)
 | (or <expr>+)
 | (<op> <template> <template>)
 | <template>

After an expression is evaluated, it must be exactly the string true or
false to be considered as a boolean. Any other value will be treated as an
error.

Here’s a simple example of a condition that expresses running on OSX and having
an flambda compiler with the help of variable expansion:

(and %{ocamlc-config:flambda} (= %{ocamlc-config:system} macosx))

Predicate language

The predicate language allows the user to define simple predicates
(boolean-valued functions) that dune can evaluate. Here is a semi formal
specification of the language:

pred := (and <pred> <pred>)
 | (or <pred> <pred>)
 | (not <pred>)
 | :standard
 | <element>

The exact meaning of :standard and the nature of <element> depends on
the context. For example, in the case of the dirs (since 1.6), an
<element> corresponds to file glob patterns. Another example is the user
action (with-accepted-exit-codes …), where an <element>
corresponds to a literal integer.

Variables

Some fields can contains variables that are expanded by dune.
The syntax of variables is as follows:

%{var}

or, for more complex forms that take an argument:

%{fun:arg}

In order to write a plain %{, you need to write \%{ in a
string.

Dune supports the following variables:

	project_root is the root of the current project. It is typically the root
of your project and as long as you have a dune-project file there,
project_root is independent of the workspace configuration

	workspace_root is the root of the current workspace. Note that
the value of workspace_root is not constant and depends on
whether your project is vendored or not

	CC is the C compiler command line (list made of the compiler
name followed by its flags) that will be used to compile foreign code. For more details about its content see this section.

	CXX is the C++ compiler command line being used in the
current build context

	ocaml_bin is the path where ocamlc lives

	ocaml is the ocaml binary

	ocamlc is the ocamlc binary

	ocamlopt is the ocamlopt binary

	ocaml_version is the version of the compiler used in the
current build context

	ocaml_where is the output of ocamlc -where

	arch_sixtyfour is true if using a compiler targeting a
64 bit architecture and false otherwise

	null is /dev/null on Unix or nul on Windows

	ext_obj, ext_asm, ext_lib, ext_dll and ext_exe
are the file extension used for various artifacts

	ext_plugin is .cmxs if natdynlink is supported and
.cma otherwise.

	ocaml-config:v for every variable v in the output of
ocamlc -config. Note that dune processes the output
of ocamlc -config in order to make it a bit more stable across
versions, so the exact set of variables accessible this way might
not be exactly the same as what you can see in the output of
ocamlc -config. In particular, variables added in new versions
of OCaml needs to be registered in dune before they can be used

	profile the profile selected via --profile

	context_name the name of the context (default or defined in the
workspace file)

	os_type is the type of the OS the build is targeting. This is
the same as ocaml-config:os_type

	architecture is the type of the architecture the build is targeting. This
is the same as ocaml-config:architecture

	model is the type of the CPU the build is targeting. This is
the same as ocaml-config:model

	system is the name of the OS the build is targeting. This is the same as
ocaml-config:system

	ignoring_promoted_rule is true if
--ignore-promoted-rules was passed on the command line and
false otherwise

	<ext>:<path> where <ext> is one of cmo, cmi, cma,
cmx, or cmxa. See Variables for artifacts.

In addition, (action ...) fields support the following special variables:

	target expands to the one target

	targets expands to the list of target

	deps expands to the list of dependencies

	^ expands to the list of dependencies, separated by spaces

	dep:<path> expands to <path> (and adds <path> as a dependency of
the action)

	exe:<path> is the same as <path>, except when cross-compiling, in
which case it will expand to <path> from the host build context

	bin:<program> expands to a path to program. If program
is installed by a package in the workspace (see install stanzas),
the locally built binary will be used, otherwise it will be searched
in the PATH of the current build context. Note that (run
%{bin:program} ...) and (run program ...) behave in the same
way. %{bin:...} is only necessary when you are using (bash
...) or (system ...)

	lib:<public-library-name>:<file> expands to the installation path of
the file <file> in the library <public-library-name>. If
<public-library-name> is available in the current workspace, the local
file will be used, otherwise the one from the installed world will be used.

	lib-private:<library-name>:<file> expands to the build path of the file
<file> in the library <library-name>. Both public and private library
names are allowed as long as they refer to libraries within the same project.

	libexec:<public-library-name>:<file> is the same as lib:... except
when cross-compiling, in which case it will expand to the file from the host
build context.

	libexec-private:<library-name>:<file> is the same as lib-private:...
except when cross-compiling, in which case it will expand to the file from the
host build context.

	lib-available:<library-name> expands to true or false depending on
whether the library is available or not. A library is available iff at least
one of the following conditions holds:

	it is part the installed worlds

	it is available locally and is not optional

	it is available locally and all its library dependencies are
available

	version:<package> expands to the version of the given
package. Note that this is only supported for packages that are
being defined in the current scope. How dune determines the version
of a package is described here

	read:<path> expands to the contents of the given file

	read-lines:<path> expands to the list of lines in the given
file

	read-strings:<path> expands to the list of lines in the given
file, unescaped using OCaml lexical convention

The %{<kind>:...} forms are what allows you to write custom rules that work
transparently whether things are installed or not.

Note that aliases are ignored by %{deps}

The intent of this last form is to reliably read a list of strings
generated by an OCaml program via:

List.iter (fun s -> print_string (String.escaped s)) l

	Expansion of lists

Forms that expands to list of items, such as %{cc}, %{deps},
%{targets} or %{read-lines:...}, are suitable to be used in, say,
(run <prog> <arguments>). For instance in:

(run foo %{deps})

if there are two dependencies a and b, the produced command
will be equivalent to the shell command:

$ foo "a" "b"

If you want the two dependencies to be passed as a single argument,
you have to quote the variable as in:

(run foo "%{deps}")

which is equivalent to the following shell command:

$ foo "a b"

(the items of the list are concatenated with space).
Note that, since %{deps} is a list of items, the first one may be
used as a program name, for instance:

(rule
 (targets result.txt)
 (deps foo.exe (glob_files *.txt))
 (action (run %{deps})))

Here is another example:

(rule
 (target foo.exe)
 (deps foo.c)
 (action (run %{cc} -o %{target} %{deps} -lfoolib)))

Library dependencies

Dependencies on libraries are specified using (libraries ...) fields in
library and executables stanzas.

For libraries defined in the current scope, you can use either the real name or
the public name. For libraries that are part of the installed world, or for
libraries that are part of the current workspace but in another scope, you need
to use the public name. For instance: (libraries base re).

When resolving libraries, libraries that are part of the workspace are always
preferred to ones that are part of the installed world.

Alternative dependencies

In addition to direct dependencies you can specify alternative dependencies.
This is described in the Alternative dependencies
section

It is sometimes the case that one wants to not depend on a specific library, but
instead on whatever is already installed. For instance to use a different
backend depending on the target.

Dune allows this by using a (select ... from ...) form inside the list
of library dependencies.

Select forms are specified as follows:

(select <target-filename> from
 (<literals> -> <filename>)
 (<literals> -> <filename>)
 ...)

<literals> are lists of literals, where each literal is one of:

	<library-name>, which will evaluate to true if <library-name> is
available, either in the workspace or in the installed world

	!<library-name>, which will evaluate to true if <library-name> is not
available in the workspace or in the installed world

When evaluating a select form, dune will create <target-filename> by
copying the file given by the first (<literals> -> <filename>) case where
all the literals evaluate to true. It is an error if none of the clauses are
selectable. You can add a fallback by adding a clause of the form (->
<file>) at the end of the list.

Re-exported dependencies

A dependency foo may be marked as always re-exported using the
following syntax:

(re_export foo)

For instance:

(library
 (name bar)
 (libraries (re_export foo)))

This states that this library explicitly re-exports the interface of
foo. Concretely, when something depends on bar it will also
be able to see foo independently of whether implicit
transitive dependencies are allowed or
not. When they are allowed, which is the default, all transitive
dependencies are visible whether they are marked as re-exported or
not.

Preprocessing specification

Dune accepts three kinds of preprocessing:

	no_preprocessing, meaning that files are given as it to the compiler, this
is the default

	(action <action>) to preprocess files using the given action

	(pps <ppx-rewriters-and-flags>) to preprocess files using the given list
of ppx rewriters

	(staged_pps <ppx-rewriters-and-flags>) is similar to (pps ...)
but behave slightly differently and is needed for certain ppx rewriters
(see below for details)

	future_syntax is a special value that brings some of the newer
OCaml syntaxes to older compilers. See Future syntax for more details

Dune normally assumes that the compilation pipeline is sequenced as
follow:

	code generation (including preprocessing)

	dependency analysis

	compilation

Dune uses this fact to optimize the pipeline and in particular share
the result of code generation and preprocessing between the dependency
analysis and compilation phases. However, some specific code
generators or preprocessors require feedback from the compilation
phase. As a result they must be applied in stages as follows:

	first stage of code generation

	dependency analysis

	second step of code generation in parallel with compilation

This is the case for ppx rewriters using the OCaml typer for
instance. When using such ppx rewriters, you must use staged_pps
instead of pps in order to force Dune to use the second pipeline,
which is slower but necessary in this case.

Preprocessing with actions

<action> uses the same DSL as described in the User actions
section, and for the same reason given in that section, it will be
executed from the root of the current build context. It is expected to
be an action that reads the file given as only dependency named
input-file and outputs the preprocessed file on its standard output.

More precisely, (preprocess (action <action>)) acts as if
you had setup a rule for every file of the form:

(rule
 (target file.pp.ml)
 (deps file.ml)
 (action (with-stdout-to %{target}
 (chdir %{workspace_root} <action>))))

The equivalent of a -pp <command> option passed to the OCaml compiler is
(system "<command> %{input-file}").

Preprocessing with ppx rewriters

<ppx-rewriters-and-flags> is expected to be a sequence where each
element is either a command line flag if starting with a - or the
name of a library. If you want to pass command line flags that do not
start with a -, you can separate library names from flags using
--. So for instance from the following preprocess field:

(preprocess (pps ppx1 -foo ppx2 -- -bar 42))

The list of libraries will be ppx1 and ppx2 and the command line
arguments will be: -foo -bar 42.

Libraries listed here should be libraries implementing an OCaml AST rewriter and
registering themselves using the ocaml-migrate-parsetree.driver API [https://github.com/let-def/ocaml-migrate-parsetree].

Dune will build a single executable by linking all these libraries and their
dependencies. Note that it is important that all these libraries are linked with
-linkall. Dune automatically uses -linkall when the (kind ...)
field is set to ppx_rewriter or ppx_deriver.

Per module preprocessing specification

By default a preprocessing specification will apply to all modules in the
library/set of executables. It is possible to select the preprocessing on a
module-by-module basis by using the following syntax:

(preprocess (per_module
 (<spec1> <module-list1>)
 (<spec2> <module-list2>)
 ...))

Where <spec1>, <spec2>, … are preprocessing specifications
and <module-list1>, <module-list2>, … are list of module
names.

For instance:

(preprocess (per_module
 (((action (run ./pp.sh X=1 %{input-file})) foo bar))
 (((action (run ./pp.sh X=2 %{input-file})) baz))))

Future syntax

The future_syntax preprocessing specification is equivalent to
no_preprocessing when using one of the most recent versions of the
compiler. When using an older one, it is a shim preprocessor that
backports some of the newer syntax elements. This allows you to use some of
the new OCaml features while keeping compatibility with older
compilers.

One example of supported syntax is the custom let-syntax that was
introduced in 4.08, allowing the user to define custom let operators.

Note that this feature is implemented by the third-party
ocaml-syntax-shims project [https://github.com/ocaml-ppx/ocaml-syntax-shims], so if you use
this feature you must also declare a dependency on this package.

Preprocessor dependencies

If your preprocessor needs extra dependencies you should use the
preprocessor_deps field available in the library, executable and
executables stanzas.

Dependency specification

Dependencies in dune files can be specified using one of the following:

	(:name <dependencies>) will bind the list of dependencies to the
name variable. This variable will be available as %{name} in actions.

	(file <filename>) or simply <filename>: depend on this file

	(alias <alias-name>): depend on the construction of this alias, for
instance: (alias src/runtest)

	(alias_rec <alias-name>): depend on the construction of this
alias recursively in all children directories wherever it is
defined. For instance: (alias_rec src/runtest) might depend on
(alias src/runtest), (alias src/foo/bar/runtest), …

	(glob_files <glob>): depend on all files matched by <glob>, see the
glob for details

	(source_tree <dir>): depend on all source files in the subtree with root
<dir>

	(universe): depend on everything in the universe. This is for
cases where dependencies are too hard to specify. Note that dune
will not be able to cache the result of actions that depend on the
universe. In any case, this is only for dependencies in the
installed world, you must still specify all dependencies that come
from the workspace.

	(package <pkg>) depend on all files installed by <package>, as well
as on the transitive package dependencies of <package>. This can be used
to test a command against the files that will be installed

	(env_var <var>): depend on the value of the environment variable <var>.
If this variable becomes set, becomes unset, or changes value, the target
will be rebuilt.

	(sandbox <config>): require a particular sandboxing configuration.
<config> can be one (or many) of:

	always: the action requires a clean environment.

	none: the action must run in the build directory.

	preserve_file_kind: the action needs the files it reads to look
like normal files (so dune won’t use symlinks for sandboxing)

In all these cases, the argument supports Variables.

Named Dependencies

dune allows a user to organize dependency lists by naming them. The user is
allowed to assign a group of dependencies a name that can later be referred to
in actions (like the %{deps}, %{target} and %{targets} built in variables).

One instance where this is useful is for naming globs. Here’s an
example of an imaginary bundle command:

(rule
 (target archive.tar)
 (deps
 index.html
 (:css (glob_files *.css))
 (:js foo.js bar.js)
 (:img (glob_files *.png) (glob_files *.jpg)))
 (action
 (run %{bin:bundle} index.html -css %{css} -js %{js} -img %{img} -o %{target})))

Note that such named dependency list can also include unnamed
dependencies (like index.html in the example above). Also, such
user defined names will shadow built in variables. So
(:workspace_root x) will shadow the built in %{workspace_root}
variable.

Glob

You can use globs to declare dependencies on a set of files. Note that globs
will match files that exist in the source tree as well as buildable targets, so
for instance you can depend on *.cmi.

Currently dune only supports globbing files in a single directory. And in
particular the glob is interpreted as follows:

	anything before the last / is taken as a literal path

	anything after the last /, or everything if the glob contains no /, is
interpreted using the glob syntax

The glob syntax is interpreted as follows:

	\<char> matches exactly <char>, even if it is a special character
(*, ?, …)

	* matches any sequence of characters, except if it comes first in which
case it matches any character that is not . followed by anything

	** matches any character that is not . followed by anything, except if
it comes first in which case it matches anything

	? matches any single character

	[<set>] matches any character that is part of <set>

	[!<set>] matches any character that is not part of <set>

	{<glob1>,<glob2>,...,<globn>} matches any string that is matched by one of
<glob1>, <glob2>, …

OCaml flags

In library, executable, executables and env stanzas,
you can specify OCaml compilation flags using the following fields:

	(flags <flags>) to specify flags passed to both ocamlc and
ocamlopt

	(ocamlc_flags <flags>) to specify flags passed to ocamlc only

	(ocamlopt_flags <flags>) to specify flags passed to ocamlopt only

For all these fields, <flags> is specified in the Ordered set language.
These fields all support (:include ...) forms.

