
8	 C O M P U T E R P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y � 0 0 1 8 - 9 1 6 2 / 1 7 / $ 3 3 . 0 0 © 2 0 1 7 I E E E

FROM THE ARCHIVES: COMPUTER’S LEGACY

Between June 1985 and January 1987, a software-
controlled radiation therapy machine called
the Therac-25 massively overdosed six people,
resulting in serious injury and deaths. A widely

cited paper published in 1993 detailed the causes of these
accidents.1,2 It wasn’t an anomaly but simply the first of
many, as these types of radiation-overdose accidents con-
tinue today. In 2010, a series of articles were published
describing related accidents in radiation therapy.3 Many
more such events have occurred since then. Indeed, the

problems aren’t limited to medical
linear accelerators.

Many lessons should have been
learned from the Therac-25 events,
most of which are generalizable to
almost every industry that employs
safety-critical devices. In this arti-
cle, I examine each of the identified
factors in these accidents to deter-
mine what progress has been made

in the past 30 years. In the interest of
space, the specifics of the Therac-25
events aren’t detailed—instead, I fo-
cus on the state of practice 30 years
after the events.

OVERCONFIDENCE IN
SOFTWARE
There’s still widespread belief that

software doesn’t fail, unlike the hardware devices it re-
places. In safety-critical systems today—including med-
ical devices, aircraft, nuclear power plants, and weapons
systems—standard hardware backups, interlocks, and
other safety devices are often replaced by software. Where
hardware backups are still used, they’re often controlled
by software.

Many hardware engineers (and some software en-
gineers) have so much confidence in software that they

The Therac-25:
30 Years Later
Nancy G. Leveson, MIT

A widely cited 1993 Computer article described

failures in a software-controlled radiation

machine that massively overdosed six people in

the late 1980s, resulting in serious injury and

fatalities. How far have safety-critical systems

come since then?

FROM THE EDITOR

As part of our 50th anniversary celebration, this special feature revisits influ-
ential Computer articles from the past. This month, the author of an article on
the investigation of the Therac-25 accidents between 1985 and 1987 re-
flects on the current state of practice of safety-critical systems. —Ron Vetter,
Editor in Chief Emeritus

	 N O V E M B E R 2 0 1 7 � 9

EDITOR RON VETTER
University of North Carolina Wilmington; vetterr@uncw.edu

eliminate the hardware protection
that was common before software took
over. Engineers don’t purposely create
designs where a hardware single-point
failure could lead to a catastrophe. The
same needs to be true for the software
in these systems. Protection against
software errors can and should be
built into both the system and the soft-
ware itself.

CONFUSING RELIABILITY
WITH SAFETY
When systems were primarily electro-
mechanical, nearly exhaustive testing
was possible and design errors could
be eliminated before operational use.
What was left during operations were
random wearout failures. Safety, then,
could be assumed to be effectively ap-
proximated by reliability.

 Software is by design abstracted
from its physical realization. Although
the hardware on which the software is
executed might fail, the design itself
doesn’t fail. In fact, software by itself
isn’t safe or unsafe—safety depends
on context. Much of the Therac-25
software had been used on an ear-
lier version of the machine called the
Therac-20. The same flaws that killed
people with the Therac-25 weren’t dan-
gerous because of the design of the
Therac-20 hardware that the software
was controlling. Software safety al-
ways depends on the context in which
the software is used. In fact, nearly all
accidents involving software have re-
sulted from flawed software require-
ments, not implementation. There’s
still a widespread but untrue belief
that software will be safe if it satisfies
its requirements, or that the safety of a
specific piece of software can be eval-
uated apart from its use environment.

Another widespread misunder-
standing is that software safety is en-
hanced by assuring that the software
satisfies the requirements. Almost
all software-related accidents have

involved requirements flaws, not cod-
ing or implementation errors. Perhaps
this misguided reliance on assurance
stems from the fact that we have many
solutions proposed for software as-
surance, but few that identify safety-
critical software requirements. Not
much has changed in 30 years in this
regard. Nearly all standards for safety-
critical software focus on implemen-
tation assurance. If we truly want to
reduce software-related accidents, we
have to focus less on assurance and
more on identifying the safety-critical
requirements and building safety into
these machines from the beginning of
development. Safety can’t be ensured
if it isn’t already there; it has to be built
in from the beginning.

LACK OF DEFENSIVE DESIGN
The Therac-25 software didn’t contain
self-checks or other error-detection and
error-handling features that would
have detected problems. There were no
independent checks that the machine
was operating correctly. Such verifi-
cation can’t be assigned to operators
without providing them with some
means of detecting errors. Operators
are often blamed for medical device
accidents when the problems were ac-
tually in the machine design.

