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FROM THE ARCHIVES: COMPUTER’S LEGACY

Between June 1985 and January 1987, a software- 
controlled radiation therapy machine called 
the Therac-25 massively overdosed six people, 
resulting in serious injury and deaths. A widely 

cited paper published in 1993 detailed the causes of these 
accidents.1,2 It wasn’t an anomaly but simply the first of 
many, as these types of radiation-overdose accidents con-
tinue today. In 2010, a series of articles were published 
describing related accidents in radiation therapy.3 Many 
more such events have occurred since then. Indeed, the 

problems aren’t limited to medical 
linear accelerators. 

Many lessons should have been 
learned from the Therac-25 events, 
most of which are generalizable to 
almost every industry that employs 
safety-critical devices. In this arti-
cle, I examine each of the identified 
factors in these accidents to deter-
mine what progress has been made 

in the past 30 years. In the interest of 
space, the specifics of the Therac-25 
events aren’t detailed—instead, I fo-
cus on the state of practice 30 years 
after the events.

OVERCONFIDENCE IN 
SOFTWARE
There’s still widespread belief that 

software doesn’t fail, unlike the hardware devices it re-
places. In safety-critical systems today—including med-
ical devices, aircraft, nuclear power plants, and weapons 
systems—standard hardware backups, interlocks, and 
other safety devices are often replaced by software. Where 
hardware backups are still used, they’re often controlled 
by software. 

Many hardware engineers (and some software en-
gineers) have so much confidence in software that they 

The Therac-25:  
30 Years Later
Nancy G. Leveson, MIT

A widely cited 1993 Computer article described 

failures in a software-controlled radiation 

machine that massively overdosed six people in 

the late 1980s, resulting in serious injury and 

fatalities. How far have safety-critical systems 

come since then? 

FROM THE EDITOR

As part of our 50th anniversary celebration, this special feature revisits influ-
ential Computer articles from the past. This month, the author of an article on 
the investigation of the Therac-25 accidents between 1985 and 1987 re-
flects on the current state of practice of safety-critical systems. —Ron Vetter, 
Editor in Chief Emeritus



	  N O V E M B E R  2 0 1 7 � 9

EDITOR RON VETTER 
University of North Carolina Wilmington; vetterr@uncw.edu

eliminate the hardware protection 
that was common before software took 
over. Engineers don’t purposely create 
designs where a hardware single-point 
failure could lead to a catastrophe. The 
same needs to be true for the software 
in these systems. Protection against 
software errors can and should be 
built into both the system and the soft-
ware itself.

CONFUSING RELIABILITY 
WITH SAFETY
When systems were primarily electro-
mechanical, nearly exhaustive testing 
was possible and design errors could 
be eliminated before operational use. 
What was left during operations were 
random wearout failures. Safety, then, 
could be assumed to be effectively ap-
proximated by reliability.

 Software is by design abstracted 
from its physical realization. Although 
the hardware on which the software is 
executed might fail, the design itself 
doesn’t fail. In fact, software by itself 
isn’t safe or unsafe—safety depends 
on context. Much of the Therac-25 
software had been used on an ear-
lier version of the machine called the 
Therac-20. The same flaws that killed 
people with the Therac-25 weren’t dan-
gerous because of the design of the 
Therac-20 hardware that the software 
was controlling. Software safety al-
ways depends on the context in which 
the software is used. In fact, nearly all 
accidents involving software have re-
sulted from flawed software require-
ments, not implementation. There’s 
still a widespread but untrue belief 
that software will be safe if it satisfies 
its requirements, or that the safety of a 
specific piece of software can be eval-
uated apart from its use environment. 

Another widespread misunder-
standing is that software safety is en-
hanced by assuring that the software 
satisfies the requirements. Almost 
all software-related accidents have 

involved requirements flaws, not cod-
ing or implementation errors. Perhaps 
this misguided reliance on assurance 
stems from the fact that we have many 
solutions proposed for software as-
surance, but few that identify safety- 
critical software requirements. Not 
much has changed in 30 years in this 
regard. Nearly all standards for safety- 
critical software focus on implemen-
tation assurance. If we truly want to 
reduce software-related accidents, we 
have to focus less on assurance and 
more on identifying the safety-critical 
requirements and building safety into 
these machines from the beginning of 
development. Safety can’t be ensured 
if it isn’t already there; it has to be built 
in from the beginning. 

LACK OF DEFENSIVE DESIGN
The Therac-25 software didn’t contain 
self-checks or other error-detection and 
error-handling features that would 
have detected problems. There were no 
independent checks that the machine 
was operating correctly. Such verifi-
cation can’t be assigned to operators 
without providing them with some 
means of detecting errors. Operators 
are often blamed for medical device 
accidents when the problems were ac-
tually in the machine design. 