The default value for (flags ...) is taken from the environment,
as a result it is recommended to write (flags ...) fields as
follows:

(flags (:standard <my options>))

User actions

(action ...) fields describe user actions.

User actions are always run from the same subdirectory of the current build
context as the dune file they are defined in. So for instance an action defined
in src/foo/dune will be run from $build/<context>/src/foo.

The argument of (action ...) fields is a small DSL that is interpreted by
dune directly and doesn’t require an external shell. All atoms in the DSL
support Variables. Moreover, you don’t need to specify dependencies
explicitly for the special %{<kind>:...} forms, these are recognized and
automatically handled by dune.

The DSL is currently quite limited, so if you want to do something complicated
it is recommended to write a small OCaml program and use the DSL to invoke it.
You can use shexp [https://github.com/janestreet/shexp] to write portable
scripts or Configurator for configuration related tasks. You can also
use Sandboxing to express program dependencies directly in the
source code.

The following constructions are available:

	(run <prog> <args>) to execute a program. <prog> is resolved
locally if it is available in the current workspace, otherwise it is
resolved using the PATH

	(dynamic-run <prog> <args>) to execute a program that was linked
against dune-action-plugin library. <prog> is resolved in
the same way as in run

	(chdir <dir> <DSL>) to change the current directory

	(setenv <var> <value> <DSL>) to set an environment variable

	(with-<outputs>-to <file> <DSL>) to redirect the output to a file, where
<outputs> is one of: stdout, stderr or outputs (for both
stdout and stderr)

	(ignore-<outputs> <DSL>) to ignore the output, where
<outputs> is one of: stdout, stderr or outputs

	(with-stdin-from <file> <DSL>) to redirect the input from a file

	(with-accepted-exit-codes <pred> <DSL>) specifies the list of expected exit codes
for the programs executed in <DSL>. <pred> is a predicate on integer
values, and is specified using the Predicate language. <DSL> can only
contain nested occurrences of run, bash, system, chdir,
setenv, ignore-<outputs>, with-stdin-from and
with-<outputs>-to. This action is available since dune 2.0.

	(progn <DSL>...) to execute several commands in sequence

	(echo <string>) to output a string on stdout

	(write-file <file> <string>) writes <string> to <file>

	(cat <file>) to print the contents of a file to stdout

	(copy <src> <dst>) to copy a file

	(copy# <src> <dst>) to copy a file and add a line directive at
the beginning

	(system <cmd>) to execute a command using the system shell: sh on Unix
and cmd on Windows

	(bash <cmd>) to execute a command using /bin/bash. This is obviously
not very portable

	(diff <file1> <file2>) is similar to (run diff <file1>
<file2>) but is better and allows promotion. See Diffing and
promotion for more details

	(diff? <file1> <file2>) is similar to (diff <file1>
<file2>) except that <file2> should be produced by a part of the
same action rather than be a dependency, is optional and will
be consumed by diff?.

	(cmp <file1> <file2>) is similar to (run cmp <file1>
<file2>) but allows promotion. See Diffing and promotion for
more details

	(no-infer <DSL>) to perform an action without inference of dependencies
and targets. This is useful if you are generating dependencies in a way
that Dune doesn’t know about, for instance by calling an external build system.

	(pipe-<outputs> <DSL> <DSL> <DSL>...) to execute several actions (at least two)
in sequence, filtering the <outputs> of the first command through the other
command, piping the standard output of each one into the input of the next.
This action is available since dune 2.7.

As mentioned copy# inserts a line directive at the beginning of
the destination file. More precisely, it inserts the following line:

1 "<source file name>"

Most languages recognize such lines and update their current location,
in order to report errors in the original file rather than the
copy. This is important as the copy exists only under the _build
directory and in order for editors to jump to errors when parsing the
output of the build system, errors must point to files that exist in
the source tree. In the beta versions of dune, copy# was
called copy-and-add-line-directive. However, most of time one
wants this behavior rather than a bare copy, so it was renamed to
something shorter.

Note: expansion of the special %{<kind>:...} is done relative to the current
working directory of the part of the DSL being executed. So for instance if you
have this action in a src/foo/dune:

(action (chdir ../../.. (echo %{dep:dune})))

Then %{dep:dune} will expand to src/foo/dune. When you run various
tools, they often use the filename given on the command line in error messages.
As a result, if you execute the command from the original directory, it will
only see the basename.

To understand why this is important, let’s consider this dune file living in
src/foo:

(rule
 (target blah.ml)
 (deps blah.mll)
 (action (run ocamllex -o %{target} %{deps})))

Here the command that will be executed is:

ocamllex -o blah.ml blah.mll

And it will be executed in _build/<context>/src/foo. As a result, if there
is an error in the generated blah.ml file it will be reported as:

File "blah.ml", line 42, characters 5-10:
Error: ...

Which can be a problem as you editor might think that blah.ml is at the root
of your project. What you should write instead is:

(rule
 (target blah.ml)
 (deps blah.mll)
 (action (chdir %{workspace_root} (run ocamllex -o %{target} %{deps}))))

Sandboxing

The user actions that run external commands (run, bash, system)
are opaque to dune, so dune has to rely on manual specification of dependencies
and targets. One problem with manual specification is that it’s error-prone.
It’s often hard to know in advance what files the command will read.
And knowing a correct set of dependencies is very important for build
reproducibility and incremental build correctness.

To help with this problem dune supports sandboxing.
An idealized view of sandboxing is that it runs the action in an environment
where it can’t access anything except for its declared dependencies.

In practice we have to make compromises and have some trade-offs between
simplicity, information leakage, performance and portability.

The way sandboxing is currently implemented is that for each sandboxed action
we build a separate directory tree (sandbox directory) that mirrors the build
directory, filtering it to only contain the files that were declared as
dependencies. Then we run the action in that directory, and then we copy
the targets back to the build directory.

You can configure dune to use sandboxing modes symlink or copy, which
determines how the individual files are populated (they will be symlinked or
copied into the sandbox directory).

This approach is very simple and portable, but that comes with
certain limitations:

	The actions in the sandbox can use absolute paths to refer to anywhere outside
the sandbox. This means that only dependencies on relative paths in the build
tree can be enforced/detected by sandboxing.

	The sandboxed actions still run with full permissions of dune itself so
sandboxing is not a security feature. It won’t prevent network access either.

	We don’t erase the environment variables of the sandboxed
commands. This is something we want to change.

	Performance impact is usually small, but it can get noticeable for
fast actions with very large sets of dependencies.

Per-action sandboxing configuration

Some actions may rely on sandboxing to work correctly.
For example an action may need the input directory to contain nothing
except the input files, or the action might create temporary files that
break other build actions.

Some other actions may refuse to work with sandboxing, for example
if they rely on absolute path to the build directory staying fixed,
or if they deliberately use some files without declaring dependencies
(this is usually a very bad idea, by the way).

Generally it’s better to improve the action so it works with or without
sandboxing (especially with), but sometimes you just can’t do that.

Things like this can be described using the “sandbox” field in the dependency
specification language (see Dependency specification).

Global sandboxing configuration

Dune always respects per-action sandboxing specification.
You can configure it globally to prefer a certain sandboxing mode if
the action allows it.

This is controlled by:

	dune --sandbox <...> cli flag (see man dune-build)

	DUNE_SANDBOX environment (see man dune-build)

	(sandboxing_preference ..) field in the dune config (see man dune-config)

Locks

Given two rules that are independent, dune will assume that there
associated action can be run concurrently. Two rules are considered
independent if none of them depend on the other, either directly or
through a chain of dependencies. This basic assumption allows dune to
parallelize the build.

However, it is sometimes the case that two independent rules cannot be
executed concurrently. For instance this can happen for more
complicated tests. In order to prevent dune from running the
actions at the same time, you can specify that both actions take the
same lock:

(rule
 (alias runtest)
 (deps foo)
 (locks m)
 (action (run test.exe %{deps})))

(alias
 (rule runtest)
 (deps bar)
 (locks m)
 (action (run test.exe %{deps})))

Dune will make sure that the executions of test.exe foo and
test.exe bar are serialized.

Although they don’t live in the filesystem, lock names are interpreted as file
names. So for instance (with-lock m ...) in src/dune and (with-lock
../src/m) in test/dune refer to the same lock.

Note also that locks are per build context. So if your workspace has two build
contexts setup, the same rule might still be executed concurrently between the
two build contexts. If you want a lock that is global to all build contexts,
simply use an absolute filename:

(rule
 (alias runtest)
 (deps foo)
 (locks /tcp-port/1042)
 (action (run test.exe %{deps})))

Diffing and promotion

(diff <file1> <file2>) is very similar to (run diff <file1>
<file2>). In particular it behaves in the same way:

	when <file1> and <file2> are equal, it does nothing

	when they are not, the differences are shown and the action fails

However, it is different for the following reason:

	the exact command used to diff files can be configured via the
--diff-command command line argument. Note that it is only
called when the files are not byte equals

	by default, it will use patdiff if it is installed. patdiff
is a better diffing program. You can install it via opam with:

$ opam install patdiff

	on Windows, both (diff a b) and (diff? a b) normalize
end-of-line characters before comparing the files

	since (diff a b) is a builtin action, dune knows that a
and b are needed and so you don’t need to specify them
explicitly as dependencies

	you can use (diff? a b) after a command that might or might not
produce b. For cases where commands optionally produce a
corrected file

	if <file1> doesn’t exists it will compare with the empty file

	it allows promotion. See below

Note that (cmp a b) does no end-of-line normalization and doesn’t
print a diff when the files differ. cmp is meant to be used with
binary files.

Promotion

Whenever an action (diff <file1> <file2>) or (diff? <file1>
<file2>) fails because the two files are different, dune allows
you to promote <file2> as <file1> if <file1> is a source
file and <file2> is a generated file.

More precisely, let’s consider the following dune file:

(rule
 (with-stdout-to data.out (run ./test.exe)))

(rule
 (alias runtest)
 (action (diff data.expected data.out)))

Where data.expected is a file committed in the source
repository. You can use the following workflow to update your test:

	update the code of your test

	run dune runtest. The diff action will fail and a diff will
be printed

	check the diff to make sure it is what you expect

	run dune promote. This will copy the generated data.out
file to data.expected directly in the source tree

You can also use dune runtest --auto-promote which will
automatically do the promotion.

Package specification

Installation is the process of copying freshly built libraries,
binaries and other files from the build directory to the system. Dune
offers two way of doing this: via opam or directly via the install
command. In particular, the installation model implemented by Dune
was copied from opam. Opam is the standard OCaml package manager.

In both cases, Dune only know how to install whole packages. A
package being a collection of executables, libraries and other files.
In this section, we will describe how to define a package, how to
“attach” various elements to it and how to proceed with installing it
on the system.

Declaring a package

To declare a package, simply add a package stanza to your
dune-project file:

(package
 (name mypackage)
 (synopsis "My first Dune package!")
 (description "\| This is my first attempt at creating
 "\| a project with Dune.
))

Once you have done this, Dune will know about the package named
mypackage and you will be able to attach various elements to it.
The package stanza accepts more fields, such as dependencies.

Note that package names are in a global namespace so the name you choose must
be universally unique. In particular, package managers never allow to
release two packages with the same name.

In older projects using Dune, packages were defined by manually writing a file
called <package-name>.opam at the root of the project. However, it is not
recommended to use this method in new projects as we expect to deprecate it in
the future. The right way to define a package is with a package stanza in
the dune-project file.

See Generating opam files for instructions on configuring dune to automatically
generate .opam files based on the package stanzas.

Attaching elements to a package

Attaching an element to a package means declaring to Dune that this
element is part of the said package. The method to attach an element
to a package depends on the kind of the element. In this sub-section
we will go through the various kinds of elements and describe how to
attach each of them to a package.

In the rest of this section, <prefix> refers to the directory in
which the user chooses to install packages. When installing via opam,
it is opam who sets this directory. When calling dune install,
the installation directory is either guessed or can be manually
specified by the user. This is described more in detail in the last
section of this page.

Sites of a package

When packages need additional resources outside their binary, their location
could be hard to find. Moreover some packages could add resources to another
package, for example in the case of plugins. These location are called sites in
dune. One package can define them. During execution one site corresponds to a
list of directories. They are like layers, the first directories have an higher
priority. Examples and precisions are available at How to load additional files at runtime.

Libraries

In order to attach a library to a package all you need to do is add a
public_name field to your library. This is the name that external
users of your libraries must use in order to refer to it. Dune
requires that the public name of a library is either the name of the
package it is part of or start with the package name followed by a dot
character.

For instance:

(library
 (name mylib)
 (public_name mypackage.mylib))

After you have added a public name to a library, Dune will know to
install it as part of the package it is attached to. Dune installs
the library files in a directory <prefix>/lib/<package-name>.

If the library name contains dots, the full directory in which the
library files are installed is lib/<comp1>/<comp2/.../<compn>
where <comp1>, <comp2>, … <compn> are the dot separated
component of the public library name. By definition, <comp1> is
always the package name.

Executables

Similarly to libraries, to attach an executable to a package simply
add a public_name field to your executable stanza, or a
public_names field for executables stanzas. The name that
goes in there is the name under which the executables will be
available through the PATH once installed, i.e. the name users
will need to type in there shell to execute the program. Because Dune
cannot guess which package an executable is part of from its public
name, you also need to add a package field unless the project
contains a single package, in which case the executable will be
attached to this package.

For instance:

(executable
 (name main)
 (public_name myprog)
 (package mypackage))

Once mypackage is installed on the system, the user will be able
to type the following in their shell:

$ myprog

to execute the program.

Other files

For all other kinds of elements, you need to attach them manually via
an install stanza.

Foreign sources and archives

Dune provides basic support for including foreign source files as well
as archives of foreign object files into OCaml projects via the
foreign_stubs and foreign_archives fields.

Foreign stubs

You can specify foreign sources using the foreign_stubs field of the
library and executable stanzas. For example:

(library
 (name lib)
 (foreign_stubs (language c) (names src1 src2))
 (foreign_stubs (language cxx) (names src3) (flags -O2)))

Here we declare an OCaml library lib, which contains two C sources
src1 and src2, and one C++ source src3 that needs to be
compiled with -O2. These source files will be compiled and packaged
with the library, along with the link-time flags to be used when
linking the final executables. When matching names to source files,
Dune treats *.c files as C sources, and *.cpp, *.cc and
*.cxx files as C++ sources.

Here is a complete list of supported subfields:

	language specifies the source language, where c means C and
cxx means C++. In future, more languages may be supported.

	names specifies the names of source files. When specifying a source
file, you should omit the extension and any relative parts of the path;
Dune will scan all library directories, finding all matching files and
raising an error if multiple source files map to the same object name.
If you need to have multiple object files with the same name, you can
package them into different Foreign archives via the
foreign_archives field. This field uses the Ordered set language
where the :standard value corresponds to the set of names of all
source files whose extensions match the specified language.

	flags are passed when compiling source files. This field is specified
using the Ordered set language, where the :standard value comes
from the environment settings c_flags and cxx_flags, respectively.
Note that, for C subs, Dune unconditionally adds the flags present in the
fields ocamlc_cflags and ocamlc_cppflags of the OCaml config to the
compiler command line. This behavior can be disabled since Dune 2.8 via the
dune-project option use_standard_c_and_cxx_flags.

	include_dirs are tracked as dependencies and passed to the compiler
via the -I flag. You can use Variables in this field, and
refer to a library source directory using the (lib library-name) syntax.
For example, (include_dirs dir1 (lib lib1) (lib lib2) dir2) specifies
the directory dir1, the source directories of lib1 and lib2,
and the directory dir2, in this order. The contents of included
directories is tracked recursively, e.g. if you use (include_dir dir)
and have headers dir/base.h and dir/lib/lib.h then they both will
be tracked as dependencies.

	extra_deps specifies any other dependencies that should be tracked.
This is useful when dealing with #include statements that escape into
a parent directory like #include "../a.h".