Although audit trails were limited
30 years ago due to the technology of
the time, they are common today. One
problem, however, is that so much data
is collected—for instance, in aircraft

operations—that it’s difficult to detect
problems until after a serious event
has occurred. The problem today isn’t
in collecting data, but rather in identi-
fying trends and behaviors of the hard-
ware, software, and operators that are
increasing risk before an accident oc-
curs. Collecting data alone won’t help
here. We need sophisticated modeling
and analysis tools to analyze the data.
Data—“big” or not—isn’t the same as
information.

UNREALISTIC RISK
ASSESSMENTS
The Therac-25 had a probabilistic risk
assessment—including an update af-
ter one of the early accidents—that
led to dangerous complacency. Many
(perhaps most) industries today make
the same types of assumptions based
on probabilistic risk assessments. In
general, such calculations often ex-
clude aspects of the problem that are
difficult to quantify (such as software
requirements inadequacies) but which
might have a larger impact on safety
than the quantitative factors that are
included. There are few if any scien-
tific evaluations of the correctness of
such assessments. I wrote this in the
original Therac-25 article and it’s still
true: “In our enthusiasm to provide
measurements, we should not attempt
to measure the unmeasurable.”

Specific software flaws leading to
a serious loss can’t be assessed prob-
abilistically. Even if they could, it

ARCHIVED ARTICLES

The original article remains very popular as indicated by the number of down-

loads it receives from the IEEE Computer Society Digital Library. All of the

articles mentioned in this special column are free to view at www.computer.org

/computer-magazine/from-the-archives-computers-legacy.

10	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

FROM THE ARCHIVES

would require so much information
about the flaw that it could be fixed
instead of justified away as “will never
or rarely occur.” I’ve participated in
accident investigations or read acci-
dent reports involving software for 30
years. In every case, there had been a
probabilistic risk assessment that was
used to convince decision makers that
the accident couldn’t occur, usually
in the exact way that the accident did
occur. Even after a loss or significant
event, engineers and management
often ignored the fact that the risk
assessment was obviously wrong, and
they continued to believe in it until
the next event—and sometimes after

several events—until a major loss oc-
curred. For some reason, people seem
to believe in a calculated number more
than actual experience.

Engineers often argue that deci-
sions can’t be made without probabi-
listic risk assessment, but this is sim-
ply untrue. The safety program with
the best historical track record—the
US Navy’s submarine safety program
(SUBSAFE)—allows decision mak-
ing about safety using only Objective
Quality Evidence, which is defined as
“any statement of fact, either quanti-
tative or qualitative, pertaining to the
quality of a product or service, based on
observations, measurements, or tests
that can be verified.”4 Probabilities
about what will happen in the future
can’t be verified and so aren’t allowed.
No SUBSAFE submarine has been lost
in the 54 years since SUBSAFE was
created after the Thresher loss in 1963.4
Before that time, one submarine was
lost on average every three years.

If accurate probabilities aren’t de-
terminable (as is true for systems that
contain software), then making them

up or simply ignoring the software in
the system risk assessment isn’t the
answer. A better solution is to design
for the worst case (instead of assuming
that only the average case will occur)
and creating better decision-making
tools that don’t require unsupportable
risk assessments.

INADEQUATE INVESTIGATION
OF INCIDENTS OR FOLLOW-
UP ON ACCIDENT REPORTS
Superficial accident/incident anal-
yses, usually placing all or most of
the blame on the operators, leads to
patching symptoms but not to under-
standing the deeper underlying and

systemic causes of a loss or near loss.
This process leads to further acci-
dents that could and should have been
prevented.4 We need to look at the role
of the entire system in the accident to
make progress in safety.

INADEQUATE SOFTWARE
AND SYSTEM ENGINEERING
PRACTICES
The Therac-25 software was created
in 1974 and used what are now consid-
ered obsolete software engineering
practices. There are, however, factors
in the accident related to software
engineering that are still common to-
day. Too often, practices that might be
acceptable for website or productivity
tools development are used and even
promoted for safety-critical software.
A few of these include:

›› Software specifications and
documentation are often an
afterthought, and the devel-
opment of requirements after
the design is created is some-
times even touted as a benefit

or necessity. This simply isn’t
true for safety-critical software
where the loss might involve
not only human life but physical
property, critical mission loss,
and damage to the environment.
It should be considered malprac-
tice for software to be created
before the safety requirements
are identified. Identifying these
requirements will necessitate so-
phisticated system-engineering
hazard analysis techniques.4

›› Software designs are of-
ten unnecessarily complex.
Whereas object-oriented design
is appropriate for data-oriented
systems, it’s not appropriate
for control-oriented systems.
The resulting software is more
difficult to test for safety, trace
from requirements to code,
maintain without affecting
safety, and assure the correct-
ness of changes to safety-critical
requirements. We need to get
over the fixation that there is
one best way to design soft-
ware for all types of systems.

›› Defensive design is some-
times not emphasized. Ways
to detect or prevent software
errors should be designed in
from the beginning. If written
first, error-handling routines
will get the most exercise. Many
(and perhaps most) errors in
operational software lie in
the error-handling routines
themselves. Programming
languages that provide error
protection, such as strong type
checking, aren’t always pop-
ular or used in safety-critical
systems, but are necessary for
safety-critical systems.