Although audit trails were limited 
30 years ago due to the technology of 
the time, they are common today. One 
problem, however, is that so much data 
is collected—for instance, in aircraft 

operations—that it’s difficult to detect 
problems until after a serious event 
has occurred. The problem today isn’t 
in collecting data, but rather in identi-
fying trends and behaviors of the hard-
ware, software, and operators that are 
increasing risk before an accident oc-
curs. Collecting data alone won’t help 
here. We need sophisticated modeling 
and analysis tools to analyze the data. 
Data—“big” or not—isn’t the same as 
information.

UNREALISTIC RISK 
ASSESSMENTS
The Therac-25 had a probabilistic risk 
assessment—including an update af-
ter one of the early accidents—that 
led to dangerous complacency. Many 
(perhaps most) industries today make 
the same types of assumptions based 
on probabilistic risk assessments. In 
general, such calculations often ex-
clude aspects of the problem that are 
difficult to quantify (such as software 
requirements inadequacies) but which 
might have a larger impact on safety 
than the quantitative factors that are 
included. There are few if any scien-
tific evaluations of the correctness of 
such assessments. I wrote this in the 
original Therac-25 article and it’s still 
true: “In our enthusiasm to provide 
measurements, we should not attempt 
to measure the unmeasurable.”

Specific software flaws leading to 
a serious loss can’t be assessed prob-
abilistically. Even if they could, it 
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would require so much information 
about the flaw that it could be fixed 
instead of justified away as “will never 
or rarely occur.” I’ve participated in 
accident investigations or read acci-
dent reports involving software for 30 
years. In every case, there had been a 
probabilistic risk assessment that was 
used to convince decision makers that 
the accident couldn’t occur, usually 
in the exact way that the accident did 
occur. Even after a loss or significant 
event, engineers and management 
often ignored the fact that the risk 
assessment was obviously wrong, and 
they continued to believe in it until 
the next event—and sometimes after 

several events—until a major loss oc-
curred. For some reason, people seem 
to believe in a calculated number more 
than actual experience. 

Engineers often argue that deci-
sions can’t be made without probabi-
listic risk assessment, but this is sim-
ply untrue. The safety program with 
the best historical track record—the 
US Navy’s submarine safety program 
(SUBSAFE)—allows decision mak-
ing about safety using only Objective 
Quality Evidence, which is defined as 
“any statement of fact, either quanti-
tative or qualitative, pertaining to the 
quality of a product or service, based on 
observations, measurements, or tests 
that can be verified.”4  Probabilities 
about what will happen in the future 
can’t be verified and so aren’t allowed. 
No SUBSAFE submarine has been lost 
in the 54 years since SUBSAFE was 
created after the Thresher loss in 1963.4 
Before that time, one submarine was 
lost on average every three years.

If accurate probabilities aren’t de-
terminable (as is true for systems that 
contain software), then making them 

up or simply ignoring the software in 
the system risk assessment isn’t the 
answer. A better solution is to design 
for the worst case (instead of assuming 
that only the average case will occur) 
and creating better decision-making 
tools that don’t require unsupportable 
risk assessments.

INADEQUATE INVESTIGATION 
OF INCIDENTS OR FOLLOW-
UP ON ACCIDENT REPORTS
Superficial accident/incident anal-
yses, usually placing all or most of 
the blame on the operators, leads to 
patching symptoms but not to under-
standing the deeper underlying and 

systemic causes of a loss or near loss. 
This process leads to further acci-
dents that could and should have been 
prevented.4 We need to look at the role 
of the entire system in the accident to 
make progress in safety.

INADEQUATE SOFTWARE 
AND SYSTEM ENGINEERING 
PRACTICES
The Therac-25 software was created 
in 1974 and used what are now consid-
ered obsolete software engineering 
practices. There are, however, factors 
in the accident related to software 
engineering that are still common to-
day. Too often, practices that might be 
acceptable for website or productivity 
tools development are used and even 
promoted for safety-critical software. 
A few of these include:

›› Software specifications and 
documentation are often an 
afterthought, and the devel-
opment of requirements after 
the design is created is some-
times even touted as a benefit 

or necessity. This simply isn’t 
true for safety-critical software 
where the loss might involve 
not only human life but physical 
property, critical mission loss, 
and damage to the environment. 
It should be considered malprac-
tice for software to be created 
before the safety requirements 
are identified. Identifying these 
requirements will necessitate so-
phisticated system-engineering 
hazard analysis techniques.4

›› Software designs are of-
ten unnecessarily complex. 
Whereas object-oriented design 
is appropriate for data-oriented 
systems, it’s not appropriate 
for control-oriented systems. 
The resulting software is more 
difficult to test for safety, trace 
from requirements to code, 
maintain without affecting 
safety, and assure the correct-
ness of changes to safety-critical 
requirements. We need to get 
over the fixation that there is 
one best way to design soft-
ware for all types of systems. 