Foreign archives

You can also specify archives of separately compiled foreign object files
that need to be packaged with an OCaml library or linked into an OCaml
executable. To do that, use the foreign_archives field of the
corresponding library or executable stanza. For example:

(library
 (name lib)
 (foreign_stubs (language c) (names src1 src2))
 (foreign_stubs (language cxx) (names src3) (flags -O2))
 (foreign_archives arch1 some/dir/arch2))

Here, in addition to Foreign stubs, we also specify foreign archives
arch1 and arch2, where the latter is stored in a subdirectory
some/dir.

You can build a foreign archive manually, e.g. using a custom rule as
described in Foreign build sandboxing, or ask Dune to build it via the
foreign_library stanza:

(foreign_library
 (archive_name arch1)
 (language c)
 (names src4 src5)
 (include_dir headers))

This asks Dune to compile C source files src4 and src5 with
headers tracked in the headers directory, and put the resulting
object files into an archive arch1, whose full name is typically
libarch1.a for static linking and dllarch1.so for dynamic
linking.

The foreign_library stanza supports all Foreign stubs fields plus
the archive_name field, which specifies the archive’s name. You can refer
to the same archive name from multiple OCaml libraries and executables, so a
foreign archive is a bit like a foreign library, hence the name of the stanza.

Foreign archives are particularly useful when embedding a library written in
a foreign language and/or built with another build system. See
Foreign build sandboxing for more details.

Flags

Depending on the use_standard_c_and_cxx_flags option, the base :standard set of
flags for C will contain only ocamlc_cflags or both ocamlc_cflags and
ocamlc_cflags.

There are multiple levels where one can declare custom flags (using the
Ordered set language), and each level inherits the flags of the previous
one in its :standard set:

	In the global env definition of a dune-workspace file

	In the per-context env definitions in a dune-workspace file

	In the env definition of a dune file

	In a foreign_ field of an executable or a library

The %{cc} variable will contain the flags from the first
three levels only.

Writing and running tests

Dune tries to streamline the testing story as much as possible, so
that you can focus on the tests themselves and not bother with setting
up with various test frameworks.

In this section, we will explain the workflow to deal with tests in dune. In
particular we will see how to run the testsuite of a project, how to describe
your tests to dune and how to promote tests result as expectation.

We distinguish three kinds of tests:

	inline tests - written directly inside the ml files of a library

	custom tests - run an executable, possibly followed by an action such as
diffing the produced output.

	cram tests - expect tests written in cram [https://bitheap.org/cram/] style.

Running tests

Whatever the tests of a project are, the usual way to run tests with dune is to
call dune runtest from the shell (or the command alias dune test). This
will run all the tests defined in the current directory and any sub-directory
recursively.

Note that in any case, dune runtest is simply a short-hand for building the
runtest alias, so you can always ask dune to run the tests in conjunction
with other targets by passing @runtest to dune build. For instance:

$ dune build @install @runtest
$ dune build @install @test/runtest

Running a single test

If you would only like to run a single test for your project, you may use dune
exec to run the test executable (for the sake of this example,
project/tests/myTest.ml):

dune exec project/tests/myTest.exe

Running tests in a directory

You can also pass a directory argument to run the tests from a sub-tree. For
instance dune runtest test will only run the tests from the test
directory and any sub-directory of test recursively.

Inline tests

There are several inline tests framework available for OCaml, such as
ppx_inline_test [https://github.com/janestreet/ppx_inline_test] and qtest [https://github.com/vincent-hugot/qtest]. We will use ppx_inline_test [https://github.com/janestreet/ppx_inline_test] as an
example as at the time of writing this document it has the necessary
setup to be used with dune out of the box.

ppx_inline_test [https://github.com/janestreet/ppx_inline_test] allows one to write tests directly inside ml files as
follows:

let rec fact n = if n = 1 then 1 else n * fact (n - 1)

let%test _ = fact 5 = 120

The file has to be preprocessed with the ppx_inline_test ppx rewriter,
so for instance the dune file might look like this:

(library
 (name foo)
 (preprocess (pps ppx_inline_test)))

In order to instruct dune that our library contains inline tests,
all we have to do is add an inline_tests field:

(library
 (name foo)
 (inline_tests)
 (preprocess (pps ppx_inline_test)))

We can now build and execute this test by running dune runtest. For
instance, if we make the test fail by replacing 120 by 0 we get:

$ dune runtest
[...]
File "src/fact.ml", line 3, characters 0-25: <<(fact 5) = 0>> is false.

FAILED 1 / 1 tests

Note that in this case Dune knew how to build and run the tests
without any special configuration. This is because ppx_inline_test
defines an inline tests backend and it is used by the library. Some
other frameworks, such as qtest [https://github.com/vincent-hugot/qtest] don’t have any special library or ppx
rewriter. To use such a framework, you must tell dune about it
since it cannot guess it. You can do that by adding a backend
field:

(library
 (name foo)
 (inline_tests (backend qtest.lib)))

In the example above, the name qtest.lib comes from the public_name field
in qtest’s own dune file.

Inline expectation tests

Inline expectation tests are a special case of inline tests where you
write a bit of OCaml code that prints something followed by what you
expect this code to print. For instance, using ppx_expect [https://github.com/janestreet/ppx_expect]:

let%expect_test _ =
 print_endline "Hello, world!";
 [%expect{|
 Hello, world!
 |}]

The test procedure consist of executing the OCaml code and replacing
the contents of the [%expect] extension point by the real
output. You then get a new file that you can compare to the original
source file. Expectation tests are a neat way to write tests as the
following test elements are clearly identified:

	the code of the test

	the test expectation

	the test outcome

You can have a look at this blog post [https://blog.janestreet.com/testing-with-expectations/] to find out
more about expectation tests. To dune, the workflow for
expectation tests is always as follows:

	write the test with some empty expect nodes in it

	run the tests

	check the suggested correction and promote it as the original source
file if you are happy with it

Dune makes this workflow very easy, simply add ppx_expect to
your list of ppx rewriters as follows:

(library
 (name foo)
 (inline_tests)
 (preprocess (pps ppx_expect)))

Then calling dune runtest will run these tests and in case of
mismatch dune will print a diff of the original source file and
the suggested correction. For instance:

$ dune runtest
[...]
-src/fact.ml
+src/fact.ml.corrected
File "src/fact.ml", line 5, characters 0-1:
let rec fact n = if n = 1 then 1 else n * fact (n - 1)

let%expect_test _ =
 print_int (fact 5);
- [%expect]
+ [%expect{| 120 |}]

In order to accept the correction, simply run:

$ dune promote

You can also make dune automatically accept the correction after
running the tests by typing:

$ dune runtest --auto-promote

Finally, some editor integration is possible to make the editor do the
promotion and make the workflow even smoother.

Running a subset of the test suite

You may also run a group of tests located under a directory with:

dune runtest mylib/tests

The above command will run all tests defined in tests and its sub-directories.

Running tests in bytecode or JavaScript

By default Dune run inline tests in native mode, except if native
compilation is not available in which case it runs them in bytecode.

You can change this setting to choose which modes tests should run
in. To do that, add a modes field to the inline_tests
field. Available modes are:

	byte for running tests in byte code

	native for running tests in native mode

	best for running tests in native mode with fallback to byte code
if native compilation is not available

	js for running tests in JavaScript using Node.js

For instance:

(library
 (name foo)
 (inline_tests (modes byte best js))
 (preprocess (pps ppx_expect)))

Specifying inline test dependencies

If your tests are reading files, you must say it to dune by adding
a deps field the inline_tests field. The argument of this
deps field follows the usual Dependency specification. For instance:

(library
 (name foo)
 (inline_tests (deps data.txt))
 (preprocess (pps ppx_expect)))

Passing special arguments to the test runner

Under the hood, a test executable is built by dune. Depending on
the backend used this runner might take useful command line
arguments. You can specify such flags by using a flags field, such
as:

(library
 (name foo)
 (inline_tests (flags (-foo bar)))
 (preprocess (pps ppx_expect)))

The argument of the flags field follows the Ordered set language.

Passing special arguments to the test executable

To control how the test executable is built, it’s possible to customize a subset
of compilation options for an executable using the executable field. Dune
gives you the right to do that by simply specifying command line arguments as flags.
You can specify such flags by using flags field. For instance:

(library
 (name foo)
 (inline_tests
 (flags (-foo bar)
 (executable
 (flags (-foo bar))))
 (preprocess (pps ppx_expect))))

The argument of the flags field follows the Ordered set language.

Using additional libraries in the test runner

When tests are not part of the library code, it is possible that tests
require additional libraries than the library being tested. This is
the case with qtest [https://github.com/vincent-hugot/qtest] as tests are written in comments. You can specify
such libraries using a libraries field, such as:

(library
 (name foo)
 (inline_tests
 (backend qtest)
 (libraries bar)))

Defining your own inline test backend

If you are writing a test framework, or for specific cases, you might
want to define your own inline tests backend. If your framework is
naturally implemented by a library or ppx rewriter that the user must
use when they want to write tests, then you should define this library
has a backend. Otherwise simply create an empty library with the name
you want to give for your backend.

In order to define a library as an inline tests backend, simply add an
inline_tests.backend field to the library stanza. An inline tests
backend is specified by thee parameters:

	How to create the test runner

	How to build the test runner

	How to run the test runner

These three parameters can be specified inside the
inline_tests.backend field, which accepts the following fields:

(generate_runner <action>)
(runner_libraries (<ocaml-libraries>))
(flags <flags>)
(extends (<backends>))

For instance:

<action> follows the User actions specification. It
describe an action that should be executed in the directory of
libraries using this backend for their tests. It is expected that the
action produces some OCaml code on its standard output. This code will
constitute the test runner. The action can use the following
additional variables:

	%{library-name} which is the name of the library being tested

	%{impl-files} which is the list of implementation files in the
library, i.e. all the .ml and .re files

	%{intf-files} which is the list of interface files in the library,
i.e. all the .mli and .rei files

The runner_libraries field specifies what OCaml libraries the test
runner uses. For instance, if the generate_runner actions
generates something like My_test_framework.runtests (), the you
should probably put my_test_framework in the runner_libraries
field.

If you test runner needs specific flags, you should pass them in the
flags field. You can use the %{library-name} variable in this
field.

Finally, a backend can be an extension of another backend. In this
case you must specify by in the extends field. For instance,
ppx_expect [https://github.com/janestreet/ppx_expect] is an extension of ppx_inline_test [https://github.com/janestreet/ppx_inline_test]. It is possible to use
a backend with several extensions in a library, however there must be
exactly one root backend, i.e. exactly one backend that is not an
extension of another one.

When using a backend with extensions, the various fields are simply
concatenated. The order in which they are concatenated is unspecified,
however if a backend b extends of a backend a, then a will
always come before b.

Example of backend

In this example, we put tests in comments of the form:

(*TEST: assert (fact 5 = 120) *)

The backend for such a framework looks like this:

(library
 (name simple_tests)
 (inline_tests.backend
 (generate_runner (run sed "s/(*TEST:\\(.*\\)*)/let () = \\1;;/" %{impl-files}))))

Now all you have to do is write (inline_tests ((backend
simple_tests))) wherever you want to write such tests. Note that
this is only an example, we do not recommend using sed in your
build as this would cause portability problems.

Custom tests

We said in Running tests that to run tests dune simply builds
the runtest alias. As a result, to define custom tests, you simply
need to add an action to this alias in any directory. For instance if
you have a binary tests.exe that you want to run as part of
running your testsuite, simply add this to a dune file:

(rule
 (alias runtest)
 (action (run ./tests.exe)))

Hence to define an a test a pair of alias and executable stanzas are required.
To simplify this common pattern, dune provides a tests stanza to
define multiple tests and their aliases at once:

(tests (names test1 test2))

Diffing the result

It is often the case that we want to compare the output of a test to
some expected one. For that, dune offers the diff command,
which in essence is the same as running the diff tool, except that
it is more integrated in dune and especially with the promote
command. For instance let’s consider this test:

(rule
 (with-stdout-to tests.output (run ./tests.exe)))

(rule
 (alias runtest)
 (action (diff tests.expected test.output)))

After having run tests.exe and dumping its output to tests.output, dune
will compare the latter to tests.expected. In case of mismatch, dune will
print a diff and then the dune promote command can be used to copy over the
generated test.output file to tests.expected in the source tree.

Alternatively, the tests also supports this style of tests.

(tests (names tests))

Where dune expects a tests.expected file to exist to infer that this is an
expect tests.

This provides a nice way of dealing with the usual write code,
run, promote cycle of testing. For instance:

$ dune runtest
[...]
-tests.expected
+tests.output
File "tests.expected", line 1, characters 0-1:
-Hello, world!
+Good bye!
$ dune promote
Promoting _build/default/tests.output to tests.expected.

Note that if available, the diffing is done using the patdiff [https://github.com/janestreet/patdiff] tool,
which displays nicer looking diffs that the standard diff
tool. You can change that by passing --diff-command CMD to
dune.

Cram Tests

Cram tests are expectation tests written in a shell-like syntax. They are ideal
for testing binaries. Cram tests are auto discovered from files or directories
with a .t extension, so they must be enabled manually in the
dune-project file:

(lang dune 2.8)
(cram enable)

File Tests

To define a standalone test, we create a .t file. For example, foo.t:

Simplest possible cram test
 $ echo "testing"

This simple example demonstrates two components of cram tests:

	Comments - Anything that doesn’t start with a 2 space indentation is a comment

	Commands - A command starts with 2 spaces followed by a $. It is executed
in the shell and the output is diffed against the output below. In this
example, there’s no output yet.

To run the test and promote the results:

$ dune runtest
$ dune promote

We now see the output of the command:

Simplest possible cram test
 $ echo "testing"
 testing

This is the main advantage of expect tests. We don’t need to write assertions
manually, instead we detect failure when the command produces a different output
than what is recorded in the test script.

For example, here’s an example of how we’d test the wc utility. wc.t:

We create a test artifact called foo
 $ cat >foo <<EOF
 > foo
 > bar
 > baz
 > EOF

After creating the fixture, we want to verify that ``wc`` gives us the right
result:
 $ wc -l foo | awk '{ print $1 }'
 4

The above example uses the here doc syntax to pipe the subsequent lines to
cat. This is convenient for creating small test artifacts.

Directory Tests

In the above example we used cat to create the test artifact, but what if
there are too many artifacts to comfortably fit in test file? Or some of the
artifacts are binary? It’s possible to include the artifacts as normal files or
directories provided the test is defined as a directory. The name of the test
directory must end with .t and must include a run.t as the test script.
Everything else in that directory is treated as raw data for the test. It’s not
possible to define rules using dune files in such a directory.