›› Software engineers and hu-
man factors engineers don’t
work together enough. We
create software today that’s
confusing to operators and
can lead to accidents, but the
operator is blamed rather than
the software. Software design

Engineers often argue that decisions can’t
be made without probabilistic risk assessment,

but this is simply untrue.

	 N O V E M B E R 2 0 1 7 � 11

can create operator mode
confusion, situation aware-
ness errors, and so on. These
dangerous features of software
need to be avoided or detected
and handled in some way.

SOFTWARE REUSE
The Therac-25 was an improvement of
an earlier machine made by the same
company called the Therac-20, and
much of the software was reused. To-
day, overconfidence in reuse is still
rampant. A false assumption might
be made that reusing software or us-
ing commercial off-the-shelf software
increases safety because the software
has been exercised extensively. As
stated earlier, software is only safe
or unsafe within a specific context. It
isn’t possible to determine safety by
looking at the software alone. Reusing
software that was safe in one system
doesn’t mean it will be safe when used
in a different system. Safety is a qual-
ity of the system in which the soft-
ware is used; it’s not a quality of the
software itself. The belief sometimes
built into practice or even government
standards that reused software is safe
or safer isn’t justified.

SAFE VERSUS “FRIENDLY”
USER INTERFACES
Although the interface equipment
and principles used for the Therac-25
are obsolete, there are still potential
issues even with today’s more sophis-
ticated interface tools. Sometimes
making the interface easy to use con-
flicts with safety. For example, elim-
inating multiple data entry and as-
suming that operators would check
the values carefully before pressing
the return key was unrealistic for
the Therac-25 and for most systems. I
have been involved in reviews of sev-
eral newer safety-critical system in-
terfaces and have been surprised by
how many included unsafe features.
One example is allowing operators
to turn off alarms with no indication
showing that the alarms had been
turned off. Although there can be a

good reason for inhibiting alarms, a
new operator needs to be aware that
this has occurred. One general de-
sign principle is that actions to get
into or maintain a safe state should
be easy to do. Actions that can lead
to an unsafe state (hazard) should be
hard to do.2

Relying on operators to detect er-
rors and recover before an accident
isn’t realistic, particularly when the
operator isn’t provided with the sup-
port to perform this function. Some
of the radiation therapy accidents
since the Therac-25 overdoses have
involved operators not being able to
see or react to error messages. The
accidents were then blamed on the
operators rather than on the machine
and interface design. The same has
occurred in other industries, where
operators are blamed for accidents
that are primarily the result of flawed
engineering.

USER AND GOVERNMENT
OVERSIGHT AND
STANDARDS
Although the US Federal Drug Admin-
istration (FDA)’s original response to
the Therac-25 accidents (after they
were understood) was impressive,
later follow-through was weak, as is
current regulation of medical device
software. The same is true for other
industries. The FDA puts more em-
phasis on reporting adverse events in
linear accelerators, for example, than
on preventing them in the first place.
One problem is the difficulty and time
required to update standards. In gen-
eral, standards should never include
specific techniques (such as failure
modes and effects analysis [FMEA] for
medical devices) or they will become
out of date almost immediately, with-
out any possibility of being updated
for perhaps a decade.

Standards can have the undesirable
effect of limiting the safety efforts and
investment of companies that feel their
legal and moral responsibilities are
fulfilled if they follow the standards.
As the standards often represent the

input of commercial companies, there
are often conflicts of interest involved
in producing effective standards.

My original account of the
Therac-25 losses said that
accidents are seldom simple.

They usually involve a complex web
of interacting events with multiple
contributing technical, human, orga-
nizational, and regulatory factors. We
aren’t learning enough today from the
events nor focusing enough on pre-
venting them. It’s time for computer
science practitioners to be better edu-
cated about engineering for safety.

REFERENCES
1.	 N.G. Leveson and C.S. Turner, “An

Investigation of the Therac-25 Acci-
dents,” Computer, vol. 26, no. 7, 1993,
pp. 18–41.

2.	 N. Leveson, Safeware: System Safety
and Computers, Addison Wesley, 1995.

3.	 W. Bogdanich and K. Rebelodec,
“A Pinpoint Beam Strays Invisibly,
Harming Instead of Healing,” The
New York Times, 28 Dec. 2010; www
.nytimes.com/2010/12/29/health
/29radiation.html?mcubz=0.

4.	 N.G. Leveson, Engineering a Safer
World: Systems Thinking Applied to
Safety, MIT Press, 2012.

NANCY G. LEVESON is a professor

in the Aeronautics and Astronautics

Department at MIT. She is a member

of the US National Academy of

Engineering, and has received many

awards for her research in software

engineering, systems safety, and

systems engineering. Contact her at

leveson@mit.edu.

Read your subscriptions
through the myCS
publications portal at

http://mycs.computer.org