›› Defensive design is some-
times not emphasized. Ways 
to detect or prevent software 
errors should be designed in 
from the beginning. If written 
first, error-handling routines 
will get the most exercise. Many 
(and perhaps most) errors in 
operational software lie in 
the error-handling routines 
themselves. Programming 
languages that provide error 
protection, such as strong type 
checking, aren’t always pop-
ular or used in safety-critical 
systems, but are necessary for 
safety-critical systems.

›› Software engineers and hu-
man factors engineers don’t 
work together enough. We 
create software today that’s 
confusing to operators and 
can lead to accidents, but the 
operator is blamed rather than 
the software. Software design 

Engineers often argue that decisions can’t  
be made without probabilistic risk assessment, 

but this is simply untrue.
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can create operator mode 
confusion, situation aware-
ness errors, and so on. These 
dangerous features of software 
need to be avoided or detected 
and handled in some way.

SOFTWARE REUSE
The Therac-25 was an improvement of 
an earlier machine made by the same 
company called the Therac-20, and 
much of the software was reused. To-
day, overconfidence in reuse is still 
rampant. A false assumption might 
be made that reusing software or us-
ing commercial off-the-shelf software 
increases safety because the software 
has been exercised extensively. As 
stated earlier, software is only safe 
or unsafe within a specific context. It 
isn’t possible to determine safety by 
looking at the software alone. Reusing 
software that was safe in one system 
doesn’t mean it will be safe when used 
in a different system. Safety is a qual-
ity of the system in which the soft-
ware is used; it’s not a quality of the 
software itself. The belief sometimes 
built into practice or even government 
standards that reused software is safe 
or safer isn’t justified. 

SAFE VERSUS “FRIENDLY” 
USER INTERFACES
Although the interface equipment 
and principles used for the Therac-25 
are obsolete, there are still potential 
issues even with today’s more sophis-
ticated interface tools. Sometimes 
making the interface easy to use con-
flicts with safety. For example, elim-
inating multiple data entry and as-
suming that operators would check 
the values carefully before pressing 
the return key was unrealistic for 
the Therac-25 and for most systems. I 
have been involved in reviews of sev-
eral newer safety-critical system in-
terfaces and have been surprised by 
how many included unsafe features. 
One example is allowing operators 
to turn off alarms with no indication 
showing that the alarms had been 
turned off. Although there can be a 

good reason for inhibiting alarms, a 
new operator needs to be aware that 
this has occurred.  One general de-
sign principle is that actions to get 
into or maintain a safe state should 
be easy to do. Actions that can lead 
to an unsafe state (hazard) should be 
hard to do.2

Relying on operators to detect er-
rors and recover before an accident 
isn’t realistic, particularly when the 
operator isn’t provided with the sup-
port to perform this function. Some 
of the radiation therapy accidents 
since the Therac-25 overdoses have 
involved operators not being able to 
see or react to error messages. The 
accidents were then blamed on the 
operators rather than on the machine 
and interface design. The same has 
occurred in other industries, where 
operators are blamed for accidents 
that are primarily the result of flawed 
engineering.                                                                                                                                                                                                    

USER AND GOVERNMENT 
OVERSIGHT AND 
STANDARDS
Although the US Federal Drug Admin-
istration (FDA)’s original response to 
the Therac-25 accidents (after they 
were understood) was impressive, 
later follow-through was weak, as is 
current regulation of medical device 
software. The same is true for other 
industries. The FDA puts more em-
phasis on reporting adverse events in 
linear accelerators, for example, than 
on preventing them in the first place. 
One problem is the difficulty and time 
required to update standards. In gen-
eral, standards should never include 
specific techniques (such as failure 
modes and effects analysis [FMEA] for 
medical devices) or they will become 
out of date almost immediately, with-
out any possibility of being updated 
for perhaps a decade. 

Standards can have the undesirable 
effect of limiting the safety efforts and 
investment of companies that feel their 
legal and moral responsibilities are 
fulfilled if they follow the standards. 
As the standards often represent the 

input of commercial companies, there 
are often conflicts of interest involved 
in producing effective standards.

My original account of the 
Therac-25 losses said that 
accidents are seldom simple. 

They usually involve a complex web 
of interacting events with multiple 
contributing technical, human, orga-
nizational, and regulatory factors. We 
aren’t learning enough today from the 
events nor focusing enough on pre-
venting them. It’s time for computer 
science practitioners to be better edu-
cated about engineering for safety. 
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