We convert the wc test above into a directory test wc.t:

$ ls wc.t
 run.t foo.txt bar/

This defines a directory test wc.t which must include a run.t file as
the test script, with fool.txt and bar are test artifacts. We may then
access their contents in the test script run.t:

$ wc -l foo | awk '{ print $1 }'
4
$ wc -l $(ls bar) | awk '{ print $1 }'
1231

Test Options

When testing binaries, it’s important to to specify a dependency on the binary
for two reasons:

	Dune must know to re-run the test when a dependency changes

	The dependencies must be specified to guarantee that they are visible to the
test when running it.

We can specify dependencies using the deps field using the usual syntax:

(cram
 (deps ../foo.exe))

This introduces a dependency on foo.exe on all cram tests in this directory.
To apply the stanza to a particular test, it’s possible to use applies_to
field:

(cram
 (applies_to * \ foo bar)
 (deps ../foo.exe))

We use the Predicate language to apply this stanza to all tests in this
directory except for foo.t and bar.t. The applies_to field also
accepts the special value :whole_subtree in order to apply the options to all tests
in all sub directories (recursively). This is useful to apply common options to
an entire test suite.

The cram stanza accepts the following fields:

	enabled_if - controls whether the tests are enabled

	alias - alias that can be used to run the test. In addition to the user
alias, every test foo.t is attached to the @runtest alias and gets its
own @foo alias to make it convenient to run individually.

	deps - dependencies of the test

A single test may be configured by more than one cram stanza. In such cases,
the values from all applicable cram stanzas are merged together to get the
final values for all the fields.

Testing an OCaml Program

The most common testing situation involves testing an executable that is defined
in dune. For example:

(executable
 (name wc)
 (public_name wc))

To use this binary in the cram test, we should depend on the binary in the test:

(cram
 (deps %{bin:wc}))

Sandboxing

Since cram tests often create intermediate artifacts, it’s important that cram
tests are executed in a clean environment. This is why all cram tests are
sandboxed. To respect sandboxing, every test should specify dependency on any
artifact that might rely on using the deps field.

See Sandboxing for details about the sandboxing mechanism.

Test Output Sanitation

In some situations, cram tests emit non portable or non deterministic output. We
recommend to sanitize such outputs using pipes. For example, we can scrub the
ocaml magic number using sed as follows:

$ ocamlc -config | grep "cmi_magic_number:" | sed 's/Caml.*/$SPECIAL_CODE/'
cmi_magic_number: $SPECIAL_CODE

By default, dune will scrub the some paths from the output of the tests. The
default list of paths is:

	The PWD of the test will be replaced by $TESTCASE_ROOT

	The temporary directory for the current script will be replaced by $TMPDIR

To add additional paths to this sanitation mechanism, it’s sufficient to modify
the standard BUILD_PATH_PREFIX_MAP [https://reproducible-builds.org/specs/build-path-prefix-map/] environment variable. For example:

$ export BUILD_PATH_PREFIX_MAP="HOME=$HOME:$BUILD_PATH_PREFIX_MAP"
$ echo $HOME
$HOME

Instrumentation

In this section, we will explain how define and use instrumentation backends
(such as bisect_ppx or landmarks) so that you can enable and disable
coverage via dune-workspace files or by passing a command-line flag or
environment variable. In addition to providing an easy way to toggle
instrumentation of your code, this setup avoids creating a hard dependency on
the precise instrumentation backend in your project.

Specifying what to instrument

When an instrumentation backend is activated, Dune will only instrument
libraries and executables for which the user has requested instrumentation.

To request instrumentation, one must add the following field to a library or
executable stanza:

(library
 (name ...)
 (instrumentation
 (backend <name> <args>)))

The backend <name> can be passed arguments using <args>.

This field can be repeated multiple times in order to support various
backends. For instance:

(library
 (name foo)
 (modules foo)
 (instrumentation (backend bisect_ppx --bisect-silent yes))
 (instrumentation (backend landmarks)))

This will instruct Dune that when either the bisect_ppx or landmarks
instrumentation is activated, the library should be instrumented with this
backend.

By default, these fields are simply ignored. However, when the corresponding
instrumentation backend is activated, Dune will implicitly add the relevant ppx
rewriter to the list of ppx rewriters.

At the moment, it is not possible to instrument code that is preprocessed via an
action preprocessors. As these preprocessors are quite rare nowadays, there is
no plan to add support for them in the future.

Enabling/disabling instrumentation

Activating an instrumentation backend can be done via the command line or the
dune-workspace file.

Via the command line, it is done as follows:

$ dune build --instrument-with <names>

Here <names> is a comma-separated list of instrumentation backends. For example:

$ dune build --instrument-with bisect_ppx,landmarks

This will instruct Dune to activate the given backend globally, i.e. in all
defined build contexts.

It is also possible to enable instrumentation backends via the
dune-workspace file, either globally, or for specific builds contexts.

To enable an instrumentation backend globally, you can type in your
dune-workspace file:

(lang dune 2.8)
(instrument_with bisect_ppx)

or for each context individually:

(lang dune 2.8)
(context default)
(context (default (name coverage) (instrument_with bisect_ppx)))
(context (default (name profiling) (instrument_with landmarks)))

If both the global and local fields are present, the precedence is the same as
for the profile field: the per-context setting takes precedence over the
command-line flag, which takes precedence over the global field.

Declaring an instrumentation backend

Instrumentation backends are libraries with the special field
(instrumentation.backend). This field instructs Dune that the library can be
used as an intrumentation backend and also provides the parameters that are
specific to this backend.

Currently, Dune will only support ppx instrumentation tools, and the
instrumentation library must specify the ppx rewriters that instruments the
code. This can be done as follows:

(library
 ...
 (instrumentation.backend
 (ppx <ppx-rewriter-name>)))

When such an instrumentation backend is activated, Dune will implicitly add the
mentioned ppx rewriter to the list of ppx rewriters for libraries and
executables that specify this instrumentation backend.

Dealing with foreign libraries

The OCaml programming language can interface with libraries written
in foreign languages such as C. This section explains how to do this
with Dune. Note that it does not cover how to write the C stubs
themselves, this is covered by the
OCaml manual [https://caml.inria.fr/pub/docs/manual-ocaml/intfc.html].

More precisely, this section covers:

	how to add C/C++ stubs to an OCaml library;

	how to pass specific compilation flags for compiling the stubs;

	how to build a library with a foreign build system.

Note that in general Dune has limited support for building source
files written in foreign languages. This support is suitable for most
OCaml projects containing C stubs, but is too limited for building
complex libraries written in C or other languages. For such cases,
Dune can integrate a foreign build system into a normal Dune
build.

Adding C/C++ stubs to an OCaml library

To add C stubs to an OCaml library, simply list the C files without
the .c extension in the Foreign stubs field. For instance:

(library
 (name mylib)
 (foreign_stubs (language c) (names file1 file2)))

You can also add C++ stubs to an OCaml library by specifying
(language cxx) instead.

Dune is currently not flexible regarding the extension of the C/C++
source files. They have to be .c for C files and .cpp, .cc
or .cxx for C++ files. If you have source files with other
extensions and you want to build them with Dune, you need to rename
them first. Alternatively, you can use the
foreign build sandboxing method described
below.

Header files

C/C++ source files may include header files in the same directory as
the C/C++ source files or in the same directory group when using
include_subdirs.

The header files must have the .h extension.

Installing header files

It is sometimes desirable to install header files with the
library. For that you have two choices: install them explicitly with
an install stanza or use the install_c_headers field of the
library stanza. This field takes a list of header files names
without the .h extension. When a library install header files,
these are made visible to users of the library via the include search
path.

Foreign build sandboxing

When the build of a C library is too complicated to express in the
Dune language, it is possible to simply sandbox a foreign
build. Note that this method can be used to build other things, not
just C libraries.

To do that, follow the following procedure:

	put all the foreign code in a sub-directory

	tell Dune not to interpret configuration files in this directory via an
data_only_dirs stanza

	write a custom rule that:

	depends on this directory recursively via source_tree

	invokes the external build system

	attach the C archive files to an OCaml library via Foreign archives.

For instance, let’s assume that you want to build a C library
libfoo using libfoo’s own build system and attach it to an
OCaml library called foo.

The first step is to put the sources of libfoo in your project,
for instance in src/libfoo. Then tell dune to consider
src/libfoo as raw data by writing the following in src/dune:

(data_only_dirs libfoo)

The next step is to setup the rule to build libfoo. For this,
writing the following code src/dune:

(rule
 (deps (source_tree libfoo))
 (targets libfoo.a dllfoo.so)
 (action
 (no-infer
 (progn
 (chdir libfoo (run make))
 (copy libfoo/libfoo.a libfoo.a)
 (copy libfoo/libfoo.so dllfoo.so)))))

We copy the resulting archive files to the top directory where they can be
declared as targets. The build is done in a no-infer action because
libfoo/libfoo.a and libfoo/libfoo.so are dependencies produced by
an external build system.

The last step is to attach these archives to an OCaml library as
follows:

(library
 (name bar)
 (foreign_archives foo))

Then, whenever you use the bar library, you will also be able to
use C functions from libfoo.

Limitations

When using the sandboxing method, the following limitations apply:

	the build of the foreign code will be sequential

	the build of the foreign code won’t be incremental

both these points could be improved. If you are interested in helping
make this happen, please let the Dune team know and someone will guide
you.

Real example

The re2 project [https://github.com/janestreet/re2] uses this
method to build the re2 C library. You can look at the file
re2/src/re2_c/dune in this project to see a full working
example.

Generating documentation

Prerequisites

Documentation in dune is done courtesy of the odoc [https://github.com/ocaml-doc/odoc] tool. Therefore, to
generate documentation in dune, you will need to install this tool. This
should likely be done with opam:

$ opam install odoc

Writing documentation

Documentation comments will be automatically extracted from your OCaml source
files following the syntax described in the section Text formatting of
the OCaml manual [http://caml.inria.fr/pub/docs/manual-ocaml/ocamldoc.html].

Additional documentation pages may by attached to a package can be attached
using the documentation stanza.

Building documentation

Building the documentation using the @doc alias. Hence, all that is required
to generate documentation for your project is building this alias:

$ dune build @doc

An index page containing links to all the opam packages in your project can be
found in:

$ open _build/default/_doc/_html/index.html

Documentation for private libraries may also be built with:

$ dune build @doc-private

But this libraries will not be in the main html listing above, since they do not
belong to any particular package. But the generated html will still be found in
_build/default/_doc/_html/<library>.

Examples

This stanza use attach all the .mld files in the current directory in a project
with a single package.

(documentation)

This stanza will attach three mld files to package foo. The mld files should
be named foo.mld, bar.mld, and baz.mld

(documentation
 (package foo)
 (mld_files foo bar baz))

This stanza will attach all mld files excluding wip.mld in the current
directory to the inferred package:

(documentation
 (mld_files :standard \ wip))

Passing options to Odoc

(env
 (<profile>
 (odoc <optional-fields>)))

See env for more details on the (env ...) stanza.
<optional-fields> are:

	(warnings <mode>) specifies how warnings should be handled.
<mode> can be: fatal or nonfatal.
The default value is nonfatal.
This field is available since Dune 2.4.0 and requires Odoc 1.5.0.

JavaScript compilation

js_of_ocaml [http://ocsigen.org/js_of_ocaml/] is a compiler from OCaml to JavaScript. The compiler works by
translating OCaml bytecode to JS files. The compiler can be installed with opam:

$ opam install js_of_ocaml-compiler

Compiling to JS

Dune has full support building js_of_ocaml libraries and executables transparently.
There’s no need to customize or enable anything to compile ocaml
libraries/executables to JS.

To build a JS executable, just define an executable as you would normally.
Consider this example:

echo 'print_endline "hello from js"' > foo.ml

With the following dune file:

(executable (name foo) (modes js))

And then request the .js target:

$ dune build ./foo.bc.js
$ node _build/default/foo.bc.js
hello from js

Similar targets are created for libraries, but we recommend sticking to the
executable targets.

If you’re using the js_of_ocaml syntax extension, you must remember to add the
appropriate ppx in the preprocess field:

(executable
 (name foo)
 (modes js)
 (preprocess (pps js_of_ocaml-ppx)))

Separate compilation

Dune supports two modes of compilation

	Direct compilation of a bytecode program to JavaScript. This mode allows
js_of_ocaml to perform whole program deadcode elimination and whole program
inlining.

	Separate compilation, where compilation units are compiled to JavaScript
separately and then linked together. This mode is useful during development as
it builds more quickly.

The separate compilation mode will be selected when the build profile is
dev, which is the default. There is currently no other way to control this
behaviour.

How to load additional files at runtime

There are many ways for applications to load files at runtime and Dune provides
a well tested, key-in-hand portable system for doing so. The Dune model works by
defining sites where files will be installed and looked up at runtime. At
runtime, each site is associated to a list of directories which contain the
files added in the site.

WARNING: This feature remains experimental and is subject to breaking changes
without warning. It must be explicitly enabled in the dune-project file with
(using dune_site 0.1)

Sites

Defining a site

A site is defined in a package package in the dune-project file. It
consists of a name and a section (e.g lib, share,
etc) where the site will be installed as a sub-directory.

(lang dune 2.8)
(using dune_site 0.1)
(name mygui)

(package
 (name mygui)
 (sites (share themes)))

Adding files to a site

Here the package mygui defines a site named themes that will be located
in the section share. This package can add files to this sites using the
install stanza:

(install
 (section (site mygui themes))
 (files
 (layout.css as default/layout.css)
 (ok.png as default/ok.png)
 (ko.png as default/ko.png)))

Another package mygui_material_theme can install files inside mygui
directory for adding a new theme. Inside the scope of mygui_material_theme
the dune file contains:

(install
 (section (site mygui themes))
 (files
 (layout.css as material/layout.css)
 (ok.png as material/ok.png)
 (ko.png as material/ko.png)))

The package mygui must be present in the workspace or installed.

Warning

Two files should not be installed by different packages at the same destination.

Getting the locations of a site at runtime

The executable mygui will be able to get the locations of the themes
site using the generate sites module stanza

(executable
 (name mygui)
 (modules mygui mysites)
 (libraries dune-site))

(generate_sites_module
 (name mysites)
 (sites mygui))

The generated module mysites depends on the library dune-site provided by
Dune.

Then inside mygui.ml module the locations can be recovered and used:

(** Locations of the site for the themes *)
let themes_locations : string list = Mysites.Sites.themes

(** Merge the content of the directories in [dirs] *)
let rec readdirs dirs =
 List.concat
 (List.map
 (fun dir -> Array.to_list (Sys.readdir dir))
 (List.filter Sys.file_exists dirs))

(** Get the lists of the available themes *)
let find_available_themes () : string list = lookup_dirs themes_locations

(** Lookup a file in the directories *)
let rec lookup_file filename = function
 | [] -> raise Not_found
 | dir::dirs ->
 let filename' = Filename.concat dir filename in
 if Sys.file_exists filename' then filename'
 else lookup_file filename dirs

(** [lookup_theme_file theme file] get the [file] of the [theme] *)
let lookup_theme_file file theme =
 lookup_file (Filename.concat theme file) themes_locations

let get_layout_css = lookup_theme_file "layout.css"
let get_ok_ico = lookup_theme_file "ok.png"
let get_ko_ico = lookup_theme_file "ko.png"

Tests

During tests the files are copied into the sites through the dependency
(package mygui) and (package mygui_material_theme) as for other files in
install stanza.

Installation

Installation is done simply with dune install, however if one want to
install this tool such that it is relocatable, one can use dune
install --relocatable --prefix $dir. The files will be copied to the directory
$dir but the binary $dir/bin/mygui will find the site location relative
to its location. So even if the directory $dir is moved,
themes_locations will be correct.

Implementation details

The main difficulty for sites is that their directories are found at different
locations at different times:

	When the package is available locally, the location is inside _build

	When the package is installed, the location is inside the install prefix

	If a local package wants to install files to the site of another installed
package the location is at the same time in _build and in the install prefix
of the second package.

With the last example we see that the location of a site is not always a single
directory, but can consist of a sequence of directories: ["dir1" ; "dir2"].
So a lookup must first look into dir1, then into dir2.

Plugins and dynamic loading of packages

Dune allows to define and load plugins without having to deal with specific
compilation, installation directories, dependencies, or the Dynlink [https://caml.inria.fr/pub/docs/manual-ocaml/libref/Dynlink.html] module.

To define a plugin:

	The package defining the plugin interface must define a site where the
plugins must live. Traditionally, this is in (lib plugins), but it is just
a convention.

	Define a library that each plugin must use to register itself (or otherwise
provide its functionality).

	Define the plugin in another package using the plugin stanza.

	Generate a module that may load all available plugins using the
generated_module stanza.

Example

We demonstrate an example of the scheme above. The example consists of the
following components:

Inside package c,

	A package c, containing the executable c, that we intend to extend with
plugins.

	A library c.register which defines the plugin registration interface.

	A generated module Sites which can load available plugins at runtime.

	An executable c that will use the module Sites to load all the plugins.

Inside package b, we declare plugin using the c.register api and the
plugin stanza.

Main executable (C)

	dune-project file:

(lang dune 2.8)
(using dune_site 0.1)
(name c)
(package
 (name c)
 (sites (lib plugins)))

	dune file:

(executable
 (public_name c)
 (modules sites c)
 (libraries c.register dune-site dune-site.plugins))

(library
 (public_name c.register)
 (name c_register)
 (modules c_register))

(generate_sites_module
 (module sites)
 (plugins (c plugins)))

The generated module sites depends here also on the library
dune-site.plugins because the plugins optional field is requested.

	The module c_register.ml of the library c.register:

let todo = Queue.create ()

	The code of the executable c.ml:

(* load all the available plugins *)
let () = Sites.Plugins.Plugins.load_all ()
(* Execute the code registered by the plugins *)
let () = Queue.iter (fun f -> f ()) !C_register.todo

One plugin (B)

	dune-project file:

(lang dune 2.8)
(using dune_site 0.1)
(name b)

	dune file:

(library
 (public_name b)
 (libraries c.register))

(plugin
 (name b)
 (libraries b)
 (site (c plugins)))

	The code of the plugin b.ml:

let () =
 Queue.add (fun () -> print_endline "B is doing something") C_register.todo

OPAM integration

opam [https://opam.ocaml.org/] is the official package manager for OCaml, and dune offers some
integration with it.

Invocation from opam

You should set the build: field of your <package>.opam file as
follows:

build: [
 ["dune" "subst"] {pinned}
 ["dune" "build" "-p" name "-j" jobs]
]

-p pkg is a shorthand for --root . --only-packages pkg --profile
release --default-target @install. -p is the short version of
--for-release-of-packages.

This has the following effects:

	it tells dune to build everything that is installable and to
ignore packages other than name defined in your project

	it sets the root to prevent dune from looking it up

	it silently ignores all rules with (mode promote)

	it sets the build profile to release

	it uses whatever concurrency option opam provides

	it sets the default target to @install rather than @@default

Note that name and jobs are variables expanded by opam. name expands
to the package name and jobs to the number of jobs available to build the
package.

Tests

To setup the building and running of tests in opam, add this line to your
<package>.opam file:

build: [
 (* Previous lines here... *)
 ["dune" "runtest" "-p" name "-j" jobs] {with-test}
]

<package>.opam files

When a <package>.opam file is present, dune will know that the
package named <package> exists. It will know how to construct a
<package>.install file in the same directory to handle installation
via opam [https://opam.ocaml.org/]. Dune also defines the
recursive install alias, which depends on all the buildable
<package>.install files in the workspace. So for instance to build
everything that is installable in a workspace, run at the root:

$ dune build @install

Declaring a package this way will allow you to add elements such as libraries,
executables, documentation, … to your package by declaring them in dune
files.

Such elements can only be declared in the scope defined by the
corresponding <package>.opam file. Typically, your
<package>.opam files should be at the root of your project, since
this is where opam pin ... will look for them.

Note that <package> must be non-empty, so in particular .opam
files are ignored.

Generating opam files

dune will generate .opam files if the dune-project file

	sets (generate_opam_files true), and

	declares one or more packages as per, Declaring a package.

Here’s a complete example of a dune-project file with opam metadata. This
configuration will tell dune to generate two opam files: cohttp.opam and
cohttp-async.opam. (See)

(lang dune 2.8)
(name cohttp)
; version field is optional
(version 1.0.0)

(generate_opam_files true)

(source (github mirage/ocaml-cohttp))
(license ISC)
(authors "Anil Madhavapeddy" "Rudi Grinberg")
(maintainers "team@mirage.org")

(package
 (name cohttp)
 (synopsis "An OCaml library for HTTP clients and servers")
 (description "A longer description")
 (depends
 (alcotest :with-test)
 (dune (> 1.5))
 (foo (and :dev (> 1.5) (< 2.0)))
 (uri (>= 1.9.0))
 (uri (< 2.0.0))
 (fieldslib (> v0.12))
 (fieldslib (< v0.13))))

(package
 (name cohttp-async)
 ; optional version override to allow single package point
 ; releases.
 (version 1.0.1)
 (synopsis "HTTP client and server for the Async library")
 (description "A _really_ long description")
 (depends
 (cohttp (>= 1.0.2))
 (conduit-async (>= 1.0.3))
 (async (>= v0.10.0))
 (async (< v0.12))))

Opam template

A user may want to manually fill in some field in the opam file. In these
situations, dune provides an escape hatch in the form of a user written opam
template. An opam template must be named <package>.opam.template and should
be a syntactically valid opam file. Any field defined in this template file will
be taken as is by dune and never overwritten.

Note the template file cannot be generated by a rule and must be available in
the source tree.

Odig conventions

Dune follows the odig [http://erratique.ch/software/odig]
conventions and automatically installs any README*, CHANGE*, HISTORY*
and LICENSE* files in the same directory as the <package>.opam file
to a location where odig will find them.

Note that this includes files present in the source tree as well as
generated files. So for instance a changelog generated by a user rule
will be automatically installed as well.

Virtual libraries & variants

Virtual libraries correspond to dune’s ability to compile parameterized
libraries and delay the selection of concrete implementations until linking an
executable.

The feature introduces two kinds of libraries: virtual and implementations. A
virtual library corresponds to an interface (although it may contain partial
implementation). An implementation of a virtual library fills in all
unimplemented modules in the virtual library.

The benefit of this partition is that other libraries may depend and compile
against the virtual library and only select concrete implementations for these
virtual libraries when linking executables. An example where this might be
useful would be a virtual, cross platform, clock library. This library would
have clock.unix and clock.win implementations. Executable using
clock or libraries that use clock would conditionally select one of the
implementations, depending on the target platform.

Virtual library

To define a virtual library, a virtual_modules field must be added to an
ordinary library stanza and the version of the dune language must be at least
1.5. This field defines modules for which only an interface would be present
(mli only):

(library
 (name clock)
 ;; clock.mli must be present, but clock.ml must not be
 (virtual_modules clock))

Apart from this field, the virtual library is defined just like a normal library
and may use all the other fields. A virtual library may include other modules
(with or without implementations), which is why it’s not a pure “interface”
library.

Note: the virtual_modules field is not merged in modules, which
represents the total set of modules in a library. If a directory has more than
one stanza and thus a modules field must be specified, virtual modules
still need to be added in modules.

Implementation

An implementation for a library is defined as:

(library
 (name clock_unix)
 ;; clock.ml must be present, but clock.mli must not be
 (implements clock))

The name field is slightly different for an implementation than it is for a
normal library. The name is just an internal name to refer to the
implementation, it does not correspond to any particular module like it does in
the virtual library.

Other libraries may then depend on the virtual library as if it was a regular
library:

(library
 (name calendar)
 (libraries clock))

But when it comes to creating an executable, we must now select a valid
implementation for every virtual library that we’ve used:

(executable
 (name birthday-reminder)
 (libraries
 clock_unix ;; leaving this dependency will make dune loudly complain
 calendar))

Variants

Variants were an experimental feature that were removed in dune 2.6.

Default implementation

A virtual library may select a default implementation, which is enabled after
variant resolution, if no suitable implementation has been found.

(library
 (name time)
 (virtual_modules time)
 (default_implementation time-js))

The default implementation must live in the same package as the virtual library.
In the example above, that would mean that the time-js and time
libraries must be in the same package

Before version 2.6, this was feature was experimental and was guarded under the
library_variants language. In 2.6, this feature was promoted to the stable
language of dune and all uses of (using library_variants) are forbidden
since 2.6.

Limitations

The current implementation of virtual libraries suffers from a few limitations.
Some of these are temporary.

	It is not possible to link more than one implementation for the same
virtual library in one executable.

	It is not possible for implementations to introduce new public modules. That
is, modules that aren’t a part of the virtual library’s cmi. Consequently, a
module in an implementation either implements a virtual module or is private.

	It’s not possible to load virtual libraries into utop. As a result,
any directory that contains a virtual library will not work with $ dune
utop. This is an essential limitation, but it would be best to somehow skip
these libraries or provide an implementation for them when loading a toplevel.

	Virtual libraries must be defined using dune. It’s not possible for dune to
implement virtual libraries created outside of dune. On the other hand,
virtual libraries and implementations defined using dune should be usable with
findlib based build systems.

	It is not possible for a library to be both virtual and implement another
library. This isn’t very useful, but technically, it could be used to create
partial implementations. It is possible to lift this restriction if there’s
enough demand for this.

Automatic formatting

Dune can be set up to run automatic formatters for source code.

It can use ocamlformat [https://github.com/ocaml-ppx/ocamlformat] to format OCaml source code (*.ml and *.mli
files) and refmt [https://github.com/facebook/reason/tree/master/src/refmt] to format Reason source code (*.re and *.rei files).

Furthermore it can be used to format code of any defined dialect (see
dialect).

Configuring automatic formatting (dune 2.0)

If using (lang dune 2.0), there is nothing to setup in dune, formatting will
be set up by default. However, ocamlformat [https://github.com/ocaml-ppx/ocamlformat] will still refuse to format sources
without an .ocamlformat file present in the project root.

By default, formatting will be enabled for all languages and dialects present in
the project that dune knows about. This is not always desirable, for example if
in a mixed Reason/OCaml project, one only wants to format the Reason files to
avoid pulling ocamlformat [https://github.com/ocaml-ppx/ocamlformat] as a dependency.

It is possible to restrict the languages considered for formatting or disable it
altogether by using the formatting stanza.

Formatting a project

When this feature is active, an alias named fmt is defined. When built, it
will format the source files in the corresponding project and display the
differences:

$ dune build @fmt
--- hello.ml
+++ hello.ml.formatted
@@ -1,3 +1 @@
-let () =
- print_endline
- "hello, world"
+let () = print_endline "hello, world"

It is then possible to accept the correction by calling dune promote to
replace the source files by the corrected versions.

$ dune promote
Promoting _build/default/hello.ml.formatted to hello.ml.

As usual with promotion, it is possible to combine these two steps by running
dune build @fmt --auto-promote.

Enabling and configuring automatic formatting (dune 1.x)

Note

This section applies only to projects with (lang dune 1.x).

In (lang dune 1.x), no formatting is done by default. This feature is
enabled by adding the following to the dune-project file:

(using fmt 1.2)

Languages can be configured using the following syntax:

(using fmt 1.2 (enabled_for reason))

Version history

(lang dune 2.0)

	Formatting is enabled by default.

(using fmt 1.2)

	Format dialects (see dialect).

(using fmt 1.1)

	Format Dune files.

(using fmt 1.0)

	Format OCaml (using ocamlformat [https://github.com/ocaml-ppx/ocamlformat]) and Reason (using refmt [https://github.com/facebook/reason/tree/master/src/refmt]) source code.

Cross compilation

Dune allows for cross compilation by defining build contexts with
multiple targets. Targets are specified by adding a targets field
to the definition of a build context.

targets takes a list of target name. It can be either:

	native which means using the native tools that can build
binaries that run on the machine doing the build

	the name of an alternative toolchain

Note that at the moment, there is no official support for
cross-compilation in OCaml. Dune supports the opam-cross-x
repositories from the ocaml-cross organization on GitHub [https://github.com/ocaml-cross/], such as:

	opam-cross-windows [https://github.com/ocaml-cross/opam-cross-windows]

	opam-cross-android [https://github.com/ocaml-cross/opam-cross-android]

	opam-cross-ios [https://github.com/ocaml-cross/opam-cross-ios]

In particular:

	to build Windows binaries using opam-cross-windows, write windows
in the list of targets

	to build Android binaries using opam-cross-android, write
android in the list of targets

	to build IOS binaries using opam-cross-ios, write ios in the
list of targets

For example, the following workspace file defines three different
targets for the default build context:

(context (default (targets (native windows android))))

This configuration defines three build contexts:

	default

	default.windows

	default.android

Note that the native target is always implicitly added when not
present. However, when implicitly added dune build @install
will skip this context, i.e. default will only be used for
building executables needed by the other contexts.

With such a setup, calling dune build @install will build all
the packages three times.

Note that instead of writing a dune-workspace file, you can also
use the -x command line option. Passing -x foo to dune
without having a dune-workspace file is the same as writing the
following dune-workspace file:

(context (default (targets (foo))))

If you have a dune-workspace and pass a -x foo option,
foo will be added as target of all context stanzas.

How does it work?

In such a setup, binaries that need to be built and executed in the
default.windows or default.android contexts as part of the
build, will no longer be executed. Instead, all the binaries that will
be executed will come from the default context. One consequence of
this is that all preprocessing (ppx or otherwise) will be done using
binaries built in the default context.

To clarify this with an example, let’s assume that you have the following
src/dune file:

(executable (name foo))
(rule (with-stdout-to blah (run ./foo.exe)))

When building _build/default/src/blah, dune will resolve ./foo.exe to
_build/default/src/foo.exe as expected. However, for
_build/default.windows/src/blah dune will resolve ./foo.exe to
_build/default/src/foo.exe

Assuming that the right packages are installed or that your workspace
has no external dependencies, dune will be able to cross-compile a
given package without doing anything special.

Some packages might still have to be updated to support cross-compilation. For
instance if the foo.exe program in the previous example was using
Sys.os_type, it should instead take it as a command line argument:

(rule (with-stdout-to blah (run ./foo.exe -os-type %{os_type})))

Dune libraries

Configurator

Configurator is a small library designed to query features available on the
system, in order to generate configuration for dune builds. Such generated
configuration is usually in the form of command line flags, generated headers,
stubs, but there are no limitations on this.

Configurator allows you to query for the following features:

	Variables defined in ocamlc -config,

	pkg-config [https://www.freedesktop.org/wiki/Software/pkg-config/] flags for packages,

	Test features by compiling C code,

	Extract compile time information such as #define variables.

Configurator is designed to be cross compilation friendly and avoids _running_
any compiled code to extract any of the information above.

Configurator started as an independent library [https://github.com/janestreet/configurator], but now lives in dune.
It is released as the package dune-configurator.

Usage

We’ll describe configurator with a simple example. Everything else can be easily
learned by studying configurator’s API [https://github.com/ocaml/dune/blob/master/otherlibs/configurator/src/v1.mli].

To use configurator, we write an executable that will query the system using
configurator’s API and output a set of targets reflecting the results. For
example:

module C = Configurator.V1

let clock_gettime_code = {|
#include <time.h>

int main()
{
 struct timespec ts;
 clock_gettime(CLOCK_REALTIME, &ts);
 return 0;
}
|}

let () =
 C.main ~name:"foo" (fun c ->
 let has_clock_gettime =
 C.c_test c clock_gettime_code ~link_flags:["-lrt"] in

 C.C_define.gen_header_file c ~fname:"config.h"
 ["HAS_CLOCK_GETTIME", Switch has_clock_gettime]);

Usually, the module above would be named discover.ml. The next step is to
invoke it as an executable and tell dune about the targets that it produces:

(executable
 (name discover)
 (libraries dune-configurator))

(rule
 (targets config.h)
 (action (run ./discover.exe)))

Another common pattern is to produce a flags file with configurator and then use
this flag file using :include:

(library
 (name mylib)
 (foreign_stubs (language c) (names foo))
 (c_library_flags (:include (flags.sexp))))

For this, generate the list of flags for your library — for example
using Configurator.V1.Pkg_config — and then write them to a file,
in the above example flags.sexp, with
Configurator.V1.write_flags "flags.sexp" flags.

Upgrading from the old Configurator

The old configurator is the independent configurator [https://github.com/janestreet/configurator] opam package. It is deprecated
and users are encouraged to migrate to dune’s own configurator. The advantage of
the transition include:

	No extra dependencies,

	No need to manually pass -ocamlc flag,

	New configurator is cross compilation compatible.

The following steps must be taken to transition from the old configurator:

	Mentions of the configurator opam package should be replaced
with dune-configurator.

	The library name configurator should be changed dune-configurator.

	The -ocamlc flag in rules that run configurator scripts should be removed.
This information is now passed automatically by dune.

	The new configurator API is versioned explicitly. The version that is
compatible with old configurator is under the V1 module. Hence, to
transition one’s code it’s enough to add this module alias:

module Configurator = Configurator.V1

build-info

Dune can embed build information such as versions in executables
via the special dune-build-info library. This library exposes
some information about how the executable was built such as the
version of the project containing the executable or the list of
statically linked libraries with their versions. Printing the version
at which the current executable was built is as simple as:

Printf.printf "version: %s\n"
 (match Build_info.V1.version () with
 | None -> "n/a"
 | Some v -> Build_info.V1.Version.to_string v)

For libraries and executables from development repositories that don’t
have version information written directly in the dune-project
file, the version is obtained by querying the version control
system. For instance, the following git command is used in git
repositories:

git describe --always --dirty

which produces a human readable version string of the form
<version>-<commits-since-version>-<hash>[-dirty].

Note that in the case where the version string is obtained from the
version control system, the version string will only be written in
the binary once it is installed or promoted to the source tree. In
particular, if you evaluate this expression as part of the build of
your package, it will return None. This is to ensure that
committing does not hurt your development experience. Indeed, if dune
stored the version directly inside the freshly built binaries, then
every time you commit your code the version would change and dune would
need to rebuild all the binaries and everything that depend on them,
such as tests. Instead Dune leaves a placeholder inside the binary and
fills it during installation or promotion.

(Experimental) Dune action plugin

This library is experimental and no backwards compatibility is implied. Use at
your own risk.

Dune-action-plugin provides a monadic interface to express program
dependencies directly inside the source code. Programs using this feature
should be declared using dynamic-run construction instead of usual run.

Other topics

This section describes some details of dune for advanced users.

META file generation

Dune uses META files from the findlib library
manager [http://projects.camlcity.org/projects/findlib.html] in order
to interoperate with the rest of the world when installing libraries. It
is able to generate them automatically. However, for the rare cases
where you would need a specific META file, or to ease the transition
of a project to dune, it is allowed to write/generate a specific
one.

In order to do that, write or setup a rule to generate a
META.<package>.template file in the same directory as the
<package>.opam file. Dune will generate a META.<package>
file from the META.<package>.template file by replacing lines of
the form # DUNE_GEN by the contents of the META it would
normally generate.

For instance if you want to extend the META file generated by
dune you can write the following META.foo.template file:

DUNE_GEN
blah = "..."

Findlib integration

Dune uses META files to support external libraries. However, it
doesn’t export the full power of findlib to the user, and especially
it doesn’t let the user specify predicates.

The reason for this limitation is that so far they haven’t been
needed, and adding full support for them would complicate things quite
a lot. In particular, complex META files are often hand-written and
the various features they offer are only available once the package is
installed, which goes against the root ideas dune is built on.

In practice, dune interprets META files assuming the following
set of predicates:

	mt: what this means is that using a library that can be used
with or without threads with dune will force the threaded
version

	mt_posix: forces the use of posix threads rather than VM
threads. VM threads are deprecated and are likely to go away soon

	ppx_driver: when a library acts differently depending on whether
it is linked as part of a driver or meant to add a -ppx argument
to the compiler, choose the former behavior

Dynamic loading of packages with findlib

The preferred way for new development is to use Plugins and dynamic loading of packages.

Dune supports the findlib.dynload package from findlib [http://projects.camlcity.org/projects/findlib.html] that enables
dynamically loading packages and their dependencies (using the OCaml Dynlink module).
So adding the ability for an application to have plugins just requires to add
findlib.dynload to the set of library dependencies:

(library
 (name mytool)
 (public_name mytool)
 (modules ...)
)

(executable
 (name main)
 (public_name mytool)
 (libraries mytool findlib.dynload)
 (modules ...)
)

Then you could use in your application Fl_dynload.load_packages l
that will load the list l of packages. The packages are loaded
only once. So trying to load a package statically linked does nothing.

A plugin creator just need to link to your library:

(library
 (name mytool_plugin_a)
 (public_name mytool-plugin-a)
 (libraries mytool)
)

By choosing some naming convention, for example all the plugins of
mytool should start with mytool-plugin-. You can automatically
load all the plugins installed for your tool by listing the existing packages:

let () = Findlib.init ()
let () =
 let pkgs = Fl_package_base.list_packages () in
 let pkgs =
 List.filter
 (fun pkg -> 14 <= String.length pkg && String.sub pkg 0 14 = "mytool-plugin-")
 pkgs
 in
 Fl_dynload.load_packages pkgs

Classical ppx

classical ppx refers to running ppx using the -ppx compiler option, which is
composed using Findlib. Even though this is useful to run some (usually old)
ppx’s which don’t support drivers, dune does not support preprocessing with
ppx this way. but a workaround exists using the ppxfind [https://github.com/diml/ppxfind] tool.

Profiling dune

If --trace-file FILE is passed, dune will write detailed data about internal
operations, such as the timing of commands that are run by dune.

The format is compatible with Catapult trace-viewer [https://github.com/catapult-project/catapult/blob/master/tracing/README.md]. In particular, these
files can be loaded into Chromium’s chrome://tracing. Note that the exact
format is subject to change between versions.

Package version

Dune determine the version of a package by looking at the version
field in the package stanza. If the version field is
not set, it looks at the toplevel version field in the
dune-project field. If neither are set, dune assume that we are in
development mode and reads the version from the VCS if any. The way it
obtains the version from the VCS in described in the build-info
section.

When installing the files of a package on the system, dune
automatically inserts the package version into various metadata files
such as META and dune-package files.

OCaml syntax

If a dune file starts with (* -*- tuareg -*- *), then it is
interpreted as an OCaml script that generates the dune file as described
in the rest of this section. The code in the script will have access to a
Jbuild_plugin [https://github.com/ocaml/dune/blob/master/plugin/jbuild_plugin.mli]
module containing details about the build context it is executed in.

The OCaml syntax gives you an escape hatch for when the S-expression
syntax is not enough. It is not clear whether the OCaml syntax will be
supported in the long term as it doesn’t work well with incremental
builds. It is possible that it will be replaced by just an include
stanza where one can include a generated file.

Consequently you must not build complex systems based on it.

Variables for artifacts

For specific situations where one needs to refer to individual compilation
artifacts, special variables (see Variables) are provided so that the
user does not need to be aware of the particular naming conventions or directory
layout implemented by dune.

These variables can appear wherever a Dependency specification is expected and also
inside User actions. When used inside User actions, they
implicitly declare a dependency on the corresponding artifact.

The variables have the form %{<ext>:<path>}, where <path> is
interpreted relative to the current directory:

	cmo:<path>, cmx:<path>, cmi:<path> expand to the path of the
corresponding artifact for the module specified by <path>. The basename of
<path> should be the name of a module as specified in a (modules)
field.

	cma:<path>, cmxa:<path> expands to the path of the corresponding
artifact for the library specified by <path>. The basename of <path>
should be the name of the library as specified in the (name) field of a
library stanza (not its public name).

In each case, the expansion of the variable is a path pointing inside the build
context (i.e. _build/<context>).

Building an ad-hoc .cmxs

In the model exposed by dune, a .cmxs target is created for each
library. However, the .cmxs format itself is more flexible than that and is
capable to containing arbitrary .cmxa and .cmx files.

For the specific cases where this extra flexibility is needed, one can use
Variables for artifacts to write explicit rules to build .cmxs files
not associated to any library.

Below is an example where we build my.cmxs containing foo.cmxa and
d.cmx. Note how we use a library stanza to set up the compilation of
d.cmx.

(library
 (name foo)
 (modules a b c))

(library
 (name dummy)
 (modules d))

(rule
 (targets my.cmxs)
 (action (run %{ocamlopt} -shared -o %{targets} %{cmxa:foo} %{cmx:d})))

Lexical conventions

All configuration files read by Dune are using a syntax similar to the
one of S-expressions, which is very simple. The Dune language can
represent three kinds of values: atoms, strings and lists. By
combining these, it is possible to construct arbitrarily complex
project descriptions.

A Dune configuration file is a sequence of atoms, strings or lists
separated by spaces, newlines and comments. The other sections of this
manual describe how each configuration file is interpreted. We
describe below the syntax of the language.

Comments

The Dune language only has end of line comments. End of line comments
are introduced with a semicolon and span up to the end of the end of
the current line. Everything from the semicolon to the end of the line
is ignored. For instance:

; This is a comment

Atoms

An atom is a non-empty contiguous sequences of character other than
special characters. Special characters are:

	spaces, horizontal tabs, newlines and form feed

	opening and closing parenthesis

	double quotes

	semicolons

For instance hello or + are valid atoms.

Note that backslashes inside atoms have no special meaning are always
interpreted as plain backslashes characters.

Strings

A string is a sequence of characters surrounded by double quotes. A
string represent the exact text between the double quotes, except for
escape sequences. Escape sequence are introduced by the a backslash
character. Dune recognizes and interprets the following escape
sequences:

	\n to represent a newline character

	\r to represent a carriage return (character with ASCII code 13)

	\b to represent ASCII character 8

	\t to represent a horizontal tab

	\NNN, a backslash followed by three decimal characters to
represent the character with ASCII code NNN

	\xHH, a backslash followed by two hexadecimal characters to
represent the character with ASCII code HH in hexadecimal

	\\, a double backslash to represent a single backslash

	\%{ to represent %{ (see Variables)

Additionally, a backslash that comes just before the end of the line
is used to skip the newline up to the next non-space character. For
instance the following two strings represent the same text:

"abcdef"
"abc\
 def"

In most places where Dune expect a string, it will also accept an
atom. As a result it possible to write most Dune configuration file
using very few double quotes. This is very convenient in practice.

End of line strings

End of line strings are another way to write strings. The are a
convenient way to write blocks of text inside a Dune file.

End of line strings are introduced by "\| or "\> and span up
the end of the current line. If the next line starts as well by
"\| or "\> it is the continuation of the same string. For
readability, it is necessary that the text that follows the delimiter
is either empty or starts with a space that is ignored.

For instance:

"\| this is a block
"\| of text

represent the same text as the string "this is a block\nof text".

Escape sequences are interpreted in text that follows "\| but not
in text that follows "\>. Both delimiters can be mixed inside the
same block of text.

Lists

Lists are sequences of values enclosed by parentheses. For instance
(x y z) is a list containing the three atoms x, y and
z. Lists can be empty, for instance: ().

Lists can be nested, allowing to represent arbitrarily complex
descriptions. For instance:

(html
 (head (title "Hello world!"))
 (body
 This is a simple example of using S-expressions))

FAQ

Why do many dune projects contain a Makefile?

Many dune projects contain a root Makefile. It is often only there for
convenience, for the following reasons:

	there are many different build systems out there, all with a different CLI.
If you have been hacking for a long time, the one true invocation you know is
make && make install, possibly preceded by ./configure

	you often have a few common operations that are not part of the build and
make <blah> is a good way to provide them

	make is shorter to type than dune build @install

How to add a configure step to a dune project?

The with-configure-step [https://github.com/ocaml/dune/tree/master/example/sample-projects/with-configure-step.t] example shows one way to do it which
preserves composability; i.e. it doesn’t require manually running ./configure
script when working on multiple projects at the same time.

Can I use topkg with dune?

It’s possible using the topkg-jbuilder [https://github.com/samoht/topkg-jbuilder] but it’s not recommended. dune-release [https://github.com/samoht/dune-release]
subsumes topkg-jbuilder and is specifically tailored to dune projects.

How do I publish my packages with dune?

Dune is just a build system and considers publishing outside of its scope.
However, the dune-release [https://github.com/samoht/dune-release] project is specifically designed for releasing dune
projects to opam. We recommend using tool for publishing dune packages.

Where can I find some examples of projects using dune?

The dune-universe [https://github.com/dune-universe/dune-universe] repository contains a snapshot of the latest versions of all
opam packages depending on dune. It is therefore a useful reference to
search through to find different approaches to constructing build rules.

What is Jenga?

jenga [https://github.com/janestreet/jenga] is a build system developed by Jane Street mainly for internal use. It
was never usable outside of Jane Street, and hence not recommended for general
use. It has no relationship to dune apart from dune being the successor to Jenga
externally. Eventually, dune is expected to replace Jenga internally at Jane
Street as well.

How to make warnings non-fatal?

jbuilder used to display warnings, but most of them would not stop the
build. But dune makes all warnings fatal by default. This can be a
challenge when porting a codebase to dune. There are two ways to make warnings
non-fatal:

	the jbuilder compatibility executable works even with dune files. You
can use it while some warnings remain, and then switch over to the dune
executable. This is the recommended way to handle the situation.

	you can pass --profile release to dune. It will set up different
compilation options that usually make sense for release builds, including
making warnings non-fatal. This is done by default when installing packages
from opam.

	you can change the flags that are used by the dev profile by adding the
following stanza to a dune file:

(env
 (dev
 (flags (:standard -warn-error -A))))

How to display the output of commands as they run?

When dune runs external commands, it redirects and saves their output and
displays it when they have completed. This ensures that there is no interleaving
when writing to the console.

But this might not be what the you want, for example when debugging a hanging
build.

In that case, one can pass -j1 --no-buffer so that the commands are directly
printed on the console (and the parallelism is disabled so that the output stays
readable).

How can I generate an mli file from an ml file?

When a module starts as just an implementation (.ml file), it can be tedious
to define the corresponding interface (.mli file).

It is possible to use the ocaml-print-intf program (available on opam
through opam install ocaml-print-intf) to generate the right mli file:

$ dune exec -- ocaml-print-intf ocaml_print_intf.ml
val root_from_verbose_output : string list -> string
val target_from_verbose_output : string list -> string
val build_cmi : string -> string
val print_intf : string -> unit
val version : unit -> string
val usage : unit -> unit

It has special support for dune so it will automatically understand external
dependencies.

Known Issues

mli only modules

These are supported, however using them might cause make it impossible for
non-dune users to use your library. We tried to use them for some internal
module generated by dune and it broke the build of projects not using
dune:

https://github.com/ocaml/dune/issues/567

So, while they are supported, you should be careful where you use them. Using a
.ml only module is still preferable.

parallel dune invocations on the same tree

One can invoke dune multiple times in parallel, as long as the invocations are not
under the same root. That is to say, two dune runs cannot share the same target
_build directory.

This is tracked under https://github.com/ocaml/dune/issues/236.

Migration

Dune was initially called Jbuilder. Up to mid-2018, the package was still called
jbuilder which only installed a jbuilder binary. This document explain how
the migration to Dune will happen.

Timeline

The general idea is that the migration is gradual and existing
Jbuilder projects don’t need to be updated all at once. We encourage
users to switch their development repositories and continue their
usual release cycle. There is no need to re-release existing packages
just to switch to Dune immediately.

The plan is as follows:

July 2018: release of Dune 1.0.0

First release of the opam package dune. The jbuilder package
becomes a transitional package that depends on dune.

The dune package installs two binaries: dune and jbuilder. These
two binaries are exactly the same and they work on both Jbuilder and
Dune projects. Additionally they recognize both Jbuilder and Dune
configuration files. The new Dune configuration files are described
later in this document.

January 2019: deprecation of Jbuilder

At this point, the jbuilder binary emits a warning on every startup
inviting users to switch to dune. When encountering jbuild or
other Jbuilder configuration files, both binaries emit a warning. The
rest is unchanged.

During this period, it makes sense for projects to do new releases
just to switch to Dune if none of their existing releases is using
Dune.

July 2019: support for Jbuilder is dropped

jbuilder is now a dummy executable that always exit with an error
message on startup. dune no longer reads jbuild or other Jbuidler
configuration files but still prints a warning when encountering
them.

At this point, a conflict with newer versions of dune will be added
to all opam packages that rely on the jbuilder binary or Jbuilder
configuration files.

January 2020: the jbuilder binary goes away

The dune package no longer installs a jbuilder binary. The rest is
unchanged.

Distant future

Once we are sure there are no more jbuild files out there, Dune will
completely ignore jbuild and other Jbuilder configuration files.

Check list

This section is a concise list of migration tasks that will be required to
transition from jbuilder to dune.

New configuration files

Until July 2019, dune will still read jbuild and other Jbuilder
configuration files. There is no change in these files.

However, based on the experience acquired since the first release of
Jbuilder, we made a few changes in the configuration files read by
Dune. The most notable ones are the following:

	jbuild files are renamed simply dune

	projects now have a dune-project file at their root

	jbuild-ignore files are replaced by ignored_subdirs stanzas in
dune files

	jbuild-workspace are replaced by dune-workspace files

	jbuild-workspace<suffix> files no longer mean anything

Following are detailed explanation of the differences between the
Jbuilder configuration files and the Dune ones.

dune-project files

These are a new kind of file. With Jbuilder, projects used to be
identified by the presence of at least one <package>.opam file in a
directory. This will still be supported until July 2019, however as
Jbuilder evolved it became clear that we needed project files, so Dune
introduces dune-project files to mark the root of projects.

Eventually, we are hoping that Dune will generate opam files. So users
will only have to write a dune-project file.

The purpose of this file is to:

	delimit projects in larger workspaces

	set a few project-wide parameters, such as the name, the version of the Dune
language in use or specification of extra features (plugins) used in the
project

Eventually, for users who wish to do so it should be possible to
centralize all the configuration of a project in this file.

dune files

These are the same as jbuild files.

dune-workspace

These are the same as jbuild-workspace files.

When looking for the root of the workspace, Jbuilder also looks for
files whose name start with jbuild-workspace, such as
jbuild-workspace.in. This rule will be kept until July 2019, however
it is not preserved for dune-workspace files. I.e. a
dune-workspace.in file means nothing.

This rule was only useful when we didn’t have project files.

Variable syntax

${foo} and $(foo) are no longer valid variable syntax in dune files.
Variables are defined as %{foo}. This change is done to simplify
interoperability with bash commands which also use the ${foo} syntax.

(files_recursively_in ..) is removed

The files_recursively_in dependency specification is invalid in dune files.
A source_tree stanza has been introduced to reflect the
actual function of this stanza.

Escape sequences

Invalid escape sequences of the form \x where x is a character other
than [0-9], x, n, r, t, b are not allowed in dune files.

Comments syntax

Block comments of the form #| ... |# and comments of the form #; are not
supported in dune files.

Renamed variables

All existing variables have been lowercased for consistency. Other variables
have always been renamed. Refer to this table for details:

	Jbuild

	Dune

	${@}

	%{targets}

	${^}

	%{deps}

	${path:file}

	%{dep:file}

	${SCOPE_ROOT}

	%{project_root}

	${ROOT}

	%{workspace_root}

	${findlib:..}

	%{lib:..}

	${CPP}

	%{cpp}

	${CC}

	%{cc}

	${CXX}

	%{cxx}

	${OCAML}

	%{ocaml}

	${OCAMLC}

	%{ocamlc}

	${OCAMLOPT}

	%{ocamlopt}

	${ARCH_SIXTYFOUR}

	%{arch_sixtyfour}

	${MAKE}

	%{make}

Removed variables

${path-no-dep:file} and ${<} have been removed.

A named dependency should be used instead of ${<}. For instance
the following jbuild file:

(alias
 ((name runtest)
 (deps (input))
 (action (run ./test.exe %{<}))))

should be rewritten to the following dune file:

(rule
 (alias runtest)
 (deps (:x input))
 (action (run ./test.exe %{x})))

JBUILDER_GEN renamed

DUNE_GEN should be used instead of # JBUILDER_GEN in META templates.

jbuild-ignore (deprecated)

jbuild-ignore files are deprecated and replaced by
dirs (since 1.6) stanzas in dune files.

Caching

Dune has the ability to cache built files for later retrieval. This
can greatly speedup subsequent builds when some dependencies are
rebuilt in different workspaces, switching branches or iterating on
code back and forth.

Configuration

The cache is, for now, an opt-in feature. Add (cache enabled) to
your dune configuration file (default ~/.config/dune/config) to
activate it. When turned on, built files will automatically be
promoted to the cache, and subsequent builds will automatically check
the cache for hits.

The cached files are stored inside you XDG_CACHE_HOME directory on
*nix systems, and “HOME\Local Settings\Cache” on Windows.

Daemon

By default, most cache operations go through the dune cache daemon, a
separate process that dune instances connect to. This enables
promotions to happen asynchronously and not slow the build
process. The daemon is automatically started if needed when dune needs
accessing the cache, and lives on for further use.

Although the daemon concept is totally transparent, one can control it
via the dune cache subcommand.

Starting the daemon

Use dune cache start to start the caching daemon if not running and
print its endpoint, or retrieve the endpoint of the currently running
daemon otherwise. A notable option is –foreground to not detach the
daemon, which can help inspecting its log output.

Stopping the daemon

Use dune cache stop to stop the caching daemon. Although the daemon,
when idle, should consume zero resources, you may want to get rid of
the process. Also useful to restart the daemon with –foreground.

Filesystem implementation

Hardlink mode

By default the cache works by creating hardlinks to built files inside
the cache directory when promoted, and in other build trees when
retrieved. This has the great advantage of having zero disk space
overhead for files still living in a build directory. This has two
main constraints:

	The cache root must be on the same partition as the build tree.

	Produced files will be stripped from write permissions, as they are
shared between build trees. Note that modifying built files is bad
practice in any case.

Copy mode

If one specifies (cache-duplication copy) in the configuration file,
dune will copy files to and from the cache instead of using hardlinks.
This can be useful if the build cache is on a different partition.

On-disk size

The cache daemon will perform periodic trimming to limit the overhead.
Every 10 minutes, it will purge the least recently used files so the
cache overhead does not exceed 10G. This is configurable through the
(cache-trim-period SECONDS) and (cache-trim-size BYTES)
configuration entries. Note that this operation will only consider the
cache overhead, i.e. files not currently hard-linked in a build
directory, as removing files currently used would not free any disk
space.

On can run dune cache trim –size=BYTES to manually trigger trimming
in the cache daemon.

Reproducibility

Reproducibility check

While default mode of operation of the cache is to speedup build times
by not re-running some rules, it can also be used to check build
reproducibility. If (cache-check-probability FLOAT) or
–cache-check-probability=FLOAT is specified either respectively in
the configuration file or the command line, in case of a cache hit
dune will rerun the rule anyway with the given probability and compare
the resulting files against a potential cache hit. If the files
differ, the rule is not reproducible and a warning will be emitted.

Non-reproducible rules

If you know that some rule is not reproducible (e.g. because it
downloads a non-fixed file from the internet) and should never be
cached, then you can mark it as such by using (deps (universe)).
See Dependency specification.

Daemon-less mode

While the cache daemon provides asynchronous promotions to speedup
builds and background trimming amongst other things, in some
situations direct access can be preferable. This can be the case when
running in an isolated environment like Docker or OPAM sandboxes,
where only one instance of dune will ever be running at a time, and
access to external cache is prohibited. Direct filesystem access can
be obtained by specifying (cache-transport direct) in the
configuration file or passing –cache-transport=direct on the
command line.

Toplevel integration

OCaml provides a small repl to use the language interactively. We
generally call this tool a toplevel. The compiler distribution comes
with a small repl called simply ocaml and the community has
developed enhanced versions such as utop [https://github.com/ocaml-community/utop].

It’s possible to load dune projects in any toplevel. To do that,
simply execute the following in your toplevel:

#use_output "dune top";;

dune top is a dune command that builds all the libraries in the
current directory and sub-directories and output the relevant toplevel
directives (#directory and #load) to make the various modules
available in the toplevel.

Additionally, if some of the libraries are ppx rewriters the phrases
you type in the toplevel will be rewritten with these ppx rewriters.

This command is available since Dune 2.5.0.

Note that the #use_output directivce is only available since OCaml
4.11. You can add the following snippet to your ~/.ocamlinit file
to make it available in older versions of OCaml:

 #directory "+compiler-libs"

 let try_finally ~always f =
 match f () with
 | x ->
 always ();
 x
 | exception e ->
 always ();
 raise e

 let use_output command =
 let fn = Filename.temp_file "ocaml" "_toploop.ml" in
 try_finally
 ~always:(fun () -> try Sys.remove fn with Sys_error _ -> ())
 (fun () ->
 match
 Printf.ksprintf Sys.command "%s > %s" command (Filename.quote fn)
 with
 | 0 -> ignore (Toploop.use_file Format.std_formatter fn : bool)
 | n -> Format.printf "Command exited with code %d.@." n)

 let () =
 let name = "use_output" in
 if not (Hashtbl.mem Toploop.directive_table name) then
 Hashtbl.add Toploop.directive_table name
 (Toploop.Directive_string use_output)

;;
#remove_directory "+compiler-libs"

Goal of Dune

The main goal of the Dune project is to provide the best possible
build tool for the whole of the OCaml community; from individual
developers who work on open source projects during their free time all
the way to larger companies such as Jane Street passing by communities
such as MirageOS. And to the extent that is reasonably possible, help
provide the same features for friend communities such as Coq and
possibly Reason/Bucklescript in the future.

We haven’t reached this goal yet and Dune still lacks in some areas in
order to be such a tool, but we are steadily working towards that goal.
On a practical level, there are a few boxes to check. There are in
fact a ton details to sort out, but at a high-level a tool that works
for everyone in the OCaml community should at least:

	have excellent backward compatibility properties

	have a robust and scalable core

	remain a no-brainer dependency

	remain accessible

	have very good support for the OCaml language

	be extensible

At this point, we have done a good job at 1, 3, 4 and 5, we are
working towards 2 and are doing the preparatory work for 6. Once all
these boxes have been checked, we will consider that the Dune project
is feature complete.

In the rest of this page, we develop these points and give some
insights into our current and future focuses.

Have excellent backward compatibility properties

In an open-source community, there will always be groups of people
with enough resources to continuously bring their projects up to date
as well as people who work on their free time and cannot provide the
same level of continuous support and updates.

From the point of view of Dune, we have to assume that a released
project with dune files is a precious piece that will potentially
never change. So changing Dune in a way that it could no longer
understand a released project is by default a no-no.

Of course, we can’t give a 100% guarantee that Dune will always behave
exactly the same. That would be unrealistic and would prevent the
project from moving forward. In order for us to provide good backward
compatibility properties while still keeping the project fresh and
dynamic, we have to make sure to properly delimit, document and
version the set of behaviours on which users should rely. And for this
to be manageable, the surface API of Dune has to remain small.

A distinguishing feature of Dune is that it lets the user declare which
version of the dune tool their project was written against, and
dune will morph itself to behave the same as this version of the
dune binary, even if it is a newer version. As a result, a recent
version of the dune binary is able to understand a wide range of
dune projects written against many different version of Dune. And
while we strictly follow semantic versioning [https://semver.org/], new major versions of
Dune effectively introduce very few breaking changes and most projects
do not need upper bounds on Dune.

This guarantee is of course limited to documented behaviours.

Have a robust and scalable core

Tech companies tend be fond of big mono repositories, so to be able to
work for them Dune needs to be able to eat up large repositories
without blinking. It not only needs to build fast, but more
importantly it must not get in the way of fast feedback during
development, no matter the size of the repository.

Note that Dune will only be tested on repositories as large as people
participating in the development of Dune require. Currently, the
largest user is Jane Street. If someone wanted to use Dune on much
larger repositories than the ones used at Jane Street and this
required a significant amount of effort on Dune, this wouldn’t be
considered unless we get some help to do so and we can keep the other
promises.

In particular, while making Dune scalable we must also make sure to
not turn Dune into a monster because no one wants to force their users
to install a monster to build their project. This brings us to the
next point of Dune being a no-brainer dependency.

Remain a no-brainer dependency

Dune is a hard dependency of any Dune project. Anyone using Dune
to develop their project will have to ask their user to install
Dune. For this reason, it is very important to keep Dune as lean as
possible.

This is why we have to be careful when we start relying on an external
piece of software, or when we introduce new concepts. We must make
sure to not introduce duplication or useless stuff. The overall
projects has to remain lean.

It is also important to keep Dune as easy to install as
possible. Currently, the only requirement to build Dune is a
working OCaml compiler. Nothing else is required, not even a shell and
we should keep it this way.

Remain accessible

Since Dune aims to be the best possible tool for the whole OCaml
community, it is important for Dune to remain accessible. Getting
started and learning Dune should be straightforward.

For that purpose, when designing the language, the command line
interface or the documentation, we must take on the perspective
of a user who is just discovering Dune and its features.

Because Dune must be suitable for everyone, it must also provide
advanced and more complex features for expert users. However, the
documentation should always flow from the simpler concepts and common
tasks to the more complex ones. Even if the simpler features can be
explained as instances of the more general ones.

Have very good support for the OCaml language

There are many many build systems out there. What makes Dune different
is that it primarily targets the OCaml community. So Dune must come
with excellent support for the OCaml language and OCaml projects in
general.

If it didn’t, then Dune would just be yet another build system.

Perhaps in the future some of the general build system will take over
and Dune might just become a plugin in this system, or even disappear
into the language if the compiler gains a lot of higher level
features. But for now, Dune is a standalone build system that is
primarily serving the needs of the OCaml community, and to the extent
that is reasonably possible the needs of friend communities.

Be extensible

No matter how good the support for the OCaml language is, it will
never be enough to cover every single project need. For this reason,
Dune needs to provide some form of openness for projects that need
something that doesn’t completely fit in the model provided by Dune.

In the long run, extensibility tends to get in the way of innovation
and we should always strive to make sure that all the general needs
are covered by the main Dune language, but we will always need an
escape hatch for Dune to remain a practical choice.

It is pretty clear to us that extensibility must be done via OCaml
code, and currently it is a bit difficult to use OCaml as a proper
extension language, though some work is being done to help on that
front.

Working on the Dune codebase

This section gives guidelines for working on Dune itself. Many of these are
general guidelines that are specific to Dune. However, given that Dune is a
large project developed by many different people, it is important to follow
these guidelines when working on Dune in order to keep the project in a good
state and pleasant to work on for everybody.

Writing tests

Most of our tests are written as expectation style tests. While writing such
tests, the developer write some code and then let the system insert the output
produced during the execution of this code right next to the code in the source
file.

Once a test is written and committed, the system will check that the captured
output is still the one produced by a fresh execution of the code. When the two
don’t match, the test is considered as failing and the system displays a diff
between what was expected and what the code produced.

Both our unit tests and integration tests are written this way. For unit tests,
we use the ppx_expect [https://github.com/janestreet/ppx_expect] framework where tests are introduced via
let%expect_test and expectation are capture in [%expect ...] nodes:

let%expect_test "<test name>" =
 print_string "Hello, world!";
 [%expect {|
 Hello, world!
 |}]

For integration tests, we use a system similar to cram tests [https://bitheap.org/cram/] for testing shell commands and their behavior:

$ echo 'Hello, world!'
Hello, world!

$ false
[1]

$ cat <<EOF
> multi
> line
> EOF
multi
line

Guidelines

As with any long running software project, code written by one person will
always eventually end up being maintained by another. Just like normal code, it
is important to document tests. Especially since test suites are most often
composed of many individual tests that must be understood on their own.

A well written test case should be easy to understand. A reader should be able
to quickly understand what property the test is checking, how it is doing it and
how to convince one-self that the test outcome is the right one. A well written
test will make it easy for future maintainers to understand the test and react
when the test breaks. Most often, the code will need to be adapted to preserve
the existing behavior, however in some rare cases the test expectation will need
to be updated.

It is crucial that each test cases makes it purpose and logic crystal clear so
that future maintainers know how to deal with it.

When writing a test, we generally have a good idea of what we want to test.
Sometimes, we want to test that a new feature we developed is behaving as we
expect. Sometimes, we want to add a reproduction case for a bug reported by a
user to make sure future changes won’t re-introduce the faulty behaviour. Just
like when programming, we turn such an idea into code, which is a formal
language that a computer can understand. While another person reading this code
might be able to follow and understand what the code is doing step by step, it
is not clear that they will be able to reconstruct the original idea the
developer had in their mind when they originally wrote the code. What is worse,
they might understand the code in a completely different way which would lead
them to update it the wrong way.

Adding Stanzas

Adding new stanzas is the most natural way to extend dune with new features.
Therefore we try to make this as easy as possible. The minimal amount of steps
to add a new stanza is:

	Extend Stanza.t with a new constructor to represent the new stanza

	Modify Dune_file to parse the dune language into this constructor

	Modify the rules to interpret this stanza into rules. This is usually done in
Gen_rules`

Versioning

Dune is incredibly strict with versioning of new features, modifications that
are visible to the user, and changes to existing rules. This means that any
added stanza must be guarded behind the version of the dune language in which it
was introduced. For example:

; ("cram"
 , let+ () = Dune_lang.Syntax.since Stanza.syntax (2, 7)
 and+ t = Cram_stanza.decode in
 [Cram t])

Here the cram stanza was introduced in dune 2.7, so the user must enable (lang
dune 2.7) in their dune-project file to use it.

since isn’t the only primitive for making sure that versions are respected.
See Dune_lang.Syntax for other commonly used functions.

Experimental & Independent Extensions

Sometimes, dune’s versioning policy is too strict. For example, it does not work
in the following situations:

	Mostly independent extensions of dune that only exist inside dune for
development convenience. For example, build rules for coq. Such extensions
would like to impose their own versioning policy.

	Experimental features that cannot yet guarantee dune’s strict backwards
compatibility. Such features may dropped or modified at any time.

To handle both of these use cases, dune allows to define new languages (with the
same syntax). These languages have their own versioning scheme and their own
stanzas (or fields). In dune itself, such languages are represented with
Syntax.t Here’s an example of how the coq syntax is defined:

let coq_syntax =
 Dune_lang.Syntax.create ~name:"coq" ~desc:"the coq extension (experimental)"
 [((0, 1), `Since (1, 9)); ((0, 2), `Since (2, 5))]

The list provides which versions of the syntax are provided, and in which
version of dune they were introduced.

Such languages must be enabled in the dune-project separately:

(lang dune 2.8)
(using coq 0.2)

If such extensions are experimental, it’s recommended that they pass
~experimental:true, and that their versions are below 1.0.

It’s also recommended that such extensions introduce stanzas or fields of the
form ext_name.stanza_name or ext_name.field_name to make it clear to the
user which extensions is providing a certain feature.

Dune Rules

Creating Rules

A dune rule consists of 3 components:

	Dependencies that the rule may read when executed (files, aliases, ..)
This is described by 'a Build.t values

	Targets the rule produces (files)
Targets, in addition to dependencies is described by 'a Build.With_targets.t'

	Action that dune must execute (external programs, redirects, etc.)
Actions are represented by Action.t

Combined, one needs to produce a Action.t Build.With_targets.t value to
create a rule. The rule may then be added by Super_context.add_rule, or a
related function.

To make this maximally convenient, there’s a Command module to make it
easier to create actions that run external commands and describe their targets &
dependencies simultaneously.

Loading Rules

Dune rules are loaded lazily to improve performance. Here’s a sketch of the
algorithm that tries to load the rule that generates some target file t.

	Get the directory that of t. Call it d.

	Load all rules in d into a map from targets in that directory to rules that
produce it.

	Look up the rule for t in this map.

To adhere to this loading scheme, our rules must therefore be generated as part
of the callback that generates targets in that directory. See the Gen_rules
module for how this callback is constructed.

Index

 _static/comment-close.png

_static/comment.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to dune’s documentation!

 		
 Overview

 		
 Introduction

 		
 Terminology

 		
 Project layout

 		
 Quickstart

 		
 Building a hello world program

 		
 Building a hello world program using Lwt

 		
 Building a hello world program using Core and Jane Street PPXs

 		
 Defining a library using Lwt and ocaml-re

 		
 Building a hello world program in byte-code

 		
 Setting the OCaml compilation flags globally

 		
 Using cppo

 		
 Using the .cppo.ml style like the ocamlbuild plugin

 		
 Defining a library with C stubs

 		
 Defining a library with C stubs using pkg-config

 		
 Using a custom code generator

 		
 Defining tests

 		
 Building a custom toplevel

 		
 Command-line interface

 		
 Initializing components

 		
 Initializing a project

 		
 Initializing an executable

 		
 Initializing a library

 		
 Finding the root

 		
 Current directory

 		
 Forcing the root (for scripts)

 		
 Interpretation of targets

 		
 Resolution

 		
 Aliases

 		
 Default alias

 		
 Built-in Aliases

 		
 Variables for artifacts

 		
 Finding external libraries

 		
 Running tests

 		
 Watch mode

 		
 Launching the Toplevel (REPL)

 		
 Requirements & Limitations

 		
 Restricting the set of packages

 		
 Distributing Projects

 		
 dune subst

 		
 Custom Build Directory

 		
 Installing a package

 		
 Via opam

 		
 Manually

 		
 Destination directory

 		
 Relocation Mode

 		
 Stanza reference

 		
 dune-project

 		
 name

 		
 version

 		
 implicit_transitive_deps

 		
 wrapped_executables

 		
 explicit_js_mode

 		
 dialect

 		
 formatting

 		
 generate_opam_files

 		
 package

 		
 use_standard_c_and_cxx_flags

 		
 dune

 		
 jbuild_version

 		
 library

 		
 foreign_library

 		
 deprecated_library_name

 		
 executable

 		
 executables

 		
 rule

 		
 ocamllex

 		
 ocamlyacc

 		
 menhir

 		
 cinaps

 		
 documentation

 		
 alias

 		
 install

 		
 copy_files

 		
 include

 		
 tests

 		
 test

 		
 env

 		
 dirs (since 1.6)

 		
 data_only_dirs (since 1.6)

 		
 ignored_subdirs (deprecated in 1.6)

 		
 vendored_dirs (since 1.11)

 		
 include_subdirs

 		
 toplevel

 		
 subdir

 		
 external_variant

 		
 coq.theory

 		
 coq.pp

 		
 coq.extraction

 		
 mdx (since 2.4)

 		
 plugin (since 2.8)

 		
 generate_sites_module (since 2.8)

 		
 dune-workspace

 		
 profile

 		
 env

 		
 context

 		
 General concepts

 		
 Scopes

 		
 Ordered set language

 		
 Boolean language

 		
 Predicate language

 		
 Variables

 		
 Library dependencies

 		
 Alternative dependencies

 		
 Re-exported dependencies

 		
 Preprocessing specification

 		
 Preprocessing with actions

 		
 Preprocessing with ppx rewriters

 		
 Per module preprocessing specification

 		
 Future syntax

 		
 Preprocessor dependencies

 		
 Dependency specification

 		
 Named Dependencies

 		
 Glob

 		
 OCaml flags

 		
 User actions

 		
 Sandboxing

 		
 Per-action sandboxing configuration

 		
 Global sandboxing configuration

 		
 Locks

 		
 Diffing and promotion

 		
 Promotion

 		
 Package specification

 		
 Declaring a package

 		
 Attaching elements to a package

 		
 Sites of a package

 		
 Foreign sources and archives

 		
 Foreign stubs

 		
 Foreign archives

 		
 Flags

 		
 Writing and running tests

 		
 Running tests

 		
 Running a single test

 		
 Running tests in a directory

 		
 Inline tests

 		
 Inline expectation tests

 		
 Running a subset of the test suite

 		
 Running tests in bytecode or JavaScript

 		
 Specifying inline test dependencies

 		
 Passing special arguments to the test runner

 		
 Passing special arguments to the test executable

 		
 Using additional libraries in the test runner

 		
 Defining your own inline test backend

 		
 Custom tests

 		
 Diffing the result

 		
 Cram Tests

 		
 File Tests

 		
 Directory Tests

 		
 Test Options

 		
 Testing an OCaml Program

 		
 Sandboxing

 		
 Test Output Sanitation

 		
 Instrumentation

 		
 Specifying what to instrument

 		
 Enabling/disabling instrumentation

 		
 Declaring an instrumentation backend

 		
 Dealing with foreign libraries

 		
 Adding C/C++ stubs to an OCaml library

 		
 Header files

 		
 Installing header files

 		
 Foreign build sandboxing

 		
 Limitations

 		
 Real example

 		
 Generating documentation

 		
 Prerequisites

 		
 Writing documentation

 		
 Building documentation

 		
 Examples

 		
 Passing options to Odoc

 		
 JavaScript compilation

 		
 Compiling to JS

 		
 Separate compilation

 		
 How to load additional files at runtime

 		
 Sites

 		
 Defining a site

 		
 Adding files to a site

 		
 Getting the locations of a site at runtime

 		
 Tests

 		
 Installation

 		
 Implementation details

 		
 Plugins and dynamic loading of packages

 		
 Example

 		
 OPAM integration

 		
 Invocation from opam

 		
 Tests

 		
 <package>.opam files

 		
 Generating opam files

 		
 Opam template

 		
 Odig conventions

 		
 Virtual libraries & variants

 		
 Virtual library

 		
 Implementation

 		
 Variants

 		
 Default implementation

 		
 Limitations

 		
 Automatic formatting

 		
 Configuring automatic formatting (dune 2.0)

 		
 Formatting a project

 		
 Enabling and configuring automatic formatting (dune 1.x)

 		
 Version history

 		
 (lang dune 2.0)

 		
 (using fmt 1.2)

 		
 (using fmt 1.1)

 		
 (using fmt 1.0)

 		
 Cross compilation

 		
 How does it work?

 		
 Dune libraries

 		
 Configurator

 		
 Usage

 		
 Upgrading from the old Configurator

 		
 build-info

 		
 (Experimental) Dune action plugin

 		
 Other topics

 		
 META file generation

 		
 Findlib integration

 		
 Dynamic loading of packages with findlib

 		
 Classical ppx

 		
 Profiling dune

 		
 Package version

 		
 OCaml syntax

 		
 Variables for artifacts

 		
 Building an ad-hoc .cmxs

 		
 Lexical conventions

 		
 Comments

 		
 Atoms

 		
 Strings

 		
 End of line strings

 		
 Lists

 		
 FAQ

 		
 Why do many dune projects contain a Makefile?

 		
 How to add a configure step to a dune project?

 		
 Can I use topkg with dune?

 		
 How do I publish my packages with dune?

 		
 Where can I find some examples of projects using dune?

 		
 What is Jenga?

 		
 How to make warnings non-fatal?

 		
 How to display the output of commands as they run?

 		
 How can I generate an mli file from an ml file?

 		
 Known Issues

 		
 mli only modules

 		
 parallel dune invocations on the same tree

 		
 Migration

 		
 Timeline

 		
 July 2018: release of Dune 1.0.0

 		
 January 2019: deprecation of Jbuilder

 		
 July 2019: support for Jbuilder is dropped

 		
 January 2020: the jbuilder binary goes away

 		
 Distant future

 		
 Check list

 		
 New configuration files

 		
 dune-project files

 		
 dune files

 		
 dune-workspace

 		
 Variable syntax

 		
 (files_recursively_in ..) is removed

 		
 Escape sequences

 		
 Comments syntax

 		
 Renamed variables

 		
 Removed variables

 		
 # JBUILDER_GEN renamed

 		
 jbuild-ignore (deprecated)

 		
 Caching

 		
 Configuration

 		
 Daemon

 		
 Starting the daemon

 		
 Stopping the daemon

 		
 Filesystem implementation

 		
 Hardlink mode

 		
 Copy mode

 		
 On-disk size

 		
 Reproducibility

 		
 Reproducibility check

 		
 Non-reproducible rules

 		
 Daemon-less mode

 		
 Toplevel integration

 		
 Goal of Dune

 		
 Have excellent backward compatibility properties

 		
 Have a robust and scalable core

 		
 Remain a no-brainer dependency

 		
 Remain accessible

 		
 Have very good support for the OCaml language

 		
 Be extensible

 		
 Working on the Dune codebase

 		
 Writing tests

 		
 Guidelines

 		
 Adding Stanzas

 		
 Versioning

 		
 Experimental & Independent Extensions

 		
 Dune Rules

 		
 Creating Rules

 		
 Loading Rules

_static/up.png

_static/ajax-loader.gif

_static/comment-bright.png

